Sample records for models fracture behavior

  1. Fracture and ductile vs. brittle behavior -- Theory, modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beltz, G.E. [ed.] [Univ. of California, Santa Barbara, CA (United States); Selinger, R.L.B. [ed.] [Catholic Univ., Washington, DC (United States); Kim, K.S. [ed.] [Brown Univ., Providence, RI (United States); Marder, M.P. [ed.] [Univ. of Texas, Austin, TX (United States)


    The symposium brought together the many communities that investigate the fundamentals of fracture, with special emphasis on the ductile/brittle transition across a broad spectrum of material classes, fracture at interfaces, and modelling fracture over various length scales. Theoretical techniques discussed ranged from first-principles electronic structure theory to atomistic simulation to mesoscale and continuum theories, along with studies of fractals and scaling in fracture. Experimental and theoretical talks were interspersed throughout all sessions, rather than being segregated. The contributions to this volume generally follow the topical outline upon which the symposium was organized. The first part, dealing with ductile vs. brittle behavior in metals, concerns itself with investigations of high-strength steel, magnesium alloys, ordered intermetallics, and Fe-Cr-Al alloys. The development of analytical methods based on micromechanical models, such as dislocation mechanics and cohesive/contact zone models, are covered in a follow-up section. Nonmetals, including silicon, are considered in Parts 3 and 4. Fractals, chaos, and scaling theories are taken up in Part 5, with a special emphasis on fracture in heterogeneous solids. Modelling based on large populations of dislocations has substantially progressed during the past three years; hence, a section devoted to crystal plasticity and mesoscale dislocation modelling appears next. Finally, the technologically significant area of interfacial fracture, with applications to composites and intergranular fracture, is taken up in Part 7. Separate abstracts were prepared for most of the papers in this book.

  2. Dynamic model of normal behavior of rock fractures

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-yi; KONG Guang-ya; CAI Jun-gang


    Based on laboratory tests of artificial fractures in mortar material, established the dynamic constitutive model of normal behaviour of rock fracture,. The tests were systematically conducted under quasi-static and dynamic monotonic loading conditions. The fractures were of different numbers of asperities in contact and were subsequently of different initial contact areas, which imitated the natural rock fractures. The rate of compressive load applied normal to the fractures covers a wide range from 10-1 MPa/s (quasi-static) up to 103 MPa/s (highly dynamic). The normal stress-closure responses of fractures were measured for different loading rates. Based on the stress-closure relation curves measured, a nonlinear (hyperbolic) dynamic model of fracture, normal behaviour, termed as dynamic BB model, was proposed, which was modified from the existing BB model of static normal behaviour of fractures by taking into account the effect of loading rate.

  3. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks (United States)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui


    This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With

  4. Modeling fracture behavior of cement paste based on its microstructure

    NARCIS (Netherlands)

    Qian, Z.; Ye, G.; Schlangen, E.; Van Breugel, K.


    Concrete is a composite construction material, which is composed primarily of coarse aggregates, sands and cement paste. The fracture processes in concrete are complicated, because of the multiscale and multiphase nature of the material. In the past decades, comprehensive effort has been put to stud

  5. Fracture Behavior under Impact. (United States)


    discussed for the different loading rates ob- tai ned . 1. Introduction In static fracture mechanics crack tip stress intensity factors can easi- - ly...deviation to the left or to the right hand side of the original crack path was observed. Herrmann [151 speculated that this behavior results from stress...Materials’ Draft 2c, American Society for Testing and Materials, Philadelphia, .. ,-- 1980. 15. Herrmann , G., "Dynamic Fracture of Beams in Bending

  6. Estimation of brittle fracture behavior of SA508 carbon steel by considering temperature dependence of damage model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Jeong, Jae Uk; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of); Chang, Yoon Suk [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Min Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures -60 .deg. C, -80 .deg. C, and -100 .deg. C were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR 6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

  7. Fracture behavior of filament in Nb{sub 3}Sn strands with crack-bridging model

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Huadong, E-mail:; Yang, Penglei; Xue, Cun; Zhou, Youhe


    Highlights: • The crack-bridging model is used to study the fracture behavior of filaments. • Two different fracture modes are characterized by the number of bridging bronzes. • Short twist pitch has better mechanical stability for the tensile loadings. • The widths of bridging bronze and filament have different effects for the central crack and two collinear cracks. - Abstract: The Nb{sub 3}Sn strands which have high critical field are used in cable-in-conduit conductors (CICCs). The superconducting strands are twisted multistage and experience complex thermal and electromagnetic loadings. Due to their brittleness, the cracking of the Nb{sub 3}Sn filaments will occur under mechanical loading. In this paper, based on the linear elastic fracture theory, we study the effects of tension loading on the fracture behavior of central crack firstly. The strain energy release rates for different twist pitches and cabling stages are presented. As the triplet is subjected to the uniaxial strain, the cracking probability will increase with the twist pitch. The crack number increases with the applied strain, and wider filament or bronze can lead to smaller crack number under the same applied strain. In addition, multistage cabling has better mechanical stability. Next, the two collinear crack problem is considered. The variations of microcrack number show that the wider bronze can provide more resistance for the propagating of the large cracks. We can conclude that the bronze plays an important role in improving the stability and strength.

  8. Random polycrystals of grains containing cracks: Model of quasistatic elastic behavior for fractured systems (United States)

    Berryman, James G.; Grechka, Vladimir


    A model study on fractured systems was performed using a concept that treats isotropic cracked systems as ensembles of cracked grains by analogy to isotropic polycrystalline elastic media. The approach has two advantages: (a) Averaging performed is ensemble averaging, thus avoiding the criticism legitimately leveled at most effective medium theories of quasistatic elastic behavior for cracked media based on volume concentrations of inclusions. Since crack effects are largely independent of the volume they occupy in the composite, such a non-volume-based method offers an appealingly simple modeling alternative. (b) The second advantage is that both polycrystals and fractured media are stiffer than might otherwise be expected, due to natural bridging effects of the strong components. These same effects have also often been interpreted as crack-crack screening in high-crack-density fractured media, but there is no inherent conflict between these two interpretations of this phenomenon. Results of the study are somewhat mixed. The spread in elastic constants observed in a set of numerical experiments is found to be very comparable to the spread in values contained between the Reuss and Voigt bounds for the polycrystal model. Unfortunately, computed Hashin-Shtrikman bounds are much too tight to be in agreement with the numerical data, showing that polycrystals of cracked grains tend to violate some implicit assumptions of the Hashin-Shtrikman bounding approach. However, the self-consistent estimates obtained for the random polycrystal model are nevertheless very good estimators of the observed average behavior.

  9. Experiments and evaluation of chaotic behavior of dripping waterin fracture models

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Jil T.; Borglin, Sharon E.; Faybishenko, Boris A.


    Laboratory experiments of water seepage in smooth and rough-walled, inclined fracture models were performed and the monitoring data analyzed for evidence of chaos. One fracture model consisted of smooth, parallel glass plates separated by 0.36 mm. The second model was made with textured glass plates. The fracture model was inclined 60{sup o} from the horizontal. Water was delivered to the fracture model through a capillary tube in contact with the top fracture edge at constant flow rates. Three types of capillary tubes were used: (1) a stainless steel blunt needle of 0.18 mm ID for flow rates of 0.25 to 4 mL/hr, (2) a nylon tube of 0.8 mm ID for flow rates of 0.25 to 10 mL/hr, and (3) a glass tube of 0.75 mm ID for flow rates of 0.5 to 20 mL/hr. Liquid pressure was monitored upstream of the capillary tube. Visual observations showed that water seeped through the fracture models in discrete channels that underwent cycles of snapping and reforming. Observations also showed that liquid segments, or drips, detached at different points along the water channel. The measured liquid pressure responded to the growth and detachment of drips. Separate experiments were carried out to measure pressure time-trends for dripping into open air to compare these data with those obtained in fracture models. Analysis of the pressure time-trends included determination of the time lag from the minimum of the average mutual information function, the local and global embedding dimensions, Lyapunov exponents and the Lyapunov dimension, the Hurst exponent and the entropy as a function of the embedding dimension for each data set. Most of the water pressure data contain oscillations exhibiting chaotic behavior, with local embedding dimensions ranging from 3 to 10, and global embedding dimensions one to two units higher. The higher dimensionality of some of the data sets indicates either the presence of high-dimensional chaos or a significant random component. It was determined that the flow

  10. Modeling and simulation of deformation and fracture behavior of components made of fully lamellar {gamma}TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Mohammad Rizviul [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung


    The present work deals with the modeling and simulation of deformation and fracture behavior of fully lamellar {gamma}TiAl alloy; focusing on understanding the variability of local material properties and their influences on translamellar fracture. Afracture model has been presented that takes the inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in fracture strength and toughness into consideration. To obtain the necessary model parameters, a hybrid methodology of experiments and simulations has been adopted. The experiments were performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal. Aremarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture tests showed significant variations in crack initiation and propagation during translamellar fracture. Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have been explained. The investigation shows that the global scatter in deformation and fracture response is highly influenced by the colony orientation and tilting angle with respect to the loading axis. The deformation and fracture behavior have been simulated by a finite element model including the material decohesion process described by a cohesive model. In order to capture the scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stressstrain in the polycrystal and the variability of fracture parameters of the colonies are implemented in the stochastic approach of the cohesive model. It has been shown that the proposed approach is able to predict the stochastic nature of crack initiation and propagation as observed from the experiments. The global specimen failure with stable or unstable crack propagation can be explained in terms of the local variation of material properties. (orig.)

  11. Fracture design modelling

    Energy Technology Data Exchange (ETDEWEB)

    Crichlow, H.B.; Crichlow, H.B. (ed.)


    A design tool is discussed whereby the various components that enter the design process of a hydraulic fracturing job are combined to provide a realistic appraisal of a stimulation job in the field. An interactive computer model is used to solve the problem numerically to obtain the effects of various parameters on the overall behavior of the system.

  12. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)


    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  13. Modeling the influence of particle morphology on the fracture behavior of silica sand using a 3D discrete element method (United States)

    Cil, Mehmet B.; Alshibli, Khalid A.


    The constitutive behavior and deformation characteristics of uncemented granular materials are to a large extent derived from the fabric or geometry of the particle structure and the interparticle friction resulting from normal forces acting on particles or groups of particles. Granular materials consist of discrete particles with a fabric (microstructure) that changes under loading. Synchrotron micro-computed tomography (SMT) has emerged as a powerful non-destructive 3D scanning technique to study geomaterials. In this paper, SMT was used to acquire in situ scans of the oedometry test of a column of three silica sand particles. The sand is known as ASTM 20-30 Ottawa sand, and has a grain size between US sieves #20 (0.841 mm) and #30 (0.595 mm). The characteristics and evolution of particle fracture in sand were examined using SMT images, and a 3D discrete element method (DEM) was used to model the fracture behavior of sand particles. It adopts the bonded particle model to generate a crushable agglomerate that consists of a large number of small spherical sub-particles. The agglomerate shape matches the 3D physical shape of the tested sand particles by mapping the particle morphology from the SMT images. The paper investigates and discusses the influence of agglomerate packing (i.e., the number and size distribution of spherical sub-particles that constitute the agglomerate) and agglomerate shape on the fracture behavior of crushable particles.

  14. Discrete modeling of hydraulic fracturing processes in a complex pre-existing fracture network (United States)

    Kim, K.; Rutqvist, J.; Nakagawa, S.; Houseworth, J. E.; Birkholzer, J. T.


    Hydraulic fracturing and stimulation of fracture networks are widely used by the energy industry (e.g., shale gas extraction, enhanced geothermal systems) to increase permeability of geological formations. Numerous analytical and numerical models have been developed to help understand and predict the behavior of hydraulically induced fractures. However, many existing models assume simple fracturing scenarios with highly idealized fracture geometries (e.g., propagation of a single fracture with assumed shapes in a homogeneous medium). Modeling hydraulic fracture propagation in the presence of natural fractures and homogeneities can be very challenging because of the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and pre-existing natural fractures. In this study, the TOUGH-RBSN code for coupled hydro-mechanical modeling is utilized to simulate hydraulic fracture propagation and its interaction with pre-existing fracture networks. The simulation tool combines TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach, with the implementation of a lattice modeling approach for geomechanical and fracture-damage behavior, named Rigid-Body-Spring Network (RBSN). The discrete fracture network (DFN) approach is facilitated in the Voronoi discretization via a fully automated modeling procedure. The numerical program is verified through a simple simulation for single fracture propagation, in which the resulting fracture geometry is compared to an analytical solution for given fracture length and aperture. Subsequently, predictive simulations are conducted for planned laboratory experiments using rock-analogue (soda-lime glass) samples containing a designed, pre-existing fracture network. The results of a preliminary simulation demonstrate selective fracturing and fluid infiltration along the pre-existing fractures, with additional fracturing in part

  15. Deformation, fatigue and fracture behavior of two cast anisotropic superalloys (United States)

    Milligan, Walter W.; Huron, Eric S.; Antolovich, Stephen D.


    Tensile and low cycle fatigue (LCF) tests were conducted on two cast anisotropic superalloys. The effects of temperature, strain rate and stress range were investigated. Deformation behavior was extensively characterized and modeled. LCF and fracture behavior were studied and correlated with deformation behavior.

  16. Capturing the complex behavior of hydraulic fracture stimulation through multi-physics modeling, field-based constraints, and model reduction (United States)

    Johnson, S.; Chiaramonte, L.; Cruz, L.; Izadi, G.


    Advances in the accuracy and fidelity of numerical methods have significantly improved our understanding of coupled processes in unconventional reservoirs. However, such multi-physics models are typically characterized by many parameters and require exceptional computational resources to evaluate systems of practical importance, making these models difficult to use for field analyses or uncertainty quantification. One approach to remove these limitations is through targeted complexity reduction and field data constrained parameterization. For the latter, a variety of field data streams may be available to engineers and asset teams, including micro-seismicity from proximate sites, well logs, and 3D surveys, which can constrain possible states of the reservoir as well as the distributions of parameters. We describe one such workflow, using the Argos multi-physics code and requisite geomechanical analysis to parameterize the underlying models. We illustrate with a field study involving a constraint analysis of various field data and details of the numerical optimizations and model reduction to demonstrate how complex models can be applied to operation design in hydraulic fracturing operations, including selection of controllable completion and fluid injection design properties. The implication of this work is that numerical methods are mature and computationally tractable enough to enable complex engineering analysis and deterministic field estimates and to advance research into stochastic analyses for uncertainty quantification and value of information applications.

  17. Modelling of Specimen Fracture (United States)


    the plate center. An end load of 1.0 MPa was applied. 1 2 3 Modelling of Specimen Fracture – Final Report 11 TR-13-47 Figure 2.5: Crack Geometry Figure...Christopher Bayley DRDC Atlantic Dockyard Laboratory Pacific CFB Esquimalt, Building 199 PO Box 17000, Station Forces Victoria, British Columbia Canada...q The weighting function, q , can be any arbitrary function within the J-integral domain, and must be zero on the domain boundary . An easy function

  18. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs (United States)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.


    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

  19. Grain Size Effect of Commercial Pure Titanium Foils on Mechanical Properties, Fracture Behaviors and Constitutive Models (United States)

    Daming, Nie; Zhen, Lu; Kaifeng, Zhang


    The constitutive models based on grain size effect are crucial for analyzing the deformation of metal foils. Previous investigations on the constitutive models concentrate on the foils whose thickness/average grain diameter (T/D) ratios are more than 3. In this study, the commercial pure titanium foils with thickness of 0.1 and 0.2 mm were employed as the experimental materials. The mechanical properties of foils with dimensions of nine different T/D ratios categorized into three ranges (T/D mechanisms of the samples with different T/D ratios were compared and analyzed. Besides, three constitutive models incorporating the surface layer effect and grain boundary strengthening effect were established for the three T/D ratio ranges correspondingly. In these models, the thickness of the surface layers is set T for T/D 3, and increases with D linearly in 1 ≤ T/D < 3. The results calculated by the three models were compared. The experiments indicate that those models are all in good agreement.

  20. Micromechanics Modeling of Fracture in Nanocrystalline Metals (United States)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.


    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  1. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.


    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  2. Analysis of flow behavior in fractured lithophysal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianchun; Bodvarsson, G.S.; Wu, Yu-Shu


    This study develops a mathematical model for the analysis of pressure behavior in fractured lithophysal reservoirs. The lithophysal rock is described as a tri-continuum medium, consisting of fractures, rock matrices, and cavities. In the conceptual model, fractures have homogeneous properties throughout and interact with rock matrices and cavities that have different permeabilities and porosities. Global flow occurs through the fracture network only, while rock matrices and cavities contain the majority of fluid storage and provide fluid drainage to the fractures. Interporosity flows between the triple media are described using a pseudosteady-state concept and the system is characterized by interporosity transmissivity ratios and storativity ratio of each continuum. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots, and the effects of the characteristic parameters. Typical pressure responses from fractures, matrices, and cavities are represented by three semilog straight lines; the transitions by two troughs below the stabilization lines in the derivative plots. The analytical solution to the proposed model is further verified using a numerical simulation. The analytical model has also been applied to a published field-buildup well test and is able to match the pressure buildup data.

  3. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.


    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  4. Fracture behavior of hybrid composite laminates (United States)

    Kennedy, J. M.


    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  5. Fracture behaviors of ceramic tissue scaffolds for load bearing applications (United States)

    Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing


    Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.

  6. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi


    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  7. Investigating the microstructural effect on elastic and fracture behavior of polycrystals using a nonlocal lattice particle model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hailong; Jiao, Yang; Liu, Yongming, E-mail:


    A novel nonlocal lattice particle framework is proposed to investigate the microstructural effects, such as the crystallographic orientation distribution and grain boundary properties, on the mechanical performance of 2D polycrystalline materials. The classical approach of treating material anisotropy in other numerical methods, such as finite element method, is by transforming the material stiffness matrix for each crystallite. In the proposed method, the polycrystalline microstructures are constructed by rotating the underlying topological lattice structure consistently with the material crystallographic orientation while keeping the material stiffness matrix intact. By rotating the underlying lattice structure, the grain boundaries between different grains are naturally generated at locations where two crystallites meet. Thus, the grain boundary effect on the performance of the crystalline aggregates can be naturally incorporated. Parametric studies on the effects of crystallographic orientation distribution on both elastic and fracture behavior of polycrystalline materials are performed. The simulation results are compared with both analytical solutions and experimental observations in the open literature. Conclusions and discussions are drawn based on the current study.

  8. Transport Behavior in Fractured Rock under Conceptual and Parametric Uncertainty (United States)

    Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.


    Lack of hydrogeological data and knowledge leads to uncertainty in numerical modeling, and many conceptualizations are often proposed to represent uncertain model components derived from the same data. This study investigates how conceptual and parametric uncertainty influence transport behavior in three-dimensional discrete fracture networks (DFN). dfnWorks, a parallelized computational suite developed at the Los Alamos National Laboratory is used to simulate flow and transport in simple 3D percolating DFNs. Model averaging techniques in a Monte-Carlo framework are adopted to effectively predict contaminant plumes and to quantify prediction uncertainty arising from conceptual and parametric uncertainties. The method is applied to stochastic fracture networks with orthogonal sets of background fractures and domain spanning faults. The sources of uncertainty are the boundary conditions and the fault characteristics. Spatial and temporal analyses of the contaminant plumes are conducted to compute influence of the uncertainty sources on the transport behavior. The flow and transport characteristics of 3D stochastic DFNs under uncertainty help in laying the groundwork for model development and analysis of field scale fractured rock systems.

  9. Hydraulic fracture propagation modeling and data-based fracture identification (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  10. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail:; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan


    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  11. Application of Stochastic Fracture Network with Numerical Fluid Flow Simulations to Groundwater Flow Modeling in Fractured Rocks

    Institute of Scientific and Technical Information of China (English)


    The continuum approach in fluid flow modeling is generally applied to porous geological media,but has limitel applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales.Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REVand hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2-D or 3-D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.``

  12. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete (United States)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio


    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  13. Micromechanics-based modeling of stress–strain and fracture behavior of heat-treated boron steels for hot stamping process

    Energy Technology Data Exchange (ETDEWEB)

    Srithananan, P.; Kaewtatip, P.; Uthaisangsuk, V., E-mail:


    In the automotive industry, hot stamped parts with tailored properties have shown advantageous safety performance. Such components are produced by applying different heat treatment conditions after forming for different zones in order to obtain various combinations of hard and soft microstructures. In this work, pure martensitic, pure bainitic, and three martensitic/bainitic phase microstructures were initially generated from the boron steel grade 22MnB5 by a two-step quenching procedure in which different holding times in the bainitic temperature range were varied. Increased phase fraction of bainite due to longer holding time led to decreased yield and tensile strength; however, elongation and resulting energy absorbability became significantly higher. To describe mechanical properties and failure behavior of hot stamped parts containing multiphase microstructures, influences of microstructure characteristics should be considered on the micro-scale. Using modeling, 2-D representative volume elements (RVE) were generated from observed real microstructures and flow curves of the individual single phases were defined, taking into account a dislocation theory based model and local chemical compositions. Then, effective stress–strain curves of the heat-treated boron steels were calculated by using the isostrain and non-isostrain methods and compared with tensile test results. Regarding fracture behavior, damage curves of fully martensitic and bainitic structures were determined by means of tensile tests of different notched samples and a hybrid digital image correlation (DIC)–finite element (FE) approach. 2-D RVE simulations of a martensite/bainite mixture were carried out under various states of stress, in which the obtained damage curves were individually applied for each phase. The predicted damage curve from RVE simulations for two-phase boron steel fairly agreed with experimental fracture strains. Moreover, correspondingly normalized Lode angle could be

  14. Mechanic behavior of unloading fractured rock mass

    Institute of Scientific and Technical Information of China (English)

    YIN Ke; ZHANG Yongxing; WU Hanhui


    Under tension and shear conditions related to unloading of rock mass, a jointed rock mass model of linear elastic fracture mechanics is established. According to the model, the equations of stresses, strains and displacements of the region influenced by the crack but relatively faraway the crack (the distance between the research point and the center of the crack is longer than the length of crack) are derived. They are important for evaluating the deformation of cracked rock. It is demonstrated by the comparison between computational results of these theoretical equations and the observed data from unloading test that they are applicable for actual engineering.

  15. Fracture behaviors under pure shear loading in bulk metallic glasses (United States)

    Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang


    Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.

  16. A comprehensive model combining Laplace-transform finite-difference and boundary-element method for the flow behavior of a two-zone system with discrete fracture network (United States)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Xu, Zhongyi; Xue, Yongchao; Cao, Renyi; Ding, Guanyang


    This paper provides a comprehensive model for the flow behavior of a two-zone system with discrete fracture network. The discrete fracture network within the inner zone is represented explicitly by fracture segments. The Laplace-transform finite-difference method is used to numerically model discrete fracture network flow, with sufficient flexibility to consider arbitrary fracture geometries and conductivity distributions. Boundary-element method and line-source functions in the Laplace domain are employed to derive a semi-analytical flow solution for the two-zone system. By imposing the continuity of flux and pressure on discrete fracture surfaces, the semi-analytical two-zone system flow model and the numerical fracture flow model are coupled dynamically. The main advantage of the approach occurring in the Laplace domain is that simulation can be done with nodes only for discrete fractures and elements for boundaries and at predetermined, discrete times. Thus, stability and convergence problems caused by time discretization are avoided and the burden of gridding and computation is decreased without loss of important fracture characteristics. The model is validated by comparison with the results from an analytical solution and a fully numerical solution. Flow regime analysis shows that a two-zone system with discrete fracture network may develop six flow regimes: fracture linear flow, bilinear flow, inner zone linear flow, inner zone pseudosteady-state flow, outer zone pseudoradial flow and outer zone boundary-dominated flow. Especially, local solutions for the inner-zone linear flow have the same form with that of a finite conductivity planar fracture and can be correlated with the total length of discrete fractures and an intercept term. In the inner zone pseudosteady-state flow period, the discrete fractures, along with the boundary of the inner zone, will act as virtual closed boundaries, due to the pressure interference caused by fracture network and the

  17. Discrete Fracture Networks Groundwater Modelling at Bedding Control Fractured Sedimentary Rock mass (United States)

    Pin, Yeh; Yuan-Chieh, Wu


    Groundwater flow modelling in fractured rock mass is an important challenging work in predicting the transport of contamination. So far as we know about the numerical analysis method was consider for crystalline rock, which means discontinuous are treated as stochastic distribution in homogeneous rock mass. Based on the understanding of geology in Taiwan in past few decades, we know that the hydraulic conductivities of Quaternary and Tertiary system rock mass are strongly controlled by development of sedimentary structures (bedding plane). The main purpose of this study is to understand how Discrete Fracture Networks (DFN) affects numerical results in terms of hydraulic behavior using different DFN generation methods. Base on surface geology investigation and core drilling work (3 boreholes with a total length of 120m), small scale fracture properties with in Cho-lan formation (muddy sandstone) are defined, including gently dip of bedding and 2 sub-vertical joint sets. Two FracMan/MAFIC numerical modellings are conducted, using ECPM approach (Equivalent Continuum Porous Media); case A considered all fracture were Power law distribution with Poisson fracture center; case B considered all bedding plans penetrate into modelling region, and remove the bedding count to recalculate joint fracture parameters. Modelling results show that Case B gives stronger groundwater pathways than Case A and have impact on flow field. This preliminary modelling result implicates the groundwater flow modelling work in some fractured sedimentary rock mass, might be considerate to rock sedimentary structure development itself, discontinuous maybe not follow the same stochastic DFN parameter.

  18. Fractal modeling of natural fracture networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferer, M.; Dean, B.; Mick, C.


    West Virginia University will implement procedures for a fractal analysis of fractures in reservoirs. This procedure will be applied to fracture networks in outcrops and to fractures intersecting horizontal boreholes. The parameters resulting from this analysis will be used to generate synthetic fracture networks with the same fractal characteristics as the real networks. Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little a priori information. In the sections following, the authors will (1) present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using the fractal analysis over a stochastic analysis; and (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.

