WorldWideScience

Sample records for models nuclear transport

  1. A Fuzzy Modeling Approach to Road Transport with Application to a Case of Spent Nuclear Fuel Transport

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Bianchi, Mauro

    2004-01-01

    In this paper, we propose a general fuzzy inference approach to building a model of hazardous road transport that relates given traffic, weather, and vehicle-speed conditions to the accident rate. The development of the model is discussed in detail, and its validation is provided with reference to literature data regarding the transport of spent nuclear fuel to its final confinement repository

  2. Nuclear transport

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    During january and february 2003, a unique event concerning nuclear transport was reported and rated 1 on the INES scale. This event concerns the absence of a maintenance operation on a shipping cask. This shipping cask was used for several years for nuclear transport inside La-hague site before being re-assigned to transport on public thoroughfare. The re-assignment of the cask should have been preceded and conditioned by a maintenance operation whose purpose is to check the efficiency of its radiation shield. During this period 2 on-site inspections concerning the transport of nuclear materials were performed. (A.C.)

  3. Elastic Network Model of a Nuclear Transport Complex

    Science.gov (United States)

    Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.

    2010-05-01

    The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.

  4. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  5. Transport Nuclear Liability Insurance

    International Nuclear Information System (INIS)

    Folens, M.

    2006-01-01

    Although transport of nuclear substances represents only a very small part of the global transport of dangerous goods, it takes place every day all over the world and it is part of our daily life. Transport of nuclear material takes also place at every stage of the nuclear fuel cycle; radioactive materials are carried out all over the world by all major modes of transport: sea, air, road and rail. Despite the large number of nuclear transports, they are not considered as posing a serious risk. A major nuclear incident is almost always associated with the operating of fixed installations such as nuclear power plants; just think about Three Mile Island and Chernobyl. This perception is strengthened by the absence so far of serious accidents in the nuclear transport sector and this finding is in fact proof of the very safe conditions of nuclear transport. But accidents can never be excluded entirely and in some cases damages could be as large as those caused by fixed installations. This means that protection of the interests of possible victims should also be covered in a correct way. That is why the special nuclear liability regime has also been developed to cover damage caused by a nuclear transport accident. As stated by Patrick Reyners, the prime motivation for originally adopting a special nuclear regime was the harmonisation of national legislation and that nowhere more than in the field of international transport operations is such harmonisation felt desirable . The international legal regime has been developed along two tracks, one based on the mode of transport and the other based on the notion of dangerous goods. The linkage between those two tracks is of permanent concern and the mode of transport is the key element to determine which international instrument should be applicable. The purpose of this paper is to briefly introduce the financial security provided by the insurance industry to cover the international nuclear liability regime for nuclear

  6. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  7. Transportation of nuclear materials

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1977-01-01

    Twenty years of almost accident-free transport of nuclear materials is pointed to as evidence of a fundamentally correct approach to the problems involved. The increased volume and new technical problems in the future will require extension of these good practices in both regulations and packaging. The general principles of safety in the transport of radioactive materials are discussed first, followed by the transport of spent fuel and of radioactive waste. The security and physical protection of nuclear shipments is then treated. In discussing future problems, the question of public understanding and acceptance is taken first, thereafter transport safeguards and the technical bases for the safety regulations. There is also said to be a need for a new technology for spent fuel casks, while a re-examination of the IAEA transport standards for radiation doses is recommended. The IAEA regulations regarding quality assurance are said to be incomplete, and more information is required on correlations between engineering analysis, scale model testing and full scale crash testing. Transport stresses on contents need to be considered while administrative controls have been neglected. (JIW)

  8. Nuclear transport - The regulatory dimension

    International Nuclear Information System (INIS)

    Green, L.

    2002-01-01

    The benefits that the peaceful applications of nuclear energy have brought to society are due in no small part to industry's capacity to transport radioactive materials safely, efficiently and reliably. The nuclear transport industry has a vital role in realising a fundamental objective of the International Atomic Energy Agency (IAEA) as stated in its statute to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. The context in which transports currently take place is complex, and rapidly changing. In many respects transport is being viewed as an integral market issue and not a subsidiary concern. The availability of carriers drives routing decisions and changes in material flows necessitate new approaches to packaging and transport scenarios. Pressures on the transport sector are not without serious consequences; they can cause delays and in some cases cancellation of planned movements. Complex routings and the necessary use of chartered carriers can push up costs and work against cost efficiency. Since the events of 11 September 2001 the security of nuclear transports has contributed an added dimension to how transports take place. Transports of radioactive material have an outstanding safety record, indeed the transport of such materials could be regarded as a model for the transport of other classes of dangerous goods. This safety record is achieved by two inter-related factors. It is due primarily to well founded regulations developed by such key intergovernmental organisations as the IAEA, with the essential contributions of the member states who participate in the implementation of regulations and the review process. It is due also to the professionalism of those in the industry. There is a necessary synergy between the two - between the regulators whose task it is to make and to enforce the rules for safe, efficient and reliable transport and those whose job it is to transport within the rules. It

  9. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  10. The eyes, ears and collective voice for nuclear transport

    International Nuclear Information System (INIS)

    Green, L.

    2000-01-01

    Transport is a vital part of the nuclear industry and the safety record of radioactive materials transport across the world is excellent. This record is due primarily to well-founded regulations developed by such intergovernmental organisations as the International Atomic Energy Agency and the International Maritime Organisation. It is due, also, to the professionalism of those in the industry. Attitudes to nuclear transport are important. They have the potential, if not heeded, and not responded to sensitively and convincingly to make life very much more difficult for those committed to the safe, reliable and efficient transport of nuclear materials. What is required is a balanced situation, which takes account both of the public's attitudes and industry's need for an efficient operation. The voices of the nuclear transport industry and those who value the industry need to be heard. The World Nuclear Transport Institute was established to provide the nuclear transport industry with the collective eyes, ears and voice in the key intergovernmental organisations which are so important to it. The nuclear transport industry has a safety record which could be regarded as a model for the transport of dangerous goods of all kinds. The industry is situated within a comprehensive and strict regime of national and international standards and regulations. That is the message to be disseminated, and that is the commitment of the World Nuclear Transport Institute as it works to protect and to promote the safe, efficient and reliable transport of radioactive materials. (author)

  11. Nuclear materials transport worldwide

    International Nuclear Information System (INIS)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy. (orig./HP) [de

  12. Stochastic modelling of fusion-product transport and thermalization with nuclear elastic scattering

    International Nuclear Information System (INIS)

    Deveaux, J.C.

    1983-01-01

    Monte Carlo methods are developed to model fusion-product (fp) transport and thermalization with both Rutherford scattering and nuclear elastic scattering (NES) in high-temperature (T/sub i/, T/sub e-/ > 50 keV), advanced-fuel (e.g. Cat-D, D- 3 He) plasmas. A discrete-event model is used to superimpose NES collisions on a Rutherford scattering model that contains the Spitzer coefficients of drag, velocity diffusion (VD), and pith-angle scattering (PAS). The effects of NES on fp transport and thermalization are investigated for advanced-fuel, Field-Reversed Mirror (FRM) plasmas that have a significant Hamiltonian-canonical angular momentum (H-Ptheta) space loss cone which scales with the characteristic size (S identical with R/sub HV//3p/sub i/) and applied vacuum magnetic field (B 0 )

  13. Transport in biosphere of radionuclides released from finally disposed nuclear waste - background information for transport and dose model

    International Nuclear Information System (INIS)

    Hulmi, R.; Savolainen, I.

    1981-07-01

    An outline is made about the biosphere transport and dose models employed in the estimation of doses due to releases from finally disposed nuclear waste. The models often divide into two parts; the first one describes the transport of radionuclides in those parts of biosphere where the time scale is large (e.g. soil, sea and sea sediment), the second part of the model describes the transport of nuclides in the systems where the time scale is small (e.g. food chains, plants and animals). The description of biosphere conditions includes remarkable uncertainty due to the complexity of the biosphere and its ecosystems. Therefore studies of scenario type are recommended: some values of parametres describing the conditions are assumed, and the consequences are estimated by using these values. The effect of uncertainty in various factors on the uncertainty of final results should be investigated with the employment of alternative scenarios and parametric sensitivity studies. In addition to the ordinary results, intermediate results should be presented. A proposal for the structure of a transport and dose program based on dynamic linear compartment model is presented and mathematical solution alternatives are studied also

  14. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  15. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  16. Transport of nuclear waste flows - a modelling and simulation approach - 59136

    International Nuclear Information System (INIS)

    Adams, Jonathan F.W.; Biggs, Simon R.; Fairweather, Michael; Yao, Jun; Young, James

    2012-01-01

    The task of implementing safer and more efficient processing and transport techniques in the handling of nuclear wastes made up of liquid-solid mixtures provides a challenging and interesting area of research. The radioactive nature of nuclear waste means that it is difficult to perform experimental studies of its transport. In contrast, the use of modelling and simulation techniques can help to elucidate the physics that underpin such flows and provide valuable insights into common problems associated with their transport, as well as assisting in the focusing of experimental research. Two phase solid-liquid waste-forms are commonplace within the nuclear reprocessing industry. Currently, there is waste, e.g., in the form of a solid-liquid slurry in cooling ponds and liquid flows containing suspensions of solid particles feature heavily in the treatment and disposal of this waste. With nuclear waste in the form of solid-liquid sludges it is important to understand the nature of the flow, with particular interest in the settling characteristics of the particulate waste material. Knowledge of the propensity of pipe flows to form solid beds is important in avoiding unwanted blockages in pipelines and pumping systems. In cases where the formation of a solid bed is unavoidable, it is similarly important to know how the modified cross-sectional area of the pipe, due to the presence of a bed, will affect particle behaviour through the creation of secondary flows effects that are also common to square duct flows. A greater understanding of particle deposition in square ducts and pipes of circular cross-section is also of significant and broad industrial relevance, with flows containing particulates prevalent throughout the nuclear, pharmaceutical, chemical, mining and agricultural industries. A greater understanding of particle behaviour in square ducts and circular pipes with variable bed height is the focus of this current work. The more computationally expensive but

  17. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling.

    Science.gov (United States)

    De Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-08-18

    On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this paper, atmospheric transport modelling is used to show that the measured radioactive xenon is compatible with a delayed release from the Punggye-ri nuclear test site. An uncertainty quantification on the modelling results is given by using the ensemble method. The latter is important for policy makers and helps advance data fusion, where different nuclear Test-Ban-Treaty monitoring techniques are combined.

  18. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores.

    Science.gov (United States)

    Elosegui-Artola, Alberto; Andreu, Ion; Beedle, Amy E M; Lezamiz, Ainhoa; Uroz, Marina; Kosmalska, Anita J; Oria, Roger; Kechagia, Jenny Z; Rico-Lastres, Palma; Le Roux, Anabel-Lise; Shanahan, Catherine M; Trepat, Xavier; Navajas, Daniel; Garcia-Manyes, Sergi; Roca-Cusachs, Pere

    2017-11-30

    YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies.

    Science.gov (United States)

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-04-08

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.

  20. Energetics of Transport through the Nuclear Pore Complex.

    Directory of Open Access Journals (Sweden)

    Ali Ghavami

    Full Text Available Molecular transport across the nuclear envelope in eukaryotic cells is solely controlled by the nuclear pore complex (NPC. The NPC provides two types of nucleocytoplasmic transport: passive diffusion of small molecules and active chaperon-mediated translocation of large molecules. It has been shown that the interaction between intrinsically disordered proteins that line the central channel of the NPC and the transporting cargoes is the determining factor, but the exact mechanism of transport is yet unknown. Here, we use coarse-grained molecular dynamics simulations to quantify the energy barrier that has to be overcome for molecules to pass through the NPC. We focus on two aspects of transport. First, the passive transport of model cargo molecules with different sizes is studied and the size selectivity feature of the NPC is investigated. Our results show that the transport probability of cargoes is significantly reduced when they are larger than ∼5 nm in diameter. Secondly, we show that incorporating hydrophobic binding spots on the surface of the cargo effectively decreases the energy barrier of the pore. Finally, a simple transport model is proposed which characterizes the energy barrier of the NPC as a function of diameter and hydrophobicity of the transporting particles.

  1. The changing nature of nuclear transport

    International Nuclear Information System (INIS)

    Brobst, W.A.

    1976-01-01

    The IAEA's efforts in transport safety have been proven through 25 years of nearly accident-free transport, with no evidence of death or injury from the nuclear characteristics of those shipments. Much testing has been done over the last five years to verify the technical bases for the IAEA Regulations. Rather than being complacent with the past, we should instead see ourselves at a turning point for the solution of problems coming up in the next few years. The number of shipments will increase drastically and this will result in changes of risk levels. A number of critical problems will be discussed: (1) lack of public acceptance of nuclear shipment safety; (2) transport safeguards; (3) incompleteness in the IAEA package damage tests; (4) need for innovative technology for spent fuel casks; (5) reduction of radiation dose to the public; (6) quality assurance; (7) engineering analyses versus scale-model and full-scale testing; and (8) transport controls. A recommendation is made to the IAEA to set up immediately a study group to define these problems, list alternatives and options, and recommend corrective actions. (author)

  2. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  3. Nuclear materials transportation

    International Nuclear Information System (INIS)

    Ushakov, B.A.

    1986-01-01

    Various methods of nuclear materials transportation at different stages of the fuel cycle (U 3 O 8 , UF 6 production enrichment, fuel element manufacturing, storage) are considered. The advantages and drawbacks of railway, automobile, maritime and air transport are analyzed. Some types of containers are characterized

  4. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  5. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  6. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  7. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  8. Problems relating to international transport of nuclear fuels

    International Nuclear Information System (INIS)

    Timm, U.E.

    1985-01-01

    Owing to the tremendous geographic distances between uranium deposits of interest, to the various degrees of sophistication of nuclear industry in industrialized countries and to the close international cooperation in the field of nuclear energy, safe international transports, physical protection and transport handling play an important role. It is suggested to better coordinate the activities of nuclear power plant operators, the nuclear industry and specialized transport companies with respect to all national and international issues of nuclear fuel transports. (DG) [de

  9. Transport device for nuclear fuel powder

    International Nuclear Information System (INIS)

    Adelmann, M.

    1987-01-01

    The transport device for nuclear fuel powder, which does not disintegrate during transport, has a transport pipe which starts with its entry end from the floor or a closed container and opens with its outlet end at the top into a closed separation container connect via a powder filter to a suction pump. By alternate regular opening and closing of a first control valve for transport gas fitted to a transport pipe to a supply duct and a second control valve for transport gas fitted to the container to an additional supply duct, alternating plugs of nuclear fuel powder and transport gas cushions are formed and are transported to the outlet end of the transport pipe. (orig./HP) [de

  10. Transport Properties in Nuclear Pasta

    Science.gov (United States)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  11. Next nuclear gamble: transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1983-01-01

    Accidents during transport of nuclear waste are more threatening - though less likely - than a reactor meltdown because transportation accidents could occur in the middle of a populous city, affecting more people and property than a plant accident, according to the Council on Economic Priorities, a non-profit public service research organization. Transportation, as presently practiced, is unsafe. Shipping containers, called casks, are poorly designed and constructed, CEP says. The problem needs attention because the number of casks filled with nuclear waste on the nation's highways could increase a hundred times during the next 15 years under the Nuclear Waste Policy Act of 1982, which calls for storage areas. Recommendations, both technical and regulatory, for reducing the risks are presented

  12. Transport insurance of unirradiated nuclear fuels

    International Nuclear Information System (INIS)

    Matto, H.

    1985-01-01

    Special conditions must be taken into account in transport insurance for nuclear materials even if the nuclear risk involved is negligible, as in shipments of unirradiated nuclear fuels. The shipwreck of the 'Mont Louis' has raised a number of open points which must be solved pragmatically within the framework of transport insurance. Some proposals are outlined in the article. (orig.) [de

  13. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  14. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  15. Legal aspects of transport of nuclear materials

    International Nuclear Information System (INIS)

    Jacobsson, Mans.

    The Paris Convention and the Brussels Supplementary Convention are briefly discussed and other conventions in the field of civil liability for nuclear damage are mentioned: the Vienna Convention, the Nuclear Ships Convention and the 1971 Convention relating to civil liability in the field of maritime carriage of nuclear material. Legislation on civil liability in the Nordic countries, which is based on the Paris Convention and the Supplementary Convention is discussed, notably the principle of channelling of liability and exceptions from that principle due to rules of liability in older transport conventions and certain problems due to the limited geographical scope of the Paris Convention and the Supplementary Convention. Insurance problems arising in connection with transport of nuclear materials are surveyed and an outline is given of the administrative provisions concerning transport (based on the IAEA transport regulations) which govern transport of radioactive materials by different means: road, rail, sea and air. Finally, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons is discussed. (NEA) [fr

  16. Management of the process of nuclear transport; Gestion del proceso de transporte nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Requejo, P.

    2015-07-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  17. Rules specific to nuclear incidence occurring in installations or during transport of nuclear substances

    International Nuclear Information System (INIS)

    Rocamora, P.

    1976-01-01

    International nuclear third party liability conventions deal in depth with the liability system governing the transport of nuclear substances. Without appropriate legislation, international transport would be likely to meet very serious legal difficulties. The rule of nuclear conventions apply the same system to transport as to nuclear installations and mainly enable a determination of the operator liable. They also allow the person responsible for transport to assume liability therefor in place of the operator who whould normally have been liable. These nuclear conventions do not affect application of international transport conventions and this provision has been the cause of serious difficulties regarding maritime transport. This resulted in the adoption in 1971 in Brussels of a convention relating to civil liability in the field of maritime carriage of nuclear material. The purpose of this convention is to establish in the field of maritime transport, the priority of the system of absolute, exclusive and limited liability in the nuclear conventions. (NEA) [fr

  18. Activity transport in nuclear reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.

    2000-01-01

    The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)

  19. Public and media acceptance of nuclear materials transport

    International Nuclear Information System (INIS)

    Lindeman, E.

    1999-01-01

    Transport is absolutely essential to the continued existence of a nuclear industry that includes large-scale power generation, sophisticated research, and medicine. Indeed, transport of nuclear materials is hardly a new business. What is new is the public's awareness and distrust of this transport - a distrust fuelled by the well-funded and skilled manipulation of the nuclear industry's detractors. The nuclear industry itself has only recently begun to acknowledge the importance and the implications of transport. This paper looks at the public and media response to the European-Japanese and the US Department of Energy's transport campaigns and quotes from several telling newspaper articles. It emphasizes the need for the nuclear industry to continue to be vigilant in its efforts to reach the public, media and governments with good science, openness and well-communicated facts. (author)

  20. Transport of nuclear substances in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Faille, S. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    CNSC Regulates all Nuclear-related facilities and activities including Uranium mines and mill;, uranium fuel fabrication and processing; nuclear power plants; nuclear substance processing; industrial and medical applications; nuclear research and education; transport; export/import control; security and safeguards and waste management facilities. Our mandate is to protect the health, safety and security of Canadians and the environment, and implement Canada's International commitments on the peaceful use of nuclear energy and disseminate objective scientific, technical and regulatory information to the public. Based on the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, 1996 Edition, Revised and currently being revised to reflect the 2012 edition of the IAEA Regulations.

  1. Transport of nuclear substances in Canada

    International Nuclear Information System (INIS)

    Faille, S.

    2015-01-01

    CNSC Regulates all Nuclear-related facilities and activities including Uranium mines and mill;, uranium fuel fabrication and processing; nuclear power plants; nuclear substance processing; industrial and medical applications; nuclear research and education; transport; export/import control; security and safeguards and waste management facilities. Our mandate is to protect the health, safety and security of Canadians and the environment, and implement Canada's International commitments on the peaceful use of nuclear energy and disseminate objective scientific, technical and regulatory information to the public. Based on the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, 1996 Edition, Revised and currently being revised to reflect the 2012 edition of the IAEA Regulations.

  2. Calculation models for a nuclear reactor

    International Nuclear Information System (INIS)

    Tashanii, Ahmed Ali

    2010-01-01

    Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)

  3. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Order provides provisions concerning nuclear fuel substances requiring notification (nuclear fuel substance, material contaminated with nuclear fuel substances, fissionable substances, etc.), procedure for notification (to prefectural public safety commission), certificate of transpot (issued via public safety commission), instructions (speed of vehicle for transporting nuclear fuel substances, parking of vehicle, place for loading and unloading of nuclear fuel substances, method for loading and unloading, report to police, measures for disaster prevention during transport, etc.), communication among members of public safety commission (for smooth transport), notification of alteration of data in transport certificate (application to be submitted to public safety commission), application of reissue of transport certificate, return of transport certificate, inspection concerning transport (to be performed by police), submission of report (to be submitted by refining facilities manager, processing facilities manager, nuclear reactor manager, master of foreign nuclear powered ship, reprocessing facilities manager, waste disposal facilities manager; concerning stolen or missing nuclear fuel substances, traffic accident, unusual leakage of nuclear fuel substances, etc.). (Nogami, K.)

  4. Conservation laws and nuclear transport models

    International Nuclear Information System (INIS)

    Gale, C.; Das Gupta, S.

    1990-01-01

    We discuss the consequences of energy and angular momentum conservation for nucleon-nucleon scattering in a nuclear environment during high-energy heavy-ion collisions. We describe algorithms that ensure stricter enforcement of such conservation laws within popular microscopic models of intermediate-energy heavy-ion collisions. We find that the net effects on global observables are small

  5. A mathematical model for cost of maritime transport. Application to competitiveness of nuclear vessels

    International Nuclear Information System (INIS)

    Dorval, C.

    1966-05-01

    In studying the competitiveness of a nuclear merchant vessel, economic assessments in terms of figures were discarded in favor of a simplified model, which gives a clearer idea of the mechanism of the comparison between alternative vessels and the particular influence of each parameter. An expression is formulated for the unit cost per ton carried over a given distance as a function of the variables (speed and deadweight tonnage) and is used to determine the optima for conventional and nuclear vessels. To represent the freight market involved in the optimization studies, and thus in the competitiveness computation, two cases are taken into account: the tonnage to be carried annually is limited, and the tonnage to be carried annually is not limited. In both cases the optima are calculated and compared for a conventional and a nuclear vessel. Competitiveness curves are plotted as a function of the ratios of nuclear and conventional fuel costs and nuclear and conventional marginal power costs. These curves express the limiting values of the above two ratios for which the transport costs of the nuclear and conventional vessels are equal. The competitiveness curves vary considerably according to the hypothesis adopted for the freight market and the limit of tonnage carried annually. (author) [fr

  6. A mathematical model for cost of maritime transport. Application to competitiveness of nuclear vessels; Modele mathematique du cout de transport maritime application a la competitivite du navire nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Dorval, C [Commissariat a l' Energie Atomique, 75 - Paris (France)

    1966-05-01

    In studying the competitiveness of a nuclear merchant vessel, economic assessments in terms of figures were discarded in favor of a simplified model, which gives a clearer idea of the mechanism of the comparison between alternative vessels and the particular influence of each parameter. An expression is formulated for the unit cost per ton carried over a given distance as a function of the variables (speed and deadweight tonnage) and is used to determine the optima for conventional and nuclear vessels. To represent the freight market involved in the optimization studies, and thus in the competitiveness computation, two cases are taken into account: the tonnage to be carried annually is limited, and the tonnage to be carried annually is not limited. In both cases the optima are calculated and compared for a conventional and a nuclear vessel. Competitiveness curves are plotted as a function of the ratios of nuclear and conventional fuel costs and nuclear and conventional marginal power costs. These curves express the limiting values of the above two ratios for which the transport costs of the nuclear and conventional vessels are equal. The competitiveness curves vary considerably according to the hypothesis adopted for the freight market and the limit of tonnage carried annually. (author) [French] Pour etudier la competitivite du navire marchand nucleaire, plutot que de nous livrer a des evaluations economiques chiffrees, discutables dans l'etat actuel des etudes, nous utilisons un modele simplifie permettant de mieux saisir le mecanisme de la comparaison des navires et l'influence particuliere de chaque parametre. Nous etablissons une expression du cout unitaire de la tonne transportee sur un parcours donne en fonction des variables vitesse et port en lourd. Et nous l'utilisons pour determiner les optima des navires classiques et nucleaires. Pour representer le marche du fret qui intervient dans les etudes d'optimisation, et donc dans la recherche de la

  7. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  8. The sea transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Miller, M.L.

    1995-01-01

    The paper describes the development of a transport system dedicated to the sea transport of irradiated nuclear fuel. It reviews the background to why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilized is provided, together with details of key procedures implemented to ensure safety and customer satisfaction

  9. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  10. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  11. Nuclear transports. Unpopular as never before?; Nukleartransporte. Ungeliebter denn je?

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Ulrike

    2014-11-15

    Since many years there are initiatives in cities with large German seaports to prevent nuclear transports through the cities and transshipment at these harbours. Through the reactor accident in Fukushima and the Federal Government's decision 2011 to opt out, initiatives against nuclear transports seem to have gotten fresh wind in their sails. This is indicated by initiatives in Bremen and Hamburg. Though, to protect health and material goods from hazards and harmful ionising radiation, transportation of radioactive material is regulated by nuclear law as well as traffic law, enactments, guidelines, standards and recommendations, nationally and internationally. These regulations have contributed to the fact that nuclear material has been transported worldwide routinely without harm for the past five decades with an average of roughly 20 million nuclear material transports per year. These attempts disregard that about 95 % of all nuclear transports is not caused by the nuclear energy industry. We should stop demonising nuclear transports and rather acknowledge that they are necessary part of our everyday life.

  12. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  13. Assessing numerical methods used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs

  14. Nuclear transport

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 1 event has been reported and classified at the first level of the INES scale. This incident concerns the violation of the European regulation that imposes to any driver of radioactive matter of being the holder of a certificate asserting that he attended a special training. During this period, 13 in-site inspections have been made in places related to nuclear transport. (A.C.)

  15. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  16. Liability and insurance aspects of international transport of nuclear materials

    International Nuclear Information System (INIS)

    van Gijn, S.H.

    1985-01-01

    The Paris and Vienna Conventions do not affect the application of any international transport agreement already in force. However, in certain circumstances both the nuclear operator and the carrier may be held liable for nuclear damage which arises during international transports of nuclear materials. The ensuing cumulation of liabilities under the Nuclear and Transport Conventions may cause serious problems in obtaining adequate insurance cover for such transports. The 1971 Brussels Convention seeks to solve this problem by exonerating any person who might be held liable for nuclear damage under an international maritime convention or national law. Similar difficulties are encountered in the case of transports of nuclear materials between states which have and states which have not ratified the Paris and Vienna Conventions. (NEA) [fr

  17. Transportation of nuclear materials: the nuclear focus of the 80's

    International Nuclear Information System (INIS)

    Meyers, S.; Hardin, E.C. Jr.; Jefferson, R.M.

    1980-01-01

    The transport of radioactive material has been carried out since the inception of the nuclear age (over 30 years) with an unparralled safety record. Despite these achievements, there is a need to strive for improvements, to develop safer and more efficient transportation systems, moreover to perform these tasks in a highly visible manner so that public concern can be allayed. But, in the same vein that the past record is not of itself sufficient, neither is public participation the solution to all the issues surrounding the transportation of radioactive materials. The solutions to the problems facing the nuclear transport industry involve many disciplines, much of which rest on a foundation of sound technology. This conference is built around a core of papers on the developing technology of nuclear transportation: on systems, their design and development, their manufacturing processes, their operation and the methodologies of quality assurance in each of these activities. The role of IAEA in the collecting of data to compile information on the flow of radioactive materials, the mode of transport and the corresponding accident/incident experience, as well as its role in initiating a program to develop a worldwide uniform methodology to address the risks of transporting radioactive materials are covered in this symposium

  18. GLONASS satellite monitoring of nuclear transports

    International Nuclear Information System (INIS)

    Davydov, Yu.L.

    2012-01-01

    In 2011 Rosatom has made the decision to create the industry-wide automated system for monitoring of transports of radioactive substances (RS) and wastes (RAW), as well as hazardous loads by rail and automobile, based upon the same hardware as used by the GLONASS satellite navigation system - the so-called ASBT-GLONASS system. The new system will use the same technical infrastructure as the existing operational Automated System for Safe Transport of Nuclear Materials of Categories I and II (ASBT). The ASBT structure includes a network of control centres fitted with automation and communication hardware. In addition, ASBT includes technical complexes installed upon transport vehicles intended for nuclear material transport. In order to identify transport vehicle location, the GLONASS/GPS (GALS-P-ASBT) satellite navigational receiver device is used, it is developed especially for ASBT systems taking in account information security requirements. By now the basic software and hardware complex ASBT-GLONASS has been created (equipment to be carried on-board the transport vehicle loaded with RS and RAW, as well as the transport control stations) that supports transport monitoring and transmission of an emergency signal to control stations of companies which deal with RS and RAW transportation [ru

  19. Energetics of Transport through the Nuclear Pore Complex

    NARCIS (Netherlands)

    Ghavami, Ali; van der Giessen, Erik; Onck, Patrick R

    2016-01-01

    Molecular transport across the nuclear envelope in eukaryotic cells is solely controlled by the nuclear pore complex (NPC). The NPC provides two types of nucleocytoplasmic transport: passive diffusion of small molecules and active chaperon-mediated translocation of large molecules. It has been shown

  20. Nuclear materials transport in France

    International Nuclear Information System (INIS)

    Korycanek, J.

    1990-01-01

    About 1.5 million tons of uranium ore, 8000 tons of uranium concentrate, 1000 tons of UF 6 , 340 spent fuel containers, and 30 000 m 3 of nuclear wastes are transported annually by trucks, trains and ships in France. Annual costs of this transportation amount to 500-600 million FRF, and about 200 employees are engaged in this activity. Transportation of spent fuel to the La Hague and Marcoule fuel reprocessing plants, and the transport of plutonium are dealt with in detail. (Z.M.). 5 figs., 1 ref

  1. GROUND TRANSPORTATION OF NUCLEAR PROPULSION STAGES

    Energy Technology Data Exchange (ETDEWEB)

    Marjon, P. L.

    1963-08-15

    The results of studies on transportation problems associated with the development and testing of nuclear rocket powered space vehicles at the static test size are presented. Factors involved in selecting a transport mode are discussed. Radiation shutdown considerations and a conceptual transporter capable of handling test articles of foreseeable size are examined. (D.C.W.)

