WorldWideScience

Sample records for models nuclear transport

  1. Azimuthal anisotropies as stringent test for nuclear transport models

    Science.gov (United States)

    Crochet, P.; Rami, F.; Donà, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Gobbi, A.; Herrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; Hartnack, C.; FOPI Collaboration

    1997-02-01

    Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600 A MeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar centre-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

  2. Modeling Noble Gas Transport and Detection for The Comprehensive Nuclear-Test-Ban Treaty

    Science.gov (United States)

    Sun, Yunwei; Carrigan, Charles R.

    2014-03-01

    Detonation gases released by an underground nuclear test include trace amounts of 133Xe and 37Ar. In the context of the Comprehensive Nuclear Test Ban Treaty, On Site Inspection Protocol, such gases released from or sampled at the soil surface could be used to indicate the occurrence of an explosion in violation of the treaty. To better estimate the levels of detectability from an underground nuclear test (UNE), we developed mathematical models to evaluate the processes of 133Xe and 37Ar transport in fractured rock. Two models are developed respectively for representing thermal and isothermal transport. When the thermal process becomes minor under the condition of low temperature and low liquid saturation, the subsurface system is described using an isothermal and single-gas-phase transport model and barometric pumping becomes the major driving force to deliver 133Xe and 37Ar to the ground surface. A thermal test is simulated using a nonisothermal and two-phase transport model. In the model, steam production and bubble expansion are the major processes driving noble gas components to ground surface. After the temperature in the chimney drops below boiling, barometric pumping takes over the role as the major transport process.

  3. Uncertainty propagation in a radionuclide transport model for performance assessment of a nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dutfoy, A. [Electricite de France R and D Safety and Reliability Branch (EDF), 92 - Clamart (France); Bouton, M. [Electricite de France R and D National Hydraulic Lab. and Environment (EDF), 78 - Chatou (France)

    2001-07-01

    Given the complexity of the involved phenomenon, performance assessment of a nuclear waste disposal requires numerical modelling. Because many of the input parameters of models are uncertain, analysis of uncertainties and their impact on the probabilistic outcome has become of major importance. This paper presents the EDF Research and Development Division methodology to propagate uncertainties arising from the parameters through models. This reliability approach provides two important quantitative results: an estimate of the probability that the outcome exceeds some two important quantitative results: an estimate of the probability that the outcome exceeds some specified threshold level (called failure event), and a probabilistic sensitivity measure which quantifies the relative importance of each uncertain variable with respect to the probabilistic outcome. Such results could become an integral component of the decision process for the nuclear disposal. The reliability method proposed in this paper is applied to a radionuclide transport model. (authors)

  4. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  5. Low-energy pions in nuclear matter and 2pi photoproduction within a BUU transport model

    CERN Document Server

    Buss, O; Mosel, U; Mühlich, P; Alvarez-Ruso, Luis; Buss, Oliver; Mosel, Ulrich; Muehlich, Pascal

    2006-01-01

    A description of low-energy scattering of pions and nuclei within a BUU transport model is presented. Implementing different scenarios of medium modifications, the mean free path of pions in nuclear matter at low momenta and pion absorption reactions on nuclei have been studied and compared to data and to results obtained via quantum mechanical scattering theory. We show that even in a regime of a long pionic wave length the semi-classical transport model is still a reliable framework for pion kinetic energies greater than ~20-30 MeV. Results are presented on pion-absorption cross sections in the regime of 10 MeV < E(kin) < 130 MeV and on photon-induced double-pion production at incident beam energies of 400-500 MeV.

  6. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    Science.gov (United States)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  7. Categorisation of nuclear explosions from legitimate radioxenon sources with atmospheric transport modelling

    Science.gov (United States)

    Schoeppner, M.; Postelt, F.; Kalinowski, M.; Plastino, W.

    2012-04-01

    Radioxenon is produced during nuclear explosions and due to its high fission ratio during the reaction and its noble gas character the isotopes can be detected remote from the location of the explosion. Therefore it is used by the Comprehensive Nuclear-Test-Ban Organization (CTBTO) as an indicator for the nuclear character of an explosion and is monitored with the International Monitoring System (IMS). The concentration of radioxenon in the air is continuously measured by multiple stations worldwide and is in need of an automatic categorization scheme in order to highlight signals of interest and to sort out signals that can be explained by legitimate sources. The dispersion and transport of radioxenon emissions through the atmosphere can be simulated with atmospheric transport modelling. Many legitimate sources of radioxenon exist: Nuclear power plants and isotope production facilities are mainly responsible for the worldwide background. The characterisation of this background is an important prerequisite to discriminate nuclear explosion signals against the background. It has been discovered that the few existing isotope production facilities are the major contributors to the background, each with emission strengths in the order of magnitude or more than all nuclear power plants together. Therefore, especially the characterization of these few, but strong, emitters can improve the quality of the signal prediction. Since the location of such an emitter is usually known the source-receptor sensitivity matrices can be utilized together with measured radioxenon concentrations from IMS stations in order to deduct information about the time dependent emissions from the strong emitter. An automatic method to determine an approximated, time dependent source term of an emitter with known location has been developed and is presented. This is a potentially valid tool for the categorization of radioxenon samples, because it can be used to assess whether the measured

  8. Modeling of molecular and particulate transport in dry spent nuclear fuel canisters

    Science.gov (United States)

    Casella, Andrew M.

    2007-09-01

    The transportation and storage of spent nuclear fuel is one of the prominent issues facing the commercial nuclear industry today, as there is still no general consensus regarding the near- and long-term strategy for managing the back-end of the nuclear fuel cycle. The debate continues over whether the fuel cycle should remain open, in which case spent fuel will be stored at on-site reactor facilities, interim facilities, or a geologic repository; or if the fuel cycle should be closed, in which case spent fuel will be recycled. Currently, commercial spent nuclear fuel is stored at on-site reactor facilities either in pools or in dry storage containers. Increasingly, spent fuel is being moved to dry storage containers due to decreased costs relative to pools. As the number of dry spent fuel containers increases and the roles they play in the nuclear fuel cycle increase, more regulations will be enacted to ensure that they function properly. Accordingly, they will have to be carefully analyzed for normal conditions, as well as any off-normal conditions of concern. This thesis addresses the phenomena associated with one such concern; the formation of a microscopic through-wall breach in a dry storage container. Particular emphasis is placed on the depressurization of the canister, release of radioactivity, and plugging of the breach due to deposition of suspended particulates. The depressurization of a dry storage container upon the formation of a breach depends on the temperature and quantity of the fill gas, the pressure differential across the breach, and the size of the breach. The first model constructed in this thesis is capable of determining the depressurization time for a breached container as long as the associated parameters just identified allow for laminar flow through the breach. The parameters can be manipulated to quantitatively determine their effect on depressurization. This model is expanded to account for the presence of suspended particles. If

  9. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  10. Low-energy pions in nuclear matter and pi pi photoproduction within a BUU transport model

    CERN Document Server

    Buss, O; Mühlich, P; Mosel, U; Shyam, R; Buss, Oliver; Alvarez-Ruso, Luis; Muehlich, Pascal; Mosel, Ulrich; Shyam, Radhey

    2006-01-01

    In the present paper we investigate a method to describe low-energy scattering events of pions and nuclei within a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. Implementing different scenarios of medium modifications, we studied the mean free path of pions in nuclear matter at low momenta and compared pion absorption simulations to data. Pursuing these studies we have shown, that also in a regime of a long pionic wave length the semi-classical BUU model still generates reasonable results. We present results on pi-induced events in the regime of 10 MeV < Tkin < 130 MeV and photo-induced pi pi production at incident beam energies of 400-460 MeV.

  11. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  12. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.K. [Brookhaven National Lab., Upton, NY (United States); Cazzoli, E.G.; Khatib-Rahbar, M. [Energy Research, Inc., Rockville, MD (United States)

    1995-11-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences.

  13. Nuclear Models

    Science.gov (United States)

    Fossión, Rubén

    2010-09-01

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  14. Railroad transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wooden, D.G.

    1986-03-01

    This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.

  15. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  16. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  17. Establishment and Verification of MCNP Neutron Transport Model About Tianwan Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Qi

    2012-01-01

    <正>In order to calculating the neutron flux in the surveillance box and reactor pressure vessel of the Tianwan NPP, we need to build up the neutron transport model by using the Monte Carlo code MCNP. The core of the NPP is very complicated for modeling so we put forward some assumptions that can simplify the neutron transport model. A lot of calculation works have been done to prove that the assumptions are right and suitable.

  18. A mathematical model for cost of maritime transport. Application to competitiveness of nuclear vessels; Modele mathematique du cout de transport maritime application a la competitivite du navire nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Dorval, C. [Commissariat a l' Energie Atomique, 75 - Paris (France)

    1966-05-01

    In studying the competitiveness of a nuclear merchant vessel, economic assessments in terms of figures were discarded in favor of a simplified model, which gives a clearer idea of the mechanism of the comparison between alternative vessels and the particular influence of each parameter. An expression is formulated for the unit cost per ton carried over a given distance as a function of the variables (speed and deadweight tonnage) and is used to determine the optima for conventional and nuclear vessels. To represent the freight market involved in the optimization studies, and thus in the competitiveness computation, two cases are taken into account: the tonnage to be carried annually is limited, and the tonnage to be carried annually is not limited. In both cases the optima are calculated and compared for a conventional and a nuclear vessel. Competitiveness curves are plotted as a function of the ratios of nuclear and conventional fuel costs and nuclear and conventional marginal power costs. These curves express the limiting values of the above two ratios for which the transport costs of the nuclear and conventional vessels are equal. The competitiveness curves vary considerably according to the hypothesis adopted for the freight market and the limit of tonnage carried annually. (author) [French] Pour etudier la competitivite du navire marchand nucleaire, plutot que de nous livrer a des evaluations economiques chiffrees, discutables dans l'etat actuel des etudes, nous utilisons un modele simplifie permettant de mieux saisir le mecanisme de la comparaison des navires et l'influence particuliere de chaque parametre. Nous etablissons une expression du cout unitaire de la tonne transportee sur un parcours donne en fonction des variables vitesse et port en lourd. Et nous l'utilisons pour determiner les optima des navires classiques et nucleaires. Pour representer le marche du fret qui intervient dans les etudes d'optimisation, et donc dans la

  19. Modeling and Simulation of Used Nuclear Fuel During Transportation with Consideration of Hydride Effects and Cyclic Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Robert Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sener, Kadir [STANEX (United States); Varma, Amit H. [STANEX (United States)

    2015-09-30

    The objective of this work is to understand the integrity of Used Nuclear Fuel (UNF) during transportation. Previous analysis work has been performed to look at the integrity of UNF during transportation but these analyses have neglected to analyze the effect of hydrides and flaws (fracture mechanics models to capture radial cracking in the cladding). In this study, the clad regions of interest are near the pellet-pellet interfaces. These regions can experience more complex stress-states than the rest of the clad during cooling and have a greater possibility to develop radially reoriented hydrides during vacuum drying.

  20. Charge density A probe for the nuclear interaction in microscopic transport models

    CERN Document Server

    Galíchet, E; Lecolley, J F; Bougault, R; Butà, A; Colin, J; Cussol, D; Durand, D; Guinet, D; Lautesse, P; Rivet, M F; Borderie, B; Auger, G; Bouriquet, B; Chbihi, A; Frankland, J D; Guiot, B; Hudan, S; Charvet, J L; Dayras, R; Lavaud, F; Neindre, N L; López, O; Manduci, L; Marie, J; Nalpas, L; Normand, J; Pârlog, M; Pawlowski, P; Plagnol, E; Rosato, E; Steckmeyer, J C; Tamain, B; Lauwe, A V; Vient, E; Volant, C; Wieleczko, J P

    2003-01-01

    The transport properties of the sup 3 sup 6 Ar+ sup 5 sup 8 Ni system at 95 A .MeV measured with the INDRA array, are studied within the BNV kinetic equation. A general protocol of comparison between the N-body experimental fragment information and the one-body distribution function is developed using global variables, with a special focus on charge density. This procedure avoids any definition of sources and any use of an afterburner in the simulation. We shall discuss the feasibility of such an approach and the distortions induced by the finite detection efficiency and the completeness requirements of the data selection. The sensitivity of the different global observables to the macroscopic parameters of the effective nuclear interaction will be studied in detail.

  1. Low-energy pions in nuclear matter and {pi}{pi} photoproduction within a BUU transport model

    Energy Technology Data Exchange (ETDEWEB)

    Buss, O.; Alvarez-Ruso, L.; Muehlich, P.; Mosel, U. [Universitaet Giessen, Institut fuer Theoretische Physik (Germany)

    2006-08-15

    A description of the low-energy scattering of pions and nuclei within a BUU transport model is presented. Implementing different scenarios of medium modifications, the mean free path of pions in nuclear matter at low momenta and pion absorption reactions on nuclei have been studied and compared to data and to results obtained via quantum-mechanical scattering theory. We show that even in a regime of a long pionic wavelength the semi-classical transport model is still a reliable framework for pion kinetic energies greater than {approx}20-30 MeV. Results are presented on {pi}-absorption cross-sections in the regime of 10 MeV{<=}T{sup {pi}}{sub kin}{<=}130 MeV and on photon-induced {pi}{pi} production at incident beam energies of 400-500 MeV. (orig.)

  2. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    Science.gov (United States)

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  3. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    Science.gov (United States)

    Christoudias, T.; Lelieveld, J.

    2013-02-01

    We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry - general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255). The model accounts for emissions and transport of the radioactive isotopes 131I and 137Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011) and Stohl et al. (2012); especially the emission estimates of 131I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO). We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a large inhabited land area was contaminated by more than 40 kBq m-2. We also estimated the inhalation and 50-year dose by 137Cs, 134Cs and 131I to which the people in Japan are exposed.

  4. Lethality in a murine model of pulmonary anthrax is reduced by combining nuclear transport modifier with antimicrobial therapy.

    Directory of Open Access Journals (Sweden)

    Ruth Ann Veach

    Full Text Available BACKGROUND: In the last ten years, bioterrorism has become a serious threat and challenge to public health worldwide. Pulmonary anthrax caused by airborne Bacillus anthracis spores is a life-threatening disease often refractory to antimicrobial therapy. Inhaled spores germinate into vegetative forms that elaborate an anti-phagocytic capsule along with potent exotoxins which disrupt the signaling pathways governing the innate and adaptive immune responses and cause endothelial cell dysfunction leading to vascular injury in the lung, hypoxia, hemorrhage, and death. METHODS/PRINCIPAL FINDINGS: Using a murine model of pulmonary anthrax disease, we showed that a nuclear transport modifier restored markers of the innate immune response in spore-infected animals. An 8-day protocol of single-dose ciprofloxacin had no significant effect on mortality (4% survival of A/J mice lethally infected with B. anthracis Sterne. Strikingly, mice were much more likely to survive infection (52% survival when treated with ciprofloxacin and a cell-penetrating peptide modifier of host nuclear transport, termed cSN50. In B. anthracis-infected animals treated with antibiotic alone, we detected a muted innate immune response manifested by cytokines, tumor necrosis factor alpha (TNFα, interleukin (IL-6, and chemokine monocyte chemoattractant protein-1 (MCP-1, while the hypoxia biomarker, erythropoietin (EPO, was greatly elevated. In contrast, cSN50-treated mice receiving ciprofloxacin demonstrated a restored innate immune responsiveness and reduced EPO level. Consistent with this improvement of innate immunity response and suppression of hypoxia biomarker, surviving mice in the combination treatment group displayed minimal histopathologic signs of vascular injury and a marked reduction of anthrax bacilli in the lungs. CONCLUSIONS: We demonstrate, for the first time, that regulating nuclear transport with a cell-penetrating modifier provides a cytoprotective effect, which

  5. Transport modeling

    Institute of Scientific and Technical Information of China (English)

    R.E. Waltz

    2007-01-01

    @@ There has been remarkable progress during the past decade in understanding and modeling turbulent transport in tokamaks. With some exceptions the progress is derived from the huge increases in computational power and the ability to simulate tokamak turbulence with ever more fundamental and physically realistic dynamical equations, e.g.

  6. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    Science.gov (United States)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic

  7. Model of iodine transport and reaction kinetics in a nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.

    1977-05-01

    A model is presented to describe the time-dependent flow and retention of stable iodine isotopes and the decay of /sup 131/I in a nuclear fuel reprocessing plant. The plant consists of 16 units of equipment such as a voloxidizer or graphite burner, fuel dissolver, solvent extractors, storage tanks, vaporizers, primary iodine sorbers, and silver zeolite. The rate of accumulation of bulk and radioactive iodine in these units and in the environment is described using 19 differential equations. Reasonable time-dependence of iodine retention factors (RFs) by the plant were calculated. RFs for a new plant in excess of 10/sup 6/ for stable iodine and /sup 129/I decrease to the range of 10/sup 3/ to 10/sup 2/ as plant operating times exceed 50 to 100 days. The RFs for /sup 131/I also decrease initially, for a period of approximately 10 days, but then increase by several orders of magnitude due to radioactive decay and isotopic exchange. Generally, the RFs for /sup 131/I exceed those for stable iodine by factors of 10/sup 4/ or more. 19 references, 13 figures, 2 tables. (DLC)

  8. Atmospheric Transport Modelling assessing radionuclide detection chances after the nuclear test announced by the DPRK in January 2016

    Science.gov (United States)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. The seismic signals of the DPRK event on 6 January 2016 were detected by many seismic stations around the globe and allow for localization of the event and identification as explosion (see poster by G. Hartmann et al.). However, the direct evidence for a nuclear explosion is only possible through the detection of nuclear fission products which may be released. For that 80 Radionuclide (RN) Stations are part of the designed IMS, about 60 are already operational. All RN stations are highly sensitive for tiny traces of particulate radionuclides in large volume air samplers. There are 40 of the RN stations designated to be equipped with noble gas systems detecting traces of radioactive xenon isotopes which are more likely to escape from an underground test cavity than particulates. Already 30 of the noble gas systems are operational. Atmospheric Transport Modelling supports the interpretation of radionuclide detections (and as appropriate non-detections) by connecting the activity concentration measurements with potential source locations and release times. In our study forecasts with the Lagrangian Particle Dispersion Model HYSPLIT (NOAA) and GFS (NCEP) meteorological data are considered to assess the plume propagation patterns for hypothetical releases at the known DPRK nuclear test site. The results show a considerable sensitivity of the IMS station RN 38 Takasaki (Japan) to a potential radionuclide release at the test site in the days and weeks following the explosion in January 2016. In addition, backtracking simulations with ECMWF analysis data in 0.2° horizontal resolution are

  9. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan

    2003-01-01

    Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and

  10. Electron transport through nuclear pasta in magnetized neutron stars

    CERN Document Server

    Yakovlev, D G

    2015-01-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  11. Management of the process of nuclear transport; Gestion del proceso de transporte nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Requejo, P.

    2015-07-01

    Since 1996 ETSA is the only Spanish logistics operator specialized on servicing the nuclear and radioactive industry. Nowadays ETSA has some technological systems specifically designed for the management of nuclear transports. These tools have been the result of the analysis of multiple factors involved in nuclear shipments, of ETSAs wide experience as a logistics operator and the search for continuous improvement. (Author)

  12. Energetics of Transport through the Nuclear Pore Complex.

    Directory of Open Access Journals (Sweden)

    Ali Ghavami

    Full Text Available Molecular transport across the nuclear envelope in eukaryotic cells is solely controlled by the nuclear pore complex (NPC. The NPC provides two types of nucleocytoplasmic transport: passive diffusion of small molecules and active chaperon-mediated translocation of large molecules. It has been shown that the interaction between intrinsically disordered proteins that line the central channel of the NPC and the transporting cargoes is the determining factor, but the exact mechanism of transport is yet unknown. Here, we use coarse-grained molecular dynamics simulations to quantify the energy barrier that has to be overcome for molecules to pass through the NPC. We focus on two aspects of transport. First, the passive transport of model cargo molecules with different sizes is studied and the size selectivity feature of the NPC is investigated. Our results show that the transport probability of cargoes is significantly reduced when they are larger than ∼5 nm in diameter. Secondly, we show that incorporating hydrophobic binding spots on the surface of the cargo effectively decreases the energy barrier of the pore. Finally, a simple transport model is proposed which characterizes the energy barrier of the NPC as a function of diameter and hydrophobicity of the transporting particles.

  13. Spent Nuclear Fuel Transport Reliability Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  14. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  15. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  16. Modeling watershed-scale (137)Cs transport in a forested catchment affected by the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Wei, Lezhang; Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Velleux, Mark L

    2017-05-01

    The Fukushima nuclear accident in 2011 resulted in (137)Cs contamination of large areas in northeast Japan. A watershed-scale (137)Cs transport model was developed and applied to a forested catchment in Fukushima area. This model considers (137)Cs wash-off from vegetation, movement through soils, and transport of dissolved and particulate (137)Cs adsorbed to clay, silt and sand. Comparisons between measurements and simulations demonstrated that the model well reproduced (137)Cs concentrations in the stream fed from the catchment. Simulations estimated that 0.57 TBq of (137)Cs was exported from the catchment between June, 2011 and December, 2014. Transport largely occurred with eroded sediment particles at a ratio of 17:70:13 of clay, silt, and sand. The overall (137)Cs reduction ratio by rainfall-runoff wash-off was about 1.6%. Appreciable (137)Cs remained in the catchment at the end of 2014. The largest rate of (137)Cs reduction by wash-off was simulated to occur in subwatersheds of the upper catchment. However, despite relatively low initial deposition, middle portions of the watershed exported proportionately more (137)Cs by rainfall-runoff processes. Simulations indicated that much of the transported (137)Cs originates from erosion over hillsides and river banks. These results suggested that areas where (137)Cs accumulates with redeposited sediments can be targeted for decontamination and also provided insight into (137)Cs transport at the watershed scale to assess risk management and decontamination planning efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modelling the nuclear parton distributions

    CERN Document Server

    Kulagin, S A

    2016-01-01

    We review a semi-microscopic model of nuclear parton distributions, which takes into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents and off-shell corrections to bound nucleon distributions as well as nuclear shadowing effect. We also discuss applications of the model to the lepton-nuclear deep-inelastic scattering, Drell-Yan process and neutrino total cross sections.

  18. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  19. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  20. Intrinsic and extrinsic negative regulators of nuclear protein transport processes

    OpenAIRE

    Sekimoto, Toshihiro; Yoneda, Yoshihiro

    2012-01-01

    The nuclear–cytoplasmic protein transport is a critical process in cellular events. The identification of transport signals (nuclear localization signal and nuclear export signal) and their receptors has facilitated our understanding of this expanding field. Nuclear transport must be appropriately regulated to deliver proteins through the nuclear pore when their functions are required in the nucleus, and to export them into the cytoplasm when they are not needed in the nucleus. Altered nuclea...

  1. Nuclear transport factors: global regulation of mitosis.

    Science.gov (United States)

    Forbes, Douglass J; Travesa, Anna; Nord, Matthew S; Bernis, Cyril

    2015-08-01

    The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.

  2. UZ Colloid Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  3. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    Science.gov (United States)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the

  4. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  5. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential.

    Science.gov (United States)

    Stelma, Tamara; Chi, Alicia; van der Watt, Pauline J; Verrico, Annalisa; Lavia, Patrizia; Leaner, Virna D

    2016-04-01

    The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.

  6. Equilibration within a semiclassical off-shell transport approach 24.10.Cn; 24.10.-i; 25.70.-z; Many-body theory; Nuclear-reaction models and methods; Low and intermediate energy heavy-ion reactions

    CERN Document Server

    Cassing, W

    2000-01-01

    Equilibration times for nuclear matter configurations -- modelling intermediate and high energy nucleus-nucleus collisions -- are evaluated within the semiclassical off-shell transport approach developed recently. The transport equations are solved for a finite box in coordinate space employing periodic boundary conditions. The off-shell transport model is shown to give proper off-shell equilibrium distributions in the limit t-> infinity for the nucleon and DELTA-resonance spectral functions. We find that equilibration times within the off-shell approach are only slightly enhanced as compared to the on-shell limit for the momentum configurations considered.

  7. JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Saito, Kazuo; Shimbori, Toshiki; Draxler, Roland

    2015-01-01

    The World Meteorological Organization (WMO) convened a small technical task team of experts to produce a set of meteorological analyses to drive atmospheric transport, dispersion and deposition models (ATDMs) for the United Nations Scientific Committee on the Effects of Atomic Radiation's assessment of the Fukushima Daiichi Nuclear Power Plant (DNPP) accident. The Japan Meteorological Agency (JMA) collaborated with the WMO task team as the regional specialized meteorological center of the country where the accident occurred, and provided its operational 5-km resolution mesoscale (MESO) analysis and its 1-km resolution radar/rain gauge-analyzed precipitation (RAP) data. The JMA's mesoscale tracer transport model was modified to a regional ATDM for radionuclides (RATM), which included newly implemented algorithms for dry deposition, wet scavenging, and gravitational settling of radionuclide aerosol particles. Preliminary and revised calculations of the JMA-RATM were conducted according to the task team's protocol. Verification against Cesium 137 ((137)Cs) deposition measurements and observed air concentration time series showed that the performance of RATM with MESO data was significantly improved by the revisions to the model. The use of RAP data improved the (137)Cs deposition pattern but not the time series of air concentrations at Tokai-mura compared with calculations just using the MESO data. Sensitivity tests of some of the more uncertain parameters were conducted to determine their impacts on ATDM calculations, and the dispersion and deposition of radionuclides on 15 March 2011, the period of some of the largest emissions and deposition to the land areas of Japan. The area with high deposition in the northwest of Fukushima DNPP and the hotspot in the central part of Fukushima prefecture were primarily formed by wet scavenging influenced by the orographic effect of the mountainous area in the west of the Fukushima prefecture.

  8. The molecular mechanism for nuclear transport and its application.

    Science.gov (United States)

    Kim, Yun Hak; Han, Myoung-Eun; Oh, Sae-Ock

    2017-06-01

    Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.

  9. Nuclear Checker Board Model

    Science.gov (United States)

    Lach, Theodore

    2016-03-01

    The NCB Model 1 , 2 , 3 suggests that the nucleus is a relativistic 2D structure. In 1996 at Argonne National Lab the Checker Board Model was first presented. In that poster presentation it was explained that the relativistic constituent quarks orbit inside the proton at about 85% c and about 99% c inside the neutron. As a way to test the model it was found that the de Broglie wavelength of the up quark matched the calculated circumference of the proton (radius = 0.5194 fm) analogous to the Bohr model of the electron in the H atom. 20 years later it is now accepted that the quarks are moving at relativistic speeds and the orbital motion of the quarks contribute the major part of the spin of the proton. If one considers the motion of the relativistic quarks inside the nucleus (take for example Ca 40) about its center of mass, one realizes that these relativistic quarks are confined to shells inside the nucleus (the He shell {the inner 4 nucleons}, the Oxygen shell ...). So the CBM eliminates the need for an illusionary strong nuclear force in favor of a force based upon an E/M force in perfect spin synchronization in a 2D plane. So the CBM is not at odds with the shell model but instead explains why the nucleus has a shell structure and correctly predicts the shell closures.

  10. Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository

    CERN Document Server

    Bourgeat, Alain; Smaï, Farid

    2008-01-01

    We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

  11. Experience of air transport of nuclear fuel material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Toguri, D. [Transnuclear, LTD. (AREVA group), Tokyo (Japan); Kawasaki, M. [Japan Nuclear Cycle Development Inst., Muramatsu, Ibaraki (Japan)

    2004-07-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport.

  12. Nuclear Data for Astrophysical Modeling

    CERN Document Server

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...

  13. Using Nuclear Theory, Data and Uncertainties in Monte Carlo Transport Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-03

    These are slides for a presentation on using nuclear theory, data and uncertainties in Monte Carlo transport applications. The following topics are covered: nuclear data (experimental data versus theoretical models, data evaluation and uncertainty quantification), fission multiplicity models (fixed source applications, criticality calculations), uncertainties and their impact (integral quantities, sensitivity analysis, uncertainty propagation).

  14. Nuclear Checker Board Model

    Science.gov (United States)

    Lach, Theodore

    2017-01-01

    The Checkerboard model of the Nucleus has been in the public domain for over 20 years. Over those years it has been described by nuclear and particle physicists as; cute, ``the Bohr model of the nucleus'' and ``reminiscent of the Eightfold Way''. It has also been ridiculed as numerology, laughed at, and even worse. In 2000 the theory was taken to the next level by attempting to explain why the mass of the ``up'' and ``dn'' quarks were significantly heavier than the SM ``u'' and ``d'' quarks. This resulted in a paper published on arXiv.nucl-th/0008026 in 2000, predicting 5 generations of quarks, each quark and negative lepton particle related to each other by a simple geometric mean. The CBM predicts that the radii of the elementary particles are proportional to the cube root of their masses. This was realized Pythagorean musical intervals (octave, perfect 5th, perfect 4th plus two others). Therefore each generation can be explained by a simple right triangle and the height of the hypotenuse. Notice that the height of a right triangle breaks the hypotenuse into two line segments. The geometric mean of those two segments equals the length of the height of this characteristic triangle. Therefore the CBM theory now predicts that all the elementary particles mass are proportion to the cube of their radii. Therefore the mass density of all elementary particles (and perhaps black holes too) are a constant of nature.

  15. Identification of four nuclear transport signal-binding proteins that interact with diverse transport signals.

    Science.gov (United States)

    Yamasaki, L; Kanda, P; Lanford, R E

    1989-07-01

    The transport of proteins into the nucleus requires not only the presence of a nuclear transport signal on the targeted protein but also the signal recognition proteins and the nuclear pore translocation apparatus. Complicating the search for the signal recognition proteins is the fact that the nuclear transport signals identified share little obvious homology. In this study, synthetic peptides homologous to the nuclear transport signals from the simian virus 40 large T antigen, Xenopus oocyte nucleoplasmin, adenovirus E1A, and Saccharomyces cerevisiae MAT alpha 2 proteins were coupled to a UV-photoactivable cross-linker and iodinated for use in an in vitro cross-linking reaction with cellular lysates. Four proteins, p140, p100, p70, and p55, which specifically interacted with the nuclear transport signal peptides were identified. Unique patterns of reactivity were observed with closely related pairs of nuclear transport signal peptides. Competition experiments with labeled and unlabeled peptides demonstrated that heterologous signals were able to bind the same protein and suggested that diverse signals use a common transport pathway. The subcellular distribution of the four nuclear transport signal-binding proteins suggested that nuclear transport involves both cytoplasmic and nuclear receptors. The four proteins were not bound by wheat germ agglutinin and were not associated tightly with the nuclear pore complex.