  19. Partially decoupled modeling of hydraulic fracturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Settari, A.; Puchyr, P.J.; Bachman, R.C. (Simtech Consulting Services, Calgary (CA))


    A new method of partial decoupling of the problem of modeling a hydraulic fracture in a reservoir is described. According to the authors this approach has significant advantages over previous methods with fully coupled or completely uncoupled models. Better accuracy can be achieved in modeling the fracture propagation, and the new system is very efficient and versatile. Virtually any reservoir model can be used for predicting postfracture productivity. Examples of single- and multiphase applications for modeling fractured wells are discussed.

  20. Spalling fracture behavior in (100) gallium arsenide (United States)

    Sweet, Cassi A.

    Record-high conversion efficiencies inherent in III-V solar cells make them ideal for one-sun photovoltaic applications. However, material costs associated with implementation prevent competitive standing with other solar technologies. This dissertation explores controlled exfoliation of III-V single junction photovoltaic devices from (100) GaAs substrates by spalling to enable wafer reuse for material cost reductions. Spalling is a type of fracture that occurs within the substrate of a bilayer under sufficient misfit stress. A spalling crack propagates parallel to the film/substrate interface at a steady-state spalling depth within the substrate. Spalling in (100) GaAs, a semiconductor with anisotropic fracture properties, presents unique challenges. Orientation of the cleavage plane is not parallel to the steady-state spalling depth which results in a faceted fracture surface. A model is developed by modifying Suo and Hutchinson's spalling mechanics to approximate quantitatively the spalling process parameter window and the thickness of the exfoliated film, i.e. spalling depth, for use with (100) GaAs and other semiconductor materials. Experimental data for faceted (100)-GaAs spalling is shown to be in agreement with this model. A faceted surface leads to undesirable waste material for low cost application to the solar industry. Therefore, methods to mitigate the facet size are explored. Trends in facet size and distribution are linked with both the stressor film deposition parameters and the spalling pull velocity. A spalling fracture is a high energy process where damage to the exfoliated material is a concern. Spalled material quality is assessed directly by dislocation density analysis and indirectly by characterization of electrical performance of high quality spalled photovoltaic devices sensitive to material damage such as dislocation and microcrack occurrence. Controlled application of spalling in (100) GaAs is achieved by exfoliation of a high

  1. Fracture and Medium Modeling, by Analizing Hidraulic Fracturing Induced Microseismicity (United States)

    Gomez Alba, S.; Vargas Jiménez, C. A.


    Hydraulic fracturing is an essential technology for most unconventional hydrocarbon resources and many conventional ones as well. The primary limitation on the improvement and optimization of the fracturing process is the minimal access to observe the behavior of the fracture in the subsurface. Without direct observational evidence, hypothetical mechanisms must be assumed and then tested for their validity with indirect information such as wellbore measurements, indirect production and pressure behavior. One of the most important sources of information today is the relation made between micro seismic source mechanisms and fracture behavior. Hydraulic fractures induce some level of micro seismicity when the stress conditions in the Earth are altered by changes in stress during the operations. The result is the sudden movement between rock elements and the radiation of both compressional and shear energy in a seismic range that can be detected and recorded with sensitive receivers. The objective of this work is to provide reasonable information when applying inversion methods in order to estimate the vertical and horizontal spatial heterogeneities in medium and energy radiation distribution of microseisms while fracking operations. The method consist in record microseisms at a previous lineal array of stations (triaxial accelerometers) which are located close to the source coordinates and cover the area of study. The analysis clarify some ideas about what information can be gained from the micro seismic source data and according to the obtained results, what kind of comparisons and associations might be done to evaluate the fracking performance operation. Non uniformities in medium such as faults would be revealed by interpreted scattering coefficients. Fracture properties like distance, velocity and orientation would be also determined by analyzing energy radiation.

  2. Fracture behavior of silica nanoparticle filled epoxy resin (United States)

    Dittanet, Peerapan

    This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy. The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles

  3. Hydraulic fracturing model based on the discrete fracture model and the generalized J integral (United States)

    Liu, Z. Q.; Liu, Z. F.; Wang, X. H.; Zeng, B.


    The hydraulic fracturing technique is an effective stimulation for low permeability reservoirs. In fracturing models, one key point is to accurately calculate the flux across the fracture surface and the stress intensity factor. To achieve high precision, the discrete fracture model is recommended to calculate the flux. Using the generalized J integral, the present work obtains an accurate simulation of the stress intensity factor. Based on the above factors, an alternative hydraulic fracturing model is presented. Examples are included to demonstrate the reliability of the proposed model and its ability to model the fracture propagation. Subsequently, the model is used to describe the relationship between the geometry of the fracture and the fracturing equipment parameters. The numerical results indicate that the working pressure and the pump power will significantly influence the fracturing process.

  4. Numerical investigation of fracture behavior of tunnel by excavation loading

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; TANG Chun-an; MA Tian-hui; DUAN Dong


    A rock failure process analysis model, RFPA2D code, a two-dimensional numerical code, were proposed. The code not only satisfied the global equilibrium, strain consistent and nonlinear constitutive relationship of rock and soil materials but also took into account the heterogeneous characteristics of rock materials at macroscopic and microscopically level. The failure behavior of tunnel could be simulated by this numerical model. The model could realistically simulate the fracture behavior of tunnel by excavation loading, strength limits, and post peak response for both tension and compression. As the proposed method was used to conduct the stability analysis of tunnel, the safety factor of tunnel was defined as the ratio of actual shear strength parameter to critical failure shear strength parameter. Not only the safety factor of tunnel with specific physics meaning can be obtained, but also the overall failure process and the location of failure surface may also be determined at the same time.

  5. Modeling fracture porosity evolution in dolostone (United States)

    Gale, Julia F. W.; Lander, Robert H.; Reed, Robert M.; Laubach, Stephen E.


    Opening-mode fractures in dolostones buried to depths of ˜1-5 km contain synkinematic dolomite cement, the amount and internal structure of which has a systematic relationship to fracture size. Narrow fractures (cement or cement with a crack-seal texture that indicates multiple incremental openings. Wider fractures can preserve considerable effective porosity, but anomalously thick dolomite cement bridges are commonly present in fractures that are otherwise lined with a thin veneer of cement. Dolomite bridges resemble quartz bridges that are common in fractured sandstones. We developed a geometric crystal growth model for synkinematic dolomite fracture fill in fractured dolostones, where periodic incremental fracture-opening events are introduced with concurrent cement growth. We assumed constant temperature and supersaturation with respect to dolomite. A key assumption in the model is that rapid dolomite accumulation within bridges is governed by high cement-growth rates on repeatedly broken grain surfaces during the process of crack seal. Slower cement-growth rates occur on euhedral crystals. This assumption is made on the basis of a comparison with quartz cement growth in fractured sandstones. Simulations with different fracture-opening rates mimic bridge and lining cement morphologies, including characteristic rhombic shapes of dolomite bridges.

  6. Pressure transient modeling of a fractured geothermal reservior

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.


    A fracture network model has been developed to simulate transient fluid flow behavior in a fractured rock mass. Included is a pressure-dependent aperture submodel to simulate behavior often seen in fractured systems. The model is used to simulate data from the Fenton Hill Hot Dry Rock (HDR) geothermal reservoir. Both low-pressure/low-flow-rate and high-pressure/high-flow-rate transient data are adequately simulated. The model parameters obtained suggest ways in which the model can be refined to achieve even more realistic fits to the data. The model is then used to demonstrate more efficient operating modes than the two-well circulating mode usually proposed for HDR reservoirs. 11 refs., 9 figs., 1 tab.

  7. Tensile Fracture Behavior of Progressively-Drawn Pearlitic Steels

    National Research Council Canada - National Science Library

    Jesús Toribio; Francisco-Javier Ayaso; Beatriz González; Juan-Carlos Matos; Diego Vergara; Miguel Lorenzo


    In this paper a study is presented of the tensile fracture behavior of progressively-drawn pearlitic steels obtained from five different cold-drawing chains, including each drawing step from the initial hot-rolled bar...

  8. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions

    Institute of Scientific and Technical Information of China (English)

    He-sheng LI; Yong-xin QI; Yuan-pei ZHANG; Mu-sen LI


    The fracture behavior of the diamond single cwstals with metallic inclusions was investigated in the present paper.Single diamond crystals with metallic inclusions were formed by a special process with high pressure and high tempemture(HPHT).The inclusions trapped in the diamond were characterized mainly to be metallic carbide of(Fe,Ni)23C6 or Fe3C and solid solution of y-(Fe,Ni)by transmission electronic microscopy(TEM).The grain size of the inclusions is about micrometers. The fracture characteristics of the diamond single crystals,after compression and heating,were investigated by optical microscopy (OM) and scanning electron microscopy (SEM).The fracture sections of the compressed and heated diamonds were found to be parallel to the (111)plane. The interface of the inclusions and diamond is deduced to be the key factor and the original region Of the fracture formation. Mechanisms of the fracture behavior ofthe HPHT synthesized diamonds are discussed.

  9. Research on the fracture behavior of PBX under static tension

    Directory of Open Access Journals (Sweden)

    Hu Guo


    Full Text Available The fracture behavior of polymer-bonded explosive (PBX seriously affects the safety and reliability of weapon system. The effects of interface debonding and initial meso-damage on the fracture behavior of PBX under quasi-static tension are studied using numerical method. A two-dimensional representative volume element (RVE is established based on Voronoi model in which the component contents could be regulated and the particles are randomly distributed. A nonlinear damage model of polymer matrix relative to matrix depth between particles is constructed. The results show that the simulated strain-stress relation is coincident with experiment data. It is found that interface debonding leads to the nucleation and propagation of meso-cracks, and a main crack approximately perpendicular to the loading direction is generated finally. The interface debonding tends to occur in the interface perpendicular to the loading direction. There seems to be a phenomenon that strain softening and hardening alternatively appear around peak stress of stress and strain curve. It is shown that the initial damages of intragranular and interfacial cracks both decrease the modulus and failure stress, and the main crack tends to propagate toward the initial meso-cracks.

  10. Modeling interfacial fracture in Sierra.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.


    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  11. Hydraulic fracture model comparison study: Complete results

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R. [Sandia National Labs., Albuquerque, NM (United States); Abou-Sayed, I.S. [Mobil Exploration and Production Services (United States); Moschovidis, Z. [Amoco Production Co. (US); Parker, C. [CONOCO (US)


    Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production difficult and often economic and stimulation is required. Because of the diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes. The objective of this study was to develop a comparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs. This report compares the fracture modeling results of twelve different simulators, some of them run in different modes for eight separate design cases. Comparisons of length, width, height, net pressure, maximum width at the wellbore, average width at the wellbore, and average width in the fracture have been made, both for the final geometry and as a function of time. For the models in this study, differences in fracture length, height and width are often greater than a factor of two. In addition, several comparisons of the same model with different options show a large variability in model output depending upon the options chosen. Two comparisons were made of the same model run by different companies; in both cases the agreement was good. 41 refs., 54 figs., 83 tabs.

  12. Fracture model of radiation blistering

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, K.; Higashida, Y.


    The formation process of blisters is interpreted by a fracture model on the basis of the stress fields around a lenticular bubble calculated in a previous paper. This model implicitly presumes a microcrack nucleated at a depth near the projected range of the ions. Two factors are separated theoretically to explain the blister formation: One is a geometrical factor which depends only on the ratio of size to depth, from a free surface, and the other factor is proportional to the square of the ratio between the internal gas pressure of the bubble to plastic yield stress of the target materials, depending entirely on the physical and chemical properties of the materials and gas atoms. The relation between the blister diameter and the cover thickness must be basically linear as expected from the first factor, but is modulated by the second factor, giving a slight departure from linearity as observed by experiment. The ratio of the gas pressure to the yield stress must be 0.02--0.2 in magnitude and depends on the ion energy and the target materials. This value leads to an estimation that the amount of gas atoms contained in the blister is about 10% of the injected ions. Griffith's criterion for the crack propagation in the subsurface layer with taking into account of ductility of the materials near the crack tip was derived, and showed that the estimated internal pressure of the blister is far smaller than the necessary pressure to satisfy the criterion. The objections against the gas-pressure model were criticized on the basis of the present model.

  13. The hydro-mechanical modeling of the fractured media; Modelisation hydromecanique des milieux fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kadiri, I


    The hydro-mechanical modeling of the fractured media is quite complex. Simplifications are necessary for the modeling of such media, but, not always justified, Only permeable fractures are often considered. The rest of the network is approximated by an equivalent continuous medium. Even if we suppose that this approach is validated, the hydraulic and mechanical properties of the fractures and of the continuous medium are seldom known. Calibrations are necessary for the determination of these properties. Until now, one does not know very well the nature of measurements which must be carried out in order to carry on a modeling in discontinuous medium, nor elements of enough robust validation for this kind of modeling. For a better understanding of the hydro-mechanical phenomena in fractured media, two different sites have been selected for the work. The first is the site of Grimsel in Switzerland in which an underground laboratory is located at approximately 400 m of depth. The FEBEX experiment aims at the in-situ study of the consecutive phenomena due to the installation of a heat source representative of radioactive waste in the last 17 meters of the FEBEX tunnel in the laboratory of Grimsel. Only, the modeling of the hydro-mechanical of the excavation was model. The modeling of the Febex enabled us to establish a methodology of calibration of the hydraulic properties in the discontinuous media. However, this kind of study on such complex sites does not make possible to answer all the questions which arise on the hydro-mechanical behavior of the fractured media. We thus carried out modeling on an other site, smaller than the fist one and more accessible. The experimental site of Coaraze, in the Maritime Alps, is mainly constituted of limestone and fractures. Then the variation of water pressure along fractures is governed by the opening/closure sequence of a water gate. Normal displacement as well as the pore pressure along these fractures are recorded, and then

  14. Design and modeling of small scale multiple fracturing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cuderman, J F


    Recent experiments at the Nevada Test Site (NTS) have demonstrated the existence of three distinct fracture regimes. Depending on the pressure rise time in a borehole, one can obtain hydraulic, multiple, or explosive fracturing behavior. The use of propellants rather than explosives in tamped boreholes permits tailoring of the pressure risetime over a wide range since propellants having a wide range of burn rates are available. This technique of using the combustion gases from a full bore propellant charge to produce controlled borehole pressurization is termed High Energy Gas Fracturing (HEGF). Several series of HEGF, in 0.15 m and 0.2 m diameter boreholes at 12 m depths, have been completed in a tunnel complex at NTS where mineback permitted direct observation of fracturing obtained. Because such large experiments are costly and time consuming, smaller scale experiments are desirable, provided results from small experiments can be used to predict fracture behavior in larger boreholes. In order to design small scale gas fracture experiments, the available data from previous HEGF experiments were carefully reviewed, analytical elastic wave modeling was initiated, and semi-empirical modeling was conducted which combined predictions for statically pressurized boreholes with experimental data. The results of these efforts include (1) the definition of what constitutes small scale experiments for emplacement in a tunnel complex at the Nevada Test Site, (2) prediction of average crack radius, in ash fall tuff, as a function of borehole size and energy input per unit length, (3) definition of multiple-hydraulic and multiple-explosive fracture boundaries as a function of boreholes size and surface wave velocity, (4) semi-empirical criteria for estimating stress and acceleration, and (5) a proposal that multiple fracture orientations may be governed by in situ stresses.

  15. Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load (United States)

    Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua


    Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.

  16. Modeling elastic tensile fractures in snow using nonlocal damage mechanics (United States)

    Borstad, C. P.; McClung, D. M.


    The initiation and propagation of tensile fractures in snow and ice are fundamental to numerous important physical processes in the cryosphere, from iceberg calving to ice shelf rift propagation to slab avalanche release. The heterogeneous nature of snow and ice, their proximity to the melting temperature, and the varied governing timescales typically lead to nonlinear fracture behavior which does not follow the predictions of Linear Elastic Fracture Mechanics (LEFM). Furthermore, traditional fracture mechanics is formally inapplicable for predicting crack initiation in the absence of a pre-existing flaw or stress concentration. An alternative to fracture mechanics is continuum damage mechanics, which accounts for the material degradation associated with cracking in a numerically efficient framework. However, damage models which are formulated locally (e.g. stress and strain are defined as point properties) suffer from mesh-sensitive crack trajectories, spurious localization of damage and improper fracture energy dissipation with mesh refinement. Nonlocal formulations of damage, which smear the effects of the material heterogeneity over an intrinsic length scale related to the material microstructure, overcome these difficulties and lead to numerically efficient and mesh-objective simulations of the tensile failure of heterogeneous materials. We present the results of numerical simulations of tensile fracture initiation and propagation in cohesive snow using a nonlocal damage model. Seventeen beam bending experiments, both notched and unnotched, were conducted using blocks of cohesive dry snow extracted from an alpine snowpack. Material properties and fracture parameters were calculated from the experimental data using beam theory and quasi-brittle fracture mechanics. Using these parameters, a nonlocal isotropic damage model was applied to two-dimensional finite element meshes of the same scale as the experiments. The model was capable of simulating the propagation

  17. Improved fracture behavior and microstructural characterization of thin tungsten foils

    Directory of Open Access Journals (Sweden)

    Vladica Nikolic


    Full Text Available This study is focused towards the development of the technique for investigating the fracture behaviour of 100µm thick rolled tungsten foils, with a purity of 99.97%. Electron backscatter diffraction (EBSD scans reveal that the grains are elongated along the rolling direction of the foil, which has a very strong {100} texture. The test specimens were fabricated by electrical discharge machining (EDM and cracks were initiated by consecutively using a diamond wire saw, a razor blade and a focused ion beam (FIB workstation. Fracture experiments were performed at temperatures from −196°C to 800°C. The investigation of fracture appearance shows an improved behavior and significantly higher values of conditional fracture toughness Kq compared to bulk W-materials, which can be related to a higher degree of deformation during the production process. A high toughness at room temperature (RT and 200°C, slowly decreases when approaching the highest testing temperature of 800°C. The most significant result reveals that the ductile to brittle transition temperature (DBTT is around RT, which is an extraordinary result for any tungsten material. The fracture surfaces, investigated with a scanning electron microscope (SEM, show a transition from cleavage fracture at liquid nitrogen temperature, through pronounced delamination within the foil plane at ambient temperatures to ductile fracture at the highest testing temperatures.

  18. Fracture behavior of quenched poly(lactic acid

    Directory of Open Access Journals (Sweden)


    Full Text Available The effect of a quenching treatment applied on heated cast sheet extruded films of two poly(lactic acid (PLA commercial grades, with different optical purities, was studied. The thermal and mechanical properties of the films, as well as their fracture behavior, were assessed by differential scanning calorimetry (DSC, tensile tests, and the essential work of fracture (EWF approach. The heating-quenching treatment causes a de-aging effect with an increase in the free volume of polymer chains evidenced by a decrease in the glass transition temperature (Tg and a decrease in the tensile stiffness and yield stress. As a result, there is an abrupt increase in ductility, finding a dramatic change in the fracture behavior, from brittle to ductile. The use of digital image correlation (DIC of the strain field analysis during fracture testing has allowed relating the decrease on the yield stress promoted by quenching with the crack propagation kinetics. The use of the EWF method to characterize the fracture toughness of PLA has allowed to measure this enhancement on toughness, finding that the specific essential work of fracture (we and the plastic term (βwp parameters increased 120% and 1200%, respectively, after the quenching process.

  19. Tensile Fracture Behavior of Progressively-Drawn Pearlitic Steels

    Directory of Open Access Journals (Sweden)

    Jesús Toribio


    Full Text Available In this paper a study is presented of the tensile fracture behavior of progressively-drawn pearlitic steels obtained from five different cold-drawing chains, including each drawing step from the initial hot-rolled bar (not cold-drawn at all to the final commercial product (pre-stressing steel wire. To this end, samples of the different wires were tested up to fracture by means of standard tension tests, and later, all of the fracture surfaces were analyzed by scanning electron microscopy (SEM. Micro-fracture maps (MFMs were assembled to characterize the different fractographic modes and to study their evolution with the level of cumulative plastic strain during cold drawing.

  20. Modeling the Fracture of Ice Sheets on Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, Haim [Columbia University; Tuminaro, Ray [Sandia National Labs


    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  1. Orientation dependent fracture behavior of nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Kobler, Aaron, E-mail:; Hahn, Horst, E-mail:, E-mail:, E-mail: [Technische Universität Darmstadt (TUD), KIT-TUD Joint Research Laboratory Nanomaterials, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hodge, Andrea M., E-mail:, E-mail:, E-mail: [University of Southern California (USC), Department of Aerospace and Mechanical Engineering, Los Angeles, California 90089-1453 (United States); Kübel, Christian, E-mail:, E-mail:, E-mail: [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)


    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation.

  2. Bonded-cell model for particle fracture


    Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang


    International audience; Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and ...

  3. Cohesive mixed mode fracture modelling and experiments

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes


    A nonlinear mixed mode model originally developed by Wernersson [Wernersson H. Fracture characterization of wood adhesive joints. Report TVSM-1006, Lund University, Division of Structural Mechanics; 1994], based on nonlinear fracture mechanics, is discussed and applied to model interfacial cracking...... in a steel–concrete interface. The model is based on the principles of Hillerborgs fictitious crack model, however, the Mode I softening description is modified taking into account the influence of shear. The model couples normal and shear stresses for a given combination of Mode I and II fracture...... curves, which may be interpreted using the nonlinear mixed mode model. The interpretation of test results is carried out in a two step inverse analysis applying numerical optimization tools. It is demonstrated how to perform the inverse analysis, which couples the assumed individual experimental load...

  4. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Bower, K.M.


    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  5. Creep and fracture of a model yoghurt (United States)

    Manneville, Sebastien; Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut


    Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a model yoghurt, namely a casein gel, is reminiscent of brittle solids: after a primary creep regime characterized by a macroscopically homogeneous deformation and a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power-law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids. Work funded by the European Research Council under Grant Agreement No. 258803.

  6. Challenges in Continuum Modelling of Intergranular Fracture

    DEFF Research Database (Denmark)

    Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.;


    Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First......, 3D grain boundary geometries comprise a five-dimensional space. Second, the energy and peak stress of grain boundaries have singularities for all commensurate grain boundaries, especially those with short repeat distances. Thirdly, fracture nucleation and growth depend not only upon the properties...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....

  7. Universal asymptotic umbrella for hydraulic fracture modeling

    CERN Document Server

    Linkov, Aleksandr M


    The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

  8. Pressure Transient Behavior of Horizontal Well with Time-Dependent Fracture Conductivity in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Qihong Feng


    Full Text Available This work presents a discussion on the pressure transient response of multistage fractured horizontal well in tight oil reservoirs. Based on Green’s function, a semianalytical model is put forward to obtain the behavior. Our proposed model accounts for fluid flow in four contiguous regions of the tight formation by using pressure continuity and mass conservation. The time-dependent conductivity of hydraulic fractures, which is ignored in previous models but highlighted by recent experiments, is also taken into account in our proposed model. We also include the effect of pressure drop along a horizontal wellbore. We substantiate the validity of our model and analyze the different flow regimes, as well as the effects of initial conductivity, fracture distribution, and geometry on the pressure transient behavior. Our results suggest that the decrease of fracture conductivity has a tremendous effect on the well performance. Finally, we compare our model results with the field data from a multistage fractured horizontal well in Jimsar sag, Xinjiang oilfield, and a good agreement is obtained.

  9. Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures

    NARCIS (Netherlands)

    Latham, J.P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.F.; Blunt, M.J.


    The influence of in-situ stresses on flow processes in fractured rock is investigated using a novel modelling approach. The combined finite-discrete element method (FEMDEM) is used to model the deformation of a fractured rock mass. The fracture wall displacements and aperture changes are modelled in

  10. Discrete Fracture Network Modelling in a Naturally Fractured Carbonate Reservoir in the Jingbei Oilfield, China

    Directory of Open Access Journals (Sweden)

    Junling Fang


    Full Text Available This paper presents an integrated approach of discrete fracture network modelling for a naturally fractured buried-hill carbonate reservoir in the Jingbei Oilfield by using a 3D seismic survey, conventional well logs, and core data. The ant tracking attribute, extracted from 3D seismic data, is used to detect the faults and large-scale fractures. Fracture density and dip angle are evaluated by observing drilling cores of seven wells. The fracture density distribution in spatiality was predicted in four steps; firstly, the ant tracking attribute was extracted as a geophysical log; then an artificial neural network model was built by relating the fracture density with logs, e.g., acoustic, gamma ray, compensated neutron, density, and ant tracking; then 3D distribution models of acoustic, gamma ray, compensated neutron and density were generated by using a Gaussian random function simulation; and, finally, the fracture density distribution in 3D was predicted by using the generated artificial neural network model. Then, different methods were used to build the discrete fracture network model for different types of fractures of which large-scale fractures were modelled deterministically and small-scale fractures were modelled stochastically. The results show that the workflow presented in this study is effective for building discrete fracture network models for naturally fractured reservoirs.

  11. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing (United States)

    Jenkins, Andrew

    magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the

  12. Model on surface borehole squeezing deformation fracture*

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-tao; HU Qian-ting; HUANG Sheng-shu


    As a good method to solve the problem of high methane on the workface and in the goaf, drawing coal strata methane through a surface borehole is used. However, the excavation affected the overlying rock strata greatly. When the excavation face passed through the surface borehole position, the surface borehole fractures fast. This problem was seriously related to the unformed squeeze effect. Therefore, a squeezing deformation fracture model based on the rock strata squeezing effect was set up. At the same time, a 3DEC simulation model is presented to confirm the theory. The result shows that the mod-el is reliable and has a good engineering application value.