  2. Transportation risks in the US nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Andrews, W.B.

    1980-01-01

    Estimated risks associated with accidental releases of materials transported for each step of the nuclear fuel cycle are presented. The risk estimates include both immediate and latent fatilities caused by releases of these materials in transportation accidents. Studies of the risk of transporting yellowcake, fresh nuclear and low level wastes from the front end of the fuel cycle have not been completed. Existing information does permit estimates of the risks to be made. The estimates presented result from the very low hazards associated with release of these materials. These estimates are consistent with the results of other studies. The results show that risks from all the fuel cycle transportation steps are low. The results also indicate that the total transportation risks associated with the nuclear fuel cycle are distributed about evenly between the fuel supply end and waste management end of the cycle. Risks in the front end of the cycle result primarily from the chemical toxicity of the materials transported. The results of the risk analysis studies for transportation of nuclear fuel cycle materials are compared with the results for the three studies that have been completed for non-nuclear systems. The risk analysis methodology used in these studies identifies the complete spectrum of potential accident consequences and estimates the probability of events producing that level of consequence. The maximum number of fatalities predicted for each material is presented. A variety of risk measures have been used because of the inherent difficulties in making risk comparisons. Examination of a number of risk measures can provide additional insights and help guard against conclusions that are dependent on the way the risk information has been developed and displayed. The results indicate that the risks from transporting these materials are all relatively low in comparison to other risks in society

  3. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has been higher

  4. Experience of air transport of nuclear fuel material as type A package

    International Nuclear Information System (INIS)

    Kawasaki, Masashi; Kageyama, Tomio; Suzuki, Toru

    2004-01-01

    Special law on nuclear disaster countermeasures (hereafter called as to nuclear disaster countermeasures low) that is domestic law for dealing with measures for nuclear disaster, was enforced in June, 2000. Therefore, nuclear enterprise was obliged to report accidents as required by nuclear disaster countermeasures law, besides meeting the technical requirement of existent transport regulation. For overseas procurement of plutonium reference materials that are needed for material accountability, A Type package must be transported by air. Therefore, concept of air transport of nuclear fuel materials according to the nuclear disaster countermeasures law was discussed, and the manual including measures against accident in air transport was prepared for the oversea procurement. In this presentation, the concept of air transport of A Type package containing nuclear fuel materials according to the nuclear disaster countermeasures law, and the experience of a transportation of plutonium solution from France are shown. (author)

  5. Regulation on the transport of nuclear fuel materials by vehicles

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations applying to the transport of nuclear fuel materials by vehicles, mentioned in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The transport is for outside of the factories and the site of enterprises by such modes of transport as rail, trucks, etc. Covered are the following: definitions of terms, places of fuel materials handling, loading methods, limitations on mix loading with other cargo, radiation dose rates concerning the containers and the vehicles, transport indexes, signs and indications, limitations on train linkage during transport by rail, security guards, transport of empty containers, etc. together with ordinary rail cargo and so on. (Mori, K.)

  6. A reaction-transport model and its application to performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    Chen, Y.; McGrail, B.P.; Engel, D.W.

    1996-01-01

    One important issue in assessing the performance of a geological repository for nuclear waste disposal is to project the migration behaviour of radionuclides in subsurface environments over long time scales of 10,000 years or even longer. Obviously such projections cannot be achieved by laboratory measurements alone. Instead, scientists must rely on sophisticated predictive models that are built on a sound physico-chemical basis. The most important processes affecting the migration of radionuclides are usually classified into two types: 1) transport processes, including advection, diffusion and dispersion and 2) chemical reactions, including corrosion of waste forms and waste packages, precipitation of secondary phases, adsorption of radionuclides on the surface of solids, aqueous complexation etc. Typically the migration behaviour of radionuclides in geologic environments has been simulated by two types of models, hydrogeological and geochemical

  7. The International Intraval project: to study validation of geosphere transport models for performance assessment of nuclear waste disposal. Phase 1, summary report

    International Nuclear Information System (INIS)

    1993-12-01

    Intraval is an international project that addresses the validation of models of transport of radionuclides through groundwater in the geosphere. Such models are used in assessment of the long-term safety of nuclear waste disposal systems. The present report summarises the results for the test cases and presents some additional remarks

  8. Potential role of biotic transport models in low-level-waste management

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Soldat, J.K.; Cadwell, L.L.; McKenzie, D.H.

    1982-01-01

    This paper is a summary of the initial results of a study being conducted for the US Nuclear Regulatory Commission (NRC) to determine the relevance of biotic pathways to the regulation of nuclear waste disposal. Biotic transport is defined as the actions of plants and animals that result in the transport of radioactive materials from a LLW burial ground to a location where they can enter exposure pathways to man. A critical review of the role of modeling in evaluating biotic transport is given. Both current applications and the need for future modeling development are discussed

  9. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  10. Transport of nuclear materials

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During november and december 2001, 2 events concerning nuclear transport were reported and classified on the first grade (grade 1) of the INES scale. The first event concerns a hole in a transport cask of contaminated tools. The hole seems to have been made by the fork of a handling equipment. The second event concerns the loss of a parcel containing a technetium generator, this generator represented an activity of about 141 G Becquerel of 99 Mo the day it left the premises of CIS-bio in Saclay. (A.C.)

  11. The maritime transport of nuclear substances

    International Nuclear Information System (INIS)

    Los Santos, A. de; Corretjer, L.

    1976-01-01

    In view of the fact that the regulation of maritime transport of nuclear materials comes under both maritime and nuclear law has raised problems which it was attempted to solve by specific standards. As regards the prevention of nuclear hazards, these standards are based on the recommendations of competent international organizations, while concerning compensation of nuclear damage, a Convention which has just come into force lays down that nuclear law has priority over maritime law. Despite the progress made, a study of the situation in this field shows that it can be further improved. (N.E.A.) [fr

  12. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  13. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  14. Automatic modeling for the monte carlo transport TRIPOLI code

    International Nuclear Information System (INIS)

    Zhang Junjun; Zeng Qin; Wu Yican; Wang Guozhong; FDS Team

    2010-01-01

    TRIPOLI, developed by CEA, France, is Monte Carlo particle transport simulation code. It has been widely applied to nuclear physics, shielding design, evaluation of nuclear safety. However, it is time-consuming and error-prone to manually describe the TRIPOLI input file. This paper implemented bi-directional conversion between CAD model and TRIPOLI model. Its feasibility and efficiency have been demonstrated by several benchmarking examples. (authors)

  15. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  16. Management of the process of nuclear transport

    International Nuclear Information System (INIS)

    Requejo, P.

    2015-01-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  17. Nuclear liability in the course of transport - some insurance aspects

    International Nuclear Information System (INIS)

    Andersson, G.

    1993-01-01

    This presentation deals with some legal and practical problems in the transport liability field, problems the author has met over the years as an insurer of nuclear risks. The intention is not to give a presentation of the nuclear liability rules as such, which should be familiar to the reader, neither to give an overall survey of the insurance procedures as regards transport of nuclear substances. It will just point out a few questions that are typical for this kind of business and that might be of interest for those who in one way or another might be involved in the insurance of nuclear transports

  18. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  19. Transporting spent nuclear fuel: an overview

    International Nuclear Information System (INIS)

    1986-03-01

    Although high-level radioactive waste from both commercial and defense activities will be shipped to the repository, this booklet focuses on various aspects of transporting commercial spent fuel, which accounts for the majority of the material to be shipped. The booklet is intended to give the reader a basic understanding of the following: the reasons for transportation of spent nuclear fuel, the methods by which it is shipped, the safety and security precautions taken for its transportation, emergency response procedures in the event of an accident, and the DOE program to develop a system uniquely appropriate to NWPA transportation requirements

  20. Perspective on transporting nuclear materials

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1975-01-01

    An evaluation is made of the material flow to be expected up to the year 2000 to and from the various steps in the nuclear cycle. These include the reactors, reprocessing plants, enrichment plants, U mills, U conversion plants, and fuel fabrication plants. A somewhat more-detailed discussion is given of the safety engineering that goes into the design of containers and packages and the selection of the mode of transportation. The relationship of shipping to siting and transportation accidents is considered briefly

  1. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  2. Transportation of nuclear material in France: regulatory and technical aspects

    International Nuclear Information System (INIS)

    Flory, D.; Renard, C.

    1995-01-01

    Legislative and regulatory documentation define responsibilities in the field of security and physical protection for transportation of nuclear material. Any transportation activity has to conform to an advance authorization regime delivered by the Ministry of Industry. Responsibility for physical protection of nuclear material rests with the carrier under control of the public authority. Penalties reinforce this administrative regime. Operational responsibility for management and control of transport operations has been entrusted by the ministry to the operational transport unit (Echelon Operationnel des Transports - EOT) of IPSN (Institute for Nuclear Protection and Safety). To guarantee en efficient protection of transport operations, the various following means are provided for: -specialized transport means; - devices for real time tracking of road vehicles; - administrative authorization and declaration procedures; -intervention capacities in case of sabotage... This set of technical means and administrative measures is completed by the existence of a body of inspectors who may control every step of the operations. (authors). 3 tabs

  3. Calculation of health risks from spent-nuclear-fuel transportation accidents

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1987-01-01

    Models developed to analyze potential radiological health risks from various accident scenarios during transportation of spent nuclear fuels are described. The models are designed both for detailed route-specific risk analyses and for use in conducting overall risk analyses for route selection and related decision-making activities. The radiological risks calculated include individual dose commitments, collective dose commitments, and long-term (100-year) environmental dose commitments to a population following release of radioactivity. To facilitate route-specific analysis, a state-level database was developed and incorporated into the model. Route-specific analysis is demonstrated by the calculation of radiological risks resulting from various accident scenarios, as postulated by the recent US Nuclear Regulatory Commission Modal Study, for four representative states selected from various regions of the United States. 10 refs., 3 figs., 3 tabs

  4. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    International Nuclear Information System (INIS)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito; Lee, Hong-Jen; Lee, Heng-Huan; Hung, Mien-Chie

    2010-01-01

    Research highlights: → ARF1 activation is involved in the EGFR transport to the ER and the nucleus. → Assembly of γ-COP coatomer mediates EGFR transport to the ER and the nucleus. → Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH 2 -terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  5. Physical protection of export/import and transportation of nuclear material in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J

    2002-01-01

    Full text: The paper contains short overview about average amount of nuclear materials transported on the territory of the Slovak Republic in a year, and the physical protection of these nuclear materials. There are several types of transportation and export/import of nuclear materials in the SR: fresh fuel import; import of other unirradiated nuclear materials (e.g. depleted uranium, natural uranium); export of unirradiated nuclear materials (e.g. natural uranium); internal transportation of fresh fuel; internal transportation of other unirradiated nuclear materials; internal transportation of spent fuel. The main objective of the nuclear regulatory authority SR is to supervise observation of the national legislation as follows: the act no. 130 / 1998 on peaceful use of nuclear energy; UJD SR's regulation no. 186/1999 which details the physical protection of the nuclear facilities, nuclear materials, and radioactive waste (following requirements of INFCIRC 225 / Rev. 4); UJD SR's regulation no. 284 / 1999 which details conditions of nuclear material and radioactive wastes transportation. (author)

  6. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    This lecture series is concerned with the transport description of damped nuclear reactions. Part 1 is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expressions for the transport coefficients. The results can also be used in a wider context than the present one. Part 2 gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations. More detailed presentations are due to be published soon. By necessity entire topics have been omitted. For example, no discussion is given of the calculation of the form factors, and the several instructive applications of the theory to transport of mass and change are not covered at all. For these topics they refer to the literature. It is hoped that the present notes provide a sufficient basis to make the literature on the subject accessible to the student

  7. Symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W.

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted

  8. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  9. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    International Nuclear Information System (INIS)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-01-01

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  10. Irradiated nuclear fuel transport from Japan to Europe

    International Nuclear Information System (INIS)

    Kavanagh, M.T.; Shimoyama, S.

    1976-01-01

    Irradiated nuclear fuel has been transported from Japan to Europe since 1969, although U.K. experience goes back almost two decades. Both magnox and oxide fuel have been transported, and the technical requirements associated with each type of fuel are outlined. The specialized ships used by British Nuclear Fuels Limited (BNFL) for this transport are described, as well as the ships being developed for future use in the Japan trade. The ship requirements are related to the regulatory position both in the United Kingdom and internationally, and the Japanese regulatory requirements are described. Finally, specific operational experience of a Japanese reactor operator is described

  11. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  12. Current issues in the transport of radioactive waste and spent fuel: work by the World Nuclear Transport Institute

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H-J.; Bonnardel-Azzarelli, B. [World Nuclear Transport Inst., London (United Kingdom)

    2014-07-01

    Various kinds of radioactive waste are generated from nuclear power and fuel cycle facilities. These materials have to be treated, stored and eventually sent to a repository site. Transport of wastes between these various stages is crucial for the sustainable utilization of nuclear energy. The IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6) have, for many decades, provided a safe and efficient framework for radioactive materials transport and continue to do so. However, some shippers have experienced that in the transport of certain specific radioactive wastes, difficulties can be encountered. For example, some materials produced in the decommissioning of nuclear facilities are unique in terms of composition or size and can be difficult to characterize as surface contaminated objects (SCO) or homogeneous. One way WNTI (World Nuclear Transport Institute) helps develop transport methodologies is through the use of Industry Working Groups, bringing together WNTI members with common interests, issues and experiences. The Back-End Transport Industry Working Group focuses on the following issues currently. - Characterization of Waste: techniques and methods to classify wastes - Large Objects: slightly contaminated large objects (ex. spent steam generators) transport - Dual Use Casks: transportable storage casks for spent nuclear fuels, including the very long term storage of spent fuel - Fissile Exceptions: new fissile exceptions provisions of revised TS-R-1 (SSR-6) The paper gives a broad overview of current issues for the packaging and transport of radioactive wastes and the associated work of the WNTI. (author)

  13. Development of a transport network model for the NRC Physical Protection Project

    International Nuclear Information System (INIS)

    Anderson, G.M.; Payne, H.J.

    1977-01-01

    The assessment of the requirements for a transportation system to transport special nuclear materials, due to the complexities deriving from schedule size and flexibility, convoy components and maintenance requirements, requires a well-formulated model and an associated computer package not presently available. This report details the problem of sizing the transportation system, presents several approaches to modeling this system, and provides recommendations for development of a computerized model

  14. 30 years of experience in safe transportation of nuclear materials

    International Nuclear Information System (INIS)

    Kaneko, K.

    2004-01-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30 th anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business

  15. 30 years of experience in safe transportation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30{sup th} anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business.

  16. Biomechanics of the transport barrier in the nuclear pore complex.

    Science.gov (United States)

    Stanley, George J; Fassati, Ariberto; Hoogenboom, Bart W

    2017-08-01

    The nuclear pore complex (NPC) is the selective gateway through which all molecules must pass when entering or exiting the nucleus. It is a cog in the gene expression pathway, an entrance to the nucleus exploited by viruses, and a highly-tuned nanoscale filter. The NPC is a large proteinaceous assembly with a central lumen occluded by natively disordered proteins, known as FG-nucleoporins (or FG-nups). These FG-nups, along with a family of soluble proteins known as nuclear transport receptors (NTRs), form the selective transport barrier. Although much is known about the transport cycle and the necessity of NTRs for chaperoning cargo molecules through the NPC, the mechanism by which NTRs and NTR•cargo complexes translocate the selective transport barrier is not well understood. How can disordered FG-nups and soluble NTRs form a transport barrier that is selective, ATP-free, and fast? In this work, we review various mechanical approaches - both experimental and theoretical/computational - employed to better understand the morphology of the FG-nups, and their role in nucleocytoplasmic transport. Recent experiments on FG-nups tethered to planar surfaces, coupled with quantitative modelling work suggests that FG-nup morphologies are the result of a finely balanced system with significant contributions from FG-nup cohesiveness and entropic repulsion, and from NTR•FG-nup binding avidity; whilst AFM experiments on intact NPCs suggest that the FG-nups are sufficiently cohesive to form condensates in the centre of the NPC lumen, which may transiently dissolve to facilitate the transport of larger cargoes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The French nuclear safety authority's experience with radioactive transport inspection

    International Nuclear Information System (INIS)

    Jacob, E.; Aguilar, J.

    2004-01-01

    About 300,000 radioactive material packages are transported annually in France. Most consist of radioisotopes for medical, pharmaceutical or industrial use. On the other hand, the nuclear industry deals with the transport of fuel cycle materials (uranium, fuel assemblies, etc.) and waste from power plants, reprocessing plants and research centers. France is also a transit country for shipments such as spent fuel packages from Switzerland or Germany, which are bound for Sellafield in Great Britain. The French nuclear safety authority (DGSNR: Directorate General for Nuclear Safety and Radioprotection) has been responsible since 1997 for the safety of radioactive material transport. This paper presents DGNSR's experience with transport inspection: a feedback of key points based on 300 inspections achieved during the past five years is given

  18. Ordinance concerning the filing of transport of nuclear fuel materials

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Any person who reports the transport of nuclear fuel materials shall file four copies of a notification according to the form attached to the public safety commission of the prefecture in charge of the dispatching place. When the transportation extends over the area in charge of another public safety commission, the commission which has received the notice shall report without delay date and route of the transport, kind and quantity of nuclear fuel materials and other necessary matters to the commission concerned and hear from the latter opinions on the items informed. The designation by the ordinance includes speed of the vehicle loaded with nuclear fuel materials, disposition of an accompanying car, arrangement of the line of the loaded vehicle and accompanying and other escorting cars, location of the parking, place of unloading and temporary storage, etc. Reports concerning troubles and measures taken shall be filed in ten days to the public safety commission which has received the notification, when accidents occur on the way, such as: theft or loss of nuclear fuel materials; traffic accident; irregular leaking of nuclear fuel materials and personal trouble by the transport. (Okada, K.)

  19. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  20. A radiation monitoring system model for the Laguna Verde nuclear power training simulator

    International Nuclear Information System (INIS)

    Ocampo, M.H.; DeAlbornoz, B.A.

    1988-01-01

    A model for the Radiation Monitoring System of the Laguna Verde Boiling Water Reactor training simulator is presented. This model comprises enough definitions to assure interactions with the processes related, directly or indirectly, with the transport of radioisotopes. It is capable of following a dynamic behavior of the plant so an operator could be trained to become aware of nuclear radiation hazards. The model is composed of three parts: the electronics for the Process and Area Radiation Monitoring System; a lumped parameter transport model for the most representative radioisotopes; and the interactions with the modeled processes as well as with process not being simulated. The first part represents the radiation monitor controls in the vertical board panels of the nuclear station. The second part allows the carrying of nuclear isotopes between processes. The third part defines the way that the process interacts with the electronics at the point of release to environment or the point of detection. Each part of the model has been tested individually, and the transport model has been incorporated as a part of each process required to simulate nuclear radiation. The model parameters has been calculated using typical BWR nuclear radiation data, and Laguna Verde heat balance data at 100% design power. However, tunning will be necessary once the Simulator is integrated and tested. The tunning allows each detecting channel to behave as expected

  1. Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling

    Science.gov (United States)

    Schoeppner, M.; Plastino, W.; Budano, A.; De Vincenzi, M.; Ruggieri, F.

    2012-04-01

    Several nuclear reactors at the Fukushima Dai-ichi power plant have been severely damaged from the Tōhoku earthquake and the subsequent tsunami in March 2011. Due to the extremely difficult on-site situation it has been not been possible to directly determine the emissions of radioactive material. However, during the following days and weeks radionuclides of 137-Caesium and 131-Iodine (amongst others) were detected at monitoring stations throughout the world. Atmospheric transport models are able to simulate the worldwide dispersion of particles accordant to location, time and meteorological conditions following the release. The Lagrangian atmospheric transport model Flexpart is used by many authorities and has been proven to make valid predictions in this regard. The Flexpart software has first has been ported to a local cluster computer at the Grid Lab of INFN and Department of Physics of University of Roma Tre (Rome, Italy) and subsequently also to the European Mediterranean Grid (EUMEDGRID). Due to this computing power being available it has been possible to simulate the transport of particles originating from the Fukushima Dai-ichi plant site. Using the time series of the sampled concentration data and the assumption that the Fukushima accident was the only source of these radionuclides, it has been possible to estimate the time-dependent source-term for fourteen days following the accident using the atmospheric transport model. A reasonable agreement has been obtained between the modelling results and the estimated radionuclide release rates from the Fukushima accident.

  2. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  3. Multipurpose containers for the transport of nuclear material: The example of transport flask CF6

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Borgia, M.G.

    1989-03-01

    The present paper summarizes the design and licensing activity carried out in the frame work of an ENEA working group which was set up with the aim of developing transport flasks for radioactive and non radioactive dangerous materials. In particular the nuclear design of the multipurpose transport flask CF6 is described. The paper was presented at the seminar on 'Nuclear wastes and transport of radioactive materials' held in Bologna on June 4th and 5th 1987 under the aegis of the Department of Physics of the University of Bologna. (author)

  4. Risk management of onsite transportation of nuclear waste

    International Nuclear Information System (INIS)

    Field, J.G.; Wang, O.S.; Mercado, J.E.

    1993-01-01

    The United States Department of Energy (DOE) Hanford Site recently has undergone a significant change in mission. The focus of operations has shifted from plutonium production to environmental restoration. This transition has caused a substantial increase in quantities of nuclear waste and other hazardous materials packaged and transported onsite. In response to the escalating transportation activity, Westinghouse Hanford Company (Westinghouse Hanford), the Hanford Site operations and engineering contractor, is proposing an integrated risk assessment methodology and risk management strategy to enhance the safety of onsite packaging and transportation operations involving nuclear waste. The proposed methodology consists of three integral parts: risk assessment, risk acceptance criteria, and risk minimization. The purpose of the methodology is to ensure that the risk for each ongoing transportation activity is acceptable and to minimize the overall risk for current and future onsite operations. (authors). 2 figs., 6 refs

  5. Risk management of onsite transportation of nuclear waste

    International Nuclear Information System (INIS)

    Field, J.G.; Wang, O.S.; Mercado, J.E.

    1993-03-01

    The United States Department of Energy (DOE) Hanford Site recently has undergone a significant change in mission. The focus of operations has shifted from plutonium production to environmental restoration. This transition has caused a substantial increase in quantities of nuclear waste and other hazardous materials packaged and transported onsite. In response to the escalating transportation activity, Westinghouse Hanford Company (Westinghouse Hanford), the Hanford Site operations and engineering contractor, is proposing an integrated risk assessment methodology and risk management strategy to enhance the safety of onsite packaging and transportation operations involving nuclear waste. The proposed methodology consists of three integral parts: risk assessment, risk acceptance criteria, and risk minimization. The purpose of the methodology is to ensure that the risk for each ongoing transportation activity is acceptable and to minimize the overall risk for current and future onsite operations

  6. The new context for transport of radioactive and nuclear material

    International Nuclear Information System (INIS)

    Anne, C.; Galtier, J.

    2002-01-01

    The transportation of radioactive and nuclear materials involves all modes of transportation with a predominance for road and for air. It is but a minute fraction dangerous good transportation. Around 10 millions of radioactive packages are shipped annually all over the world of which ninety percent total corresponds to shipments of radioisotopes. In spite of the small volume transported, experience, evolution of transport means and technologies, the trend to constantly improve security and safety and public acceptance have modified the transport environment. During the last few years, new evolutions have applied to the transport of radioactive and nuclear materials in various fields and especially: - Safety - Security - Logistics means - Public acceptance - Quality Assurance. We propose to examine the evolution of these different fields and their impact on transportation methods and means. (authors)

  7. The transport of fuel assemblies. New containers for transport the used nuclear material in Juzbado factory

    International Nuclear Information System (INIS)

    2005-01-01

    Juzbado Manufacturing Facility is designed to be versatile and flexible. It is manufactured different kind of fuel assemblies PWR, BWR and VVER, beginning by the uranium oxide coming from the conversion facilities. The transport of these products (radioactive material fissile) requires the availability of different kind of packages; our models variety is similar to the big manufacturers. It is required a depth knowledge of the licensing process, approvals, manufacturing and handling instruction to be confident. Moreover, the recently changes on the Transport Regulations and the demands for the approval by the Competent Authorities have required the renovation of most of the package designs for the transport of radioactive material fissile worldwide. ENUSA assumed time ago this renovation and it is nowadays in the pick moment of this process. If we also consider the complexity on the management of multimodal international transportations, the Logistic task for the transport of nuclear material associated to the Juzbado factory results in a real changeling area. (Author)

  8. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  9. Impact of nuclear 'pasta' on neutrino transport in collapsing stellar cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Takiwaki, Tomoya; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2007-01-01

    Nuclear 'pasta', nonspherical nuclei in dense matter, is predicted to occur in collapsing supernova cores. We show how pasta phases affect the neutrino transport cross section via weak neutral current using several nuclear models. This is the first calculation of the neutrino opacity of the phases with rod-like and slab-like nuclei taking account of finite temperature effects, which are well described by the quantum molecular dynamics. We also show that pasta phases can occupy 10-20% of the mass of supernova cores in the later stage of the collapse

  10. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Science.gov (United States)

    Bauer, Wolfgang R; Nadler, Walter

    2010-12-13

    In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  11. Modeling of radiocesium transport kinetics in system water-aquatic plants

    International Nuclear Information System (INIS)

    Svadlenkova, M.

    1988-01-01

    Compartment models were used to describe the kinetics of the transport of radionuclides in the system water-biomass of aquatic plants. Briefly described are linear models and models with time variable parameters. The model was tested using data from a locality in the environs of the Bohunice nuclear power plant. Cladophora glomerata algae were the monitored plants, 137 Cs the monitored radionuclide. The models may be used when aquatic plants serve as bioindicators of the radioactive contamination of surface waters, for monitoring the transport of radionuclides in food chains. (M.D.). 10 refs

  12. Nuclear models, experiments and data libraries needed for numerical simulation of accelerator-driven system

    International Nuclear Information System (INIS)

    Bauge, E.; Bersillon, O.

    2000-01-01

    This paper presents the transparencies of the speech concerning the nuclear models, experiments and data libraries needed for numerical simulation of Accelerator-Driven Systems. The first part concerning the nuclear models defines the spallation process, the corresponding models (intra-nuclear cascade, statistical model, Fermi breakup, fission, transport, decay and macroscopic aspects) and the code systems. The second part devoted to the experiments presents the angular measurements, the integral measurements, the residual nuclei and the energy deposition. In the last part, dealing with the data libraries, the author details the fundamental quantities as the reaction cross-section, the low energy transport databases and the decay libraries. (A.L.B.)

  13. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  14. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  15. Transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  16. Radiological environmental impacts from transportation of nuclear materials

    International Nuclear Information System (INIS)

    Shuai Zhengqing

    1994-01-01

    The author describes radiological impacts from transportation of nuclear materials. RADTRAN 4.0 supplied by IAEA was adopted to evaluate radiological consequence of incident-free transportation as well as the radiological risks from vehicular accidents occurring during transportation. The results of calculation show that the collective effective dose equivalent of incident-free transportation to the public and transportation workers is 7.94 x 10 -4 man·Sv. The calculated data suggest that the environmental impacts under normal and assumed accidental conditions are acceptable

  17. QUANTUM TRANSPORT-THEORY OF NUCLEAR-MATTER

    NARCIS (Netherlands)

    BOTERMANS, W; MALFLIET, R

    1990-01-01

    Quantum kinetic equations are derived using the Keldysh Green's function formalism to describe non-equilibrium processes in nuclear matter and nucleus-nucleus collisions. A general transport equation is proposed which includes energy spreading effects. We discuss a number of specific kinetic

  18. CFD simulations in the nuclear containment using the DES turbulence models

    International Nuclear Information System (INIS)

    Ding, Peng; Chen, Meilan; Li, Wanai; Liu, Yulan; Wang, Biao

    2015-01-01

    Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions

  19. CFD simulations in the nuclear containment using the DES turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Peng [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Chen, Meilan [China Nuclear Power Technology Research Institute, Shenzhen (China); Li, Wanai, E-mail: liwai@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China); Liu, Yulan [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Wang, Biao [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China)

    2015-06-15

    Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions.

  20. Dynamics of miRNA biogenesis and nuclear transport

    Directory of Open Access Journals (Sweden)

    Kotipalli Aneesh

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are short noncoding RNA sequences ~22 nucleotides in length that play an important role in gene regulation-transcription and translation. The processing of these miRNAs takes place in both the nucleus and the cytoplasm while the final maturation occurs in the cytoplasm. Some mature miRNAs with nuclear localisation signals (NLS are transported back to the nucleus and some remain in the cytoplasm. The functional roles of these miRNAs are seen in both the nucleus and the cytoplasm. In the nucleus, miRNAs regulate gene expression by binding to the targeted promoter sequences and affect either the transcriptional gene silencing (TGS or transcriptional gene activation (TGA. In the cytoplasm, targeted mRNAs are translationally repressed or cleaved based on the complementarity between the two sequences at the seed region of miRNA and mRNA. The selective transport of mature miRNAs to the nucleus follows the classical nuclear import mechanism. The classical nuclear import mechanism is a highly regulated process, involving exportins and importins. The nuclear pore complex (NPC regulates all these transport events like a gate keeper. The half-life of miRNAs is rather low, so within a short time miRNAs perform their function. Temporal studies of miRNA biogenesis are, therefore, useful. We have carried out simulation studies for important miRNA biogenesis steps and also classical nuclear import mechanism using ordinary differential equation (ODE solver in the Octave software.

  1. Liability for international nuclear transport: an overview

    International Nuclear Information System (INIS)

    Brown, O.F.; Horbach, N.

    2000-01-01

    Many elements can bear on liability for nuclear damage during transport. For example, liability may depend upon a number of facts that may be categorized as follows: shipment, origin or destination of the shipment, deviation from the planed route, temporary storage incidental to carriage; content of shipment, type of nuclear material involved, whether its origin is civilian or defence-related; sites of accident, number and type of territories damaged (i.e. potential conventions involved), applicable territorial limits, exclusive economic zone, high seas, etc.; nature of damages, personal injury, property damage, damage to the means of carriage, indirect damage, preventive measures, environmental cleanup or retrieval at seas, res communis, transboundary damages etc.; victims involved, nationality and domiciles of victims; jurisdiction, flag (for ships) or national registration (for aircraft) of the transporting vessel, courts of one or more states may have (or assert) jurisdiction to hear claims, and may have to determine what law to apply to a particular accident; applicable law, the applicability laws and/or international nuclear liability conventions; the extent to which any applicable convention has been implemented or modified by domestic legislation, conflicts with the 1982 Law of the Sea Convention or other applicable international agreements, and finally, also written agreements between installation operators and carriers can define applicable law as well as responsibilities. Harmonizing nuclear liability protection and applying it to additional international shipments would be facilitated by more countries being in treaty relations with each other as soon as possible. Adherence to an international convention by more countries (including China, Russia, the United States, etc.) would promote the open flow of services and advanced technology, and better facilitate international transport. The conventions protect the public, harmonize legislation in the

  2. Update of Nuclear Waste Policy Act transportation activities

    International Nuclear Information System (INIS)

    Callaghan, E.F.