  16. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  17. Modeling nuclear processes by Simulink

    Science.gov (United States)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  18. Global nuclear material control model

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Rutherford, D.A.

    1996-05-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  19. Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident.

    Science.gov (United States)

    Arnold, D; Maurer, C; Wotawa, G; Draxler, R; Saito, K; Seibert, P

    2015-01-01

    In the present paper the role of precipitation as FLEXPART model input is investigated for one possible release scenario of the Fukushima Daiichi accident. Precipitation data from the European Center for Medium-Range Weather Forecast (ECMWF), the NOAA's National Center for Environmental Prediction (NCEP), the Japan Meteorological Agency's (JMA) mesoscale analysis and a JMA radar-rain gauge precipitation analysis product were utilized. The accident of Fukushima in March 2011 and the following observations enable us to assess the impact of these precipitation products at least for this single case. As expected the differences in the statistical scores are visible but not large. Increasing the ECMWF resolution of all the fields from 0.5° to 0.2° rises the correlation from 0.71 to 0.80 and an overall rank from 3.38 to 3.44. Substituting ECMWF precipitation, while the rest of the variables remains unmodified, by the JMA mesoscale precipitation analysis and the JMA radar gauge precipitation data yield the best results on a regional scale, specially when a new and more robust wet deposition scheme is introduced. The best results are obtained with a combination of ECMWF 0.2° data with precipitation from JMA mesoscale analyses and the modified wet deposition with a correlation of 0.83 and an overall rank of 3.58. NCEP-based results with the same source term are generally poorer, giving correlations around 0.66, and comparatively large negative biases and an overall rank of 3.05 that worsens when regional precipitation data is introduced.

  20. Modeling the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  1. Uncertainties in Nuclear Proliferation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies.

  2. Community Sediment Transport Model

    Science.gov (United States)

    2007-01-01

    are used to determine that model results are consistent across compilers, platforms, and computer architectures , and to ensure that changes in code do...Mississippi State University: Bhate During the early months of this project, the focus was on understanding ROMS-CSTM model, architecture , and...Marchesiello, J.C. McWilliams, & K.D. Stolzenbach, 2007: Sediment transport modeling on Southern Californian shelves: A ROMS case study. Continental

  3. GALILEE: A nuclear data processing system for transport, depletion and shielding codes

    Energy Technology Data Exchange (ETDEWEB)

    COSTE-DELCLAUX, Mireille [Commissariat a l' Energie Atomique, CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, 91191 Gif sur Yvette CEDEX (France)

    2008-07-01

    The Nuclear Data Processing System for Transport, Depletion and Shielding Codes GALILEE is part of a CEA global development program dedicated to fine modelling of nuclear systems. The other projects contributing to this aim are APOLLO3 inherited from DESCARTES (Calvin and Fedon-Magnaud, 2007) which treats deterministic transport, TRIPOLI-4 (Diop et al., 2006) which treats Monte Carlo transport and DARWIN3 (Tsilanizara et al., 1999) which solves all fuel cycle problems. GALILEE aims are: - To provide to application codes (deterministic or Monte Carlo transport codes, shielding codes or depletion codes), a tool-box allowing a consistent processing for nuclear data coming from any evaluation given in ENDF-6 format, - To carry out an automatic chain for creating application libraries, - To provide consistent application libraries for modelling a nuclear system. GALILEE project is carried out in synergy with application codes in order to be able to share 'objects' but also 'tools'. (author)

  4. Nuclear Data and Nuclear Model Methods

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Developing nuclear data needs towards to sustainable development on fission reactor design and many nuclear applications out the field of fission reactor technology that are growing economicsignificance and that have substantial data requirements are introduced. International standard codes used in nuclear data evaluations and calculations are introduced and compared each other. Generally

  5. Nuclear models on a lattice

    CERN Document Server

    De Soto, F; Carbonell, J; Leroy, J P; Pène, O; Roiesnel, C; Boucaud, Ph.

    2007-01-01

    We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.

  6. 30 years of experience in safe transportation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    In April 2003, Nuclear Fuel Transport Co., Ltd. (NFT) marked the 30{sup th} anniversary of its founding. NFT was established in 1973 and in 1978, commenced SF transport to the reprocessing plant in Tokai-mura. And then, after making preparations to transport nuclear materials to the various facilities at the Nuclear Fuel Cycle Center in Rokkasho-mura, NFT successfully started transportation of LLW (low level waste) to Rokksho-mura's LLW disposal center in 1992, domestic land transportation of HLW returned from overseas to the HLW storage center in 1995, domestic land transportation of natural hexafluoride delivered from overseas to the uranium enrichment plant in 1996, and transportation of SF to the reprocessing plant in 2000. NFT has realized an annual SF transportation capacity of 300 MTU and is currently making great company wide efforts to meet the Rokkasho Reprocessing Plant's future SF annual reprocessing capacity of 800MTU. At the end of FY2003, NFT had successfully transported 560 casks (about 1,730 MTU) of SF in more than 200 voyages in total, about 160,000 drums of LLW in around 100 voyages in total. This paper introduces the record of safe transport and its experience over the past 30 years and prospect for future transport business.

  7. A nuclear fragmentation energy deposition model

    Science.gov (United States)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  8. The "RTR" medical response system for nuclear and radiological mass-casualty incidents: a functional TRiage-TReatment-TRansport medical response model.

    Science.gov (United States)

    Hrdina, Chad M; Coleman, C Norman; Bogucki, Sandy; Bader, Judith L; Hayhurst, Robert E; Forsha, Joseph D; Marcozzi, David; Yeskey, Kevin; Knebel, Ann R

    2009-01-01

    Developing a mass-casualty medical response to the detonation of an improvised nuclear device (IND) or large radiological dispersal device (RDD) requires unique advanced planning due to the potential magnitude of the event, lack of warning, and radiation hazards. In order for medical care and resources to be collocated and matched to the requirements, a [US] Federal interagency medical response-planning group has developed a conceptual approach for responding to such nuclear and radiological incidents. The "RTR" system (comprising Radiation-specific TRiage, TReatment, TRansport sites) is designed to support medical care following a nuclear incident. Its purpose is to characterize, organize, and efficiently deploy appropriate materiel and personnel assets as close as physically possible to various categories of victims while preserving the safety of responders. The RTR system is not a medical triage system for individual patients. After an incident is characterized and safe perimeters are established, RTR sites should be determined in real-time that are based on the extent of destruction, environmental factors, residual radiation, available infrastructure, and transportation routes. Such RTR sites are divided into three types depending on their physical/situational relationship to the incident. The RTR1 sites are near the epicenter with residual radiation and include victims with blast injuries and other major traumatic injuries including radiation exposure; RTR2 sites are situated in relationship to the plume with varying amounts of residual radiation present, with most victims being ambulatory; and RTR3 sites are collection and transport sites with minimal or no radiation present or exposure risk and a victim population with a potential variety of injuries or radiation exposures. Medical Care sites are predetermined sites at which definitive medical care is given to those in immediate need of care. They include local/regional hospitals, medical centers, other

  9. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  10. A Review on Sabotage against Transportation of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol; Lim, Jihwan [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    This report assesses the risk of routine transportation including cask response to an impact or fire accidents. In addition, we have still found the non-negligible difference among the studies for scenarios, approaches, and data. In order to evaluate attack cases on the same basis and reflect more realistic situations, at this moment, it is worthwhile to thoroughly review and analyze the existing studies and to suggest further development directions. In Section 2, we compare scenarios of terror attacks against spent fuel storage and transportation. Section 3 compares target scenarios, capabilities, and limitations of assessment methods. In addition, we collect and compare modeling data used for previous studies to analyze gaps and uncertainties in the existing studies. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility. The government should not be the only ones contributing to this dialogue. This dialogue that needs to happen should work both ways, with the government presenting their information and statistics and the public relaying their concerns for the government to review.

  11. Groupage Cargo Transportation Model

    Directory of Open Access Journals (Sweden)

    Aleksejevs Ruslans

    2016-03-01

    Full Text Available In this work we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (corporate strategy or several (partially corporate strategy companies: the core of the problem consists of the existence of the network of intermediate seaports (i.e. transitional seaports, where for every ship arrived the cargo handling is done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from scratch in the form of multicriteria optimization problem; then the goal attainment method of Gembicki is used for reducing the built models to a one-criterion problem of linear programming.

  12. The transport of nuclear power plant components. [via airships

    Science.gov (United States)

    Keating, S. J., Jr.

    1975-01-01

    The problems of transporting nuclear power plant components to landlocked sites where the usual mode of transport by barge cannot be used are considered. Existing methods of ground-based overland transport are discussed and their costs presented. Components are described and traffic density projections made to the year 2000. Plots of units transported versus distance transported are provided for units booked in 1973 and booked and proposed in 1974. It is shown that, for these cases, overland transport requirements for the industry will be over 5,000,000 ton-miles/year while a projection based on increasing energy demands shows that this figure will increase significantly by the year 2000. The payload size, distances, and costs of existing overland modes are significant enough to consider development of a lighter than air (LTA) mode for transporting NSSS components.

  13. Transport hub flow modelling

    OpenAIRE

    Despagne, Wilfried; Frenod, Emmanuel

    2014-01-01

    Purpose: The purpose of this paper is to investigate the road freight haulage activity. Using the physical and data flow information from a freight forwarder, we intend to model the flow of inbound and outbound goods in a freight transport hub. Approach: This paper presents the operation of a road haulage group. To deliver goods within two days to any location in France, a haulage contractor needs to be part of a network. This network handles the processing of both physical goods and data. We...

  14. Towards Quantum Transport for Central Nuclear Reactions

    CERN Document Server

    Danielewicz, Pawel; Barker, Brent

    2016-01-01

    Nonequilibrium Green's functions represent a promising tool for describing central nuclear reactions. Even at the single-particle level, though, the Green's functions contain more information that computers may handle in the foreseeable future. In this study, we explore slab collisions in one dimension, first in the mean field approximation and demonstrate that only function elements close to the diagonal in arguments are relevant, in practice, for the reaction calculations. This bodes well for the application of the Green's functions to the reactions. Moreover we demonstrate that an initial state for a reaction calculation may be generated through adiabatic transformation of interactions. Finally, we report on our progress in incorporating correlations into the dynamic calculations.

  15. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  16. Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Lary G.; Purvis, James W.

    1999-07-21

    The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access.

  17. Transport of large particles released in a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R.; Toivonen, H.; Lahtinen, J.; Ilander, T.

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d{sub a} > 20 {mu}m) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.).

  18. Goods Transport Modelling, Vol 1

    DEFF Research Database (Denmark)

    Petersen, Morten Steen (red.); Kristiansen, Jørgen

    The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....

  19. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  20. Nuclear Transport Modulation Reduces Hypercholesterolemia, Atherosclerosis, and Fatty Liver

    Science.gov (United States)

    Liu, Yan; Major, Amy S.; Zienkiewicz, Jozef; Gabriel, Curtis L.; Veach, Ruth Ann; Moore, Daniel J.; Collins, Robert D.; Hawiger, Jacek

    2013-01-01

    Background Elevated cholesterol and triglycerides in blood lead to atherosclerosis and fatty liver, contributing to rising cardiovascular and hepatobiliary morbidity and mortality worldwide. Methods and Results A cell‐penetrating nuclear transport modifier (NTM) reduced hyperlipidemia, atherosclerosis, and fatty liver in low‐density lipoprotein receptor‐deficient mice fed a Western diet. NTM treatment led to lower cholesterol and triglyceride levels in blood compared with control animals (36% and 53%, respectively; Ptriglyceride, and fatty acid synthesis. NTM‐modulated translocation of SREBPs to the nucleus was associated with attenuated transactivation of their cognate genes that contribute to hyperlipidemia. Conclusions Two‐pronged control of inflammation and dyslipidemia by modulating nuclear transport of their critical regulators offers a new approach to comprehensive amelioration of hyperlipidemia, atherosclerosis, fatty liver, and their potential complications. PMID:23563994

  1. Container Logistic Transport Planning Model

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2013-05-01

    Full Text Available The study proposed a stochastic method of container logistic transport in order to solve the unreasonable transportation’s problem and overcome the traditional models’ two shortcomings. Container transport has rapidly developed into a modern means of transportation because of their significant advantages. With the development, it also exacerbated the flaws of transport in the original. One of the most important problems was that the invalid transport had not still reduced due to the congenital imbalances of transportation. Container transport exacerbated the invalid transport for the empty containers. To solve the problem, people made many efforts, but they did not make much progress. There had two theoretical flaws by analyzing the previous management methods in container transport. The first one was the default empty containers inevitability. The second one was that they did not overall consider how to solve the problem of empty containers allocation. In order to solve the unreasonable transportation’s problem and overcome the traditional models’ two shortcomings, the study re-built the container transport planning model-gravity model. It gave the general algorithm and has analyzed the final result of model.

  2. Development of nuclear spent fuel Maritime transportation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Min; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability.

  3. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    Directory of Open Access Journals (Sweden)

    Naoyuki Okada

    2015-08-01

    Full Text Available Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate, Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells.

  4. The behaviour of ¹²⁹I released from nuclear fuel reprocessing factories in the North Atlantic Ocean and transport to the Arctic assessed from numerical modelling.

    Science.gov (United States)

    Villa, M; López-Gutiérrez, J M; Suh, Kyung-Suk; Min, Byung-Il; Periáñez, R

    2015-01-15

    A quantitative evaluation of the fate of (129)I, released from the European reprocessing plants of Sellafield (UK) and La Hague (France), has been made by means of a Lagrangian dispersion model. Transport of radionuclides to the Arctic Ocean has been determined. Thus, 5.1 and 16.6 TBq of (129)I have been introduced in the Arctic from Sellafield and La Hague respectively from 1966 to 2012. These figures represent, respectively, 48% and 55% of the cumulative discharge to that time. Inventories in the North Atlantic, including shelf seas, are 4.4 and 13.8 TBq coming from Sellafield and La Hague respectively. These figures are significantly different from previous estimations based on field data. The distribution of these inventories among several shelf seas and regions has been evaluated as well. Mean ages of tracers have been finally obtained, making use of the age-averaging hypothesis. It has been found that mean ages for Sellafield releases are about 3.5 year larger than for La Hague releases.

  5. Atmospheric transport patterns and possible consequences for the European North after a nuclear accident.

    Science.gov (United States)

    Baklanov, A; Mahura, A; Jaffe, D; Thaning, L; Bergman, R; Andres, R

    2002-01-01

    The main purpose of this study is to examine possible impacts and consequences of a hypothetical accident at the Kola nuclear plant in north-west Russia on different geographical regions: Scandinavia, central Europe, European FSU and Taymyr. The period studied is 1991-1996. An isentropic trajectory model has been used to calculate forward trajectories that originated over the nuclear accident region. Atmospheric transport patterns were identified using the isentropic trajectories and a cluster analysis technique. From the trajectory model results, a number of cases were chosen for examination in detail using more complete transport models. For this purpose, the models MATHEW/ADPIC, DERMA and a newly developed FOA Random Displacement Model have been used to simulate the radionuclide transport and contamination in the case of a nuclear accident and their results have been compared with those of the trajectory modelling. Estimation of the long-term consequences for populations after an accident has been performed for several specific dates by empirical models and correlation between fallout and doses to humans on the basis of the Chernobyl accident exposures in Scandinavia.

  6. Atmospheric transport patterns and possible consequences for the European North after a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. E-mail: alb@dmi.min.dk; Mahura, A.; Jaffe, D.; Thaning, L.; Bergman, R.; Andres, R

    2002-07-01

    The main purpose of this study is to examine possible impacts and consequences of a hypothetical accident at the Kola nuclear plant in north-west Russia on different geographical regions: Scandinavia, central Europe, European FSU and Taymyr. The period studied is 1991-1996. An isentropic trajectory model has been used to calculate forward trajectories that originated over the nuclear accident region. Atmospheric transport patterns were identified using the isentropic trajectories and a cluster analysis technique. From the trajectory model results, a number of cases were chosen for examination in detail using more complete transport models. For this purpose, the models MATHEW/ADPIC, DERMA and a newly developed FOA Random Displacement Model have been used to simulate the radionuclide transport and contamination in the case of a nuclear accident and their results have been compared with those of the trajectory modelling. Estimation of the long-term consequences for populations after an accident has been performed for several specific dates by empirical models and correlation between fallout and doses to humans on the basis of the Chernobyl accident exposures in Scandinavia.

  7. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  8. 25 CFR 170.900 - What is the purpose of the provisions relating to transportation of hazardous and nuclear waste?

    Science.gov (United States)

    2010-04-01

    ... transportation of hazardous and nuclear waste? 170.900 Section 170.900 Indians BUREAU OF INDIAN AFFAIRS... and Nuclear Waste Transportation § 170.900 What is the purpose of the provisions relating to transportation of hazardous and nuclear waste? Sections 170.900 through 170.907 on transportation of nuclear...

  9. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  10. Karyopherins regulate nuclear pore complex barrier and transport function.

    Science.gov (United States)

    Kapinos, Larisa E; Huang, Binlu; Rencurel, Chantal; Lim, Roderick Y H

    2017-09-01

    Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)-specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine-glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control. © 2017 Kapinos et al.

  11. Next Generation Transport Phenomenology Model

    Science.gov (United States)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  12. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    Science.gov (United States)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  13. Operational considerations for a crewed nuclear powered space transportation vehicle

    Science.gov (United States)

    Borrer, Jerry L.; Hoffman, Stephen J.

    1993-01-01

    Applying nuclear propulsion technology to human space travel will require new approaches to conducting human operations in space. Due to the remoteness of these types of missions, the crew and their vehicle must be capable of operating independent from Earth-based support. This paper discusses current operational studies which address methods for performing these types of remote and autonomous missions. Methods of managing the hazards to humans who will operate these high-energy nuclear-powered transportation vehicles also is reviewed. Crew training for both normal and contingency operations is considered. Options are evaluated on how best to train crews to operate and maintain the systems associated with a nuclear engine. Methods of maintaining crew proficiency during the long months of space travel are discussed. Vehicle health maintenance also will be a primary concern during these long missions. A discussion is presented on how on-board vehicle health maintenance systems will monitor system trends, identified system weaknesses, and either isolate critical failures or provide the crew with adequate warning of impending problems.

  14. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  15. 75 FR 64720 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Science.gov (United States)

    2010-10-20

    ... spent nuclear fuel and nuclear waste. The Co-chairs of the Commission requested the formation of the T&S Subcommittee to answer the question: `` hould the US change the way in which it is storing used nuclear fuel... Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Office of...

  16. 75 FR 45608 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Science.gov (United States)

    2010-08-03

    ... the way in which it is storing used nuclear fuel and high level waste while one or more final disposal..., processing, and disposal of civilian and defense spent nuclear fuel and nuclear waste. The Co-chairs of the... Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Department...

  17. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Directory of Open Access Journals (Sweden)

    Wolfgang R Bauer

    Full Text Available In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  18. Analysis of flashing and swelling phenomena in tanks of nuclear power plants; the importance of bubble growth dynamics and bubble transport models with size tracking

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo A, E. [University of Caribe, Department of Basics Sciences and Engineering, Lote 1, Manzana 1, Region 78, esq. Fracc. Tabachines, 77500 Cancun, Quintana Roo (Mexico)]. E-mail: ecerezo@unicaribe.edu.mx; Munoz C, J.L. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2004-07-01

    This paper presents a non-equilibrium model to describe flashing phenomena in tanks and cooling pools. The present model is based on Watanabe's work that we have extended by developing a realistic model for the growth of bubbles. We have made the corresponding venting model, continuity equation, gas and liquid phase energy conservation equations for the model. This model takes into account both drag and virtual mass force. The dynamics of bubble growth plays an important role in two-phase phenomena such as flashing. In our model the growth rate is assumed to be limited by the heat conduction in the liquid. The results of the analytic model were compared with the experimental data of Watanabe [1]. The results have shown that the present model evaluates fairly accurately the pressure evolution, the void fraction and the swelling level of a tank.

  19. Mathematical modeling of kidney transport.

    Science.gov (United States)

    Layton, Anita T

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.

  20. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  1. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  2. Modeling and Simulation of Nuclear Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  3. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  4. Rotational nuclear models and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moya de Guerra, E.

    1986-05-01

    A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.

  5. Models and simulations of nuclear fuel materials properties

    Energy Technology Data Exchange (ETDEWEB)

    Stan, M. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)], E-mail: mastan@lanl.gov; Ramirez, J.C. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Cristea, P. [University of Bucharest, Faculty of Physics, Bucuresti-Magurele (Romania); Hu, S.Y.; Deo, C.; Uberuaga, B.P.; Srivilliputhur, S.; Rudin, S.P.; Wills, J.M. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2007-10-11

    To address the complexity of the phenomena that occur in a nuclear fuel element, a multi-scale method was developed. The method incorporates theory-based atomistic and continuum models into finite element simulations to predict heat transport phenomena. By relating micro and nano-scale models to the macroscopic equilibrium and non-equilibrium simulations, the predictive character of the method is improved. The multi-scale approach was applied to calculations of point defect concentration, helium bubbles formation, oxygen diffusivity, and simulations of heat and mass transport in UO{sub 2+x}.

  6. Nuclear transport of galectin-3 and its therapeutic implications

    Science.gov (United States)

    Funasaka, Tatsuyoshi; Raz, Avraham; Nangia-Makker, Pratima

    2014-01-01

    Galectin-3, a member of β-galactoside-binding gene family is a multi-functional protein, which regulates pleiotropic biological functions such as cell growth, cell adhesion, cell-cell interactions, apoptosis, angiogenesis and mRNA processing. Its unique structure enables it to interact with a plethora of ligands in a carbohydrate dependent or independent manner. Galectin-3 is mainly a cytosolic protein, but can easily traverse the intracellular and plasma membranes to translocate into the nucleus, mitochondria or get externalized. Depending on the cell type, specific experimental conditions in vitro, cancer type and stage, galectin-3 has been reported to be exclusively cytoplasmic, predominantly nuclear or distributed between the two compartments. In this review we have summarized the dynamics of galectin-3 shuttling between the nucleus and the cytoplasm, the nuclear transport mechanisms of galectin-3, how its specific interactions with the members of β-catenin signaling pathways affect tumor progression, and its implications as a therapeutic target. PMID:24657939

  7. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  8. CTCN: Colloid transport code -- nuclear; A user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R.

    1993-09-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential-algebraic equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential-algebraic systems.

  9. Colloid transport code-nuclear user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R. [New Mexico Univ., Albuquerque, NM (United States)

    1992-04-03

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems.

  10. Review of criteria for nuclear criticality safety control in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. T.; Smith, D. R.

    1978-01-01

    Basic elements in the review of criteria for nuclear criticality safety in transportation are the magnitudes of reactivity changes that may occur to a shipment of packages and those inherent in the regulatory procedure of assessment. The generic representation of criticality of reflected arrays of uncontained fissionable materials is used as a basis for comparison of packaged fissionable materials. The reactivities associated with array changes and perturbations representative of credible conditions that may occur in storage or transportation are summarized for air-spaced units of fissionable materials. Calculations of packaged fissionable material determined reactivities associated with similar changes to arrays of packages. Typical thermal insulating materials being studied are Celotex, wood, Foamglas, and a bonded vermiculite. The effect on the array neutron multiplication of these, with and without steel as an inner and outer container material, is examined. The present stage of the study has produced results illustrating the variable margin of subcriticality manifested by the criteria. Depending upon the packaging, mass loading and array reflector condition, the margin of subcriticality can be of the order of 1% in k/sub eff/.

  11. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  12. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    Science.gov (United States)

    Paris, Mark; Fuller, George; Grohs, Evan; Kishimoto, Chad; Vlasenko, Alexey

    2017-09-01

    We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear

  13. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead-lithium with the Self-consistent nucleation theory and surface tension corrections

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFoam(r) CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a cr...

  14. A Theoretic Model of Transport Logistics Demand

    Directory of Open Access Journals (Sweden)

    Natalija Jolić

    2006-01-01

    Full Text Available Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as highly qualitative, differentiated and derived.While researching transport phenomenon the implementationof models is inevitable and demand models highly desirable. Asa contribution to transport modelling this paper improves decisionmaking and planning in the transport logistics field.

  15. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions.

    Science.gov (United States)

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Ahmarani, Lena; Perreault, Claudine; Jacques, Danielle

    2012-08-01

    Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.

  16. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  17. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF... transport. (a) A general license is issued to any person to possess formula quantities of strategic...

  18. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario...

  19. Modeling news dissemination on nuclear issues

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Jose S.B.; Barroso, Antonio C.O.; Menezes, Mario O., E-mail: jsbrj@ime.usp.b, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Using a modified epidemiological model, the dissemination of news by media agents after the occurrence of large scale disasters was studied. A modified compartmented model was developed in a previous paper presented at INAC 2007. There it used to study to the Chernobyl's nuclear accident (1986) and the Concorde airplane crash (2000). Now the model has been applied to a larger and more diverse group of events - nuclear, non-nuclear and naturally caused disasters. To be comprehensive, old and recent events from various regions of the world were selected. A more robust news repository was used, and improved search techniques were developed to ensure that the scripts would not count false positive news. The same model was used but with improved non-linear embedded simulation optimization algorithms to generate the parameters of interest for our model. Individual parameters and some specific combination of them allow some interesting perceptions on how the nature of the accident / disaster gives rise to different profiles of growth and decay of the news. In our studies events involving nuclear causes generate news repercussion with more explosive / robust surge profiles and longer decaying tails than those of other natures. As a consequence of these differences, public opinion and policy makers are also much more sensitive to some issues than to others. The model, through its epidemiological parameters, shows in quantitative manner how 'nervous' the media content generators are with respect to nuclear installations and how resilient this negative feelings about nuclear is. (author)

  20. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  1. 75 FR 53686 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Science.gov (United States)

    2010-09-01

    ... question: ``[s]hould the US change the way in which it is storing used nuclear fuel and high level waste... Doc No: 2010-21867] DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of...

  2. 75 FR 43518 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Science.gov (United States)

    2010-07-26

    ... question: `` hould the US change the way in which it is storing used nuclear fuel and high level waste... see first-hand a shutdown reactor facility currently storing spent nuclear fuel pending final disposal... Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Department...

  3. Modeling nuclear parton distribution functions

    CERN Document Server

    Honkanen, H; Guzey, V

    2013-01-01

    The presence of nuclear medium and collective phenomena which involve several nucleons modify the parton distribution functions of nuclei (nPDFs) compared to those of a free nucleon. These modifications have been investigated by different groups using global analyses of high energy nuclear reaction world data resulting in modern nPDF parametrizations with error estimates, such as EPS09(s), HKN07 and nDS. These phenomenological nPDF sets roughly agree within their uncertainty bands, but have antiquarks for large-$x$ and gluons for the whole $x$-range poorly constrained by the available data. In the kinematics accessible at the LHC this has negative impact on the interpretation of the heavy-ion collision data, especially for the $p + A$ benchmarking runs. The EMC region is also sensitive to the proper definition of $x$, where the nuclear binding effects have to be taken into account, and for heavy nuclei one also needs to take into account that a fraction of the nucleus momentum is carried by the equivalent pho...

  4. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient.

  5. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex

    Science.gov (United States)

    Raveh, Barak; Karp, Jerome M.; Sparks, Samuel; Rout, Michael P.; Sali, Andrej; Cowburn, David

    2016-01-01

    Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport. PMID:27091992

  6. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    OpenAIRE

    Gnanasekar Munirathinam; Kalyanasundaram Ramaswamy

    2012-01-01

    Translationally controlled tumor protein (TCTP) lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO) motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into th...

  7. Towards consistent nuclear models and comprehensive nuclear data evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bouland, O [Los Alamos National Laboratory; Hale, G M [Los Alamos National Laboratory; Lynn, J E [Los Alamos National Laboratory; Talou, P [Los Alamos National Laboratory; Bernard, D [FRANCE; Litaize, O [FRANCE; Noguere, G [FRANCE; De Saint Jean, C [FRANCE; Serot, O [FRANCE

    2010-01-01

    The essence of this paper is to enlighten the consistency achieved nowadays in nuclear data and uncertainties assessments in terms of compound nucleus reaction theory from neutron separation energy to continuum. Making the continuity of theories used in resolved (R-matrix theory), unresolved resonance (average R-matrix theory) and continuum (optical model) rangcs by the generalization of the so-called SPRT method, consistent average parameters are extracted from observed measurements and associated covariances are therefore calculated over the whole energy range. This paper recalls, in particular, recent advances on fission cross section calculations and is willing to suggest some hints for future developments.

  8. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  9. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  10. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  11. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  12. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  13. Identification and Characterization of Potential Discharge Areas for Radionuclide Transport by Groundwater from a Nuclear Waste Repository in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [HydroResearch AB, Taeby (Sweden)], E-mail: sten.berglund@hydroresearch.se; Bosson, Emma; Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm (Sweden); Sassner, Mona [DHI Sverige AB, Stockholm (Sweden)

    2013-05-15

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  14. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  15. 75 FR 75641 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Science.gov (United States)

    2010-12-06

    ... Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION...'s designee, of certain shipments of irradiated reactor fuel and certain nuclear waste passing... notification to Native American Tribes of transportation of certain types of nuclear waste (64 FR...

  16. Multi-Fraction Bayesian Sediment Transport Model

    Directory of Open Access Journals (Sweden)

    Mark L. Schmelter

    2015-09-01

    Full Text Available A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.