  13. Triple Medium Physical Model of Post Fracturing High-Rank Coal Reservoir in Southern Qinshui Basin

    Institute of Scientific and Technical Information of China (English)

    Shiqi Liu; Shuxun Sang; Qipeng Zhu; Jiefang Zhang; Hefeng Gao; Huihu Liu; Lixing Lin


    In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of post fracturing high-rank coal reservoir, Warren-Root Model is improved. A new physical model that is more suitable for post fracturing high-rank coal reser-voir is established. The results show that the width, the flow conductivity and the permeability of hydraulic fractures are much larger than natural fractures in coal bed reservoir. Hydraulic frac-ture changes the flow pattern of gas and flow channel to wellbore, thus should be treated as an independent medium. Warrant-Root Model has some limitations and can’t give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Modified War-rant-Root Model simplifies coal bed reservoir to an ideal system with hydraulic fracture, ortho-gonal macroscopic fracture and cuboid matrix. Hydraulic fracture is double wing, vertical and symmetric to wellbore. Coal bed reservoir is divided into cuboids by hydraulic fracture and fur-ther by macroscopic fractures. Flow behaviors in coal bed reservoir are simplified to three step flows of gas and two step flows of water. The swap mode of methane between coal matrix and macroscopic fractures is pseudo steady fluid channeling. The flow behaviors of methane to well-bore no longer follow Darcy’s Law and are mainly affected by inertia force. The flow pattern of water follows Darcy’s Law. The new physical model is more suitable for post fracturing high-rank coal reservoir.

  14. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo


    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  15. Behavioral differences of laying hens with fractured keel bones within furnished cages

    Directory of Open Access Journals (Sweden)

    Teresa Marie Casey-Trott


    Full Text Available High prevalence of keel bone fractures in laying hens is reported in all housing systems. Keel fractures have been associated with pain and restricted mobility in hens in loose housing. The objective was to determine whether keel fractures were associated with activity of hens in furnished cages. Thirty-six pairs of LSL Lite hens (72 wk were enrolled in the study. One hen with a fractured keel and one hen without were identified by palpation in each of 36 groups of hens housed in either 30 or 60-bird cages stocked at 750cm2/hen. Behavioral activity of each hen was recorded by four observers blind to keel status using focal animal sampling for 10 min within a 2 hr period in the morning (08:00-10:00, afternoon (12:00-14:00, and evening (17:00-19:00. All hens were observed during each of the three sample periods for three days totaling 90 min, and individual hen data was summed for analysis. Hens were euthanized 48hr after final observations, dissected, and classified by keel status: F0 (no fracture, N=24; F1 (single fracture, N=17; F2 (multiple fractures, N=31. The percentages of time hens performed each behavior were analyzed using a mixed procedure in SAS with fracture severity, body weight, cage size, rearing environment, and tier in the model. Fracture severity affected the duration of perching (P=0.04 and standing (P=0.001, bout length of standing (P<0.0001, and location (floor vs perch of resting behaviors (P=0.01. F2 hens perched longer than F0 hens, 20.0% ± 2.9 and 11.6% ± 3.2. F2 hens spent less time standing, 15.2% ± 1.5, than F0 and F1 hens, 20.7% ± 1.6 and 21.6% ± 1.8. F2 hens had shorter standing bouts (22.0 sec ± 4.2 than both F0 and F1 hens, 33.1 sec ± 4.3 and 27.4 sec ± 4.4. Non-fractured hens spent 80.0% ± 6.9 of total resting time on the floor whereas F1 and F2 hens spent 56.9% ± 12.4 and 51.5% ± 7.7, resting on the floor. Behavioral differences reported here provide insight into possible causes of keel damage, or

  16. Modelling localised fracture of reinforced concrete structures


    Liao, F; Huang, Z.


    This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled b...

  17. Fractured-basement reservoir modeling using continuous fracture modeling (CFM) method (United States)

    Isniarny, Nadya; Haris, Abdul; Nurdin, Safrizal


    The challenge in oil and gas exploration has now shifted due to increasingly difficult to get back up economic value in a conventional reservoir. Explorationist are developing various drilling technology, optimizing conventional reserves and unconventional reserve in reservoirs. One of the unconventional reservoir that has been developed is the basement reservoir. This rock type has no primary porosity and the permeability of the rocks of this type are generally influenced by the naturally fracture networks. The purpose of this study is to map the fracture intensity distribution in the basement reservoir using Continuous Fracture Modeling (CFM) method. CFM method applies the basic concepts of neural network in finding a relationship between well data with seismic data in order to build a model of fracture intensity. The Formation Micro Imager (FMI) interpretation data is used to identify the presence of fracture along the well as dip angle and dip azimuth. This indicator will be laterally populated in 3D grid model. Several seismic attribute which are generated from seismic data is used as a guidance to populate fracture intensity in the model. The results from the model were validated with Drill Stem Test (DST) data. Zones of high fracture intensity on the model correlates positively with the presence of fluid in accordance with DST data.

  18. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...... in the planning of field tests and to update the conceptual model in an iterative process. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology and hydrogeology. To describe the geology and fracture system, data from borehole logs, packer tests, optical...... distribution in the aquifer. Different models were used for the planning and interpretation of the pump and tracer test. The models were evaluated by examining their ability to describe collected field data. The comparison with data showed that the models have substantially different representations...

  19. Analysis on the deformation and fracture behavior of carbon steel by in situ tensile test

    Institute of Scientific and Technical Information of China (English)

    Fan Li; Haibo Huang


    The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstructure mechanism of their deformation and fracture behavior was analyzed. The results show that the deformation and fracture behavior of low-carbon steel depends on the grain size of ferrite, the deformation and fracture behavior of medium-carbon steel depends on the size of ferrite grain and pearlite lump,and the deformation and fracture behavior of high-carbon steel depends on the size of pearlite lump and the pearlitic interlamellar spacing.

  20. A Spatial Clustering Approach for Stochastic Fracture Network Modelling (United States)

    Seifollahi, S.; Dowd, P. A.; Xu, C.; Fadakar, A. Y.


    Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach

  1. A triple-continuum approach for modeling flow and transportprocesses in fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S; Zellmer, K .E.


    This paper presents a triple-continuum conceptual model forsimulating flow and transport processes in fractured rock. Field datacollected from the unsaturated zone of Yucca Mountain, a repository siteof high-level nuclear waste, show a large number of small-scalefractures. The effect of these small fractures has not been considered inprevious modeling investigations within the context of a continuumapproach. A new triple-continuum model (consisting of matrix,small-fracture, and large-fracture continua) has been developed toinvestigate the effect of these small fractures. This paper derives themodel formulation and discusses the basic triple-continuum behavior offlow and transport processes under different conditions, using bothanalytical solutions and numerical approaches. The simulation resultsfrom the site-scale model of the unsaturated zone of Yucca Mountainindicate that these small fractures may have an important effect onradionuclide transport within the mountain

  2. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)


    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  3. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik


    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...

  4. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik


    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... an overview of the structure of the research and a summary of current status archived so far....

  5. Estimation of ductile fracture behavior incorporating material anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Lee, Dock Jin; Jeong, Jae Uk [Sungkyunkwan University, Seoul (Korea, Republic of); Chang, Yoon Suk [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Nuclear Material Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill;s 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

  6. A sophisticated simulation for the fracture behavior of concrete material using XFEM (United States)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili


    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The infl uence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  7. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed


    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  8. Fracture behavior of lithia disilicate- and leucite-based ceramics. (United States)

    Della Bona, Alvaro; Mecholsky, John J; Anusavice, Kenneth J


    This study was designed to characterize the fracture behavior of ceramics and test the hypothesis that variation in strength is associated with a variation in fracture toughness. The following four groups of 20 bar specimens (25 x 4 x 1.2 mm) were fabricated (ISO standard 6872): E1, a hot-pressed leucite-based core ceramic (IPS Empress); E2, a hot-pressed lithia-based core ceramic (IPS Empress 2); ES, a hot-pressed lithia-based core ceramic (Experimental); and GV, a glass veneer (IPS Empress2 body). Specimens were subjected to four-point flexure loading in 37 degrees C distilled water. Fractographic analysis was performed to determine the fracture origin (c) for calculation of fracture toughness (KIC). Weibull analysis of flexure strength (sigma) data was also performed. Differences in mean sigma and KIC were statistically significant for E1 and GV (p<0.05). These differences are associated with processing effects and composition. The higher mean sigma and KIC values of E2 and ES core ceramics suggest potentially improved structural performance compared with E1 although the Weibull moduli of E1 and E2 are the same.

  9. Hydrofracture Modeling Using Discrete Fracture Network in Barnett Shale (United States)

    Yaghoubi, A.; Zoback, M. D.


    Shale gas has become an important source of unconventional reservoir in the united state over the past decade. Since the shale gas formations are impermeable, hydraulic fracturing from vertical and horizontal well are commonly approach to extract natural gas deposit from these unconventional sources. Hydraulic fracturing has been a successful and relatively inexpensive stimulation method for stimulation and enhances hydrocarbon recovery. Multistage hydro fracturing treatments in horizontal well creates a large stimulated reservoir volume. However, modeling hydraulic fracturing requires to prior knowledge of natural fracture network. This problem can be deal with Discrete Fracture network modeling. The objective of this study is first to model discrete fracture network and then simulate hydro-fracturing in five horizontal well of a case study in Barnett shale gas reservoir. In the case study, five horizontal wells have been drilled in Barnett shale gas reservoir in which each of them has 10 stages of hydro-fracturing stimulation. Of all five wells, just well C has a full comprehensive logging data. Fracture date detected using FMI image log of well C for building DFN model are associated with different sources of uncertainty; orientation, density and length. After building reservoir geomechanics model and detecting natural fracture form image log from well C, DFN model has built based on fracture parameters, orientation, intensity, shape size and permeability detected from image log and core data. Modeling hydrofractuing in five wells are consistent with critically stressed-fracture and micro-seismic events.

  10. a Fractal Network Model for Fractured Porous Media (United States)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung


    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  11. Mechanical and fracture behavior of calcium phosphate cements (United States)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly

  12. Numerical simulation of hydraulic fracturing using a three-dimensional fracture model coupled with an adaptive mesh fluid model

    NARCIS (Netherlands)

    Xiang, G.L.; Vire, A.; Pavlidis, D.; Pain, C.


    A three-dimensional fracture model developed in the context of the combined finite-discrete element method is incorporated into a two-way fluid-solid coupling model. The fracture model is capable of simulating the whole fracturing process. It includes pre-peak hardening deformation, post-peak strain


    Institute of Scientific and Technical Information of China (English)

    Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey


    Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.

  14. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    CERN Document Server

    Roubinet, D; Jougnot, D; Irving, J


    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interaction...

  15. Bonded-cell model for particle fracture. (United States)

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang


    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  16. Combined loading effects on the fracture mechanics behavior of line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.E.; Cravero, S.; Ernst, H.A. [Tenaris Group, Campana (Argentina). SIDERCA R and D Center


    For certain applications, pipelines may be submitted to biaxial loading situations. In these cases, it is not clear the influence of the biaxial loading on the fracture mechanics behavior of cracked pipelines. For further understanding of biaxial loading effects, this work presents a numerical simulation of ductile tearing in a circumferentially surface cracked pipe under biaxial loading using the computational cell methodology. The model was adjusted with experimental results obtained in laboratory using single edge cracked under tension (SENT) specimens. These specimens appear as the better alternative to conventional fracture specimens to characterize fracture toughness of cracked pipes. The negligible effect of biaxial loadings on resistance curves was demonstrated. To guarantee the similarities of stress and strains fields between SENT specimens and cracked pipes subjected to biaxial loading, a constraint study using the J-Q methodology and the h parameter was used. The constraint study gives information about the characteristics of the crack-tip conditions. (author)

  17. XFEM modeling of hydraulic fracture in porous rocks with natural fractures (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo


    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  18. A Fracture Mechanical Model and a Cohesive Zone Model of Interface Fracture

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre


    A comparison between the prediction of crack propagation through an adhesive interface based on a fracture mechanics approach and a cohesive zone approach is presented. Attention is focussed on predicting the shape of the crack front and the critical stress required to propagate the crack under...... quasi-static conditions. The cohesive zone model has several advantages over the fracture mechanics based model. It is easier to generalise the cohesive zone model to take into account effects such as plastic deformation in the adherends, and to take into account effects of large local curvatures...... of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics approach in the limit where the size of the cohesive zone becomes smaller than other relevant geometrical lengths for the problem....

  19. Modeling the Ductile Brittle Fracture Transition in Reactor Pressure Vessel Steels using a Cohesive Zone Model based approach

    Energy Technology Data Exchange (ETDEWEB)

    Pritam Chakraborty; S. Bulent Biner


    Fracture properties of Reactor Pressure Vessel (RPV) steels show large variations with changes in temperature and irradiation levels. Brittle behavior is observed at lower temperatures and/or higher irradiation levels whereas ductile mode of failure is predominant at higher temperatures and/or lower irradiation levels. In addition to such temperature and radiation dependent fracture behavior, significant scatter in fracture toughness has also been observed. As a consequence of such variability in fracture behavior, accurate estimates of fracture properties of RPV steels are of utmost importance for safe and reliable operation of reactor pressure vessels. A cohesive zone based approach is being pursued in the present study where an attempt is made to obtain a unified law capturing both stable crack growth (ductile fracture) and unstable failure (cleavage fracture). The parameters of the constitutive model are dependent on both temperature and failure probability. The effect of irradiation has not been considered in the present study. The use of such a cohesive zone based approach would allow the modeling of explicit crack growth at both stable and unstable regimes of fracture. Also it would provide the possibility to incorporate more physical lower length scale models to predict DBT. Such a multi-scale approach would significantly improve the predictive capabilities of the model, which is still largely empirical.

  20. Discrete fracture network modeling of hydraulic stimulation coupling flow and geomechanics

    CERN Document Server

    McClure, Mark


    Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks.  The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale.  Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of nov

  1. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures (United States)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan


    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  2. Experimental Timescales of Fracture-Healing Rheological Behavior of Thermoreversible Gels (United States)

    Thornell, Travis L.; Subramaniam, Krithika; Erk, Kendra A.

    Acrylic thermoreversible physical gels were used as a model soft material system to investigate fracture-healing behavior by shear rheometry. By using shear start-up experiments, gels at various concentrations and temperatures were measured to determine shear stress responses, and fracture was indicated by a decrease in shear stress (confirmed with rheophysical flow visualization experiments). Fractured gels were allowed to recover in the rheometer for set periods of time and were tested again using the same shear start-up procedure to evaluate the recovery kinetics of network strength. Relationships between the network recovery and the normalized ratio of the resting times and characteristic relaxation times of the gels were determined. It was found that resting times for fully healed networks needed to be 2 or 3 orders of magnitude greater than the relaxation times. The extent of fracture was also investigated. Gels that were deformed to smaller total strain magnitudes were suspected to have incomplete (or partial) fracture as results showed various responses for given resting times.

  3. High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels

    Institute of Scientific and Technical Information of China (English)

    Weijun HUI; Yihong NIE; Han DONG; Yuqing WENG; Chunxu WANG


    The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior.For AISI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curvedisplays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 μm. In the case of internal inclusion-induced fractures at cycles beyond about 1×106 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increasewith increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×106. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.

  4. Study on fracture behavior of SiCp/A356 composites

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiyong; HAN Jianmin; LI Weijing; WANG Wenjing; KANG Suk-Bong


    The fracture behavior of SiCp/A356 composite at room and high temperatures was studied.Under tensile stress condition at room temperature, the fracture is mostly a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix.As the tensile temperature increases, the composite changes the main fracture behavior to the separation fracture of the bonding surface between SiC particles and A356 matrix.When the tensile temperature reaches 573 K, the fracture behavior of the composites is almost the whole separation fracture of the bonding surface, which is the main strengthening mechanism at high temperature.Under the cycle stress condition at room and high temperatures, the main fracture behavior of the composites is always a combination of the brittle fracture of SiC particles and ductile fracture of A356 matrix.However, under the cycle stress at high temperature, cycle behavior of the composites changes from cycle hardening at room temperature to the cycle softening at high temperature.

  5. Pressure falloff behavior in vertically fractured wells: Non-Newtonian power-law fluids

    Energy Technology Data Exchange (ETDEWEB)

    Vongvuthipornchai, S.; Raghauan, R.; Reynolds, A.C.


    This paper examines pressure falloff behavior in fractured wells following the injection of a non-Newtonian power-law fluid. Results are presented in a form suitable for field application. Responses at wells intercepting infinite-conductivity and uniformflux fractures are considered. Procedures to identify flow regimes are discussed. The solutions presented here are new and to our knowledge not available in the literature. The consequences of neglecting the non-Newtonian characteristics of the injected fluid are examined. The results of this work were obtained by a finite difference model. Procedures to compute the apparent viscosity of power-law fluids for twodimensional flow through porous media are discussed. The formulation given here avoids numerical problems (multiple solutions, cross over, etc.) reported in other studies. Although, the main objective of the work is to examine pressure falloff behavior at fractured wells, the authors also examine responses at unfractured wells. The main objective of this part of a study is to examine the validity of using the superposition principle to analyze pressure falloff data. (The pressure distribution for this problem is governed by a nonlinear partial differential equation.) If the solutions given in the literature are used, then correction factors are needed to analyze pressure falloff data. The results of this phase of the work can also be used to analyze data in fractured wells provided that pseudoradial flow conditions exist.

  6. New model for well test analysis in a purely fractured medium

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.; Long, J.C.S.; Witherspoon, P.A.


    In a porous medium the flow conduits are small and a large number of conduits are connected to the well. For this reason the medium appears to behave like a continuum on the scale of the well test, and volumetric averaging and continuum approximations are justified. On the contrary, in a fractured medium, only a small number of fractures may intersect the pumping well. These particular fractures will be stressed by a large gradient under well test conditions. Consequently, the early time behavior will be dominated by these fractures. The volumetrically averaged permeability does not control flow in the vicinity of an active well. The individual fractures close to the well must be characterized in order to understand the well test behavior especially if the hydraulic parameters of these fractures are significantly different from the average values for the entire system. In the present study, a new analytical model is proposed for well test problems in fracture networks where the matrix is impermeable. The model accounts for the difference in the flow regime around the active well from that of the system as a whole. The analytical solutions are presented in a series of type curves for ranges of dimensionless parameters. The flow properties of the fracture system can be determined by curve matching.

  7. Analysis of Fracturing Network Evolution Behaviors in Random Naturally Fractured Rock Blocks (United States)

    Wang, Y.; Li, X.; Zhang, B.


    Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in the shale plays, core observations indicate abundant random non-tectonic micro-fractures in the producing shales. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. In a series of scaled true triaxial laboratory experiments, we investigate the interaction of propagating fracturing network with natural fractures. The influence of dominating factors was studied and analyzed, with an emphasis on non-tectonic fracture density, injection rate, and stress ratio. A new index of P-SRV is proposed to evaluate the fracturing effectiveness. From the test results, three types of fracturing network geometry of radial random net-fractures, partly vertical fracture with random branches, and vertical main fracture with multiple branches were observed. It is suggested from qualitative and quantitative analysis that great micro-fracture density and injection rate tend to maximum the fracturing network; however, it tends to decrease the fracturing network with the increase in horizontal stress ratio. The function fitting results further proved that the injection rate has the most obvious influence on fracturing effectiveness.

  8. Thrombin related peptide TP508 promoted fracture repair in a mouse high energy fracture model

    Directory of Open Access Journals (Sweden)

    Pan Xiao-Hua


    Full Text Available Abstract Background Thrombin related peptide (TP508 is a 23 amino-acid synthetic peptide that represents a portion of the receptor-binding domain of thrombin molecule. Previous studies have shown that TP508 can accelerate musculoskeletal tissue repair including fracture healing. Objectives The aim of this study was to investigate the effect of TP508 on fracture healing in a murine fracture model representing high energy fracture situation. Methods Eighty CD 1 mice underwent controlled quadriceps muscle crush and open transverse mid diaphyseal femoral fracture that was then fixed with an external fixator. Animals were randomised into four groups to receive an intra-operative dose of either 100 μg TP508 into the fracture gap; 100 μg TP508 into the surrounding damaged muscle tissues; 10 μg TP508 into the fracture gap, or control equal amount of saline into the fracture gap. Radiographic assessment was performed weekly for 5 weeks; histological analysis was at 3 and 5 weeks post fracture and biomechanical testing of the fractured bone was performed at 5 weeks post fracture. Results Mechanical testing data showed that the fracture stiffness was significantly higher in the group receiving 100 μg TP508 into the fracture gap than other groups. Histological and radiographic analysis revealed a trend of increase in bone formation in the 100 μg TP508 injected into the fracture gap group compared to the saline control group. It was noted that the scar tissues was significantly less in Group II comparing with the saline control group and there was increased blood vessel formation in the crushed muscles and fracture gap areas in the groups receiving TP508 comparing to the saline control group. Conclusion The results from this study demonstrated the use of thrombin related peptide TP508 in the situation of a high energy fracture can promote fracture healing and reduce the potential complications such as muscle fibrosis and fracture delayed or non-union.

  9. Numerical modelling in non linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    Viggo Tvergaard


    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  10. An Efficient Two-Scale Hybrid Embedded Fracture Model for Shale Gas Simulation

    KAUST Repository

    Amir, Sahar


    Natural and hydraulic fractures existence and state differs on a reservoir-by-reservoir or even on a well-by-well basis leading to the necessity of exploring the flow regimes variations with respect to the diverse fracture-network shapes forged. Conventional Dual-Porosity Dual-Permeability (DPDP) schemes are not adequate to model such complex fracture-network systems. To overcome this difficulty, in this paper, an iterative Hybrid Embedded multiscale (two-scale) Fracture model (HEF) is applied on a derived fit-for-purpose shale gas model. The HEF model involves splitting the fracture computations into two scales: 1) fine-scale solves for the flux exchange parameter within each grid cell; 2) coarse-scale solves for the pressure applied to the domain grid cells using the flux exchange parameter computed at each grid cell from the fine-scale. After that, the D dimensions matrix pressure and the (D-1) lower dimensional fracture pressure are solved as a system to apply the matrix-fracture coupling. HEF model combines the DPDP overlapping continua concept, the DFN lower dimensional fractures concept, the HFN hierarchical fracture concept, and the CCFD model simplicity. As for the fit-for-purpose shale gas model, various fit-for-purpose shale gas models can be derived using any set of selected properties plugged in one of the most popularly used proposed literature models as shown in the appendix. Also, this paper shows that shale extreme low permeability cause flow behavior to be dominated by the structure and magnitude of high permeability fractures.

  11. Phase-field modeling of hydraulic fracture (United States)

    Wilson, Zachary A.; Landis, Chad M.


    In this work a theoretical framework implementing the phase-field approach to fracture is used to couple the physics of flow through porous media and cracks with the mechanics of fracture. The main modeling challenge addressed in this work, which is a challenge for all diffuse crack representations, is on how to allow for the flow of fluid and the action of fluid pressure on the aggregate within the diffuse damage zone of the cracks. The theory is constructed by presenting the general physical balance laws and conducting a consistent thermodynamic analysis to constrain the constitutive relationships. Constitutive equations that reproduce the desired responses at the various limits of the phase-field parameter are proposed in order to capture Darcy-type flow in the intact porous medium and Stokes-type flow within open cracks. A finite element formulation for the solution of the governing model equations is presented and discussed. Finally, the theoretical and numerical model is shown to compare favorably to several important analytical solutions. More complex and interesting calculations are also presented to illustrate some of the advantageous features of the approach.

  12. Linking advanced fracture models to structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, Matteo


    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  13. Behavioral Differences of Laying Hens with Fractured Keel Bones within Furnished Cages (United States)

    Casey-Trott, Teresa M.; Widowski, Tina M.


    High prevalence of keel bone fractures in laying hens is reported in all housing systems. Keel fractures have been associated with pain and restricted mobility in hens in loose housing. The objective was to determine whether keel fractures were associated with activity of hens in furnished cages. Thirty-six pairs of LSL-Lite hens (72 weeks) were enrolled in the study. One hen with a fractured keel and one hen without were identified by palpation in each of 36 groups of hens housed in either 30- or 60-bird cages stocked at 750 cm2/hen. Behavioral activity of each hen was recorded by four observers blind to keel status using focal animal sampling for 10 min within a 2-h period in the morning (08:00–10:00), afternoon (12:00–14:00), and evening (17:00–19:00). All hens were observed during each of the three sample periods for 3 days totaling 90 min, and individual hen data were summed for analysis. Hens were euthanized 48 h after final observations, dissected, and classified by keel status: F0 (no fracture, N = 24), F1 (single fracture, N = 17), and F2 (multiple fractures, N = 31). The percentages of time hens performed each behavior were analyzed using a mixed procedure in SAS with fracture severity, body weight, cage size, rearing environment, and tier in the model. Fracture severity affected the duration of perching (P = 0.04) and standing (P = 0.001), bout length of standing (P < 0.0001), and location (floor vs. perch) of resting behaviors (P = 0.01). F2 hens perched longer than F0 hens, 20.0 ± 2.9 and 11.6 ± 3.2%. F2 hens spent less time standing, 15.2 ± 1.5%, than F0 and F1 hens, 20.7 ± 1.6 and 21.6 ± 1.8%. F2 hens had shorter standing bouts (22.0 ± 4.2 s) than both F0 and F1 hens, 33.1 ± 4.3 and 27.4 ± 4.4 s. Non-fractured hens spent 80.0 ± 6.9% of total resting time on the floor, whereas F1 and F2 hens spent 56.9 ± 12.4 and 51.5 ± 7.7% resting on the floor

  14. Modeling of Fracture Toughness of Electroless Nickel (EN) Coatings

    Institute of Scientific and Technical Information of China (English)

    K. Zangeneh; S.M. Monir-vaghefi; F. Ashrafizadeh


    In the present reserch, a model has been proposed for estimate fracture toughness of Nickel-phosphorus (EN)layers. For this purpose, high phosphorus (9%) EN coatings with thicknesses of 6, 12, 24, 36 and 48 μm were applied on steel substrates and then treated as conventional process. Fracture toughness of coatings was obtained using Vickers indentation method. It is found that fracture toughness increses as coating thickness reduces. Effect of coating thickness on fracture toughness was exhibited by various models. Evaluation of models revealed good agreement between of proposed model (Kc=f(t,t2)) and experimental data.

  15. Modelling deformation and fracture in confectionery wafers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John [Mechanical Engineering Department, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom and Nestec York Ltd., Nestlé Product Technology Centre, Haxby Road, PO Box 204, York YO91 1XY (United Kingdom)


    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  16. Modelling deformation and fracture in confectionery wafers (United States)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John


    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.