    1987-01-01

    As directed by the Nuclear Waste Policy Act of 1982 (NWPA), the Department of Energy (DOE) is developing a nationwide system for transporting spent nuclear fuel and high-level radioactive waste from commercial power plants to deep geologic repositories for disposal. Plans for the transportation system will consider the following factors: the President's 1985 decision to co-locate some defense high-level waste with commercial waste in a repository, the NWPA requirement that the private sector be used to the fullest extent possible in developing and operating the system, and the possible approval by Congress of the DOE's proposal for a Monitored Retrievable Storage (MRS) facility, submitted in March 1987. (The MRS, if approved, would provide for the consolidation, packaging, and perhaps the temporary storage of spent fuel from reactors.) The ''Transportation Business Plan'', published in January 1986, reflects these considerations. The transportation system, when operational, will consist of two elements: (1) the cask system, which includes the transportation casks, the vehicular conveyances, tie-downs, and associated equipment for handling the casks; and (2) the transportation support system which is comprised of facilities, equipment, and services to support waste transportation. Development of the transportation system incorporates the following work elements: operational planning, support systems development, cash system development, systems analysis, and institutional activities. This paper focusses on the technical aspects of the system

  3. Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)

    International Nuclear Information System (INIS)

    Christian, Robby; Kang, Hyun Gook

    2017-01-01

    This paper proposes a methodology to assess and reduce risks of maritime spent nuclear fuel transportation with a probabilistic approach. Event trees detailing the progression of collisions leading to transport casks’ damage were constructed. Parallel and crossing collision probabilities were formulated based on the Poisson distribution. Automatic Identification System (AIS) data were processed with the Hough Transform algorithm to estimate possible intersections between the shipment route and the marine traffic. Monte Carlo simulations were done to compute collision probabilities and impact energies at each intersection. Possible safety improvement measures through a proper selection of operational transport parameters were investigated. These parameters include shipment routes, ship's cruise velocity, number of transport casks carried in a shipment, the casks’ stowage configuration and loading order on board the ship. A shipment case study is presented. Waters with high collision probabilities were identified. Effective range of cruising velocity to reduce collision risks were discovered. The number of casks in a shipment and their stowage method which gave low cask damage frequencies were obtained. The proposed methodology was successful in quantifying ship collision and cask damage frequency. It was effective in assisting decision making processes to minimize risks in maritime spent nuclear fuel transportation. - Highlights: • Proposes a probabilistic framework on the safety of spent nuclear fuel transportation by sea. • Developed a marine traffic simulation model using Generalized Hough Transform (GHT) algorithm. • A transportation case study on South Korean waters is presented. • Single-vessel risk reduction method is outlined by optimizing transport parameters.

  4. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Directory of Open Access Journals (Sweden)

    Wolfgang R Bauer

    Full Text Available In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  5. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  6. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the law concerning the regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and the ordinance for its execution, and to enforce the law. Basic terms are defined, such as vehicle transport, simplified transport, nuclear fuel transport goods, exclusive loading, worker, cumulative dose and exposure radiation dose. Nuclear fuel transport goods are classified into types of L, A, BM and BU according to their radioactivities. Radiation dose rate shall not exceed 0.5 milli-rem an hour on the surface of the type L, and 200 milli-rem an hour on the surface of the type A. For the type BM, the rate shall not surpass 1,000 milli-rem an hour at the distance of 1 meter from the surface in the special test conditions. The transport goods of fissile materials must not reach criticality on the way, but also shall conform to the stipulated technical standards. The particular things contaminated by nuclear fuel materials can be transported without specifying as nuclear fuel transport goods, and their radiation dose rate shall not go beyond 0.5 milli-rem an hour on the surface. The transport by special measures, the technical standards of simplified transport and measures to be taken in danger in transit are defined, respectively.(Okada, K.)

  7. Integrated management platform of nuclear fuel storage and transportation based on RFID

    International Nuclear Information System (INIS)

    Song Yafeng; Ma Yanqin; Chen Liyu; Jiang Yong; Wu Jianlei; Yang Haibo; Zhang Haiyan

    2012-01-01

    This paper describes integrated system model to improve work efficiency and optimize control measures of nuclear fuel storage and transportation, RFID and information integration technology is introduced, traditional management processes are innovated in data acquisition and monitoring fields as well, system solutions and design model are given by emphasizing on the following key technologies: cascade protection of information system, security protocol of RFID information, algorithm of collision. (authors)

  8. Transport of Spent Nuclear Fuels, High and Intermediate Level Wastes: A Continuous Challenge

    International Nuclear Information System (INIS)

    Otton, C.; Blachet, L.

    2009-01-01

    For more than 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the used nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks for the spent fuel, high level waste and intermediate level waste transportation. Answering to the constant evolution of the nuclear industry transport needs is a challenge that TN International faces routinely. Concerning the spent nuclear fuel transportation, TN International has developed in the early 80's a fleet of TN12 type casks fitted with several types of baskets able to safely transport all the spent fuel from the nuclear power plant or the research laboratories to AREVA La Hague plant. The current challenge is the design of a new transport cask generation taking into account the needs of the industry for the next 30 years. The replacement of the TN12 cask generation is to be scheduled as the regulations have changed and the fuel characteristics have evolved. The new generation of casks will take into account all the technical evolutions made during the TN12 thirty years of use. MOX spent fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. Concerning the high level waste such as the La Hague vitrified residues a whole fleet of casks has been developed such as the TN 28 VT dedicated to transport, the TN81 and TN85 dedicated to transport and storage. These casks have permitted the

  9. Development of the re-engineered European decision support system for off-site nuclear and radiological emergencies - JRODOS. Application to air pollution transport modelling

    International Nuclear Information System (INIS)

    Ievdin, I.; Treebushny, D.; Raskob, W.; Zheleznyak, M.

    2008-01-01

    Full text: The European decision support system for nuclear and radiological emergencies RODOS includes a set of numerical models simulating the transport of radionuclides in the environment, estimating potential doses to the public and simulating and evaluating the efficiency of countermeasures. The re-engineering of the RODOS system using the Java technology has started recently which will allow to apply the new system called JRODOS on nearly any computational platform running Java virtual machine. Modern software development approaches were used for the JRODOS system architecture and implementation: distributed system design (client, management server, computational server), geo-database utilization, plug-in model structure and OpenMI-like compatibility to support seamless model inter-connection. Stable open source components such as an ORM solution (Hibernate), an OpenGIS component (Geotools) and a charting/reporting component (JFree, Pentaho) were utilized to optimize the development effort and allow a fast completion of the project. The architecture of the system is presented and illustrated for the atmospheric dispersion module ALSMC (Atmospheric Local Scale Model Chain) performing calculations of atmospheric pollution transport and the corresponding acute doses and dose rates. The example application is based on a synthetic scenario of a release from a nuclear power plant located in Europe. (author)

  10. Intercontinental nuclear transport from the private international law perspective

    International Nuclear Information System (INIS)

    Magnus, U.

    2000-01-01

    The aim of this paper is to give a survey on choice of law rules which apply outside the nuclear liability conventions in case of damage caused by international nuclear transports. We found a remarkable variety of solutions. Some of the solutions make it difficult or even impossible to predict in advance which substantive law in a hypothetical case would apply. These difficulties are increased by the fact that more often than not, a victim can choose where to sue and thereby also influence the final outcome of a case. As far as private international law rules apply - and as mentioned the non-ratification of the nuclear liability conventions by many nuclear states forces us to fall back on the choice of law rules in many cases - the applicable law and the hypothetical level of compensation therefore often remain uncertain when judged at the time of organisation of the nuclear transport. However, at this time the question of undertaking risks and of insurability must be decided. (author)

  11. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  12. Regulations concerning the transport of nuclear fuel materials outside the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the order for execution of the law. Basic concepts and terms are explained, such as: vehicle transport; easy transport; nuclear fuel material load, exclusive loading, employee, accumulative dose and exposure dose. Technical standards of vehicle transport are specified in detail on nucler fuel materials as nuclear fuel load, L,A, EM and BU type of load, nuclear fuel load of fission substances, the second and third type of fission load and materials contaminated by nuclear fuel substances to be carried not as nuclear fuel loads. Special exceptional measures to such transport and technical standards of easy transport are also designated. The application for confirmation of the transport shall be filed to the Director General of Science and Technology Agency according to the form attached with documents explaining nuclear fuel materials to be transferred, the vessel of such materials and construction, material and method of production of such a vessel, safety of nuclear materials contained, etc. Measures in dangerous situations shall be taken to fight a fire or prohibit the entrance of persons other than the staff concerned. Reports shall be presented in 10 days to the Director, when theft, loss or irregular leaking of nuclear fuel materials or personal troubles occur on the way. (Okada, K.)

  13. Institutional issues affecting transportation of nuclear materials

    International Nuclear Information System (INIS)

    Reese, R.T.; Luna, R.E.

    1980-01-01

    The institutional issues affecting transportation of nuclear materials in the United States represent significant barriers to meeting future needs in the transport of radioactive waste materials to their ultimate repository. While technological problems which must be overcome to perform such movements seem to be within the state-of-the-art, the timely resolution of these institutional issues seems less assured. However, the definition of these issues, as attempted in this paper, together with systematic analysis of cause and possible solutions are the essential elements of the Transportation Technology Center's Institutional Issues Program

  14. The transports of nuclear fuel cycle: An essential activity, safely managed

    International Nuclear Information System (INIS)

    Lenail, B.; Savornin, B.; Curtis, H.W.

    1989-01-01

    Transports associated with the nuclear fuel cycle normally use public means of transport by rail, road, sea and air and it might therefore be expected that they would be the Achilles heel of the cycle from a safety point of view. In fact, despite a few minor accidents, no radioactive releases resulting in a significant exposure of the public or the environment have occurred. On the other hand, during the last quarter, the news media have reported major spillages of crude oil and chemicals of high toxicity which have jeopardized the environment, the explosion of gas tankers with dozens of fatalities, and even the sinking of a nuclear submarine. All reports show that the radiation exposure to the public resulting from transports is negligible, i.e., far below 1% of that due to the whole nuclear industry. Similarly, the radiation exposure of transport workers has been lower than anticipated over several decades. The demonstrations and attacks by opponents of the nuclear industry against transports have been limited and have been used as an attempt to freeze the activity of different plants or disposal sites, and to focus public attention on the nuclear issue, rather than to question the fuel cycle transports themselves or the safety principles ruling them. When looking for explanations of such a favorable situation, which they should endeavour to perpetuate, without being surprised if any incident occurs, one finds two major reasons: First, the awareness by the fuel cycle operators, of the vital importance of a safe and reliable implementation of the necessary transports. Secondly, the results of assessments of safety conducted by international organizations and most countries, which have resulted in detailed international recommendations, as well as uniform national and modal regulations, thus establishing the necessary link between the basic rules for radioprotection and the needs of the Transport Industry

  15. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-01-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  16. Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) management has been an indispensable issue in South Korea. Before a long term SNF solution is implemented, there exists the need to distribute the spent fuel pool storage loads. Transportation of SNF assemblies from populated pools to vacant ones may preferably be done through the maritime mode since all nuclear power plants in South Korea are located at coastal sites. To determine its feasibility, it is necessary to assess risks of the maritime SNF transportation. This work proposes a methodology to assess the risk arising from ship collisions during the transportation of SNF by sea. Its scope is limited to the damage probability of SNF packages given a collision event. The effect of transport parameters' variation to the package damage probability was investigated to obtain insights into possible ways to minimize risks. A reference vessel and transport cask are given in a case study to illustrate the methodology's application.

  17. Integrated Analytic Radionuclide Transport Model for a Spent Nuclear Fuel Repository in Saturated Fractured Rock

    International Nuclear Information System (INIS)

    Hedin, Allan

    2002-01-01

    Simple analytic expressions are presented for radionuclide transport from a KBS 3-type repository, where spent nuclear fuel is placed in copper canisters surrounded by bentonite clay and deposited at a depth of 500 m in fractured granitic rock.Dissolution of readily accessible and fuel matrix embedded nuclides, chain decay, and nuclide precipitation is treated within the canister. Transport in the canister void and buffer is modeled with a dual stirred tank analogy, where transport resistances represent an assumed small initial damage in the canister and transport features of the buffer-geosphere interface. Initial, transient diffusion in the buffer is treated with a simple correction term. Chain decay is not included in the buffer.Geosphere transport expressions handle advection, longitudinal dispersion, matrix diffusion, sorption, and radioactive decay, but not chain decay. The treatment is based on earlier results for an instantaneous inlet and for a constant inlet to the geosphere in the nondispersive case. A correction is added so that longitudinal dispersion is taken approximately into account. The correction utilizes analytical expressions for the temporal moments of the geosphere release curve in the dispersive case.The near-field/geosphere integration is treated in a simplified manner avoiding numerical convolutions. The instantaneous inlet expression for the geosphere release is used when the near-field release decreases rapidly in comparison to a typical response time in the geosphere; the constant inlet expression is used in the opposite case.Twenty-seven calculation cases from a safety assessment of a KBS 3 repository using borehole data from three different field investigation sites were repeated with the analytic expressions. The agreement in both near-field and geosphere releases is in general well within an order of magnitude for the variety of long- and short-lived, sorbing, nonsorbing, solubility limited, immediately accessible, and fuel matrix

  18. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  19. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  20. Homogeneity of blended nuclear fuel powders after pneumatic transport

    International Nuclear Information System (INIS)

    Smeltzer, E.E.; Skriba, M.C.; Lyon, W.L.

    1982-01-01

    A study of the pneumatic transport of fine (approx. 1μm) cohesive nuclear fuel powders was conducted for the U.S. Department of Energy to demonstrate the feasibility of this method of transport and to develop a design data base for use in a large scale nuclear fuel production facility. As part of this program, a considerable effort was directed at following the homogeneity of blended powders. Since different reactors require different enrichments, blending and subsequent transport are critical parts of the fabrication sequence. The various materials used represented analogs of a wide range of powders and blends that could be expected in a commercial mixed oxide fabrication facility. All UO 2 powders used were depleted and a co-precipitated master mix of (U, Th)O 2 was made specifically for this program, using thorium as an analog for plutonium. In order to determine the effect of pneumatic transport on a blended powder, samples were taken from a feeder vessel before each test, and from a receiver vessel and a few line sections after each transfer test. The average difference between the before and after degree of non-homogeneity was < 1%, for the 21 tests considered. This shows that overall, the pneumatic transport of blended, fine nuclear fuel powders is possible, with only minor unblending occurring

  1. Goal system for comparative assessments of nuclear fuel transport under security aspects

    International Nuclear Information System (INIS)

    Behrendt, V.; Schwieren, G.

    1983-01-01

    Due to the great hazard potential of nuclear fuel transports the possibility always exists during transportation that either a single perpetrator or a group of perpetrators will try to get possession of the nuclear fuel. One can assume that at the end of such illegal actions there will be a politically (or otherwise) motivated extortion. Thinking about security one has to face things like sabotage, attacks from inside or outside the system, robbery and/or dispersion of the transported goods. In respect to the security of nuclear transports we carried out an investigation for the German Ministry of the Interior in order to review the different levels of security of different transport systems. This paper deals with the methodological approach, especially with the goal system and the way we executed the investigation

  2. Notification determining technical details concerning measures for transportation of nuclear fuel materials

    International Nuclear Information System (INIS)

    1977-01-01

    These provisions are established on the basis of and to enforce ''The regulation for installation and operation of reactor'', ''The regulation concerning the fabricating business of nuclear fuel'' and ''The regulations concerning the reprocessing business of spent fuel''. The terms used hereinafter are according to those used in such regulations. The limit of radioactivity concentration of things contaminated by the nuclear fuel materials which are not required to be enclosed in vessels is defined in the lists attached. In the applications for the approval of the measures concerning the transport of things remarkably difficult to be enclosed in vessels, the name and the address of the applicant, the kind, quantity, form and constitution of the thing contaminated by the nuclear fuel materials to be transported, the date and route of the transport and the measures for the prevention of injuries during the transport must be written. The limit of quantity of nuclear fuel materials classifying the performance of vessels is defined respectively in the lists attached. The radiation dose rates provided for by the Director General of the Science and Technology Agency concerning transported things and transporting apparatuses are 200 millirem per hour on the surfaces of such things and containers. The nuclear fission materials specified, for which the measures for the prevention of criticality are especially required, include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, and the chemical compounds of such substances, and the nuclear fuel materials containing one or two and more of such substances, excluding the nuclear fuel materials with less than 15 grams of such uranium and plutonium. (Okada, K.)

  3. Test program of the drop tests with full scale and 1/2.5 scale models of spent nuclear fuel transport and storage cask

    International Nuclear Information System (INIS)

    Kuri, S.; Matsuoka, T.; Kishimoto, J.; Ishiko, D.; Saito, Y.; Kimura, T.

    2004-01-01

    MHI have been developing 5 types of spent nuclear fuel transport and storage cask (MSF cask fleet) as a cask line-up. In order to demonstrate their safety, a representative cask model for the cask fleet have been designed for drop test regulated in IAEA TS-R-1. The drop test with a full and a 1/2.5 scale models are to be performed. It describes the test program of the drop test and manufacturing process of the scale models used for the tests

  4. Estimated consequences from severe spent nuclear fuel transportation accidents

    International Nuclear Information System (INIS)

    Arnish, J.J.; Monette, F.; LePoire, D.; Biwer, B.M.

    1996-01-01

    The RISKIND software package is used to estimate radiological consequences of severe accident scenarios involving the transportation of spent nuclear fuel. Radiological risks are estimated for both a collective population and a maximally exposed individual based on representative truck and rail cask designs described in the U.S. Nuclear Regulatory Commission (NRC) modal study. The estimate of collective population risk considers all possible environmental pathways, including acute and long-term exposures, and is presented in terms of the 50-y committed effective dose equivalent. Radiological risks to a maximally exposed individual from acute exposure are estimated and presented in terms of the first year and 50-y committed effective dose equivalent. Consequences are estimated for accidents occurring in rural and urban population areas. The modeled pathways include inhalation during initial passing of the radioactive cloud, external exposure from a reduction of the cask shielding, long-term external exposure. from ground deposition, and ingestion from contaminated food (rural only). The major pathways and contributing radionuclides are identified, and the effects of possible mitigative actions are discussed. The cask accident responses and the radionuclide release fractions are modeled as described in the NRC modal study. Estimates of severe accident probabilities are presented for both truck and rail modes of transport. The assumptions made in this study tend to be conservative; however, a set of multiplicative factors are identified that can be applied to estimate more realistic conditions

  5. Studies and research concerning BNFP. Nuclear spent fuel transportation studies

    International Nuclear Information System (INIS)

    Anderson, R.T.; Maier, J.B.

    1979-11-01

    Currently, there are a number of institutional problems associated with the shipment of spent fuel assemblies from commercial nuclear power plants: new and conflicting regulations, embargoing of certain routes, imposition of transport safeguards, physical security in-transit, and a lack of definition of when and where the fuel will be moved. This report presents a summary of these types and kinds of problems. It represents the results of evaluations performed relative to fuel receipt at the Barnwell Nuclear Fuel Plant. Case studies were made which address existing reactor sites with near-term spent fuel transportation needs. Shipment by either highway, rail, water, or intermodal water-rail was considered. The report identifies the impact of new regulations and uncertainty caused by indeterminate regulatory policy and lack of action on spent fuel acceptance and storage. This stagnant situation has made it impossible for industry to determine realistic transportation scenarios for business planning and financial risk analysis. A current lack of private investment in nuclear transportation equipment is expected to further prolong the problems associated with nuclear spent fuel and waste disposition. These problems are expected to intensify in the 1980's and in certain cases will make continuing reactor plant operation difficult or impossible

  6. Nuclear models to 200 MeV for high-energy data evaluations. Vol.12

    International Nuclear Information System (INIS)

    Chadwick, M.; Reffo, G.; Dunford, C.L.; Oblozinsky, P.

    1998-01-01

    The work of the Nuclear Energy Agency's Subgroup 12 is described, which represents a collaborative effort to summarize the current status of nuclear reaction modelling codes and prioritize desired future model improvements. Nuclear reaction modelling codes that use appropriate physics in the energy region up to 200 MeV are the focus of this study, particularly those that have proved useful in nuclear data evaluation work. This study is relevant to developing needs in accelerator-driven technology programs, which require accurate nuclear data to high energies for enhanced radiation transport simulations to guide engineering design. (author)

  7. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  8. Nuclear transport in Entamoeba histolytica: knowledge gap and therapeutic potential.

    Science.gov (United States)

    Gwairgi, Marina A; Ghildyal, Reena

    2018-03-22

    Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions. Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes. Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets. In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.

  9. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  10. Nuclear materials transport worldwide. Greenpeace report 2. Der weltweite Atomtransport. Greenpeace Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy.

  11. Collective effects on transport coefficients of relativistic nuclear matter. Pt. 2

    International Nuclear Information System (INIS)

    Mornas, L.

    1993-04-01

    The transport coefficients (thermal conductivity, shear and bulk viscosities) of symmetric nuclear matter and neutron matter are calculated in the Walecka model with a Boltzmann-Uehling-Uhlenbeck collision term by means of a Chapman-Enskog expansion in first order. The order of magnitude of the influence of collective effects induced by the presence of the mean σ and ω fields on these coefficients is evaluated. (orig.). 9 figs

  12. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1983-04-01

    Part I is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expression for the transport coefficients. The results can also be used in a wider context than the present one. Part II gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations

  13. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  14. A review of tsp as one of the transportation security aspects of nuclear materials

    International Nuclear Information System (INIS)

    Wiryono

    2013-01-01

    A review has done for the Transportation Safety Plan (TSP) as one of the aspects of safety in the transport of nuclear materials. The review is necessary to harmonize national regulations with international practice. International practice of using TSP as one of the security requirements in addition to the Radiation Protection Program as a requirement of safety in the transport of nuclear materials. TSP is intended to ensure sound implementation of the transport of nuclear materials. TSP evaluation process can be done with a prescriptive approach, performance, and combinations. TSP contains information about administrative requirements, delivery security and response planning. TSP can be used to ensure the security of the implementation of the transport of nuclear materials effectively and efficiently. BAPETEN should require the applicant to submit the TSP as one document security requirements prior approval transporting nuclear materials. BAPETEN need to define the approach to the formulation and evaluation of TSP. BAPETEN need to set up an evaluation and inspection procedures for the implementation of TSP. (author)

  15. Aircraft transporting container for nuclear fuel

    International Nuclear Information System (INIS)

    Kurakami, Jun-ichi; Kubo, Minoru.

    1991-01-01

    The present invention concerns an air craft transporting container for nuclear fuels. A sealing container that seals a nuclear fuel container and constitutes a sealed boundary for the transporting container is incorporated in an inner container. Shock absorbers are filled for absorbing impact shock energy in the gap between the inner container and the sealing container. The inner container is incorporated with wooden impact shock absorbers being filled so that it is situated in a substantially central portion of an external container. Partitioning cylinders are disposed coaxially in the cylindrical layer filled with wooden impact shock absorbers at an intermediate portion between the outer and the inner containers. Further, a plurality of longitudinally intersecting partitioning disks are disposed each at a predetermined distance in right and left cylindrical wooden impact shock absorbing layers which are in contact with the end face of the inner container. Accordingly, the impact shock energy can be absorbed by the wooden impact shock absorbers efficiently by a plurality of the partitioning disks and the partitioning cylinders. (I.N.)

  16. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A.

    1994-07-01

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  17. Transportation of hazardous and nuclear materials

    International Nuclear Information System (INIS)

    Boryczka, M.; Shaver, D.

    1989-01-01

    Transportation of hazardous and radioactive materials is a vital part of the nation's economy. In recent years public concern over the relative safety of transporting hazardous materials has risen sharply. The United States has a long history of transporting hazardous and radioactive material; rocket propellants, commercial spent fuel, low-level and high-level radioactive waste has been shipped for years. While the track record for shipping these materials is excellent, the knowledge that hazardous materials are passing through communities raises the ire of citizens and local governments. Public outcry over shipments containing hazardous cargo has been especially prominent when shippers have attempted to transport rocket propellants or spent nuclear fuel. Studies of recent shipments have provided insight into the difficulties of shipping in a politically charged environment, the major issues of concern to citizens, and some of the more successful methods of dealing with public concerns. This paper focuses on lessons learned from these studies which include interviews with shippers, carriers, and regulators

  18. The new context for transport of radioactive nuclear material

    International Nuclear Information System (INIS)

    Anne, Catherine; Galtier, Jerome

    2001-01-01

    The transportation of radioactive and nuclear materials, involves all modes of transportation (road, air, sea, rail) with predominance for road and for air (air for radioisotopes). In this paper we examine the impact of new evolutions in the fields of safety, security, logistics means, public acceptance and quality assurance

  19. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  20. Institutional support to the nuclear power based on transportable installations

    International Nuclear Information System (INIS)

    Kuznetsov, V.P.; Cherepnin, Y.S.

    2010-01-01

    Existing nuclear power uses large-power nuclear plants (more than 1,000 MWe) and enriched uranium fuel ( 2 35 U ). Each plant is treated as an exclusive costly project. As a result, large NPPs are operated predominantly in highly developed big countries. In many countries, construction of large power units is not reasonable because of the economic conditions and national specifics. This calls for the use of small- and medium-power nuclear plants (SMPNP), especially transportable nuclear installations (TNI). TNI feature small power (up to 100 MWe); serial production, and transportability. Small- and medium-power nuclear plants could serve to produce electricity and heat; perform water desalination; provide temporary and emergency energy supply. The authors discuss some findings of the studies carried out on the various aspects of the TNI life, as well as the legal and institutional support to their development, construction and operation. The studies have been performed in the framework of the INPRO Action Plan

  1. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  2. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; LePoire, D.J.

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors

  3. Costs for insurance of civil responsibility for nuclear damage during transportation of nuclear materials

    International Nuclear Information System (INIS)

    Amelina, M.E.; Arsent'ev, S.V.; Molchanov, A.S.

    2009-01-01

    The article considers the method of calculation of rates for insurance of civil responsibility for nuclear damage during transportation of nuclear materials, which can minimize the insurer's costs for this type of insurance in situation when there is no statistics available and it is not possible to calculate the insurance rate by the traditional means using the probability theory

  4. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors

    Directory of Open Access Journals (Sweden)

    Piau Siong Tan

    2018-03-01

    Full Text Available Summary: Phenylalanine-glycine-rich nucleoporins (FG-Nups are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC. Previous studies showed that nuclear transport receptors (NTRs were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lower than in the archetypal-fuzzy complex between FG-Nup153 and NTRs. Unexpectedly, this behavior appears not to be encoded selectively into CRM1 but rather into the FG-Nup214 sequence. The same distinct binding mechanisms are unperturbed in O-linked β-N-acetylglucosamine-modified FG-Nups. Our results have implications for differential roles of distinctly spatially distributed FG-Nup⋅NTR interactions in the cell. : Archetypal-fuzzy complexes found in most FG-Nucleoporin⋅nuclear transport receptor complexes allow fast yet specific nuclear transport. Tan et al. show that FG-Nup214, located at the periphery of the nuclear pore complex, binds to CRM1⋅RanGTP via a coupled reconfiguration-binding mechanism, which can enable different functionalities e.g., cargo release. Keywords: intrinsically disordered protein, glycosylation, FG-Nup, nuclear transport receptors, binding mechanism, single-molecule FRET, molecular dynamics simulations

  5. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  6. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  7. Current trends in nuclear material transportation

    International Nuclear Information System (INIS)

    Ravenscroft, Norman; Oshinowo, Franchone

    1997-01-01

    The business of radioactive material transportation has evolved considerably in the past 40 years. Current practices reflect extensive international experience in handling radioactive cargo within a mature and tested regulatory framework. Nevertheless, new developments continue to have an impact on how shipments of nuclear material are planned and carried out. Entities involved in the transport of radioactive materials must keep abreast of these developments and work together to find innovative solutions to ensure that safe, smooth transport activities may continue. Several recent trends in the regulatory environment and political atmosphere require attention. There are four key trends that we'll be examining today: 1) the reduction in the pool of available commercial carriers; 2) routing restrictions; 3) package validation issues; and 4) increasing political sensitivities. Careful planning and cooperative measures are necessary to alleviate problems in each of these areas. (author)

  8. Planned reliability in the transport and installation of large nuclear components

    International Nuclear Information System (INIS)

    Bieler, L.

    1988-01-01

    The transport and installation of heavy and bulky large components require detailed planning of all jobs and activities, trained and experienced personnel and corresponding technical equipment for reliable and quality-assured implementation. The correct approach to the planning and implementation of such transports and installations has been confirmed by years of successful performance of these jobs e.g. in reactor pressure vessels and steam generators for nuclear power plants. Large components for nuclear power plants are truly extreme examples but will be all the better suited for demonstrating the problems inherent in transport and installation. (orig.) [de

  9. Human reliability and risk management in the transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tuler, S.; Kasperson, R.E.; Ratick, S.

    1989-01-01

    This paper summarizes work on human factor contributions to risks from spent nuclear fuel transportation. Human participation may have significant effects on the levels and types of risks by enabling or initiating incidents and exacerbating adverse consequences. Human errors are defined to be the result of mismatches between perceived system state and actual system state. In complex transportation systems such mismatches may be distributed in time (e.g., during different stages of design, implementation, operation, maintenance) and location (e.g., human error, its identification, and its recovery may be geographically and institutionally separate). Risk management programs may decrease the probability of undesirable events or attenuate the consequences of mismatches. This paper presents a methodology to identify the scope and types of human-task mismatches and to identify potential management options for their prevention, mitigation, or recovery. A review of transportation accident databases, in conjunction with human error models, is used to develop a taxonomy of human errors during design for the pre-identification of potential mismatches or after incidents have occurred to evaluate their causes. Risk management options to improve human reliability are identified by a matrix that relates the multiple stages of a spent nuclear fuel transportation system to management options (e.g., training, data analysis, regulation). The paper concludes with examples to illustrate how the methodology may be applied. (author)

  10. Nuclear-electrolytic hydrogen as a transportation fuel

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1989-01-01

    Hydrogen is a very attractive transportation fuel in three important ways: it is the least polluting fuel that can be used in an internal combustion engine, it produces no greenhouse gases, and it is potentially available anywhere there is water and a clean source of power. The prospect of a clean, widely available transportation fuel has motivated much of the research on hydrogen fuels. This paper is a state-of-the art review of the production, storage, performance, environmental impacts, safety, and cost of nuclear-electrolytic hydrogen for highway vehicles

  11. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  12. Three distinct domains contribute to nuclear transport of murine Foxp3.

    Directory of Open Access Journals (Sweden)

    Wayne W Hancock

    2009-11-01

    Full Text Available Foxp3, a 47-kDa transcription factor, is necessary for the function of CD4+CD25+ regulatory T cells (Tregs, with an essential role in the control of self-reactive T cells and in preventing autoimmunity. Activation of Tregs by TCR engagement results in upregulation of Foxp3 expression, followed by its rapid nuclear transport and binding to chromatin. Here, we identify three distinct Foxp3 domains that contribute to nuclear transport. The first domain (Domain 1 comprises the C-terminal 12 amino acids. The second domain (Domain 2 is located immediately N-terminal to the forkhead domain (FHD, recently reported to be a binding site for the runt-related transcription factor 1/acute myeloid leukemia 1 (Runx1/AML1. The third domain (Domain 3 is located within the N-terminal first 51 amino acids. Unlike the known nuclear localization signals (NLSs, none of these three regions are rich in basic residues and do not bear any similarity to known monopartite or bipartite NLSs that have one or more clusters of basic amino acids. The basic arginine-lysine-lysine-arginine (RKKR sequence, located 12-aa from the C-terminal end of Foxp3 was previously reported to be a nuclear localization signal (NLS for several proteins, including for a GFP-Foxp3 hybrid. Evidence is provided here that in the full-length native Foxp3 RKKR does not function as an NLS. The data reported in this study indicates that Foxp3 achieves nuclear transport by binding to other nuclear factors and co-transporting with them to the nucleus.

  13. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  14. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  15. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  16. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

  17. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; Biwer, B.M.; LePoire, D.J.

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows trademark environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident

  18. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  19. Transport of large particles released in a nuclear accident

    International Nuclear Information System (INIS)

    Poellaenen, R.; Toivonen, H.; Lahtinen, J.; Ilander, T.