  17. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  18. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  19. Nuclear Transparency in a Relativistic Quark Model

    CERN Document Server

    Iwama, T; Yazaki, K; Iwama, Tetsu; Kohama, Akihisa; Yazaki, Koichi

    1998-01-01

    We examine the nuclear transparency for the quasi-elastic ($e, e'p$) process at large momentum transfers in a relativistic quantum-mechanical model for the internal structure of the proton, using a relativistic harmonic oscillator model. A proton in a nuclear target is struck by the incident electron and then propagates through the residual nucleus suffering from soft interactions with other nucleons. We call the proton "dynamical" when we take into account of internal excitations, and "inert" when we freeze it to the ground state. When the dynamical proton is struck with a hard (large-momentum transfer) interaction, it shrinks, i.e., small-sized configuration dominates the process. It then travels through nuclear medium as a time-dependent mixture of intrinsic excited states and thus changing its size. Its absorption due to the soft interactions with nuclear medium depends on its transverse-size. Since the nuclear transparency is a measure of the absorption strength, we calculate it in our model for the dyna...

  20. Experimental test of nuclear magnetization distribution and nuclear structure models

    Energy Technology Data Exchange (ETDEWEB)

    Beirsdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez-Urrutia, J Crespo R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Utter, S. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-26

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron' s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to

  1. Business Models For Transport eBusiness

    OpenAIRE

    Dragan Cisic; Ivan Franciskovic; Ana Peric

    2003-01-01

    In this paper authors are presenting expectations from electronic commerce and its connotations on transport logistics. Based on trends, the relations between the companies in the international transport have to be strengthened using Internet business models. In the paper authors are investigating e-business information models for usage in transport

  2. Optimized $\\delta$ expansion for relativistic nuclear models

    CERN Document Server

    Krein, G I; Peres-Menezes, D; Nielsen, M; Pinto, M B

    1998-01-01

    The optimized $\\delta$-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the $\\lambda \\phi^4$ model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the $\\delta$ expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.

  3. Modeling energy transport in nanostructures

    Science.gov (United States)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  4. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.

    Science.gov (United States)

    Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W

    2015-10-20

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.

  5. Connexions for the nuclear geometrical collective model

    Science.gov (United States)

    Rosensteel, G.; Sparks, N.

    2015-11-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.

  6. Cholesterol transport in model membranes

    Science.gov (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  7. FOUNDATION OF NUCLEAR ALGEBRAIC MODELS

    Institute of Scientific and Technical Information of China (English)

    周孝谦

    1990-01-01

    Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.

  8. Organizational model of the nuclear sector

    Energy Technology Data Exchange (ETDEWEB)

    Metri, Paulo, E-mail: pmetri@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN/CGRC), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Brazilian Constitution prohibits private investment in many activities of the Nuclear Industry. Right now, it is in progress a constitutional amendment that allows private companies to build and operate nuclear power plants of its own. This work rescues the historical reasons that led the Congress of 1988 to choose the State owned model for this sector. In addition, the arguments that are used to propose the present changes are repeated here. As indicated in INAC 2015 website, 'sustainable development is supported by three pillars: social, economic and environmental'. Thus, the organizational model to be adopted for the Nuclear Sector must meet these requirements. The official objectives of the energy sector, as set out in the law 9,478, are remembered. New objectives, better established, and also adapted to the electrical subsector, are shown. Besides the use of these objectives to choose the sources and related technologies for the electric generation, they also can be used as evaluation criteria to help in the decision process of the organizational model for the Nuclear Sector. Acting in this way, it is ensured that social, economic and environmental requirements are being attended. Finally, if the developed evaluation criteria are applied, the impacts of each organizational model can be analyzed and preliminary conclusion and recommendation can be made. (author)

  9. Nuclear Choline Acetyltransferase Activates Transcription of a High-affinity Choline Transporter*

    OpenAIRE

    Matsuo, Akinori; Bellier, Jean-Pierre; Nishimura, Masaki; YASUHARA, Osamu; Saito, Naoaki; Kimura, Hiroshi

    2010-01-01

    Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter ...

  10. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Paris Mark

    2017-01-01

    Full Text Available We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN. Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties

  11. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  12. Used Fuel Testing Transportation Model

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LeDuc, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-25

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  13. Used Fuel Testing Transportation Model

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

    2014-09-24

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  14. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  15. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  16. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.

  17. Nuclear Structure Functions from Constituent Quark Model

    CERN Document Server

    Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin

    1999-01-01

    We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.

  18. Combinatorial nuclear level-density model

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Peter [Los Alamos National Laboratory; Aberg, Sven [LUND SWEDEN; Uhrenhoit, Henrik [LUND SWEDEN; Ickhikawa, Takatoshi [RIKEN

    2008-01-01

    A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: neutron separation energy level spacings, data on total level-density functions from the Oslo method and data on parity ratios.

  19. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  20. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory; Du, Shiyu [Los Alamos National Laboratory; Liu, Xiang-Yang [Los Alamos National Laboratory; Nerikar, Pankaj [IBM; Stanek, Christopher R. [Los Alamos National Laboratory; Tonks, Michael [Idaho National Laboratory; Millet, Paul [Idaho National Laboratory; Biner, Bulent [Idaho National Laboratory

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain

  1. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  2. Towards an efficient multiphysics model for nuclear reactor dynamics

    Directory of Open Access Journals (Sweden)

    Obaidurrahman K.

    2015-01-01

    Full Text Available Availability of fast computer resources nowadays has facilitated more in-depth modeling of complex engineering systems which involve strong multiphysics interactions. This multiphysics modeling is an important necessity in nuclear reactor safety studies where efforts are being made worldwide to combine the knowledge from all associated disciplines at one place to accomplish the most realistic simulation of involved phenomenon. On these lines coupled modeling of nuclear reactor neutron kinetics, fuel heat transfer and coolant transport is a regular practice nowadays for transient analysis of reactor core. However optimization between modeling accuracy and computational economy has always been a challenging task to ensure the adequate degree of reliability in such extensive numerical exercises. Complex reactor core modeling involves estimation of evolving 3-D core thermal state, which in turn demands an expensive multichannel based detailed core thermal hydraulics model. A novel approach of power weighted coupling between core neutronics and thermal hydraulics presented in this work aims to reduce the bulk of core thermal calculations in core dynamics modeling to a significant extent without compromising accuracy of computation. Coupled core model has been validated against a series of international benchmarks. Accuracy and computational efficiency of the proposed multiphysics model has been demonstrated by analyzing a reactivity initiated transient.

  3. Light ion components of the galactic cosmic rays: nuclear interactions and transport theory.

    Science.gov (United States)

    Cucinotta, F A; Townsend, L W; Wilson, J W; Shinn, J L; Badhwar, G D; Dubey, R R

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy ion induced reactions. In the primary GCR, 4He is the most abundant nucleus after 1H. However, there are also a substantial fluxes of 2H and 3He. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragmentation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  4. Overview of transportation in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rhoads, R.E.

    1977-05-01

    This document presents a review of current transportation regulations, a description of transportation systems currently in use, a discussion of systems that are anticipated to be developed in the future and a projection of shipments and shipping distances through the year 2000. (LK)

  5. The role of ligand density and size in mediating quantum dot nuclear transport.

    Science.gov (United States)

    Tang, Peter S; Sathiamoorthy, Sarmitha; Lustig, Lindsay C; Ponzielli, Romina; Inamoto, Ichiro; Penn, Linda Z; Shin, Jumi A; Chan, Warren C W

    2014-10-29

    Studying the effects of the physicochemical properties of nanomaterials on cellular uptake, toxicity, and exocytosis can provide the foundation for designing safer and more effective nanoparticles for clinical applications. However, an understanding of the effects of these properties on subcellular transport, accumulation, and distribution remains limited. The present study investigates the effects of surface density and particle size of semiconductor quantum dots on cellular uptake as well as nuclear transport kinetics, retention, and accumulation. The current work illustrates that cellular uptake and nuclear accumulation of nanoparticles depend on surface density of the nuclear localization signal (NLS) peptides with nuclear transport reaching a plateau at 20% surface NLS density in as little as 30 min. These intracellular nanoparticles have no effects on cell viability up to 72 h post treatment. These findings will set a foundation for engineering more sophisticated nanoparticle systems for imaging and manipulating genetic targets in the nucleus.

  6. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  7. Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport

    Directory of Open Access Journals (Sweden)

    Steward Ruth

    2005-08-01

    Full Text Available Abstract Background Transport of macromolecules into and out of the nucleus is a highly regulated process. The RanGTP/RanGDP gradient controls the trafficking of molecules exceeding the diffusion limit of the nuclear pore across the nuclear envelope. Results We found genetic interaction between genes establishing the Ran gradient, nuclear transport factor 2 (ntf-2, Ran GTPase activating protein (Sd, and the gene encoding Drosophila Profilin, chickadee (chic. The severe eye phenotype caused by reduction of NTF2 is suppressed by loss of function mutations in chic and gain of function mutations in Sd (RanGAP. We show that in chic mutants, as in Sd-RanGAP, nuclear export is impaired. Conclusion Our data suggest that Profilin and the organization of the actin cytoskeleton play an important role in nuclear trafficking.

  8. Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

    Science.gov (United States)

    Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar

    2016-02-01

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  9. Simulation model for the WIPP transportation and delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, F. [Westinghouse Electric Corp., Carlsbad, NM (United States); Lippis, J. [USDOE Albuquerque Operations Office, Carlsbad, NM (United States). Waste Isolation Pilot Plant Project Office; Quinn, D. [Systems Modeling Corp., Sewickley, PA (United States)

    1992-12-31

    The United States Department of Energy`s (DOE`s) Waste Isolation Pilot Plant (WIPP) is a first of its kind repository designed to demonstrate safe disposal of transuranic (TRU) waste in bedded salt 2150 feet underground. Contact-handled (CH) TRU waste, waste with low beta or gamma emitting radionuclides that can be handled without protective clothing or additional shielding, will be transported to WIPP in Nuclear Regulatory Commission (NRC) certified containers known as TRUPACT-IIs. The TRUPACT-II is the cornerstone of a transportation system designed for extraordinarily safe transport of TRU waste from ten DOE production and research sites to WIPP. This paper describes the complexities of the transportation system and discusses how a simulation model can be utilized as a tool to develop economical operating parameters for the system.

  10. Nuclear level density: Shell-model approach

    Science.gov (United States)

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  11. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  12. Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Jens Ole

    2010-02-02

    The radioactive noble gas krypton-85 is released into the atmosphere during reprocessing of spent nuclear fuel or irradiated breeding targets. This is a necessary step for plutonium separation. Therefore the {sup 85}Kr signature of reprocessing could possibly be used for the detection of undeclared nuclear facilities producing nuclear weaponusable material. The {sup 85}Kr content of the atmosphere has grown over the last decades as the emissions from military and civilian nuclear industry could not be compensated by the decay with a half-life of 10.76 years. In this study, the global {sup 85}Kr background distribution due to emissions of known reprocessing facilities for the period from 1971 until 2006 was simulated using the atmospheric general circulation model ECHAM5 applying the newest available annual emission data. The convective tracer transport scheme and the operator splitting for the physical calculations in the model were modified in order to guarantee physically correct results for tracer point sources, in particular non negative concentrations. An on-line routine controlling the {sup 85}Kr -budget in the model enforced exact mass conservation. The results of the simulation were evaluated by extensive comparison with measurements performed by the German Federal Office for Radiation Protection with very good agreement at most observation sites except those in the direct vicinity of {sup 85}Kr sources. Of particular interest for the {sup 85}Kr detection potential was the variability of {sup 85}Kr background concentrations which was evaluated for the first time in a global model. In addition, the interhemispheric transport as simulated by ECHAM5 was analyzed using a two-box model providing a mean exchange time of τ {sub ex} = 10.5 months. The analysis of τ{sub ex} over simulated 35 years indicates that in years with strong South Asian or African Monsoon the interhemispheric transport is faster during the monsoon season. A correlation analysis of

  13. Computational modeling of nuclear thermal rockets

    Science.gov (United States)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  14. Regional, national and international security requirements for the transport of nuclear cargo by sea

    Energy Technology Data Exchange (ETDEWEB)

    Booker, P.A.; Barnwell, I. [Marine Operations, BNFL International Transport and British Nuclear Group Security (United Kingdom)

    2004-07-01

    Since the beginning of the nuclear age in the 1940's, the world has focused on the immense possibilities of nuclear power with both its destructive and productive capabilities. The civil nuclear industry in the UK, as in most nuclear weapons states, grew from the military facilities built in the post war years under the political climate of the Cold War. In the early years of the industry, civil and defence nuclear facilities were inextricably linked both in public perceptions and the regulatory infrastructure under which they operated. The nuclear arms race and the spread of communism overshadowed people's perceptions of there being two separate uses of nuclear material. This was a double edged sword which initially allowed the industry to develop largely unhindered by public concerns but latterly meant the industry could not break away from its roots and to many is still perceived as a dangerous and destructive force. Regulatory frameworks governing all aspects of the industry have developed both nationally and internationally driven by valid public concerns, political agendas and an international consensus that the unregulated use of nuclear material has catastrophic possibilities on an international scale. With the internationalisation of the civil nuclear industry and the costs associated with developing facilities to fully support each stage of the fuel cycle, from enrichment, fuel manufacturing, reprocessing and waste remediation, it became inevitable that a transport infrastructure would develop to make best use of the facilities. Regulations, both national and international are implicit in ensuring the security of nuclear material in transit. Due to the physical size of many of the irradiated fuel packages and implications of the changes to transport safety regulations, international transports of nuclear material, other than within mainland Europe, is predominantly carried out by sea.

  15. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  16. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland wate

  17. Radioecological consequences of a potential accident during transport of spent nuclear fuel along an Arctic coastline.

    Science.gov (United States)

    Iosjpe, M; Reistad, O; Amundsen, I B

    2009-02-01

    This article presents results pertaining to a risk assessment of the potential consequences of a hypothetical accident occurring during the transportation by ship of spent nuclear fuel (SNF) along an Arctic coastline. The findings are based on modelling of potential releases of radionuclides, radionuclide transport and uptake in the marine environment. Modelling work has been done using a revised box model developed at the Norwegian Radiation Protection Authority. Evaluation of the radioecological consequences of a potential accident in the southern part of the Norwegian Current has been made on the basis of calculated collective dose to man, individual doses for the critical group, concentrations of radionuclides in seafood and doses to marine organisms. The results of the calculations indicate a large variability in the investigated parameters above mentioned. On the basis of the calculated parameters the maximum total activity ("accepted accident activity") in the ship, when the parameters that describe the consequences after the examined potential accident are still in agreement with the recommendations and criterions for protection of the human population and the environment, has been evaluated.

  18. Modelling Nuclear Effects in Neutrino Scattering

    CERN Document Server

    Leitner, T; Mosel, U

    2006-01-01

    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Delta(1232) peaks. For neutrino nucleon collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.

  19. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  20. Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport.

    Science.gov (United States)

    Snow, Chelsi J; Dar, Ashraf; Dutta, Anindya; Kehlenbach, Ralph H; Paschal, Bryce M

    2013-05-13

    The RanGTPase acts as a master regulator of nucleocytoplasmic transport by controlling assembly and disassembly of nuclear transport complexes. RanGTP is required in the nucleus to release nuclear localization signal (NLS)-containing cargo from import receptors, and, under steady-state conditions, Ran is highly concentrated in the nucleus. We previously showed the nuclear/cytoplasmic Ran distribution is disrupted in Hutchinson-Gilford Progeria syndrome (HGPS) fibroblasts that express the Progerin form of lamin A, causing a major defect in nuclear import of the protein, translocated promoter region (Tpr). In this paper, we show that Tpr import was mediated by the most abundant import receptor, KPNA2, which binds the bipartite NLS in Tpr with nanomolar affinity. Analyses including NLS swapping revealed Progerin did not cause global inhibition of nuclear import. Rather, Progerin inhibited Tpr import because transport of large protein cargoes was sensitive to changes in the Ran nuclear/cytoplasmic distribution that occurred in HGPS. We propose that defective import of large protein complexes with important roles in nuclear function may contribute to disease-associated phenotypes in Progeria.

  1. Nuclear materials transport worldwide. Greenpeace report 2. Der weltweite Atomtransport. Greenpeace Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Stellpflug, J.

    1987-01-01

    This Greenpeace report shows: nuclear materials transport is an extremely hazardous business. There is no safe protection against accidents, kidnapping, or sabotage. Any moment of a day, at any place, a nuclear transport accident may bring the world to disaster, releasing plutonium or radioactive fission products to the environment. Such an event is not less probable than the MCA at Chernobyl. The author of the book in hand follows the secret track of radioactive materials around the world, from uranium mines to the nuclear power plants, from reprocessing facilities to the waste repositories. He explores the routes of transport and the risks involved, he gives the names of transport firms and discloses incidents and carelessness, tells about damaged waste drums and plutonium that 'disappeared'. He also tells about worldwide, organised resistance to such nuclear transports, explaining the Greenpeace missions on the open sea, or the 'day X' operation at the Gorleben site, informing the reader about protests and actions for a world freed from the threat of nuclear energy.

  2. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard...... deviation of the step size is large compared to its value when the gradient is below critical. For symmetric as well as asymmetric off-axis fueling, the model is capable of producing profiles peaking at the axis. Additionally, profile consistency is obtained over a broad range of source strengths....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  3. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    Science.gov (United States)

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  4. The Nuclear Yukawa Model on a Lattice

    CERN Document Server

    de Soto, F; Carbonell, J

    2011-01-01

    We present the results of the quantum field theory approach to nuclear Yukawa model obtained by standard lattice techniques. We have considered the simplest case of two identical fermions interacting via a scalar meson exchange. Calculations have been performed using Wilson fermions in the quenched approximation. We found the existence of a critical coupling constant above which the model cannot be numerically solved. The range of the accessible coupling constants is below the threshold value for producing two-body bound states. Two-body scattering lengths have been obtained and compared to the non relativistic results.

  5. Nuclear fragmentation induced by low-energy antiprotons within a microscopic transport approach

    CERN Document Server

    Feng, Zhao-Qing

    2016-01-01

    Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the nuclear fragmentation induced by low-energy antiprotons has been investigated thoroughly. A coalescence approach is developed for constructing the primary fragments in phase space. The secondary decay process of the fragments is described by the well-known statistical code. It is found that the localized energy released in antibaryon-baryon annihilation is deposited in a nucleus mainly via pion-nucleon collisions, which leads to the emissions of pre-equilibrium particles, fission, evaporation of nucleons and light fragments etc. The strangeness exchange reactions dominate the hyperon production. The averaged mass loss increases with the mass number of target nucleus. A bump structure in the domain of intermediate mass for heavy targets appears owing to the contribution of fission fragments.

  6. Nuclear fragmentation induced by low-energy antiprotons within a microscopic transport approach

    Science.gov (United States)

    Feng, Zhao-Qing

    2016-12-01

    Within the framework of the Lanzhou quantum molecular-dynamics transport model, the nuclear fragmentation induced by low-energy antiprotons has been investigated thoroughly. A coalescence approach is developed for constructing the primary fragments in phase space. The secondary decay process of the fragments is described by a well-known statistical code. It is found that the localized energy released in antibaryon-baryon annihilation is deposited in a nucleus mainly via pion-nucleon collisions, which leads to the emissions of pre-equilibrium particles, fission, evaporation of nucleons, light fragments, etc. The strangeness exchange reactions dominate the hyperon production. The averaged mass loss increases with the mass number of target nucleus. A bump structure in the domain of intermediate mass for heavy targets appears owing to the contribution of fission fragments.

  7. Trans-oceanic transport of 137Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China.

    Science.gov (United States)

    Wai, Ka-Ming; Yu, Peter K N

    2015-03-01

    A Lagrangian model was adopted to assess the potential impact of (137)Cs released from hypothetical Fukushima-like accidents occurring on three potential nuclear power plant sites in Southern China in the near future (planned within 10 years) in four different seasons. The maximum surface (0-500 m) (137)Cs air concentrations would be reached 10 Bq m(-3) near the source, comparable to the Fukushima case. In January, Southeast Asian countries would be mostly affected by the radioactive plume due to the effects of winter monsoon. In April, the impact would be mainly on Southern and Northern China. Debris of radioactive plume (~1 mBq m(-3)) would carry out long-range transport to North America. The area of influence would be the smallest in July due to the frequent and intense wet removal events by trough of low pressure and tropical cyclone. The maximum worst-case areas of influence were 2382000, 2327000, 517000 and 1395000 km(2) in January, April, July and October, respectively. Prior to the above calculations, the model was employed to simulate the trans-oceanic transport of (137)Cs from the Fukushima nuclear accident. Observed and modeled (137)Cs concentrations were comparable. Sensitivity runs were performed to optimize the wet scavenging parameterization. The adoption of higher-resolution (1° × 1°) meteorological fields improved the prediction. The computed large-scale plume transport pattern over the Pacific Ocean was compared with that reported in the literature.

  8. Few-body models for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    P. Descouvemont

    2014-02-01

    Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  9. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  10. Common Cause Failure Modeling: Aerospace Versus Nuclear

    Science.gov (United States)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  11. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    Science.gov (United States)

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena; Makedonska, Nataliia; Hyman, Jeffrey D.; Klise, Katherine; Viswanathan, Hari S.; Wang, Yifeng

    2017-10-01

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. We compare DFN and ECM in terms of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. We identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.

  12. Uncertainty in tsunami sediment transport modeling

    Science.gov (United States)

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  13. Modelling transport of graded sediment under partial transport conditions

    NARCIS (Netherlands)

    Tuijnder, Arjan; Ribberink, Jan S.; Hulscher, Suzanne J.M.H.; Weerts, H.J.T.; Ritsema, I.L; van Os, A.G.

    2006-01-01

    Tentative plans are presented for research on the modelling of i) selective sediment transport in suspension and as bed-load, and ii) large-scale morphology in mixed sand-gravel bed rivers. Since the planning of the research is still in its early stages, the plans are flexible. Please feel free to

  14. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  15. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  16. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    Directory of Open Access Journals (Sweden)

    Gnanasekar Munirathinam

    2012-01-01

    Full Text Available Translationally controlled tumor protein (TCTP lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.

  17. Charge-transport model for conducting polymers

    Science.gov (United States)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2016-11-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  18. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  19. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  20. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  1. A Historical Review of the Safe Transport of Spent Nuclear Fuel, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Kevin J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pope, Ronald [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report is a revision to M3 milestone M3FT-16OR090402028 for the former Nuclear Fuels Storage and Transportation Planning Project (NFST), “Safety Record of SNF Shipments.” The US Department of Energy (DOE) has since established the Office of Integrated Waste Management (IWM), which builds on the work begun by NFST, to develop an integrated waste management system for spent nuclear fuel (SNF), including the developm

  2. Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition?

    Science.gov (United States)

    Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Mohammad, Ramzi M; Azmi, Asfar S

    2014-08-01

    Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) play central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while exportin 1 (Xpo1) also known as chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Involvement of Rab28 in NF-κB nuclear transport in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    Full Text Available Our previous proteomic analysis revealed the expression of Rab28 in arteries of rats. However, the function of Rab28 in mammalian cells, and its role in vessels are still unknown. Coarctation of abdominal aorta above left kidney artery in rat was used as hypertensive animal model. FX-4000 cyclic strain loading system was used to mimic the mechanical condition on vascular cells during hypertension in vitro. Immunofluorescence and co-immunoprecipitation (Co-IP were used to identify distribution and interaction of Rab28 and nuclear factor kappa B (NF-κB. Rab28 expression was significantly increased in carotid arteries of hypertensive rats. High cyclic strain induced Rab28 expression of endothelial cells (ECs through a paracrine control of vascular smooth muscles cells (VSMCs, which at least partly via angiotensin II (Ang II. Rab28 knockdown decreased proliferation of ECs, while increased apoptosis and migration. Immunofluorescence revealed that Ang II stimulated the co-translocation of Rab28 and NF-κB from cytoplasm into nucleus. Knockdown of Rab28 attenuated NF-κB activation. Co-IP of NF-κB p65 and Rab28 indicated their interaction. Our results revealed that Rab28, as a novel regulator of NF-κB nuclear transport, might participate in the disturbance of EC homeostasis.

  4. Potential role of biotic transport models in low-level-waste management. [Shallow land burial

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Soldat, J.K.; Cadwell, L.L.; McKenzie, D.H.

    1982-06-15

    This paper is a summary of the initial results of a study being conducted for the US Nuclear Regulatory Commission (NRC) to determine the relevance of biotic pathways to the regulation of nuclear waste disposal. Biotic transport is defined as the actions of plants and animals that result in the transport of radioactive materials from a LLW burial ground to a location where they can enter exposure pathways to man. A critical review of the role of modeling in evaluating biotic transport is given. Both current applications and the need for future modeling development are discussed.

  5. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Science.gov (United States)

    Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047

  6. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  7. Polar auxin transport: models and mechanisms

    NARCIS (Netherlands)

    Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.

    2013-01-01

    Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her

  8. Effect of colchicine on mammalian liver nuclear envelope and on nucleo-cytoplasmic RNA transport.

    Science.gov (United States)

    Agutter, P S; Suckling, K E

    1982-09-27

    The binding of colchicine to nuclear envelopes was studied in order to elucidate the mechanism whereby this compound inhibits nucleocytoplasmic RNA transport. The results suggest that a single class of colchicine-binding site (dissociation constant=approx. 0.7 mM, concentration=approx. 330 nmol colchicine/mg protein) is localised in the nuclear periphery (pore-lamina) and that binding to these sites effects a constriction of the pore-complexes with concomitant inhibition of RNA egress and disordering of the nuclear membrane phospholipid bilayers.

  9. Study of minimum-weight highway transporters for spent nuclear fuel casks: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hoess, J.A.; Drago, V.J.

    1989-05-01

    There are federal and state limits on the maximum tractor-trailer- payload combination and individual axle loads permissible on US highways. These can generally be considered as two sets, i.e., legal-weight and overweight limits. The number of individual shipments required will decrease as the capacity of the spent nuclear fuel cask increases. Thus, there is an incentive for identifying readily available minimum-weight tractors and trailers capable of safely and reliably transporting as large a cask as possible without exceeding the legal gross combination weight (GCW) of 80,000 lb or selected overweight GCW limit of 110,000 lb. This study identifies options for commercially available heavy-duty on-highway tractors and trailers for transporting proposed future loaded spent nuclear fuel casks. Loaded cask weights of 56,000 and 80,000 lb were selected as reference design points for the legal-weight and overweight transporters, respectively. The technical data on tractor and trailer characteristics obtained indicate that it is possible to develop a tractor-trailer combination, tailored for spent nuclear fuel transportation service, utilizing existing technology and commercially available components, capable of safely and reliably transporting 56,000 and 80,000-lb spent nuclear fuel casks without exceeding GCWs of 80,000 and 10,000 lb, respectively. 4 figs., 14 tabs.

  10. Mathematical Modeling for Simulation of Nuclear Reactor Analysis

    OpenAIRE

    Salah Ud-Din Khan; Shahab Ud-Din Khan

    2013-01-01

    In this paper, we have developed a mathematical model for the nuclear reactor analysis to be implemented in the nuclear reactor code. THEATRe is nuclear reactor analysis code which can only work for the cylindrical type fuel reactor and cannot applicable for the plate type fuel nuclear reactor. Therefore, the current studies encompasses on the modification of THEATRe code for the plate type fuel element. This mathematical model is applicable to the thermal analysis of the reactor which is ver...

  11. Concept Layout Model of Transportation Terminals

    Directory of Open Access Journals (Sweden)

    Li-ya Yao

    2012-01-01

    Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.

  12. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  13. Boltzmann Transport in Hybrid PIC HET Modeling

    Science.gov (United States)

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...produced a variety of self-consistent electron swarm codes, such as the Magboltz code, focused on directly solving the steady Boltzmann trans-port...Std. 239.18 Boltzmann transport in hybrid PIC HET modeling IEPC-2015- /ISTS-2015-b- Presented at Joint Conference of 30th International

  14. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B.

    Science.gov (United States)

    Mosammaparast, Nima; Ewart, Courtney S; Pemberton, Lucy F

    2002-12-02

    Import of core histones into the nucleus is a prerequisite for their deposition onto DNA and the assembly of chromatin. Here we demonstrate that nucleosome assembly protein 1 (Nap1p), a protein previously implicated in the deposition of histones H2A and H2B, is also involved in the transport of these two histones. We demonstrate that Nap1p can bind directly to Kap114p, the primary karyopherin/importin responsible for the nuclear import of H2A and H2B. Nap1p also serves as a bridge between Kap114p and the histone nuclear localization sequence (NLS). Nap1p acts cooperatively to increase the affinity of Kap114p for these NLSs. Nuclear accumulation of histone NLS-green fluorescent protein (GFP) reporters was decreased in deltanap1 cells. Furthermore, we demonstrate that Nap1p promotes the association of the H2A and H2B NLSs specifically with the karyopherin Kap114p. Localization studies demonstrate that Nap1p is a nucleocytoplasmic shuttling protein, and genetic experiments suggest that its shuttling is important for maintaining chromatin structure in vivo. We propose a model in which Nap1p links the nuclear transport of H2A and H2B to chromatin assembly.

  15. Hydrologic modeling of pathogen fate and transport.

    Science.gov (United States)

    Dorner, Sarah M; Anderson, William B; Slawson, Robin M; Kouwen, Nicholas; Huck, Peter M

    2006-08-01

    A watershed-scale fate and transport model has been developed for Escherichia coli and several waterborne pathogens: Cryptosporidiumspp., Giardiaspp., Campylobacter spp, and E. coli O157:H7. The objectives were to determine the primary sources of pathogenic contamination in a watershed used for drinking water supply and to gain a greater understanding of the factors that most influence their survival and transport. To predict the levels of indicator bacteria and pathogens in surface water, an existing hydrologic model, WATFLOOD, was augmented for pathogen transport and tested on a watershed in Southwestern Ontario, Canada. The pathogen model considered transport as a result of overland flow, subsurface flow to tile drainage systems, and in-stream routing. The model predicted that most microorganisms entering the stream from land-based sources enter the stream from tile drainage systems rather than overland transport. Although the model predicted overland transport to be rare, when it occurred, it corresponded to the highest observed and modeled microbial concentrations. Furthermore, rapid increases in measured E. coli concentrations during storm events suggested that the resuspension of microorganisms from stream sediments may be of equal or greater importance than land-based sources of pathogens.

  16. Computational modelling flow and transport

    NARCIS (Netherlands)

    Stelling, G.S.; Booij, N.

    1999-01-01

    Lecture notes CT wa4340. Derivation of equations using balance principles; numerical treatment of ordinary differential equations; time dependent partial differential equations; the strucure of a computer model:DUFLO; usage of numerical models.