    Institute of Scientific and Technical Information of China (English)

    沈新普; 沈国晓


    On the basis of plasticity and fracture mechanics for quasi- brittle materials, this article presented a constitutive model for gradual softening behavior of joints of geomaterials. Corresponding numerical tests are carried out at the local level. Characteristics of the model proposed are 1 ) plastic softening and dilatancy behavior are directly related to the fracture process of joint, and much less material and model parameters are required compared with those proposed by references; 2) the process of decohesion coupled with friction al sliding at both micro-scale and macro-scale is described.

  18. Fracture Behavior Characteristic of Ceramic Reinforced Metal-Base Coatings

    Institute of Scientific and Technical Information of China (English)

    MA Chong; JING Hongyang; XU Lianyong


    The fracture behavior of a ceramic reinforced metal-base coating prepared by high velocity arc spraying (HVAS)technology in three-point bending test was studied.Moreover,finite element analysis(FEA)was adopted to analyze the stress distribution in the crack front.It can be found that the crack norrnal to the interface in the coatings occurred at the location where a fixed moment of force was reached.So the critical moment can be taken as thecoating cracking criterion,which was confirmed by FEA results.In addition,the stress levels at three different locations where cracks occurred near the interface are almost the same.The results will provide reference for the design of coatings and the structure integrity evaluation of coating/substrate systems.

  19. Fracture behaviors of thin superconducting films with field-dependent critical current density

    Energy Technology Data Exchange (ETDEWEB)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe, E-mail:


    Highlights: • The fracture behaviors of superconducting films for the Kim model are studied. • The profile of stress intensity factor is generally the same as magnetostriction. • The crack problem of two collinear cracks is also researched for the Kim model. -- Abstract: The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  20. A finite deformation coupled plastic-damage model for simulating fracture of metal foams


    Pan, Hao; Abu Al-Rub, Rashid


    Metal foams are a novel class of lightweight materials with unique mechanical, thermal, and acoustical properties. The low ductility of metal foams hinders the possibilities of applying secondary forming techniques to shape metal foam sandwich panels into desired industrial components. An important factor is the limited studies on their macroscopic damage and fracture behavior under complex loading conditions. There exist numerous mechanistic micromechanics models describing the fracture beha...


    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes


    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  2. An analytical thermohydraulic model for discretely fractured geothermal reservoirs (United States)

    Fox, Don B.; Koch, Donald L.; Tester, Jefferson W.


    In discretely fractured reservoirs such as those found in Enhanced/Engineered Geothermal Systems (EGS), knowledge of the fracture network is important in understanding the thermal hydraulics, i.e., how the fluid flows and the resulting temporal evolution of the subsurface temperature. The purpose of this study was to develop an analytical model of the fluid flow and heat transport in a discretely fractured network that can be used for a wide range of modeling applications and serve as an alternative analysis tool to more computationally intensive numerical codes. Given the connectivity and structure of a fracture network, the flow in the system was solved using a linear system of algebraic equations for the pressure at the nodes of the network. With the flow determined, the temperature in the fracture was solved by coupling convective heat transport in the fracture with one-dimensional heat conduction perpendicular to the fracture, employing the Green's function derived solution for a single discrete fracture. The predicted temperatures along the fracture surfaces from the analytical solution were compared to numerical simulations using the TOUGH2 reservoir code. Through two case studies, we showed the capabilities of the analytical model and explored the effect of uncertainty in the fracture apertures and network structure on thermal performance. While both sources of uncertainty independently produce large variations in production temperature, uncertainty in the network structure, whenever present, had a predominant influence on thermal performance.

  3. Impacts of transient heat transfer modeling on prediction of advanced cladding fracture during LWR LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail:; Lee, Jeong Ik, E-mail:; NO, Hee Cheon, E-mail:


    Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.

  4. Mixed-Mode Fracture Behavior and Related Surface Topography Feature of a Typical Sandstone (United States)

    Ren, L.; Xie, L. Z.; Xie, H. P.; Ai, T.; He, B.


    The geo-mechanical properties of reservoirs, especially the morphology of the rock surface and the fracture properties of rocks, are of great importance in the modeling and simulation of hydraulic processes. To better understand these fundamental issues, five groups of mixed-mode fracture tests were conducted on sandstone using edge-cracked semi-circular bend specimens. Accordingly, the fracture loads, growth paths and fracture surfaces for different initial mixities of the mixed-mode loadings from pure mode I to pure mode II were then determined. A surface topography measurement for each rough fracture surface was conducted using a laser profilometer, and the fractal properties of these surfaces were then investigated. The fracture path evolution mechanism was also investigated via optical microscopy. Moreover, the mixed-mode fracture strength envelope and the crack propagation trajectories of sandstone were theoretically modeled using three widely accepted fracture criteria (i.e., the MTS, MSED and MERR criterions). The published test results in Hasanpour and Choupani (World Acad Sci Eng Tech 41:764-769, 2008) for limestone were also theoretically investigated to further examine the effectiveness of the above fracture criteria. However, none of these criteria could accurately predict the fracture envelopes of both sandstone and limestone. To better estimate the fracture strength of mixed-mode fractures, an empirical maximum tensile stress (EMTS) criterion was proposed and found to achieve good agreement with the test results. Finally, a uniformly pressurized fracture model was simulated for low pressurization rates using this criterion.

  5. Multiscale model reduction for shale gas transport in fractured media

    CERN Document Server

    Akkutlu, I Y; Vasilyeva, Maria


    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work \\cite{aes14}, where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method. In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. We developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations on a Cartesian fine grid. In this paper, we consider arbitrary fracture orientations and use triangular fine grid and developed GMsFEM for nonlinear flows. Moreover, we develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region ...

  6. Thermal-Hydrologic-Mechanical Behavior of Single Fractures in EGS Reservoirs (United States)

    Zyvoloski, G.; Kelkar, S.; Yoshioka, K.; Rapaka, S.


    Enhanced Geothermal Systems (EGS) rely on the creation a connected fracture system or the enhancement of existing (natural) fractures by hydraulic and chemical treatments. EGS studies at Fenton Hill (New Mexico, USA) and Hijiori (Japan) have revealed that only a limited number of fractures contribute to the effective heat transfer surface area. Thus, the economic viability of EGS depends strongly on the creation and spacing of single fractures in order to efficiently mine heat from given volume of rock. Though there are many similarities between EGS and natural geothermal reservoirs, a major difference between the reservoir types is the (typically) high pumping pressures and induced thermal stresses at the injection wells of an EGS reservoir. These factors can be responsible for fracture dilation/extension and thermal short circuiting and depend strongly on the surrounding state of stress in the reservoir and mechanical properties. We will present results from our study of the thermal-hydrologic-mechanical (THM) behavior of a single fracture in a realistic subsurface stress field. We will show that fracture orientation, the stress environment, fracture permeability structure, and the relationship between permeability changes in a fracture resulting from mechanical displacement are all important when designing and managing an EGS reservoir. Lastly, we present a sensitivity analysis of the important parameters that govern fracture behavior with respect to field measurements. Temperature in high permeability fracture in an EGS reservoir

  7. Modeling of High-Strain-Rate Deformation, Fracture, and Impact Behavior of Advanced Gas Turbine Engine Materials at Low and Elevated Temperatures (United States)

    Shazly, Mostafa; Nathenson, David; Prakash, Vikas


    Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention, and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, Gamma-met PX has been developed by GKSS, Germany. These alloys have been observed to have superior strengths at elevated temperatures and quasi-static deformation rates and good oxidation resistance at elevated temperatures when compared with other gamma titanium aluminides. The present paper discusses results of a study to understand dynamic response of gamma-met PX in uniaxial compression. The experiments were conducted by using a modified split Hopkinson pressure bar between room temperature and 900 C and strain rates of up to 3500 per second. The Gamma met PX alloy showed superior strength when compared to nickel based superalloys and other gamma titanium aluminides at all test temperatures. It also showed strain and strain-rate hardening at all levels of strain rates and temperatures and without yield anomaly up to 900 C. After approximately 600 C, thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 C. However, these flow stress levels are comparatively higher in Gamma met PX than those observed for other TiAl alloys.

  8. Modeling Dynamic Fracture of Cryogenic Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Paul [General Atomics, San Diego, CA (United States)


    This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile (for lack

  9. A cubic matrix-fracture geometry model for radial tracer flow in naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jetzabeth Ramirez-Sabag; Fernando Samaniego V.


    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs, with cubic blocks matrix-fracture geometry. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile where dispersion and convection take place and a stagnant where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared under proper simplified conditions to those previously presented in the literature. The coupled matrix to fracture solution in the Laplace space is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., naturally fractured nearly homogeneous) was carried out. The influence of the three of the main dimensionless parameters that enter into the solution was carefully investigated. A comparison of results for three different naturally fractured systems, vertical fractures (linear flow), horizontal fractures (radial flow) and the cubic geometry model of this study, is presented.

  10. Lean business model and implementation of a geriatric fracture center. (United States)

    Kates, Stephen L


    Geriatric hip fracture is a common event associated with high costs of care and often with suboptimal outcomes for the patients. Ideally, a new care model to manage geriatric hip fractures would address both quality and safety of patient care as well as the need for reduced costs of care. The geriatric fracture center model of care is one such model reported to improve both outcomes and quality of care. It is a lean business model applied to medicine. This article describes basic lean business concepts applied to geriatric fracture care and information needed to successfully implement a geriatric fracture center. It is written to assist physicians and surgeons in their efforts to implement an improved care model for their patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Modeling Electric Current Flow in 3D Fractured Media (United States)

    Demirel, S.; Roubinet, D.; Irving, J.


    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  12. Poroelastic modeling of seismic boundary conditions across a fracture. (United States)

    Nakagawa, Seiji; Schoenberg, Michael A


    Permeability of a fracture can affect how the fracture interacts with seismic waves. To examine this effect, a simple mathematical model that describes the poroelastic nature of wave-fracture interaction is useful. In this paper, a set of boundary conditions is presented which relate wave-induced particle velocity (or displacement) and stress including fluid pressure across a compliant, fluid-bearing fracture. These conditions are derived by modeling a fracture as a thin porous layer with increased compliance and finite permeability. Assuming a small layer thickness, the boundary conditions can be derived by integrating the governing equations of poroelastic wave propagation. A finite jump in the stress and velocity across a fracture is expressed as a function of the stress and velocity at the boundaries. Further simplification for a thin fracture yields a set of characteristic parameters that control the seismic response of single fractures with a wide range of mechanical and hydraulic properties. These boundary conditions have potential applications in simplifying numerical models such as finite-difference and finite-element methods to compute seismic wave scattering off nonplanar (e.g., curved and intersecting) fractures.


    Institute of Scientific and Technical Information of China (English)

    J.H. Peng; G.L. Chen


    The mechanical behavior of Fe3Si based alloy with B2 structure was studied by tensionand fracture toughness test in various testing media. The fracture strength σb ofFe3Si alloy decreased in the following order: oxygen, air and hydrogen respectively.The fracture toughness in different testing environment showed that KiC in oxygenis 11.5±0.3MPa. m1/2, and is 8.6±0.4MPa. m1/2 in distilled water. The reductionof fracture toughness is contributed to the environmental reaction of Si with water.Addition of Al element in Fe3Si is not beneficial to improve the intrinsic ductility ofFe-14Si-3Al alloy. The scattering phenomenon of fracture strength was found, andexplained by fracture mechanics. It was found by means of SEM that the fracture modechanged from transgranular in oxygen to intergranular in hydrogen gas and distilledwater.

  14. Fracture behaviors of thin superconducting films with field-dependent critical current density (United States)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe


    The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  15. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel (United States)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.


    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  16. Application of Discrete Fracture Modeling and Upscaling Techniques to Complex Fractured Reservoirs (United States)

    Karimi-Fard, M.; Lapene, A.; Pauget, L.


    During the last decade, an important effort has been made to improve data acquisition (seismic and borehole imaging) and workflow for reservoir characterization which has greatly benefited the description of fractured reservoirs. However, the geological models resulting from the interpretations need to be validated or calibrated against dynamic data. Flow modeling in fractured reservoirs remains a challenge due to the difficulty of representing mass transfers at different heterogeneity scales. The majority of the existing approaches are based on dual continuum representation where the fracture network and the matrix are represented separately and their interactions are modeled using transfer functions. These models are usually based on idealized representation of the fracture distribution which makes the integration of real data difficult. In recent years, due to increases in computer power, discrete fracture modeling techniques (DFM) are becoming popular. In these techniques the fractures are represented explicitly allowing the direct use of data. In this work we consider the DFM technique developed by Karimi-Fard et al. [1] which is based on an unstructured finite-volume discretization. The mass flux between two adjacent control-volumes is evaluated using an optimized two-point flux approximation. The result of the discretization is a list of control-volumes with the associated pore-volumes and positions, and a list of connections with the associated transmissibilities. Fracture intersections are simplified using a connectivity transformation which contributes considerably to the efficiency of the methodology. In addition, the method is designed for general purpose simulators and any connectivity based simulator can be used for flow simulations. The DFM technique is either used standalone or as part of an upscaling technique. The upscaling techniques are required for large reservoirs where the explicit representation of all fractures and faults is not possible


    Institute of Scientific and Technical Information of China (English)

    Tong-Yi Zhang


    The paper gives an overview on experimental observations of thefailure behavior of electrically insulating and conducting cracks in piezoelectric ce-ramics. The experiments include the indentation fracture test, the bending test onsmooth samples, and the fracture test on pre-notched (or pre-cracked) compact ten-sion samples. For electrically insulating cracks, the experimental results show a com-plicated fracture behavior under electrical and mechanical loading. Fracture dataare much scattered when a static electric field is applied. A statistically based frac-ture criterion is required. For electrically conducting cracks, the experimental resultsdemonstrate that static electric fields can fracture poled and depoled lead zirconatetitanate ceramics and that the concepts of fracture mechanics can be used to mea-sure the electrical fracture toughness. Furthermore, the electrical fracture toughnessis much higher than the mechanical fracture toughness. The highly electrical fracturetoughness arises from the greater energy dissipation around the conductive crack tipunder purely electric loading, which is impossible under mechanical loading in thebrittle ceramics.

  18. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert


    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  19. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory (United States)

    Donado-Garzon, L. D.; Pardo, Y.


    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  20. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)


    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  1. Physical model studies of dispersion in fracture systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, L.C.


    The purposes of the laboratory-scale fracture network experiments are to study mechanisms controlling solute transport under conditions of known fracture parameters, to evaluate injection-backflow test procedures under conditions of known reservoir parameters, and to acquire data for validation of numerical models. Validation of computer codes against laboratory data collected under controlled conditions provides reassurance that the codes deal with important processes in a realistic manner. Preliminary simulations of the dual-permeability physical model have been made using the FRACSL reservoir code. These simulations permit locating electrodes and piezometers in the most advantageous positions to record tracer migration and pressure response. Much of the physical modeling effort this year was oriented towards validating the particle tracking algorithm used in FRACSL, and developing a better theoretical understanding of transport processes in fractures. Experiments were conducted in single fractures and single fracture junctions, and data on tracer migration collected. The Prickett, Naymik, and Lonnquist Random Walk aquifer simulation program has been modfied to simulate flow in single fractures. The particle tracking algorithm was also used to simulate infinite parallel plates under conditions where analytical solutions to the transport equation could be derived. The first case is for zero diffusion in the fracture, and transport based on a parabolic velocity profile. The second case is for diffusion homogenizing the tracer solution across the fracture. The particle tracking algorithm matched both analytical solutions quite well, with the same grid for both simulations. 48 refs., 41 figs., 2 tabs.

  2. Discrete fracture modeling of hydro-mechanical damage processes in geological systems (United States)

    Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.


    This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively

  3. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dolbow, John E. [Duke Univ., Durham, NC (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  4. Fracture Behavior of Dielectric Elastomer under Pure Shear Loading (United States)

    Ahmad, D.; Patra, K.


    Dielectric elastomer has become a very important material for many emerging applications areas like optics, micro fluidics, sensors, actuators and energy harvesting. However, these elastomer components are prone to fracture or catastrophic failure because of defects likes notches, flaws, and fatigue crack, impurities which occur during production or during service. To make better use of this material, it is important to investigate fracture characteristics under different operating conditions. This study experimentally investigated the effects of notch length and strain rate on the fracture toughness, failure stretch and failure stress of acrylic elastomer under pure shear deformation mode. It is observed that failure stretch depends on notch length and independent of strain rate, but failure stress decreases with increasing notch length and increases with increasing strain rate. It is also found that fracture toughness is independent of notch lengths. However, fracture toughness is found to increase with strain rate.

  5. Measuring Stress-dependent Fluid Flow Behavior in Fractured Porous Media (United States)

    Huo, Da; Benson, Sally


    Maintaining long-term storage of CO2 is one of the most important factors for selecting the site for a geological CO2 storage project. Nevertheless, it is important to be prepared for possible leakage due to leaking wells or leakage pathways through the seal of a storage reservoir. This research project is motivated by the need to understand unexpected CO2 leakage. The goal of this research is to investigate stress-dependent fracture permeability and relative permeability of CO2/brine systems. Laboratory measurements of fracture permeability and fracture apertures have been made as a function of effective stress. The phenomenon that permeability decreases with effective pressure increase is observed. Due to deformation of the fracture surface during periods with high effective stress, hysteretic behavior of fractured rock permeability is also observed in core flood experiments. A series of experiments are conducted to investigate permeability hysteresis. A single saw-cut fracture is created in the rock sample to simplify the problem and to focus on the fracture itself. Permeability is measured using a high pressure core flood apparatus with X-Ray CT scanning to measure the fracture aperture distributions. Two permeability data sets, including a high permeability fractured Berea Sandstone and a low permeability fractured Israeli Zenifim Formation sandstone, show clear hysteretic behavior in both permeability and fracture aperture in repeated cycles of compression and decompression. Due to closure of the fracture aperture, when a fractured rock is compressed axially, the permeability has an exponential decline with effective pressure, as expected from stress-dependent permeability theory. When the fractured rock is decompressed afterwards, permeability increases, but not along the compression pathway and never returns to the original value. Depending on the nature of the fracture and host rock, permeability can decrease from a factor of 2 to 40. After one or more

  6. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)


    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  7. Developing fracture density models using terrestrial laser scan data (United States)

    Pollyea, R.; Fairley, J. P.; Podgorney, R. K.; McLing, T. L.


    Characterizing fracture heterogeneity for subsurface flow and transport modeling has been of interest to the hydrogeologic community for many years. Currently, stochastic continuum and discrete fracture representations have come to be accepted as two of the most commonly used tools for incorporating fracture heterogeneity into subsurface flow and transport models. In this research, ground-based lidar data are used to model the surface roughness of vertical basalt exposures in the East Snake River Plain, Idaho (ESRP) as a surrogate for fracture density. The surface roughness is modeled by discretizing the dataset over a regular grid and fitting a regression plane to each gridblock. The standard deviation of distance from the block data to the regression plane is then assumed to represent a measure of roughness for each gridblock. Two-dimensional plots of surface roughness from ESRP exposures indicate discrete fractures can be quantitatively differentiated from unfractured rock at 0.25- meter resolution. This methodology may have broad applications for characterizing fracture heterogeneity. One application, demonstrated here, is to capture high resolution (low noise) covariance statistics for building stochastic property sets to be used in large scale flow simulations. Additional applications may include using surface roughness datasets as training images for multiple-point geostatistics analysis and for constraining discrete fracture models.

  8. Fracture behavior of neutron-irradiated high-manganese austenitic steels (United States)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.


    The instrumented Charpy impact test was applied to study the fracture behavior of high-manganese austenitic steels before and after neutron irradiations. Quarter-size specimens of a commercial high-manganese steel (18% Mn-5% Ni-16% Cr), three reference steels (21% Mn-1% Ni-9% Cr, 20% Mn-1% Ni-11% Cr, 15% Mn-1% Ni-13% Cr) and two model steels (17% Mn-4.5% Si-6.5% Cr, 22% Mn-4.5% Si-6.5% Cr-0.2% N) were used for the impact tests at temperatures between 77 and 523 K. The load-deflection curves showed typical features corresponding to characteristics of the fracture properties. The temperature dependences of fracture energy and failure deflection obtained from the curves clearly demonstrate only small effects up to 2 × 10 23 n/m 2 ( E > 0.1 MeV) and brittleness at room temperature in 17% Mn-Si-Cr steel at 1.6 × 10 25 n/m 2 ( E > 0.1 MeV), while ductility still remains in 22%Mn-Si-Cr steel.

  9. Numerical modeling of multiphase flow in rough and propped fractures (United States)

    Dabrowski, Marcin; Dzikowski, Michał; Jasinski, Lukasz; Olkiewicz, Piotr


    crystalline rocks. The detailed pattern of flow paths and effective fracture conductivity are largely dependent on the level of confining stresses and fracture wall roughness, which both determine the shape and distribution of fracture apertures and contact areas. The distribution of proppant grains, which are used to maintain apertures of hydraulic fractures, is a key factor governing fracture flow in industrial applications. The flow of multiphase fluids in narrow apertures of rock fractures may substantially differ from the flow of a single-phase fluid. For example, multiphase flow effects play an important role during all stages of unconventional reservoir life cycle. Multiphase flow conditions are also expected to prevail in high temperature geothermal fields and during the transport of non aqueous phase liquid contaminants in groundwaters. We use direct numerical simulations to study single- and multiphase flow in rough and propped fractures. We compute the fluid flow using either the finite element or the lattice Boltzmann method. Body-fitting, unstructured computational meshes are used to improve the numerical accuracy. The fluid-fluid and fluid-solid interfaces are directly resolved and an implicit approach to surface tension is used to alleviate restrictions due to capillary CFL condition. In FEM simulations, the Beltrami-Laplace operator is integrated by parts to avoid interface curvature computation during evaluation of the surface tension term. We derive and validate an upscaled approach to Stokes flow in propped and rough fractures. Our upscaled 2.5D fracture flow model features a Brinkman term and is capable of treating no-slip boundary conditions on the rims of proppant grains and fracture wall contact areas. The Stokes-Brinkman fracture flow model provides an improvement over the Reynolds model, both in terms of the effective fracture permeability and the local flow pattern. We present numerical and analytical models for the propped fracture

  10. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels (United States)

    Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon


    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.

  11. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Potirniche, Gabriel [Univ. of Idaho, Moscow, ID (United States); Barlow, Fred D. [Univ. of Idaho, Moscow, ID (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Rink, Karl [Univ. of Idaho, Moscow, ID (United States)


    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  12. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.


    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  13. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A.


    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  14. Behavioral Modeling of Memcapacitor


    D. Biolek; Z. Biolek; V. Biolkova


    Two behavioral models of memcapacitor are developed and implemented in SPICE-compatible simulators. Both models are related to the charge-controlled memcapacitor, the capacitance of which is controlled by the amount of electric charge conveyed through it. The first model starts from the state description of memcapacitor whereas the second one uses the memcapacitor constitutive relation as the only input data. Results of transient analyses clearly show the basic fingerprints of the memcapacitor.

  15. Behavioral Modeling of Memcapacitor

    Directory of Open Access Journals (Sweden)

    D. Biolek


    Full Text Available Two behavioral models of memcapacitor are developed and implemented in SPICE-compatible simulators. Both models are related to the charge-controlled memcapacitor, the capacitance of which is controlled by the amount of electric charge conveyed through it. The first model starts from the state description of memcapacitor whereas the second one uses the memcapacitor constitutive relation as the only input data. Results of transient analyses clearly show the basic fingerprints of the memcapacitor.

  16. A Modeling Approach to Fiber Fracture in Melt Impregnation (United States)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong


    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  17. Fictitious Crack Model of Concrete Fracture

    DEFF Research Database (Denmark)

    Brincker, Rune; Dahl, H.


    The substructure method introduced by Petersson is reformulated for the three-point bending specimen in order to obtain complete load-displacement relations without significant truncation. The problem of instability caused by the linearization of the softening in the fracture zone is discussed......, and an alternative energy formulation is given so that it is possible to distinguish between stable and unstable situations. The reformulated substructure method is implemented on computer to give a multilinear stress crack opening displacement relation for the material in the fracture zone, and some qualitative...

  18. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections (United States)

    Li, Bo; Liu, Richeng; Jiang, Yujing


    Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr < 10-3, the scale effect is negligibly small. Finally, a necessary condition to apply the cubic law to fluid flow through fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.

  19. A first order system model of fracture healing

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-ping; ZHANG Xian-long; LI Zhu-guo; YU Xin-gang


    A first order system model is proposed for simulating the influence of stress stimulation on fracture strength during fracture healing. To validate the model, the diaphyses of bilateral tibiae in 70 New Zealand rabbits were osteotomized and fixed with rigid plates and stress-relaxation plates, respectively. Stress shielding rate and ultimate bending strength of the healing bone were measured at 2 to 48 weeks postoperatively. Ratios of stress stimulation and fracture strength of the healing bone to those of intact bone were taken as the system input and output. The assumed first order system model can approximate the experimental data on fracture strength from the input of stress stimulation over time, both for the rigid plate group and the stress-relaxation plate group, with different system parameters of time constant and gain. The fitting curve indicates that the effect of mechanical stimulus occurs mainly in late stages of healing. First order system can model the stress adaptation process of fracture healing. This approach presents a simple bio-mathematical model of the relationship between stress stimulation and fracture strength, and has the potential to optimize planning of functional exercises and conduct parametric studies.

  20. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering


    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  1. Removal of biocolloids suspended in reclaimed wastewater by injection in a fractured aquifer model (United States)

    Chrysikopoulos, Constantinos V.; Masciopinto, Costantino; La Mantia, Rosanna; Manariotis, Ioannis D.