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d a > 20 μm) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.)

  20. Transport of large particles released in a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R; Toivonen, H; Lahtinen, J; Ilander, T

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d{sub a} > 20 {mu}m) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.).

  1. Radiological health risks from accidents during transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Potential radiological health risks from severe accident scenarios during the transportation of spent nuclear fuels are estimated. These extremely low probability, but potentially credible, scenarios are characterized by the U.S. Nuclear Regulatory Commission's Modal Study in terms of the maximum credible structural responses and/or the maximum credible cask temperature responses. In some accident scenarios, the spent nuclear fuel casks are assumed to be breached, resulting in the release of radioactivity to the atmosphere. Models have been developed to estimate radiological health consequences, including potential short-term exposures and health effects to individuals and potential long-term environmental dose commitments and health effects to the population. The population risks are calculated using state-level data, and the resulting overall health risks are compared for several levels of cleanup effort to determine the relative effects on long-term risks to the population in the event of an accident. 4 refs., 3 figs., 3 tabs

  2. EDF, a utility and its own needs in the field of transport of nuclear materials

    International Nuclear Information System (INIS)

    Gouin, P.; Mignot, E.; Hoang, L.P.

    1989-01-01

    As one of the most important producers of nuclear electricity in the world, EDF is concerned by all the aspects of the transport of nuclear materials and more particularly by those related to the nuclear fuel cycle. EDF is not itself a specialist in this field and most of the transports along the nuclear fuel cycle is done for their own account by their usual partners such as COGEMA or TRANSNUCLEAIRE. Since the beginning of the French nuclear program, they have generally used for these transports casks that already exist on the market and which were well suited to their needs. Nevertheless, new and specific needs appeared during the progress of their nuclear program and have lead them to: study and build new casks or packages, use existing casks for new purposes, develop a device for the measurement of fuel assemblies burn up, develop a software to optimize the evacuation of irradiated fuel for reprocessing. The purpose of this paper is to describe these realization but as a preliminary, they will present briefly the importance of the transport of nuclear materials for EDF

  3. 25 CFR 170.900 - What is the purpose of the provisions relating to transportation of hazardous and nuclear waste?

    Science.gov (United States)

    2010-04-01

    ... transportation of hazardous and nuclear waste? 170.900 Section 170.900 Indians BUREAU OF INDIAN AFFAIRS... and Nuclear Waste Transportation § 170.900 What is the purpose of the provisions relating to transportation of hazardous and nuclear waste? Sections 170.900 through 170.907 on transportation of nuclear and...

  4. Recent developments in the regulation of nuclear transportation

    International Nuclear Information System (INIS)

    Grella, A.W.

    1978-01-01

    In the past four years, almost all nations and international or intergovernmental transport organizations have effected transitions from the 1967 to 1973 IAEA standards as their basis for regulatory requirements for the safe transport of radioactive materials. One major exception to this transition is the USA itself, where this transition has not yet taken place. Major amendments to revise 49 CFR Parts 100-199 of the Department of Transportation regulations and 10 CFR Part 71 of the Nuclear Regulatory Commission regulations are required to effect this transition. The notices of proposed rulemaking to effect this transition in the USA are expected to be published by DOT and NRC concurrently sometime in 1978. Final amendments can be expected later, after the public comment period on the notices and considerations of those comments. This paper summarizes the status of current thinking on US adoption of the 1973 IAEA standards, as well as the status of adoption of those standards by international intergovernmental organizations, such as the Intergovernmental Maritime Consultative Organization, International Civil Aviation Organization, etc. A number of the differences between the expected US regulations and other regulations based on the 1973 IAEA standards are explained. This paper also discusses a number of other events or matters which have been taking place in the US in the past four years which have or may have an effect on transport of nuclear materials and its regulation, including air transport of plutonium, rail transport of spent fuel and other regulations by state or political subdivisions. The paper also discusses changes to US regulations accomplished in the past four years, which are not related to 1973 IAEA standards, as well as some other possible areas where regulatory proposals might be anticipated, such as control of radiation exposures to certain transport workers and other matters

  5. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted in a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident postulated to occur during transportation, for the purpose of gaining acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and thus, accident conditions leading to mechanical damages and thermal failure were determined to characterize the scenarios. As a result, the worst-case conditions of run-off-the-road accidents were set up to define the impact against a concrete or asphalt surface. For fire accident scenarios to be set up, collisions were assumed to occur with an oil tanker carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside a tunnel without ventilation. Then the cask models were determined for these safety demonstration analyses to represent those commonly used for fresh nuclear fuel transported throughout Japan. Following the postulated accident scenarios, the mechanical damages were analyzed by using the general-purpose finite element code LS-DYNA with three-dimensional elements. It was found that leak tightness of the package be maintained even in the severe impact scenario. Then the thermal safety was analyzed by using the general-purpose finite element code ABAOUS with three-dimensional elements to describe cask geometry. As a result of the thermal analyses, the integrity of the containment

  6. Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics

    Science.gov (United States)

    Nandi, Rana; Schramm, Stefan

    2018-01-01

    We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.

  7. Regulatory Framework for the Safe and Secure Transport of Nuclear Material in Japan

    International Nuclear Information System (INIS)

    Konnai, A.; Shibasaki, N.; Ikoma, Y.; Kato, M.; Yamauchi, T.; Iwasa, T.

    2016-01-01

    Regulations for nuclear material transport in Japan are based on international regulations. Safety and security regulations, however, have sometime different aspects which have caused a conflict of operations. This paper aims to introduce framework of safety and security regulations for nuclear material transport in Japan, and shows some issues in cooperation of these regulations. (author)

  8. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  9. Executive summary of safeguards systems concepts for nuclear material transportation. Final report

    International Nuclear Information System (INIS)

    Baldonado, O.C.; Kevany, M.; Rodney, D.; Pitts, D.; Mazur, M.

    1977-09-01

    The U.S. Nuclear Regulatory Commission contracted with System Development Corporation to develop integrated system concepts for the safeguard of special strategic nuclear materials (SSNM), which include plutonium, uranium 233 and uranium 235 of at least 20 percent enrichment, against malevolent action during interfacility transport. This executive summary outlines the conduct and findings of the project. The study was divided into three major subtasks: (1) The development of adversary action sequences; (2) The assessment of the vulnerability of the transport of nuclear materials to adversary action; (3) The development of conceptual safeguards system design requirements to reduce vulnerabilities

  10. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    International Nuclear Information System (INIS)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA

  11. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  12. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  13. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  14. Modeling spin magnetization transport in a spatially varying magnetic field

    Science.gov (United States)

    Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.

    2015-01-01

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).

  15. Training on Transport Security of Nuclear/Radioactive Materials for Key Audiences

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Ronald; Liu, Yung; Shuler, J.M.

    2016-01-01

    Beginning in 2013, the U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management has sponsored a series of three training courses on Security of Nuclear and Other Radioactive Materials during Transport. These courses were developed and hosted by Argonne National Laboratory staff with guest lecturers from both the U.S. and international organizations and agencies including the U.S. Nuclear Regulatory Commission (NRC), Federal Bureau of Investigation (FBI), the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), DOE national laboratories, the International Atomic Energy Agency (IAEA), the World Nuclear Transport Institute (WNTI), and the World Institute for Nuclear Security (WINS). Each of the three courses held to date were one-week in length. The courses delved in detail into the regulatory requirements for transport security, focusing on international and U.S.-domestic requirements and guidance documents. Lectures, in-class discussions and small group exercises, including tabletop (TTX) and field exercises were designed to enhance the learning objectives for the participants. For example, the field exercise used the ARG-US radio frequency identification (RFID) remote surveillance system developed by Argonne for DOE/PCP to track and monitor packages in a mock shipment, following in-class exercises of developing a transport security plan (TSP) for the mock shipment, performing a readiness review and identifying needed corrective actions. Participants were able to follow the mock shipment on the webpage in real time in the ARG-US Command Center at Argonne including “staged” incidents that were designed to illustrate the importance of control, command, communication and coordination in ensuring transport security. Great lessons were learned based on feedback from the participant’s course evaluations with the series of the courses. Since the

  16. Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging

    Science.gov (United States)

    Roncali, Emilie; Mosleh-Shirazi, Mohammad Amin; Badano, Aldo

    2017-10-01

    Computational modelling of radiation transport can enhance the understanding of the relative importance of individual processes involved in imaging systems. Modelling is a powerful tool for improving detector designs in ways that are impractical or impossible to achieve through experimental measurements. Modelling of light transport in scintillation detectors used in radiology and radiotherapy imaging that rely on the detection of visible light plays an increasingly important role in detector design. Historically, researchers have invested heavily in modelling the transport of ionizing radiation while light transport is often ignored or coarsely modelled. Due to the complexity of existing light transport simulation tools and the breadth of custom codes developed by users, light transport studies are seldom fully exploited and have not reached their full potential. This topical review aims at providing an overview of the methods employed in freely available and other described optical Monte Carlo packages and analytical models and discussing their respective advantages and limitations. In particular, applications of optical transport modelling in nuclear medicine, diagnostic and radiotherapy imaging are described. A discussion on the evolution of these modelling tools into future developments and applications is presented. The authors declare equal leadership and contribution regarding this review.

  17. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  18. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  19. Transport code and nuclear data in intermediate energy region

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Odama, Naomitsu; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-01-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  20. Existing experimental criticality data applicable to nuclear-fuel-transportation systems

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1983-02-01

    Analytical techniques are generally relied upon in making criticality evaluations involving nuclear material outside reactors. For these evaluations to be accepted the calculations must be validated by comparison with experimental data for a known set of conditions having physical and neutronic characteristics similar to those conditions being evaluated analytically. The purpose of this report is to identify those existing experimental data that are suitable for use in verifying criticality calculations on nuclear fuel transportation systems. In addition, near term needs for additional data in this area are identified. Of the considerable amount of criticality data currently existing, that are applicable to non-reactor systems, those particularly suitable for use in support of nuclear material transportation systems have been identified and catalogued into the following groups: (1) critical assemblies of fuel rods in water; (2) critical assemblies of fuel rods in water containing soluble neutron absorbers; (3) critical assemblies containing solid neutron absorber; (4) critical assemblies of fuel rods in water with heavy metal reflectors; and (5) critical assemblies of fuel rods in water with irregular features. A listing of the current near term needs for additional data in each of the groups has been developed for future use in planning criticality research in support of nuclear fuel transportation systems. The criticality experiments needed to provide these data are briefly described and identified according to priority and relative cost of performing the experiments

  1. Modeling spin magnetization transport in a spatially varying magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Picone, Rico A.R., E-mail: rpicone@stmartin.edu [Department of Mechanical Engineering, University of Washington, Seattle (United States); Garbini, Joseph L. [Department of Mechanical Engineering, University of Washington, Seattle (United States); Sidles, John A. [Department of Orthopædics, University of Washington, Seattle (United States)

    2015-01-15

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of

  2. Modeling spin magnetization transport in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Picone, Rico A.R.; Garbini, Joseph L.; Sidles, John A.

    2015-01-01

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of

  3. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    Science.gov (United States)

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  4. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Paris Mark

    2017-01-01

    Full Text Available We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN. Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties

  5. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF... transport. (a) A general license is issued to any person to possess formula quantities of strategic special...

  6. Status and future aspects of nuclear fuel cycle transports in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Blechschmidt, M.; Keese, H.

    1977-01-01

    The transport practices in the Federal Republic of Germany for materials of the nuclear fuel cycle are discussed. Particularly containers and modes of transport for UF 6 , fresh and spent fuel elements, plutonium and radwaste are described, with main emphasis on transport to reprocessing and waste storage facilities. In most cases nuclear materials have to be shipped across the borders because at present neither an enrichment nor an industrial reprocessing plant exists in the Federal Republic of Germany. Transports are therefore carried out according to international standards, such as the IAEA recommendations laid down in legal traffic regulations. Control and physical protection are being exercised on the basis of national regulations. The paper summarizes the experience gained in performing quite a number of various shipments and deals with the application of the relevant transport regulations. It also gives a brief outlook on future aspects, such as the increasing transport volume, and transport problems related to decommissioning and the operation of a nuclear fuel cycle center

  7. Analysis of NEPA/CEQ requirements with respect to nuclear materials transportation

    International Nuclear Information System (INIS)

    Ross, K.E.L.; Welles, B.W.; Pellettieri, M.W.

    1983-01-01

    This paper examines the responsibility of federal agencies concerned with nuclear materials transportation decisions that come within the scope of the National Environmental Policy Act of 1969 (NEPA) and the requirements established by the Council on Environmental Quality (CEQ). Two of the case histories presented in this paper focus on actions taken by the Nuclear Regulatory Commission (NRC) and the Department of Transportation (DOT). A third case history, in which the limits of environmental impact are judicially redefined, presents an analysis of NEPA application in an NRC licensing action. The decision by the US Supreme Court (April 19, 1983) disallowed psychological stress as a factor to be required in environmental analysis of federal actions. The review by the Supreme Court of environmental impact considerations required under NEPA is clearly transferable to federal actions involving transportation of nuclear materials. Of interest in these examples is the application of NEPA requirements for worst-case analysis and the employment of the rule of reason by a federal agency to determine the limits of its NEPA obligations

  8. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  9. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  10. TRANSIT: model for providing generic transportation input for preliminary siting analysis

    International Nuclear Information System (INIS)

    McNair, G.W.; Cashwell, J.W.

    1985-02-01

    To assist the US Department of Energy's efforts in potential facility site screening in the nuclear waste management program, a computerized model, TRANSIT, is being developed. Utilizing existing data on the location and inventory characteristics of spent nuclear fuel at reactor sites, TRANSIT derives isopleths of transportation mileage, costs, risks and fleet requirements for shipments to storage sites and/or repository sites. This technique provides a graphic, first-order method for use by the Department in future site screening efforts. 2 refs

  11. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  12. Transport of nuclear material under the 1971 Brussels Convention

    International Nuclear Information System (INIS)

    Lagorce, M.

    1975-01-01

    The legal regime in force before entry into force of the 1971 Brussels Convention relating to civil liability for the maritime carriage of nuclear material created serious difficulties for maritime carriers, regarding both the financial risks entailed and restrictions on enjoyment of the rights granted by civil liability conventions. The 1971 Convention exonerates from liability any person likely to be held liable for nuclear damage under maritime law, provided another person is liable under the nuclear conventions or an equivalent national law. A problem remaining is that of compensation of nuclear damage to the means of transport for countries not having opted for re-inclusion of such damage in the nuclear law regime; this does not apply however to countries having ratified the Convention to date. A feature of the latter is that it establishes as extensively as possible the priority of nuclear law over maritime law. Furthermore the new regime continues to preserve efficiently the interests of victims of nuclear incidents. It is therefore to be hoped that insurers will no longer hesitate to cover international maritime carriage of nuclear material [fr

  13. NWMO transportation technical work program

    International Nuclear Information System (INIS)

    Hatton, C.

    2015-01-01

    This paper describes technical work program for the transportation nuclear waste by the Nuclear Waste Management Organization (NWMO). Transportation work program involves risk assessment which under normal conditions involves dose assessment to the worker and the public as well as consideration of transportation system routing and operations. It also involves possible accident scenarios using forensic modelling and probability analysis.

  14. NWMO transportation technical work program

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, C. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    This paper describes technical work program for the transportation nuclear waste by the Nuclear Waste Management Organization (NWMO). Transportation work program involves risk assessment which under normal conditions involves dose assessment to the worker and the public as well as consideration of transportation system routing and operations. It also involves possible accident scenarios using forensic modelling and probability analysis.

  15. Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository.

    Science.gov (United States)

    Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena

    2017-12-01

    The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.

  16. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  17. Analog computing for a new nuclear reactor dynamic model based on a time-dependent second order form of the neutron transport equation

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal; Suh, Kune Y.

    2011-01-01

    This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution

  18. A Review on Sabotage against Transportation of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol; Lim, Jihwan [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    This report assesses the risk of routine transportation including cask response to an impact or fire accidents. In addition, we have still found the non-negligible difference among the studies for scenarios, approaches, and data. In order to evaluate attack cases on the same basis and reflect more realistic situations, at this moment, it is worthwhile to thoroughly review and analyze the existing studies and to suggest further development directions. In Section 2, we compare scenarios of terror attacks against spent fuel storage and transportation. Section 3 compares target scenarios, capabilities, and limitations of assessment methods. In addition, we collect and compare modeling data used for previous studies to analyze gaps and uncertainties in the existing studies. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility. The government should not be the only ones contributing to this dialogue. This dialogue that needs to happen should work both ways, with the government presenting their information and statistics and the public relaying their concerns for the government to review.

  19. A Review on Sabotage against Transportation of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Lim, Jihwan

    2016-01-01

    This report assesses the risk of routine transportation including cask response to an impact or fire accidents. In addition, we have still found the non-negligible difference among the studies for scenarios, approaches, and data. In order to evaluate attack cases on the same basis and reflect more realistic situations, at this moment, it is worthwhile to thoroughly review and analyze the existing studies and to suggest further development directions. In Section 2, we compare scenarios of terror attacks against spent fuel storage and transportation. Section 3 compares target scenarios, capabilities, and limitations of assessment methods. In addition, we collect and compare modeling data used for previous studies to analyze gaps and uncertainties in the existing studies. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility. The government should not be the only ones contributing to this dialogue. This dialogue that needs to happen should work both ways, with the government presenting their information and statistics and the public relaying their concerns for the government to review

  20. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  1. Simplified analytical model for radionuclide transport simulation in the geosphere

    International Nuclear Information System (INIS)

    Hiromoto, G.

    1996-01-01

    In order to evaluate postclosure off-site doses from a low-level radioactive waste disposal facilities, an integrated safety assessment methodology has being developed at Instituto de Pesquisas Energeticas e Nucleares. The source-term modelling approach adopted in this system is described and the results obtained in the IAEA NSARS 'The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities' programme for model intercomparison studies are presented. The radionuclides released from the waste are calculated using a simple first order kinetics model, and the transport, through porous media below the waste is determined by using an analytical solution of the mass transport equation. The methodology and the results obtained in this work are compared with those reported by others participants of the NSARS programme. (author). 4 refs., 4 figs

  2. Analysis of the transportation logistics for spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Ko, Won Il; Seo, Ki Seok

    2010-01-01

    As a part of the back-end fuel cycle, transportation of spent nuclear fuel (SNF) from nuclear power plants (NPP s ) to a fuel storage facility is very important in establishing a nuclear fuel cycle. In Korea, the accumulated amount of SNF in the NPP pools is troublesome since the temporary storage facilities at these NPP pools are expected to be full of SNF within ten years. Therefore, Korea cannot help but plan for the construction of an interim storage facility to solve this problem in the near future. Especially, a decision on several factors, such as where the interim storage facility should be located, how many casks a transport ship can carry at a time and how many casks are initially required, affect the configuration of the transportation system. In order to analyze the various possible candidate scenarios, we assumed four cases for the interim storage facility location, three cases for the load capacity that a transport ship can carry and two cases for the total amount of casks used for transportation. First, this study considered the currently accumulated amount of SNF in Korea, and the amount of SNF generated from NPP s until all NPP s are shut down. Then, how much SNF per year must be transported from theNPP s to an interim storage facility was calculated during an assumed transportation period. Second, 24 candidate transportation scenarios were constructed by a combination of the decision factors. To construct viable yearly transportation schedules for the selected 24 scenarios, we created a spreadsheet program named TranScenario, which was developed by using MS EXCEL. TranScenario can help schedulers input shipping routes and allocate transportation casks. Also,TranScenario provides information on the cask distribution in the NPP s and in the interim storage facility automatically, by displaying it in real time according to the shipping routes, cask types and cask numbers that the user generates. Once a yearly transportation schedule is established

  3. Equipment transporter for nuclear steam generator

    International Nuclear Information System (INIS)

    Hayes, L.R.

    1987-01-01

    A transporter is described for use in a steam generator of a nuclear power installation. The generator is essentially a heat exchanger having a vertically extended shell. Across the lower portion extends a horizontal tube sheet having an upper surface which supports a bundle of vertically extending tubes forming a limited annular space with the inside of the shell wall and the upper surface. An opening of limited dimensions through the shell wall gains manual access to the limited annular space. The transporter has means for locating and removing solid debris from the upper surface of the tube sheet in the annular space and has a means for assembly and disassembly of the transporter so that it may be manually passed through the shell opening to and from a position on the upper surface of the tube sheet in the annular space. The transporter includes: a body; at least three wheels mounted on the body for engaging the upper surface of the tube sheet; a first motor mounted on the body drivingly connected to the wheels for moving the transporter along the upper surface of the tube sheet in the annular space; a remotely operated means on the body for locating solid debris on the upper surface of the tube sheet; and means for securing and removing solid debris on the upper surface of the tube sheet located by the means for locating

  4. Spent nuclear fuel transport: Problem state and analysis of modern approaches

    International Nuclear Information System (INIS)

    Nosovs'kij, A.V.; Yatsenko, M.V.

    2018-01-01

    The paper presents the review of international and national experience related to transport of spent nuclear fuel (SNF) and trends in the development of transport containers. The analysis covers the vectors for the future improvement of packaging and the regulatory framework on SNF transport in Ukraine and other countries. The tasks for future research were identified. The results of this research will be used during the operation of the CSNSF.

  5. Pair production from nuclear collisions and cosmic ray transport

    International Nuclear Information System (INIS)

    Norbury, John W

    2006-01-01

    Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus-nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron-positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons. (brief report)

  6. Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2011-12-01

    Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel are studied computationally. The studied fractures are both natural and excavation damage fractures. The emphasis is on the detailed modelling of geometry in 3D in contrast to the traditional radionuclide transport studies that often concentrate on chain decays, sorption, and precipitation at the expense of the geometry. The built computer model is used to assess the significance of components near a deposition hole for radionuclide transport and to estimate the quality of previously used modelling techniques. The results show nearly exponential decrease of radionuclide mass in the bentonite buffer when the release route is a thin natural fracture. The results also imply that size is the most important property of the tunnel section for radionuclide transport. In addition, the results demonstrate that the boundary layer theory can be used to approximate the release of radionuclides with certain accuracy and that a thin fracture in rock can be modelled, at least to a certain limit, by using a fracture with wider aperture but with same flow rate as the thin fracture. (orig.)

  7. New safety and security requirements for the transport of nuclear and other radioactive materials in Hungary

    International Nuclear Information System (INIS)

    Katona, T.; Horvath, K.; Safar, J.

    2016-01-01

    In addition to the promulgation of mode-specific regulations of international transport of dangerous goods, some Hungarian governmental and ministerial decrees impose further conditions upon the transport of nuclear and other radioactive materials. One of these ministerial decrees on the transport, carriage and packaging of radioactive materials is under revision and it will require • approval of emergency response plan (including security and safety contingency plan); • report on transport incidents and accidents for classifying them in accordance with the INES scale; • the competent authority to request experts’ support for the approval of package designs, radioactive material designs and shipments. Regarding the security of the transport of nuclear and other radioactive materials a new Hungarian governmental decree and a related guidance are about to be published which will supply additional requirements in the field of the transport security especially concerning radioactive materials, implementing - among others - IAEA recommendations of the NSS No9 and No14. The main and relevant features of the Hungarian nuclear regulatory system and the details of both new decrees regarding the safety and security issues of transport of nuclear and other radioactive materials will be discussed. (author)

  8. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, C.E.; Mustin, T.P.; Massey, C.D.

    1998-01-01

    Since resuming the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy (DOE) and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues associated with the transport of Materials Testing Reactor (MTR)-type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be important to foreign research reactor operators, shippers, and cask vendors, so that appropriate amendments to the Certificate of Compliance for spent fuel casks can be submitted in a timely manner to facilitate the safe and scheduled transport of FRR SNF

  9. Specific transport and storage solutions: Waste management facing current and future stakes of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Deniau, Helene; Gagner, Laurent; Gendreau, Francoise; Presta, Anne

    2006-01-01

    With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge: protection of people and environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, COGEMA LOGISTICS has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear producers through their operational choices. We will focus on the COGEMA LOGISTICS technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfill both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (COGEMA LOGISTICS, TRANSNUCLEAR, MAINCO, and LEMARECHAL CELESTIN) in order to manage transportation of liquid and solid waste towards interim or final storage sites. The paper has the following contents: About radioactive waste; - Radioactive waste classification; - High level activity waste and long-lived intermediate level waste; - Long-lived low level waste; - Short-lived low- and intermediate level waste; - Very low level waste; - The radioactive waste in nuclear fuel cycle; - Packaging design and

  10. Dual Liability for Nuclear Damage in Conventions and Finnish Legislation in the Field of Transport

    International Nuclear Information System (INIS)

    Manninen, J.

    1986-01-01

    The exception made in the 1960 Paris Convention on Third Party Liability in the Field of Nuclear Energy to the otherwise absolute channelling of liability in order to avoid conflicts with the then existing international agreements in the field of transport is briefly described. The dual liability created by this provision is studied, as well as the question whether and when the victim might prefer to base his claim on a transport agreement instead of the Paris Convention. The so-called nuclear clauses in the new agreements in the transport field are analysed. The problems caused by the absence of a nuclear clause in the Guatemala City and Montreal Protocols, amending the Warsaw Convention relating to international air carriage are noted. Finally the relationship between nuclear liability legislation and transport legislation in Finland, as well as the cases where a dual liability existed at the time of the ratification of the Paris Convention and the changes which have taken place since then are described. (NEA) [fr

  11. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  12. Spent nuclear fuel transportation casks evaluation for water in-leakage

    International Nuclear Information System (INIS)

    Shah, M.J.; Huang, D.T.; Guttmann, J.; Klymyshyn, N.A.; Koeppel, B.J.; Adkins, H.E.

    2004-01-01

    The United States Nuclear Regulatory Commission (USNRC) is responsible for licensing commercial spent fuel storage and transportation systems. To ensure that the regulations are risk-informed, and do not place unnecessary regulatory burden on the industry, the USNRC has been examining its regulations that apply to spent fuel transportation casks for maintaining sub-criticality under hypothetical accident conditions. Code of Federal Regulations, Title 10, Part 71[1] (10 CFR 71), section 71.55(b) requires that, for evaluation of sub-criticality for fissile material packages, water moderation should be assumed to occur to the most reactive credible extent consistent with the chemical and physical form of the contents. This requirement is based on a defense-in-depth policy, and accounts for any possibility of water intrusion into the package. This program is designed to quantify the margins of safety of certified transportation casks to water intrusion following hypothetical accident conditions. This paper describes the current status of analytical work being performed to evaluate two USNRC-certified spent fuel transportation casks, HI-STAR 100[2] and TN-68[3]. The analytical work is performed using the ANSYS registered [4] and LS-DYNA trademark [5] finite element analysis (FEA) codes. The models are sufficiently detailed in the areas of bolt closure interfaces and containment boundaries to evaluate the likelihood water in-leakage under free drop hypothetical accident conditions of 10 CFR 71.73

  13. Spent Nuclear Fuel Transportation Risk Assessment Methodology for Homeland Security

    International Nuclear Information System (INIS)

    Teagarden, Grant A.; Canavan, Kenneth T.; Nickell, Robert E.

    2006-01-01

    In response to increased interest in risk-informed decision making regarding terrorism, EPRI was selected by U.S. DHS and ASME to develop and demonstrate a nuclear sector specific methodology for owner / operators to utilize in performing a Risk Analysis and Management for Critical Asset Protection (RAMCAP) assessment for the transportation of spent nuclear fuel (SNF). The objective is to characterize SNF transportation risk for risk management opportunities and to provide consistent information for DHS decision making. The method uses a characterization of risk as a function of Consequence, Vulnerability, and Threat. Worst reasonable case scenarios characterize risk for a benchmark set of threats and consequence types. A trial application was successfully performed and implementation is underway by one utility. (authors)

  14. One-dimensional computational modeling on nuclear reactor problems

    International Nuclear Information System (INIS)

    Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos

    2013-01-01

    In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)

  15. Transport of radioactive materials on public roads - with regard to the authorizations granted to the Nuclear Center

    International Nuclear Information System (INIS)

    Berger, H.U.

    1992-10-01

    This report shall be a help for scientific and technical personal of the nuclear research center in the choice of the modalities of the transport of radioactive materials on public roads in accordance to regulations and authorizations. Not only the atomic law, the radiation protection ordinance and the ordinance on dangerous goods on roads, which are binding in any case, are regarded in this report but also as the scope and the impositions of the transport authorization of the nuclear research center as the internal instructions of the nuclear research center. With regard to the transport of nuclear fuel material only the cases of transport exempted of authorization and transport of such kinds waste containing nuclear fuel material treated where the waste has a density at most of 15g/cm 3 or where the package contains at most 15g of nuclear fuel material. The reader is guided by dialogue (pretty much as a book for' programmed learning') to the solution of his special problem of transport. In order to narrow down the size of this report, all technical or administrative details are treated in 11 brochures, which are published as technical supplements of this report. These supplements are available on request. (orig.) [de

  16. Nuclear geometry effect and transport coefficient in semi-inclusive lepton-production of hadrons off nuclei

    Directory of Open Access Journals (Sweden)

    Na Liu

    2015-10-01

    Full Text Available Hadron production in semi-inclusive deep-inelastic scattering of leptons from nuclei is an ideal tool to determine and constrain the transport coefficient in cold nuclear matter. The leading-order computations for hadron multiplicity ratios are performed by means of the SW quenching weights and the analytic parameterizations of quenching weights based on BDMPS formalism. The theoretical results are compared to the HERMES positively charged pions production data with the quarks hadronization occurring outside the nucleus. With considering the nuclear geometry effect on hadron production, our predictions are in good agreement with the experimental measurements. The extracted transport parameter from the global fit is shown to be qˆ=0.74±0.03 GeV2/fm for the SW quenching weight without the finite energy corrections. As for the analytic parameterization of BDMPS quenching weight without the quark energy E dependence, the computed transport coefficient is qˆ=0.20±0.02 GeV2/fm. It is found that the nuclear geometry effect has a significant impact on the transport coefficient in cold nuclear matter. It is necessary to consider the detailed nuclear geometry in studying the semi-inclusive hadron production in deep inelastic scattering on nuclear targets.

  17. Updating long-range transport model predictions using real-time monitoring data in case of nuclear accidents with release to the atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Tassone, Caterina; Grippa, Gianni; Zarimpas, Nicolas; Graziani, Giovanni

    1991-01-01

    A procedure is developed to reduce the uncertainties of long-range transport model predictions, in case of a large scale nuclear accident. It is based on the availability in 'real time' of the concentrations of airborne radioactive aerosols from automatic on-line monitors, which are presently being installed throughout Europe. Essentially, the procedure consists of: (1) constructing new (area) source terms from the measured field data as they become available; and (2) restart the prediction with these sources, rather than with the original (point) source. The procedure is applied to the Chernobyl accident. It is shown that the procedure is feasible and might result in an improvement of the prediction of the location of the cloud by several hundreds of kilometers and the actual levels with an order of magnitude. The weak point is the treatment of the vertical structure and transport of the cloud, which can only be solved when 'real-time' upper air observations are also available. (author)

  18. The permission of transport of irradiated nuclear fuel elements

    International Nuclear Information System (INIS)

    Klomberg, T.J.M.