  17. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

  18. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein

    DEFF Research Database (Denmark)

    Staresincic, Lidija; Walker, Jane; Dirac-Svejstrup, A Barbara

    2011-01-01

    transport of RNAPII. Surprisingly, we were unable to detect interactions between Npa3 and proteins in the classical importin a/ß pathway for nuclear import. Interestingly, Npa3-RNAPII binding is significantly increased by the addition of GTP or its slowly hydrolyzable analogue guanosine 5'-3-O...

  19. Trans-oceanic transport of {sup 137}Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Ka-Ming, E-mail: bhkmwai@cityu.edu.hk [Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI (United States); Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Yu, Peter K.N. [Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-03-01

    A Lagrangian model was adopted to assess the potential impact of {sup 137}Cs released from hypothetical Fukushima-like accidents occurring on three potential nuclear power plant sites in Southern China in the near future (planned within 10 years) in four different seasons. The maximum surface (0–500 m) {sup 137}Cs air concentrations would be reached 10 Bq m{sup −3} near the source, comparable to the Fukushima case. In January, Southeast Asian countries would be mostly affected by the radioactive plume due to the effects of winter monsoon. In April, the impact would be mainly on Southern and Northern China. Debris of radioactive plume (∼ 1 mBq m{sup −3}) would carry out long-range transport to North America. The area of influence would be the smallest in July due to the frequent and intense wet removal events by trough of low pressure and tropical cyclone. The maximum worst-case areas of influence were 2382000, 2327000, 517000 and 1395000 km{sup 2} in January, April, July and October, respectively. Prior to the above calculations, the model was employed to simulate the trans-oceanic transport of {sup 137}Cs from the Fukushima nuclear accident. Observed and modeled {sup 137}Cs concentrations were comparable. Sensitivity runs were performed to optimize the wet scavenging parameterization. The adoption of higher-resolution (1° × 1°) meteorological fields improved the prediction. The computed large-scale plume transport pattern over the Pacific Ocean was compared with that reported in the literature. - Highlights: • A Lagrangian model was used to predict the dispersion of {sup 137}Cs from plant accident. • Observed and modeled {sup 137}Cs concentrations were comparable for the Fukushima accident. • The maximum surface concentrations could reach 10 Bq m{sup −3} for the hypothetical case. • The hypothetical radiative plumes could impact E/SE Asia and N. America.

  20. Molecular model of the neural dopamine transporter

    Science.gov (United States)

    Ravna, Aina Westrheim; Sylte, Ingebrigt; Dahl, Svein G.

    2003-05-01

    The dopamine transporter (DAT) regulates the action of dopamine by reuptake of the neurotransmitter into presynaptic neurons, and is the main molecular target of amphetamines and cocaine. DAT and the Na+/H+ antiporter (NhaA) are secondary transporter proteins that carry small molecules across a cell membrane against a concentration gradient, using ion gradients as energy source. A 3-dimensional projection map of the E. coli NhaA has confirmed a topology of 12 membrane spanning domains, and was previously used to construct a 3-dimensional NhaA model with 12 trans-membrane α-helices (TMHs). The NhaA model, and site directed mutagenesis data on DAT, were used to construct a detailed 3-dimensional DAT model using interactive molecular graphics and empiric force field calculations. The model proposes a dopamine transport mechanism involving TMHs 1, 3, 4, 5, 7 and 11. Asp79, Tyr252 and Tyr274 were the primary cocaine binding residues. Binding of cocaine or its analogue, (-)-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (CFT), seemed to lock the transporter in an inactive state, and thus inhibit dopamine transport. The present model may be used to design further experimental studies of the molecular structure and mechanisms of DAT and other secondary transporter proteins.

  1. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...... the uncertainty propagation pattern over time specific for key model outputs becomes strategically important. 1 Manzo, S., Nielsen, O. A. & Prato, C. G. (2014). The Effects of uncertainty in speed-flow curve parameters on a large-scale model. Transportation Research Record, 1, 30-37. 2 Manzo, S., Nielsen, O. A...

  2. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    Science.gov (United States)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  3. Kinetic models for nucleocytoplasmic transport of messenger RNA.

    Science.gov (United States)

    Schröder, H C; Müller, W E; Agutter, P S

    1995-05-21

    Much is known about the mechanism by which mRNAs cross the nuclear envelope (the translocation stage of nucleocytoplasmic transport), but far less is known about the preceding (intranuclear migration/release) and succeeding (cytoplasmic binding) stages. Therefore, existing information suffices for articulating detailed kinetic models of translocation, but not models for the overall mRNA transport process. In this paper, we show that simple kinetic models of translocation can (i) accommodate data about nucleocytoplasmic distributions of endogenous transcripts; (ii) predict the overall effects on these distributions of effectors such as insulin and epidermal growth factor; (iii) throw some light on the mechanism(s) of action of the HIV-1 protein Rev and produce experimentally testable predictions about this mechanism; and (iv) account for the action of influenza virus NS1 protein. However, the simplest forms of translocation models apparently fail to account for some properties of viral regulators such as HIV Rev and adenovirus E1B-E4 complex. To elucidate these topics, less narrowly focused models of mRNA transport are required, describing intranuclear binding/release as well as translocation. On the basis of our examination of translocation models, we suggest some criteria that the requisite broadly based models must satisfy.

  4. Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins.

    Science.gov (United States)

    Yoshimura, Shige H; Kumeta, Masahiro; Takeyasu, Kunio

    2014-12-02

    Karyopherin β family proteins mediate the nuclear/cytoplasmic transport of various proteins through the nuclear pore complex (NPC), although they are substantially larger than the size limit of the NPC.To elucidate the molecular mechanism underlying this paradoxical function, we focused on the unique structures called HEAT repeats, which consist of repetitive amphiphilic α helices. An in vitro transport assay and FRAP analyses demonstrated that not only karyopherin β family proteins but also other proteins with HEAT repeats could pass through the NPC by themselves, and serve as transport mediators for their binding partners. Biochemical and spectroscopic analyses and molecular dynamics simulations of purified HEAT-rich proteins revealed that they interact with hydrophobic groups, including phenyl and alkyl groups, and undergo reversible conformational changes in tertiary structures, but not in secondary structures. These results show that conformational changes in the flexible amphiphilic motifs play a critical role in translocation through the NPC.

  5. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Sacit M [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  6. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  7. Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden)

    Science.gov (United States)

    Selroos, Jan-Olof; Painter, Scott L.

    2012-12-01

    The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500 m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segments in fractured rock, deformation zones, backfilled tunnels, and near-surface soils. Several simplifications of these complex migration pathways were used in the assessments of repository performance that supported the license application. Specifically, in the geosphere transport calculations, radionuclide transport in soils and tunnels was neglected, and deformation zones were assumed to have transport characteristics of fractured rock. The effects of these simplifications on the projected performance of the geosphere barrier system are addressed. Geosphere performance is shown to be sensitive to how transport characteristics of deformation zones are conceptualized and incorporated into the model. Incorporation of advective groundwater travel time within backfilled tunnels reduces radiological dose from non-sorbing radionuclides such as I-129, while sorption in near-surface soils reduces radiological doses from sorbing radionuclides such as Ra-226. These results help quantify the degree to which geosphere performance was pessimistically assessed, and provide some guidance on how future studies to reduce uncertainty in geosphere performance may be focused.

  8. Computer Generated Cardiac Model For Nuclear Medicine

    Science.gov (United States)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  9. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    Science.gov (United States)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  10. Real time model for public transportation management

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2014-03-01

    Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers.  Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.

  11. Modeling Deep Burn TRISO Particle Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  12. Modeling Deep Burn TRISO particle nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M., E-mail: besmanntm@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Stoller, R.E., E-mail: stollerre@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Samolyuk, G., E-mail: samolyukgd@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Schuck, P.C., E-mail: schuckpc@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Golubov, S.I., E-mail: golubovsi@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Rudin, S.P., E-mail: srudin@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wills, J.M., E-mail: jxw@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Coe, J.D., E-mail: jcoe@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wirth, B.D., E-mail: bdwirth@utk.edu [University of Tennessee, Knoxville, TN 37996-0750 (United States); Kim, S., E-mail: sungtae@cae.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Morgan, D.D., E-mail: ddmorgan@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Szlufarska, I., E-mail: izabela@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States)

    2012-11-15

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  13. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  14. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Best; T. Winnard; S. Ross; R. Best

    2001-08-17

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  15. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    Science.gov (United States)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  16. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive

  17. Transport properties site descriptive model. Guidelines for evaluation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [WSP Environmental, Stockholm (Sweden); Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive

  18. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    -of-successive-averages (MSA) have been proposed. Convergence of the MSA under fairly weak regularity conditions was shown in Robbins and Monro (1951). The iteration between demand and assignment ? the external equilibrium ? are in many models either decoupled or follow a very simple iteration pattern. However, as demand...

  19. An improved nuclear mass model: FRDM (2012)

    Science.gov (United States)

    Moller, Peter

    2011-10-01

    We have developed an improved nuclear mass model which we plan to finalize in 2012, so we designate it FRDM(2012). Relative to our previous mass table in 1995 we do a full four-dimensional variation of the shape coordinates EPS2, EPS3, EPS4, and EPS6, we consider axial asymmetric shape degrees of freedom and we vary the density symmetry parameter L. Other additional features are also implemented. With respect to the Audi 2003 data base we now have an accuracy of 0.57 MeV. We have carefully tested the extrapolation properties of the new mass table by adjusting model parameters to limited data sets and testing on extended data sets and find it is highly reliable in new regions of nuclei. We discuss what the remaining differences between model calculations and experiment tell us about the limitations of the currently used effective single-particle potential and possible extensions. DOE No. DE-AC52-06NA25396.

  20. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  1. The nuclear transport capacity of a human-pancreatic ribonuclease variant is critical for its cytotoxicity.

    Science.gov (United States)

    Tubert, Pere; Rodríguez, Montserrat; Ribó, Marc; Benito, Antoni; Vilanova, Maria

    2011-10-01

    We have previously described a human pancreatic-ribonuclease variant, named PE5, which carries a non-contiguous extended bipartite nuclear localization signal. This signal comprises residues from at least three regions of the protein. We postulated that the introduction of this signal in the ribonuclease provides it with cytotoxic activity because although the variant poorly evades the ribonuclease inhibitor in vitro, it is routed to the nucleus, which is devoid of the inhibitor. In this work, we have investigated the relationship between the cytotoxicity produced by PE5 and its ability to reach the nucleus. First, we show that this enzyme, when incubated with HeLa cells, specifically cleaves nuclear RNA while it leaves cytoplasmic RNA unaffected. On the other hand, we have created new variants in which the residues of the nuclear localization signal that are important for the nuclear transport have been replaced. As expected, the individual changes produce a significant decrease in the cytotoxicity of the resulting variants. We conclude that the nuclear transport of PE5 is critical for its cytotoxicity. Therefore, routing a ribonuclease to the nucleus is an alternative strategy to endow it with cytotoxic activity.

  2. Comparison of Turbulent Transport Models and Transport Simulation of Internal Transport Barrier Formation

    Science.gov (United States)

    Honda, Mitsuru

    2005-10-01

    In order to predict the performance of ITER plasma, it is important to validate the existing theory-based turbulent transport models by systematicallycomparing them with the experimental observations. Taking experimental data from the ITPA profile database, we have carried out transport simulations with the CDBM, GLF23 and Weiland models by the one-dimensional diffusive transport code TASK/TR. The results are evaluated by the six figures of merit as specified in ITER Physics Basis^1. From the simulation on 55 discharges, it is found that each model has unique dependence on devices and operation modes and the CDBM model gives the most satisfactory results. We have incorporated the dependence on the elongation on the CDBM model^2 and confirmed that the accuracy of the prediction is improved for H-mode discharges. Single-particle-species heat transport simulations have indicated that the CDBM model reproduces Ti profiles more accurately than Te profiles. We will also show the results of the predictive simulations coupling TASK/TR and TASK/EQ, two-dimensional equilibrium code, for high performance plasmas with internal transport barriers like the high βp and reversed shear plasmas. [1] ITER Physics Basis Expert Groups, Nucl. Fusion, 39, 2175 (1999) [2] M. Yagi et al., J. Phys. Soc. Japan, 66, 379 (1997)

  3. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

  4. Probabilistic risk assessment and nuclear waste transportation: A case study of the use of RADTRAN in the 1986 Environmental Assessment for Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Resnikoff, M. [Radioactive Waste Management Associates, New York, NY (United States)

    1990-12-01

    The analysis of the risks of transporting irradiated nuclear fuel to a federal repository, Appendix A of the DOE Environmental Assessment for Yucca Mountain (DOE84), is based on the RADTRAN model and input parameters. The RADTRAN computer code calculates the radiation exposures and health effects under normal or incident-free transport, and over all credible accident conditions. The RADTRAN model also calculates the economic consequences of transportation accidents, though these costs were not included in the Department`s Environmental Assessment for the proposed Yucca Mountain repository.

  5. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2007-05-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

  6. Development of A Stochastic Bedload Transport Model

    Science.gov (United States)

    Tsai, C. W.; Kuai, Z.

    2009-12-01

    Sediment particle transport can be viewed as a Markov chain process. In a non-equilibrium condition, the interchange of sediment particles occurs not only between the bedload layer and the bed surface, but also across the interface between bedload and suspended load. We can quantify the number of saltating particles by modeling the occupancy probabilities vector of particles staying in three states, namely, the bed surface, bedload layer, and suspended sediment layer. Most bedload transport models in the literature are formulated in terms of the mean bed shear stress or flow velocity. The proposed Markovian bedload model and the bedload transport rates are governed by various transition probabilities. These transition probabilities are all functions of the bed shear stress. The stochastic property of the bed shear stress can be incorporated into the above bedload transport model knowing the probability density function of the bed shear stress. This study presents a theoretical method to compute stochastic bedload transport rates considering the stochastic fluctuation of the bed shear stress.

  7. Band transport model for discotic liquid crystals

    Science.gov (United States)

    Lever, L. J.; Kelsall, R. W.; Bushby, R. J.

    2005-07-01

    A theoretical model is presented for charge transport in discotic liquid crystals in which a charge is delocalized over more than one lattice site. As such, charge transport is via a banded conduction process in a narrow bandwidth system and takes place over coherent lengths of a few molecules. The coherent lengths are disrupted by the geometrical disorder of the system and are treated as being terminated by quantum tunnel barriers. The transmission probabilities at these barriers have been calculated as a function of the charge carrier energy. Phononic interactions are also considered and the charge carrier scattering rates are calculated for intermolecular and intramolecular vibrations. The results of the calculations have been used to develop a Monte Carlo simulation of the charge transport model. Simulated data are presented and used to discuss the nature of the tunnel barriers required to reproduce experimental data. We find that the model successfully reproduces experimental time of flight data including temperature dependence.

  8. DAC 22 High Speed Civil Transport Model

    Science.gov (United States)

    1992-01-01

    Between tests, NASA research engineer Dave Hahne inspects a tenth-scale model of a supersonic transport model in the 30- by 60-Foot Tunnel at NASA Langley Research Center, Hampton, Virginia. The model is being used in support of NASA's High-Speed Research (HSR) program. Langley researchers are applying advance aerodynamic design methods to develop a wing leading-edge flap system which significantly improves low-speed fuel efficiency and reduces noise generated during takeoff operation. Langley is NASA's lead center for the agency's HSR program, aimed at developing technology to help U.S. industry compete in the rapidly expanding trans-oceanic transport market. A U.S. high-speed civil transport is expected to fly in about the year 2010. As envisioned, it would fly 300 passengers across the Pacific in about four hours at Mach 2.4 (approximately 1,600 mph/1950 kph) for a modest increase over business class fares.

  9. Effect of clomiphene on nuclear estrogen receptor of the fallopian tube during ovum transport in rabbits.

    Science.gov (United States)

    Gupta, J S; Roy, S K

    1989-01-01

    The effect of clomiphene on nuclear estrogen receptors of the Fallopian tube during ovum transport in the rabbit has been studied. Nuclear binding capacity was observed in ampulla (A), ampullary-isthmic junction (AIJ), isthmus (I), uterine-isthmic junction (UIJ) and uterus (U). Receptor concentration decreased in all segments of the tube after administration of clomiphene in mated animals. The bindings are of high affinity and low capacity. Important alterations were observed during transport when compared to that of 14, 24, 34, 48, 72, 144 and 168 hr post-coitum (p.c). At 24 hr p.c binding increased only in I and decreased in A and AIJ. Retention of eggs at I at 24 hr p.c showed as increase in binding at I. Egg transport was accelerated and eggs reached prematurely in the uterus due to the influence of clomiphene. Binding in I remained constant from 48 hr p.c to 144 hr p.c but concurrently the binding level increased in U from 34 hr p.c. The elevation of nuclear estrogen receptor level was maximum at 24 hr p.c which coincided with increased plasma estrogen level. The result of such study showed that clomiphene depleted nuclear estrogen receptor complex in the fallopian tube before transfer to the uterus. Further, observation indicated that clomiphene acted directly on the rate of egg transport because of the variations in estrogen receptors during different time periods. Thus, clomiphene reduced the quantity of estrogen receptor i.e., insensitiveness to estrogen. The variations in estrogen binding to its receptor and plasma level at different post-coital periods are modulated by clomiphene resulting in the acceleration of egg transport and prevention of pregnancy.

  10. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling.

    Science.gov (United States)

    Dittrich, T M; Reimus, P W

    2015-01-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH8.8. Significant adsorption and subsequent desorption was observed at pH ~7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h(-1) for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~70%.

  11. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  12. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme.

    Science.gov (United States)

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354-370 and that K(354), R(355), and K(367) are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression

  13. Modelling Transition Towards Sustainable Transportation Sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatter...... two energy sectors. In order to deal with the raised issue, authors of this paper developed amethodology for calculation of the transition towards sustainable transport sector, focusing on thesolutions that are already available. Furthermore, as a part of the model, a detailed mapping ofresources...... needed has been carried out for each of the alternatives. It was shown that theelectrification of the transportation sector is a crucial point in transition, while for the transportmodes that cannot be electrified, or shifted to different transportation modes, four alternatives weredefined: synthetic...

  14. The GiBUU transport model

    Directory of Open Access Journals (Sweden)

    Mosel Ulrich

    2013-06-01

    Full Text Available We give an overview over the hadronic transport model GiBUU as a simulation tool for hadronic and electroweak reactions on nuclei over a wide energy range [1]. The model is able to handle hadron-, photon- and lepton-induced reactions as well as nucleus nucleus collisions from sub-GeV energies up to hundreds of GeV. After a general introduction of the model, we discuss its possible application to cosmic ray air showers.

  15. MODELING ATMOSPHERIC RELEASES OF TRITIUM FROM NUCLEAR INSTALLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Okula, K

    2007-01-17

    Tritium source term analysis and the subsequent dispersion and consequence analyses supporting the safety documentation of Department of Energy nuclear facilities are especially sensitive to the applied software analysis methodology, input data and user assumptions. Three sequential areas in tritium accident analysis are examined in this study to illustrate where the analyst should exercise caution. Included are: (1) the development of a tritium oxide source term; (2) use of a full tritium dispersion model based on site-specific information to determine an appropriate deposition scaling factor for use in more simplified, broader modeling, and (3) derivation of a special tritium compound (STC) dose conversion factor for consequence analysis, consistent with the nature of the originating source material. It is recommended that unless supporting, defensible evidence is available to the contrary, the tritium release analyses should assume tritium oxide as the species released (or chemically transformed under accident's environment). Important exceptions include STC situations and laboratory-scale releases of hydrogen gas. In the modeling of the environmental transport, a full phenomenology model suggests that a deposition velocity of 0.5 cm/s is an appropriate value for environmental features of the Savannah River Site. This value is bounding for certain situations but non-conservative compared to the full model in others. Care should be exercised in choosing other factors such as the exposure time and the resuspension factor.

  16. Training on Transport Security of Nuclear/Radioactive Materials for Key Audiences

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Ronald; Liu, Yung; Shuler, J.M.

    2016-01-01

    Beginning in 2013, the U.S. Department of Energy (DOE) Packaging Certification Program (PCP), Office of Packaging and Transportation, Office of Environmental Management has sponsored a series of three training courses on Security of Nuclear and Other Radioactive Materials during Transport. These courses were developed and hosted by Argonne National Laboratory staff with guest lecturers from both the U.S. and international organizations and agencies including the U.S. Nuclear Regulatory Commission (NRC), Federal Bureau of Investigation (FBI), the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), DOE national laboratories, the International Atomic Energy Agency (IAEA), the World Nuclear Transport Institute (WNTI), and the World Institute for Nuclear Security (WINS). Each of the three courses held to date were one-week in length. The courses delved in detail into the regulatory requirements for transport security, focusing on international and U.S.-domestic requirements and guidance documents. Lectures, in-class discussions and small group exercises, including tabletop (TTX) and field exercises were designed to enhance the learning objectives for the participants. For example, the field exercise used the ARG-US radio frequency identification (RFID) remote surveillance system developed by Argonne for DOE/PCP to track and monitor packages in a mock shipment, following in-class exercises of developing a transport security plan (TSP) for the mock shipment, performing a readiness review and identifying needed corrective actions. Participants were able to follow the mock shipment on the webpage in real time in the ARG-US Command Center at Argonne including “staged” incidents that were designed to illustrate the importance of control, command, communication and coordination in ensuring transport security. Great lessons were learned based on feedback from the participant’s course evaluations with the series of the courses. Since the

  17. The chemical transport model Oslo CTM3

    Directory of Open Access Journals (Sweden)

    O. A. Søvde

    2012-06-01

    Full Text Available We present here the global chemical transport model Oslo CTM3, an update of the Oslo CTM2. The update comprises a faster transport scheme, an improved wet scavenging scheme for large scale rain, updated photolysis rates and a new lightning parameterization. Oslo CTM3 is better parallelized and allows for stable, large time steps for advection, enabling more complex or high resolution simulations. Thorough comparisons between the Oslo CTM3, Oslo CTM2 and measurements are performed, and in general the Oslo CTM3 is found to reproduce measurements well. Inclusion of tropospheric sulfur chemistry and nitrate aerosols in CTM3 is shown to be important to reproduce tropospheric O3, OH and the CH4 lifetime well. Using the same meteorology to drive the two models, shows that some features related to transport are better resolved by the CTM3, such as polar cap transport, while features like transport close to the vortex edge are resolved better in the Oslo CTM2 due to its required shorter transport time step. The longer transport time steps in CTM3 result in larger errors e.g. near the jets, and when necessary, this can be remedied by using a shorter time step. An additional, more accurate and time consuming, treatment of polar cap transport is presented, however, both perform acceptably. A new treatment of the horizontal distribution of lightning is presented and found to compare well with measurements. Vertical distributions of lighting are updated, and tested against the old vertical distribution. The new profiles are found to produce more NOx in the tropical middle troposphere, and less at the surface and at high altitudes.

  18. Neutrinoless Double Beta Nuclear Matrix Elements Around Mass 80 in the Nuclear Shell Model

    Science.gov (United States)

    Yoshinaga, Naotaka; Higashiyama, Koji; Taguchi, Daisuke; Teruya, Eri

    The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. In its theoretical nuclear side it is particularly important to estimate three types of nuclear matrix elements, namely, Fermi (F), Gamow-Teller (GT), and tensor (T) types matrix elements. The shell model calculations and also the pair-truncated shell model calculations are carried out to check the model dependence on nuclear matrix elements. In this work the neutrinoless double-beta decay for mass A = 82 nuclei is studied. It is found that the matrix elements are quite sensitive to the ground state wavefunctions.

  19. Nuclear chemistry model of borated fuel crud

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, J.A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    2002-07-01

    Fuel crud deposits on Callaway Cycle 9 once-burnt high-axial offset anomaly (AOA {approx} -15%) feed assemblies revealed a complex 4-phase matted-layered morphology of a new type that is uncommon in pressurized water reactors [1-3]. The up to 140-{open_square}m-thick crud flakes consisted predominantly of insoluble needle-like particles of Ni-Fe oxy-borate Ni{sub 2}FeBO{sub 5} (bonaccordite) and granular precipitates of m-ZrO{sub 2} (baddeleyite), along with nickel oxide NiO (bunsenite) and minor amount of nickel ferrite NiFe{sub 2}O{sub 4} (trevorite). Furthermore, boron in crud flakes showed that the concentration of {sup 10}B had depleted to 10.2{+-}0.2%, as compared to its 20% natural isotopic abundance and its 17% end-of-cycle abundance in bulk coolant. The form and depth distribution of Ni{sub 2}FeBO{sub 5} and m-ZrO{sub 2} precipitates, as well as substantial {sup 10}B burn-up, point to a strongly alkaline environment at the clad surface of the high-duty fuel rods. This paper extends a nuclear chemistry model of heavily borated fuel crud deposits. The paper shows that the local nuclear heat and lithium buildup from {sup 10}B(n,{open_square}){sup 7}Li reactions may help to create hydrothermal and chemical conditions within the crud layer in favor of Ni{sub 2}FeBO{sub 5} formation and a ZrO{sub 2} dissolution-reprecipitation mechanism. Consistent with the model, the hydrothermal formation of Ni{sub 2}FeBO{sub 5} needles was recently proved to be possible in laboratory tests with aqueous NiO-Fe{sub 2}O{sub 3}-H{sub 3}BO{sub 3}-LiOH slurries, at temperatures only slightly exceeding 400 C. (author)

  20. Nuclear reaction modeling, verification experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  1. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  2. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  3. Error estimation and adaptive chemical transport modeling

    Directory of Open Access Journals (Sweden)

    Malte Braack

    2014-09-01

    Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.

  4. Nuclear waste transportation: case studies of identifying stakeholder risk information needs.

    Science.gov (United States)

    Drew, Christina H; Grace, Deirdre A; Silbernagel, Susan M; Hemmings, Erin S; Smith, Alan; Griffith, William C; Takaro, Timothy K; Faustman, Elaine M

    2003-03-01

    The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes.

  5. Assessing and Minimizing Adversarial Risk in a Nuclear Material Transportation Network

    Science.gov (United States)

    2013-09-01

    GNF Global Nuclear Fuel – Americas, LLC HAZMAT hazardous material kg kilogram km kilometer LWR light water reactor MWt megawatt thermal MOX mixed-oxide...Fuel Cycle Facilities Uranium Fuel Fabrication Gaseous Diffusion Enrichment Gas Centrifuge Enrichment Uranium Hexafluoride Conversion MOX Fuel...manipulate for purposes of demonstration. The methods also apply to other transportation subnetworks, such as shipping enriched uranium, mixed-oxide ( MOX

  6. Recent Work in Hybrid Radiation Transport Methods with Applications to Commercial Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Joel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-20

    This talk will begin with an overview of hybrid radiation transport methods followed by a discussion of the author’s work to advance current capabilities. The talk will then describe applications for these methods in commercial nuclear power reactor analyses and techniques for experimental validation. When discussing these analytical and experimental activities, the importance of technical standards such as those created and maintained by ASTM International will be demonstrated.

  7. A depth integrated model for suspended transport

    NARCIS (Netherlands)

    Galappatti, R.

    1983-01-01

    A new depth averaged model for suspended sediment transport in open channels has been developed based on an asymptotic solution to the two dimensional convection-diffusion equation in the vertical plane. The solution for the depth averaged concentration is derived from the bed boundary condition and

  8. Climate impact of transportation A model comparison

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.

    2013-01-01

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global

  9. Transport properties of fully screened Kondo models

    NARCIS (Netherlands)

    Hörig, Christoph B M; Mora, Christophe; Schuricht, Dirk

    2014-01-01

    We study the nonequilibrium transport properties of fully (exactly) screened Kondo quantum dots subject to a finite bias voltage or a finite temperature. First, we calculate the Fermi-liquid coefficients of the conductance for models with arbitrary spin, i.e., its leading behavior for small bias vol

  10. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which estim

  11. Climate impact of transportation A model comparison

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.

    2013-01-01

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global servic

  12. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which

  13. Equilibrium models in multimodal container transport systems

    NARCIS (Netherlands)

    Corman, F.; Viti, F.; Negenborn, R.R.

    2015-01-01

    Optimizing the performance of multimodal freight transport networks involves adequately balancing the interplay between costs, volumes, times of departure and arrival, and times of travel. In order to study this interplay, we propose an assignment model that is able to efficiently determine flows an

  14. Probabilistic Risk Assessment of Cask Drop Accident during On-site Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jae Hyun; Christian, Robby; Momani, Belal Al; Kang, Hyun Gook [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There are two ways to transfer the SNF from a site to other site, one is land transportation and the other is maritime transportation. Maritime transportation might be used because this way uses more safe route which is far from populated area. The whole transportation process can be divided in two parts: transferring the SNF between SNP and wharf in-Nuclear Power Plant (NPP) site by truck, and transferring the SNF from the wharf to the other wharf by ship. In this research, on-site SNF transportation between SNP and wharf was considered. Two kinds of single accident can occur during this type of SNF transportation, impact and fire, caused by internal events and external events. In this research, PRA of cask drop accident during onsite SNF transportation was done, risk to a person (mSv/person) from a case with specific conditions was calculated. In every 11 FEM simulation drop cases, FDR is 1 even the fuel assemblies are located inside of the cask. It is a quite larger value for all cases than the results with similar drop condition from the reports which covers the PRA on cask storage system. Because different from previous reports, subsequent impact was considered. Like in figure 8, accelerations which are used to calculate the FDR has extremely higher values in subsequent impact than the first impact for all SNF assemblies.

  15. Germline and developmental roles of the nuclear transport factor importin alpha3 in C. elegans.

    Science.gov (United States)

    Geles, K G; Adam, S A

    2001-05-01

    The importin alpha family of transport factors mediates the nuclear import of classical nuclear localization signal-containing proteins. In order to understand how multiple importin alpha proteins are regulated both in individual cells and in a whole organism, the three importin alpha (ima) genes of Caenorhabditis elegans have been identified and studied. All three IMAs are expressed in the germline; however, only IMA-3 is expressed in the soma. RNA interference (RNAi) experiments demonstrate that IMA-3 is required for the progression of meiotic prophase I during oocyte development. Loss of IMA-3 expression leads also to a disruption of the nuclear pore complex accompanied by the mis-localization of P granules. A range of defects occurring in ima-3(RNAi) F1 progeny further supports a role for IMA-3 during embryonic and larval development. The functional association of IMA-3 with distinct cellular events, its expression pattern and intracellular localization indicate that regulation of the nuclear transport machinery is involved in the control of developmental pathways.