    Two pilot-scale fractured aquifer models (FAMs) consisting of horizontal limestone slabs were employed to investigate the removal of biocolloids suspended in reclaimed wastewater. To better understand the behavior of real fractured aquifers, these FAMs intentionally were not 'clean.' The fracture apertures were randomly spread with soil deposits and both FAMs were pre-flooded with reclaimed wastewater to simulate the field conditions of the Nardò fractured aquifer in the Salento area, Italy, where fractures are not clean due to artificial groundwater recharge. One of the FAMs was injected with secondary effluent from a wastewater treatment plant collected prior to the chlorination step, and the other with exactly the same effluent, which was further treated in a commercial membrane reactor. Consequently, the organic and pathogen concentrations were considerably higher in the secondary effluent than in the membrane reactor effluent. Injected wastewater was continuously recirculated. Pathogen removal was greater for the secondary wastewater than the cleaner membrane reactor effluent. A simple mathematical model was developed to describe fracture clogging. The results suggest that the hydraulic conductivity of FAMs can be significantly degraded due to retention of viable and inactivated biocolloids suspended in reclaimed wastewater.

  2. Fracture behavior of nano-layered coatings under tension

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Herzl, E-mail: [School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv (Israel); Josell, Daniel [Metallurgy Division, MSEL, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)


    The fracture of brittle/ductile multilayers composed of equal thicknesses of Si and Ag layers evaporated on a thick substrate is studied with the aid of a four-point bending apparatus. The system variables include individual layer thickness (2.5 to 30 nm), total film thickness (0.5 to 3.5 {mu}m) and substrate material (polycarbonate, aluminum alloy and hard steel). The fracture is characterized by transverse cracks that proliferate with load. The crack initiation strain {epsilon}{sub i} is virtually independent of total film thickness and substrate material while increasing with decreasing layer thickness h, to a good approximation as {epsilon}{sub i} {approx} 1/h{sup 1/2}. At higher strains, film debonding and buckling are evident. The fracture conditions are determined with the aid of a 2D finite element analysis incorporating the inelastic response of the interlayer. A fracture scenario consisting of tunnel cracking in the brittle layers followed by cracking in the interlayers is shown to be capable of predicting the observed increase in crack initiation strain with decreasing layer thickness. To realize this benefit the interlayer must be compliant and tough to force tunnel cracking in the brittle layers. The explicit relation for the crack initiation strain obtained from the analysis can be used to assess fracture toughness and improve damage tolerance in nanoscale layered structures.

  3. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics (United States)

    Wang, John T.


    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  4. Homogenization of intergranular fracture towards a transient gradient damage model (United States)

    Sun, G.; Poh, L. H.


    This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called 'implicit' gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes.

  5. Tensile and fracture behavior of DZ951 Ni-base superalloy

    Institute of Scientific and Technical Information of China (English)

    CHU Zhao-kuang; YU Jin-jiang; SUN Xiao-feng; ZHAO Nai-ren; GUAN Heng-rong; HU Zhuang-qi


    The tensile and fracture behavior of DZ951 directionally solidified Ni-base superalloy was studied in the temperature range of 20-1 100 ℃. The fracture mode was examined by scanning electron microscopy. The results show the experimental temperature has no significant effect on the tensile strengths, which are greater than 1 000 MPa from room temperature to 800 ℃. The yield strength reaches its maximum (970 MPa) at 800 ℃. When the experimental temperature is higher than 800 ℃, the tensile and yield strengths decrease evidently and the ductility increases remarkably. The fractograph of fracture surface for the tensile specimen at room temperature shows a dimple-ductile fracture mode. The fractograph from 600 to 800 ℃ shows a slide fracture mode. The fractograph from 900 to 1 100 ℃ exhibits a creep rupture mode with uneven deformation.

  6. Sensitivity Analysis of the Bone Fracture Risk Model (United States)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane


    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  7. Analysis of the fracture behavior of polypropylene: sawdust composites

    Directory of Open Access Journals (Sweden)

    João C. Miguez Suarez


    Full Text Available Natural fiber reinforced composite is an emerging area in Polymer science. The use of lignocellulosic materials in thermoplastic composites may contribute to reduce the waste of vegetal biomass. The natural fibers are biodegradable, low cost materials having density and specific properties comparable to those of conventional fiber composites. In this work composites of polypropylene (PP plus maleated polypropylene (MAPP filled with sawdust were prepared under fixed processing conditions (mixing temperature, mixing time and rate of rotation. The composites were fractured by tension and the fracture mechanisms were characterized by scanning electron microscopy. The SEM studies of the fractured surfaces of the composites indicate that the failure is due to fiber pull-out accompanied by tearing of the matrix; the pull-out increases with MAPP content.

  8. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.


    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  9. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo


    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale and well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.

  10. Damage and Fracture Strength Behavior of Jointed Rockmass

    Institute of Scientific and Technical Information of China (English)


    The strength of rockmass from two aspects is analyzed.Firstly,the strength of the rockmass is mainly controlled by the critical stress value of rock,and the contribution of joints is to increase the effective stresses of rock and to decrease the damage strength of rockmass according to the macro-damage mechanics of rockmass.Secondly,the strength of rockmass is mainly controlled by the fracture strength of joints.Based on the comprehensive analysis and comparison for the damage strength of rockmass and the fracture strength of joints,a composite damage theory of rockmass may be established.

  11. Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model (United States)

    Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang


    Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid

  12. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.; Aydin, A.


    Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting when and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.

  13. Numerical modelling of sandstone uniaxial compression test using a mix-mode cohesive fracture model

    CERN Document Server

    Gui, Yilin; Kodikara, Jayantha


    A mix-mode cohesive fracture model considering tension, compression and shear material behaviour is presented, which has wide applications to geotechnical problems. The model considers both elastic and inelastic displacements. Inelastic displacement comprises fracture and plastic displacements. The norm of inelastic displacement is used to control the fracture behaviour. Meantime, a failure function describing the fracture strength is proposed. Using the internal programming FISH, the cohesive fracture model is programmed into a hybrid distinct element algorithm as encoded in Universal Distinct Element Code (UDEC). The model is verified through uniaxial tension and direct shear tests. The developed model is then applied to model the behaviour of a uniaxial compression test on Gosford sandstone. The modelling results indicate that the proposed cohesive fracture model is capable of simulating combined failure behaviour applicable to rock.


    Directory of Open Access Journals (Sweden)

    Parle Milind


    Full Text Available Existing research into schizophrenia has remained highly fragmented, much like the clinical presentation of the disease itself. Differing theories as to the cause and progression of schizophrenia, as well as the heterogeneity of clinical symptoms, have made it difficult to develop a coherent framework suitable for animal modeling. However, a few animal models have been developed to explore various causative theories and to test specific mechanistic hypotheses. Historically, these models have been based on the manipulation of neurotransmitter systems believed to be involved in schizophrenia. In recent years, the emphasis has shifted to targeting relevant brain regions in an attempt to explore potential etiologic hypotheses. In the present review article, we have described in detail various behavioral models available in literature for screening of antipsychotic agents. In the next article, we propose to focus on chemical induced psychosis (Pharmacological models. We have highlighted the principle, end point, brief procedures, merits and demerit of all the behavioral models in the foregoing pages Emphasis is placed on the critical evaluation of currently available models because these models help to shape the direction of future research.

  15. Effect of titanium addition on fracture toughness behavior of ZL108 alloy

    Institute of Scientific and Technical Information of China (English)

    WENG Yong-gang; LI Zi-jing; LIU Zhi-yong; LIU Wen-cai; WANG Ming-xing; SONG Tian-fu


    Two different titanium alloying methods were applied to ZL108 alloy for preparing specimens containing titanium. The specimens were tested on the MTS 810 material test system for studying their behavior of the plane strain fracture toughness KIC. The experimental data were analyzed by the statistical significance tests. The results show that the fracture toughness of the ZL108 alloy containing titanium is superior to that of common ZL108 alloy containing no titanium, but there is no significant difference for different titanium alloying methods. Therefore titanium addition is an effective method for improving the fracture toughness of the alloy ZL108.

  16. Tension fracture behaviors of welded joints in X70 steel pipeline

    Institute of Scientific and Technical Information of China (English)


    The surface of welded joints in X70 steel pipeline was processed by laser shock wave, its mechanical behaviors of tension fracture were analyzed with tension test,and the fracture morphologies and the distributions of chemical element were observed with scanning electron microscope and energy dispersive spectrum,respectively.The experimental results show that the phenomenon of grain refinement occurs in the surface of welded joints in X70 steel pipeline after the laser shock processing,and compressive re...

  17. Fracture propagation in Indiana Limestone interpreted via linear softening cohesive fracture model (United States)

    Rinehart, Alex J.; Bishop, Joseph E.; Dewers, Thomas


    We examine the use of a linear softening cohesive fracture model (LCFM) to predict single-trace fracture growth in short-rod (SR) and notched 3-point-bend (N3PB) test configurations in Indiana Limestone. The broad goal of this work is to (a) understand the underlying assumptions of LCFM and (b) use experimental similarities and deviations from the LCFM to understand the role of loading paths of tensile fracture propagation. Cohesive fracture models are being applied in prediction of structural and subsurface fracture propagation in geomaterials. They lump the inelastic processes occurring during fracture propagation into a thin zone between elastic subdomains. LCFM assumes that the cohesive zone initially deforms elastically to a maximum tensile stress (σmax) and then softens linearly from the crack opening width at σmax to zero stress at a critical crack opening width w1. Using commercial finite element software, we developed LCFMs for the SR and N3PB configurations. After fixing σmax with results from cylinder splitting tests and finding an initial Young's modulus (E) with unconfined compressive strength tests, we manually calibrate E and w1 in the SR model against an envelope of experimental data. We apply the calibrated LCFM parameters in the N3PB geometry and compare the model against an envelope of N3PB experiments. For accurate simulation of fracture propagation, simulated off-crack stresses are high enough to require inclusion of damage. Different elastic moduli are needed in tension and compression. We hypothesize that the timing and location of shear versus extensional micromechanical failures control the qualitative macroscopic force-versus-displacement response in different tests. For accurate prediction, the LCFM requires a constant style of failure, which the SR configuration maintains until very late in deformation. The N3PB configuration does not maintain this constancy. To be broadly applicable between geometries and failure styles, the LCFM

  18. A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete

    Institute of Scientific and Technical Information of China (English)


    A multiphase mesostructure mechanical model is proposed to study the deformation and failure process of concrete considering its heterogeneity at the meso scopic level.Herein,concrete is taken as a type of three-component composite material composed of mortar matrix,aggregates and interfaces on the meso-scale.First,an efficient approach to the disposition of aggregates of concrete and a state matrix method to generate mesh coordinates for aggregates are proposed.Secondly,based on the nonlinear continuum damage mechanics,a meso-scale finite element model is presented with damage softening stress-strain relationship for describing the mechanical behavior of different components of concrete.In this method,heterogeneities of each component in the concrete are considered by assuming the material properties of three components conform to the Weibull distribution law.Finally,based on this multiphase meso-mechanics model,a simulation analysis of fracture behavior of a rock-fill concrete(RFC) beam is accomplished.The study includes experimental tests for determining basic mechanical parameters of three components of RFC and four-point flexural beam tests for verification of the model.It is preliminarily shown that the numerical model is applicable to studying failure mechanisms and process of concrete type material.

  19. Three dimensional modeling of fractures in rock: From data to a regionalized parent-daughter model

    Energy Technology Data Exchange (ETDEWEB)

    Hestir, K.; Chiles, J.P.; Long, J.; Billaux, D.


    We introduce a stochastic model for fracture systems called the parent-daughter model. The model uses circular discs to represent fractures. The discs are placed in three-dimensional space according to a random process called the parent-daughter point process. This process will give a clustering of fractures that cannot be produced with the usual Poisson process. We then outline a procedure for fitting the model to a particular data set.

  20. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo


    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  1. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li


    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  2. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)


    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for


    Institute of Scientific and Technical Information of China (English)

    J.Zhang; J.J.Yu; H.Z.Fu


    The high-temperature tensile fracture behavior of the Ni, Cr, Al-TaC eutectic superalloy directionally solidified under high temperature gradient is investigated. The hightemperature tensile fracture of this in situ composite has ductile character with lots of ductile nests whose diameters decrease with the increasing solidification rates. The maximum σb and δ are respectively 668.5MPa and 19.6%. There is a TaC whisker in the center of each nest, and the deformation of γ' and TaC is uneven. The hightemperature tensile behavior cannot be explained by the rule of mixtures but is decided by the formation of the plastic deforrmation band. The crack extension model is given.

  4. Effect of fiber characteristics on fracture behavior of Cf/SiC composites

    Institute of Scientific and Technical Information of China (English)

    何新波; 杨辉; 张新明


    Cf/SiC composites were prepared by precursor pyrolysis-hot pressing, and the effect of fiber characteristics on the fracture behavior of the composites was investigated. Because the heat treatment temperature of fiber T300 (below 1500℃) was much lower than that of fiber M40JB (over 2000℃), fiber T300 had lower degree of graphitization and consisted of more impurities compared with fiber M40JB, suggesting that T300 exhibits higher chemical activity. As a result, the composite with T300 showed a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface as well as the degradation of fibers during the preparation of the composite. However, the composite with M40JB exhibits a tough fracture behavior, which is primarily attributed to a weakly bonded fiber/matrix interface and higher strength retention of the fibers.

  5. Fractal modeling of natural fracture networks. Final report, June 1994--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ferer, M.V.; Dean, B.H.; Mick, C.


    Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Fracture networks can be determined for outcrops, but there is little reason to believe that the network in the reservoir should be identical because of the differences in stresses and history. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little apriori information. Three rather different types of approaches have been used: (1) dual porosity simulations; (2) `stochastic` modeling of fracture networks, and (3) fractal modeling of fracture networks. Stochastic models which assume a variety of probability distributions of fracture characteristics have been used with some success in modeling fracture networks. The advantage of these stochastic models over the dual porosity simulations is that real fracture heterogeneities are included in the modeling process. In the sections provided in this paper the authors will present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using their fractal analysis over a stochastic analysis; (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.

  6. Modelling karst aquifer evolution in fractured, porous rocks (United States)

    Kaufmann, Georg


    The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.

  7. Optimal fixation of oblique scaphoid fractures: a cadaver model. (United States)

    Luria, Shai; Lenart, Lado; Lenart, Borut; Peleg, Eran; Kastelec, Matej


    Acute scaphoid fractures are commonly fixed with headless cannulated screws positioned in the center of the proximal fragment. Central placement of the screw may be difficult and may violate the scaphotrapezial joint. We hypothesize that placement of the screw through the scaphoid tuberosity will achieve perpendicular fixation of an oblique waist fracture and result in more stable fixation than a screw in the center of the proximal fragment. We designed oblique osteotomies for 8 matched pairs of cadaver scaphoids and fixed each specimen with a headless cannulated screw. In 1 specimen, we positioned the screw at the center of the proximal fragment; we placed its matched pair perpendicular to the fracture. The perpendicular screw was directed through the scaphoid tuberosity. We placed the specimen under the increasing load of a pneumatically driven plunger. We compared stiffness, load, distance at failure, and mechanism of failure between the central and perpendicular screw groups. We found no difference between groups. Stiffness was identical in both groups (131 N/mm) and load to failure was similar (central screw, 137 N vs perpendicular screw, 148 N). In this biomechanical model of an unstable scaphoid fracture, we found that similar stability of fixation had been achieved with a screw perpendicular to the fracture plane with entry through the tuberosity, compared with a screw in a central position in the proximal fragment. This study suggests that placing the screw through the tuberosity, perpendicular to a short oblique fracture, will not impair fixation stability. Percutaneous fixation of scaphoid fractures has become popular although it is technically challenging. An easier distal approach through the tuberosity, without violating the scaphotrapezial joint, may not impair the fixation stability of an oblique fracture. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Numerical modelling of flow and transport in rough fractures

    Institute of Scientific and Technical Information of China (English)

    Scott Briggs; Bryan W. Karney; Brent E. Sleep


    Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM) and random walk (RW), respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow;and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.

  9. Multi-scale peridynamic modeling of dynamic fracture in concrete (United States)

    Lammi, Christopher J.; Zhou, Min


    Peridynamics simulations of the dynamic deformation and failure of high-performance concrete are performed at the meso-scale. A pressure-dependent, peridynamic plasticity model and failure criteria are used to capture pressure-sensitive granular flow and fracture. The meso-scale framework explicitly resolves reinforcing phases, pores, and intrinsic flaws. A novel scaling approach is formulated to inform the engineering-scale plasticity model parameters with meso-scale simulation results. The effects of composition, porosity, and fracture energy at the meso-scale on the engineering-scale impact resistance are assessed. The fracture process zone at the meso-scale is found to propagate along adjacent pores and reinforcing phases under tensile and shear loading conditions. The simulations show that tensile strength decreases and dissipation increases as the porosity in the concrete increases. The framework and modeling approach allow the delineation of trends that can be used to design more impact-resistant materials.

  10. Fracture behaviors of ceramic tissue scaffolds for load bearing applications


    Ali Entezari; Seyed-Iman Roohani-Esfahani; Zhongpu Zhang; Hala Zreiqat; Dunstan, Colin R.; Qing Li


    Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is cruc...

  11. Improved fracture behavior and microstructural characterization of thin tungsten foils


    Vladica Nikolic; Stefan Wurster; Daniel Firneis; Reinhard Pippan


    This study is focused towards the development of the technique for investigating the fracture behaviour of 100µm thick rolled tungsten foils, with a purity of 99.97%. Electron backscatter diffraction (EBSD) scans reveal that the grains are elongated along the rolling direction of the foil, which has a very strong {100} texture. The test specimens were fabricated by electrical discharge machining (EDM) and cracks were initiated by consecutively using a diamond wire saw, a razor blade and a foc...

  12. Computational implementation of the multi-mechanism deformation coupled fracture model for salt

    Energy Technology Data Exchange (ETDEWEB)

    Koteras, J.R.; Munson, D.E.


    The Multi-Mechanism Deformation (M-D) model for creep in rock salt has been used in three-dimensional computations for the Waste Isolation Pilot Plant (WIPP), a potential waste, repository. These computational studies are relied upon to make key predictions about long-term behavior of the repository. Recently, the M-D model was extended to include creep-induced damage. The extended model, the Multi-Mechanism Deformation Coupled Fracture (MDCF) model, is considerably more complicated than the M-D model and required a different technology from that of the M-D model for a computational implementation.

  13. Fracture behavior of short circumferentially surface-cracked pipe

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, P.; Scott, P.; Mohan, R. [Battelle, Columbus, OH (United States)] [and others


    This topical report summarizes the work performed for the Nuclear Regulatory Comniission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC`s PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria.

  14. Analysis Technology of Local Fracture Behavior Based on Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon Suk; Lee, Sang Min; Lee, Tae Rin; Ko, Han Ok; Kim, Jong Min; Choi, Shin Beom [Sungkyunkwan Univ., Seoul (Korea, Republic of)


    The scatter of measured fracture toughness data and transferability problems among different crack configurations and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns for local approach adopting micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, assessment of both cleavage fracture based on Weibull statistics and ductile fracture based on GTN(Gurson-Tvergaard-Needleman) as well as Rousselier models was carried out. A series of three dimensional finite element analyses and corresponding fracture toughness tests were performed for SP(Small Punch), CT(Compact Tension) and PCVN(Pre-Cracked V-Notched) specimens. Then, failure probability analysis under three different temperatures and fracture resistance curve estimation for diverse materials have been conducted. Finally, promising results were derived through comparison between measured and predicted data. It is anticipated that the resulting cleavage fracture evaluation procedure based on the maximum likelihood method, prototype of toughness scale diagram and ductile fracture evaluation procedure using the SP specimen can be utilized to make the basis for demonstrating realistic safety margins of nuclear components containing defect.

  15. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.


    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland

  16. Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Qingdong Zeng


    Full Text Available Fluid-solid coupling is ubiquitous in the process of fluid flow underground and has a significant influence on the development of oil and gas reservoirs. To investigate these phenomena, the coupled mathematical model of solid deformation and fluid flow in fractured porous media is established. In this study, the discrete fracture model (DFM is applied to capture fluid flow in the fractured porous media, which represents fractures explicitly and avoids calculating shape factor for cross flow. In addition, the extended finite element method (XFEM is applied to capture solid deformation due to the discontinuity caused by fractures. More importantly, this model captures the change of fractures aperture during the simulation, and then adjusts fluid flow in the fractures. The final linear equation set is derived and solved for a 2D plane strain problem. Results show that the combination of discrete fracture model and extended finite element method is suited for simulating coupled deformation and fluid flow in fractured porous media.

  17. Risk Assessment in Fractured Clayey Tills - Which Modeling Tools?

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Binning, Philip John


    assessment is challenging and the inclusion of the relevant processes is difficult. Furthermore the lack of long-term monitoring data prevents from verifying the accuracy of the different conceptual models. Further investigations based on long-term data and numerical modeling are needed to accurately......The article presents different tools available for risk assessment in fractured clayey tills and their advantages and limitations are discussed. Because of the complex processes occurring during contaminant transport through fractured media, the development of simple practical tools for risk...

  18. Bending Properties and Fracture Behavior of Ti-23Al-17Nb Alloy Laser Beam Welding Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Guoqing; WU Aiping; ZOU Guisheng; ZHAO Yue; CHEN Qiang; REN Jialie


    Ti-23Al-17Nb alloy is an important high temperature structural material used in the space and aerospace fields. Welding of this alloy is an indispensable processing method, so the microstructures and mechanical properties of these welded joints must be studied to improve the welds. Longitudinal three-point bending tests were conducted to measure the bending ductility of laser beam welded joints. The crack dis-tribution and fracture surface were investigated to further analyze the fracture behavior. The results indicate that the bending ductility decreases as the heat input by the laser beam welding increases. The crack in-ducing strain reaches 4.24%, while the fracturing strain exceeds 5% when the heat input is below 316 J/cm. If the columnar crystal grain of the weld metal exhibits a uniform orientation, the bending ductility is worse. The fractography analysis shows that the cracking propagates transgranularly and the fracture surface has a cleavage mode.

  19. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James


    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  20. Grain Size Effect on Fracture Behavior of the Axis-Tensile Test of Inconel 718 Sheet (United States)

    Liu, B. B.; Han, J. Q.; Zhao, R.; Liu, W.; Wan, M.


    Change in mechanical parts from macro-size to micro-size has become a trend in the metal- and alloy-forming process, with an increasing demand on micro-parts in the last decades. The material mechanical behaviors of micro-size parts are quite different from the conventional ones of macro-size parts due to size effect. It is necessary to further investigate the effects of grain size on material mechanisms in micro-scales, especially fracture behaviors. The fracture behaviors of Inconel 718 sheet with the thickness of 300 μm are studied by uniaxial tensile tests in different grain sizes ranging from 18 to 130 μm. The results show that fracture stress and strain decrease with the increase of grain size. A critical value in the specimen thickness (t) to grain size (d) ratio divides the strength levels into separate stages on the basis of an increase of the inverse of grain size. In addition, the grain size-dependent fracture morphology is changed in the number of dimples and micro-voids decreasing on the fracture surfaces and the sizes of micro-voids changing larger with the increase of grain size.

  1. Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media. (United States)

    Blessent, Daniela; Jørgensen, Peter R; Therrien, René


    We used the FRAC3Dvs numerical model (Therrien and Sudicky 1996) to compare the dual-porosity (DP), equivalent porous medium (EPM), and discrete fracture matrix diffusion (DFMD) conceptual models to predict field-scale contaminant transport in a fractured clayey till aquitard. The simulations show that the DP, EPM, and DFMD models could be equally well calibrated to reproduce contaminant breakthrough in the till aquitard for a base case. In contrast, when groundwater velocity and degradation rates are modified with respect to the base case, the DP method simulated contaminant concentrations up to three orders of magnitude different from those calculated by the DFMD model. In previous simulations of well-characterized column experiments, the DFMD method reproduced observed changes in solute transport for a range of flow and transport conditions comparable to those of the field-scale simulations, while the DP and EPM models required extensive recalibration to avoid high magnitude errors in predicted mass transport. The lack of robustness with respect to variable flow and transport conditions suggests that DP models and effective porosity EPM models have limitations for predicting cause-effect relationships in environmental planning. The study underlines the importance of obtaining well-characterized experimental data for further studies and evaluation of model key process descriptions and model suitability. © 2013, National Groundwater Association.

  2. Effect of Natural Fractures on Hydraulic Fracturing (United States)

    Ben, Y.; Wang, Y.; Shi, G.


    Hydraulic Fracturing has been used successfully in the oil and gas industry to enhance oil and gas production in the past few decades. Recent years have seen the great development of tight gas, coal bed methane and shale gas. Natural fractures are believed to play an important role in the hydraulic fracturing of such formations. Whether natural fractures can benefit the fracture propagation and enhance final production needs to be studied. Various methods have been used to study the effect of natural fractures on hydraulic fracturing. Discontinuous Deformation Analysis (DDA) is a numerical method which belongs to the family of discrete element methods. In this paper, DDA is coupled with a fluid pipe network model to simulate the pressure response in the formation during hydraulic fracturing. The focus is to study the effect of natural fractures on hydraulic fracturing. In particular, the effect of rock joint properties, joint orientations and rock properties on fracture initiation and propagation will be analyzed. The result shows that DDA is a promising tool to study such complex behavior of rocks. Finally, the advantages of disadvantages of our current model and future research directions will be discussed.

  3. Fracture behavior of graphite material at elevated temperatures considering oxidation condition

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon Seok; Kim, Jae Hoon; Oh, Kwang Keun [Dept. of Mechanical Design Engineering, ChungNam National University, Daejeon (Korea, Republic of)


    Graphite material has been widely used for making the rocket nozzle throat because of its excellent thermal properties. However, when compared with typical structural materials, graphite is relatively weak with respect to both strength and toughness, owing to its quasi-brittle behavior, and gets oxidized at 450 degrees C. Therefore, it is important to evaluate the thermal and mechanical properties of this material for using it in structural applications. This study presents an experimental method to investigate the fracture behavior of ATJ graphite at elevated temperatures. In particular, the effects of major parameters such as temperature, loading, and oxidation conditions on strength and fracture characteristics were investigated. Uniaxial compression and tension tests were conducted in accordance with the ASTM standard at room temperature, 500 degrees C, and 1,000 degrees C. Fractography analysis of the fractured specimens was carried out using an SEM.