    2000-01-01

    In July and October 2000 the Dutch government granted permits for the transportation of irradiated nuclear fuel elements. The environmental organization Greenpeace objected against the permit, but that was rejected by the Dutch Council of State. A brief overview is given of the judgements and the state-of-the-art with respect to the transportation of the elements from Dutch reactors and storage facilities in Petten, Dodewaard and Borssele to Cogema in La Hague, France and BNFL in Sellafield, England

  19. Transportation systems to support the Nuclear Waste Policy Act of 1982

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Philpott, R.E.

    1985-01-01

    Late in 1982, the United States Congress enacted legislation for the disposal of spent nuclear fuel and high-level waste. The policy, embodied in Public Law 97-425 and referred to as the Nuclear Waste Policy Act of 1982 (NWPA), mandates that the Department of Energy (DOE) be responsible for the transport of commercial spent fuel and defense high-level waste from their points of origin to facilities constructed under provisions of the NWPA. It is the purpose of this paper to describe the preliminary transportation policies and plans developed by the Office of Civilian Radioactive Waste Management (OCRWM), within the DOE, to respond to the NWPA mandate

  20. Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material

    International Nuclear Information System (INIS)

    Nicholson, Lary G.; Purvis, James W.

    1999-01-01

    The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access

  1. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  2. Transport of nuclear used fuel and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J. [World Nuclear Transport Institute, London (United Kingdom)

    2015-07-01

    20 millions consignments of radioactive materials are routinely transported annually on public roads, railways and ships. 5% of these are nuclear fuel cycle related. International Atomic Energy Agency Regulations have been in force since 1961. The sector has an excellent safety record spanning over 50 years. Back end transport covers the operations concerned with spent fuel that leaves reactors and wastes. Since 1971, there have been 70,000 shipments of used fuel (i.e. over 80,000 tonnes) with no damage to property or person. The excellent safety record spanning over 50 years praised every year by the General Conference of the International Atomic Energy Agency. More than 200 sea voyages over a distance of more than 8 million kilometres of transport of used fuel or high-level wastes.

  3. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    International Nuclear Information System (INIS)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-01-01

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described

  4. Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Jens Ole

    2010-02-02

    The radioactive noble gas krypton-85 is released into the atmosphere during reprocessing of spent nuclear fuel or irradiated breeding targets. This is a necessary step for plutonium separation. Therefore the {sup 85}Kr signature of reprocessing could possibly be used for the detection of undeclared nuclear facilities producing nuclear weaponusable material. The {sup 85}Kr content of the atmosphere has grown over the last decades as the emissions from military and civilian nuclear industry could not be compensated by the decay with a half-life of 10.76 years. In this study, the global {sup 85}Kr background distribution due to emissions of known reprocessing facilities for the period from 1971 until 2006 was simulated using the atmospheric general circulation model ECHAM5 applying the newest available annual emission data. The convective tracer transport scheme and the operator splitting for the physical calculations in the model were modified in order to guarantee physically correct results for tracer point sources, in particular non negative concentrations. An on-line routine controlling the {sup 85}Kr -budget in the model enforced exact mass conservation. The results of the simulation were evaluated by extensive comparison with measurements performed by the German Federal Office for Radiation Protection with very good agreement at most observation sites except those in the direct vicinity of {sup 85}Kr sources. Of particular interest for the {sup 85}Kr detection potential was the variability of {sup 85}Kr background concentrations which was evaluated for the first time in a global model. In addition, the interhemispheric transport as simulated by ECHAM5 was analyzed using a two-box model providing a mean exchange time of τ {sub ex} = 10.5 months. The analysis of τ{sub ex} over simulated 35 years indicates that in years with strong South Asian or African Monsoon the interhemispheric transport is faster during the monsoon season. A correlation analysis of

  5. Nuclear terrorism risk analysis using game theory. Case study of sea transportation of MOX fuel

    International Nuclear Information System (INIS)

    Nakatani, Eri; Tanaka, Satoru; Choi, Jor-Shan

    2010-01-01

    While considerable attention and resources have been directed towards improving nuclear security in Japan in response to the threat of nuclear terrorism, the transport of nuclear material raises concern by the public as indicated in the recent return of MOX fuel from Europe. This concern cannot be adequately addressed by the government through communications with the public because of the confidential nature of such transport. Also, it remains a challenge for adequately assessing the nuclear terrorism risk because many key parameters associated with such assessment cannot be derived from statistical data and reflect actors' intentions unlike assessment on natural disasters. This study proposes an assessment methodology which introduces game theory to deduce the correlations between those key parameters and can be used to analyze the nuclear terrorism risk, both quantitatively and qualitatively for the civilian use of nuclear power. Risk will be calculated by Monte Carlo methods based on probability distributions set for actors' utilities. A case-study of transporting the MOX fuel by sea is also included. (author)

  6. Public Opinion shifts to the favour of nuclear energy due to steam generator transport

    International Nuclear Information System (INIS)

    Lengar, I.; Nemec, T.

    2000-01-01

    In late August and early September of 1999, nuclear energy topics occupied a central place in the Slovenian media because of the transport of two new steam generators to the Krsko nuclear power plant, and also due to the protest action of an Austrian Green peace group. Before these events, the public opinion in Slovenia was not in favour or nuclear energy ;and Green peace had a good reputation. In September it has lost much credibility because of their clumsy :action of protest, and in just one month this caused a shift of public opinion in Slovenia towards support of Slovenian's only nuclear power plant. The Green peace protest action occurred during the transport of the two new steam generators to Krsko. By replacement of the old steam generators the operation of the Krsko NPP will be extended until 2023. The transport envoy travelled during the first half of September '99 across a considerable part of Slovene territory, passing by the capital of Ljubljana. (authors)

  7. Analytical benchmarks for nuclear engineering applications. Case studies in neutron transport theory

    International Nuclear Information System (INIS)

    2008-01-01

    The developers of computer codes involving neutron transport theory for nuclear engineering applications seldom apply analytical benchmarking strategies to ensure the quality of their programs. A major reason for this is the lack of analytical benchmarks and their documentation in the literature. The few such benchmarks that do exist are difficult to locate, as they are scattered throughout the neutron transport and radiative transfer literature. The motivation for this benchmark compendium, therefore, is to gather several analytical benchmarks appropriate for nuclear engineering applications under one cover. We consider the following three subject areas: neutron slowing down and thermalization without spatial dependence, one-dimensional neutron transport in infinite and finite media, and multidimensional neutron transport in a half-space and an infinite medium. Each benchmark is briefly described, followed by a detailed derivation of the analytical solution representation. Finally, a demonstration of the evaluation of the solution representation includes qualified numerical benchmark results. All accompanying computer codes are suitable for the PC computational environment and can serve as educational tools for courses in nuclear engineering. While this benchmark compilation does not contain all possible benchmarks, by any means, it does include some of the most prominent ones and should serve as a valuable reference. (author)

  8. Radioactive materials and nuclear fuel transport requirements in Poland in the light of international regulations

    International Nuclear Information System (INIS)

    Musialowicz, T.

    1977-01-01

    National regulations for the transport of radioactive materials and nuclear fuel in Poland are discussed. Basic transport requirements and regulations, transport experience including transport accidents and emergency service are described. The comparison with international regulations is given

  9. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Science.gov (United States)

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  10. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Mustin, Tracy P.; Massey, Charles D.

    1999-01-01

    Since initiating the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel causing a degradation of the fuel assembly exposing fuel meat and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues and implementation challenges associated with the transport of MTR type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, implementation status, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be of interest to foreign research reactor operators, shippers, and cask vendors in evaluating the condition of their fuel to ensure it can be transported in accordance with appropriate cask certificate requirements. (author)

  11. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  12. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This report aims at developing a systematic theory of the role of fractures in the transport of radionuclides by groundwater, through fractured rocks from a deep-lying nuclear waste repository to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and the physical characteristics which influence radionuclide transport are expressed in mathematical terms. The question of radioactivity retention is then studied for various fracture types, using idealized geometries to model natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein. (author)

  13. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  14. Nuclear transport of heat shock proteins in stressed cells

    International Nuclear Information System (INIS)

    Chughtai, Zahoor Saeed

    2001-01-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or β-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-β-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single β-importin gene. With this assay I have identified Nmd5p as a β-importin required to concentrate Star-β-galactosidase in nuclei of stationary phase cells. (author)

  15. Nuclear transport of heat shock proteins in stressed cells

    Energy Technology Data Exchange (ETDEWEB)

    Chughtai, Zahoor Saeed

    2001-07-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or {beta}-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-{beta}-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single {beta}-importin gene. With this assay I have identified Nmd5p as a {beta}-importin required to concentrate Star-{beta}-galactosidase in nuclei of stationary phase cells. (author)

  16. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  17. Probabilistic risk assessment and nuclear waste transportation: A case study of the use of RADTRAN in the 1986 Environmental Assessment for Yucca Mountain

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1990-12-01

    The analysis of the risks of transporting irradiated nuclear fuel to a federal repository, Appendix A of the DOE Environmental Assessment for Yucca Mountain (DOE84), is based on the RADTRAN model and input parameters. The RADTRAN computer code calculates the radiation exposures and health effects under normal or incident-free transport, and over all credible accident conditions. The RADTRAN model also calculates the economic consequences of transportation accidents, though these costs were not included in the Department's Environmental Assessment for the proposed Yucca Mountain repository

  18. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  19. Third party liability insurance for international transport of nuclear substances in countries party to the Paris Convention

    International Nuclear Information System (INIS)

    Lacroix, F.

    1977-01-01

    The number of international transports of radioactive materials has been increasing at an accelerating rate for several years. These transports are subject to specific safety rules which must be complied with in order to obtain nuclear third party liability cover. In general nuclear transports are insured under a policy which differs from that for installations. Transport policy criteria have been harmonized to some extent, in particular, in the frame of the OECD Nuclear Energy Agency. Certificates established by the competent national authorities testifying to the existence of insurance must in principle be approved by the countries crossed which are parties to the Paris Convention. (NEA) [fr

  20. Sea transport of used nuclear fuel and radiactive disposals to a Swedish central store

    International Nuclear Information System (INIS)

    1977-10-01

    Sea transport of used nuclear fuel and radioactive disposals to a Swedish central store. A vessel for transporting used nuclear fuel and radioactive disposals from the power stations at Ringhals, Barsebaeck, Simpevarp and Forsmark to a central store has been projected. Safety aspects, technical and economical aspects have been taken into consideration with regard to the actual volume of goods to be transported. Three different types of vessels are presented and a specification is given for the main alternative. A safety study of the main alternative is shown, regarding collision safety, fire risks and fire extinguishing equipment. (author)

  1. Application of the nuclear gages in dynamic sedimentology for the solid transport study

    International Nuclear Information System (INIS)

    Lamdasni, Y.

    1994-02-01

    The problems caused by the solid particle transport in rivers, dams, harbors, estuaries and in navigation channels have considerable economical consequences. The technical difficulties met when trying to limit or manage these problems are very important because of lack of knowledge. The nuclear gages and the radioactive tracers can be the measurement and monitoring means which, associated to the conventional techniques, permit to develop strongly the knowledge in the solid transport field. This report gives the modes of solid transport and the problems caused by these transports and exposes the physical properties of the fine sediments and their behavior under the hydrodynamic effects. In the same way, it deals with the theory of the nuclear gages, often applied in dynamic sedimentology and gives some examples of their applications. 29 refs., 35 figs., 5 tabs. (F.M.)

  2. Regional, national and international security requirements for the transport of nuclear cargo by sea

    International Nuclear Information System (INIS)

    Booker, P.A.; Barnwell, I.

    2004-01-01

    Since the beginning of the nuclear age in the 1940's, the world has focused on the immense possibilities of nuclear power with both its destructive and productive capabilities. The civil nuclear industry in the UK, as in most nuclear weapons states, grew from the military facilities built in the post war years under the political climate of the Cold War. In the early years of the industry, civil and defence nuclear facilities were inextricably linked both in public perceptions and the regulatory infrastructure under which they operated. The nuclear arms race and the spread of communism overshadowed people's perceptions of there being two separate uses of nuclear material. This was a double edged sword which initially allowed the industry to develop largely unhindered by public concerns but latterly meant the industry could not break away from its roots and to many is still perceived as a dangerous and destructive force. Regulatory frameworks governing all aspects of the industry have developed both nationally and internationally driven by valid public concerns, political agendas and an international consensus that the unregulated use of nuclear material has catastrophic possibilities on an international scale. With the internationalisation of the civil nuclear industry and the costs associated with developing facilities to fully support each stage of the fuel cycle, from enrichment, fuel manufacturing, reprocessing and waste remediation, it became inevitable that a transport infrastructure would develop to make best use of the facilities. Regulations, both national and international are implicit in ensuring the security of nuclear material in transit. Due to the physical size of many of the irradiated fuel packages and implications of the changes to transport safety regulations, international transports of nuclear material, other than within mainland Europe, is predominantly carried out by sea

  3. Regional, national and international security requirements for the transport of nuclear cargo by sea

    Energy Technology Data Exchange (ETDEWEB)

    Booker, P.A.; Barnwell, I. [Marine Operations, BNFL International Transport and British Nuclear Group Security (United Kingdom)

    2004-07-01

    Since the beginning of the nuclear age in the 1940's, the world has focused on the immense possibilities of nuclear power with both its destructive and productive capabilities. The civil nuclear industry in the UK, as in most nuclear weapons states, grew from the military facilities built in the post war years under the political climate of the Cold War. In the early years of the industry, civil and defence nuclear facilities were inextricably linked both in public perceptions and the regulatory infrastructure under which they operated. The nuclear arms race and the spread of communism overshadowed people's perceptions of there being two separate uses of nuclear material. This was a double edged sword which initially allowed the industry to develop largely unhindered by public concerns but latterly meant the industry could not break away from its roots and to many is still perceived as a dangerous and destructive force. Regulatory frameworks governing all aspects of the industry have developed both nationally and internationally driven by valid public concerns, political agendas and an international consensus that the unregulated use of nuclear material has catastrophic possibilities on an international scale. With the internationalisation of the civil nuclear industry and the costs associated with developing facilities to fully support each stage of the fuel cycle, from enrichment, fuel manufacturing, reprocessing and waste remediation, it became inevitable that a transport infrastructure would develop to make best use of the facilities. Regulations, both national and international are implicit in ensuring the security of nuclear material in transit. Due to the physical size of many of the irradiated fuel packages and implications of the changes to transport safety regulations, international transports of nuclear material, other than within mainland Europe, is predominantly carried out by sea.

  4. Sampling and transport of paraffin waste form from CWDS of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J. M.; Hwang, J. H.; Kim, C. R.; Park, J. W.

    2000-01-01

    Sampling and transport of paraffin waste form from concentrated waste drying system (CWDS) of domestic nuclear power plant were performed to collect the leaching characteristic data for the disposal of radioactive waste. Transport was performed according to the national regulations and the internal rules of the nuclear power plant. The sample of paraffin waste form was classified as L type package according to the regulation and radiation exposure of operator was measured in the range of 6 to 12 mrem that was less than the estimated amount

  5. Plutonium air transportable package Model PAT-1. Safety analysis report

    International Nuclear Information System (INIS)

    1978-02-01

    The document is a Safety Analysis Report for the Plutonium Air Transportable Package, Model PAT-1, which was developed by Sandia Laboratories under contract to the Nuclear Regulatory Commission (NRC). The document describes the engineering tests and evaluations that the NRC staff used as a basis to determine that the package design meets the requirements specified in the NRC ''Qualification Criteria to Certify a Package for Air Transport of Plutonium'' (NUREG-0360). By virtue of its ability to meet the NRC Qualification Criteria, the package design is capable of safely withstanding severe aircraft accidents. The document also includes engineering drawings and specifications for the package. 92 figs, 29 tables

  6. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  7. Distinct hydrophobic “patches” in the N- and C-tails of beta-catenin contribute to nuclear transport

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Manisha; Jamieson, Cara; Lui, Christina [Center for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145 (Australia); Henderson, Beric R., E-mail: beric.henderson@sydney.edu.au [Center for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145 (Australia)

    2016-11-01

    β-catenin is a key mediator of Wnt signaling and its deregulated nuclear accumulation can drive cancer progression. While the central armadillo (Arm) repeats of β-catenin stimulate nuclear entry, the N- and C-terminal “tail” sequences are thought to regulate turnover and transactivation. We show here that the N- and C-tails are also potent transport sequences. The unstructured tails of β-catenin, when individually fused to a GFP-reporter, could enter and exit the nucleus rapidly in live cells. Proximity ligation assays and pull-down assays identified a weak interaction between the tail sequences and the FG-repeats of nucleoporins, consistent with a possible direct translocation of β-catenin through the nuclear pore complex. Extensive alanine mutagenesis of the tail sequences revealed that nuclear translocation of β-catenin was dependent on specific uniformly distributed patches of hydrophobic residues, whereas the mutagenesis of acidic amino acids had no effect. Moreover, the mutation of hydrophobic patches within the N-tail and C-tail of full length β-catenin reduced nuclear transport rate and diminished its ability to activate transcription. We propose that the tail sequences can contribute to β-catenin transport and suggest a possible similar role for hydrophobic unstructured regions in other proteins. - Highlights: • We show that the N- and C-tails of beta-catenin possess nuclear transport activity. • Nuclear transport of the N- or C-tails requires specific hydrophobic amino acids. • Mutagenesis of the N-terminus diminished nuclear entry of full-length beta-catenin. • We propose the N-tail contributes to beta-catenin nuclear entry and transactivation.

  8. Informational system to assist decision making at spent nuclear fuel transportation from VVER-440, VVER-1000 and RBMK-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Kuryndin, A.V.; Kirkin, A.M.; Stroganov, A.A.

    2012-01-01

    The developed informational system provides an automated estimations of nuclear and radiation safety parameters during spent nuclear fuel transportation from WWER-440 and WWER-1000 and RBMK-1000 nuclear power plants to the nuclear fuel cycle facilities, and allows us to determine the optimum cask loading from the dose rates distribution outside of protection point of view [ru

  9. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix C, marine transport and associated environmental impacts. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix C to a Draft Environmental Statement on a Proposed Nuclear Weapon Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. Shipment of any material via ocean transport entails risks to both the ship's crew and the environment. The risks result directly from transportation-related accidents and, in the case of radioactive or other hazardous materials, also include exposure to the effects of the material itself. This appendix provides a description of the approach used to assess the risks associated with the transport of foreign research reactor spent nuclear fuel from a foreign port to a U.S. port(s) of entry. This appendix also includes a discussion of the shipping configuration of the foreign research reactor spent nuclear fuel, the possible types of vessels that could be used to make the shipments, the risk assessment methodology (addressing both incident-free and accident risks), and the results of the analyses. Analysis of activities in the port(s) is described in Appendix D. The incident-free and accident risk assessment results are presented in terms of the per shipment risk and total risks associated with the basic implementation of Management Alternative 1and other implementation alternatives. In addition, annual risks from incident-free transport are developed

  10. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  11. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  12. Institutional interactions in developing a transportation system under the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Denny, S.H.

    1986-01-01

    The Department of Energy (DOE) recognizes that the success of its efforts to develop and operate a system for transporting nuclear waste under the provisions of the Nuclear Waste Policy Act of 1982 (NWPA) depends in large measure on the effectiveness of Departmental interactions with the affected parties. To ensure the necessary network of communication, the DOE is establishing lines of contact with those who are potential participants in the task of developing the policies and procedures for the NWPA transportation system. In addition, a number of measures have been initiated to reinforce broad-based involvement in program development. The Transportation Institutional Plan provides a preliminary road map of DOE's projected interactions over the next decade and is discussed in this paper

  13. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  14. Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

    International Nuclear Information System (INIS)

    Lucas, Donald D.; Simpson, Matthew; Cameron-Smith, Philip; Baskett, Ronald L.

    2017-01-01

    Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 10 3 ), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km x 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best match

  15. Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Donald D.; Simpson, Matthew; Cameron-Smith, Philip; Baskett, Ronald L. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-07-01

    Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 10{sup 3}), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km x 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best

  16. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  17. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  18. Experiences in certification of packages for transportation of fresh nuclear fuel in the context of new safety requirements established by IAEA regulations (IAEA-96 regulations, ST-1) for air transportation of nuclear materials (requirements to C-type packages)

    Energy Technology Data Exchange (ETDEWEB)

    Dudai, V.I.; Kovtun, A.D.; Matveev, V.Z.; Morenko, A.I.; Nilulin, V.M.; Shapovalov, V.I.; Yakushev, V.A.; Bobrovsky, V.S.; Rozhkov, V.V.; Agapov, A.M.; Kolesnikov, A.S. [Russian Federal Nuclear Centre - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)]|[JSC ' ' MSZ' ' , Electrostal (Russian Federation)]|[JSC ' ' NPCC' ' , Novosibirsk (Russian Federation)]|[Minatom of Russia, Moscow (Russian Federation)]|[Gosatomnadzor of Russia, Moscow (Russian Federation)

    2004-07-01

    Every year in Russia, a large amount of domestic and international transportation of fresh nuclear fuel (FNF) used in Russian and foreign energy and research atomic reactors and referred to fissile materials based on IAEA Regulations is performed. Here, bulk transportation is performed by air, and it concerns international transportation in particular. According to national ''Main Regulations for Safe Transport and physical Protection of Nuclear Materials (OPBZ- 83)'' and ''Regulations for the Safe Transport of Radioactive Materials'' of the International Atomic Energy Agency (IAEA Regulations), nuclear and radiation security under normal (accident free) and accident conditions of transport must be completely provided by the package design. In this context, high requirements to fissile packages exposed to heat and mechanical loads in transport accidents are imposed. A long-standing experience in accident free transportation of FM has shown that such approach to provide nuclear and radiation security pays for itself completely. Nevertheless, once in 10 years the International Atomic Energy Agency on every revision of the ''Regulations for the Safe Transport of Radioactive Materials'' places more stringent requirements upon the FM and transportation thereof, resulting from the objectively increasing risk associated with constant rise in volume and density of transportation, and also strained social and economical situation in a number of regions in the world. In the new edition of the IAEA Regulations (ST-1), published in 1996 and brought into force in 2001 (IAEA-96 Regulations), the requirements to FM packages conveyed by aircraft were radically changed. These requirements are completely presented in new Russian ''Regulations for the Safe Transport of Radioactive Materials'' (PBTRM- 2004) which will be brought into force in the time ahead.

  19. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  20. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  1. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    Science.gov (United States)

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A regional sediment transport modeling for fluvial influx and redistribution of suspended radionuclide in the Fukushima coast

    International Nuclear Information System (INIS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Miyazawa, Yasumasa

    2014-01-01

    Fluvial discharge from the rivers is viewed as a missing piece for the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended particles (sediments) that are transported quite differently to the dissolved matter in the ocean. We therefore develop a regional sediment transport model consisting of a multi-class non-cohesive sediment transport module, a wave-enhanced bed boundary layer model and a stratigraphy model proposed by Blaas et al. (2007) based on ROMS. (author)

  3. CTCN: Colloid transport code -- nuclear

    International Nuclear Information System (INIS)

    Jain, R.

    1993-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential-algebraic equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential-algebraic systems

  4. Ministerial Decree of 16 February 1976 relating to approval of the model certificate of financial security for the transport of radioactive materials

    International Nuclear Information System (INIS)

    1976-01-01

    This Decree by the Minister of Industry, Commerce and Crafts, in consultation with the Minister of Transport, approves the model certificate of financial security for the transport of nuclear materials. This type of certificate issued by nuclear insurers is intended to provide detailed information on the nature of the financial security for damage likely to be caused by the materials in the course of transport; it is required to supply the certificate according to the Paris Convention on Third Party Liability in the Field of Nuclear Energy, ratified by Italy in 1975. The standardised presentation of this certificate enables it to be used in international transport between countries parties to the Paris Convention as proof of the existence of the financial security. (N.E.A.)

  5. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  6. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  7. Analysis of the risk of transporting spent nuclear fuel by train

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.K.

    1981-09-01

    This report uses risk analyses to analyze the safety of transporting spent nuclear fuel for commercial rail shipping systems. The rail systems analyzed are those expected to be used in the United States when the total electricity-generating capacity by nuclear reactors is 100 GW in the late 1980s. Risk as used in this report is the product of the probability of a release of material to the environment and the consequences resulting from the release. The analysis includes risks in terms of expected fatalities from release of radioactive materials due to transportation accidents involving PWR spent fuel shipped in rail casks. The expected total risk from such shipments is 1.3 x 10/sup -4/ fatalities per year. Risk spectrums are developed for shipments of spent fuel that are 180 days and 4 years out-of-reactor. The risk from transporting spent fuel by train is much less (by 2 to 4 orders of magnitude) than the risk to society from other man-caused events such as dam failure.

  8. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  9. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business, and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of the criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several competent authorities are involved, the approval and validation process of package design can often become a time-consuming, expensive and unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies. (author)

  10. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several Competent Authorities are involved, the approval and validation process of package design can often become time consuming, expensive and an unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies

  11. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  12. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.; Cashwell, J.W.; Jefferson, R.M.

    1983-01-01

    Transportation Technology Center has been conducting a wide range of technical research activities to assure the ability to transport radioactive materials in a safe, reliable manner. These activities include tasks in basic, analysis methodology and system research areas. Recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on the Department of Energy for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  13. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    International Nuclear Information System (INIS)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-01-01

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes

  14. Nevada commercial spent nuclear fuel transportation experience

    International Nuclear Information System (INIS)

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed

  15. Concerning the order of the Ministry of Transport for the amendment to part of the Rules for the Vehicle Transportation of Nuclear Fuel, the Rules for Ship Transportation and Storage of Dangerous Objects, and the Rules for the Enforcement of the Aviation Act

    International Nuclear Information System (INIS)

    1989-01-01

    The Ministry of Transport is planning to make amendments to the Rules for the Vehicle Transportation of Nuclear Fuel, the Rules for Ship Transportation and Storage of Dangerous objects, and the Rules for the Enforcement of the Aviation Act, on the basis of results of a study carried out by the Working Group for the Protection of Nuclear Material, the Atomic Energy Commission of Japan. The planned amendments to the Rules for the Vehicle Transportation of Nuclear Fuel cover the locking and sealing of containers, the development of transportation plans, the arrangement and operations of responsible persons and guards for its transportation, and improvement in the communications and liaison system. The amendments to the Rules for Ship Transportation and Storage of Dangerous Objects are related to the range of nuclear fuel substances to be protected, the measures to be taken for their protection during transportation by ship, the approval by the Minister of Transport, and the notification to the Regional Maritime Safety Headquarters. The planned amendments to the Rules for the Enforcement of the Aviation Act cover the range of nuclear fuel substances to be protected, etc. (N.K.)

  16. Towards an efficient multiphysics model for nuclear reactor dynamics

    Directory of Open Access Journals (Sweden)

    Obaidurrahman K.

    2015-01-01

    Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.

  17. Proposal for guidelines for the physical protection of nuclear materials, plants and transports in Denmark

    International Nuclear Information System (INIS)

    1978-03-01

    The guidelines are based on recommendations in the IAEA's ''Physical Protection of Nuclear Material,'' INFCIRC/225/rev.1. In accordance with practice in other countries, the guidelines give more detailed requirements for the protection of reactor plants than those given in the IAEA's present recommendations, which put more emphasis on the protection of nuclear materials. The measures to be taken for nuclear plants, or nuclear transports, are proposed made to fit the potential risk that the more closely defined actions imply. It is suggested that the more detailed rules for the scope of the protection of plants or materials should be laid down by the National Agency on the basis of recommendations made by the Inspectorate of Nuclear Installations, which in turn are based on the safety documentation of the plant/material owners. It is further proposed that the National Agency, again on a recommendation from the Inspectorate, should lay down more detailed guidelines for the reporting of changes in stocks or transports of nuclear materials. (author)

  18. Nuclear elastic scattering effects on fusion product transport in compact tori

    International Nuclear Information System (INIS)

    DeVeaux, J.; Greenspan, E.; Miley, G.H.

    1980-01-01

    This paper seeks to advance previous work including the effects of nuclear elastic scattering (NES) on fusion-product transport. We have found that NES may dominate the slowing-down process for high-temperature, advance-fuel plasmas which burn Cat.D or D- 3 He. A modified version of the Monte Carlo fusion product transport code, MCFRM, was used to evaluate the effects of NES on discrete fusion-product orbits in the FRM

  19. Legal Framework and Best Practice for Improving Transport Security of Radioactive and Nuclear Materials in Croatia

    International Nuclear Information System (INIS)

    Ilijas, B.; Medakovic, S.

    2012-01-01

    Security of transporting radioactive and nuclear materials always poses a demanding task to the holder of the authorization or beneficiary, and especially transporter. Very strict and precise legal framework must be done for this purpose, yet it has not be too complicated to create a great problems in practice. The best balance between efficiency and simplicity should be achieved. In Croatia on power is 'The Dangerous Goods Transport Act' which stipulates the conditions for the carriage of dangerous goods in individual transport modes, obligations of persons participating in the carriage, requirements for packaging and vehicles, conditions for the appointment of safety advisers and safety adviser's rights and duties, competence and conditions for the implementation of training programs for persons participating in transport, competence of the state authorities related to such carriage and supervision of the implementation of the Act. Besides this Act, which regulates the issue in more general way, in preparation is a new 'Ordinance on Physical Security Measures for Radioactive Sources, Nuclear Material and Nuclear Facilities'. The intention of this Ordinance, in the part dealing with transport, is to bring specific approach, in accordance with IAEA guides, forwarding the most of obligations to the holder of the authorization or beneficiary and transporter, leaving state regulatory bodies mostly supervising role. In practice this can create some problems in the beginning, but with rising security awareness and after some experience collected, this can be the best way to achieve satisfactory security, yet not slowing down and complicating regular jobs with radioactive and nuclear materials.(author).

  20. Model for tritiated water transport in soil

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.

    1999-01-01

    Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)

  1. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  2. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  3. Three-particle forces and nuclear models

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1980-01-01

    Different nuclear models accounting and unaccounting for three-particle internucleon forces (TIF) are reviewed. At present only two nuclear models use manifestly TIP: the Vautherin-Brink-Skyrme (VBS) model and the model proposed by the author of the review and called the semiphenomenological (SP) nuclear model. There is a short discussion of major drawbacks of models unaccounting for TIF: multiparticle shell model, ''superfluid model'', Harty-Fock calculations with two-particle forces, Bruckner-Hartry-Fock calculations, the relativistic self-consistent nuclear model. The VBS and SP models are discussed in detail. It is concluded, that the employment of TIF even in a very simplified form (extremely short-range) puts away a lot of problems characteristic to models limited by two-particle forces (collapse at iteratious in Hartry-Fock, simultaneous fitting of the binding energy of a nucleus and the binding energy of a nucleon, etc.) and makes it possible to obtain in a rather simple way such nuclear characteristics as nuclear binding energy, nuclear mean square root radii, nucleon density of a nucleus

  4. A thermodynamic/mass-transport model for the release of ruthenium from irradiated fuel

    International Nuclear Information System (INIS)

    Garisto, F.; Iglesias, F.C.; Hunt, C.E.L.