  16. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  17. TDH solution of the Suzuki model of nuclear monopole oscillation

    Science.gov (United States)

    Skalski, J.

    1987-09-01

    The exact time-dependent Hartree solution of the schematic model describing nuclear monopole oscillation — the Suzuki model — is presented. The energies of vibrational states are quantized according to the gauge-invariant periodic quantization prescription.

  18. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Jy-An John, E-mail: wangja@ornl.gov

    2016-12-15

    Highlights: • A conformational potential effect of fuel assembly contact interaction induced transient shock. • Complex vibration modes and vibration load intensity were observed from fuel assembly system. • The project was able to link the periodic transient shock to spent fuel fatigue strength reduction. - Abstract: In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly. To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20 g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20 g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration

  19. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  20. Spanish Electric Sector Nuclear R and D Model

    Energy Technology Data Exchange (ETDEWEB)

    Casero, M.; Francia, L.

    2005-07-01

    This paper presents the R and D model that, based on the experience gained and lessons learned in nearly forty years of nuclear power use in Spain, is Promoted by the Spanish Electricity Sector for the nuclear R and D activities it develops in a coordinated manner in the frame of the Nuclear Energy Committee of the Association Espanola de la Industria Electrica (UNESA). (Author)

  1. Statistical models for nuclear decay from evaporation to vaporization

    CERN Document Server

    Cole, A J

    2000-01-01

    Elements of equilibrium statistical mechanics: Introduction. Microstates and macrostates. Sub-systems and convolution. The Boltzmann distribution. Statistical mechanics and thermodynamics. The grand canonical ensemble. Equations of state for ideal and real gases. Pseudo-equilibrium. Statistical models of nuclear decay. Nuclear physics background: Introduction. Elements of the theory of nuclear reactions. Quantum mechanical description of scattering from a potential. Decay rates and widths. Level and state densities in atomic nuclei. Angular momentum in quantum mechanics. History of statistical

  2. Heterogeneous Nuclear Reactor Models for Optimal Xenon Control.

    Science.gov (United States)

    Gondal, Ishtiaq Ahmad

    Nuclear reactors are generally modeled as homogeneous mixtures of fuel, control, and other materials while in reality they are heterogeneous-homogeneous configurations comprised of fuel and control rods along with other materials. Similarly, for space-time studies of a nuclear reactor, homogeneous, usually one-group diffusion theory, models are used, and the system equations are solved by either nodal or modal expansion approximations. Study of xenon-induced problems has also been carried out using similar models and with the help of dynamic programming or classical calculus of variations or the minimum principle. In this study a thermal nuclear reactor is modeled as a two-dimensional lattice of fuel and control rods placed in an infinite-moderator in plane geometry. The two-group diffusion theory approximation is used for neutron transport. Space -time neutron balance equations are written for two groups and reduced to one space-time algebraic equation by using the two-dimensional Fourier transform. This equation is written at all fuel and control rod locations. Iodine -xenon and promethium-samarium dynamic equations are also written at fuel rod locations only. These equations are then linearized about an equilibrium point which is determined from the steady-state form of the original nonlinear system equations. After studying poisonless criticality, with and without control, and the stability of the open-loop system and after checking its controllability, a performance criterion is defined for the xenon-induced spatial flux oscillation problem in the form of a functional to be minimized. Linear -quadratic optimal control theory is then applied to solve the problem. To perform a variety of different additional useful studies, this formulation has potential for various extensions and variations; for example, different geometry of the problem, with possible extension to three dimensions, heterogeneous -homogeneous formulation to include, for example, homogeneously

  3. ACE-Asia Chemical Transport Modeling Overview

    Science.gov (United States)

    UNO, I.; Chin, M.; Collins, W.; Ginoux, P.; Rasch, P.; Carmichael, G. R.; Yienger, J. J.

    2001-12-01

    ACE-Asia (Asia Pacific Regional Aerosol Characterization Experiment) was designed to increase our understanding of how atmospheric aerosol particles affect the Earth?s climate system. The intensive observation period was carried out during March to May, 2001, and more than 100 researchers from several countries (United States, Japan, Korea, China, and many other Asian countries) participated using aircraft, a research vessel, surface stations and numerical models. Aerosol transport forecast activities played an important role during the ACE-Asia intensive observation period. Three independent modeling groups operated chemical transport models in forecast mode and participated in flight planning activities at the operations center. These models were: MATCH (Model of Atmospheric Transport and Chemistry; Rasch and Collins); GOCART (Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model; Chin and Ginour) and CFORS (Research Institute for Applied Mechanics, Kyushu University + University of Iowa - Chemical weather FORecast System; Uno, Carmichael and Yienger). The MATCH model used in ACE-Asia was a transport model applied for the Asia region, driven by NCEP forecast meteorology. A unique feature of this model was that it assimilated satellite derived optical depths into its forecast algorithm. The GOCART model provided global aerosol forecast using forecast meteorological fields provided by the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The CFORS model provided regional forecasts using a limited area transport model coupled with Regional Meteorological Modeling System (RAMS), initialized by NCEP and JMA forecasts. All models produced 3-d aerosol forecast products consisting of aerosol mass distributions and optical depths for sulfate, black carbon, organic carbon, sea salt, and dust. In the field these model products were made available to all participating scientists via the Web, and were also presented during the

  4. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.L. [Oak Ridge National Lab., TN (United States)

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  5. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  6. Delft Mass Transport model DMT-2

    Science.gov (United States)

    Ditmar, Pavel; Hashemi Farahani, Hassan; Inacio, Pedro; Klees, Roland; Zhao, Qile; Guo, Jing; Liu, Xianglin; Sun, Yu; Riva, Ricardo; Ran, Jiangjun

    2013-04-01

    Gravity Recovery And Climate Experiment (GRACE) satellite mission has enormously extended our knowledge of the Earth's system by allowing natural mass transport of various origin to be quantified. This concerns, in particular, the depletion and replenishment of continental water stocks; shrinking of polar ice sheets; deformation of the Earth's crust triggered by large earthquakes, and isostatic adjustment processes. A number of research centers compute models of temporal gravity field variations and mass transport, using GRACE data as input. One of such models - Delft Mass Transport model - is being produced at the Delft University of Technology in collaboration with the GNSS Research Center of Wuhan University. A new release of this model, DMT-2, has been produced on the basis of a new (second) release of GRACE level-1b data. This model consists of a time-series of monthly solutions spanning a time interval of more than 8 years, starting from Feb. 2003. Each solution consists of spherical harmonic coefficients up to degree 120. Both unconstrained and optimally filtered solutions are obtained. The most essential improvements of the DMT-2 model, as compared to its predecessors (DMT-1 and DMT-1b), are as follows: (i) improved estimation and elimination of low-frequency noise in GRACE data, so that strong mass transport signals are not damped; (ii) computation of accurate stochastic models of data noise for each month individually with a subsequent application of frequency-dependent data weighting, which allows statistically optimal solutions to be compiled even if data noise is colored and gradually changes in time; (iii) optimized estimation of accelerometer calibration parameters; (iv) incorporation of degree 1 coefficients estimated with independent techniques; (v) usage of state-of-the-art background models to de-alias GRACE data from rapid mass transport signals (this includes the EOT11a model of ocean tides and the latest release of the AOD1B product describing

  7. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    (sigma*) may influence the acid, water or base catalyzed model drug release rates, when released from series of D-Glu-Ala and D-Asp-Ala pro-moieties. Release rates were investigated in both aqueous solutions with varying pH, ionic strength, and buffer concentrations as well as in in vitro biological...... as Taft (sigma*) values, has a significant influence on the release rate of the model drug.......The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...

  8. A Radiative Transport Model for Blazars

    Science.gov (United States)

    Lewis, Tiffany; Justin, Finke; Becker, Peter A.

    2017-01-01

    Blazars are observed across the electromagnetic spectrum, often with strong variability throughout. The underlying electron distribution associated with the observed emission is typically not computed from first principles. We start from first-principles to build up a transport model, whose solution is the electron distribution, rather than assuming a convenient functional form. Our analytical transport model considers shock acceleration, adiabatic expansion, stochastic acceleration, Bohm diffusion, and synchrotron radiation. We use this solution to generate predictions for the X-ray spectrum and time lags, and compare the results with data products from BeppoSAX observations of X-ray flares from Mrk 421. This new self-consistent model provides an unprecedented view into the jet physics at play in this source, especially the strength of the shock and stochastic acceleration components and the size of the acceleration region.More recently, we augmented the transport model to incorporate Compton scattering, including Klein-Nishina effects. In this case, an analytical solution cannot be derived, and therefore we obtain the steady-state electron distribution computationally. We compare the resulting radiation spectrum with multi-wavelength data for 3C 279. We show that our new Compton + synchrotron blazar model is the first to successfully fit the FermiLAT gamma-ray data for this source based on a first-principles physical calculation.

  9. Nuclear materials transportation workshops: USDOE outreach to local governments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-28

    To provide direct outreach to local governments, the Transportation Management Division of the United States Department of Energy asked the Urban Consortium and its Energy Task Force to assemble representatives for two workshops focusing on the transport of nuclear materials. The first session, for jurisdictions east of the Mississippi River, was held in New Orleans on May 5--6, 1988; the second was conducted on June 6--7, 1988 in Denver for jurisdictions to the west. Twenty local government professionals with management or operational responsibility for hazardous materials transportation within their jurisdictions were selected to attend each workshop. The discussions identified five major areas of concern to local government professionals; coordination; training; information resources; marking and placarding; and responder resources. Integrated federal, state, and local levels of government emerged as a priority coordination issue along with the need for expanded availability of training and training resources for first-reponders.

  10. Drosophila Brat and Human Ortholog TRIM3 Maintain Stem Cell Equilibrium and Suppress Brain Tumorigenesis by Attenuating Notch Nuclear Transport.

    Science.gov (United States)

    Mukherjee, Subhas; Tucker-Burden, Carol; Zhang, Changming; Moberg, Kenneth; Read, Renee; Hadjipanayis, Costas; Brat, Daniel J

    2016-04-15

    Cancer stem cells exert enormous influence on neoplastic behavior, in part by governing asymmetric cell division and the balance between self-renewal and multipotent differentiation. Growth is favored by deregulated stem cell division, which enhances the self-renewing population and diminishes the differentiation program. Mutation of a single gene in Drosophila, Brain Tumor (Brat), leads to disrupted asymmetric cell division resulting in dramatic neoplastic proliferation of neuroblasts and massive larval brain overgrowth. To uncover the mechanisms relevant to deregulated cell division in human glioma stem cells, we first developed a novel adult Drosophila brain tumor model using brat-RNAi driven by the neuroblast-specific promoter inscuteable Suppressing Brat in this population led to the accumulation of actively proliferating neuroblasts and a lethal brain tumor phenotype. brat-RNAi caused upregulation of Notch signaling, a node critical for self-renewal, by increasing protein expression and enhancing nuclear transport of Notch intracellular domain (NICD). In human glioblastoma, we demonstrated that the human ortholog of Drosophila Brat, tripartite motif-containing protein 3 (TRIM3), similarly suppressed NOTCH1 signaling and markedly attenuated the stem cell component. We also found that TRIM3 suppressed nuclear transport of active NOTCH1 (NICD) in glioblastoma and demonstrated that these effects are mediated by direct binding of TRIM3 to the Importin complex. Together, our results support a novel role for Brat/TRIM3 in maintaining stem cell equilibrium and suppressing tumor growth by regulating NICD nuclear transport. Cancer Res; 76(8); 2443-52. ©2016 AACR.

  11. Extraction of Nuclear Matter Properties from Nuclear Masses by a Model of Equation of State

    Institute of Scientific and Technical Information of China (English)

    K.C.Chung; C.S.Wang; A.J.Santiago

    2001-01-01

    The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei.It is shown that the volume energy a1 and the nuclear incompressibility Ko depend essentially on μnN -+- pZ - 2EN,whereas the symmetry energy J and the density symmetry coefficient L as well as symmetry incompressibility Ks depend essentially on μn - μp,where μp =μp - Ec/ Z,μn and μp are the neutron and proton chemical potentials respectively,EN the nuclear energy,and Ec the Coulomb energy.The obtained symmetry energy is J = 28.5 MeV,while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.``

  12. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P;

    1994-01-01

    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....

  13. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  14. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  15. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina

    2009-10-01

    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  16. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  17. [Medical and hygienic aspects of instrumental supervision system over nuclear materials and radioactive substances transport on Russian Federation territory].

    Science.gov (United States)

    Grabskiĭ, Iu V; Gavrish, N N; Shevchenko, G T; Viaz'min, S O; Pertsev, V S; Kirillov, V F; Tsov'ianov, A G

    2014-01-01

    Hygienic evaluation of radiation situation in operation of mobile and stationery elements within a project of national system for instrumental supervision over nuclear materials and radioactive substances transport, created with a Global initiative against nuclear terrorism. Levels of exposure to ionizing radiation of the screening complexes appeared to match requirements on radiation safety for service personnel and general population.

  18. Chemical element transport in stellar evolution models

    Science.gov (United States)

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  19. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  20. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    Science.gov (United States)

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.

  1. Transporter-Mediated Nuclear Entry of Jasmonoyl-Isoleucine Is Essential for Jasmonate Signaling.

    Science.gov (United States)

    Li, Qingqing; Zheng, Jian; Li, Shuaizhang; Huang, Guanrong; Skilling, Stephen J; Wang, Lijian; Li, Ling; Li, Mengya; Yuan, Lixing; Liu, Pei

    2017-02-05

    To control gene expression by directly responding to hormone concentrations, both animal and plant cells have exploited comparable mechanisms to sense small-molecule hormones in nucleus. Whether nuclear entry of these hormones is actively transported or passively diffused, as conventionally postulated, through the nuclear pore complex, remains enigmatic. Here, we identified and characterized a jasmonate transporter in Arabidopsis thaliana, AtJAT1/AtABCG16, which exhibits an unexpected dual localization at the nuclear envelope and plasma membrane. We show that AtJAT1/AtABCG16 controls the cytoplasmic and nuclear partition of jasmonate phytohormones by mediating both cellular efflux of jasmonic acid (JA) and nuclear influx of jasmonoyl-isoleucine (JA-Ile), and is essential for maintaining a critical nuclear JA-Ile concentration to activate JA signaling. These results illustrate that transporter-mediated nuclear entry of small hormone molecules is a new mechanism to regulate nuclear hormone signaling. Our findings provide an avenue to develop pharmaceutical agents targeting the nuclear entry of small molecules.

  2. Analysis of the risk of transporting spent nuclear fuel by train

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.K.

    1981-09-01

    This report uses risk analyses to analyze the safety of transporting spent nuclear fuel for commercial rail shipping systems. The rail systems analyzed are those expected to be used in the United States when the total electricity-generating capacity by nuclear reactors is 100 GW in the late 1980s. Risk as used in this report is the product of the probability of a release of material to the environment and the consequences resulting from the release. The analysis includes risks in terms of expected fatalities from release of radioactive materials due to transportation accidents involving PWR spent fuel shipped in rail casks. The expected total risk from such shipments is 1.3 x 10/sup -4/ fatalities per year. Risk spectrums are developed for shipments of spent fuel that are 180 days and 4 years out-of-reactor. The risk from transporting spent fuel by train is much less (by 2 to 4 orders of magnitude) than the risk to society from other man-caused events such as dam failure.

  3. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-02-15

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  4. A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells.

    Science.gov (United States)

    Cassany, Aurélia; Guillemain, Ghislaine; Klein, Christophe; Dalet, Véronique; Brot-Laroche, Edith; Leturque, Armelle

    2004-01-01

    We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.

  5. Isospin dependence of nuclear multifragmentation in statistical model

    Institute of Scientific and Technical Information of China (English)

    张蕾; 谢东珠; 张艳萍; 高远

    2011-01-01

    The evolution of nuclear disintegration mechanisms with increasing excitation energy, from compound nucleus to multifragmentation, has been studied by using the Statistical Multifragmentation Model (SMM) within a micro-canonical ensemble. We discuss the o

  6. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  7. Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model

    Energy Technology Data Exchange (ETDEWEB)

    James, Michael R. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States)]. E-mail: mrjames@lanl.gov; McKinney, G.W. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Hendricks, John S. [Los Alamos National Laboratory, PO Box 1663, MS K575, Los Alamos, NM 87545 (United States); Moyers, Michael [Loma Linda University Medical Center, 11234 Anderson St., PO Box 2000, Loma Linda, CA 92354 (United States)

    2006-06-23

    Calculations involving the transport of energetic heavy ions have recently received more attention from projects such as the Rare Isotope Accelerator (RIA) and from areas such as space radiation shielding. In these areas, the transport and reactions must be calculated for heavy ions such as {sup 56}Fe or {sup 238}U traveling at energies of {>=}1 GeV/nucleon. To serve these needs, recent upgrades to the particle transport code MCNPX have expanded the previously useful ion transport capability from a small suite of light ions (deuterons, tritons, {sup 3}He, and alpha particles) to a nearly complete list of those heavy and light ions that span the Table of Isotopes. To enable nuclear spallation from energetic collisions of these ions and targets, the LAQGSM physics model has been integrated into the MCNPX code. This physics model supplements the existing physics models already contained in the code, only one of which, ISABEL, could handle heavy-ion collisions (and then only over a limited range of masses and energies). The implementation of these new features now greatly expands the usefulness of MCNPX in energetic ion transport. The heavy-ion transport feature also allows the transport of residuals from all nuclear reactions that occur in the physics model regime, even when initiated by non-heavy ions. The implementation and use of heavy ions in MCNPX is explained. Also, computations with MCNPX are compared with benchmark experiments to show agreement with results.

  8. Experiences in certification of packages for transportation of fresh nuclear fuel in the context of new safety requirements established by IAEA regulations (IAEA-96 regulations, ST-1) for air transportation of nuclear materials (requirements to C-type packages)

    Energy Technology Data Exchange (ETDEWEB)

    Dudai, V.I.; Kovtun, A.D.; Matveev, V.Z.; Morenko, A.I.; Nilulin, V.M.; Shapovalov, V.I.; Yakushev, V.A.; Bobrovsky, V.S.; Rozhkov, V.V.; Agapov, A.M.; Kolesnikov, A.S. [Russian Federal Nuclear Centre - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)]|[JSC ' ' MSZ' ' , Electrostal (Russian Federation)]|[JSC ' ' NPCC' ' , Novosibirsk (Russian Federation)]|[Minatom of Russia, Moscow (Russian Federation)]|[Gosatomnadzor of Russia, Moscow (Russian Federation)

    2004-07-01

    Every year in Russia, a large amount of domestic and international transportation of fresh nuclear fuel (FNF) used in Russian and foreign energy and research atomic reactors and referred to fissile materials based on IAEA Regulations is performed. Here, bulk transportation is performed by air, and it concerns international transportation in particular. According to national ''Main Regulations for Safe Transport and physical Protection of Nuclear Materials (OPBZ- 83)'' and ''Regulations for the Safe Transport of Radioactive Materials'' of the International Atomic Energy Agency (IAEA Regulations), nuclear and radiation security under normal (accident free) and accident conditions of transport must be completely provided by the package design. In this context, high requirements to fissile packages exposed to heat and mechanical loads in transport accidents are imposed. A long-standing experience in accident free transportation of FM has shown that such approach to provide nuclear and radiation security pays for itself completely. Nevertheless, once in 10 years the International Atomic Energy Agency on every revision of the ''Regulations for the Safe Transport of Radioactive Materials'' places more stringent requirements upon the FM and transportation thereof, resulting from the objectively increasing risk associated with constant rise in volume and density of transportation, and also strained social and economical situation in a number of regions in the world. In the new edition of the IAEA Regulations (ST-1), published in 1996 and brought into force in 2001 (IAEA-96 Regulations), the requirements to FM packages conveyed by aircraft were radically changed. These requirements are completely presented in new Russian ''Regulations for the Safe Transport of Radioactive Materials'' (PBTRM- 2004) which will be brought into force in the time ahead.

  9. Transport Corrections in Nodal Diffusion Codes for HTR Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Frederick N. Gleicher

    2010-08-01

    The cores and reflectors of High Temperature Reactors (HTRs) of the Next Generation Nuclear Plant (NGNP) type are dominantly diffusive media from the point of view of behavior of the neutrons and their migration between the various structures of the reactor. This means that neutron diffusion theory is sufficient for modeling most features of such reactors and transport theory may not be needed for most applications. Of course, the above statement assumes the availability of homogenized diffusion theory data. The statement is true for most situations but not all. Two features of NGNP-type HTRs require that the diffusion theory-based solution be corrected for local transport effects. These two cases are the treatment of burnable poisons (BP) in the case of the prismatic block reactors and, for both pebble bed reactor (PBR) and prismatic block reactor (PMR) designs, that of control rods (CR) embedded in non-multiplying regions near the interface between fueled zones and said non-multiplying zones. The need for transport correction arises because diffusion theory-based solutions appear not to provide sufficient fidelity in these situations.

  10. A Study of Transport and Impact Strength of Fukushima Nuclear Pollutants in the North Pacific Surface

    Institute of Scientific and Technical Information of China (English)

    FU Hongli; LI Wei; ZHANG Xuefeng; HAN Guijun; WANG Xidong; WU Xinrong; ZHANG Lianxin

    2014-01-01

    Based on the statistics of surface drifter data of 1979-2011 and the simulation of nuclear pollutant particulate move-ments simulated using high quality ocean reanalysis surface current dataset, the transport pathways and impact strength of Fuku-shima nuclear pollutants in the North Pacific have been estimated. The particulates are used to increase the sampling size and en-hance the representativeness of statistical results. The trajectories of the drifters and particulates are first examined to identify typical drifting pathways. The results show that there are three types of transport paths for nuclear pollutants at the surface: 1) most pollutant particles move eastward and are carried by the Kuroshio and Kuroshio-extension currents and reach the east side of the North Pacific after about 3.2-3.9 years;2) some particles travel with the subtropical circulation branch and reach the east coast of China after about 1.6 years according to one drifter trajectory and about 3.6 years according to particulate trajectories;3) a little of them travel with local, small scale circulations and reach the east coast of China after about 1.3-1.8 years. Based on the par-ticulates, the impact strength of nuclear pollutants at these time scales can be estimated according to the temporal variations of relative concentration combined with the radioactive decay rate. For example, Cesium-137, carried by the strong North Pacific current, mainly accumulates in the eastern North Pacific and its impact strength is 4%of the initial level at the originating Fuku-shima area after 4 years. Due to local eddies, Cesium-137 in the western North Pacific is 1%of the initial pollutant level after 1.5 years and continuously increases to 3%after 4 years. The vertical movement of radioactive pollutants is not taken into account in the present study, and the estimation accuracy would be improved by considering three-dimensional flows.

  11. Meeting in Turkey: WASP Transport Modeling and WASP Ecological Modeling

    Science.gov (United States)

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  12. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  13. Understanding transport in model water desalination membranes

    Science.gov (United States)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  14. Transport model of underground sediment in soils.

    Science.gov (United States)

    Jichao, Sun; Guangqian, Wang

    2013-01-01

    Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large particles will be taken away later. The pore ratio of the soil increases gradually. The flow ultimately becomes direct water seepage, and the sediment concentration at the same position in the water decreases over time. The concentration of maximal flushing potential sediment decreases along the path. The underground sediment flushing model reflects the flushing mechanism of underground sediment.

  15. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  16. Study on the fire-protection-system for interim storage facilities of spent nuclear fuel and transportation ships

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. O; Choi, M. H.; Lee, S. C. and others [Dongbang Electron Industry Corporation, Seoul (Korea, Republic of)

    1993-12-15

    This study consists of : the fire risk and it's fire protection for the storage facilities and transportation equipments of dangerous goods, the fire risk and it's fire protection for the interim storage facilities of spent nuclear fuel, the fire risk and it's fire protection for the dangerous goods transportation ships, the necessary equipment for safety of ships and regulations of fire fighting equipment for ships, technical specification of spent nuclear fuel transportation ships which are operated in foreign countries, draft of fire protection guideline for interim storage facilities of spent nuclear fuel, inspection items of fire fighting equipment, scope of education and training. On the basis of the aforementioned, a draft of fire protection guideline for interim storage facilities of spent nuclear fuel is proposed and the regulations for ship engaged in the a carrage of dangerous goods that should be considered in design and operation stage are proposed.

  17. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  18. Process of Judging Significant Modifications for Different Transportation Systems compared to the Approach for Nuclear Installations

    Directory of Open Access Journals (Sweden)

    Nicolas Petrek

    2015-12-01

    Full Text Available The implementation of the CSM regulation by the European Commission in 2009 which harmonizes the risk assessment process and introduces a rather new concept of judging changes within the European railway industry. This circumstance has risen the question how other technology sectors handle the aspect of modifications and alterations. The paper discusses the approaches for judging the significance of modifications within the three transport sectors of European railways, aviation and maritime transportation and the procedure which is used in the area of nuclear safety. We will outline the similarities and differences between these four methods and discuss the underlying reasons. Finally, we will take into account the role of the European legislator and the fundamental idea of a harmonization of the different approaches.

  19. Towards a self-consistent dynamical nuclear model

    Science.gov (United States)

    Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.

    2017-04-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.

  20. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    Science.gov (United States)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  1. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  2. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing dem

  3. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  4. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing dem

  5. (Im)precise nuclear forces: From experiment to model

    Science.gov (United States)

    Navarro Perez, Rodrigo

    2017-01-01

    The nuclear force is the most fundamental building block in nuclear science. It is the cornerstone of every nuclear application from nuclear reactors to the production of heavy elements in supernovae. Despite being rigorously derived from the Standard Model, the actual determination of the nuclear force requires adjusting a set of parameters to reproduce experimental data. This introduces uncertainties that need to be quantified and propagated into all nuclear applications. I'll review a series of works on the determination of the Nucleon-Nucleon interaction from a collection of over 8000 elastic scattering data. Statistical tools used on the selection of data and the propagation of statistical uncertainties will be presented. The implications for charge independence of the pion-nucleon coupling constant and the predictive power of chiral interactions will be discussed. Although this is not the final word on theoretical nuclear uncertainties, as other sources of errors should be explored, this series of works allow to set the foundations for a new era for uncertainty quantification in nuclear applications. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Funding was also provided by the U.S. Department of Energy, Office of Science, Award DE-SC0008511 (NUCLEI SciDAC Collaboration)

  6. Nuclear mass dependence of chaotic dynamics in Ginocchio model

    CERN Document Server

    Yoshinaga, N; Shigehara, T; Yoshinaga, Naotaka; Yoshida, Nobuaki; Shigehara, Takaomi

    1995-01-01

    The chaotic dynamics in nuclear collective motion is studied in the framework of a schematic shell model which has only monopole and quadrupole degrees of freedom. The model is shown to reproduce the experimentally observed global trend toward less chaotic motion in heavier nuclei. The relation between current approach and the earlier studies with bosonic models is discussed.

  7. Modeling charge transport in organic photovoltaic materials.

    Science.gov (United States)

    Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M

    2009-11-17

    The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse

  8. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    Science.gov (United States)

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  9. Risk management model in road transport systems

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2016-08-01

    The article presents the results of a study of road safety indicators that influence the development and operation of the transport system. Road safety is considered as a continuous process of risk management. Authors constructed a model that relates the social risks of a major road safety indicator - the level of motorization. The model gives a fairly accurate assessment of the level of social risk for any given level of motorization. Authors calculated the dependence of the level of socio-economic costs of accidents and injured people in them. The applicability of the concept of socio-economic damage is caused by the presence of a linear relationship between the natural and economic indicators damage from accidents. The optimization of social risk is reduced to finding the extremum of the objective function that characterizes the economic effect of the implementation of measures to improve safety. The calculations make it possible to maximize the net present value, depending on the costs of improving road safety, taking into account socio-economic damage caused by accidents. The proposed econometric models make it possible to quantify the efficiency of the transportation system, allow to simulate the change in road safety indicators.

  10. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  11. Adaptive Mesh Refinement in Reactive Transport Modeling of Subsurface Environments

    Science.gov (United States)

    Molins, S.; Day, M.; Trebotich, D.; Graves, D. T.

    2015-12-01

    Adaptive mesh refinement (AMR) is a numerical technique for locally adjusting the resolution of computational grids. AMR makes it possible to superimpose levels of finer grids on the global computational grid in an adaptive manner allowing for more accurate calculations locally. AMR codes rely on the fundamental concept that the solution can be computed in different regions of the domain with different spatial resolutions. AMR codes have been applied to a wide range of problem including (but not limited to): fully compressible hydrodynamics, astrophysical flows, cosmological applications, combustion, blood flow, heat transfer in nuclear reactors, and land ice and atmospheric models for climate. In subsurface applications, in particular, reactive transport modeling, AMR may be particularly useful in accurately capturing concentration gradients (hence, reaction rates) that develop in localized areas of the simulation domain. Accurate evaluation of reaction rates is critical in many subsurface applications. In this contribution, we will discuss recent applications that bring to bear AMR capabilities on reactive transport problems from the pore scale to the flood plain scale.

  12. Towards many-body based nuclear reaction modelling

    Science.gov (United States)

    Hilaire, Stéphane; Goriely, Stéphane

    2016-06-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic expressions. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical principles, when dealing with very exotic nuclei. Thanks to the high computer power available today, all the ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. This concerns nuclear masses, optical model potential, nuclear level densities, photon strength functions, as well as fission barriers. All these nuclear model ingredients, traditionally given by phenomenological expressions, now have a microscopic counterpart implemented in the TALYS nuclear reaction code. We are thus now able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. Perspectives for the coming years will be drawn on the improvements one can expect.

  13. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection.

    Science.gov (United States)

    Jin, Fujun; Ma, Kaiqi; Chen, Maoyun; Zou, Muping; Wu, Yanting; Li, Feng; Wang, Yifei

    2016-01-01

    Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains.