  4. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali


    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  5. Modeling 3D Fracture Network in Carbonate NFR: Contribution from an Analogue Dataset, the Cante Perdrix Quarry, Calvisson, SE France

    NARCIS (Netherlands)

    Gauthier, B.D.M.; Bisdom, K.; Bertotti, G.


    The full 3D characterization of fracture networks is a key issue in naturally fractured reservoir modeling. Fracture geometry (e.g., orientation, size, spacing), fracture scale (e.g., bed-confined fractures, fracture corridors), lateral and vertical variations, need to be defined from limited, gener

  6. Model of Fracture, Friction, and Wear Phenomena of Porous Iron

    Directory of Open Access Journals (Sweden)

    A. A. Shatsov


    Full Text Available Mechanical and tribotechnical features of powdered materials are strongly influenced by pore volume, fracture character, impurities, alloying, concentration inhomogeneity, friction conditions, and other factors. Pores also have influence on acceleration of diffusion processes and reduce undercooled austenite resistance. Annealed in hydrogen, ultra pure iron powder was used to study porous iron features. Toughness fracture and tribotechnical features had nonmonotonic dependence from porosity different from all known dependences got from technical iron powders. Researches brought out the fact that in process of porosity reduction by pressing and annealing cycles, the average dimension of porous is changed. According to the analysis of porous structure were created models of friction, wear, and fracture of pure porous iron.

  7. Investigating Fracture Behaviors of Polymer and Polymeric Composite Materials Using Spiral Notch Torsion Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Lara-Curzio, Edgar [ORNL; Agastra, Pancasatya [Montana State University; Mandell, John [Montana State University; Bertelsen, Williams D. [Gougeon Brothers, Inc.; LaFrance, Carl M. [Molded Fiber Glass Companies


    Wind turbine blades are usually fabricated from fiber reinforced polymeric (FRP) materials, which are subject to complex loading conditions during service. The reliability of the blades thus depends on the mechanical behaviors of the FRP under various loading conditions. Specifically, the fracture behavior of FRP is of great importance to both the scientific research community and the wind industry. In the current project, a new testing technique is proposed based on the spiral notch torsion test (SNTT) to study the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading. For the SNTT test method, round-rod specimens with V-grooved spiral lines are subjected to pure torsion. Depending on the pitch angle of the spiral lines, pure Mode I, pure Mode III, or mixed Mode I/Mode III loading conditions can be simulated. A three dimensional finite element analysis is then used to evaluate the fracture toughness and energy release rate of SNTT specimens. In the current study, both epoxy and fiberglass reinforced epoxy materials are investigated using the SNTT technique. This paper will discuss the fracture behaviors of mode I and mixed mode samples, with or without fatigue precrack. In addition, results from fractographic study and finite element analysis will be presented and discussed in detail.

  8. Effect of water uptake on the fracture behavior of low-k organosilicate glass (United States)

    Xiangyu Guo; Joseph E. Jakes; Samer Banna; Yoshio Nishi; J. Leon Shohet


    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-the-line integration and circuit reliability. This work examines the effects of water uptake on the fracture behavior of nanoporous low-k organosilicate glass. By using annealing dehydration and humidity conditioning, the roles of different water types...

  9. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiapeng, E-mail: [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Fang, Liang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Ma, Aibin, E-mail: [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Jiang, Jinghua [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Han, Ying [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, Jilin Province (China); Chen, Huawei [Department of Applied Physics, School of Science, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Han, Jing [School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province (China)


    The molecular dynamics simulations are performed to explore the fracture behavior and the ductility of the twinned Cu nanowires containing orthogonally oriented growth CTBs due to the uniaxial tensile deformation. The results reveal that, the fracture behavior and the ductility of the twinned nanowires are not related to the length of the nanowires but also intensively related to the twin boundary spacing. When the twin boundary space is changed, the twinned nanowires undergo three distinct failure modes which include ductile fracture, brittle fracture and ductile-to-brittle transition depending on the length of the nanowires. We also find a reduction in the ductility of the twinned nanowires, which is ascribed to the deformation localization induced by the Lomer dislocation and the rapid necking resulted from the twinning partial slipping. Finally, the atomic-level process that occurs during deformation until final fracture are examined in detail, and a new formation mechanism of the Lomer dislocation is observed when a 90° partial dislocation transmits across a coherent twin boundary.

  10. Fracture Mechanical Markov Chain Crack Growth Model

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard


    On the basis of the B-model developed in [J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage. John Wiley, New York (1985)] a new numerical model incorporating the physical knowledge of fatigue crack propagation is developed. The model is based on the assumption that the crack...

  11. Optimization of Multi-Cluster Fracturing Model under the Action of Induced Stress in Horizontal Wells

    Directory of Open Access Journals (Sweden)

    Shanyong Liu


    Full Text Available Volume fracturing in shale gas forms complex fracture networks and increases stimulated reservoir volume through large-scale fracturing operation with plug-perforation technology. However, some perforation clusters are stimulated unevenly after fracturing. This study aims to solve this problem by analyzing the shortcomings of the conventional fracturing model and developing a coupled model based on the 2D fracture motion equation, energy conservation law, linear elastic mechanics, and stress superposition principle. First, a multi-fracture in-situ stress model was built by studying the induced stress produced by the fracture initiation to deduce the multi-fracture induced stress impact factor on the basis of the stress superposition principle. Then, the classical Perkins–Kern–Nordgren model was utilized with the crustal stress model. Finally, a precise fracturing design method was used to optimize perforation and fracturing parameters under the new model. Results demonstrate that the interference effect among fractures is the major factor causing the non-uniform propagation of each fracture. Compression on the main horizontal stress increases the net pressure. Therefore, both the degree of operation difficulty and the complexity of fracture geometry are improved. After applying the optimal design, the production is increased by 20%, and the cost is reduced by 15%.

  12. Production Behavior of Fractured Horizontal Well in Closed Rectangular Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qiguo Liu


    Full Text Available This paper established a triple porosity physical model in rectangular closed reservoirs to understand the complex fluid flowing mechanism and production behavior of multifractured horizontal wells in shale gas reservoirs, which is more appropriate for practical situation compared with previous ones. According to the seepage theory considering adsorption and desorption process in stable state, the gas production rate of a well producing at constant wellbore pressure was obtained by utilizing the methods of Green’s and source function theory and superposition principle. Meanwhile, the volume of adsorbed gas (GL and the number of hydraulic fractures (M as well as permeabilities of matrix system (km and microfractures (kf were discussed in this paper as sensitive factors, which have significant influences on the production behavior of the wells. The bigger the value of GL is, the larger the well production rate will be in the later flowing periods, and the differences of production rate with the increasing of M are small, which manifest that there is an optimum M for a given field. Therefore, the study in this paper is of significant importance to understand the dynamic production declining performance in shale gas reservoirs.

  13. Leptin Influences Healing in the Sprague Dawley Rat Fracture Model (United States)

    Liu, Pengcheng; Cai, Ming


    Background Leptin plays a crucial role in bone metabolism, and its level is related to bone callus formation in the fracture repair process. The objective of this study was to evaluate the effect of recombinant leptin on the healing process of femoral fractures in rats. Material/Methods Forty-eight male Sprague Dawley (SD) rats with an average body weight of 389 g (range: 376–398 g) and an average age of 10 weeks were included in this animal research, and all rats were randomly divided into two major groups. Then standardized femur fracture models were implemented in all SD rats. Rats in the control group were treated with only 0.5 mL of physiological saline, and rats in the experimental group were treated with recombinant leptin 5 μg/kg/d along with the same 0.5 mL of physiological saline for 42 days intraperitoneally. At the same time, each major group was evenly divided into three parallel subgroups for each parallel bone evaluation separately at the second, fourth, and sixth weeks. Each subgroup included eight rats. Results The total radiological evaluation results showed that the healing progress of femoral fracture in the experimental group was superior to that in the control group from the fourth week. At the sixth week, experimental group rats began to present significantly better femoral fracture healing progress than that of the control group rats. Results of biomechanics show the ultimate load (N) and deflection ultimate load (mm) of the experimental group rats was significantly increased compared with that of the control group rats from the fourth week. Conclusions Our results suggest that leptin may have a positive effect on SD rat femur fracture healing. PMID:28088810

  14. Numerical Modeling of Variable Fluid Injection-Rate Modes on Fracturing Network Evolution in Naturally Fractured Formations

    Directory of Open Access Journals (Sweden)

    Yu Wang


    Full Text Available In this study, variable injection-rate technology was numerically investigated in a pre-existing discrete fracture network (DFN formation, the Tarim Basin in China. A flow-stress-damage (FSD coupling model has been used in an initial attempt towards how reservoir response to variable injection-rates at different hydraulic fracturing stages. The established numerical model simultaneously considered the macroscopic and microscopic heterogeneity characteristics. Eight numerical cases were studied. Four cases were used to study the variable injection-rate technology, and the other four cases were applied for a constant injection-rate in order to compare with the variable injection-rate technology. The simulation results show that the variable injection-rate technology is a potentially good method to a form complex fracturing networks. The hydraulic fracturing effectiveness when increasing the injection-rate at each stage is the best, also, the total injected fluid is at a minimum. At the initial stage, many under-fracturing points appear around the wellbore with a relatively low injection-rate; the sudden increase of injection rate drives the dynamic propagation of hydraulic fractures along many branching fracturing points. However, the case with decreasing injection rate is the worst. By comparing with constant injection-rate cases, the hydraulic fracturing effectiveness with variable flow rate technology is generally better than those with constant injection-rate technology. This work strongly links the production technology and hydraulic fracturing effectiveness evaluation and aids in the understanding and optimization of hydraulic fracturing simulations in naturally fractured reservoirs.

  15. Brittle fracture phase-field modeling of a short-rod specimen

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ivana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  16. Implicit level set algorithms for modelling hydraulic fracture propagation. (United States)

    Peirce, A


    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'.

  17. Dislocation pinning effects on fracture behavior: Atomistic and dislocation dynamics simulations (United States)

    Noronha, S. J.; Farkas, D.


    We introduce an approach in which results from atomistic simulations are combined with discrete dislocation dynamics simulations of crack-tip plasticity. The method is used to study the effects of dislocation pinning due to grain boundaries or secondary particles on the fracture behavior of aluminum. We find that the fracture resistance is reduced with decreasing pinning distance. The results show that the pinning of the dislocations causes a net decrease in the shear stress projected on the slip plane, preventing further dislocation emission. Semibrittle cleavage occurs after a certain number of dislocations is emitted.



    Zurek, A; G. Gray


    An investigation of the stress-strain response as a function of strain rate, spall strength, and dynamic fracture behavior of pure W, W-26Re, W-Ni- Fe and W-Ni-Fe-Co has been performed. Spall strength measurements, obtained in symmetric-impact tests, showed an increase in spall strength from 0.4 GPa for pure tungsten to 3.8 GPa for 90W-7Ni-3Fe. Concurrent with the increase in spall strength was a change in fracture mode from cleavage (for pure W) to a mixture of transgranular and intergranula...

  19. Theory and modelling of diamond fracture from an atomic perspective. (United States)

    Brenner, Donald W; Shenderova, Olga A


    Discussed in this paper are several theoretical and computational approaches that have been used to better understand the fracture of both single-crystal and polycrystalline diamond at the atomic level. The studies, which include first principles calculations, analytic models and molecular simulations, have been chosen to illustrate the different ways in which this problem has been approached, the conclusions and their reliability that have been reached by these methods, and how these theory and modelling methods can be effectively used together.

  20. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur


    and numerical simulations by finite element modeling (FEM) concerning the TSt and fracture behavior of Norway spruce under various climatic conditions. Thin log disc specimens were studied to simplify the description of the moisture flow in the samples. The specimens designed for TS were acclimatized...

  1. Modeling climate effects on hip fracture rate by the multivariate GARCH model in Montreal region, Canada (United States)

    Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre


    Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.

  2. Research of quasi-solid fracture behavior of casting Al-4.5Cu alloys

    Institute of Scientific and Technical Information of China (English)


    The influencing mechanisms of elements Ti and Ce and their interactions on fracture behaviors of casting alloys Al-4.5Cu-0.6Mn were studied by observing tensile fracture behavior in quasi-solid zone under SEM and EDX instruments.The results indicate that the resistance stress against hot cracking can be improved obviously by addition of Ti, because of its grain refining function. It is also found that, when Ce is added into the alloys, besides its effect in refining crystalline, the mechanical behavior of lower melting point eutectic phase in quasi-solid zone can be improved efficiently by some compounds with Ce formed and deposited between dendrites. Therefore, a coiligating effect of Ti and Ce on improving resistance stress against hot cracking is more efficient than that only single alloy element is applied. When hot cracking occurs, grains yield at first, and then crack spreads. Both inter-grain and trans-grain fractures are observed, but the major fracture manner is brittleness.

  3. Research of quasi-solid fracture behavior of casting AI-4.5Cu alloys

    Directory of Open Access Journals (Sweden)

    Shengquan DONG


    Full Text Available The influencing mechanisms of elements Ti and Ce and their interactions on fracture behaviors of casting alloys AI-4.5Cu-0.6Mn were studied by observing tensile fracture behavior in quasi-solid zone under SEM and EDX instruments.The results indicate that the resistance stress against hot cracking can be improved obviously by addition of Ti, because of its grain refining function. It is also found that, when Ce is added into the alloys, besides its effect in refining crystalline, the mechanical behavior of lower melting point eutectic phase in quasi-solid zone can be improved efficiently by some compounds with Ce formed and deposited between dendrites. Therefore, a colligating effect of Ti and Ce on improving resistance stress against hot cracking is more efficient than that only single alloy element is applied. When hot cracking occurs, grains yield at first, and then crack spreads. Both inter-grain and trans-grain fractures are observed, but the major fracture manner is brittleness.

  4. Prediction models of prevalent radiographic vertebral fractures among older men. (United States)

    Schousboe, John T; Rosen, Harold R; Vokes, Tamara J; Cauley, Jane A; Cummings, Steven R; Nevitt, Michael C; Black, Dennis M; Orwoll, Eric S; Kado, Deborah M; Ensrud, Kristine E


    No studies have compared how well different prediction models discriminate older men who have a radiographic prevalent vertebral fracture (PVFx) from those who do not. We used area under receiver operating characteristic curves and a net reclassification index to compare how well regression-derived prediction models and nonregression prediction tools identify PVFx among men age ≥65 yr with femoral neck T-score of -1.0 or less enrolled in the Osteoporotic Fractures in Men Study. The area under receiver operating characteristic for a model with age, bone mineral density, and historical height loss (HHL) was 0.682 compared with 0.692 for a complex model with age, bone mineral density, HHL, prior non-spine fracture, body mass index, back pain, grip strength, smoking, and glucocorticoid use (p values for difference in 5 bootstrapped samples 0.14-0.92). This complex model, using a cutpoint prevalence of 5%, correctly reclassified only a net 5.7% (p = 0.13) of men as having or not having a PVFx compared with a simple criteria list (age ≥ 80 yr, HHL >4 cm, or glucocorticoid use). In conclusion, simple criteria identify older men with PVFx and regression-based models. Future research to identify additional risk factors that more accurately identify older men with PVFx is needed.

  5. 10-year probability of major osteoporotic fractures and hip fractures according to Ukrainian model of FRAX® in women with vertebral fractures

    Directory of Open Access Journals (Sweden)

    N.V. Grygorieva


    Full Text Available Background. Vertebral fractures are one of the severe complications of systemic osteoporosis, which lead to the low-back pain, decrease or loss of efficiency and increase of mortality in older people. FRAX and dual-energy X-ray absorptiometry (DXA are important methods in determining major osteoporotic fractures risk, including vertebral fractures. Materials and methods. We studied the parameters of Ukrainian model of FRAX in women depending on the presence of vertebral fractures. 652 patients aged 40–89 years examined at the Ukrainian Scientific Medical Center of Osteoporosis were divided into two groups: the first one — 523 women without any previous fractures, the second one — 129 patients with previous vertebral fractures. The assessment of bone mineral density (BMD was performed using DXA (Prodigy, General Electric. The 10-year probability of major osteoporotic fractures (FRAX-MOF and hip fractures (FRAX-HF has been determined using Ukrainian model of FRAX according to two methods — with body mass index (FRAXBMI and BMD. Results. According the distribution of FRAXBMI-MOF parameters in women depending on the presence of vertebral fractures, it was found that index of FRAXBMI-MOF was less than 20 % (the limit indicated as the criterion for treatment initiation in US guidelines in 100 and 100 % of subjects, respectively. The indices of FRAX BMD-HF were less than 3 % (the limit for starting treatment in US guidelines in 95 and 55 % of women, respectively. It was shown the significant moderate correlation between the indices of two methods in all groups for both parameters of the algorithm — FRAX-MOF and FRAX-HF. Conclusions. The study of the age-specific features of FRAX in women depending on the presence of vertebral fractures showed a significant increase in the risks for both major osteoporotic and hip fractures, regardless of the used technique (with BMI or BMD in women with vertebral fractures or without any fractures. Our

  6. Constitutive model based on dislocation density and ductile fracture of monel 400 thin sheet under tension (United States)

    Wang, Chuanjie; Xue, Shaoxi; Chen, Gang; Zhang, Peng


    In micro-scaled plastic deformation, material strength and ductile fracture behaviors of thin sheet in tension are quite different from those in macro-scale. In this study, uniaxial tensile tests of Monel 400 thin sheets with different microstructures were carried out to investigate the plastic deformation size effect in micro-scale. The experimental results indicate that the flow stress and fracture strain departure from the traditional empirical formula when there are only fewer grains across the thickness. And the number of dimples on the fracture surface is getting smaller with the decreasing ratio of specimen thickness to grain size. Then, a constitutive model based on dislocation density considering the free surface effect in micro-scale is proposed to reveal the mechanism of the flow stress size effect. In addition, a model is proposed considering the surface roughening inducing the thickness nonuniform and the decrease of micro-voids resulting from the reduction of grain boundary density with the decreasing ratio of specimen thickness to grain size. The interactive effects of the surface roughening and the decrease of micro-voids result in the earlier fracture in micro tension of the specimen with fewer grains across the thickness.

  7. Fracture behavior of 304 stainless steel coatings by cold gas dynamic spray

    Institute of Scientific and Technical Information of China (English)

    Wei HAN; Xianming MENG; Jie ZHAO; Junbao ZHANG


    304 stainless steel coating was deposited on the Interstitial-Free steel substrate by cold gas dynamic spraying (CGDS). Three-point bending test of the cold sprayed 304 stainless steel coating was tested by SHIMADZU electro-hydraulic servo-controlled fatigue testing machine and the fracture morphology was examined by scanning electron microscopy. The results showed that the fracture behavior of the cold sprayed 304 stainless steel coating was brittleness fracture. The crack in the coating occurred in the interfaces between particles and the crack extended to the internal of the coating with the increase of the load. When the crack has extended to the combination interface between coating and substrate, the crack extended to the two sides. The microstructure and mechanical property of the cold sprayed 304 stainless steel coating have been optimized after heat treatment.

  8. Fracture behavior of DO3-ordered Fe-Al alloy with V addition

    Institute of Scientific and Technical Information of China (English)

    楼白杨; 鲁聪达; 金杰; 杨继隆


    The fracture behaviors of DO3-ordered Fe-28Al alloys with or without V addition were studied. The results show that addition of element V into Fe-Al alloy can improve the mechanical properties of the alloy. Contrasted with transgranular fracture of Fe3Al alloy at room temperature, the Fe3Al containing V has intergranular and transgranular cleavage mixed fracture mode. The theoretical calculation conforms that V addition could increase cleavage strength of Fe3Al alloy from 98.405 7 kJ/mol to 173.144 5 kJ/mol in 〈111〉 direction and from 29.660 4 kJ/mol to 47.673 0 kJ/mol in 〈100〉 direction.

  9. Metallographic investigation of fracture behavior in ITER-style Nb$_{3}$Sn superconducting strands

    CERN Document Server

    Jewell, M C; Larbalestier, D C; Nijhuis, A


    In this work we specify the extent to which fracture in two ITER-style Nb3Sn composite strands occurs in a collective or individual manner, under mechanical tension and bending from the TARSIS apparatus at the University of Twente. A bronze-route strand from European Advanced Superconductors (EAS), which has very uniform, well-spaced filaments, has a widely distributed (200 μm) fracture field and exhibits a composite of individual and collective cracks. An internal tin strand from Oxford Instruments – Superconducting Technology (OST) demonstrates much more localized, collective fracture behavior. The filaments in this strand are about four times larger (in area) than the filaments in the EAS strand, and also agglomerate significantly during heat treatment upon conversion of the Nb to Nb3Sn. These results demonstrate that the architecture of the strand can play a significant role in determining the mechanical toughness of the composite, and that strand design should incorporate mechanical considerations in ...

  10. In situ observation of fracture behavior of canine cortical bone under bending

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zilan X. [Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street Suite 708 MSC 622, Charleston, SC 29425 (United States); Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Xu, Zhi-Hui [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); An, Yuehuei H. [Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street Suite 708 MSC 622, Charleston, SC 29425 (United States); Department of Orthopaedic Surgery, Southside Hospital, North Shore-LIJ Health System, 217 East Main Street, Bay Shore, NY 11706 (United States); Li, Xiaodong, E-mail: [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer' s Way, Charlottesville, VA 22904 (United States)


    Cortical bone provides many important body functions and maintains the rigidness and elasticity of bone. A common failure mode for bone structure is fracture under a bending force. In the current study, the fracture behavior of canine cortical bone under three-point bending was observed in situ using an atomic force microscope (AFM), a scanning electron microscope (SEM), and an optical microscope to examine the fracture process in detail. Nanoindentation was carried out to determine the elastic modulus and hardness of different building blocks of the canine cortical bone. The results have shown that the special structure of Haversian systems has significant effects on directing crack propagation. Although Haversian systems contain previously believed weak points, and micro-cracks initiate within Haversian systems, our findings have demonstrated that macro-cracks typically form around the boundaries of Haversian systems, i.e. the cement lines. Micro-cracks that developed inside Haversian systems have the functions of absorbing and dissipating energy and slow down on expanding when interstitial tissue cannot hold any more pressure, then plastic deformation and fracture occur. - Highlights: • Macro- and micro-cracks occur in unique patterns in the bone fracturing process under a bending force. • Early developed micro-cracks inside Haversian systems absorb and dissipate energy in order to delay fracture initiation. • The mechanical properties of Haverisan systems and its surrounding structures influence the developments of macro- and micro-crack formation. • Previously believed weak spots in the bone matrix are not necessarily the origins of fracture development.

  11. First-order Description of the Mechanical Fracture Behavior of Fine-Grained Surficial Marine Sediments During Gas Bubble Growth (United States)


    10 F04O29 BARRY ET AL.: BUBBLE GROWTH BY FRACTURE P04029 Figure 3. Map of field site. Canard, Nova Scotia, Canada. appears to approximate the...Bottinger. and T. Dahm (2005), Buoyancy-driven fracture ascent: Experiments in layered gelatine. J. Volcano!. Geotherm . Res., 144. 273-285. doi...Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE First-order description of the mechanical fracture behavior of fine-grained

  12. Tensile deformation and fracture behavior of CuZn5 brass alloy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sharififar, M., E-mail:; Akbari Mousavi, S.A.A., E-mail:


    Alpha brass alloys are widely used for production of rectangular waveguides because of their low bulk resistivity. In this paper, the microstructure, tensile deformation and fracture behavior of CuZn5 brass alloy were investigated. The strain rate sensitivity and its relation to post-uniform deformation in tensile test and correlation between strain hardening exponent (n) and temperature were examined. The results show that strain hardening exponent decreases from 0.5 to 0.4 with increase in test temperature from 250 to 450 °C. Tensile fracture mechanisms of as-extruded CuZn5 brass alloy were studied over a range of temperatures from 300 to 450 °C and range of strain rates from 0.01 to 0.4 1/s by means of scanning electron microscope (SEM) and Atomic Force Microscope (AFM). The results show that different fracture mechanisms operate in different temperature and strain rate ranges. While transgranular dimple fracture is dominant at 300 °C and 0.4 1/s, the dominant fracture mechanism at 450 °C and 0.01 1/s is cleavage facets. Precipitations and grain boundary sliding at high temperature may be the mechanism of ductility drop. Dynamic strain ageing (DSA) did not occur since none of the manifestations of DSA are observed.

  13. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others


    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.

  14. THM Model Validation: Integrated Assessment of Measured and Predicted Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S C; Carlson, S R; Wagoner, J; Wagner, R; Vogt, T


    This paper presents results of coupled thermal-hydrological-mechanical (THM) simulations of two field-scale tests that are part of the thermal testing program being conducted by the Yucca Mountain Site Characterization Project. The two tests analyzed are the Drift-Scale Test (DST) which is sited in an alcove of the Exploratory Studies Facility at Yucca Mountain, Nevada, and the Large Block Test (LBT) which is sited at Fran Ridge, near Yucca Mountain, Nevada. Both of these tests were designed to investigate coupled thermal-mechanical-hydrological-chemical (TMHC) behavior in a fractured, densely welded ash-flow tuff. The geomechanical response of the rock mass forming the DST and the LBT is analyzed using a coupled THM model. A coupled model for analysis of the DST and LBT has been formulated by linking the 3DEC distinct element code for thermal-mechanical analysis and the NUFT finite element code for thermal-hydrologic analysis. The TH model (NUFT) computes temperatures at preselected times using a model that extends from the surface to the water table. The temperatures computed by NUFT are input to 3DEC, which then computes stresses and deformations. The distinct element method was chosen to permit the inclusion of discrete fractures and explicit modeling of fracture deformations. Shear deformations and normal mode opening of fractures are expected to increase fracture permeability and thereby alter thermal hydrologic behavior in these tests. We have collected fracture data for both the DST and the LBT and have used these data in the formulation of the model of the test. This paper presents a brief discussion of the model formulation, along with comparison of simulated and observed deformations at selected locations within the tests.