    1990-01-01

    Some postulated nuclear reactor accidents lead to fuel failures and hence release of fission products into the primary heat transport system (PHTS). To determine the consequences of such accidents, it is important to understand the behavior of fission products both in the PHTS and in the reactor containment building. Ruthenium metal has a high boiling point and is nonvolatile under reducing conditions. However, under oxidizing conditions ruthenium can form volatile oxides at relatively low temperatures and, hence, could escape from failed fuel and enter the containment building. The ruthenium radioisotope Ru-106 presents a potentially significant health risk if it is released outside the reactor containment building. Consequently, it is important to understand the behavior of ruthenium during a nuclear reactor accident. The authors review the thermodynamic behavior of ruthenium at high temperatures. The qualitative behavior of ruthenium, predicted using thermodynamic calculations, is then compared with experimental results from the Chalk River Nuclear Laboratories (CRNL). Finally, a simple thermodynamic/mass-transport model is proposed to explain the release behavior of ruthenium in a steam atmosphere

  5. Studies and research concerning BNFP. Nuclear transportation studies related to use of the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1981-11-01

    It will be necessary to transport radioactive material on a routine basis if the Barnwell Nuclear Fuel Plant (BNFP) is to be utilized. This report examines the current and projected status of transport of high-level nuclear material, with particular application directed toward the operation of the BNFP. The current domestic US status is one of comparative inactivity in the movement of utility spent fuel. Pending the successful disposition of fuel cycle options such as either Away-from-Reactor (AFR) storage or reprocessing, spent fuel transport to the BNFP will be dormant through the mid-1980's. If fuel movement is initiated, the primary areas of concern will be the maze of local, state, and federal regulations on routing, the availability of spent fuel casks, and the logistic concerns of fuel loading and unloading capability at the reactor and the BNFP. The report examines the application of overweight truck (OWT) shipments of spent fuel casks patterned on current European practice. Overweight shipments, whether by truck or intermodal movement (rail or barge combined with truck shipment), can have a significant impact on resolving logistics problems. It seems obvious from our studies that OWT casks will be utilized, along with legal weight truck and rail shipment. Water transport was also examined. It appears that this mode will only be used in the event that highway and rail problems are insuperable

  6. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  7. Calculational model used in the analysis of nuclear performance of the Light Water Breeder Reactor (LWBR) (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.B. (ed.)

    1978-08-01

    The calculational model used in the analysis of LWBR nuclear performance is described. The model was used to analyze the as-built core and predict core nuclear performance prior to core operation. The qualification of the nuclear model using experiments and calculational standards is described. Features of the model include: an automated system of processing manufacturing data; an extensively analyzed nuclear data library; an accurate resonance integral calculation; space-energy corrections to infinite medium cross sections; an explicit three-dimensional diffusion-depletion calculation; a transport calculation for high energy neutrons; explicit accounting for fuel and moderator temperature feedback, clad diameter shrinkage, and fuel pellet growth; and an extensive testing program against experiments and a highly developed analytical standard.

  8. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  9. Modelling of radionuclide transport in forests: Review and future perspectives

    International Nuclear Information System (INIS)

    Shaw, G.; Schell, W.; Linkov, I.

    1997-01-01

    Ecological modeling is a powerful tool which can be used to synthesize information on the dynamic processes which occur in ecosystems. Models of radionuclide transport in forests were first constructed in the mid-1960's, when the consequences of global fallout from nuclear weapons tests and waste disposal in the environment were of great concern. Such models were developed based on site-specific experimental data and were designed to address local needs. These models had a limited applicability in evaluating distinct ecosystems and deposition scenarios. Given the scarcity of information, the same experimental data sets were often used both for model calibration and validation, an approach which clearly constitutes a methodological error. Even though the carry modeling attempts were far from being faultless, they established a useful conceptual approach in that they tried to capture general processes in ecosystems and thus had a holistic nature. Later, radioecological modeling attempted to reveal ecosystem properties by separating the component parts from the whole system, as an approach to simplification. This method worked well for radionuclide transport in agricultural ecosystems, in which the biogeochemistry of radionuclide cycling is relatively well understood and can be influenced by fertilization. Several models have been successfully developed and applied to human dose evaluation and emergency response to contaminating events in agricultural lands

  10. Transport of nuclear materials: a major stake for the reprocessing-conditioning-recycling strategy

    International Nuclear Information System (INIS)

    Gautrot, J.J.

    1998-01-01

    As the international reference in terms of fuel cycle services, the COGEMA Group has developed a wide range of industrialized products answering to its clients needs. But, as deregulation and competition are now expanding, utilities has to be perfectly aware of the cost level of their strategic choices, and to keep these costs down. This point is especially valid in the back-end of the fuel cycle. Several leading nuclear countries around the world have chosen the reprocessing-recycling option because it ensures a economically mastered vision. In that respect, transportation reliability is consequently a basic requirement. It ensures a balanced and continuous flows of materials. Transportation system must be reliable in terms of schedule, safety or industrial aspects (i.e. dedicated packaging for road, rail, sea or air transports, maintenance aspects...). Any serious flaw in one of these three points could lead to delays, thus lessening the economic advantage for utilities. But, one must not loose sight that transportation of nuclear materials is tied to extra-technical issues, such as environmental or regulatory factors, which are fundamental for a consistent understanding of this business. The COGEMA Group, through its subsidiary Transnucleaire, possesses a dedicated transport system, widely praised for its constant commitment in terms of safety, quality and operating. This papers presents the overall back-end transportation framework and details the transport organisations as well as the main achievements of Transnucleaire when it comes to sea, road or rail back-end transports. (authors)

  11. Department of Energy (DOE) system for the transportation of strategic quantities of special nuclear material (SQ SNM)

    International Nuclear Information System (INIS)

    Dickason, D.P.

    1978-01-01

    Since 1947 DOE and its predecessor agencies, AEC and ERDA, have moved nuclear materials by a variety of commercial and government transportation modes. In the late 1960's world-wide terrorism and other dissident activities prompted the then-AEC to review its procedures for safeguarding SNM. These reviews resulted in immediate and long-range programs for improvement of overall safeguards. Domestic transportation of completed nuclear weapons and SNM used in the weapons program was selected for special consideration. In the early 1970's AEC started the development of a Safe Secure Trailer (SST) to transport nuclear weapons and nuclear components and the development and installation of a high frequency (HF) communications system to assure continuous radio contact between selected highway and rail shipments and Headquarters, Albuquerque Operations (ALO). Late 1974 AEC directed ALO to develop a transportation system to extend weapons-level protection to all AEC SQ SNM shipments and to consolidate, manage, and operate this system. As of September 1976 all SQ SNM was being transported in the Safe Secure DOE (then ERDA) transportation safeguards system, composed of the following principal elements: (1) Transport equipment consisting of Safe Secure Trailers and specially modified towing tractors; Safe Secure Railcars and specially modified escort coaches; and specially designed highway escort vehicles. (2) An automated high-frequency digital radio system that enables continuous communications between the transporting equipment and central control. (3) A courier force that operates all transport equipment (except aircraft and rail power units) and mobile communications equipment; provides armed protection for shipments; and assures proper safety en route. (4) A central Headquarters staff that plans, executes, and controls shipments and directs, manages, and operates the system

  12. Study of a conceptual nuclear-energy center at Green River, Utah: site-specific transportation

    International Nuclear Information System (INIS)

    1981-10-01

    The objective of the following report is to assess the adequacy of the local and regional transportation network for handling traffic, logistics, and the transport of major power plant components to the Utah Nuclear Energy Center (UNEC) Horse Bench site. The discussion is divided into four parts: (1) system requirements; (2) description of the existing transportation network; (3) evaluation; (4) summary and conclusions

  13. Uranium(VI) transport modeling: geochemical data and submodels

    International Nuclear Information System (INIS)

    Tripathi, V.S.

    1984-01-01

    Understanding the geochemical mobility of U(VI) and modeling its transport is important in several contexts including ore genesis, uranium exploration, nuclear and mill-tailings waste management, and solution mining of uranium ores. Adsorption is a major control on partitioning of solutes at the mineral/solution interface. The effect of carbonate, fluoride, and phosphate complexing on adsorption of uranium was investigated. A critical compilation of stability constants of inorganic complexes and solid compounds of U(VI) necessary for proper design of experiment and for modeling transport of uranium was prepared. The general features of U(VI) adsorption in ligand-free systems are similar to those characteristic of other hydrolyzable metal ions. The adsorption processes studied were found to be reversible. The adsorption model developed in ligand-free systems, when solution complexing is taken into account, proved remarkably successful in describing adsorption of uranium in the presence of carbonate and fluoride. The presence of phosphate caused a much smaller decrease in the extent of adsorption than expected; however, a critical reassessment of the stability of UO 2 2+ .HPO 4 2- complexes, showed that phosphato complexes, if any, are extremely weak under experimental conditions. Removal of uranium may have occurred due to precipitation of sodium uranyl phosphates in addition to adsorption

  14. Compartment modelling in nuclear medicine: a new program for the determination of transfer coefficients

    International Nuclear Information System (INIS)

    Hallstadius, L.

    1986-01-01

    In many investigations concerning transport/exchange of matter in a natural system, e.g. functional studies in nuclear medicine, it is advantageous to relate experimental results to a model of the system. A new computer program is presented for the determination of linear transfer coefficients in a compartment model from experimentally observed time-compartment content curves. The program performs a least-square fit with the specified precision of the observed values as weight factors. The resulting uncertainty in the calculated transfer coefficients may also be assessed. The application of the program in nuclear medicine is demonstrated and discussed. (author)

  15. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  16. Modeling nuclear processes by Simulink

    International Nuclear Information System (INIS)

    Rashid, Nahrul Khair Alang Md

    2015-01-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples

  17. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  18. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  19. Risk assessment for transportation of radioactive materials and nuclear explosives

    International Nuclear Information System (INIS)

    Clauss, D.B.; Wilson, R.K.; Hartman, W.F.

    1991-01-01

    Sandia National Laboratories has the lead technical role for probabilistic risk assessments of transportation of nuclear weapons, components, and special nuclear material in support of the US Department of Energy. The emphasis of the risk assessments is on evaluating the probability of inadvertent disposal of radioactive material and the consequences of such a release. This paper will provide an overview of the methodology being developed for the risk assessment and will discuss the interpretation and use of the results. The advantages and disadvantages of using risk assessment as an alternative to performance-based criteria for packaging will be described. 2 refs., 1 fig

  20. Nuclear materials transportation workshops: USDOE outreach to local governments

    International Nuclear Information System (INIS)

    1987-01-01

    To provide direct outreach to local governments, the Transportation Management Division of the United States Department of Energy asked the Urban Consortium and its Energy Task Force to assemble representatives for two workshops focusing on the transport of nuclear materials. The first session, for jurisdictions east of the Mississippi River, was held in New Orleans on May 5--6, 1988; the second was conducted on June 6--7, 1988 in Denver for jurisdictions to the west. Twenty local government professionals with management or operational responsibility for hazardous materials transportation within their jurisdictions were selected to attend each workshop. The discussions identified five major areas of concern to local government professionals; coordination; training; information resources; marking and placarding; and responder resources. Integrated federal, state, and local levels of government emerged as a priority coordination issue along with the need for expanded availability of training and training resources for first-reponders

  1. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  2. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  3. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    International Nuclear Information System (INIS)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-01-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP

  4. Modeling water flow and solute transport in unsaturated zone inside NSRAWD project

    International Nuclear Information System (INIS)

    Constantin, A.; Diaconu, D.; Bucur, C.; Genty, A.

    2015-01-01

    The NSRAWD project (2010-2013) - Numerical Simulations for Radioactive Waste Disposal was initiated under a collaboration agreement between the Institute for Nuclear Research and the French Alternative Energies and Atomic Energy Commission (CEA). The context of the project was favorable to combine the modeling activities with an experimental part in order to improve and validate the numerical models used so far to simulate water flow and solute transport at Saligny site, Romania. The numerical models developed in the project were refined and validated on new hydrological data gathered between 2010-2012 by a monitoring station existent on site which performs automatic determination of soil water content and matrix potential, as well as several climate parameters (wind, temperature and precipitations). Water flow and solute transport was modeled in transient conditions, by taking into consideration, as well as neglecting the evapotranspiration phenomenon, on the basis of a tracer test launched on site. The determination of dispersivities for solute transport was targeted from the solute plume. The paper presents the main results achieved in the NSRAWD project related to water flow and solute transport in the unsaturated area of the Saligny site. The results indicated satisfactory predictions for the simulation of water flow in the unsaturated area, in steady state and transient conditions. In the case of tracer transport modeling, dispersivity coefficients could not be finally well fitted for the data measured on site and in order to obtain a realistic preview over the values of these parameters, further investigations are recommended. The article is followed by the slides of the presentation

  5. Uncertainties in Nuclear Proliferation Modeling

    International Nuclear Information System (INIS)

    Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok

    2015-01-01

    There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies

  6. Model for diffusion and porewater chemistry in compacted bentonite. Theoretical basis and the solution methodology for the transport model

    International Nuclear Information System (INIS)

    Lehikoinen, J.

    1997-01-01

    This report describes the progress of the computer model for ionic transport in bentonite. The research is part of the project Microstructural and chemical parameters of bentonite as determinants of waste isolation efficiency within the Nuclear fission safety program organized by The Commission of the European Communities. The study was started by collecting a comprehensive body of available data on space-charge transport modelling and creating a conceptualization of the problem at hand. The numerical discretization of the governing equations by finite differences was also initiated. This report introduces the theoretical basis for the model, somewhat more elaborated than presented in Progress Report 1/1996, and rectifies a few mistakes appearing in that report. It also gives a brief introduction to the solution methodology of the disc retized governing equations. (orig.) (12 refs.)

  7. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  8. 77 FR 34194 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Science.gov (United States)

    2012-06-11

    ... Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear... fuel and certain nuclear wastes for any shipment that passes within or across their reservations. The... irradiated reactor fuel and certain nuclear waste passing through or across the boundary of their States...

  9. Assembly for transport and storage of radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1978-01-01

    The invention concerns the self-control of coolant deficiencies on the transport of spent fuel elements from nuclear reactors. It guarantees that drying out of the fuel elements is prevented in case of a change of volume of the fluid contained in storage tanks and accumulators and serving as coolant and shielding medium. (TK) [de

  10. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  11. Sensitivity and uncertainty analysis of the PATHWAY radionuclide transport model

    International Nuclear Information System (INIS)

    Otis, M.D.

    1983-01-01

    Procedures were developed for the uncertainty and sensitivity analysis of a dynamic model of radionuclide transport through human food chains. Uncertainty in model predictions was estimated by propagation of parameter uncertainties using a Monte Carlo simulation technique. Sensitivity of model predictions to individual parameters was investigated using the partial correlation coefficient of each parameter with model output. Random values produced for the uncertainty analysis were used in the correlation analysis for sensitivity. These procedures were applied to the PATHWAY model which predicts concentrations of radionuclides in foods grown in Nevada and Utah and exposed to fallout during the period of atmospheric nuclear weapons testing in Nevada. Concentrations and time-integrated concentrations of iodine-131, cesium-136, and cesium-137 in milk and other foods were investigated. 9 figs., 13 tabs

  12. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  13. Development of radionuclide transport model in the ecosystem of brackish lake Obuchi

    International Nuclear Information System (INIS)

    Ueda, Shinji; Kondo, Kunio; Chikuchi, Yuki; Inaba, Jiro

    2003-01-01

    The purpose of this study is to develop a computer code for a radionuclide transport model in Lake Obuchi which is adjacent to nuclear fuel cycle facilities including a nuclear spent-fuel reprocessing plant under construction in Rokkasho-mura. The lake is brackish and this fact makes the entry mode of radionuclides into the lake and its ecosystem very characteristic. For the construction of the code, it is important to incorporate the characteristics of the ecosystem as well as the hydraulic movements into the model. In the present study we report the biological parameters related to the transport model obtained from field observations and a laboratory experiment. We also give results from development of an advective-diffusion model. Monthly field observations revealed that 18 to 47 species of phytoplankton, 9 to 20 species of zooplankton and 0 to 21 species of benthos were present in the lake. A marked seasonal change was observed in the dominant species for both planktons. Mean carbon masses of DOC, POC, phytoplankton and zooplankton in the lake were 16 x 10 4 , 5.9 x 10 4 , 3.7 x 10 4 and 0.20 x 10 4 kg-C, respectively. Phytoplanktons of 10 species in 8 genera were isolated and maintained in a bacteria-free medium in the laboratory. Some physiological and metabolic characteristics of the planktons were studied under those conditions. An advective-diffusion model was developed for particles in the lake. Field observations showed that the model could simulate formation and elimination of the water current. (author)

  14. Nuclear Liability and Insurance Protection for Nuclear Transport Accidents Involving Non-Contracting EU States: An assessment

    International Nuclear Information System (INIS)

    Horbach, N. L. J. T.

    2006-01-01

    This paper provides an analysis of the possible complications and consequences with respect to nuclear liability and insurance protection applicable in respect of transport activities resulting in damage suffered and/or accidents occurring in EU States that are not party to the Paris Convention. It looks at the different legal aspects (jurisdiction, applicable law, liability amounts, reciprocity) should the revised Vienna and Paris Convention become applicable in comparison with the unrevised Conventions. Within Europe, a large number of States are party to the 1960 Paris Convention and the 1963 Brussels Supplementary Convention, providing liability and insurance protection, in general, up to a limit of 300 million SDRs (or even higher). In principle, such protection is confined to nuclear incidents occurring and nuclear damage suffered in the territory of Contracting Parties, including, as recommended, the high seas, unless the legislation of the Installation State determines otherwise (Article 2). The geographical scope of application of the Paris Convention would thus vary according to the law of the Installation State. However, some EU States never became party to the Paris Convention, and are not bound by its the liability principles (notably, channelling of liability), such as Austria, Luxembourg and Ireland. Transport accidents involving these countries might therefore result in liability claims outside the treaty liability regime against operators, suppliers, carriers or persons involved and for types of damages different from those currently covered by the Paris Convention (e.g., environmental damage). It is uncertain to what extent liability insurance of the installation operators would provide adequate protection and whether related damage claims can be enforceable. In addition, a number of newly entered EU States are party to the Vienna Convention, which, although bound by liability principles basically similar to those of the Paris Convention, will

  15. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C.; Luna, R.E.; Jefferson, R.M.; Wowak, W.E.

    1983-01-01

    The Transportation Technology Center has been conducting a wide range of technical and non-technical research activities to assure the ability to transport radioactive materials in a safe, reliable, and publicly acceptable manner. These activities include tasks in Information and Intergovernmental issues, Safety Assessment and Environmental Analysis and Technology Development. Until recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on DOE for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  16. Transportable nuclear power plant TEC-M with two reactor plants of improved safety

    International Nuclear Information System (INIS)

    Ogloblin, B.G.; Sazonov, A.G.; Svishchev, A.M.; Gromov, B.F.; Zelensky, V.N.; Komkova, O.I.; Sidorov, V.I.; Tolstopyatov, V.P.; Toshinsky, G.I.

    1993-01-01

    Liquid metals are the best to meet the requirements of inherently safety nuclear power plants among the coolants used. A great experience has been gained in lead coolant power plant development and operation as applied to transportable power set-ups. Low chemical activity of this coolant with respect to air-water interaction is a determining factor for this coolant. The transportable nuclear power plant is described. It is intended to generate electric power for populated areas placed a long distance from the main electric power supply sources where it is difficult or not economical to deliver the conventional types of fuel. There are several remote areas in Siberia, Kamchatka in need of this type of power plant

  17. Transport, acceptance, storage and handling of the itens of nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The norm aiming to establish the requirements applied to workers or organizations which participate of the activities of transport, acceptance, storage and handling of important itens for safety of nuclear power plants, is presented. The established requirements treat of protection and control necessary to assure that the quality of important itens for safety be it preserved from the end of fabrication until their incorporation to nuclear power plant. (M.C.K.) [pt

  18. Postulated accident scenarios for the on-site transport of spent nuclear fuel

    International Nuclear Information System (INIS)

    Morandin, G.; Sauve, R.

    2004-01-01

    Once a spent fuel container is loaded with spent fuel it typically travels on-site to a processing building for permanent lid attachment. During on-site transport a lid clamp is utilized to ensure the container lid remains in place. The safe on-site transport of spent nuclear fuel must rely on the structural integrity of the transport container and system of transport. Regard for on-site traffic and safe, efficient travel routes are important and manageable with well thought-out planning. Non-manageable incidences, such as flying debris from tornado force winds or postulated blasts in proximity to the transport container, that may result in high velocity impact and shock loading on the transport system must be considered. This paper consists of simulations that consider these types of postulated accident scenarios using detailed nonlinear finite element techniques

  19. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  20. Minaret, a deterministic neutron transport solver for nuclear core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J-Y.; Lautard, J-J., E-mail: jean-yves.moller@cea.fr, E-mail: jean-jacques.lautard@cea.fr [CEA - Centre de Saclay , Gif sur Yvette (France)

    2011-07-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  1. Minaret, a deterministic neutron transport solver for nuclear core calculations

    International Nuclear Information System (INIS)

    Moller, J-Y.; Lautard, J-J.

    2011-01-01

    We present here MINARET a deterministic transport solver for nuclear core calculations to solve the steady state Boltzmann equation. The code follows the multi-group formalism to discretize the energy variable. It uses discrete ordinate method to deal with the angular variable and a DGFEM to solve spatially the Boltzmann equation. The mesh is unstructured in 2D and semi-unstructured in 3D (cylindrical). Curved triangles can be used to fit the exact geometry. For the curved elements, two different sets of basis functions can be used. Transport solver is accelerated with a DSA method. Diffusion and SPN calculations are made possible by skipping the transport sweep in the source iteration. The transport calculations are parallelized with respect to the angular directions. Numerical results are presented for simple geometries and for the C5G7 Benchmark, JHR reactor and the ESFR (in 2D and 3D). Straight and curved finite element results are compared. (author)

  2. Technetium-99m: From nuclear medicine applications to fine sediment transport studies

    Directory of Open Access Journals (Sweden)

    Bandeira Jefferson V.

    2017-12-01

    Full Text Available The present work is a contribution to rescue the history of development of the application of 99mTc, widely used in nuclear medicine, to its use as tracer for the study of the transport of fine sediment in suspension, in water environment. It addresses the usefulness of its application in obtaining important parameters in environmental studies, illustrating them with some applications already performed and the results obtained. This kind of study, when associated with information on hydrodynamic parameters, for example, river, tidal, wind and wave currents, are powerful tools for the understanding and quantification of fine sediment transport in suspension. Fine sediment is an important vector in the transportation of heavy metals, organic matter and nutrients in water environment, and the quantitative knowledge of its behaviour is mandatory for studies of environmental impacts. Fine sediment labelled with 99mTc, can also be used to study the effect of human interventions, such as dredging of reservoirs, access channels and harbours, and the dumping of dredged materials in water bodies. Besides that, it can be used to optimize dredging works, evaluating the technical and economic feasibility of dumping sites and their environmental impact. It is a valuable support in the calibration and validation of mathematical models for sediment dynamics.

  3. The transport of radioactive materials, paying special attention to nuclear fuels

    International Nuclear Information System (INIS)

    Blechschmidt, M.

    1977-06-01

    The transport of radioactive materials, particularly within the nuclear fuel cycle, is of increasing importance, and is more than ever a matter of public debate. This report provides information concerning the necessary physical, technical and administrative precautions which must be taken to ensure protection of the environment. The international standard of requirements for the packing of the materials is emphasized, as in many cases, transports cross national borders. The relatively comprehensive list of references can be used for the study of details. (orig.) [de

  4. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel

  5. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.

  6. Nuclear Waste Transportation Safety Act of 1979. Hearings before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation, United States Senate, Ninety-Sixth Congress, first session on S. 535, July 18-20, 1979

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Nuclear Waste Transportation Safety Act of 1979 provides for the safe transportation of nuclear waste and nuclear fuel. The issues evaluated during the hearing included: (1) The Energy Reorganization Act of 1974 conveyed to the NRC the prior existing authority of the former Atomic Energy Commission to regulate transportation of radioactive nuclear fuel and nuclear waste. The Hazardous Material Transportation Act of 1974 consolidated within the Department of Transportation the regulatory authority for safety and transportation of all hazardous substances, including radioactive materials; should consultation and coordination between these regulating authorities continue to be used. (2) The specific areas of transportation regulation involved in this combination; (3) Should the Department of Transportation (DOT) become a separate office; (4) Is security against theft and sabotage necessary and realistically attainable; (5) Should DOT be responsible for assuring a coordinated Federal-State emergency response plan for possible nuclear related transportation emergencies; and (6) Is the Federal grant program of S. 535 necessary and adequate

  7. Transport of radioactive substances; Der Transport radioaktiver Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  8. Model of tritium transfer into environment by the personnel of nuclear enterprises

    International Nuclear Information System (INIS)

    Batalin, J.; Krechetova, A.

    2004-01-01

    One of the ways of radionuclide transfer from a nuclear enterprise into an environment is analysed. This way of transfer is the transport of radionuclides by the personnel of a nuclear enterprise. During an active work in a nuclear enterprise the personnel accumulate radionuclides from the air of industrial premises. Accumulated radionuclides are released from the organism into an environment according to the effective period of half-draw. The main part of radionuclides is transferred from the organism of professional workers into an environment: first of all into the air and on furniture of their dwellings and later - into the organisms of their family members. In this way contamination of workers' dwellings and irradiation of their family members exceed the contamination through air and water. The model is confirmed as an example of tritium transfer from nuclear enterprises. (author)

  9. A quasi-linear gyrokinetic transport model for tokamak plasmas

    International Nuclear Information System (INIS)

    Casati, A.

    2009-10-01

    After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

  10. Program strategy document for the Nuclear Materials Transportation Technology Center

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1979-07-01

    A multiyear program plan is presented which describes the program of the Nuclear Materials Transportation Technology Center (TIC) at Sandia Laboratories. The work element plans, along with their corresponding work breakdown structures, are presented for TTC activities in the areas of Technology and Information Center, Systems Development, Technology, and Institutional Issues for the years from 1979 to 1985

  11. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  12. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  13. Progress in transport modelling of internal transport barrier plasmas in JET

    International Nuclear Information System (INIS)

    Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.

    2005-01-01

    This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)

  14. The role of nuclear techniques in the long-term prediction of radionuclide transport

    International Nuclear Information System (INIS)

    Airey, P.L.; Duerden, P.

    1985-01-01

    Problems associated with the long-term prediction of the migration of radionuclides, and the role of natural analogues in reducing the inherent uncertainties are discussed. Particular reference is made to the evaluation of uranium ore bodies in the Alligator Rivers region, Northern Territory, as analogues of high-level radioactive waste repositories. A range of nuclear techniques has been used to identify the role of colloids, of alpha recoil and of mineralogy in transport. Specific mention is made of a method being developed which enables models of the migration of solute through fractured rock to be assessed via a combination of alpha track, fission track and PIXE/PIGME techniques

  15. Nuclear elastic scattering effects on fusion product transport in the FRM

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Greenspan, E.; Miley, G.H.

    1981-01-01

    Large energy transfer (LET) events such as nuclear elastic scatterng (NES) are shown to have significant effects on fusion product transport in the field-reversed mirror. The method used and preliminary results obtained from the study on NES effects on f/sub p/ orbits are described

  16. On-site transportation and handling of uranium-233 special nuclear material: Preliminary hazards and accident analysis. Final

    International Nuclear Information System (INIS)

    Solack, T.; West, D.; Ullman, D.; Coppock, G.; Cox, C.

    1995-01-01

    U-233 Special Nuclear Material (SNM) currently stored at the T-Building Storage Areas A and B must be transported to the SW/R Tritium Complex for repackaging. This SNM is in the form of oxide powder contained in glass jars which in turn are contained in heat sealed double polyethylene bags. These doubled-bagged glass jars have been primarily stored in structural steel casks and birdcages for approximately 20 years. The three casks, eight birdcages, and one pail/pressure vessel will be loaded onto a transport truck and moved over an eight day period. The Preliminary Hazards and Accident Analysis for the on-site transportation and handling of Uranium-233 Special Nuclear Material, documented herein, was performed in accordance with the format and content guidance of DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, dated July 1994, specifically Chapter Three, Hazard and Accident Analysis. The Preliminary Hazards Analysis involved detailed walkdowns of all areas of the U-233 SNM movement route, including the T-Building Storage Area A and B, T-Building truck tunnel, and the roadway route. Extensive discussions were held with operations personnel from the Nuclear Material Control Group, Nuclear Materials Accountability Group, EG and G Mound Security and the Material Handling Systems Transportation Group. Existing documentation related to the on-site transportation of hazardous materials, T-Building and SW/R Tritium Complex SARs, and emergency preparedness/response documentation were also reviewed and analyzed to identify and develop the complete spectrum of energy source hazards

  17. Transportation infrastructure upgrades in the South: A compilation of state plans for construction near nuclear reactor sites

    International Nuclear Information System (INIS)

    1992-03-01

    There are currently 27 nuclear reactor sites located in the southern region. In many instances, the most practicable modes of transportation of spent nuclear fuel from these sites we through the use of highway and rail systems. These two transportation modes have important differences that affect their applicability; chief among these, perhaps, is the fact that while highway systems are publicly owned and maintained rail lines are owned by private entities. For this reason, track condition and maintenance, usage rates and other aspects of rail transport can vary widely. This report reviews southern state, department plans for infrastructure upgrades in the vicinity of nuclear reactor sites. This report includes a summary of planned modifications to bridges, access highways, and rail spurs (where applicable) over the next five years. The information contained herein was gathered from interviews with officials within state departments of transportation. With few exceptions, the contact person was an official within the departmental planning division

  18. Particle transport methods for LWR dosimetry developed by the Penn State transport theory group

    International Nuclear Information System (INIS)

    Haghighat, A.; Petrovic, B.

    1997-01-01

    This paper reviews advanced particle transport theory methods developed by the Penn State Transport Theory Group (PSTTG) over the past several years. These methods have been developed in response to increasing needs for accuracy of results and for three-dimensional modeling of nuclear systems

  19. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  20. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values

  1. Order of 26 March 1982 on the protection and control of nuclear materials during transport

    International Nuclear Information System (INIS)

    1982-01-01

    This Order was made in implementation of Act No. 80-572 of 25th July 1980 on protection and control of nuclear materials and in particular, of Decree No. 81-512 of 12th May 1981, which was itself made in pursuance of the Act. In accordance with the Decree, this Order determines the rules applicable to the protection and control of nuclear materials in course of carriage, especially in connection with the supervision of the conditions in which such transport is carried out and the authorities warned in case of an incident, accident or any occurrence whatsoever which is likely to delay or jeopardize execution of the planned transport operation or protection of the nuclear material concerned. (NEA) [fr

  2. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  3. Questions raised on transport of nuclear material

    International Nuclear Information System (INIS)

    Lubinska, A.