  14. Nucleoporin domain topology is linked to the transport status of the nuclear pore complex.

    Science.gov (United States)

    Paulillo, Sara M; Phillips, Erica M; Köser, Joachim; Sauder, Ursula; Ullman, Katharine S; Powers, Maureen A; Fahrenkrog, Birthe

    2005-08-26

    Nuclear pore complexes (NPCs) facilitate macromolecular exchange between the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of approximately 30 different proteins (nucleoporins), of which around one third contain phenylalanine-glycine (FG)-repeat domains that are thought to mediate the main interaction between the NPC and soluble transport receptors. We have recently shown that the FG-repeat domain of Nup153 is flexible within the NPC, although this nucleoporin is anchored to the nuclear side of the NPC. By using domain-specific antibodies, we have now mapped the domain topology of Nup214 in Xenopus oocytes and in human somatic cells by immuno-EM. We have found that whereas Nup214 is anchored to the cytoplasmic side of the NPC via its N-terminal and central domain, its FG-repeat domain appears flexible, residing on both sides of the NPC. Moreover, the spatial distribution of the FG-repeat domains of both Nup153 and Nup214 shifts in a transport-dependent manner, suggesting that the location of FG-repeat domains within the NPC correlates with cargo/receptor interactions and that they concomitantly move with cargo through the central pore of the NPC.

  15. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    Science.gov (United States)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  16. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  17. Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model

    Science.gov (United States)

    Yoshinaga, N.; Higashiyama, K.; Taguchi, D.; Teruya, E.

    2015-05-01

    The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F), Gamow-Teller (GT), and tensor (T) matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.

  18. Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model

    Directory of Open Access Journals (Sweden)

    Yoshinaga N.

    2015-01-01

    Full Text Available The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F, Gamow-Teller (GT, and tensor (T matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.

  19. Relativistic Mean-Field Models and Nuclear Matter Constraints

    CERN Document Server

    Dutra, M; Carlson, B V; Delfino, A; Menezes, D P; Avancini, S S; Stone, J R; Providência, C; Typel, S

    2013-01-01

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \\sigma^3+\\sigma^4 models, (iii) \\sigma^3+\\sigma^4+\\omega^4 models, (iv) models containing mixing terms in the fields \\sigma and \\omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \\sigma (\\omega) field. The isospin dependence of the interaction is modeled by the \\rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  20. Nuclear geometry effect and transport coefficient in semi-inclusive lepton-production of hadrons off nuclei

    Directory of Open Access Journals (Sweden)

    Na Liu

    2015-10-01

    Full Text Available Hadron production in semi-inclusive deep-inelastic scattering of leptons from nuclei is an ideal tool to determine and constrain the transport coefficient in cold nuclear matter. The leading-order computations for hadron multiplicity ratios are performed by means of the SW quenching weights and the analytic parameterizations of quenching weights based on BDMPS formalism. The theoretical results are compared to the HERMES positively charged pions production data with the quarks hadronization occurring outside the nucleus. With considering the nuclear geometry effect on hadron production, our predictions are in good agreement with the experimental measurements. The extracted transport parameter from the global fit is shown to be qˆ=0.74±0.03 GeV2/fm for the SW quenching weight without the finite energy corrections. As for the analytic parameterization of BDMPS quenching weight without the quark energy E dependence, the computed transport coefficient is qˆ=0.20±0.02 GeV2/fm. It is found that the nuclear geometry effect has a significant impact on the transport coefficient in cold nuclear matter. It is necessary to consider the detailed nuclear geometry in studying the semi-inclusive hadron production in deep inelastic scattering on nuclear targets.

  1. Testing the importance of accurate meteorological input fields and parameterizations in atmospheric transport modelling using DREAM - Validation against ETEX-1

    DEFF Research Database (Denmark)

    Brandt, J.; Bastrup-Birk, A.; Christensen, J.H.

    1998-01-01

    transport and dispersion of air pollutants caused by a single but strong source as, e.g. an accidental release from a nuclear power plant. The model system including the coupling of the Lagrangian model with the Eulerian model are described. Various simple and comprehensive parameterizations of the mixing...

  2. Model of reversible vesicular transport with exclusion

    Science.gov (United States)

    Bressloff, Paul C.; Karamched, Bhargav R.

    2016-08-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states.

  3. The impact of modeling nuclear fragmentation on delivered dose and radiobiology in ion therapy.

    Science.gov (United States)

    Lühr, Armin; Hansen, David C; Teiwes, Ricky; Sobolevsky, Nikolai; Jäkel, Oliver; Bassler, Niels

    2012-08-21

    The importance of nuclear interactions for ion therapy arises from the influence of the particle spectrum on, first, radiobiology and therefore also on treatment planning, second, the accuracy of measuring dose and, third, the delivered dose distribution. This study tries to determine the qualitative as well as the quantitative influence of the modeling of inelastic nuclear interactions on ion therapy. Thereby, three key disciplines are investigated, namely dose delivery, dose assessment and radiobiology. In order to perform a quantitative analysis, a relative comparison between six different descriptions of nuclear interactions is carried out for carbon ions. The particle transport is simulated with the Monte Carlo code SHIELD-HIT10A while dose planning and radiobiology are covered by the analytic treatment planning program for particles TRiP, which determines the relative biological effectiveness (RBE) with the local effect model. The obtained results show that the physical dose distribution can in principle be significantly influenced by the modeling of fragmentation (about 10% for a 20% change in all inelastic nuclear cross sections for a target volume ranging from 15 to 25 cm). While the impact of nuclear fragmentation on stopping power ratios can be neglected, the fluence correction factor may be influenced by the applied nuclear models. In contrast to the results for the physical dose, the variation of the RBE is only small (about 1% for a 20% change in all inelastic nuclear cross sections) suggesting a relatively weak dependence of radiobiology on the detailed composition of the particle energy spectrum of the mixed radiation field. Also, no significant change (about 0.2 mm) of the lateral penumbra of the RBE-weighted dose is observed.

  4. Dependence of X-ray Burst Models on Nuclear Masses

    CERN Document Server

    Schatz, H

    2016-01-01

    X-ray burst model predictions of light curves and final composition of the nuclear ashes are affected by uncertain nuclear physics. Nuclear masses play an important role. Significant progress has been made in measuring the masses of very neutron deficient rare isotopes along the path of the rapid proton capture process (rp-process) in X-ray bursts. This paper identifies the remaining nuclear mass uncertainties in X-ray burst models using a one zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated - a typical mixed H/He burst with a limited rp-process and an extreme mixed H/He burst with an extended rp-process. Only three remaining nuclear mass uncertainties affect the light curve predictions of a typical H/He burst, and only three additional masses affect the composition strongly. A larger number of mass uncertainties remains to be addressed for the extreme H/He burst. Mass uncertainties of better than...

  5. Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel

    2016-11-01

    Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.

  6. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  7. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2001-02-15

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the

  8. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  9. Modelling and modal properties of nuclear fuel assembly

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2011-12-01

    Full Text Available The paper deals with the modelling and modal analysis of the hexagonal type nuclear fuel assembly. This very complicated mechanical system is created from the many beam type components shaped into spacer grids. The cyclic and central symmetry of the fuel rod package and load-bearing skeleton is advantageous for the fuel assembly decomposition into six identical revolved fuel rod segments, centre tube and skeleton linked by several spacer grids in horizontal planes. The derived mathematical model is used for the modal analysis of the Russian TVSA-T fuel assembly and validated in terms of experimentally determined natural frequencies, modes and static deformations caused by lateral force and torsional couple of forces. The presented model is the first necessary step for modelling of the nuclear fuel assembly vibration caused by different sources of excitation during the nuclear reactor VVER type operation.

  10. A Theoretic Model of Transport Logistics Demand

    OpenAIRE

    Natalija Jolić; Nikolina Brnjac; Ivica Oreb

    2006-01-01

    Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as ...

  11. Modelling Emission of Pollutants from transportation using mobile sensing data

    DEFF Research Database (Denmark)

    Lehmann, Anders

    2017-01-01

    to use data acquired from smartphones to im- prove transportation related air quality models and models for climate gas emission from transportation. These models can be used for planning of transportation net- works, monitoring of air quality, and automate transport related green accounting. More...... accurate transportation models can be obtained by using observed travel routes, acquired from smartphone data, rather than indirectly computed routes, as input to a model of route choice in a transportation network. Smartphone data can also be used to gain detailed knowledge of the driving style...... database imple- mentations are a subfield of computer science. I have worked to bring these diverse research fields together to solve the challenge of improving modelling of transporta- tion related air quality emissions as well as modelling of transportation related climate gas emissions. The main...

  12. Studying nuclear level densities of {sup 238}U in the nuclear reactions within the macroscopic nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Rohallah; Aghajani, Maghsood; Khooy, Asghar [Imam Hossein Comprehensive Univ., Tehran (Iran, Islamic Republic of). Dept. of Physics; Rahmatinejad, Azam; Taheri, Fariba [Univ. of Zanjan (Iran, Islamic Republic of). Dept. of Physics; Kakavand, Tayeb [Imam Khomeini International Univ., Qazvin (Iran, Islamic Republic of). Dept. of Physics

    2016-05-01

    In this work the nuclear level density parameters of {sup 238}U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for {sup 238}U(p,2nα){sup 233}Pa, and {sup 238}U(p,4n){sup 235}Np reactions and the fragment yields for the fragments of the {sup 238}U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of {sup 238}U show a constant temperature behaviour.

  13. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  14. A new conceptual model for aeolian transport rates on beaches

    NARCIS (Netherlands)

    De Vries, S.; Stive, M.J.F.; Van Rijn, L.; Ranasinghe, R.

    2012-01-01

    In this paper a new conceptual model for aeolian sediment transport rates is presented. Traditional sediment transport formulations have known limitations when applied to coastal beach situations. A linear model for sediment transport rates with respect to wind speed is proposed and supported by

  15. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  16. Interacting boson models of nuclear and nucleon structure

    CERN Document Server

    Bijker, R

    1998-01-01

    Interacting boson models provide an elegant and powerful method to describe collective excitations of complex systems by introducing a set of effective degrees of freedom. We review the interacting boson model of nuclear structure and discuss a recent extension to the nucleon and its excited states.

  17. Modelling aqueous corrosion of nuclear waste phosphate glass

    Science.gov (United States)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  18. Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond

    Science.gov (United States)

    Arnould, M.; Goriely, S.

    2006-10-01

    Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, α-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly ‘exotic’ laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.

  19. Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d Astronomie et d Astrophysique, CP 226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)]. E-mail: marnould@astro.ulb.ac.be; Goriely, S. [Institut d Astronomie et d Astrophysique, CP 226, Universite Libre de Bruxelles, 1050 Brussels (Belgium)

    2006-10-17

    Astrophysics is in need of a broad variety of nuclear data. This concerns static ground state properties, characteristics of excited nuclei, spontaneous decay properties, or interactions of nuclei with (mainly) nucleons, {alpha}-particles or photons. A strong theoretical activity complementing laboratory efforts is also mandatory. A large variety of highly 'exotic' laboratory-unreachable nuclei are indeed involved in the astrophysics modelling. Even when laboratory-studied nuclei are considered, theory has very often to be called for. Mastering the huge volume of nuclear information and making it available in an accurate and usable form for incorporation into astrophysics models is clearly of pivotal importance. The recognition of this necessity has been the driving motivation for the construction of the Brussels library (BRUSLIB) of computed data of astrophysics relevance. It provides an extended information in tabular form on masses, nuclear level densities and partition functions, fission barriers, and thermonuclear reaction rates. In addition of the unprecedented broadness of its scope, BRUSLIB has the unique and most important feature of relying to the largest possible extent on global and coherent microscopic nuclear models. The models of this sort that we have developed to predict the basic properties of the nuclei and of their interactions are briefly reviewed. The content of the BRUSLIB library that relies on these models is described, as well as a user-friendly nuclear network generator (NETGEN) complementing BRUSLIB. Finally, an application of BRUSLIB and NETGEN to the p-process nucleosynthesis during He detonation in sub-Chandrasekhar CO white dwarfs is proposed.

  20. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    Science.gov (United States)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    cell killing from GCR, including patterns of cell killing from single particle tracks. can provide useful information on expected differences between proton and HZE tracks and clinical experiences with photon irradiation. To model effects on cells in the brain, it is important that transport models accurately describe changes in the GCR due to interactions in the cranium and proximate tissues. We describe calculations of the attenuated GCR particle fluxes at three dose-points in the brain and associated patterns of cell killing using biophysical models. The effects of the brain self-shielding and bone-tissue interface of the skull in modulating the GCR environment are considered. For each brain dose-point, the mass distribution in the surrounding 4(pi) solid angle is characterized using the CAM model to trace 512 rays. The CAM model describes the self-shielding by converting the tissue distribution to mass-equivalent aluminum, and nominal values of spacecraft shielding is considered. Particle transport is performed with the proton, neutron, and heavy-ion transport code HZETRN with the nuclear fragmentation model QMSFRG. The distribution of cells killed along the path of individual GCR ions is modeled using in vitro cell inactivation data for cells with varying sensitivity. Monte Carlo simulations of arrays of inactivated cells are considered for protons and heavy ions and used to describe the absolute number of cell killing events of various magnitude in the brain from the GCR. Included are simulations of positions of inactivated cells from stopping heavy ions and nuclear stars produced by high-energy ions most importantly, protons and neutrons.

  1. Measurement and modeling of oil slick transport

    Science.gov (United States)

    Jones, Cathleen E.; Dagestad, Knut-Frode; Breivik, Åyvind; Holt, Benjamin; Röhrs, Johannes; Christensen, Kai Hâkon; Espeseth, Martine; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Transport characteristics of oil slicks are reported from a controlled release experiment conducted in the North Sea in June 2015, during which mineral oil emulsions of different volumetric oil fractions and a look-alike biogenic oil were released and allowed to develop naturally. The experiment used the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to track slick location, size, and shape for ˜8 h following release. Wind conditions during the exercise were at the high end of the range considered suitable for radar-based slick detection, but the slicks were easily detectable in all images acquired by the low noise, L-band imaging radar. The measurements are used to constrain the entrainment length and representative droplet radii for oil elements in simulations generated using the OpenOil advanced oil drift model. Simultaneously released drifters provide near-surface current estimates for the single biogenic release and one emulsion release, and are used to test model sensitivity to upper ocean currents and mixing. Results of the modeling reveal a distinct difference between the transport of the biogenic oil and the mineral oil emulsion, in particular in the vertical direction, with faster and deeper entrainment of significantly smaller droplets of the biogenic oil. The difference in depth profiles for the two types of oils is substantial, with most of the biogenic oil residing below depths of 10 m, compared to the majority of the emulsion remaining above 10 m depth. This difference was key to fitting the observed evolution of the two different types of slicks.

  2. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  3. Modeling sediment transport in river networks

    Science.gov (United States)

    Wang, Xu-Ming; Hao, Rui; Huo, Jie; Zhang, Jin-Feng

    2008-11-01

    A dynamical model is proposed to study sediment transport in river networks. A river can be divided into segments by the injection of branch streams of higher rank. The model is based on the fact that in a real river, the sediment-carrying capability of the stream in the ith segment may be modulated by the undergone state, which may be erosion or sedimentation, of the i-1th and ith segments, and also influenced by that of the ith injecting branch of higher rank. We select a database about the upper-middle reach of the Yellow River in the lower-water season to test the model. The result shows that the data, produced by averaging the erosion or sedimentation over the preceding transient process, are in good agreement with the observed average in a month. With this model, the steady state after transience can be predicted, and it indicates a scaling law that the quantity of erosion or sedimentation exponentially depends on the number of the segments along the reach of the channel. Our investigation suggests that fluctuation of the stream flow due to random rainfall will prevent this steady state from occurring. This is owing to the phenomenon that the varying trend of the quantity of erosion or sedimentation is opposite to that of sediment-carrying capability of the stream.

  4. Modeling Transport of Flushed Reservoir Sediment

    Science.gov (United States)

    Dubinski, I. M.

    2014-12-01

    Drawdown flushing of a reservoir is often part of a reservoir sediment management program. Flushing can deliver higher than normal sediment loads to the river channel located downstream of a reservoir. The flushed sediment may contain a higher proportion of finer sediment than what was delivered to a channel prior to the presence of the reservoir. The extent of long-term impacts caused by the flushed sediment on the channel morphology and habitat will in part depend on the residence time of the sediment within the channel. In this study we used MIKE 21C to model the fate of flushed sediment through a river channel where the bed material consists of an armoring layer of gravels overlying finer sediment. MIKE 21C is a two-dimensional curvilinear morphological model for rivers developed by DHI. Curvilinear means that the model grid may curve to better follow the channel and flow direction, for example in a meandering channel. Multiple bed material layers are included in the model to represent the armoring and underlying layers existing in the bed separately from the overlying flushed sediment. These layers may also mix. The nature of the interactions between these two layers helps regulate transport and deposition of the flushed sediment, thus are critical to assessing the fate of the flushed sediment and associated potential impacts.

  5. Modeling of Flow in Nuclear Reactor Fuel Cell Outlet

    Directory of Open Access Journals (Sweden)

    František URBAN

    2010-12-01

    Full Text Available Safe and effective load of nuclear reactor fuel cells demands qualitative and quantitative analysis of relations between coolant temperature in fuel cell outlet temperature measured by thermocouple and middle temperature of coolant in thermocouple plane position. In laboratory at Insitute of thermal power engineering of the Slovak University of Technology in Bratislava was installed an experimental physical fuel cell model of VVER 440 nuclear power plant with V 213 nuclear reactors. Objective of measurements on physical model was temperature and velocity profiles analysis in the fuel cell outlet. In this paper the measured temperature and velocity profiles are compared with the results of CFD simulation of fuel cell physical model coolant flow.

  6. Estimation of Schiff moments using the nuclear shell model

    Science.gov (United States)

    Teruya, Eri; Yoshinaga, Naotaka; Arai, Ryoichi; Higashiyama, Koji

    2014-09-01

    The existence of finite permanent electric dipole moment (EDM) of an elementary particle or an atom indicates violation of time-reversal symmetry. The time reversal invariance implies violation of charge and parity symmetry through the CPT theorem. The predicted fundamental particle's EDMs are too small to be observed in the Standard Model. However, some models beyond the Standard Model produce much larger EDMs which may be observed in future. Thus, if we observe finite EDMs, we can conclude that we need a new extended model for the Standard Model and the specific value of an EDM gives a constraint on constructing a new model. Experimental efforts searching for atomic EDMs are now in progress. The EDM of a neutral atom is mainly induced by the nuclear Schiff moment, since the electron EDM is very small and the nuclear EDM is shielded by outside electrons owing to the Schiff theorem. In this work we estimate the Schiff moments for the lowest 1/2+ states of Xe isotopes around the mass 130. The nuclear wave functions beyond mean-field theories are calculated in terms of the nuclear shell model. We discuss influences of core excitations and over shell excitations on the Schiff moments.

  7. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  8. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  9. Aptamers that bind specifically to human KPNA2 (importin-α1) and efficiently interfere with nuclear transport.

    Science.gov (United States)

    Yasuhara, Noriko; Kumar, Penmetcha K R

    2016-11-01

    The importin-α family of proteins plays an important role in the eukaryotic importin/exportin nuclear transport system. These proteins recognize a nuclear localization signal (NLS) within cargo proteins and import them into the nucleus through nuclear pores, in a process mediated by importin-β. Recent studies have shown that importin-α proteins specifically recognize the NLS of several cellular factors and viral proteins, thus regulating their movement. Dysregulation of importin-α is a common hallmark of many pathologies including, multiple cancers. In this study, we isolated aptamers 76 and 72, which bind specifically and efficiently to KPNA2, a member of a subfamily of importin-α1. Both of these aptamers bind to KPNA2 with an equilibrium dissociation constant (K d) of 150 nM and discriminate between KPNA2 and other sub-family members of importin-α, such as KPNA1 and KPNA3. These aptamers specifically interfere with the nuclear transport of cargo proteins mediated by KPNA2 but neither with KPNA1 nor KPNA3, which belongs to other subfamily of importins. These results suggest that the selected aptamers (76 and 72) warrant further study to explore not only their application in cancer diagnosis but also their use as a specific reagent to potentially block KPNA2-dependent nuclear transport of macromolecules across the nuclear membrane.

  10. Prediction of nuclear proteins using SVM and HMM models

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2009-01-01

    Full Text Available Abstract Background The nucleus, a highly organized organelle, plays important role in cellular homeostasis. The nuclear proteins are crucial for chromosomal maintenance/segregation, gene expression, RNA processing/export, and many other processes. Several methods have been developed for predicting the nuclear proteins in the past. The aim of the present study is to develop a new method for predicting nuclear proteins with higher accuracy. Results All modules were trained and tested on a non-redundant dataset and evaluated using five-fold cross-validation technique. Firstly, Support Vector Machines (SVM based modules have been developed using amino acid and dipeptide compositions and achieved a Mathews correlation coefficient (MCC of 0.59 and 0.61 respectively. Secondly, we have developed SVM modules using split amino acid compositions (SAAC and achieved the maximum MCC of 0.66. Thirdly, a hidden Markov model (HMM based module/profile was developed for searching exclusively nuclear and non-nuclear domains in a protein. Finally, a hybrid module was developed by combining SVM module and HMM profile and achieved a MCC of 0.87 with an accuracy of 94.61%. This method performs better than the existing methods when evaluated on blind/independent datasets. Our method estimated 31.51%, 21.89%, 26.31%, 25.72% and 24.95% of the proteins as nuclear proteins in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mouse and human proteomes respectively. Based on the above modules, we have developed a web server NpPred for predicting nuclear proteins http://www.imtech.res.in/raghava/nppred/. Conclusion This study describes a highly accurate method for predicting nuclear proteins. SVM module has been developed for the first time using SAAC for predicting nuclear proteins, where amino acid composition of N-terminus and the remaining protein were computed separately. In addition, our study is a first documentation where exclusively nuclear

  11. An Analysis of Transport, Dispersion, and Deposition from Two Above-Ground Nuclear Tests in China

    Science.gov (United States)

    1999-04-14

    resulting distribution of radioactive material to the Second-order Closure Integrated PUFF ( SCIPUFF ) model to perform the transport and diffusion of the...Corp, MRC-R-243, Dec 1975 Sykes, R.I., "PC- SCIPUFF Version 0.2 Technical Documentation, Titan Corporation, DNA-TR-96-27, April 1997 Tripoli, G.J

  12. Extremity dosimetry problems during the handling of radionuclides syringes in nuclear medicine: A Monte Carlo radiation transport simplified approach

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, F., E-mail: francesca.mariotti@bologna.enea.i [ENEA-BAS-ION IRP Radiation Protection Institute, Via dei Colli 16, 40136, Bologna (Italy); Gualdrini, G. [ENEA-BAS-ION IRP Radiation Protection Institute, Via dei Colli 16, 40136, Bologna (Italy)

    2011-04-15

    The ORAMED (Optimization of RAdiation protection for MEDical staff) Working Tasks (WP4) is addressed at evaluating extremity doses (and dose distributions across the hands) of medical staff working in nuclear medicine departments, to study the influence of protective devices such as syringe and vial shields, to improve such devices when possible and to propose 'levels of reference doses' for each standard nuclear medicine procedure. In particular task 4 is concerned with the study of the extremity dosimetry for the hand of operators devoted to the preparation and administration stages of the usage, for example, of {sup 99m}Tc, {sup 18}F and {sup 90}Y (Zevalin) radionuclides. The aim of this report consists in the study of photon-electron equilibrium conditions at 0.07 mm in the skin to justify a simplified 'kerma approximation' approach in the planned complex Monte Carlo voxel hand modeling. Furthermore a detailed investigation on primary electron and secondary bremsstrahlung photon transport from {sup 90}Y to speed up the calculations was performed. The results obtained in the simplified investigated conditions could be of help for the production calculations, introducing, if necessary, suited correction factors applicable to the complex condition results.

  13. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement

  14. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    Science.gov (United States)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  15. Numerical Modelling of Sediment Transport in Combined Sewer Systems

    DEFF Research Database (Denmark)

    Schlütter, Flemming

    A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....

  16. A new conceptual model for aeolian transport rates on beaches

    OpenAIRE

    de Vries, S.; Stive, M.J.F.; van Rijn, L.; Ranasinghe, R.

    2012-01-01

    In this paper a new conceptual model for aeolian sediment transport rates is presented. Traditional sediment transport formulations have known limitations when applied to coastal beach situations. A linear model for sediment transport rates with respect to wind speed is proposed and supported by both data and numerical model simulations. The presented model does not solve complex wind fields and is therefore very easily applicable. Physical principles such as the presence of a threshold veloc...

  17. The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein

    Directory of Open Access Journals (Sweden)

    Panté Nelly

    2009-06-01

    Full Text Available Abstract Background Early in infection, the genome of the influenza A virus, consisting of eight complexes of RNA and proteins (termed viral ribonucleoproteins; vRNPs, enters the nucleus of infected cells for replication. Incoming vRNPs are imported into the nucleus of infected cells using at least two nuclear localization sequences on nucleoprotein (NP; NLS1 at the N terminus, and NLS2 in the middle of the protein. Progeny vRNP assembly occurs in the nucleus, and later in infection, these are exported from the nucleus to the cytoplasm. Nuclear-exported vRNPs are different from incoming vRNPs in that they are prevented from re-entering the nucleus. Why nuclear-exported vRNPs do not re-enter the nucleus is unknown. Results To test our hypothesis that the exposure of NLSs on the vRNP regulates the directionality of the nuclear transport of the influenza vRNPs, we immunolabeled the two NLSs of NP (NLS1 and NLS2 and analyzed their surface accessibility in cells infected with the influenza A virus. We found that the NLS1 epitope on NP was exposed throughout the infected cells, but the NLS2 epitope on NP was only exposed in the nucleus of the infected cells. Addition of the nuclear export inhibitor leptomycin B further revealed that NLS1 is no longer exposed in cytoplasmic NP and vRNPs that have already undergone nuclear export. Similar immunolabeling studies in the presence of leptomycin B and with cells transfected with the cDNA of NP revealed that the NLS1 on NP is hidden in nuclear exported-NP. Conclusion NLS1 mediates the nuclear import of newly-synthesized NP and incoming vRNPs. This NLS becomes hidden on nuclear-exported NP and nuclear-exported vRNPs. Thus the selective exposure of the NLS1 constitutes a critical mechanism to regulate the directionality of the nuclear transport of vRNPs during the influenza A viral life cycle.

  18. Nuclear chirality, a model and the data

    Science.gov (United States)

    Starosta, K.; Koike, T.

    2017-09-01

    In the last decade, the manifestation of chirality in atomic nuclei has become the subject of numerous experimental and theoretical studies. The common feature of current model calculations is that the chiral geometry of angular momentum coupling is extracted from expectation values of orientation operators, rather than being a starting point in construction of a model. However, using the particle-hole coupling model for triaxial odd-odd nuclei it is possible to construct a basis which contains right-handed, left-handed and planar states of angular momentum coupling. If this basis is used, the chirality is an explicit rather than an extracted feature as in any other models with non-chiral bases. The time-reversal symmetry, which relates the basis states of opposite handedness, can be used to reduce the dimension of matrices for diagonalization of the model Hamiltonian, proving the effectiveness of this approach. Moreover, the final model eigenstate wave functions show a concentration of amplitudes among a relatively small number (˜1%) of components compared to the full model space. In that sense, the ‘chiral’ basis provides a useful tool to examine model predictions providing direct insight into the structure of doublet states. In this work, similarities and differences between the rotational behaviour of an axial and triaxial body provide a starting point for derivation of the basis optimal for valence nucleon coupling to an axial and a triaxial core. The derived ‘chiral’ basis is optimal for coupling of a valence particle and hole to the triaxial core. Model predictions are presented and discussed. A comprehensive review of current experimental data on observed chiral band candidates is also provided.

  19. An Elastic Model of Blebbing in Nuclear Lamin Meshworks

    Science.gov (United States)

    Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica

    2013-03-01

    A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster

  20. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    Science.gov (United States)

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-09-15

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.

  1. Modeling Oxygen Transport in the Human Placenta

    Science.gov (United States)

    Serov, Alexander; Filoche, Marcel; Salafia, Carolyn; Grebenkov, Denis

    Efficient functioning of the human placenta is crucial for the favorable pregnancy outcome. We construct a 3D model of oxygen transport in the placenta based on its histological cross-sections. The model accounts for both diffusion and convention of oxygen in the intervillous space and allows one to estimate oxygen uptake of a placentone. We demonstrate the existence of an optimal villi density maximizing the uptake and explain it as a trade-off between the incoming oxygen flow and the absorbing villous surface. Calculations performed for arbitrary shapes of fetal villi show that only two geometrical characteristics - villi density and the effective villi radius - are required to predict fetal oxygen uptake. Two combinations of physiological parameters that determine oxygen uptake are also identified: maximal oxygen inflow of a placentone and the Damköhler number. An automatic image analysis method is developed and applied to 22 healthy placental cross-sections demonstrating that villi density of a healthy human placenta lies within 10% of the optimal value, while overall geometry efficiency is rather low (around 30-40%). In a perspective, the model can constitute the base of a reliable tool of post partum oxygen exchange efficiency assessment in the human placenta. Also affiliated with Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.

  2. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  3. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes.

    Science.gov (United States)

    Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio

    2017-01-24

    Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.

  4. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, Eeva; Vuorinen, Elisa [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, 33520 Tampere (Finland); Savinainen, Kimmo; Rauhala, Hanna [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Kallioniemi, Anne, E-mail: anne.kallioniemi@uta.fi [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, 33520 Tampere (Finland)

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  5. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y; Glascoe, L

    2005-06-09

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.