  15. Geological discrete fracture network model for the Laxemar site. Site Descriptive Modelling. SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul; Fox, Aaron (Golder Associates Inc (United States)); Hermanson, Jan; Oehman, Johan (Golder Associates AB, Stockholm (Sweden))


    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the modelling team in the production of the SDM-Site Laxemar geological discrete-fracture network (DFN) model. The DFN builds upon the work of other geological models, including the deformation zone and rock domain models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones at a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within six distinct fracture domains inside the Laxemar local model subarea: FSM{sub C}, FSM{sub E}W007, FSM{sub N}, FSM{sub N}E005, FSM{sub S}, and FSM{sub W}. The models are built using data from detailed surface outcrop maps, geophysical lineament maps, and the cored borehole record at Laxemar. The conceptual model for the SDM-Site Laxemar geological DFN model revolves around the identification of fracture domains based on relative fracture set intensities, orientation clustering, and the regional tectonic framework (including deformation zones). A single coupled fracture size/fracture intensity concept (the Base Model) based on a Pareto (power-law) distribution for fracture sizes was chosen as the recommended parameterisation. A slew of alternative size-intensity models were also carried through the fracture analyses and into the uncertainty and model verification analyses. Uncertainty is modelled by analysing the effects on fracture intensity (P32) that alternative model cases can have. Uncertainty is parameterised as a ratio between the P32 of the

  16. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.


    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  17. A model for fracturation in the Loyalty Islands (United States)

    Bogdanov, Igor; Huaman, David; Thovert, Jean-François; Genthon, Pierre; Adler, Pierre M.


    The Loyalty Islands are a series of limestone karstified islands that are currently uplifted and deformed on the elastic bulge of the Australian plate before its subduction at the Vanuatu trench (SW Pacific). These islands have been extensively surveyed for geology and hydrogeology, and fracturation maps have been produced which indicate a major direction N110±35°. This fracture orientation is analytically modeled as resulting from the elastic deformation of the Australian lithosphere before its subduction. First, the vertical deflection around a circular subduction zone is determined. Second, a point force is introduced which accounts for the first stages of a collision between the Loyalty ridge and this circular subduction zone. This model yields principal stress orientations and elevations of the islands in fair agreement with real data.

  18. Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools (United States)

    Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.


    In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.

  19. Effective-stress-law behavior of Austin chalk rocks for deformation and fracture conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.; Teufel, L.W.


    Austin chalk core has been tested to determine the effective law for deformation of the matrix material and the stress-sensitive conductivity of the natural fractures. For deformation behavior, two samples provided data on the variations of the poroelastic parameter, {alpha}, for Austin chalk, giving values around 0.4. The effective-stress-law behavior of a Saratoga limestone sample was also measured for the purpose of obtaining a comparison with a somewhat more porous carbonate rock. {alpha} for this rock was found to be near 0.9. The low {alpha} for the Austin chalk suggests that stresses in the reservoir, or around the wellbore, will not change much with changes in pore pressure, as the contribution of the fluid pressure is small. Three natural fractures from the Austin chalk were tested, but two of the fractures were very tight and probably do not contribute much to production. The third sample was highly conductive and showed some stress sensitivity with a factor of three reduction in conductivity over a net stress increase of 3000 psi. Natural fractures also showed a propensity for permanent damage when net stressed exceeded about 3000 psi. This damage was irreversible and significantly affected conductivity. {alpha} was difficult to determine and most tests were inconclusive, although the results from one sample suggested that {alpha} was near unity.

  20. Fracture behaviors of neutron-irradiated ferritic steels studied by the instrumented charpy impact test (United States)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.


    The instrumented Charpy impact test for quarter-size specimens was developed and applied to study fracture behavior of ferritic steels and a ferritic-martensitic steel (JFMS) before and after neutron irradiation. The load-deflection curves obtained for U- and V-notched specimens showed typical characteristics of fracture properties of these steels. The temperature dependence of the fracture energy ( Ef) and the failure deflection ( Df) clearly indicates ductile-brittle transition and the DBTT can be determined from the Ef and Df versus temperature curves. The V-notched specimens showed sharper transition at higher temperatures for the JFMS than the U-notched ones, where the former were sensitive to brittle fracture and the latter well demonstrated the behavior of crack propagation. For the ferritic steels the DBTTs showed low values at compositions containing approximate 8-10% Cr and the increase of the DBTT (Δ DBTT) due to irradiation also showed a similar tendency. The Δ DBTT appeared to be relatively larger for the JFMS than the ferritic steels.

  1. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G


    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  2. Comparison of different modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Rosenberg, L.; Balbarini, Nicola

    approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies...... of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling, however concentrations in the limestone matrix are needed for assessing contaminant...

  3. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types

    NARCIS (Netherlands)

    Osinga, S.; Pizzocolo, F.; Veer, E.F. van der; Heege, J.H. ter


    Fractured rocks play an important role in many types of petroleum and geo-energy operations. From fractured limestone reservoirs to unconventionals, understanding the geomechanical behaviour and the dynamically coupled (dual) permeability system is paramount for optimal development of these systems.

  4. Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture (United States)

    Shanthraj, P.; Svendsen, B.; Sharma, L.; Roters, F.; Raabe, D.


    A finite-strain anisotropic phase field method is developed to model the localisation of damage on a defined family of crystallographic planes, characteristic of cleavage fracture in metals. The approach is based on the introduction of an undamaged configuration, and the inelastic deformation gradient mapping this configuration to a damaged configuration is microstructurally represented by the opening of a set of cleavage planes in the three fracture modes. Crack opening is modelled as a dissipative process, and its evolution is thermodynamically derived. To couple this approach with a physically-based phase field method for brittle fracture, a scalar measure of the overall local damage is introduced, whose evolution is determined by the crack opening rates, and weakly coupled with the non-local phase field energy representing the crack opening resistance in the classical sense of Griffith. A finite-element implementation of the proposed model is employed to simulate the crack propagation path in a laminate and a polycrystalline microstructure. As shown in this work, it is able to predict the localisation of damage on the set of pre-defined cleavage planes, as well as the kinking and branching of the crack resulting from the crystallographic misorientation across the laminate boundary and the grain boundaries respectively.

  5. Contaminated open fracture and crush injury:a murine model

    Institute of Scientific and Technical Information of China (English)

    Shawn R Gilbert; Justin Camara; Richard Camara; Lynn Duffy; Ken Waites; Hyunki Kim; Kurt Zinn


    Modern warfare has caused a large number of severe extremity injuries, many of which become infected. In more recent conflicts, a pattern of co-infection with Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus has emerged. We attempted to recreate this pattern in an animal model to evaluate the role of vascularity in contaminated open fractures. Historically, it has been observed that infected bones frequently appear hypovascular, but vascularity in association with bone infection has not been examined in animal models. Adult rats underwent femur fracture and muscle crush injury followed by stabilization and bacterial contamination with A. baumannii complex and methicillin-resistant Staphylococcus aureus. Vascularity and perfusion were assessed by microCT angiography and SPECT scanning, respectively, at 1, 2 and 4 weeks after injury. Quantitative bacterial cultures were also obtained. Multi-bacterial infections were successfully created, with methicillin-resistant S. aureus predominating. There was overall increase in blood flow to injured limbs that was markedly greater in bacteria-inoculated limbs. Vessel volume was greater in the infected group. Quadriceps atrophy was seen in both groups, but was greater in the infected group. In this animal model, infected open fractures had greater perfusion and vascularity than non-infected limbs.

  6. Effects of High Rate Shear on the Microstructure and Deformation and Fracture Behavior of Two High Strength Steels (United States)


    Nickel (Ni) content between the steels. As shown in Table 1, the Q&T steel had 5% Ni while the DQ steel had only 1% Ni. Nickel in alpha iron has been...Yield and Fracture Behavior of Alpha Iron ," Trans. Met. Soc. of AIME, Vol. 242, pp. 306 - 314, February, 1968 Kalthoff, J.F. and Winkler, S., "Fracture

  7. Modeling of flow in faulted and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Oeian, Erlend


    The work on this thesis has been done as part of a collaborative and inter disciplinary effort to improve the understanding of oil recovery mechanisms in fractured reservoirs. This project has been organized as a Strategic University Program (SUP) at the University of Bergen, Norway. The complex geometries of fractured reservoirs combined with flow of several fluid phases lead to difficult mathematical and numerical problems. In an effort to try to decrease the gap between the geological description and numerical modeling capabilities, new techniques are required. Thus, the main objective has been to improve the ATHENA flow simulator and utilize it within a fault modeling context. Specifically, an implicit treatment of the advection dominated mass transport equations within a domain decomposition based local grid refinement framework has been implemented. Since large computational tasks may arise, the implicit formulation has also been included in a parallel version of the code. Within the current limits of the simulator, appropriate up scaling techniques has also been considered. Part I of this thesis includes background material covering the basic geology of fractured porous media, the mathematical model behind the in-house flow simulator ATHENA and the additions implemented to approach simulation of flow through fractured and faulted porous media. In Part II, a set of research papers stemming from Part I is presented. A brief outline of the thesis follows below. In Chapt. 1 important aspects of the geological description and physical parameters of fractured and faulted porous media is presented. Based on this the scope of this thesis is specified having numerical issues and consequences in mind. Then, in Chapt. 2, the mathematical model and discretizations in the flow simulator is given followed by the derivation of the implicit mass transport formulation. In order to be fairly self-contained, most of the papers in Part II also includes the mathematical model

  8. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Jianming He


    Full Text Available In this paper, configurations of pre-existing fractures in cubic rock blocks were investigated and reconstructed for the modeling of experimental hydraulic fracturing. The fluid-rock coupling process of hydraulic fracturing was simulated based on the displacement discontinuities method. The numerical model was validated against the related laboratory experiments. The stimulated fracture configurations under different conditions can be clearly shown using the validated numerical model. First, a dominated fracture along the maximum principle stress direction is always formed when the stress difference is large enough. Second, there are less reopened pre-existing fractures, more newly formed fractures and less shear fractures with the increase of the cohesion value of pre-existing fractures. Third, the length of the stimulated shear fracture decreases rapidly with the increase of the friction coefficient, while the length of the tensile fracture has no correlation to the fiction coefficient. Finally, the increase of the fluid injection rate is favorable to the formation of a fracture network. The unfavorable effects of the large stress difference and the large cohesion of pre-existing fractures can be partly suppressed by an increase of the injection rate in the hydraulic fracturing treatment. The results of this paper are useful for understanding fracture propagation behaviors during the hydraulic fracturing of shale reservoirs with pre-existing fractures.

  9. Effect of dislocation blocking on fracture behavior of Al and {alpha}-Fe: a multiscale study

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, S.J.; Farkas, D


    We use a multiscale approach in which results from atomistic simulations are combined with discrete dislocation (DD) dynamics simulations of crack-tip plasticity. The method is used to study the effects of dislocation blocking on the fracture behavior of {alpha}-iron and aluminum. We studied the effects of blocking for distances ranging from 5 nm to 1 mm and find that the fracture resistance is increased with increasing blocking distance. The atomistic and dislocation dynamics simulations show that the blocking of dislocations causes a net decrease in the shear stress projected on the slip plane, preventing further dislocation emission. Semi-brittle cleavage occurs after a certain number of dislocations are emitted, explicitly demonstrating the embrittling effects of dislocation blocking. This effect can contribute to the brittle behavior observed in some nanocrystalline metals.

  10. Carbonate fracture stratigraphy: An integrated outcrop and 2D discrete element modelling study (United States)

    Spence, Guy; Finch, Emma


    Constraining fracture stratigraphy is important as natural fractures control primary fluid flow in low matrix permeability naturally fractured carbonate hydrocarbon reservoirs. Away from the influence of folds and faults, stratigraphic controls are known to be the major control on fracture networks. The fracture stratigraphy of carbonate nodular-chert rhythmite successions are investigated using a Discrete Element Modelling (DEM) technique and validated against observations from outcrops. Comparisons are made to the naturally fractured carbonates of the Eocene Thebes Formation exposed in the west central Sinai of Egypt, which form reservoir rocks in the nearby East Ras Budran Field. DEM allows mechanical stratigraphy to be defined as the starting conditions from which forward numerical modelling can generate fracture stratigraphy. DEM can incorporate both stratigraphic and lateral heterogeneity, and enable mechanical and fracture stratigraphy to be characterised separately. Stratally bound stratified chert nodules below bedding surfaces generate closely spaced lateral heterogeneity in physical properties at stratigraphic mechanical interfaces. This generates extra complexity in natural fracture networks in addition to that caused by bed thickness and lithological physical properties. A series of representative geologically appropriate synthetic mechanical stratigraphic models were tested. Fracture networks generated in 15 DEM experiments designed to isolate and constrain the effects of nodular chert rhythmites on carbonate fracture stratigraphy are presented. The discrete element media used to model the elastic strengths of rocks contain 72,866 individual elements. Mechanical stratigraphies and the fracture networks generated are placed in a sequence stratigraphic framework. Nodular chert rhythmite successions are shown to be a distinct type of naturally fractured carbonate reservoir. Qualitative stratigraphic rules for predicting the distribution, lengths, spacing

  11. Analytical Modeling and Contradictions in Limestone Reservoirs: Breccias, Vugs, and Fractures

    Directory of Open Access Journals (Sweden)

    Nelson Barros-Galvis


    Full Text Available Modeling of limestone reservoirs is traditionally developed applying tectonic fractures concepts or planar discontinuities and has been simulated dynamically without considering nonplanar discontinuities as sedimentary breccias, vugs, fault breccias, and impact breccias, assuming that all these nonplanar discontinuities are tectonic fractures, causing confusion and contradictions in reservoirs characterization. The differences in geometry and connectivity in each discontinuity affect fluid flow, generating the challenge to develop specific analytical models that describe quantitatively hydrodynamic behavior in breccias, vugs, and fractures, focusing on oil flow in limestone reservoirs. This paper demonstrates the differences between types of discontinuities that affect limestone reservoirs and recommends that all discontinuities should be included in simulation and static-dynamic characterization, because they impact fluid flow. To demonstrate these differences, different analytic models are developed. Findings of this work are based on observations of cores, outcrops, and tomography and are validated with field data. The explanations and mathematical modeling developed here could be used as diagnostic tools to predict fluid velocity and fluid flow in limestone reservoirs, improving the complex reservoirs static-dynamic characterization.

  12. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)


    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  13. Fracture of granular materials composed of arbitrary grain shapes: A new cohesive interaction model (United States)

    Neveu, A.; Artoni, R.; Richard, P.; Descantes, Y.


    Discrete Element Methods (DEM) are a useful tool to model the fracture of cohesive granular materials. For this kind of application, simple particle shapes (discs in 2D, spheres in 3D) are usually employed. However, dealing with more general particle shapes allows to account for the natural heterogeneity of grains inside real materials. We present a discrete model allowing to mimic cohesion between contacting or non-contacting particles whatever their shape in 2D and 3D. The cohesive interactions are made of cohesion points placed on interacting particles, with the aim of representing a cohesive phase lying between the grains. Contact situations are solved according to unilateral contact and Coulomb friction laws. In order to test the developed model, 2D unixial compression simulations are performed. Numerical results show the ability of the model to mimic the macroscopic behavior of an aggregate grain subject to axial compression, as well as fracture initiation and propagation. A study of the influence of model and sample parameters provides important information on the ability of the model to reproduce various behaviors.

  14. Characterization of fracture processes by continuum and discrete modelling (United States)

    Kaliske, M.; Dal, H.; Fleischhauer, R.; Jenkel, C.; Netzker, C.


    A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.

  15. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.


    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as s

  16. Numerical modeling of concrete hydraulic fracturing with extended finite element method

    Institute of Scientific and Technical Information of China (English)

    REN QingWen; DONG YuWen; YU TianTang


    The extended finite element method (XFEM) is a new numerical method for modeling discontinuity.Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work principle of the fracture problem considering water pressure on the crack surface, the governing equations of XFEM for hydraulic fracture modeling are derived. Implementation of the XFEM for hydraulic fracturing is presented. Finally, the method is verified by two examples and the advan-tages of the XFEM for hydraulic fracturing analysis are displayed.

  17. Numerical modeling of concrete hydraulic fracturing with extended finite element method

    Institute of Scientific and Technical Information of China (English)


    The extended finite element method (XFEM) is a new numerical method for modeling discontinuity. Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work principle of the fracture problem considering water pressure on the crack surface, the governing equations of XFEM for hydraulic fracture modeling are derived. Implementation of the XFEM for hydraulic fracturing is presented. Finally, the method is verified by two examples and the advan- tages of the XFEM for hydraulic fracturing analysis are displayed.

  18. Fracture surfaces of heterogeneous materials: A 2D solvable model (United States)

    Katzav, E.; Adda-Bedia, M.; Derrida, B.


    Using an elastostatic description of crack growth based on the Griffith criterion and the principle of local symmetry, we present a stochastic model describing the propagation of a crack tip in a 2D heterogeneous brittle material. The model ensures the stability of straight cracks and allows for the study of the roughening of fracture surfaces. When neglecting the effect of the nonsingular stress, the problem becomes exactly solvable and yields analytic predictions for the power spectrum of the paths. This result suggests an alternative to the conventional power law analysis often used in the analysis of experimental data.

  19. Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.


    This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.

  20. Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire

    Directory of Open Access Journals (Sweden)

    Jia-Peng Hou


    Full Text Available Fatigue properties and cracking behavior of cold-drawn commercially pure aluminum wires (CPAWs widely used as the overhead transmission conductors were investigated. It was found that the fracture surface of the CPAWs shows an obvious four-stage fracture characteristic, i.e., crack initiation, planar crack propagation, 45°-inclined crack propagation and final rapid fracture. The crack growth mechanisms for the CPAWs were found quite different from those for the conventional coarse-grained materials. The cracks in the CPAWs firstly grow along the grain boundaries (Stage I crack growth, and then grow along the plane of maximum shear stress during the last stage of cycling (Stage II crack growth, leading to the distinctive fracture surfaces, i.e., the granular surface in the planar crack propagation region and the coarse fatigue striations in the 45°-inclined crack propagation region. The grain boundary migration was observed in the fatigued CPAWs. The increase in fatigue load enhances the dislocation recovery, increases the grain boundary migration rate, and thus promotes the occurrence of softening and damage localization up to the final failure.

  1. Delayed Fracture Behavior of CrMo-Type High Strength Steel Containing Titanium

    Institute of Scientific and Technical Information of China (English)

    HUI Wei-jun; DONG Han; WENG Yu-qing; WANG Mao-qiu; CHEN Si-lian; SHI Jie


    The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium (0 to 0. 10%) were studied. The steels were quenched at 880 ℃ and tempered from 400 ℃ to 650 ℃, and a wide range of tensile strength was obtained. The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution. The experimental results showed that with higher strength, the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes. The undissolved TiC is uniformly distributed as strong hydrogen traps, retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites, such as prior austenite and martensite lath boundaries in stress concentration area. Meanwhile, the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels. The characteristics of delayed fracture remain nearly the same with titanium addition.

  2. Fracture Behavior of CrN Coatings Under Indentation and Dynamic Cycle Impact

    Institute of Scientific and Technical Information of China (English)

    TIAN Linhai; ZHU Ruihua; YAO Xiaohong; YANG Yaojun; TANG Bin


    Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetrun sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact.It is found that,for the coatings on silicon substrate,the cracks form in the indentation comers and then propagate outward under Vickers indentation.The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure.Under Rockwell indentation,only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV,radial,lateral cracks and spalling appear in the vicinity of indentation.The fracture of CrN coatings under dynamic cycle impact is similar to fatigue.The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.

  3. Mechanical Properties and Fracture Behavior of Cu-Co-Be Alloy after Plastic Deformation and Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHOU; Ke-xing SONG; Jian-dong XING; Zhou LI; Xiu-hua GUO


    Mechanical properties and fracture behavior of Cu-0.84Co-0.23Be alloy after plastic deformation and heat treatment were comparatively investigated.Severe plastic deformation by hot extrusion and cold drawing was adopted to induce large plastic strain of Cu-0.84Co-0.23Be alloy.The tensile strength and elongation are up to 476.6 MPa and 1 8%,respectively.The fractured surface consists of deep dimples and micro-voids.Due to the formation of su-persaturated solid solution on the Cu matrix by solution treatment at 950 ℃ for 1 h,the tensile strength decreased to 271.9 MPa,while the elongation increased to 42%.The fracture morphology is parabolic dimple.Furthermore,the tensile strength increased significantly to 580.2 MPa after aging at 480 ℃ for 4 h.During the aging process,a large number of precipitates formed and distributed on the Cu matrix.The fracture feature of aged specimens with low elongation (4.6%)exhibits an obvious brittle intergranular fracture.It is confirmed that the mechanical properties and fracture behavior are dominated by the microstructure characteristics of Cu-0.84Co-0.23Be alloy after plastic de-formation and heat treatment.In addition,the fracture behavior at 450 ℃ of aged Cu-0.84Co-0.23Be alloy was also studied.The tensile strength and elongation are 383.6 MPa and 11.2%,respectively.The fractured morphologies are mainly candy-shaped with partial parabolic dimples and equiaxed dimples.The fracture mode is multi-mixed mechanism that brittle intergranular fracture plays a dominant role and ductile fracture is secondary.

  4. Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section (United States)

    Keeney, J. A.; Bass, B. R.; McAfee, W. J.

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPV's). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data.

  5. Influence of sulfide inclusion on ductility and fracture behavior of resulfurized HY-80 steel (United States)

    Biswas, D. K.; Venkatraman, M.; Narendranath, C. S.; Chatterjee, U. K.


    The influence of sulfide inclusions on the ductile fracture process of experimental HY-80 steels having graded sulfur levels from 50 to 500 ppm and heat-treated to different strength levels was studied with respect to mechanical properties, namely, tensile ductility and Charpy impact en-ergy. Sulfide inclusions are found to have deleterious effect on both axisymmetric ductility and Charpy impact properties, whereas the plane strain ductility was found to be less sensitive to sulfide inclusions. The effect of interaction between the inclusion and the matrix and the as-sociated stress strain distribution at the void nucleating sites, which control the fracture process by microvoid coalescence, were discussed in the light of various models to suggest a micro-mechanism of fracture. Other toughness parameters obtained from instrumented impact tests were evaluated and discussed as a function of sulfur content.

  6. A physical model study of effect of fracture aperture on seismic wave

    Institute of Scientific and Technical Information of China (English)


    Based on Hudson’s theoretical hypothesis of equivalent fracture model,inserting aligned round chips in solid model can simulate fractured media. The effect of fractures on the propagation of P and S waves can be observed by changing the fracture thickness. The base model is made of epoxy resin,and the material of fractures is a kind of low-velocity mixture containing silicon rubber. With constant diameter and number of fractures in each model,one group of models can be formed through changing the thickness of fracture. These models have the same fracture density. By using the ultrasonic pulse transmission method,the experiment records time and waveform of P and S waves in the direction parallel and perpendicular to the fracture orientation. The result shows that,with the same fracture density,changing fracture aperture will affect both velocity and amplitude of P and S waves,and the effect on P-wave amplitude is much greater than that on the velocity. Moreover,the variation in velocity of S wave is more obvious in the slow shear wave (S2),while the variation in amplitude is more obvious in the fast shear wave (S1). These properties of wave propagation are useful for seismic data processing and interpretation.

  7. Mathematical models of human behavior

    DEFF Research Database (Denmark)

    Møllgaard, Anders Edsberg

    data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived......, thereby implying that interactions between spreading processes are driving forces of attention dynamics. Overall, the thesis contributes to a quantitative understanding of a wide range of different human behaviors by applying mathematical modeling to behavioral data. There can be no doubt......During the last 15 years there has been an explosion in human behavioral data caused by the emergence of cheap electronics and online platforms. This has spawned a whole new research field called computational social science, which has a quantitative approach to the study of human behavior. Most...

  8. Coupled transport, mixing and biogeochemical reactions in fractured media: experimental observations and modelling at the Ploemeur fractured rock observatory (United States)

    Le Borgne, T.; Bochet, O.; Klepikova, M.; Kang, P. K.; Shakas, A.; Aquilina, L.; Dufresne, A.; Linde, N.; Dentz, M.; Bour, O.


    Transport processes in fractured media and associated reactions are governed by multiscale heterogeneity ranging from fracture wall roughness at small scale to broadly distributed fracture lengths at network scale. This strong disorder induces a variety of emerging phenomena, including flow channeling, anomalous transport and heat transfer, enhanced mixing and reactive hotspot development. These processes are generally difficult to isolate and monitor in the field because of the high degree of complexity and coupling between them. We report in situ experimental observations from the Ploemeur fractured rock observatory ( that provide new insights on the dynamics of transport and reaction processes in fractured media. These include dipole and push pull tracer tests that allow understanding and modelling anomalous transport processes characterized by heavy-tailed residence time distributions (Kang et al. 2015), thermal push pull tests that show the existence of highly channeled flow with a strong control on fracture matrix exchanges (Klepikova et al. 2016) and time lapse hydrogeophysical monitoring of saline tracer tests that allow quantifying the distribution of transport length scales governing dispersion processes (Shakas et al. 2016). These transport processes are then shown to induce rapid oxygen delivery and mixing at depth leading to massive biofilm development (Bochet et al., in prep.). Hence, this presentation will attempt to link these observations made at different scales to quantify and model the coupling between flow channeling, non-Fickian transport, mixing and chemical reactions in fractured media. References: Bochet et al. Biofilm blooms driven by enhanced mixing in fractured rock, in prep. Klepikova et al. 2016, Heat as a tracer for understanding transport processes in fractured media: theory and field assessment from multi-scale thermal push-pull tracer tests, Water Resour. Res. 52Shakas et al. 2016, Hydrogeophysical

  9. A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

    KAUST Repository

    Al-Hinai, Omar


    We present a method for modeling flow in porous media in the presence of complex fracture networks. The approach utilizes the Mimetic Finite Difference (MFD) method. We employ a novel equi-dimensional approach for meshing fractures. By using polyhedral cells we avoid the common challenge in equi-dimensional fracture modeling of creating small cells at the intersection point. We also demonstrate how polyhedra can mesh complex fractures without introducing a large number of cells. We use polyhedra and the MFD method a second time for embedding fracture boundaries in the matrix domain using a “cut-cell” paradigm. The embedding approach has the advantage of being simple and localizes irregular cells to the area around the fractures. It also circumvents the need for conventional mesh generation, which can be challenging when applied to complex fracture geometries. We present numerical results confirming the validity of our approach for complex fracture networks and for different flow models. In our first example, we compare our method to the popular dual-porosity technique. Our second example compares our method with directly meshed fractures (single-porosity) for two-phase flow. The third example demonstrates two-phase flow for the case of intersecting ellipsoid fractures in three-dimensions, which are typical in microseismic analysis of fractures. Finally, we demonstrate our method on a two-dimensional fracture network produced from microseismic field data.