    1984-01-01

    Public opinion is demanding safer rules for the shipment of radioactive materials since the recent collision and sinking of a French freighter carrying uranium hexafluoride. At issue is the secrecy of the cargo, the delay in releasing information to the public and salvage crews, and the use of unmarked trucks. The nuclear industry points out that no recent incidents have led to the loss of human life, but there is concern among European Community members that a number of countries have yet to ratify international conventions and agreements on hazardous materials transport, that none of these agreements are mandatory, and that none address the transfrontier movement of waste materials

  4. Trans-oceanic transport of {sup 137}Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Ka-Ming, E-mail: bhkmwai@cityu.edu.hk [Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI (United States); Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Yu, Peter K.N. [Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-03-01

    A Lagrangian model was adopted to assess the potential impact of {sup 137}Cs released from hypothetical Fukushima-like accidents occurring on three potential nuclear power plant sites in Southern China in the near future (planned within 10 years) in four different seasons. The maximum surface (0–500 m) {sup 137}Cs air concentrations would be reached 10 Bq m{sup −3} near the source, comparable to the Fukushima case. In January, Southeast Asian countries would be mostly affected by the radioactive plume due to the effects of winter monsoon. In April, the impact would be mainly on Southern and Northern China. Debris of radioactive plume (∼ 1 mBq m{sup −3}) would carry out long-range transport to North America. The area of influence would be the smallest in July due to the frequent and intense wet removal events by trough of low pressure and tropical cyclone. The maximum worst-case areas of influence were 2382000, 2327000, 517000 and 1395000 km{sup 2} in January, April, July and October, respectively. Prior to the above calculations, the model was employed to simulate the trans-oceanic transport of {sup 137}Cs from the Fukushima nuclear accident. Observed and modeled {sup 137}Cs concentrations were comparable. Sensitivity runs were performed to optimize the wet scavenging parameterization. The adoption of higher-resolution (1° × 1°) meteorological fields improved the prediction. The computed large-scale plume transport pattern over the Pacific Ocean was compared with that reported in the literature. - Highlights: • A Lagrangian model was used to predict the dispersion of {sup 137}Cs from plant accident. • Observed and modeled {sup 137}Cs concentrations were comparable for the Fukushima accident. • The maximum surface concentrations could reach 10 Bq m{sup −3} for the hypothetical case. • The hypothetical radiative plumes could impact E/SE Asia and N. America.

  5. Constor steel concrete sandwich cask concept for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Diersch, R.; Dreier, G.; Gluschke, K.; Zubkov, A.; Danilin, B.; Fromzel, V.

    1998-01-01

    A spent nuclear fuel transport and storage sandwich cask concept has been developed together with the Russian company CKTI. Special consideration was given to an economical and effective way of manufacturing by using conventional mechanical engineering technologies and common materials. The main objective of this development was to fabricate these casks in countries not having highly specialized industries. Nevertheless, this sandwich cask concept fulfills both the internationally valid IAEA criteria for transportation and the German criteria for long-term intermediate storage. The basic cask concept has been designed for adaptation to different spent fuel specifications as well as handling conditions in the NPP. Recently, adaptations have been made for spent fuel from the RBMK and VVER reactors, and also for BWR spent fuel. The analyses of nuclear and thermal behaviour as well as of strength according to IAEA examination requirements (9-m-drop, 1-m-pin drop, 800 deg. C-fire test) and of the behaviour during accident scenarios at the storage site (drop, fire, gas cloud explosion, side impact) were carried out by means of recognized calculation methods and programmes. In a special experimental programme, the mechanical and thermodynamic properties of heavy concrete were examined and the reference values required for safety analyses were determined. The results of the safety analysis after drop tests according to IAEA-regulations as well as after 1 m-drops at the storage site were confirmed by means of a test programme using a scale model. The fabrication technology has been tested with help of a half scale cask model. The model has been prefabricated in Russia and completed in Germany. It has been shown that the CONSTOR cask can be fabricated in an effective and economic way. (authors)

  6. Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway.

    Science.gov (United States)

    Saito, Shoko; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2016-07-01

    Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs

  8. Radioecological consequences of a potential accident during transport of spent nuclear fuel along an Arctic coastline

    International Nuclear Information System (INIS)

    Iosjpe, M.; Reistad, O.; Amundsen, I.B.

    2009-01-01

    This article presents results pertaining to a risk assessment of the potential consequences of a hypothetical accident occurring during the transportation by ship of spent nuclear fuel (SNF) along an Arctic coastline. The findings are based on modelling of potential releases of radionuclides, radionuclide transport and uptake in the marine environment. Modelling work has been done using a revised box model developed at the Norwegian Radiation Protection Authority. Evaluation of the radioecological consequences of a potential accident in the southern part of the Norwegian Current has been made on the basis of calculated collective dose to man, individual doses for the critical group, concentrations of radionuclides in seafood and doses to marine organisms. The results of the calculations indicate a large variability in the investigated parameters above mentioned. On the basis of the calculated parameters the maximum total activity ('accepted accident activity') in the ship, when the parameters that describe the consequences after the examined potential accident are still in agreement with the recommendations and criterions for protection of the human population and the environment, has been evaluated

  9. Colloid transport code-nuclear user's manual

    International Nuclear Information System (INIS)

    Jain, R.

    1992-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems

  10. Is there a need for hydrological modelling in decision support systems for nuclear emergencies

    International Nuclear Information System (INIS)

    Raskob, W.; Heling, R.; Zheleznyak, M.

    2004-01-01

    This paper discusses the role of hydrological modelling in decision support systems for nuclear emergencies. In particular, most recent developments such as, the radionuclide transport models integrated in to the decision support system RODOS will be explored. Recent progress in the implementation of physically-based distributed hydrological models for operational forecasting in national and supranational centres, may support a closer cooperation between national hydrological services and therefore, strengthen the use of hydrological and radiological models implemented in decision support systems. (authors)

  11. Tritium transport around nuclear facilities

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1981-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears tht the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation

  12. Tritium transport around nuclear faciliteis

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1982-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears that the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation. (J.P.N.)

  13. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  14. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  15. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  16. Modeling contaminant transport in porous media in relation to nuclear-waste disposal: a review

    International Nuclear Information System (INIS)

    Grove, D.B.; Kipp, K.L.

    1980-01-01

    The modeling of solute transport in saturated porous media is reviewed as it is applied to the movement of radioactive waste in the subsurface. Those processes, both physical and chemical, that affect radionuclide movement are discussed and the references that best illustrate these processes listed. Movement is separated into convection, convection-dispersion, and convection-dispersion and chemical reactions. Solutions of equations describing such movement are divided into one-, two-, and three-dimensional analytical and numerical examples. Discussions of recent work in the area of stochastic modeling are followed by discussions of applications of the models to selected field sites

  17. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  18. Integration into JRODOS the models of radionuclide transport in rivers, reservoirs and coastal waters to support the emergency response in early accidental stages

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Bezhenar, R.; Boyko, O.; Ievdin, I.; Koshebutsky, V.; Maderich, V. [Institute of Mathematical Machines and Systems, National Academy of Sciences of Ukraine (Ukraine); Raskob, W.; Trybushnyi, D. [Karlsruhe Institute of Technology, Institut fuer Kern- und Energietechnik (Germany)

    2014-07-01

    The decision support system for offsite nuclear emergency management RODOS (Real-time on-line decision support), developed under several EC RTD Framework Programs, contains many models related to support decision making in case of a nuclear or radiological emergency. Based on the request of the end users, it was re-engineered based on the JAVA technology and further named JRODOS. The consequences of the Fukushima Daiichi Nuclear Power Plant accident clearly demonstrated the importance of modeling tools predicting the radionuclide transport in marine and freshwater environment and assessing the doses to the public via the aquatic food chain to improve decision making in general. As a consequence, such an activity was launched as part of the European project PREPARE aiming to integrate the 3-dimensional model THREETOX for the radionuclide transport in coastal waters, estuaries, deep lakes, and reservoirs into hydrological model chain of JRODOS - JHDM (JRODOS Hydrological Dispersion Module). So far JHDM contains several aquatic radionuclide transport models describing the sequence of the processes 'atmospheric fallout to watershed' - 'radionuclide inflow to a river net' - 'radionuclide transport in river' - 'doses via aquatic pathways'. The implementation of the THREETOX model into this chain by developing also a user friendly interface will extend the applicability of JRODOS to deep fresh water bodies and marine coastal waters. This paper describes the assessment capabilities of this advanced model chain for two examples of the JRODOS implementation in Ukraine. JRODOS is installed in the emergency centers for two Ukrainian Nuclear Power Plants (NPP) - Zaporizzhya NPP (ZNPP) and Rivne NPP (RNPP). The different models of the JHDM were customized for these NPPs taking into account the characteristics of the water bodies in the surroundings of the NPPs. For the RNPP, located at the bank of the Sozh River which is a tributary of the

  19. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  20. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, 90 Sr, and 137 Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test

  1. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  2. Thermal analysis of transportation packaging for nuclear spent fuel

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki

    1989-01-01

    Safety analysis of transportation packaging for nuclear spent fuel comprises structural, thermal, containment, shielding and criticality factors, and the safety of a packaging is verified by these analyses. In thermal analysis, the temperature of each part of the packaging is calculated under normal and accident test conditions. As an example of thermal analysis, the temperature distribution of a packaging being subjected to a normal test was calculated by the TRUMP code and compared with measured data. (author)

  3. Covariance matrices for nuclear cross sections derived from nuclear model calculations

    International Nuclear Information System (INIS)

    Smith, D. L.

    2005-01-01

    The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology

  4. Process for the transport of heat energy released by a nuclear reactor

    International Nuclear Information System (INIS)

    Nuernberg, H.W.; Wolff, G.

    1978-01-01

    The heat produced in a nuclear reactor is converted into latent chemical binding energy. The heat can be released again below 400 0 C by recombination after transport by decomposition of ethane or propane into ethylene or propylene and hydrogen. (TK) [de

  5. Forecasting of the radioactive material transport demand for the Brazilian Nuclear Program and the security aspects

    International Nuclear Information System (INIS)

    Meldonian, Nelson Leon

    1979-01-01

    In the nuclear fuel cycle, a lot of radioactive materials are produced. These radioactive materials must be transported in order to promote the integration of the fuel cycle units. Considerations about the transport characteristics of radioactive material were made for each section of the fuel cycle. These considerations were based on the experience of several countries and in accordance with the International Atomic Energy Agency regulations. A prediction of transport demands for the Brazilian Nuclear Program until year 2.010 was made. The prediction refers mainly to the quantity of radioactive material produced in each section of the cycle the quantity of vehicles needed for the transport of these materials. Several safety aspects were considered specially, the accidents predictions for years 2.000 and 2.010. The accident probability in Brazilian railroads and highways was compared with that of the USA. (author)

  6. Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories

    International Nuclear Information System (INIS)

    Gelbard, F.

    1989-01-01

    An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 μm in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab

  7. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  8. Porous media fluid flow, heat, and mass transport model with rock stress coupling

    International Nuclear Information System (INIS)

    Runchal, A.K.

    1980-01-01

    This paper describes the physical and mathematical basis of a general purpose porous media flow model, GWTHERM. The mathematical basis of the model is obtained from the coupled set of the classical governing equations for the mass, momentum and energy balance. These equations are embodied in a computational model which is then coupled externally to a linearly elastic rock-stress model. This coupling is rather exploratory and based upon empirical correlations. The coupled model is able to take account of time-dependent, inhomogeneous and anisotropic features of the hydrogeologic, thermal and transport phenomena. A number of applications of the model have been made. Illustrations from the application of the model to nuclear waste repositories are included

  9. The nuclear Thomas-Fermi model

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from 82 Sn to 170 Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z 2 /A exceeds about 100

  10. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  11. Draft environmental impact statement on a proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Volume 2, Appendix E, Evaluation of human health effects of overland transportation

    International Nuclear Information System (INIS)

    1995-03-01

    This Appendix provides an overview of the approach used to assess the human health risks that may result from the overland transportation of foreign research reactor spent nuclear fuel. The Appendix includes discussion of the scope of the assessment, analytical methods used for the risk assessment (i.e., computer models), important assessment assumptions, determination of potential transportation routes, and presents the results of the assessment. In addition, to aid in the understanding and interpretation of the results, specific arm of uncertainty are described, with an emphasis an how the uncertainties may affect comparisons of the alternatives. he approach used in this Appendix is modeled after that used in the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Draft Environmental Impact Statement (SNF ampersand INEL Draft EIS) (DOE, 1994b). The SNF ampersand INEL Draft EIS did not perform as detailed an analysis on the specific actions taken for foreign research reactor spent nuclear fuel because of the breadth necessary to analyze the entire spent fuel management program. However, the fundamental assumptions used in this analysis are consistent with those used in the SNF ampersand INEL Draft EIS (DOE, 1994b), and the same computer codes and generic release and accident data are used. The risk assessment results are presented in this Appendix in terms of ''Per-shipment'' risk factors, as well as for the total risks associated with each alternative. Per-shipment risk factors provide an estimate of the risk from a single spent nuclear fuel shipment between a specific origin and destination. They are calculated for all possible origin and destination pairs for each spent nuclear fuel type. The total risks for a given alternative are found by multiplying the expected number of shipments by the appropriate per-shipment risk factors. This approach provides maximum flexibility for determining the risks for a large number of potential

  12. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral

  13. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  14. A Historical Review of the Safe Transport of Spent Nuclear Fuel, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Kevin J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pope, Ronald [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report is a revision to M3 milestone M3FT-16OR090402028 for the former Nuclear Fuels Storage and Transportation Planning Project (NFST), “Safety Record of SNF Shipments.” The US Department of Energy (DOE) has since established the Office of Integrated Waste Management (IWM), which builds on the work begun by NFST, to develop an integrated waste management system for spent nuclear fuel (SNF), including the developm

  15. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  16. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  17. Determination of technical details concerning measures for transportation of nuclear fuel materials in the works or the enterprise

    International Nuclear Information System (INIS)

    1979-01-01

    The determination is defined under the regulations concerning the fabricating business of nuclear fuel materials, the regulation concerning installation and operation of test reactor, the regulations concerning the reprocessing business of spent fuel and the regulations concerning the uses of nuclear source materials. The notification determining technical details concerning measures for transportation of nuclear fuel materials is abolished. Measures for prevention of hazard designated by the Director General of Science and Technology Agency include such ones not to let radioactive materials easily fly about or leak in regular transport, not to let rain water easily penetrate or make each exterior side of a cubic load more than 10 centi-meters. The application for permission shall be filed for transportation of things highly difficult to be sealed in a vessel, listing name and address of the applicant, kind, quantity, form and nature of the load contaminated by nuclear fuel materials, date and route of transfer and measures taken for prevention of hazard in transport. Radiation doses of load and transporting apparatus are stipulated by the Director for an hour as 200 mili-rem on the surface of load, 10 mili-rem at the distance of 1 meter from the surface of load, and 200 mili-rem on the surface of the vehicle, etc. Dangerous things, signals and radiation dose of particular loads are specified respectively. (Okada, K.)

  18. Recommended nuclear criticality safety experiments in support of the safe transportation of fissile material

    International Nuclear Information System (INIS)

    Tollefson, D.A.; Elliott, E.P.; Dyer, H.R.; Thompson, S.A.

    1993-01-01

    Validation of computer codes and nuclear data (cross-section) libraries using benchmark quality critical (or certain subcritical) experiments is an essential part of a nuclear criticality safety evaluation. The validation results establish the credibility of the calculational tools for use in evaluating a particular application. Validation of the calculational tools is addressed in several American National Standards Institute/American Nuclear Society (ANSI/ANS) standards, with ANSI/ANS-8.1 being the most relevant. Documentation of the validation is a required part of all safety analyses involving significant quantities of fissile materials. In the case of transportation of fissile materials, the safety analysis report for packaging (SARP) must contain a thorough discussion of benchmark experiments, detailing how the experiments relate to the significant packaging and contents materials (fissile, moderating, neutron absorbing) within the package. The experiments recommended in this paper are needed to address certain areas related to transportation of unirradiated fissile materials in drum-type containers (packagings) for which current data are inadequate or are lacking

  19. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  20. Working Group 7.1 on environmental transport, US-USSR Joint Coordinating Committee on Civilian Nuclear Reactor Safety

    International Nuclear Information System (INIS)

    Anspaugh, L.R.; Hendrickson, S.M.

    1991-01-01

    This report contains brief summaries of the status of projects of the Environmental Transport Group of the US-USSR Joint Coordinating Committee of Civilian Nuclear Reactor Safety. Projects reported on include: Management and Administration; Atmospheric Transport; Resuspension; External Dose; Terrestrial Food Chains; Aquatic Food Chains; Hydrological Transport; and Intercalibration

  1. Regulations for safe transport of spent fuels from nuclear power plants in CMEA member countries. Part III

    International Nuclear Information System (INIS)

    Zizka, B.

    1978-11-01

    The regulations for safe transport of spent fuel from nuclear power plants in the CMEA member countries consist of general provisions, technical requirements for spent fuel transport, transport conditions, procedures for submitting reports on transport, regulations for transport and protection of radioactive material to be transported, procedures for customs clearance, technical and organizational measures for the prevention of hypothetical accidents and the elimination of their consequences. The bodies responsible for spent fuel transport in the CMEA member countries are listed. (J.B.)

  2. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...

  3. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  4. Development of nuclear spent fuel Maritime transportation scenario

    International Nuclear Information System (INIS)

    Yoo, Min; Kang, Hyun Gook

    2014-01-01

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability

  5. Development of nuclear spent fuel Maritime transportation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Min; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability.

  6. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  7. Human error prediction and countermeasures based on CREAM in spent nuclear fuel (SNF) transportation

    International Nuclear Information System (INIS)

    Kim, Jae San

    2007-02-01

    Since the 1980s, in order to secure the storage capacity of spent nuclear fuel (SNF) at NPPs, SNF assemblies have been transported on-site from one unit to another unit nearby. However in the future the amount of the spent fuel will approach capacity in the areas used, and some of these SNFs will have to be transported to an off-site spent fuel repository. Most SNF materials used at NPPs will be transported by general cargo ships from abroad, and these SNFs will be stored in an interim storage facility. In the process of transporting SNF, human interactions will involve inspecting and preparing the cask and spent fuel, loading the cask onto the vehicle or ship, transferring the cask as well as storage or monitoring the cask. The transportation of SNF involves a number of activities that depend on reliable human performance. In the case of the transport of a cask, human errors may include spent fuel bundle misidentification or cask transport accidents among others. Reviews of accident events when transporting the Radioactive Material (RAM) throughout the world indicate that human error is the major causes for more than 65% of significant events. For the safety of SNF transportation, it is very important to predict human error and to deduce a method that minimizes the human error. This study examines the human factor effects on the safety of transporting spent nuclear fuel (SNF). It predicts and identifies the possible human errors in the SNF transport process (loading, transfer and storage of the SNF). After evaluating the human error mode in each transport process, countermeasures to minimize the human error are deduced. The human errors in SNF transportation were analyzed using Hollnagel's Cognitive Reliability and Error Analysis Method (CREAM). After determining the important factors for each process, countermeasures to minimize human error are provided in three parts: System design, Operational environment, and Human ability

  8. Primary system fission product release and transport. A state-of-the-art report to the committee on the safety of nuclear installations

    International Nuclear Information System (INIS)

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art

  9. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    International Nuclear Information System (INIS)

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art

  10. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.L. [Oak Ridge National Lab., TN (United States)

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  11. Department of Energy (DOE) transportation system for nuclear materials and the role of state law enforcement agencies

    International Nuclear Information System (INIS)

    Jones, J.M.; Hoover, T.W.

    1978-01-01

    The Department of Energy has been assigned the responsibility for the safe and secure movement of strategic quantities of government-owned special nuclear material as well as classified material. To accomplish this mission, a transportation system has been developed which takes advantage of advanced technology and other features to reduce vulnerability to terrorists. The system consists of a careful balance of specially-trained personnel, procedures and sophisticated equipment. These, in combination, generally allow the system to be self-sufficient. However, should the need arise, DOE will request assistance from state law enforcement agencies. The primary contact for assistance is the state police or highway patrol. DOE, with the assistance of Sandia Laboratories, has surveyed state police agencies throughout the nation. A data base has been created which includes the results of these surveys and a numerical description of DOE transportation routes. This data base, along with a ''Response'' model developed by Sandia Laboratories, allows projections of officer availability to be made for all of DOE's routes. This paper will describe the DOE Transportation System, the role of state law enforcement agencies in support of the system, the nationwide state policy survey, and the operation of the response computer model

  12. The utility industry's perspective on OCRWM's plans for developing the system for transporting spent fuel under the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Brodnick, D.A.

    1988-01-01

    The electric utility industry has a vital interest in the transport program to be developed by the Department of Energy's Office of Civilian Radioactive Waste Management under the Nuclear Waste Policy Act. The industry's interest stems in part from the fact that the DOE's transportation program is financed by the Nuclear Waste Fund which is made up of ratepayer funds. However, the industry is also vitally interested in the DOE's transportation program because it could impact the ongoing transportation operations of all nuclear utilities, and, perhaps most importantly, without the utility industry's input, DOE is not able to develop an optimal transportation program. The NWPA contemplates that the DOE conducts its transportation program in accordance with the existing federal and state regulatory structure. DOE has significant discretion, however, in creating and implementing the business, operational and institutional aspects of its NWPA transportation program. The utility industry intends to ensure that the DOE meets the challenge to develop a safe, efficient and economically sound program to transport spent fuel and high-level waste to the appropriate federal facilities

  13. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  14. Transport of Cobalt 60 from the Argentine Nuclear Power Plant in Embalse

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.

    2011-01-01

    Full text: The purpose of this presentation is to point out some relevant issues related to the transport of cobalt 60 for domestic uses and export from the Argentine Nuclear Power Plant located in Embalse (ENPP). It is remarked that in last 22 years, ENPP produced about 2600 PBq (70 MCi) of Co-60, and that Argentina is the third Co-60 producer, after Canada and Russia. It is mentioned that in Argentina there are facilities which manufacture Zircaloy seamless tubes and reactivity control bars containing cobalt 59 to be used in ENPP, the operation of Candu reactor at ENPP including cobalt-related activities, and the manufacture and commercialization of Co-60 sealed sources. The Argentine Nuclear Regulatory Authority verifies the compliance of nuclear activities with regulatory standards, including those related to the transport of radioactive material. Then, it is described the process for obtaining Co-60 at ENPP with an activity concentration to allow its use in medicine and industry. After that, is considered in detail the type of package used for the transport of Co-60 from ENPP: it is to say, Type B(U) package designs that must be approved by the Competent Authority origin of the design, and they are able to withstand routine, normal and accident conditions of transport, including severe impacts, fires and immersion in water. The overall dimensions of packages are about 1.0 m to 1.5 m diameter by 1.2 m to 1.8 m high, as well as the gross mass could vary from 6500 kg to 9500 kg. Radioactive contents consist of Co-60 sealed sources (called pencils), with an activity range from 8 PBq to 16 PBq. Then, it is considered activities prior to dispatch of Type B(U) packages at ENPP, including the preparation of radioactive contents, packaging and package (labelling and marking) as well as necessary tests and documentation for transport in order to fulfil pertinent requirements of package design operation manual of the package and related standards. Finally, it is pointed

  15. Transport of spent nuclear fuel from the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holland, Michael; Carelli, Joseph; Shelton, Thomas

    1997-01-01

    The shipment of more than 1000 elements of spent nuclear fuel (SNF) from the Department of Energy's Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR) to the Department's Savannah River Site (SRS) for long term interim storage required overcoming several significant obstacles. The project management team was comprised of DOE, BNL and NAC International personnel. This achievement involved coordinating the efforts of numerous government and contractor organizations such as the U.S. Coast Guard, the U.S. Nuclear Regulatory Commission, state and local governments, marine and motor carriers, and carrier inspectors. Unique experience was gained during development and execution of the project in the following areas: dry transfer of SNF to shipping casks; inter-modal transfers; logistics; cask licensing by the Nuclear Regulatory Commission (NRC); compliance with environmental regulations; transportation plan development, and stakeholder outreach and coordination

  16. Nuclear models relevant to evaluation

    International Nuclear Information System (INIS)

    Arthur, E.D.; Chadwick, M.B.; Hale, G.M.; Young, P.G.

    1991-01-01

    The widespread use of nuclear models continues in the creation of data evaluations. The reasons include extension of data evaluations to higher energies, creation of data libraries for isotopic components of natural materials, and production of evaluations for radiative target species. In these cases, experimental data are often sparse or nonexistent. As this trend continues, the nuclear models employed in evaluation work move towards more microscopically-based theoretical methods, prompted in part by the availability of increasingly powerful computational resources. Advances in nuclear models applicable to evaluation will be reviewed. These include advances in optical model theory, microscopic and phenomenological state and level density theory, unified models that consistently describe both equilibrium and nonequilibrium reaction mechanism, and improved methodologies for calculation of prompt radiation from fission. 84 refs., 8 figs

  17. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  18. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  19. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  20. The Nuclear Thomas-Fermi Model

    Science.gov (United States)

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  1. Safety demonstration analyses for severe accident of fresh nuclear fuel transport packages at JAERI

    International Nuclear Information System (INIS)

    Yamada, K.; Watanabe, K.; Nomura, Y.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses of these methods are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted part of a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident envisioned to occur during transportation, for the purpose of gaining public acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and, thus, accident conditions leading to mechanical damage and thermal failure were selected for inclusion in the scenario. As a result, the worst-case conditions of run-off-the-road accidents were incorporated, where there is impact against a concrete or asphalt surface. Fire accidents were assumed to occur after collision with a tank truck carrying lots of inflammable material or destruction by fire after collision inside a tunnel. The impact analyses were performed by using three-dimensional elements according to the general purpose impact analysis code LS-DYNA. Leak-tightness of the package was maintained even in the severe impact accident scenario. In addition, the thermal analyses were performed by using two-dimensional elements according to the general purpose finite element method computer code ABAQUS. As a result of these analyses, the integrity of the inside packaging component was found to be sufficient to maintain a leak-tight state, confirming its safety

  2. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  3. Measures to strengthen international co-operation in nuclear, radiation and transport safety and waste management. Nuclear safety review for the year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Nuclear Safety Review for the Year 2003 presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety during 2003. As in 2002 the overview is supported by more detailed Notes by the Secretariat: Safety Related Events and Issues Worldwide during 2003 (document 2004/Note 6), The Agency's Safety Standards: Activities during 2003 (document 2004/Note 7) and Providing for the Application of the Safety Standards (document 2004/Note 8). In January 2003, the Agency implemented an organization change and developed an integrated approach to reflect a broader assignment of nuclear safety and nuclear security and to better exploit synergy between them. The Office of Physical Protection and Material Security renamed to Office of Nuclear Security was transferred from the Department of Safeguards to the Department of Nuclear Safety, which became the Department of Nuclear Safety and Security to reflect the change. This Review provides information primarily on nuclear safety, and nuclear security will be addressed in a separate report

  4. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  5. The so-called 'Castor-Crisis': Transport of spent nuclear fuel elements and German 'Angst'. How to prevent the public relations catastrophe

    International Nuclear Information System (INIS)

    Suess, Werner

    1999-01-01

    Full text: 1. 'Castor-Crisis' - The Real Facts. - the background: radioactive contamination on the surface of transport containers for spent nuclear fuel elements; - legal aspects: transport limit values and notification obligations; - health aspects: radioactive contamination and ionising radiation; - the news media: divergence between technical facts and public perception. 2. 'Castor-Crisis' - The Reactions. 2.1 Technical measures: - 'action plan' of the Federal Ministry for Environment Protection and Reactor Safety; - IT-based European Information and Report System for the transport of nuclear combustibles => 'Transparent Transport Procedures'; - optimisation of decontamination procedures and transport organisation; - simplification of logistics, clearer responsibilities. 2.2 Communications measures: - defense strategy: 'we made a mistake...'; - information campaign: 'we owe you some answers...'; - regaining credibility: public testimonials of employees in newspaper ads, brochures etc.; - regaining credibility: neutral investigation of all relevant circumstances by KPMG. 3. 'Castor-Crisis' - The Lessons: - internal crisis management: improved co-ordination at company and branch level; - pro-active strategy: 'The benefits of nuclear energy' (avoidance Of CO 2 -emissions); - limits of communications; - communications efforts for nuclear energy - the European context. (author)

  6. The nuclear reaction model code MEDICUS

    International Nuclear Information System (INIS)

    Ibishia, A.I.

    2008-01-01

    The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)

  7. Review of global environmental-transport models for 3H, 14C, 85Kr, and 129I

    International Nuclear Information System (INIS)

    Kocher, D.C.; Killough, G.G.

    1983-01-01

    Global environmental transport models for the long-lived and mobile radionuclides 3 H, 14 C, 85 Kr, and 129 I are reviewed from the perspective of their application to collective dose assessments following releases, e.g., from the nuclear fuel cycle. Contributions to the collective dose commitment from first-pass local and regional exposures are compared. Current global models for 14 C and 85 Kr appear to be satisfactory for dose assessment purposes. Global modeling for 3 H is more difficult than for 14 C and 85 Kr, because of the different physico-chemical forms in which atmospheric releases occur. Global models for 129 I models indicate the primary importance of retention in surface soils for collective doses during the first 10 4 years following atmospheric releases and the importance of long-term transport to ocean sediments for reducing the dose commitment

  8. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  9. Order of 20 September 1993 amending the Order of 26 March 1982 on protection and control of nuclear materials during transport

    International Nuclear Information System (INIS)

    1993-01-01

    This Order amends and supplements the system for the transport of nuclear materials laid down by the 1982 Order. Two new provisions have been inserted. The first specifies that in the event of an accident or an incident occurring during the transport of nuclear materials which implies a radiological risk, the Central Service for Proteciton against Ionizing Radiation (SCPRI) must be notified immediately. The other provision specifies that the transport vehicle must be equipped with a means of communication so as to inform the Institute for Protection and Nuclear Safety (IPSN) about the main stages of the operation. (NEA)

  10. Shielding requirements for the transport of nuclear warhead components under decommissioning

    International Nuclear Information System (INIS)

    Hansen, L.F.

    1994-09-01

    The requirements to carry out accurate shielding calculations involved with the safe off-site transportation of packages containing nuclear warhead components, special assemblies and radioactive materials are discussed. The need for (a) detailed information on the geometry and material composition of the packaging and radioactive load, (b) accurate representation of the differential energy spectra (dN/dE) for the neutron and gamma spectra emitted by the radioactive materials enclosed in the packaging, (c) well-tested neutron and photon cross section libraries, (d) and accurate three-dimensional Monte Carlo transport codes are illustrated. A brief discussion of the need for reliable dose measurements is presented

  11. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  12. Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond

    International Nuclear Information System (INIS)

    Elokhin, A.P.