  6. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  7. Stochastic modeling of deterioration in nuclear power plant components

    Science.gov (United States)

    Yuan, Xianxun

    2007-12-01

    The risk-based life-cycle management of engineering systems in a nuclear power plant is intended to ensure safe and economically efficient operation of energy generation infrastructure over its entire service life. An important element of life-cycle management is to understand, model and forecast the effect of various degradation mechanisms affecting the performance of engineering systems, structures and components. The modeling of degradation in nuclear plant components is confounded by large sampling and temporal uncertainties. The reason is that nuclear systems are not readily accessible for inspections due to high level of radiation and large costs associated with remote data collection methods. The models of degradation used by industry are largely derived from ordinary linear regression methods. The main objective of this thesis is to develop more advanced techniques based on stochastic process theory to model deterioration in engineering components with the purpose of providing more scientific basis to life-cycle management of aging nuclear power plants. This thesis proposes a stochastic gamma process (GP) model for deterioration and develops a suite of statistical techniques for calibrating the model parameters. The gamma process is a versatile and mathematically tractable stochastic model for a wide variety of degradation phenomena, and another desirable property is its nonnegative, monotonically increasing sample paths. In the thesis, the GP model is extended by including additional covariates and also modeling for random effects. The optimization of age-based replacement and condition-based maintenance strategies is also presented. The thesis also investigates improved regression techniques for modeling deterioration. A linear mixed-effects (LME) regression model is presented to resolve an inconsistency of the traditional regression models. The proposed LME model assumes that the randomness in deterioration is decomposed into two parts: the unobserved

  8. nuclear bound states in a dynamical model

    Science.gov (United States)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-05-01

    A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.

  9. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  10. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    DEFF Research Database (Denmark)

    Liu, W.; Lund, H.; Mathiesen, B.V.

    2013-01-01

    in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13......Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport......% of the energy saving and 12% of the CO2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies...

  11. Dependence of Two-proton Radioactivity on Nuclear Pairing Models

    CERN Document Server

    Oishi, Tomohiro; Pastore, Alessandro

    2016-01-01

    The sensitivity of two-proton emitting decays to the nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the $^6$Be nucleus assuming $\\alpha + p + p$ configuration, and its decay process is described as a time-evolution of the three-body resonance state. A noticeable model-dependence of two-proton decay width is found by utilizing schematic density-dependent contact (SDDC) and the finite-range Minnesota pairing models. The model-dependence with the SDDC pairing interaction can be understood from the density distribution of the resonance state, which reflects a synergy of participating interactions. Our result suggests that two-proton decay width may be a suitable reference quantity to sophisticate the nuclear pairing model beyond the nucleon driplines.

  12. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  13. Vesicular glutamate transporter-immunoreactivities in the vestibular nuclear complex of rat

    Institute of Scientific and Technical Information of China (English)

    Jiao DENG; Fu-Xing ZHANG; You-Wang PANG; Jin-Lian LI; Yun-Qing LI

    2006-01-01

    Objective Aims to delineate the distribution profile of three isoforms of vesicular glutamate transporter (VGluT), viz. VGluT1~3, and their cellular localization within vestibular nuclear complex (VNC). Methods Brain sections from normal Sprague-Dawley rats were processed immunohistochemically for VGluT detection, employing avidinbiotinylated peroxidase complex method with 3-3'-diaminobenzidine (DAB) as chromogen. Results The whole VNC expressed all of the three transporters that were observed to be localized to the fiber endings. Compared with VGluT1 and VGluT3, VGluT2 demonstrated a relatively homogeneous distribution, with much higher density in VNC. VGluT3 displayed the highest density in lateral vestibular nucleus and group X, contrasting with the sparse immunostained puncta within vestibular medial and inferior nuclei. Conclusion Glutamtatergic pathways participate in the processing of vestibular signals within VNC mainly through the re-uptake of glutamate into synaptic vesicles by VGluT1 and 2, whereas VGluT3 may play a similar role mainly in areas other than medial and inferior nuclei of VNC.

  14. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  15. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, W.M.

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels. Howeve

  16. Nuclear-induced XeBr/asterisk/ photolytic laser model

    Science.gov (United States)

    Wilson, J. W.

    1980-01-01

    Parameters for a photolytically pumped alkyl iodide lasant gas by the nuclear-induced XeBr excimer fluorescence are calculated according to a detailed kinetic model. High gain on the atomic iodine 2P1/2 state is estimated and 100-mJ pulses with an average power output on the order of 1 kW appear possible.

  17. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    and transport simulation model is combined with nonlinear least squares multiple regression. The U.S. Geological Survey method of characteristics model is used to simulate flow and transport, and the optimization part is solved using a Levenberg-Marquardt algorithm. The sensitivity of the optimization approach...

  18. Preliminary Evaluation of the DUSTRAN Modeling Suite for Modeling Atmospheric Chloride Transport

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Philip; Tran, Tracy; Fritz, Bradley; Rutz, Frederick; Ross, Steven; Gorton, Alicia; Devanathan, Ram; Plante, Paul; Trainor, Kevin

    2016-05-03

    This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the transport of sea salt aerosols (SSA). Results from DUSTRAN simulations run with historical meteorological data were compared against privately-measured chloride data at the near coastal Maine Yankee Nuclear Power Plant (NPP) and the Environmental Protection Agency-measured CASTNET data from Acadia National Park (NP). The comparisons have provided both encouragement as to the practical value of DUSTRAN’s CALPUFF model and suggestions for further software development opportunities. All modeled concentrations were within one order of magnitude of those measured and a few test cases showed excellent agreement between modeled and measured concentrations. However, there is a lack of consistency in discrepancy which may be due to inaccurate extrapolation of meteorological data, underlying model physics, and the source term. Future research will refine the software to better capture physical phenomena. Overall, results indicate that with parameter refinement, DUSTRAN has the potential to simulate atmospheric chloride transport from known sources to inland sites for the purpose of determining the corrosion susceptibility of various structures, systems, and components at the site.

  19. Assessment of the risk of transporting spent nuclear fuel by truck

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.K.

    1978-11-01

    The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10/sup -5/ fatalities. An individual in the population at risk would have one chance in 6 x 10/sup 11/ of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year. (DLC)

  20. Comparison of global passenger transport models and available literature

    NARCIS (Netherlands)

    Breugem RMH; Vuuren DP van; Wee B van; MNV

    2002-01-01

    Over the last decade transport has been strongest growing sector in terms of worldwide energy demand. As a result, proper modelling of transport has become more important in models describing global climate change. RIVM has developed the energy model TIMER as part of the global integrated assessmen

  1. Comparison of global passenger transport models and available literature

    NARCIS (Netherlands)

    Breugem RMH; Vuuren DP van; Wee B van; MNV

    2002-01-01

    Over the last decade transport has been strongest growing sector in terms of worldwide energy demand. As a result, proper modelling of transport has become more important in models describing global climate change. RIVM has developed the energy model TIMER as part of the global integrated

  2. Methodology for risk analysis based on atmospheric dispersion modelling from nuclear risk sites

    Science.gov (United States)

    Baklanov, A.; Mahura, A.; Sørensen, J. H.; Rigina, O.

    2003-04-01

    The main purpose of this multidisciplinary study is to develop a methodology for complex nuclear risk and vulnerability assessment, and to test it on example of estimation of nuclear risk to the population in the Nordic countries in case of a severe accident at a nuclear risk site (NRS). The main focus of the paper is the methodology for the evaluation of the atmospheric transport and deposition of radioactive pollutants from NRSs. The method developed for this evaluation is derived from a probabilistic point of view. The main question we are trying to answer is: What is the probability for radionuclide atmospheric transport and impact to different neighbouring regions and countries in case of an accident at an NPP? To answer this question we applied a number of different tools: (i) Trajectory Modelling - to calculate multiyear forward trajectories originating over the locations of selected risk sites; (ii) Dispersion Modelling - for long-term simulation and case studies of radionuclide transport from hypothetical accidental releases at NRSs; (iii) Cluster Analysis - to identify atmospheric transport pathways from NRSs; (iv) Probability Fields Analysis - to construct annual, monthly, and seasonal NRS impact indicators to identify the most impacted geographical regions; (v) Specific Case Studies - to estimate consequences for the environment and the populations after a hypothetical accident; (vi) Vulnerability Evaluation to Radioactive Deposition - to describe its persistence in the ecosystems with a focus to the transfer of certain radionuclides into the food chains of key importance for the intake and exposure for a whole population and for certain population groups; (vii) Risk Evaluation and Mapping - to analyse socio-economical consequences for different geographical areas and various population groups taking into account social-geophysical factors and probabilities, and using demographic databases based on GIS analysis.

  3. The fundamental role of symmetry in nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D. J. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-06-10

    The purpose of these lectures is to illustrate how symmetry and pattern recognition play essential roles in the progression from experimental observation to an understanding of nuclear phenomena in terms of interacting neutrons and protons. We do not discuss weak interactions nor relativistic and sub-nucleon degrees of freedom. The explicit use of symmetry and the power of algebraic methods, in combination with analytical and geometrical methods are illustrated by their use in deriving a shell-model description of nuclear rotational dynamics and the structure of deformed nuclei.

  4. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...... functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained...

  5. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin.

    Directory of Open Access Journals (Sweden)

    Meigong Zhong

    Full Text Available Although it is known that inhibitors of heat shock protein 90 (Hsp90 can inhibit herpes simplex virus type 1 (HSV-1 infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5 at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance.

  6. Nuclear symmetry energy in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2015-01-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.

  7. Nuclear rho transparencies in a relativistic Glauber model

    CERN Document Server

    Cosyn, Wim

    2013-01-01

    [Background] The recent Jefferson Lab data for the nuclear transparency in $\\rho^ {0}$ electroproduction have the potential to settle the scale for the onset of color transparency (CT) in vector meson production. [Purpose] To compare the data to calculations in a relativistic and quantum-mechanical Glauber model and to investigate whether they are in accordance with results including color transparency given that the computation of $\\rho$-nucleus attenuations is subject to some uncertainties. [Method] We compute the nuclear transparencies in a multiple-scattering Glauber model and account for effects stemming from color transparency, from $\\rho$-meson decay, and from short-range correlations (SRC) in the final-state interactions (FSI). [Results] The robustness of the model is tested by comparing the mass dependence and the hard-scale dependence of the $A(e,e'p)$ nuclear transparencies with the data. The hard-scale dependence of the $(e,e' \\rho ^ {0})$ nuclear transparencies for $^ {12}$C and $^ {56}$Fe are on...

  8. K- nuclear potentials from in-medium chirally motivated models

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.

    2011-10-01

    A self-consistent scheme for constructing K- nuclear optical potentials from subthreshold in-medium K¯N s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K- quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -ReVK-chiral=85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium K¯N threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ2-dependent phenomenological terms, found to be dominated by ρ2 contributions that could represent K¯NN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K- quasibound nuclear states are presented.

  9. BNFL's experience in preparing and implementing radiation protection programmes for the control of exposure to workers involved with the international transport of nuclear cargoes

    Energy Technology Data Exchange (ETDEWEB)

    Billing, D. [Spent Fuel Services, British Nuclear Fuels plc, Warrington, Cheshire (United Kingdom)

    2004-07-01

    BNFL International Transport have successfully developed appropriate Radiation Protection Programmes for their business. The business supports BNFL's worldwide Nuclear Fuel Services with key customer bases in Europe, Japan and the UK, utilising marine, rail and road modal transports. Experience in the business spans over 4 decades. The preparation of RPP's for each aspect of its operations has been made relatively straight forward in that the key elements within the internationally recognised model RPP (by WNTI) were already in place in BNFL's procedures to satisfy current National UK and International Regulations. Arrangements are supported by Management systems which comply with International Standards for Quality Assurance. Exposure to key worker groups continues to be within Category 1 (less than 1mSv/y) of the IAEA Transport Regulations TS-R-1 (ST-1 revised).

  10. MMSNF 2005. Materials models and simulations for nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Freyss, M.; Durinck, J.; Carlot, G.; Sabathier, C.; Martin, P.; Garcia, P.; Ripert, M.; Blanpain, P.; Lippens, M.; Schut, H.; Federov, A.V.; Bakker, K.; Osaka, M.; Miwa, S.; Sato, I.; Tanaka, K.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Govers, K.; Verwerft, M.; Hou, M.; Lemehov, S.E.; Terentyev, D.; Govers, K.; Kotomin, E.A.; Ashley, N.J.; Grimes, R.W.; Van Uffelen, P.; Mastrikov, Y.; Zhukovskii, Y.; Rondinella, V.V.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Minato, K.; Phillpot, S.; Watanabe, T.; Shukla, P.; Sinnott, S.; Nino, J.; Grimes, R.; Staicu, D.; Hiernaut, J.P.; Wiss, T.; Rondinella, V.V.; Ronchi, C.; Yakub, E.; Kaye, M.H.; Morrison, C.; Higgs, J.D.; Akbari, F.; Lewis, B.J.; Thompson, W.T.; Gueneau, C.; Gosse, S.; Chatain, S.; Dumas, J.C.; Sundman, B.; Dupin, N.; Konings, R.; Noel, H.; Veshchunov, M.; Dubourg, R.; Ozrin, C.V.; Veshchunov, M.S.; Welland, M.T.; Blanc, V.; Michel, B.; Ricaud, J.M.; Calabrese, R.; Vettraino, F.; Tverberg, T.; Kissane, M.; Tulenko, J.; Stan, M.; Ramirez, J.C.; Cristea, P.; Rachid, J.; Kotomin, E.; Ciriello, A.; Rondinella, V.V.; Staicu, D.; Wiss, T.; Konings, R.; Somers, J.; Killeen, J

    2006-07-01

    The MMSNF Workshop series aims at stimulating research and discussions on models and simulations of nuclear fuels and coupling the results into fuel performance codes.This edition was focused on materials science and engineering for fuel performance codes. The presentations were grouped in three technical sessions: fundamental modelling of fuel properties; integral fuel performance codes and their validation; collaborations and integration of activities. (A.L.B.)

  11. Long-term transport and dispersion of 137Cs released into ocean off Fukushima nuclear accident

    Science.gov (United States)

    Zhao, Chang; Qiao, Fangli; Wang, Guansuo; Xia, Changshui; Jung, KyungTae

    2014-05-01

    In the following days after the Fukushima nuclear accident which happened in 11th March 2011, significant amounts of radioactive materials (131I, 134Cs and 137Cs) had been leaking into the terrestrial and marine environments. The radionuclides model was used to study the distribution of the 137Cs in the Pacific and the Indian Ocean released from the Fukushima accident. The simulation on the distribution of 137Cs agrees well with the the observed profiles in the 9th November 2011, which proved the validaty of the model. In the first year of our model run, the 137Cs is carried eastward by the Kuroshio and its extension, spreading southward and northword meanwhile. Four or five years after the accident, the 137Cs reaches the US coast with the surface waters of the Pacific Ocean; its concentration is no higher than 3 Bq/m3. Ten years after the accident, all the North Pacific Ocean is labeled with the 137Cs from the Fukushima. The concentration is less than 1 Bq/m3 at that time. Thirty years after the accident, the concentration of 137Cs in both the Pacific and the Indian Ocean is below 0.1 Bq/m3. Since the spreading path of 137Cs from the Fukushima nuclear accident is just the migration route of the Pacific tuna, a kind of fish inhabit the western and eastern North Pacific, it may cause radioactive contamination to the fish. In the offshore seas of China, the 137Cs from Fukushima nuclear accident is very low (<0.2 Bq/m3) .

  12. A study on iron ore transportation model with penalty value of transportation equipment waiting

    Directory of Open Access Journals (Sweden)

    Kailing Pan

    2017-03-01

    Full Text Available As some steel enterprises are at a disadvantage in the choice of the mode of transportation, this paper made further studies of the characteristics of the iron ore logistics, taking comprehensive consideration of optimizing the waiting time under the conditions with limited loading capacity and setting up a procedural model of the iron ore logistics system with minimum cost of transportation, storage, loading, unloading, and transportation equipment waiting. Finally, taking the iron ore transport system of one steel enterprise as example, the solution and the validity of the model were analyzed and verified in this paper.

  13. Rail Shock and Vibration Pre-Test Modeling of a Used Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Best, Ralph E.; Maheras, Steven J.; McConnell, Paul E.; Orchard, John

    2015-04-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste (HLW). The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and HLW generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC is responsible for addressing issues regarding the long-term or extended storage (ES) of UNF and its subsequent transportation. Available information is not sufficient to determine the ability of ES UNF, including high-burnup fuel, to withstand shock and vibration forces that could occur when the UNF is shipped by rail from nuclear power plant sites to a storage or disposal facility. There are three major gaps in the available information – 1) the forces that UNF assemblies would be subjected to when transported by rail, 2) the mechanical characteristics of fuel rod cladding, which is an essential structure for controlling the geometry of the UNF, a safety related feature, and 3) modeling methodologies to evaluate multiple possible degradation or damage mechanisms over the UNF lifetime. In order to address the first gap, options for tests to determine the physical response of surrogate UNF assemblies subjected to shock and vibration forces that are expected to be experienced during normal conditions of transportation (NCT) by rail must be identified and evaluated. The objective of the rail shock and vibration tests is to obtain data that will help researchers understand the mechanical loads that ES UNF assemblies would be subjected to under normal conditions of transportation and to fortify the computer modeling that will be necessary to evaluate the impact

  14. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    Science.gov (United States)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  15. Modelling multicomponent solute transport in structured soils

    NARCIS (Netherlands)

    Beinum, van G.W.

    2007-01-01

    The mobility of contaminants in soil is an important factor in determining their ability to spread into the wider environment. For non-volatile substances, transport within the soil is generally dominated by transport of dissolved fractions in the soil water phase, via either diffusion or convection

  16. European initiatives for modeling emissions from transport

    DEFF Research Database (Denmark)

    Joumard, Robert; Hickman, A. John; Samaras, Zissis

    1998-01-01

    In Europe there have been many cooperative studies into transport emission inventories since the late 80s. These cover the scope of CORINAIR program involving experts from seven European Community laboratories addressing only road transport emissions at national level. These also include the late...

  17. Modelling global container freight transport demand

    NARCIS (Netherlands)

    Tavasszy, L.A.; Ivanova, O.; Halim, R.A.

    2015-01-01

    The objective of this chapter is to discuss methods and techniques for a quantitative and descriptive analysis of future container transport demand at a global level. Information on future container transport flows is useful for various purposes. It is instrumental for the assessment of returns of i

  18. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  19. A dynamical systems model for nuclear power plant risk

    Science.gov (United States)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  20. User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Mark; Cranwell, Robert M.

    1981-11-01

    This report describes a three-dimensional finite-difference model (SWIFT) which is used to simulate flow and transport processes in geologic media. The model was developed for use by the Nuclear Regulatory Commission in the analysis of deep geologic nuclear waste-disposal facilities. This document, as indicated by the title, is a user's manual and is intended to facilitate the use of the SWIFT simulator. Mathematical equations, submodels, application notes, and a description of the program itself are given herein. In addition, a complete input data guide is given along with several appendices which are helpful in setting up a data-input deck. Computer code SWIFT (Sandia Waste Isolation, Flow and Transport Model) is a fully transient, three-dimensional model which solves the coupled equations for transport in geologic media. The processes considered are: (1) fluid flow; (2) heat transport; (3) dominant-species miscible displacement; and (4) trace-species miscible displacement. The first three processes are coupled via fluid density and viscosity. Together they provide the velocity field on which the fourth process depends.

  1. Modelling Transportation of Efavirenz: Inference on possibility of mixed modes of transportation and kinetic solubility

    Directory of Open Access Journals (Sweden)

    Tafireyi eNemaura

    2015-06-01

    Full Text Available Understanding drug transportation mechanisms in the human body is of paramount importance in modelling Pharmacokinetic-Pharmacodynamic relationships. This work gives a novel general model of efavirenz transportation projections based on concentrations simulated from patients on a dose of 600mg. The work puts forward a proposition that transportation can wholly be modeled by concentration and time in a uniform volumetric space. Furthermore, movement entities are used to inform the state of kinetic solubility of a solution. There is use of Ricker’s model, and forms of the Hill’s equation in modelling transportation. Characterization on the movement rates of solution particle are suggested in relation to advection rate of solution particle. At turning points on the transportation rate of solution particle vs concentration curve, a suggestion of possibly change of dominance in the mode of transportation and saturation is made. There are four movement rates postulated at primary micro-level transportation, that are attributed to convection, diffusion (passive transportation ( EI and energy dependent system transportation ( ED in relation to advection. Furthermore, a new parameter is introduced which is defined as an advection rate constant of solution particle. It is postulated to be dependent on two rate constants of solution particle, that is a convection rate constant of solution particle and a saturable transportation rate constant of solution particle. At secondary micro-level transportation, the results show convection as sum of advection and saturable transportation. The kinetics of dissolution of efavirenz in the solution space is postulated. Relatively, a good level of kinetics of dissolution is projected in the concentration region 0−32.82μg/ml.

  2. Engine System Model Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  3. Unsaturated water flow and tracer transport modeling with Alliances

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Alina, E-mail: alina.constantin@nuclear.ro [Institute for Nuclear Research, Campului Str, No. 1, PO Box 78, Postal Code 115400 Mioveni, Arges County (Romania); Genty, Alain, E-mail: alain.genty@cea.fr [CEA Saclay, DM2S/SFME/LSE, Gif-sur-Yvette 91191 cedex (France); Diaconu, Daniela; Bucur, Crina [Institute for Nuclear Research, Campului Str, No. 1, PO Box 78, Postal Code 115400 Mioveni, Arges County (Romania)

    2013-12-15

    Highlights: • Simulation of water flow and solute transport at Saligny site, Romania was done. • Computation was based on the available experimental data with Alliances platform. • Very good results were obtained for the saturation profile in steady state. • Close fit to experimental data for saturation profile at 3 m in transient state. • Large dispersivity coefficients were fitted to match tracer experiment. - Abstract: Understanding water flow and solute transport in porous media is of central importance in predicting the radionuclide fate in the geological environment, a topic of interest for the performance and safety assessment studies for nuclear waste disposal. However, it is not easy to predict transport properties in real systems because they are geologically heterogeneous from the pore scale upwards. This paper addresses the simulation of water flow and solute transport in the unsaturated zone of the Saligny site, the potential location for the Romanian low and intermediate level waste (LILW) disposal. Computation was based on the current available experimental data for this zone and was performed within Alliances, a software platform initially jointly developed by French organizations CEA, ANDRA and EDF. The output of the model developed was compared with the measured values in terms of saturation profile of the soil for water movement, in both steady and transient state. Very good results were obtained for the saturation profile in steady state and a close fit of the simulation over experimental data for the water saturation profile at a depth of 3 m in transient state. In order to obtain information regarding the solute migration in depth and the solute lateral dispersion, a tracer test was launched on site and dispersivity coefficients of the solute were fitted in order to match the experimental concentration determined on samples from different locations of the site. Results much close to the experiment were obtained for a longitudinal

  4. Combinatorial model of solute transport in porous media

    Institute of Scientific and Technical Information of China (English)

    张妙仙; 张丽萍

    2004-01-01

    Modeling of solute transport is a key issue in the area of soil physics and hydrogeology. The most common approach (the convection-dispersion equation) considers an average convection flow rate and Fickian-like dispersion. Here,we propose a solute transport model in porous media of continuously expanding scale, according to the combinatorics principle. The model supposed actual porous media as a combinative body of many basic segments. First, we studied the solute transport process in each basic segment body, and then deduced the distribution of pore velocity in each basic segment body by difference approximation, finally assembled the solute transport process of each basic segment body into one of the combinative body. The simulation result coincided with the solute transport process observed in test. The model provides useful insight into the solute transport process of the non-Fickian dispersion in continuously expanding scale.

  5. Modeling of Anomalous Transport in Tokamaks with FACETS code

    Science.gov (United States)

    Pankin, A. Y.; Batemann, G.; Kritz, A.; Rafiq, T.; Vadlamani, S.; Hakim, A.; Kruger, S.; Miah, M.; Rognlien, T.

    2009-05-01

    The FACETS code, a whole-device integrated modeling code that self-consistently computes plasma profiles for the plasma core and edge in tokamaks, has been recently developed as a part of the SciDAC project for core-edge simulations. A choice of transport models is available in FACETS through the FMCFM interface [1]. Transport models included in FMCFM have specific ranges of applicability, which can limit their use to parts of the plasma. In particular, the GLF23 transport model does not include the resistive ballooning effects that can be important in the tokamak pedestal region and GLF23 typically under-predicts the anomalous fluxes near the magnetic axis [2]. The TGLF and GYRO transport models have similar limitations [3]. A combination of transport models that covers the entire discharge domain is studied using FACETS in a realistic tokamak geometry. Effective diffusivities computed with the FMCFM transport models are extended to the region near the separatrix to be used in the UEDGE code within FACETS. 1. S. Vadlamani et al. (2009) %First time-dependent transport simulations using GYRO and NCLASS within FACETS (this meeting).2. T. Rafiq et al. (2009) %Simulation of electron thermal transport in H-mode discharges Submitted to Phys. Plasmas.3. C. Holland et al. (2008) %Validation of gyrokinetic transport simulations using %DIII-D core turbulence measurements Proc. of IAEA FEC (Switzerland, 2008)

  6. Basic Model of a Control Assembly Drop in Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Radek BULÍN

    2013-06-01

    Full Text Available This paper is focused on the modelling and dynamic analysis of a nonlinear system representing a control assembly of the VVER 440/V213 nuclear reactor. A simple rigid body model intended for basic dynamic analyses is introduced. It contains the influences of the pressurized water and mainly the eects of possible control assembly contacts with guiding tubes inside the reactor. Another approach based on a complex multibody model is further described and the suitability of both modelling approaches is discussed.

  7. Compartmental analysis of dynamic nuclear medicine data: models and identifiability

    Science.gov (United States)

    Delbary, Fabrice; Garbarino, Sara; Vivaldi, Valentina

    2016-12-01

    Compartmental models based on tracer mass balance are extensively used in clinical and pre-clinical nuclear medicine in order to obtain quantitative information on tracer metabolism in the biological tissue. This paper is the first of a series of two that deal with the problem of tracer coefficient estimation via compartmental modelling in an inverse problem framework. Specifically, here we discuss the identifiability problem for a general n-dimension compartmental system and provide uniqueness results in the case of two-compartment and three-compartment compartmental models. The second paper will utilize this framework in order to show how nonlinear regularization schemes can be applied to obtain numerical estimates of the tracer coefficients in the case of nuclear medicine data corresponding to brain, liver and kidney physiology.

  8. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  9. Hydrothermal Alteration of Glass from Underground Nuclear Tests: Formation and Transport of Pu-clay Colloids at the Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhao, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Begg, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boggs, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kersting, A. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-27

    The testing of nuclear weapons at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), has led to the deposition of substantial quantities of plutonium into the environment. Approximately 2.8 metric tons (3.1×104 TBq) of Pu were deposited in the NNSS subsurface as a result of underground nuclear testing. While 3H is the most abundant anthropogenic radionuclide deposited in the NNSS subsurface (4.7×106 TBq), plutonium is the most abundant from a molar standpoint. The only radioactive elements in greater molar abundance are the naturally occurring K, Th, and U isotopes. 239Pu and 240Pu represent the majority of alpha-emitting Pu isotopes. The extreme temperatures associated with underground nuclear tests and the refractory nature of Pu results in most of the Pu (98%) being sequestered in melted rock, referred to as nuclear melt glass (Iaea, 1998). As a result, Pu release to groundwater is controlled, in large part, by the leaching (or dissolution) of nuclear melt glass over time. The factors affecting glass dissolution rates have been studied extensively. The dissolution of Pu-containing borosilicate nuclear waste glasses at 90ºC has been shown to lead to the formation of dioctahedral smectite colloids. Colloid-facilitated transport of Pu at the NNSS has been observed. Recent groundwater samples collected from a number of contaminated wells have yielded a wide range of Pu concentrations from 0.00022 to 2.0 Bq/L. While Pu concentrations tend to fall below the Maximum Contaminant Level (MCL) established by the Environmental Protection Agency (EPA) for drinking water (0.56 Bq/L), we do not yet understand what factors limit the Pu concentration or its transport behavior. To quantify the upper limit of Pu concentrations produced as a result of melt glass dissolution and determine the nature of colloids and Pu associations, we performed a 3 year nuclear melt glass dissolution experiment

  10. Identification of a nuclear transport inhibitory signal (NTIS) in the basic domain of HIV-1 Vif protein.

    Science.gov (United States)

    Friedler, A; Zakai, N; Karni, O; Friedler, D; Gilon, C; Loyter, A

    1999-06-11

    The HIV-1 auxiliary protein Vif contains a basic domain within its sequence. This basic region,90RKKR93, is similar to the prototypic nuclear localization signal (NLS). However, Vif is not a nuclear protein and does not function in the nucleus. Here we have studied the karyophilic properties of this basic region. We have synthesized peptides corresponding to this positively charged NLS-like region and observed that these peptides inhibited nuclear transport via the importin pathway in vitro with IC50values in the micromolar range. Inhibition was observed only with peptides derived from the positively charged region, but not from other regions of the Vif protein, showing sequence specificity. On the other hand, the Vif inhibitory peptide Vif88-98 did not confer karyophilic properties when conjugated to BSA. The inactive Vif conjugate and the active SV40-NLS-BSA conjugate both contained a similar number of peptides conjugated to each BSA molecule, as was determined by amino acid analysis of the peptide-BSA conjugates. Thus, the lack of nuclear import of the Vif peptide-BSA conjugate cannot be attributed to insufficient number of conjugated peptide molecules per BSA molecule. Our results suggest that the HIV-1 Vif protein carries an NLS-like sequence that inhibits, but does not mediate, nuclear import via the importin pathway. We have termed such signals as nuclear transport inhibitory signals (NTIS). The possible role of NTIS in controlling nuclear uptake, and specifically during virus infection, is discussed herein. Our results raise the possibility that NLS-like sequences of certain low molecular weight viral proteins may serve as regulators of nucleocytoplasmic trafficking and not neccessarily as mediators of nuclear import.

  11. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  12. Relativistic mean-field models and nuclear matter constraints

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, M.; Lourenco, O.; Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos, SP (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-150, Boa Viagem, Niteroi, RJ (Brazil); Menezes, D. P.; Avancini, S. S. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianopolis, SC (Brazil); Stone, J. R. [Oxford Physics, University of Oxford, OX1 3PU Oxford (United Kingdom) and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Providencia, C. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Theorie, Planckstrasse 1,D-64291 Darmstadt (Germany)

    2013-05-06

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  13. An operational approach to standard nuclear process model (SNPM) and SAP nuclear software implementation at Slovenske Elektrarne

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.C. [Nuclear Power Plants Operation Department, Slovenske Elektrarne, a.s., Mlynske nivy 47, 821 09 Bratislava (Slovakia)

    2010-07-01

    Benchmarking efforts in the fall of 2006 showed significant performance gaps in multiple measured processes between the Slovenske Elektrarne (SE) nuclear organization and the highest performing nuclear organizations in the world. While overall performance of the SE nuclear fleet was good and in the second quartile, when compared to the worldwide population of Pressurized Water Reactors (PWR), SE leadership set new goals to improve safety and operational performance to the first decile of the worldwide PWR Fleet. To meet these goals the SE nuclear team initiated a project to identify and implement the Best Practice nuclear processes in multiple areas. The benchmarking process identified the Standard Nuclear Performance Model (SNPM), used in the US nuclear fleet, as the industry best practice process model. The Slovenske Elektrarne nuclear management team used various change management techniques to clearly establish the case for organizational and process change within the nuclear organization. The project organization established by the SE nuclear management team relied heavily on functional line organization personnel to gain early acceptance of the project goals and methods thereby reducing organizational opposition to the significant organizational and process changes. The choice of a standardized process model used, all or in part, by approximately one third of the nuclear industry worldwide greatly facilitated the development and acceptance of the changes. Use of a nuclear proven templated software platform significantly reduced development and testing efforts for the resulting fully integrated solution. In the spring of 2007 SE set in motion a set of initiatives that has resulted in a significant redesign of most processes related to nuclear plant maintenance and continuous improvement. Significant organizational structure changes have been designed and implemented to align the organization to the SNPM processes and programs. The completion of the initial

  14. Mathematical model of transportation flow dynamics on a multilane highway

    NARCIS (Netherlands)

    Mazurin, D. S.

    2013-01-01

    We present a microscopic model for the dynamics of a transportation flow based on cellular automata with improved lane changing rules. With this model, we study the influence of crossing transportation flows on the throughput of a multilane highway. For a two-lane highway with an exit, we obtain spa

  15. Modeling of Radionuclides from the Fukushima Dai-ichi Nuclear Accident to Korea

    Science.gov (United States)

    Lee, K.; Yun, J. Y.

    2016-12-01

    FLEXPART Lagrangian model and NCEP/GFS meteorological data were employed and transport of radionuclides from Fukushima Dai-ichi nuclear plant toward Korean Peninsula was simulated for three key artificial radionuclides (Cs-137, I-131, and Xe-133). By simulating horizontal distributions and tracking the trajectories of the radionuclides for the period of 10 March 2011 to 20 April 2011, the following three distinctive different arrival pathways were detected; 1) intercontinental scale - plume released since mid-March 2011 and transported to the North to arrive Korea on 23 March 2011, 2) global(hemispherical) scale - plume traveling over the whole northern hemisphere passing through the Pacific Ocean/Europe to reach the Korean Peninsula with relatively low concentrations in late March 2011 and, 3) regional scale - plume released on early April 2011 arrived at the Korean Peninsula via southwest sea of Japan influenced directly by veering mesoscale wind circulations. Our identification of these transport routes at three different scales of meteorological circulations suggests the feasibility of a multi-scale approach for more accurate prediction of radionuclide transport in the study area. In light of the fact that the observed arrival/duration time of peaks were explained well by the FLEXPART model coupled with NCEP/GFS input data, our approach can be used meaningfully as a decision support model for radiation emergency situations

  16. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Phillip D [Los Alamos National Laboratory; Saeger, Kevin J [Los Alamos National Laboratory

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  17. Efficiency of a statistical transport model for turbulent particle dispersion

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.

  18. Stability-transport modeling of the SINP tokamak discharges

    Indian Academy of Sciences (India)

    S Lahiri; S Mukhopadhyay; A N S Iyengar; R Pal

    2001-05-01

    A one-dimensional stability transport code has been developed to simulate the evolution of tokamak plasma discharges. Explicit finite-difference methods have been used to follow the temporal evolution of the electron temperature equation. The poloidal field diffusion equation has been solved at every time step. The effects of MHD instabilities have been incorporated by solving equations for MHD mixing and tearing modes as and when required. The code has been applied to follow the evolution of tokamak plasma discharges obtained in the Saha Institute of Nuclear Physics (SINP) tokamak. From these simulations, we have been able to identify the possible models of thermal conductivity, diffusion and impurity contents in these discharges. Effects of different MHD modes have been estimated. It has been found that in low discharge =1, =1 and =2, =1 modes play major role in discharge evolution. These modes are found to result in the positive jump in the loop voltage which was also observed in the experiments. Hollow current density profile and negative shear in the profile have also been found in the rising phase of a discharge.

  19. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  20. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    Worgan, K.J.; Apted, M.J. [QuantiSci Inc., Denver, CO (United States)

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented. 28 refs, 5 tabs, 6 figs.

  1. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  2. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  3. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  4. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  5. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  6. Modelling the observed vertical transport of {sup 7}Be in specific soils with advection dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Torres Astorga, Romina; Velasco, Hugo; Valladares, Diego L.; Lohaiza, Flavia; Ayub, Jimena Juri; Rizzotto, Marcos [Grupo de Estudios Ambientales. Instituto de Matematica Aplicada San Luis - Universidad Nacional de San Luis - CONICET, San Luis (Argentina)

    2014-07-01

    {sup 7}Be is a short-lived environmental radionuclide, produced in the upper atmosphere by spallation of nitrogen and oxygen by cosmic rays. After of the production by the nuclear reaction, {sup 7}Be diffuses through the atmosphere until it attaches to atmospheric aerosols. Subsequently, it is deposited on the earth surface mainly as wet fallout. The main physical processes which transport {sup 7}Be in soil are diffusion and advection by water. Migration parameters and measurements confirm that sorption is the main physical process, which confines {sup 7}Be concentration to soil surface. The literature data show that in soils, {sup 7}Be is concentrated near the surface (0-2 cm) as it is adsorbed onto clay minerals after its deposition on the soil surface and does not penetrate deeper into soils due to its short half-life. The maximum mass activity density of {sup 7}Be is found at the point of input of the radionuclide, i.e. at the surface of the soil column, showing a exponential distribution profile typical of a purely diffusive transport. Many studies applying the advection dispersion models have been reported in the literature in order to modelling the transport of {sup 137}Cs in soils. On them, the models are used to achieve information of the mechanisms that govern the transport, i. e. the model is used to explain the soil profile of radionuclide. The effective dispersion coefficient and the apparent advection velocity of radionuclide in soil are also obtained by fitting the analytical solution of the model equation to measured depth distributions of the radionuclide. In this work, the advective dispersive transport model with linear sorption is used to analyze the vertical migration process of {sup 7}Be in soils of undisturbed or reference sites. The deposition history is approximated by pulse-like input functions and time dependent analytical solution of equation model is obtained. The values of dispersion coefficient and apparent advection velocity obtained

  7. A Semi-Classical Model to Study Nuclear Fragmentation

    Science.gov (United States)

    Navarro, Martha; Chernomoretz, Ariel; Dorso, Claudio; Lopez, Jorge

    1999-10-01

    A semi-classical model based on the use of molecular dynamics has been developed for the study of heavy-ion reactions at intermediate energies. The model reproduces nucleon-nucleon cross sections through the use of a two-body potential. The study covers several characteristics of heavy-ion collisions, such as formation of necks, and formation of intermediate residue. Preliminary results on the use of the model to study the caloric curve of nuclear matter and the temperature evolution of the system are also discussed.

  8. Nuclear EMC effect in non-extensive statistical model

    Science.gov (United States)

    Trevisan, Luis A.; Mirez, Carlos

    2013-05-01

    In the present work, we attempt to describe the nuclear EMC effect by using the proton structure functions obtained from the non-extensive statistical quark model. We record that such model has three fundamental variables, the temperature T, the radius, and the Tsallis parameter q. By combining different small changes, a good agreement with the experimental data may be obtained. Another interesting point of the model is to allow phenomenological interpretation, for instance, with q constant and changing the radius and the temperature or changing the radius and q and keeping the temperature.

  9. Correlated Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.

    2008-02-18

    Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.

  10. The s Process: Nuclear Physics, Stellar Models, Observations

    CERN Document Server

    Kaeppeler, Franz; Bisterzo, Sara; Aoki, Wako

    2010-01-01

    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear...

  11. Nuclear Level Density: Shell Model vs Mean Field

    CERN Document Server

    Sen'kov, Roman

    2015-01-01

    The knowledge of the nuclear level density is necessary for understanding various reactions including those in the stellar environment. Usually the combinatorics of Fermi-gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from the conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally...

  12. Sloppy nuclear energy density functionals: effective model reduction

    CERN Document Server

    Niksic, Tamara

    2016-01-01

    Concepts from information geometry are used to analyse parameter sensitivity for a nuclear energy density functional, representative of a class of semi-empirical functionals that start from a microscopically motivated ansatz for the density dependence of the energy of a system of protons and neutrons. It is shown that such functionals are sloppy, characterized by an exponential range of sensitivity to parameter variations. Responsive to only a few stiff parameter combinations, they exhibit an exponential decrease of sensitivity to variations of the remaining soft parameters. By interpreting the space of model predictions as a manifold embedded in the data space, with the parameters of the functional as coordinates on the manifold, it is also shown that the exponential distribution of model manifold widths corresponds to the distribution of parameter sensitivity. Using the Manifold Boundary Approximation Method, we illustrate how to systematically construct effective nuclear density functionals of successively...

  13. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  14. Implementation of Gravity Model to Estimation of Transportation Market Shares

    Science.gov (United States)

    Krata, Przemysław

    2010-03-01

    The theoretical consideration presented in the paper is inspired by market gravity models, as an interesting attitude towards operations research on a market. The transportation market issues are emphasized. The mathematical model of relations, taking place between transportation companies and their customers on the market, which is applied in the course of the research is based on continuous functions characteristics. This attitude enables the use of the field theory notions. The resultant vector-type utility function facilitates obtaining of competitive advantage areas for all transportation companies located on the considered transportation market.

  15. Multilevel Flow Modeling for Nuclear Power Plant Diagnosis

    DEFF Research Database (Denmark)

    Gola, G; Thunem, Harald P-J; Thunem, Atoosa P-J

    2012-01-01

    As complexity and safety requirements of current and future nuclear power plants increase, innovative methods are being investigated to perform accurate and reliable system diagnoses. Detecting malfunctions, identifying their causes and possibly predicting their consequences are major challenges...... detected anomalies. The combination of a data reconciliation system and the Multilevel Flow Modeling approach is illustrated with regard to the secondary loop of the Loviisa-2 Pressurized Water Reactor located in Finland....

  16. Nuclear superfluidity in isospin asymmetric matter within the Skyrme model

    OpenAIRE

    Aguirre, R.

    2013-01-01

    The phase diagram of the superfluid phase coupled to spin singlet (S=0) and isospin triplet (T=1) states in infinite nuclear matter is analyzed within the nonrelativistic Skyrme model. We use an approach that allows a unified and consistent treatment of the particle-hole and particle-particle channels. The gap equation is solved for the full range of accessible densities, isospin asymmetries, and temperatures. The characteristic features of each of the components Tz=0, +1, -1 are emphasized. ...

  17. Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway.

    Science.gov (United States)

    Saito, Shoko; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2016-07-01

    Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system.

  18. Isospin transport and reaction mechanism in nuclear reactions in the range 20–40 MeV/n

    Energy Technology Data Exchange (ETDEWEB)

    Barlini, S., E-mail: barlini@fi.infn.it; Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdré, S.; Pastore, G. [Dipartimento di Fisica ed Astronomia dell’Università and INFN Sezione di Firenze, Firenze (Italy); Bougault, R.; Lopez, O.; Le Neindre, N.; Parlog, M.; Vient, E. [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen-Cedex (France); Bonnet, E.; Chibhi, A.; Frankland, J. D. [GANIL, CEA/DSM-CNRS/IN2P3, B.P.5027, F-14076 Caen cedex (France); Borderie, B.; Rivet, M. F. [Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay cedex (France); and others

    2015-10-15

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  19. Isospin transport and reaction mechanism in nuclear reactions in the range 20-40 MeV/n

    Science.gov (United States)

    Barlini, S.; Piantelli, S.; Casini, G.; Olmi, A.; Bini, M.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Bonnet, E.; Borderie, B.; Chibhi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Parlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twarog, T.; Fabris, D.; Valdré, S.; Pastore, G.

    2015-10-01

    In recent years, many efforts have been devoted to the investigation of the isospin degree of freedom in nuclear reactions. Comparing systems involving partners with different N/Z, it has been possible to investigate the isospin transport process and its influence on the final products population. This can be then related to the symmetry energy term of the nuclear EOS. From the experimental point of view, this task requires detectors able to measure both charge and mass of the emitted products, in the widest possible range of energy and size of the fragments. With this objective, the FAZIA and GARFIELD+RCo apparatus have been used with success in some recent experiments.

  20. Mathematical Modelling of Cation Transport and Regulation in Yeast.

    Science.gov (United States)

    Kahm, Matthiasé; Kschischo, Maik

    2016-01-01

    Mathematical modelling of ion transport is a strategy to understand the complex interplay between various ionic species and their transporters. Such models should provide new insights and suggest new interesting experiments. Two essential variables in models for ion transport and control are the membrane potential and the intracellular pH, which generates an additional layer of complexity absent from many other models of biochemical reaction pathways. The aim of this text is to introduce the reader to the basic principles and assumptions of modelling in this field. A simplified model of potassium transport will be used as an example and will be derived in a step by step manner. This forms the basis for understanding the advantages and limitations of more complex models. These are briefly reviewed at the end of this chapter.

  1. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2000-04-07

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.

  2. Benchmarking nuclear models for Gamow–Teller response

    Energy Technology Data Exchange (ETDEWEB)

    Litvinova, E., E-mail: elena.litvinova@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Brown, B.A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Fang, D.-L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States); Marketin, T. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Zegers, R.G.T. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2014-03-07

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for {sup 208}Pb, {sup 132}Sn and {sup 78}Ni within both RTBA and QRPA. The strengths obtained for {sup 208}Pb are compared to data that enable a firm model benchmarking. For the nucleus {sup 132}Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  3. A transport-rate model of wind-blown sand

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sand transport by wind plays an important role in environmental problems.Formulating the sand-transport rate model has been of continuing significance,because the majority of the existing models relate sand-transport rate to the wind-shear velocity.However,the wind-shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs,especially at high wind velocity.Detailed wind tunnel tests were carried out to reformulate the sand-transport rate model,followed by attempts to relate sand-transport rate to parameters of wind velocity,threshold shear-velocity,and grain size.Finally,we validated the model based on the data from field observations.

  4. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  5. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    Energy Technology Data Exchange (ETDEWEB)

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

  6. Temperature dependence of the nuclear binding energy: effects on the EOS for hot nuclear matter using different models

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. [La Plata Univ. (Argentina). Fac. of Astron. and Geophys.; Civitarese, O. [Dept. of Physics, Univ. of La Plata (Argentina); Reboiro, M. [Dept. of Physics, Univ. of La Plata (Argentina)

    1997-05-01

    Effects due to the temperature dependence of the nuclear binding energy upon the equation of state (EOS) for hot nuclear matter are studied. Nuclear contributions to the free energy are represented by temperature dependent liquid drop model terms. Phase coexistence is assumed for temperatures of the order of 1 MeV {<=} T {<=} 6 MeV, baryon number densities {rho} of the order of 10{sup -4}fm{sup -3} {<=} {rho} {<=} 10{sup -1}fm{sup -3} and lepton fractions of the order of 0.2 {<=} y{sub 1} {<=} 0.4. It is found that the total pressure of the system is not affected by the temperature dependence of the nuclear free energy, in spite of changes observed in the nuclear pressure due to the different parametrizations used to represent the nuclear binding energy. (orig.).

  7. Model for Estimation Urban Transportation Supply-Demand Ratio

    Directory of Open Access Journals (Sweden)

    Chaoqun Wu

    2015-01-01

    Full Text Available The paper establishes an estimation model of urban transportation supply-demand ratio (TSDR to quantitatively describe the conditions of an urban transport system and to support a theoretical basis for transport policy-making. This TSDR estimation model is supported by the system dynamic principle and the VENSIM (an application that simulates the real system. It was accomplished by long-term observation of eight cities’ transport conditions and by analyzing the estimated results of TSDR from fifteen sets of refined data. The estimated results indicate that an urban TSDR can be classified into four grades representing four transport conditions: “scarce supply,” “short supply,” “supply-demand balance,” and “excess supply.” These results imply that transport policies or measures can be quantified to facilitate the process of ordering and screening them.

  8. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  9. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  10. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  11. A consistent transported PDF model for treating differential molecular diffusion

    Science.gov (United States)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  12. Modelling the full trip costs of urban intermodal passenger transport

    OpenAIRE

    Yeh, Chao-Fu; Papon, Francis

    2011-01-01

    To face the competition of private motorized vehicles, intermodal transport becomes a successful condition to encourage public transport and non-motorized modes and to reasonably control the continual growth of individual motorized vehicles in the city area. Therefore, the objective of this research intends to develop a comparable calculating model combining the private, public and external costs of passenger urban transport networks. Private costs consist in the operational-private costs bor...

  13. Mathematical modeling of sediment transport jn estuaries and coastal regions

    Institute of Scientific and Technical Information of China (English)

    窦国仁; 董凤舞; 窦希萍; 李禔来

    1995-01-01

    Based on the suspended sediment transport equation and transport capacity formula under the action of tidal currents and wind waves, a horizontal 2-D mathematical model of suspended sediment transport for estuaries and coastal regions is established. The verification of calculations shows that the sediment concentration distribution and sea bed deformation in the estuaries and coastal regions can be successfully simulated. Therefore, a new method for studying and solving the sediment problems in the estuarine and coastal engineering is presented.

  14. U(6)-Phonon model of nuclear collective motion

    Science.gov (United States)

    Ganev, H. G.

    2015-05-01

    The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton-neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton-neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle.

  15. Modelling passenger flows in public transport facilities

    NARCIS (Netherlands)

    Daamen, W.

    2004-01-01

    This thesis describes the developement of a new type of simulation tool for the assessment of designs of public transport facilities (stations, airports) and other public spaces with intensive pedestrian flows. Since the available space for such facilities is increasingly under pressure, the space

  16. Logistics chains in freight transport modelling

    NARCIS (Netherlands)

    Davydenko, I.

    2015-01-01

    The research presented in this PhD thesis has been motivated by the fact that the Netherlands, and the Randstad region in particular, are affected by the large transport flows and extensive operations of the logistics sector. These operations create welfare for those people who work in the sector, w

  17. Logistics chains in freight transport modelling

    NARCIS (Netherlands)

    Davydenko, I.

    2015-01-01

    The research presented in this PhD thesis has been motivated by the fact that the Netherlands, and the Randstad region in particular, are affected by the large transport flows and extensive operations of the logistics sector. These operations create welfare for those people who work in the sector,

  18. Paving the road from transport models to “new mobilities” models

    DEFF Research Database (Denmark)

    Wind, Simon; Jensen, Ole B.; Kaplan, Sigal

    2012-01-01

    For half a century, tremendous efforts have been invested in developing transport models as a decision aid for policy makers in designing effective policy interventions and deciding among costly public projects for the benefit of the population. Transport and activity-based models are often...... the traditional transport modeling approach and “new mobilities” research by suggesting a model framework that considers non-instrumental transport rationales, personal latent traits and intra-household decision dynamics....

  19. Backcasting in freight transport demand modelling – chances and challenges

    OpenAIRE

    Lange, Peter; Huber, Stefan

    2015-01-01

    Freight transport demand models are important tools to support policy decision-making by enabling decision makers to evaluate transport policies and correlated effects. This significance puts high pressure on freight models regarding their accuracy. In order to ensure model accuracy there are different methods within the wide area of quality assurance that can be applied. Although backcasting is such a method it is, however, often neglected or implemented insufficiently. The paper presents ma...

  20. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  1. Structural Design of Oligopeptides for Intestinal Transport Model.

    Science.gov (United States)

    Hong, Seong-Min; Tanaka, Mitsuru; Koyanagi, Riho; Shen, Weilin; Matsui, Toshiro

    2016-03-16

    Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.

  2. Nuclear model calculations and their role in space radiation research

    Science.gov (United States)

    Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.

  3. The fluidity of the nuclear envelope lipid does not affect the rate of nucleocytoplasmic RNA transport in mammalian liver.

    Science.gov (United States)

    Agutter, P S; Suckling, K E

    1982-03-29

    The effects of in vitro and in vivo modifications of nuclear envelope lipid on DNa leakage and on ATP-stimulated RNA release from isolated rat liver nuclei were investigated. The modifications included corn-oil feeding of the animals to alter the fatty acid composition of the lipids, phospholipase treatment of the isolated nuclei, and extraction of the total lipid with Triton X-100. Significant changes in lipid composition and approximate order parameter values of the spin-label 5-doxylstearate resulted, but there was no significant effect on RNA transport rate. It was concluded that the nuclear envelope lipid does not play any important part in nucleocytoplasmic RNA transport in mammalian liver.

  4. IOT technology application model research of transportation industry in China

    Institute of Scientific and Technical Information of China (English)

    Lai Mingyong; Zhou Tang; Liu Zhengchi

    2013-01-01

    The paper studied the connection between intemet of things (IOT) technology and transportation industry.Meanwhile,the definition of IOT in transportation was given.Concerning that many problems occurred during the process of traditional intelligent transportation system,the paper proposed a promising model of IOT in transportation.The advantage of the information utilization model from information to function was confirmed through comparative study.Finally,the model presented that a real interconnection of transportation would be achieved based on the unified information collection.It can greatly save cost on technology transfer,exploit potential value of information,and promote the emergence of a sustainable information service market and the industrial upgrade.

  5. Synchronizing production and air transportation scheduling using mathematical programming models

    Science.gov (United States)

    Zandieh, M.; Molla-Alizadeh-Zavardehi, S.

    2009-08-01

    Traditional scheduling problems assume that there are always infinitely many resources for delivering finished jobs to their destinations, and no time is needed for their transportation, so that finished products can be transported to customers without delay. So, for coordination of these two different activities in the implementation of a supply chain solution, we studied the problem of synchronizing production and air transportation scheduling using mathematical programming models. The overall problem is decomposed into two sub-problems, which consists of air transportation allocation problem and a single machine scheduling problem which they are considered together. We have taken into consideration different constraints and assumptions in our modeling such as special flights, delivery tardiness and no delivery tardiness. For these purposes, a variety of models have been proposed to minimize supply chain total cost which encompass transportation, makespan, delivery earliness tardiness and departure time earliness tardiness costs.

  6. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  7. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  8. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M.; Van Eeckhout, E. [Los Alamos National Lab., NM (United States); David, N.A. [Environmental Res., Inst. of Michigan, Santa Fe, NM (United States); Irvine, J.M. [Environmental Res. Inst. of Michigan, Arlington, VA (United States)

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  9. The application of the Monte-Carlo neutron transport code MCNP to a small "nuclear battery" system

    OpenAIRE

    Puigdellívol Sadurní, Roger

    2009-01-01

    The project consist in calculate the keff to a small nuclear battery. The code Monte- Carlo neutron transport code MCNP is used to calculate the keff. The calculations are done at the beginning of life to know the capacity of the core becomes critical in different conditions. These conditions are the study parameters that determine the criticality of the core. These parameters are the uranium enrichment, the coated particles (TRISO) packing factor and the size of the core. More...

  10. Designing tools for oil exploration using nuclear modeling

    Directory of Open Access Journals (Sweden)

    Mauborgne Marie-Laure

    2017-01-01

    Full Text Available When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  11. Fast Cherenkov model of optical photons generation and transportation

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note describes the technical details of Fast Cherenkov model of optical photons generation and transportation: in particular, the mechanism of Cherenkov photons transportation through the straight bar geometry. As an example of usage, the implemetation of the method inside Quartic detector simulation in GEANT4 will be presented and compared to the nominal results.

  12. Modeling Quantum Transport in Nanoscale Vertical SOI nMOSFET

    Institute of Scientific and Technical Information of China (English)

    TONG Jian-nong; ZOU Xue-chang; SHEN Xu-bang

    2004-01-01

    The electron transports in micro-architecture semiconductor are simulated using vertical SOI nMOSFET with different models. Some details in transport can be presented by changing channel length, channel thickness and drain voltage. An interesting phenomenon similar to collimation effect in mesoscopic system is observed. This may suggest the quite intriguing possibility that scattering may open new channel in sufficiently narrow devices.

  13. Finite difference methods for coupled flow interaction transport models

    Directory of Open Access Journals (Sweden)

    Shelly McGee

    2009-04-01

    Full Text Available Understanding chemical transport in blood flow involves coupling the chemical transport process with flow equations describing the blood and plasma in the membrane wall. In this work, we consider a coupled two-dimensional model with transient Navier-Stokes equation to model the blood flow in the vessel and Darcy's flow to model the plasma flow through the vessel wall. The advection-diffusion equation is coupled with the velocities from the flows in the vessel and wall, respectively to model the transport of the chemical. The coupled chemical transport equations are discretized by the finite difference method and the resulting system is solved using the additive Schwarz method. Development of the model and related analytical and numerical results are presented in this work.

  14. Geant4 models for simulation of hadron/ion nuclear interactions at moderate and low energies.

    Science.gov (United States)

    Ivantchenko, Anton; Ivanchenko, Vladimir; Quesada, Jose-Manuel; Wright, Dennis

    The Geant4 toolkit is intended for Monte Carlo simulation of particle transport in media. It was initially designed for High Energy Physics purposes such as experiments at the Large Hadron Collider (LHC) at CERN. The toolkit offers a set of models allowing effective simulation of cosmic ray interactions with different materials. For moderate and low energy hadron/ion interactions with nuclei there are a number of competitive models: Binary and Bertini intra-nuclear cascade models, quantum molecular dynamic model (QMD), INCL/ABLA cascade model, and Chiral Invariant Phase Space Decay model (CHIPS). We report the status of these models for the recent version of Geant4 (release 9.3, December 2009). The Bertini cascade in-ternal cross sections were upgraded. The native Geant4 precompound and deexcitation models were used in the Binary cascade and QMD. They were significantly improved including emis-sion of light fragments, the Fermi break-up model, the General Evaporation Model (GEM), the multi-fragmentation model, and the fission model. Comparisons between model predictions and data for thin target experiments for neutron, proton, light ions, and isotope production are presented and discussed. The focus of these validations is concentrated on target materials important for space missions.

  15. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  16. Reference neutron transport calculation note for Korea nuclear power plants with 3-loop PWR reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Cheol; Chang, Ki Oak

    1997-05-01

    Reactor pressure vessel (RPV) steels are subjected to neutron irradiation at a temperature of about 290 deg C. This radiation exposure alters the mechanical properties, leading to a shift of the brittle-to-ductile transition temperature toward higher temperatures and to a diminution of the rupture energy as determined by Charpy V-notch tests. This radiation embrittlement is one of the important aging factors of nuclear power plants. U.S. NRC recommended the basic requirements for the determination of the pressure vessel fluence by regulatory guide DG-1025 in order to reduce the uncertainty in the determination of neutron fluence calculation and measurements. The determination of the pressure vessel fluence is based on both calculations and measurements. The fluence prediction is made with a calculation and the measurements are used to qualify the calculational methodology. Because of the importance and the difficulty of these calculations, the method`s qualification by comparison to measurement must be made to ensure a reliable and accurate vessel fluence determination. This reference calculation note is to provide a series of forward and adjoint neutron transport calculations for use in the evaluation of neutron dosimetry from surveillance capsule irradiations at 3-loop PWR reactor as well as for use in the determination of the neutron exposure of the reactor vessel wall in accordance with U.S Regulatory Guide DG-1025 requirements. The calculations of the pressure vessel fluence consist of the following steps; (1) Determination of the geometrical and material input data, (2) Determination of the core neutron source, and (3) Propagation of the neutron fluence from the core to the vessel and into the cavity. (author). 12 tabs., 3 figs., 7 refs.

  17. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Frith, S. M.; Gettleman, A.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J.-F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura, T.; Olivie, D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Pyle, J. A.

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  18. Modelling heat transport through completely positive maps

    CERN Document Server

    Wichterich, H; Gemmer, J; Henrich, M J; Michel, M; Breuer, Heinz-Peter; Gemmer, Jochen; Henrich, Markus J.; Michel, Mathias; Wichterich, Hannu

    2007-01-01

    We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.

  19. Modeling of titration experiments by a reactive transport model

    Institute of Scientific and Technical Information of China (English)

    Ma Hongyun; Samper Javier; Xin Xin

    2011-01-01

    Acid mine drainage (AMD) is commonly treated by neutralization with alkaline substances. This treatment is supported by titration experiments that illustrate the buffering mechanisms and estimate the base neutralization capacity (BNC) of the AMD. Detailed explanation of titration curves requires modeling with a hydro-chemical model. In this study the titration curves of water samples from the drainage of the As Pontes mine and the corresponding dumps have been investigated and six buffers are selected by analyzing those curves. Titration curves have been simulated by a reactive transport model to discover the detailed buffering mechanisms. These simulations show seven regions involving different buffering mechanism. The BNC is primarily from buffers of dissolved Fe, Al and hydrogen sulfate. The BNC can be approximated by: BNC = 3(CFe + CAl) + 0.05Csulfate, where the units are mol/L. The BNC of the sample from the mine is 9.25 × 10-3 mol/L and that of the dumps sample is 1.28 × 10-2 mol/L.

  20. Modelling aeolian sand transport using a dynamic mass balancing approach

    Science.gov (United States)

    Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.; Weaver, Corinne M.

    2017-03-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. Whilst many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing field evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. At this scale of analysis, inertia in the saltation system causes changes in sediment transport to lag behind de/accelerations in flow. However, saltation inertia has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study, we present a new transport model that dynamically balances the sand mass being transported in the wind flow. The 'dynamic mass balance' (DMB) model we present accounts for high-frequency variations in the horizontal (u) component of wind flow, as saltation is most strongly associated with the positive u component of the wind. The performance of the DMB model is tested by fitting it to two field-derived (Namibia's Skeleton Coast) datasets of wind velocity and sediment transport: (i) a 10-min (10 Hz measurement resolution) dataset; (ii) a 2-h (1 Hz measurement resolution) dataset. The DMB model is shown to outperform two existing models that rely on time-averaged wind velocity data (e.g. Radok, 1977; Dong et al., 2003), when predicting sand transport over the two experiments. For all measurement averaging intervals presented in this study (10 Hz-10 min), the DMB