    1995-01-01

    In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality

  13. Dynamical analysis of mCAT2 gene models with CTN-RNA nuclear retention

    International Nuclear Information System (INIS)

    Wang, Qianliang; Zhou, Tianshou

    2015-01-01

    As an experimentally well-studied nuclear-retained RNA, CTN-RNA plays a significant role in many aspects of mouse cationic amino acid transporter 2 (mCAT2) gene expression, but relevant dynamical mechanisms have not been completely clarified. Here we first show that CTN-RNA nuclear retention can not only reduce pre-mCAT2 RNA noise but also mediate its coding partner noise. Then, by collecting experimental observations, we conjecture a heterodimer formed by two proteins, p54 nrb and PSP1, named p54 nrb -PSP1, by which CTN-RNA can positively regulate the expression of nuclear mCAT2 RNA. Therefore, we construct a sequestration model at the molecular level. By analyzing the dynamics of this model system, we demonstrate why most nuclear-retained CTN-RNAs stabilize at the periphery of paraspeckles, how CTN-RNA regulates its protein-coding partner, and how the mCAT2 gene can maintain a stable expression. In particular, we obtain results that can easily explain the experimental phenomena observed in two cases, namely, when cells are stressed and unstressed. Our entire analysis not only reveals that CTN-RNA nuclear retention may play an essential role in indirectly preventing diseases but also lays the foundation for further study of other members of the nuclear-regulatory RNA family with more complicated molecular mechanisms. (paper)

  14. Spent nuclear fuel transportation: public issues and answers

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    The court-ordered shipping of 750 spent nuclear fuel assemblies from West Valley, New York back to their utility owners has generated considerable public and media interest. This paper discusses the specific concerns of the general public over the West Valley shipments, the issues raised by opposition groups, the interest of public officials and emergency preparedness teams as well as the media coverage generated. An analysis is performed on the effectiveness of the West Valley and utility public information programs utilized in addressing these issues, concerns and interests. Emphasis is placed on communications which work to facilitate the shipments and generate fuel transport acceptance. Information programs are discussed which increase preparedness for nuclear shipments by emergency response teams and build public confidence in their safety. The paper also examines communications which could have further enhanced the shipping campaign to date. Finally, plans are discussed for media preparation with interview training and press conferences. Emphasis is placed on materials provided for the media which have served to generate more favorable print and air time

  15. Spent nuclear fuel transportation: Public issues and answers

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    The court-ordered shipping of 750 spent nuclear fuel assemblies from West Valley, New York back to their utility owners has generated considerable public and media interest. This paper discusses the specific concerns of the general public over the West Valley shipments, the issues raised by opposition groups, the interests of public officials and emergency preparedness teams as well as the media coverage generated. An analysis is performed on the effectiveness of the West Valley and utility public information programs utilized in addressing these issues, concerns and interests. Emphasis is placed on communications which work to facilitate the shipments and generate fuel transport acceptance. Information programs are discussed which increase preparedness for nuclear shipments by emergency response teams and build public confidence in their safety. The paper also examines communications which could have further enhanced the shipping campaigns to date. Finally, plans are discussed for media preparation with interview training and press conferences. Emphasis is placed on materials provided for the media which has served to generate more favorable print and air time

  16. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  17. Transport spectroscopy and modeling of a clean MOS point contact tunnel barrier

    Science.gov (United States)

    Shirkhorshidian, Amir; Bishop, Nathaniel; Dominguez, Jason; Grubbs, Robert; Wendt, Joel; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    We present transport spectroscopy of non-implanted and antimony-implanted tunnel barriers formed in MOS split-gate structures at 4K. The non-implanted barrier shows no signs of resonant behavior while the Sb-implanted barrier shows resonances superimposed on the clean transport. We simulate the transmission through the clean barrier over the entire gate and bias range of the experiment using a phenomenological 1D-tunneling model that includes Fowler-Nordheim tunneling and Schottky barrier lowering to capture effects at high bias. The model is qualitatively similar to experiment when the barrier height has a quadratic dependence in contrast to a linear one, which can be a sign of 2D effects such as confinement perpendicular to the transport direction. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. This work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein

    Directory of Open Access Journals (Sweden)

    Panté Nelly

    2009-06-01

    Full Text Available Abstract Background Early in infection, the genome of the influenza A virus, consisting of eight complexes of RNA and proteins (termed viral ribonucleoproteins; vRNPs, enters the nucleus of infected cells for replication. Incoming vRNPs are imported into the nucleus of infected cells using at least two nuclear localization sequences on nucleoprotein (NP; NLS1 at the N terminus, and NLS2 in the middle of the protein. Progeny vRNP assembly occurs in the nucleus, and later in infection, these are exported from the nucleus to the cytoplasm. Nuclear-exported vRNPs are different from incoming vRNPs in that they are prevented from re-entering the nucleus. Why nuclear-exported vRNPs do not re-enter the nucleus is unknown. Results To test our hypothesis that the exposure of NLSs on the vRNP regulates the directionality of the nuclear transport of the influenza vRNPs, we immunolabeled the two NLSs of NP (NLS1 and NLS2 and analyzed their surface accessibility in cells infected with the influenza A virus. We found that the NLS1 epitope on NP was exposed throughout the infected cells, but the NLS2 epitope on NP was only exposed in the nucleus of the infected cells. Addition of the nuclear export inhibitor leptomycin B further revealed that NLS1 is no longer exposed in cytoplasmic NP and vRNPs that have already undergone nuclear export. Similar immunolabeling studies in the presence of leptomycin B and with cells transfected with the cDNA of NP revealed that the NLS1 on NP is hidden in nuclear exported-NP. Conclusion NLS1 mediates the nuclear import of newly-synthesized NP and incoming vRNPs. This NLS becomes hidden on nuclear-exported NP and nuclear-exported vRNPs. Thus the selective exposure of the NLS1 constitutes a critical mechanism to regulate the directionality of the nuclear transport of vRNPs during the influenza A viral life cycle.

  19. Preliminary Report: Bases for Containment Analysis for Transportation of Aluminum-Based Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Vinson, D.W.

    1998-01-01

    Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to SRS under the site FRR/DRR Receipts Program. Shipment of the FRR/DRR assemblies required that the cask with loaded fuel be certified by the US Nuclear Regulatory Commission (for US-owned casks) or the US Department of Transportation (for foreign-owned casks) to comply with the requirements in 10CFR71

  20. Transport Choice Modeling for the Evaluation of New Transport Policies

    Directory of Open Access Journals (Sweden)

    Ander Pijoan

    2018-04-01

    Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.

  1. The transport safety of radioactive matters; La surete des transports des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Landier, D.; Louet, Ch.A.; Robert, Ch. [Autorite de Surete Nucleaire, 75 - Paris (France); Binet, J. [Commission europeenne, DG Energie et transports, Bruxelles (Belgium); Malesys, P. [TN International, 75 - Paris (France); Pourade, C. [Societe Dangexpress, 78 - St Remy l' Honore (France); Le Meur, A.; Robert, M. [Societe Nationale des Chemins de fer Francais, 75 - Paris (France); Turquet de Beauregard, G.Y.; Hello, E. [CIS bio, 91 - Gif sur Yvette (France); Laumond, A. [Electricite de France (EDF), 75 - Paris (France); Regnault, Ph.; Gourlay, M. [AREVA NC, 78 - Velizy Villacoublay (France); Bruhl, G. [CEA Fontenay-aux-Roses, Dir. de la Protection et de la Surete Nucleaire, 92 (France); Malvache, P.; Dumesnil, J. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Cohen, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Sert, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Pain, M. [Ministere de l' Interieur, et de l' Amenagement du Territoire, Dir. de la Defense et la Securite Civiles, 75 - Paris (France); Green, L.; Hartenstein, M. [World Nuclear Transport Institute, London (United Kingdom); Stewart, J. [Ministere des Transport, Royaume Uni (United Kingdom); Cottens, E.; Liebens, M. [Agence Federale de Controle Nucleaire (Belgium); Marignac, Y. [Wise, 75 - Paris (France)

    2007-02-15

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  2. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  3. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  4. Optimized shielding calculation to the transport of 131I employed in nuclear medicine

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Rodrigues, D.; Sanches, M.P.; Romero F, C.R.

    1996-01-01

    The objective of this paper is to present the basis for shielding calculation used in different situations that could occur during the transport of 131 I utilized in nuclear medicine for diagnostic and therapeutic purposes. The aim of these calculation is to optimize the shielding in order to satisfy the transport of radioactive material. These calculations were proposed for estimated activities around 1,85 GBq (50mCi), 3,7 GBq(100mCi) and 7,4 GBq(200mCi), considering the driver of the cargo company and his assistant as the critical group and the general people considered as effect of collective dose. The population density considered in the models is the one related to Sao Paulo city, because the transport is done by the highway across the city and the radioactive material is distributed from west to north and south, where the airports are located. This area ranges a perimeter of 40 km. For the collective dose calculation, it was considered a population dose of less than 1/100 of the annual limit dose for the public. Our main concern is related to the large volume of radioactive material that is transported per week, specially because 1/3 of this material has activities around 3,7 GBq (100mCi). During the calculations, we have figured out that the activities at the moment of transport are nearly 40% greater than the one related to the calibration date. As for the discrepancy of official alpha value of US$10000/man-Sv and the real value for our country of US$3000/man-Sv,a comparative study was performed. (authors). 3 refs., 2 figs., 2 tabs

  5. The IAEA Nuclear Security Programme Combating Nuclear Terrorism

    International Nuclear Information System (INIS)

    2010-01-01

    Discusses the four threats of nuclear terrorism,which are theft of a nuclear weapon, theft of material to make an improvised nuclear explosive device,theft of other radioactive material for an Radiological dispersal device and sabotage of a facility or transport. The IAEA Nuclear Security programme combating Nuclear Terrorism therefore adopts a comprehensive approach. The programme addresses the need to cover nuclear and other radioactive materials, nuclear facilities and transports, non-nuclear, medical and industrial applications of sources

  6. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  7. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    International Nuclear Information System (INIS)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-01-01

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  8. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for

  9. Two dimensional model study of atmospheric transport using carbon-14 and strontium-90 as inert tracers

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Wuebbles, D.J.; Johnston, H.S.

    1992-02-01

    This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of K zz and K yy through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvement in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of K yy than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970

  10. Plant-Level Modeling and Simulation of Used Nuclear Fuel Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-09-07

    Plant-level modeling and simulation of a used nuclear fuel prototype dissolver is presented. Emphasis is given in developing a modeling and simulation approach to be explored by other processes involved in the recycle of used fuel. The commonality concepts presented in a previous communication were used to create a model and realize its software module. An initial model was established based on a theory of chemical thermomechanical network transport outlined previously. A software module prototype was developed with the required external behavior and internal mathematical structure. Results obtained demonstrate the generality of the design approach and establish an extensible mathematical model with its corresponding software module for a wide range of dissolvers. Scale up numerical tests were made varying the type of used fuel (breeder and light-water reactors) and the capacity of dissolution (0.5 t/d to 1.7 t/d). These tests were motivated by user requirements in the area of nuclear materials safeguards. A computer module written in high-level programing languages (MATLAB and Octave) was developed, tested, and provided as open-source code (MATLAB) for integration into the Separations and Safeguards Performance Model application in development at Sandia National Laboratories. The modeling approach presented here is intended to serve as a template for a rational modeling of all plant-level modules. This will facilitate the practical application of the commonality features underlying the unifying network transport theory proposed recently. In addition, by example, this model describes, explicitly, the needed data from sub-scale models, and logical extensions for future model development. For example, from thermodynamics, an off-line simulation of molecular dynamics could quantify partial molar volumes for the species in the liquid phase; this simulation is currently at reach for high-performance computing. From fluid mechanics, a hold-up capacity function is needed

  11. The Question of Queue: Implications for -Best Practice- in Cross-country Transport of Commercial Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Williams, J.M.

    2009-01-01

    The 'Standard Contract' authorized by the Nuclear Waste Policy Act of 1982 (Section 302(a)) provides that priority for acceptance of spent nuclear fuel (SNF) shall be based on the date of its discharge from civilian nuclear reactors. Through 2007, about 2,100 discharges of about 58,000 metric tons have created a priority ranking (or 'queue') for US DOE spent fuel acceptance and transport. Since 1982, consideration of the task of large-scale, cross-country SNF transport (by the National Academies and others) has led to several recommendations for 'best practice' in such an unprecedented campaign. Many of these recommendations, however, are inconsistent with the acceptance priority established by the Standard Contract, and in fact cannot be implemented under its provisions. This paper considers the SNF acceptance rankings established by the Standard Contract, and the barrier these place on best practice cross-country transport of the nation's inventory of SNF. Using a series of case studies, the paper explores the challenge of best practice transport from selected shipment origins under current arrangements. The case studies support preliminary conclusions regarding the inconsistency between best practice SNF transport and the Standard Contract acceptance queue, with reference to particular origins sites and their utility owners. The paper concludes with a suggestion for resolving the inconsistencies, and recommended next steps in the inquiry. (authors)

  12. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  13. Policy issues of transporting spent nuclear fuel by rail

    International Nuclear Information System (INIS)

    Spraggins, H.B.

    1994-01-01

    The topic of this paper is safe and economical transportation of spent nuclear fuel by rail. The cost of safe movement given the liability consequences in the event of a rail accident involving such material is the core issue. Underlying this issue is the ability to access the risk probability of such an accident. The paper delineates how the rail industry and certain governmental agencies perceive and assess such important operational, safety, and economic issues. It also covers benefits and drawbacks of dedicated and regular train movement of such materials

  14. Predicting corrosion product transport in nuclear power stations using a solubility-based model for flow-accelerated corrosion

    International Nuclear Information System (INIS)

    Burrill, K.A.; Cheluget, E.L.

    1995-01-01

    A general model of solubility-driven flow-accelerated corrosion of carbon steel was derived based on the assumption that the solubilities of ferric oxyhydroxide and magnetite control the rate of film dissolution. This process involves the dissolution of an oxide film due to fast-flowing coolant unsaturated in iron. The soluble iron is produced by (i) the corrosion of base metal under a porous oxide film and (ii) the dissolution of the oxide film at the fluid-oxide film interface. The iron released at the pipe wall is transferred into the bulk flow by turbulent mass transfer. The model is suitable for calculating concentrations of dissolved iron in feedtrain lines. These iron levels were used to calculate sludge transport rates around the feedtrain. The model was used to predict sludge transport rates due to flow accelerated corrosion of major feedtrain piping in a CANDU reactor. The predictions of the model compare well with plant measurements

  15. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Best, Ralph; Winnard, T.; Ross, S.; Best, R.

    2001-01-01

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  16. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  17. Modelling radionuclide transport in the geosphere: a review of the models available

    International Nuclear Information System (INIS)

    Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.

    1990-01-01

    Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr

  18. Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples

    International Nuclear Information System (INIS)

    Lorence, L.J. Jr.; Beutler, D.E.

    1997-09-01

    This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices

  19. Critical assessment of nuclear mass models

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1992-01-01

    Some of the physical assumptions underlying various nuclear mass models are discussed. The ability of different mass models to predict new masses that were not taken into account when the models were formulated and their parameters determined is analyzed. The models are also compared with respect to their ability to describe nuclear-structure properties in general. The analysis suggests future directions for mass-model development

  20. Colloid transport code-nuclear user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R. [New Mexico Univ., Albuquerque, NM (United States)

    1992-04-03

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems.

  1. Preliminary analysis of the cost and risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Madsen, M.M.; Cashwell, J.W.; Joy, D.S.

    1983-06-01

    This report documents preliminary cost and risk analyses that were performed in support of the Nuclear Waste Terminal Storage (NWTS) program. The analyses compare the costs and hazards of transporting wastes to each of five regions that contain potential candidate nuclear waste repository sites being considered by the NWTS program. These regions are: the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain, and Hanford. Two fuel-cycle scenarios were analyzed: once-through and reprocessing. Transportation was assumed to be either entirely by truck or entirely by rail for each of the scenarios. The results from the risk analyses include those attributable to nonradiological causes and those attributable to the radioactive character of the wastes being transported. 17 references

  2. Biogeochemical reactive-transport modelling of the interactions of medium activity long-lived nuclear waste in fractured argillite and the effect on redox conditions

    International Nuclear Information System (INIS)

    Small, J.S.; Steele, H.; Kwong, S.; Albrecht, A.

    2010-01-01

    Document available in extended abstract form only. The role of anaerobic microbial processes in mediating gas generation and redox reactions in organic (cellulose) containing low level activity nuclear wastes (LLW) is well established through monitoring of operational near-surface LLW disposal sites and municipal waste disposal sites. Modelling approaches based on Monod kinetic growth models to represent the complex suite of anaerobic processes have been developed and these models are able to reproduce the evolving biogeochemistry and gas generation of large scale and long term (10 year) experiments on cellulose waste degradation. In the case of geological disposal of medium activity long-lived nuclear waste (MAVL) microbial processes have the potential to exploit metabolic energy sources present in the waste, engineered barriers and host geological formation and as a consequence influence redox potential. Several electron donors and electron acceptors may be present in MAVL. Electron donors include; hydrogen (resulting from radiolysis and anaerobic corrosion of metals), and hydrolysis products of organic waste materials. Sulphate, nitrate and Fe(III) containing minerals and corrosion products are examples of electron acceptors present in intermediate level wastes. Significant amounts of organic matter, sulphate and iron minerals may also be present in host geological formations and have the potential to act as microbial energy sources once the system is perturbed by electron donors/acceptors from the waste. The construction of a geological disposal facility will physically disturb the host formation, potentially causing fracturing of the excavation damage zone (EDZ). The EDZ may thus provide environmental conditions, such as space and free water that together with nutrient and energy sources to promote microbial activity. In this study the Generalised Repository Model (GRM) developed to simulate the coupled microbiological, chemical and transport processes in near

  3. Assessing physical models used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Computer codes used to predict the behaviour of aerosols in water-cooled reactor containment buildings after severe accidents contain a variety of physical models. Special models are in place for describing agglomeration processes where small aerosol particles combine to form larger ones. Other models are used to calculate the rates at which aerosol particles are deposited on building structures. Condensation of steam on aerosol particles is currently a very active area in aerosol modelling. In this paper, the physical models incorporated in the current available international codes for all of these processes are reviewed and documented. There is considerable variation in models used in different codes, and some uncertainties exist as to which models are superior. 28 refs

  4. Modeling news dissemination on nuclear issues

    International Nuclear Information System (INIS)

    Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O.

    2011-01-01

    Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)

  5. Physical protection in the transport of nuclear materials (Legal aspects of the domestic system)

    International Nuclear Information System (INIS)

    Novais, F.J.G.

    1978-04-01

    A study of the physical protection system is made. Emphasis is given to some considerations in the nuclear material transport area, mainly the details of the domestic system, from a juridic pont of view. (Author) [pt

  6. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Gustafsson, Lars-Goeran; Sassner, Mona; Bosson, Emma

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  7. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  8. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  9. Probabilistic assessment of dry transport with burnup credit

    International Nuclear Information System (INIS)

    Lake, W.H.

    2003-01-01

    The general concept of probabilistic analysis and its application to the use of burnup credit in spent fuel transport is explored. Discussion of the probabilistic analysis method is presented. The concepts of risk and its perception are introduced, and models are suggested for performing probability and risk estimates. The general probabilistic models are used for evaluating the application of burnup credit for dry spent nuclear fuel transport. Two basic cases are considered. The first addresses the question of the relative likelihood of exceeding an established criticality safety limit with and without burnup credit. The second examines the effect of using burnup credit on the overall risk for dry spent fuel transport. Using reasoned arguments and related failure probability and consequence data analysis is performed to estimate the risks of using burnup credit for dry transport of spent nuclear fuel. (author)

  10. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  11. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  12. Monte Carlo simulation of neutron transport phenomena

    International Nuclear Information System (INIS)

    Srinivasan, P.

    2009-01-01

    Neutron transport is one of the central problems in nuclear reactor related studies and other applied sciences. Some of the major applications of neutron transport include nuclear reactor design and safety, criticality safety of fissile material handling, neutron detector design and development, nuclear medicine, assessment of radiation damage to materials, nuclear well logging, forensic analysis etc. Most reactor and dosimetry studies assume that neutrons diffuse from regions of high to low density just like gaseous molecules diffuse to regions of low concentration or heat flow from high to low temperature regions. However while treatment of gaseous or heat diffusion is quite accurately modeled, treatment of neutron transport as simple diffusion is quite limited. In simple diffusion, the neutron trajectories are irregular, random and zigzag - where as in neutron transport low reaction cross sections (1 barn- 10 -24 cm 2 ) lead to long mean free paths which again depend on the nature and irregularities of the medium. Hence a more accurate representation of the neutron transport evolved based on the Boltzmann equation of kinetic gas theory. In fact the neutron transport equation is a linearized version of the Boltzmann gas equation based on neutron conservation with seven independent variables. The transport equation is difficult to solve except in simple cases amenable to numerical methods. The diffusion (equation) approximation follows from removing the angular dependence of the neutron flux

  13. Review of computer models used for post closure safety assessment of nuclear waste repositories in the FRG

    International Nuclear Information System (INIS)

    Bogorinski, P.; Baltes, B.; Martens, K.H.

    1987-01-01

    In the FRG, disposal of nuclear wastes takes place in deep geologic formations. For longterm safety assessment of such a repository, groundwater transport provides a release scenario for the radionuclides to the biosphere. GRs reviewed a methodology that was implemented by the research group of PSE to simulate migration of radionuclides in the geosphere. The examination included the applicability of theoretical models, numerical experiments, comparison to results of diverse computer codes as well as experience from international intercomparison studies. The review concluded that the hydrological model may be applied to full extent unless density effects have to be considered whereas there are some restrictions in the use of the nuclide transport model

  14. Emergency response arrangements for the transport of irradiated nuclear fuel from Japan to Europe in Japanese territorial waters

    International Nuclear Information System (INIS)

    Ikeda, T.; Inada, T.; Narahara, S.; Cheshire, R.D.; Lee, G.

    1993-01-01

    About 90 % of nuclear fuel irradiated in Japanese nuclear power stations is transported to UK and France for reprocessing. Pacific Nuclear Transport Ltd (PNTL), a subsidiary of British Nuclear Fuels plc (BNFL), owns and operates its own fleet of 5 purpose built ships specially designed for the transport of flasks containing irradiated fuel from Japan to Europe. These vessels sail to Japan on 8 to 10 voyages per year from the BNFL's Marine Terminal at Barrow in UK via Cherbourg Port in France. On arrival in Japan empty flasks are delivered to Japanese nuclear power stations, and full flasks are collected for the return journey to Europe. Whilst the probability of a serious flask incident involving the release of radioactivity is very small, it is nevertheless important to plan for such an emergency. In the case of an incident BNFL will provide an emergency response. If an incident occurs in Japanese territorial waters, the initial response will be provided by Nuclear Services Company (NSC), who are based in Japan (the head office in Tokyo, Tokai Office in Ibaraki Prefecture and Tsuruga Office in Fukui Prefecture) and contracted to BNFL to provide a similar response to that available from UK. This paper describes the communication links which have been established between UK and Japan and the internal communication within Japan. It also describes the emergency equipent held in Japan, the training of teams and the results of exercises jointly carried out with BNFL. (J.P.N.)

  15. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  16. International Nuclear Model. Volume 3. Program description

    International Nuclear Information System (INIS)

    Andress, D.

    1985-01-01

    This is Volume 3 of three volumes of documentation of the International Nuclear Model (INM). This volume presents the Program Description of the International Nuclear Model, which was developed for the Nuclear and Alternate Fuels Division (NAFD), Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The International Nuclear Model (INM) is a comprehensive model of the commercial nuclear power industry. It simulates economic decisions for reactor deployment and fuel management decision based on an input set of technical economic and scenario parameters. The technical parameters include reactor operating characteristics, fuel cycle timing and mass loss factors, and enrichment tails assays. Economic parameters include fuel cycle costs, financial data, and tax alternatives. INM has a broad range of scenario options covering, for example, process constraints, interregional activities, reprocessing, and fuel management selection. INM reports reactor deployment schedules, electricity generation, and fuel cycle requirements and costs. It also has specialized reports for extended burnup and permanent disposal. Companion volumes to Volume 3 are: Volume 1 - Model Overview, and Volume 2 - Data Base Relationships

  17. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  18. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    International Nuclear Information System (INIS)

    Sig Drellack, Lance Prothro

    2007-01-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The

  19. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  20. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  1. A model for radiological risk assessment from transportation of radioactive material

    International Nuclear Information System (INIS)

    Mancioppi, S.; Piermattei, S.

    1985-01-01

    The transport of radioactive materials is an important step in every practice involving the use of nuclear energy. The record of safety until now attained is undoubtedly satisfactory; however being large quantities of radioactive substances transported every day throughout the world, it was deemed worthwhile to evaluate the radiological impact connected with the transport of radioactive materials. The International Atomic Energy Agency, as the Agency issuing the Regulations applied by almost all the national and international transport organizations, sponsored a study aimed to develop a model for the evaluation of the risk connected with the transport activity. A code INTERTRAN (International Transport) has been developed by a Swedish research group (1) and is mainly based on a code (Radtran) developed at Sandia Labs. Other research groups like US and Italy offered their cooperation in the preparation of the code. It appears that the collective dose equivalents involved in the shipments of all wastes to their hypothetical final destination are rather low (40 person-rem in the worst case) and do not depend strongly from the transport mode. Handlers and crew are the most exposed group as it was expected, while the dose contribution to the general public is negligible. The situation could change in case of accident as accident dynamic and accident rate strongly depend on the mode of transport; it might happen that in this case one transport mode could be preferred to another. It is therefore deemed very important to deserve great attention to accident analysis, taking into account also the fact that there exists a category of flammable waste. Our future studies are oriented in this direction

  2. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    International Nuclear Information System (INIS)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs

  3. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  4. Characterizing and modelling the radionuclide transport properties of fracture zones in plutonic rocks of the Canadian Shield

    International Nuclear Information System (INIS)

    Davison, C.C.; Kozak, E.T.; Frost, L.H.; Everitt, R.A.; Brown, A.; Gascoyne, M.; Scheier, N.W.

    1999-01-01

    Plutonic rocks of the Canadian Shield were investigated as a potential host medium for nuclear fuel waste disposal of used CANDU nuclear fuel. Field investigations at several geologic research areas on the Shield have shown that major fracture zones are the dominant pathways for the large scale movement of groundwater and solutes through plutonic rock bodies. Because of this, a significant amount of the geoscience work has focused on methods to identify, characterize and model the radionuclide transport properties of major fracture zones in the fractured plutonic rocks of the Shield. In order to quantify the transport properties of such fracture zones a series of, groundwater tracer tests were performed over a period of several years in several major, low dipping fracture zones. Sixteen tracer tests were performed using dipole recirculation methods to evaluate transport over distance scales ranging from 17 m to 700 m. It was concluded that only tracer tests can provide useful estimates of the effective porosity and dispersivity characteristics of these large fracture zones in plutonic rocks of the Canadian Shield. (author)

  5. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

    CERN Document Server

    Bohlen, TT; Quesada, J M; Bohlen, T T; Cerutti, F; Gudowska, I; Ferrari, A; Mairani, A

    2010-01-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction a...

  6. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  7. Modeling news dissemination on nuclear issues

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O., E-mail: jsbrj@ime.usp.b, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)

  8. Mechanistic modelling of the corrosion behaviour of copper nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F; Kolar, M

    1996-10-01

    A mechanistic model has been developed to predict the long-term corrosion behaviour of copper nuclear fuel waste containers in a Canadian disposal vault. The model is based on a detailed description of the electrochemical, chemical, adsorption and mass-transport processes involved in the uniform corrosion of copper, developed from the results of an extensive experimental program. Predictions from the model are compared with the results of some of these experiments and with observations from a bronze cannon submerged in seawater saturated clay sediments. Quantitative comparisons are made between the observed and predicted corrosion potential, corrosion rate and copper concentration profiles adjacent to the corroding surface, as a way of validating the long-term model predictions. (author). 12 refs., 5 figs.

  9. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  10. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport.

    Science.gov (United States)

    Francis, Ashwanth C; Melikyan, Gregory B

    2018-04-11

    The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. DOE/PNC joint program on transportation technology

    International Nuclear Information System (INIS)

    Kubo, M.; Kajitani, M.; Seya, M.; Yoshimura, H.R.; Moya, J.L.; May, R.A.; Huerta, M.; Stenberg, D.R.

    1986-01-01

    This paper summarizes the work performed in a cooperative program on transportation technology between the Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. This work was performed at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The joint program emphasized the safety analysis for truck transportation of special nuclear materials (SNM) in Japan. Tasks included structural analyses and testing, thermal testing, leak rate studies and tests, and transportation risk assessments. The purpose of this paper is to present the results of full-scale structural and thermal tests conducted on a PNC development SNM transport system. Correlation of full-scale impact test results with structural analysis and scale model testing will also be reviewed

  12. Nuclear transport

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Here is given the decree (2001/1199) of the 10. of december 2001 relative to the passing of safety rules concerning the maritime transport of spent fuels, plutonium and high-level radioactive wastes contained in packages. (O.M.)

  13. Online estimation of radionuclide transportation in water environment

    International Nuclear Information System (INIS)

    Yi-Jing Zhang; Li-Sheng Hu

    2017-01-01

    Transportation evaluation of the radionuclide waste discharged from nuclear power plants is an essential licensing issue, especially for inland sites. Basically, the dynamics of radionuclide transportation are nonlinear and time-varying. Motivated by its time-consuming computation, the work proposed an online estimation method for the radionuclide waste in water surface. After extracting the nonlinearity of factors influencing radionuclide transportation, the method utilizes transfer function and generalized autoregressive conditional heteroskedasticity models to perform deterministic and probabilistic estimations. It turns out that, the resulting predictions show high accuracy and can optimize the online discharge management of radioactive waste for nuclear power plants. (author)

  14. Study of archaeological analogs for the validation of nuclear glass long-term behavior models

    International Nuclear Information System (INIS)

    Verney-Carron, A.

    2008-10-01

    Fractured archaeological glass blocks collected from a shipwreck discovered in the Mediterranean Sea near Embiez Island (Var) were investigated because of their morphological analogy with vitrified nuclear waste and of a known and stable environment. These glasses are fractured due to a fast cooling after they were melted (like nuclear glass) and have been altered for 1800 years in seawater. This work results in the development and the validation of a geochemical model able to simulate the alteration of a fractured archaeological glass block over 1800 years. The kinetics associated with the different mechanisms (interdiffusion and dissolution) and the thermodynamic parameters of the model were determined by leaching experiments. The model implemented in HYTEC software was used to simulate crack alteration over 1800 years. The consistency between simulated alteration thicknesses and measured data on glass blocks validate the capacity of the model to predict long-term alteration. This model is able to account for the results from the characterization of crack network and its state of alteration. The cracks in the border zone are the most altered due to a fast renewal of the leaching solution, whereas internal cracks are thin because of complex interactions between glass alteration and transport of elements in solution (influence of initial crack aperture and of the crack sealing). The lowest alteration thicknesses, as well as their variability, can be explained. The analog behavior of archaeological and nuclear glasses from leaching experiments makes possible the transposition of the model to nuclear glass in geological repository. (author)

  15. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  16. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  17. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  18. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    Science.gov (United States)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  19. Intermediate range atmospheric transport and technology assessments: nuclear pollutants

    International Nuclear Information System (INIS)

    Rohwer, P.S.; Hoffman, F.O.; Miller, C.W.

    1981-01-01

    Mathematical models have been used to assess potential impacts of radioactivity releases during all phases of our country's development of nuclear power. Experience to date has shown that in terms of potential dose to man, the most significant releases of radioactivity from nuclear fuel cycle facilities are those to the atmosphere. Our ability to predict atmospheric dispersion will, therefore, ultimately affect our capability to understand and assess the significance of both routine and accidental discharges of radionuclides. Assessment of potential radiological exposures from postulated routine and accidental releases of radionuclides from the fast-breeder reactor will require the use of atmospheric dispersion models, and the design, siting, and licensing of breeder reactor fuel cycle facilities will be influenced by the predictions made by these models

  20. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P

    1994-01-01

    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....