  10. Full 3-D numerical modeling of borehole electric image logging and the evaluation model of fracture

    Institute of Scientific and Technical Information of China (English)


    A full 3-D finite element method numerical modeling program is written based on the principle and technical specification of borehole electric image well logging tool. The response of well logging is computed in the formation media model with a single fracture. The effect of changing fracture aperture and resistivity ratio to the logging response is discussed. The identification ability for two parallel fractures is also present. A quantitative evaluation formula of fracture aperture from borehole electric image logging data is set up. A case study of the model well is done to verify the accuracy of the for-mula. The result indicates that the formula is more accurate than the foreign one.

  11. Fracture behavior of advanced ceramic hot gas filters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.


    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  12. Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM

    CERN Document Server

    Tejchman, Jacek


    The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and three different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams un...

  13. Finite element model of the Jefferson fracture: comparison with a cadaver model


    Bozkus, Hakan; Karakas, Askin; Hancı, Murat; Uzan, Mustafa; Bozdag, Ergun; Sarıoglu, Ali


    This study tries to explain the reason why the Jefferson fracture is a burst fracture, using two different biomechanical models: a finite element model (FEM) and a cadaver model used to determine strain distribution in C1 during axial static compressive loading. For the FEM model, a three-dimensional model of C1 was obtained from a 29-year-old healthy human, using axial CT scans with intervals of 1.0 mm. The mesh model was composed of 8200 four-noded isoparametric tetrahedrons and 37,400 soli...

  14. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system (United States)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki


    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution.

  15. Fundamental study of crack initiation and propagation. [Computer model of ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Norris, D.M. Jr.; Reaugh, J.E.; Moran, B.; Quinones, D.F.; Wilkins, M.L.


    Objective is to determine the fracture toughness of A533B-1 steel by computer modeling Charpy V-notch tests. A computer model of ductile fracture was developed that predicts fracture initiation. The model contains a set of material-dependent parameters obtained by computer simulations of small specimen tests. The computer calculations give detailed stress and strain histories up to the time of fracture, which are used to determine the model parameter values. The calibrated fracture model, that correctly predicts fracture initiation (and initiation energy) in the Charpy specimen, may then be used to simulate tests of accepted fracture-toughness specimens and hence obtain fracture toughness. The model parameters were calibrated to predict fracture in four different test specimens: two different notched-tension specimens, a simple tension specimen, and a precracked compact-tension specimen. The model was then used in a computer simulation of the Charpy V-notch specimen to initiate and advance a flat fracture. Results were compared with interrupted Charpy tests. Calibration of the model for two additional heat treatments of A533B-1 steel is in progress.

  16. Analyzing Unsatirated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson


    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

  17. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))


    Investigations led for several years at Laxemar and Forsmark reveal the large heterogeneity of geological formations and associated fracturing. This project aims at reinforcing the statistical DFN modeling framework adapted to a site scale. This leads therefore to develop quantitative methods of characterization adapted to the nature of fracturing and data availability. We start with the hypothesis that the maximum likelihood DFN model is a power-law model with a density term depending on orientations. This is supported both by literature and specifically here by former analyses of the SKB data. This assumption is nevertheless thoroughly tested by analyzing the fracture trace and lineament maps. Fracture traces range roughly between 0.5 m and 10 m - i e the usual extension of the sample outcrops. Between the raw data and final data used to compute the fracture size distribution from which the size distribution model will arise, several steps are necessary, in order to correct data from finite-size, topographical and sampling effects. More precisely, a particular attention is paid to fracture segmentation status and fracture linkage consistent with the DFN model expected. The fracture scaling trend observed over both sites displays finally a shape parameter k{sub t} close to 1.2 with a density term (alpha{sub 2d}) between 1.4 and 1.8. Only two outcrops clearly display a different trend with k{sub t} close to 3 and a density term (alpha{sub 2d}) between 2 and 3.5. The fracture lineaments spread over the range between 100 meters and a few kilometers. When compared with fracture trace maps, these datasets are already interpreted and the linkage process developed previously has not to be done. Except for the subregional lineament map from Forsmark, lineaments display a clear power-law trend with a shape parameter k{sub t} equal to 3 and a density term between 2 and 4.5. The apparent variation in scaling exponent, from the outcrop scale (k{sub t} = 1.2) on one side, to

  18. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng


    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  19. Characterizing and Modelling Preferential Flow Path in Fractured Rock Aquifer: A Case Study at Shuangliou Fractured Rock Hydrogeology Research Site (United States)

    Hsu, Shih-Meng; Ke, Chien-Chung; Lo, Hung-Chieh; Lin, Yen-Tsu; Huang, Chi-Chao


    On the basis of a relatively sparse data set, fractured aquifers are difficult to be characterized and modelled. The three-dimensional configuration of transmissive fractures and fracture zones is needed to be understood flow heterogeneity in the aquifer. Innovative technologies for the improved interpretation are necessary to facilitate the development of accurate predictive models of ground-water flow and solute transport or to precisely estimate groundwater potential. To this end, this paper presents a procedure for characterizing and modelling preferential flow path in the fractured rock aquifer carried out at Fractured Rock Hydrogeology Research Site in Shuangliou Forest Recreation Area, Pingtung County, Southern Taiwan. The Shuangliou well field is a 40 by 30-meter area consisting of 6 wells (one geological well, one pumping well and four hydrogeological testing wells). The bedrock at the site is mainly composed of slate and intercalated by meta-sandstone. The overburden consists of about 5.6 m of gravel deposits. Based on results of 100 m geological borehole with borehole televiewer logging, vertical flow logging and full-wave sonic logging, high transmissivity zones in the bedrock underlying the well field were identified. One of transmissivity zone (at the depths of 30~32 m) and its fracture orientation(N56/54) selected for devising a multiple well system with 4 boreholes (borehole depths :45m, 35m, 35m and 25m, respectively), which were utilized to perform cross-borehole flow velocity data under the ambient flow and pumped flow conditions to identify preferential flow paths. Results from the cross-borehole test show the preferential flow pathways are corresponding to the predicted ones. Subsequently, a 3-D discrete fracture network model based on outcrop data was generated by the FracMan code. A validation between observed and simulated data has proved that the present model can accurately predict the hydrogeological properties (e.g., number of fractures

  20. Modelisation of transport in fractured media with a smeared fractures modeling approach: special focus on matrix diffusion process. (United States)

    Fourno, A.; Grenier, C.; Benabderrahmane, H.


    Modeling flow and transport in natural fractured media is a difficult issue due among others to the complexity of the system, the particularities of the geometrical features, the strong parameter value contrasts between the fracture zones (flow zones) and the matrix zones (no flow zones). This lead to the development of dedicated tools like for instance discrete fracture network models (DFN). We follow here another line applicable for classical continuous modeling codes. The fracture network is not meshed here but presence of fractures is taken into account by means of continuous heterogeneous fields (permeability, porosity, head, velocity, concentration ...). This line, followed by different authors, is referred as smeared fracture approach and presents the following advantages: the approach is very versatile because no dedicated spatial discretization effort is required (we use a basic regular mesh, simulations can be done on a rough mesh saving computer time). This makes this kind of approach very promising for taking heterogeneity of properties as well as uncertainties into account within a Monte Carlo framework for instance. Furthermore, the geometry of the matrix blocks where transfers proceed by diffusion is fully taken into account contrary to classical simplified 1D approach for instance. Nevertheless continuous heterogeneous field representation of a fractured medium requires a homogenization process at the scale of the mesh considered. Literature proves that this step of homogenization for transport is still a challenging task. Consequently, the level precision of the results has to be estimated. We precedently proposed a new approach dedicated to Mixed and Hybrid Finite Element approach. This numerical scheme is very interesting for such highly heterogeneous media and in particular guaranties exact conservation of mass flow for each mesh leading to good transport results. We developed a smeared fractures approach to model flow and transport limited to

  1. Conceptual Model of the Geometry and Physics of Water Flow in a Fractured Basalt Vadose Zone: Box Canyon Site, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steiger, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Long, Jane C.S. [Univ. of Nevada, Reno, NV (US). Mackay School of Mines; Wood, Tom [Parsons Engineering, Inc., Idaho Falls, ID (United States); Jacobsen, Janet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lore, Jason [Stanford Univ., CA (United States); Zawislanski, Peter T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    A conceptual model of the geometry and physics of water flow in a fractured basalt vadose zone was developed based on the results of lithological studies and a series of ponded infiltration tests conducted at the Box Canyon site near the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. The infiltration tests included one two-week test in 1996, three two-day tests in 1997, and one four-day test in 1997. For the various tests, initial infiltration rates ranged from 4.1 cm/day to 17.7 cm/day and then decreased with time, presumably due to mechanical or microbiological clogging of fractures and vesicularbasalt in the near-surface zone, as well as the effect of entrapped air. The subsurface moisture redistribution was monitored with tensiometers, neutron logging, time domain reflectrometry and ground penetrating radar. A conservative tracer, potassium bromide, was added to the pond water at a concentration of 3 g/L to monitor water flow with electrical resistivity probes and water sampling. Analysis of the data showed evidence of preferential flow rather than the propagation of a uniform wetting front. We propose a conceptual model describing the saturation-desaturation behavior of the basalt, in which rapid preferential flow through vertical column-bounding fractures occurs from the surface to the base of the basalt flow. After the rapid wetting of column-bounding fractures, a gradual wetting of other fractures and the basalt matrix occurs. Fractures that are saturated early in the tests may become desaturated thereafter, which we attribute to the redistribution of water between fractures and matrix. Lateral movement of water was also observed within a horizontal central fracture zone and rubble zone, which could have important implications for contaminant accumulation at contaminated sites.

  2. The Impact of Cracked Microparticles on the Mechanical and the Fracture Behavior of Particulate Composite

    Directory of Open Access Journals (Sweden)

    Waleed K. Ahmed


    Full Text Available In this investigation a metallic composite with a cracked micro has been investigated using finite element method. Particulate reinforced composite is one of the most favorite composite due to it quit isotopic properties. While being in metallic status, the micro particles may be subjected to deterioration which lead to crack embedded initiation within the micro particle. This crack lead to degradation in the mechanical as well as the fracture behavior in the composite. Mechanical characteristics through estimating the stiffness of the composite has been studied for intact and cracked particles as well as for the fractured particles. It has been found that as long as the crack propagates in the micro particle, there is reduction in the composite stiffness and increases in the stress intensity factor (SIF.

  3. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.J.


    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  4. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    KAUST Repository

    Chen, Huangxin


    In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.

  5. AVAZ inversion for fracture weakness parameters based on the rock physics model (United States)

    Chen, Huaizhen; Yin, Xingyao; Qu, Shouli; Zhang, Guangzhi


    Subsurface fractures within many carbonates and unconventional resources play an important role in the storage and movement of fluid. The more reliably the detection of fractures could be performed, the more finely the reservoir description could be made. In this paper, we aim to propose a method which uses two important tools, a fractured anisotropic rock physics effective model and AVAZ (amplitude versus incident and azimuthal angle) inversion, to predict fractures from azimuthal seismic data. We assume that the rock, which contains one or more sets of vertical or sub-vertical fractures, shows transverse isotropy with a horizontal axis of symmetry (HTI). Firstly, we develop one improved fractured anisotropic rock physics effective model. Using this model, we estimate P-wave velocity, S-wave velocity and fracture weaknesses from well-logging data. Then the method is proposed to predict fractures from azimuthal seismic data based on AVAZ inversion, and well A is used to verify the reliability of the improved rock physics effective model. Results show that the estimated results are consistent with the real log value, and the variation of fracture weaknesses may detect the locations of fractures. The damped least squares method, which uses the estimated results as initial constraints during the inversion, is more stable. Tests on synthetic data show that fracture weaknesses parameters are still estimated reasonably with moderate noise. A test on real data shows that the estimated results are in good agreement with the drilling.

  6. Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model

    Directory of Open Access Journals (Sweden)

    Yue Hou


    Full Text Available Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics.

  7. Gas Turbine Engine Behavioral Modeling


    Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris


    This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...

  8. Behavior models for software architecture


    Auguston, Mikhail


    Approved for public release; distribution is unlimited. Approved for public release; distribution is unlimited Monterey Phoenix (MP) is an approach to formal software system architecture specification based on behavior models. Architecture modeling focuses not only on the activities and interactions within the system, but also on the interactions between the system and its environment, providing an abstraction for interaction specification. The behavior of the system is defined as a set...

  9. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)


    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  10. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl


    An overview of methods of the mathematical modeling of deformation, damage and fracture in fiber reinforced composites is presented. The models are classified into five main groups: shear lag-based, analytical models, fiber bundle model and its generalizations, fracture mechanics based and contin...

  11. Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized From Atomistic Simulations (United States)

    Glaessgen, Edward H.; Saether, Erik; Phillips, Dawn R.; Yamakov, Vesselin


    A multiscale modeling strategy is developed to study grain boundary fracture in polycrystalline aluminum. Atomistic simulation is used to model fundamental nanoscale deformation and fracture mechanisms and to develop a constitutive relationship for separation along a grain boundary interface. The nanoscale constitutive relationship is then parameterized within a cohesive zone model to represent variations in grain boundary properties. These variations arise from the presence of vacancies, intersticies, and other defects in addition to deviations in grain boundary angle from the baseline configuration considered in the molecular dynamics simulation. The parameterized cohesive zone models are then used to model grain boundaries within finite element analyses of aluminum polycrystals.

  12. Mesoscale modeling of grain fracturing in high porosity rocks using the strong discontinuity approach (United States)

    Tjioe, M.; Choo, J.; Borja, R. I.


    In previous studies, it has been found that two dominant micro-mechanisms play important roles in the deformation of high-porosity rocks. They are grain fracturing and crystal plasticity. Grain fracturing is a phenomenon where larger grains cleave to their smaller constituents as they respond to the stress concentration exerted on them close to the open pore spaces. Specimen-scale modeling cannot reflect such mechanism so our investigation is carried out in the next smaller scale, namely the mesoscopic scale. We model a solid matrix microstructure using finite element in which displacement discontinuity is introduced in each element where the slip condition has been exceeded. Such discontinuity is termed strong discontinuity and is characterized by zero band thickness and localized strain in the band that reaches infinity. For grains under compression, this slip condition is the cohesive-frictional law governing the behavior on the surface of discontinuity. The strong discontinuity in the grain scale is modeled via an Assumed Enhanced Strain (AES) method formulated within the context of nonlinear finite elements. Through this method, we can model grain-splitting as well as halos of cataclastic damage that are usually observed before a macropore collapses. The overall stress-strain curve and plastic slip of the mesoscopic element are then obtained and comparison to the crystal plasticity behavior is made to show the differences between the two mechanisms. We demonstrate that the incorporation of grain-fracturing and crystal plasticity can shed light onto the pore-scale deformation of high-porosity rocks.

  13. Mathematical models of human behavior

    DEFF Research Database (Denmark)

    Møllgaard, Anders Edsberg

    During the last 15 years there has been an explosion in human behavioral data caused by the emergence of cheap electronics and online platforms. This has spawned a whole new research field called computational social science, which has a quantitative approach to the study of human behavior. Most...... studies have considered data sets with just one behavioral variable such as email communication. The Social Fabric interdisciplinary research project is an attempt to collect a more complete data set on human behavior by providing 1000 smartphones with pre-installed data collection software to students...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived...

  14. Fracture development around deep underground excavations: Insights from FDEM modelling

    Directory of Open Access Journals (Sweden)

    Andrea Lisjak


    Full Text Available Over the past twenty years, there has been a growing interest in the development of numerical models that can realistically capture the progressive failure of rock masses. In particular, the investigation of damage development around underground excavations represents a key issue in several rock engineering applications, including tunnelling, mining, drilling, hydroelectric power generation, and the deep geological disposal of nuclear waste. The goal of this paper is to show the effectiveness of a hybrid finite-discrete element method (FDEM code to simulate the fracturing mechanisms associated with the excavation of underground openings in brittle rock formations. A brief review of the current state-of-the-art modelling approaches is initially provided, including the description of selecting continuum- and discontinuum-based techniques. Then, the influence of a number of factors, including mechanical and in situ stress anisotropy, as well as excavation geometry, on the simulated damage is analysed for three different geomechanical scenarios. Firstly, the fracture nucleation and growth process under isotropic rock mass conditions is simulated for a circular shaft. Secondly, the influence of mechanical anisotropy on the development of an excavation damaged zone (EDZ around a tunnel excavated in a layered rock formation is considered. Finally, the interaction mechanisms between two large caverns of an underground hydroelectric power station are investigated, with particular emphasis on the rock mass response sensitivity to the pillar width and excavation sequence. Overall, the numerical results indicate that FDEM simulations can provide unique geomechanical insights in cases where an explicit consideration of fracture and fragmentation processes is of paramount importance.

  15. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    contaminant transport in fractured media, such as discrete fracture, equivalent porous media, and dual continuum models. However, these modeling concepts are not well tested for real limestone geologies. Our goal is therefore to develop, evaluate and compare approaches for modeling transport of contaminants...... data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling; however, concentrations in the limestone matrix are needed for assessing contaminant rebound...

  16. Modelling CO2 flow in naturally fractured geological media using MINC and multiple subregion upscaling procedure (United States)

    Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin


    Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux ( The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model

  17. Effect of sputter deposited YSZ thin films on the fracture behavior of dental bioceramics (United States)

    Teixeira, Erica Cappelletto Nogueira

    The fracture behavior of dental bioceramic materials was evaluated under physiologic conditions when modified by yttria stabilized zirconia (YSZ) thin film deposition. It was hypothesized that changing the YSZ thin film properties will produce a significant enhancement in the strength of bioceramic materials, ultimately promoting a more fatigue resistant construct. Porcelain, alumina, and zirconia were evaluated in terms of dynamic fatigue for an initial characterization of their fracture behavior. Data showed that strength degradation occurred in all three materials, most drastically in porcelain. Initial strength measurements, focused on depositing YSZ thin films on three unique substrates; porcelain, alumina, and zirconia, were carried out. A significant increase in strength was observed for alumina and porcelain. Since strength alone is not enough to characterize the fracture behavior of brittle materials, coated specimens of porcelain and zirconia were subjected to dynamic fatigue and Weibull analysis. Coated YSZ porcelain specimens showed a significant increase in strength at all tested stressing rates. YSZ coated zirconia specimens showed similar strength values at all stressing rates. The effect of film thickness on porcelain was also evaluated. Data demonstrated that film thickness alone does not appear to control increases in the flexural strength of a modified substrate. It is expected that deposition induced stress in YSZ sputtered films does not change with film thickness. However, a thicker film will generate a larger force at the film/substrate interface, contributing to delamination of the film. It was clear that in order to have a significant improvement in the fracture behavior of porcelain, changing the thickness of the film is not enough. The columnar structure of the YSZ films developed seems to favor an easy path for crack propagation limiting the benefits expected by the coating. The effect of a multilayered film, composed by brittle

  18. Anterolateral Versus Medial Plating of Distal Extra-articular Tibia Fractures: A Biomechanical Model. (United States)

    Pirolo, Joseph M; Behn, Anthony W; Abrams, Geoffrey D; Bishop, Julius A


    Both medial and anterolateral plate applications have been described for the treatment of distal tibia fractures, each with distinct advantages and disadvantages. The objective of this study was to compare the biomechanical properties of medial and anterolateral plating constructs used to stabilize simulated varus and valgus fracture patterns of the distal tibia. In 16 synthetic tibia models, a 45° oblique cut was made to model an Orthopedic Trauma Association type 43-A1.2 distal tibia fracture in either a varus or valgus injury pattern. Each fracture was then reduced and plated with a precontoured medial or anterolateral distal tibia plate. The specimens were biomechanically tested in axial and torsional loading, cyclic axial loading, and load to failure. For the varus fracture pattern, medial plating showed less fracture site displacement and rotation and was stiffer in both axial and torsional loading (Ptibia fractures.

  19. Numerical modeling of the effects of roughness on flow and eddy formation in fractures

    Directory of Open Access Journals (Sweden)

    Scott Briggs


    Full Text Available The effect of roughness on flow in fractures was investigated using lattice Boltzmann method (LBM. Simulations were conducted for both statistically generated hypothetical fractures and a natural dolomite fracture. The effect of increasing roughness on effective hydraulic aperture, Izbash and Forchheimer parameters with increasing Reynolds number (Re ranging from 0.01 to 500 was examined. The growth of complex flow features, such as eddies arising near the fracture surface, was directly associated with changes in surface roughness. Rapid eddy growth above Re values of 1, followed by less rapid growth at higher Re values, suggested a three-zone nonlinear model for flow in rough fractures. This three-zone model, relating effective hydraulic conductivity to Re, was also found to be appropriate for the simulation of water flow in the natural dolomite fracture. Increasing fracture roughness led to greater eddy volumes and lower effective hydraulic conductivities for the same Re values.

  20. Calculation of Forming Limits for Sheet Metal using an Enhanced Continuous Damage Fracture Model (United States)

    Nguyen, Ngoc-Trung; Kim, Dae-Young; Kim, Heon Young


    An enhanced continuous damage fracture model was introduced in this paper to calculate forming limits of sheet metal. The fracture model is a combination of a fracture criterion and a continuum damage constitutive law. A modified McClintock void growth fracture criterion was incorporated with a coupled damage-plasticity Gurson-type constitutive law. Also, by introducing a Lode angle dependent parameter to define the loading asymmetry condition, the shear effect was phenomenologically taken into account. The proposed fracture model was implemented using user-subroutines in commercial finite element software. The model was calibrated and correlated by the uniaxial tension, shear and notched specimens tests. Application of the fracture model for the LDH tests was discussed and the simulation results were compared with the experimental data.

  1. Modeling of Fracture Toughness of Electroless Nickel (EN) Coatings

    Institute of Scientific and Technical Information of China (English)

    K.Zangeneh; S.M.Monir-vaghefi; F.Ashrafizadeh


    In the present reserch, a model has been proposed for estimate fracture toughness of Nickel-phosphorus (EN) layers. For this purpose, high phosphorus (9%) EN coatings with thicknesses of 6, 12, 24, 36 and 48μm were applied on steel substrates and then treated as conventional process. Fracture toughness of coatings was obtained using Vickers indentation method. It is found that fracture toughness increses as coating thickness reduces. Effect of coating thickness on fracture toughness was exhibited by various models. Evaluation of models revealed good agreement between of proposed model (Kc=f(t,t2)) and experimental data.

  2. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results (United States)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen


    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  3. Thermally induced fractures: A field proven analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Detienne, J.L.; Creusot, M.; Kesslar, N. [and others


    Thermally Induced Fracturing (TIF) during water injection is a well-established phenomenon. TIF modelling implies solving simultaneously equations which are dealt with separately in conventional petroleum engineering applications. Combining these equations leads to very complex computer programs. This has led to the requirement for the simple model which is presented in this paper. Coupling analytical expressions representing each of these phenomena, rather than the basic physical equations, has led to a computer program which can be run on a modem desk-top computer. This program has successfully matched the daily wellhead pressure and injection rate over a period of 3 to 5 years, for injection wells in complex sandstone/dolomite reservoirs. The model can be used for injection well monitoring as well as in a predictive mode when planning new water injection projects. The algorithm is sufficiently simple to be implemented in a conventional reservoir simulator.

  4. Review of permeability evolution model for fractured porous media

    Institute of Scientific and Technical Information of China (English)

    Jianjun Ma


    The ability to capture permeability of fractured porous media plays a significant role in several engi-neering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications, both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances;others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.

  5. Analyzing and modeling heterogeneous behavior (United States)

    Lin, Zhiting; Wu, Xiaoqing; He, Dongyue; Zhu, Qiang; Ni, Jixiang


    Recently, it was pointed out that the non-Poisson statistics with heavy tail existed in many scenarios of human behaviors. But most of these studies claimed that power-law characterized diverse aspects of human mobility patterns. In this paper, we suggest that human behavior may not be driven by identical mechanisms and can be modeled as a Semi-Markov Modulated Process. To verify our suggestion and model, we analyzed a total of 1,619,934 records of library visitations (including undergraduate and graduate students). It is found that the distribution of visitation intervals is well fitted with three sections of lines instead of the traditional power law distribution in log-log scale. The results confirm that some human behaviors cannot be simply expressed as power law or any other simple functions. At the same time, we divided the data into groups and extracted period bursty events. Through careful analysis in different groups, we drew a conclusion that aggregate behavior might be composed of heterogeneous behaviors, and even the behaviors of the same type tended to be different in different period. The aggregate behavior is supposed to be formed by "heterogeneous groups". We performed a series of experiments. Simulation results showed that we just needed to set up two states Semi-Markov Modulated Process to construct proper representation of heterogeneous behavior.

  6. An Uneasy Look at Behavior Modeling. (United States)

    Parry, Scott B.; Reich, Leah R.


    Key points in a typical behavior modeling instructional sequence are given. Some problems of behavior modeling are analyzed and solutions are offered. Article is ended with a discussion of some design limitations built into behavior modeling. (JB)

  7. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling. (United States)

    Rezvani-Sharif, Alireza; Tafazzoli-Shadpour, Mohammad; Kazemi-Saleh, Davood; Sotoudeh-Anvari, Maryam


    Traditionally, the degree of luminal obstruction has been used to assess the vulnerability of atherosclerotic plaques. However, recent studies have revealed that other factors such as plaque morphology, material properties of lesion components and blood pressure may contribute to the fracture of atherosclerotic plaques. The aim of this study was to investigate the mechanism of fracture of atherosclerotic plaques based on the mechanical stress distribution and fatigue analysis by means of numerical simulation. Realistic models of type V plaques were reconstructed based on histological images. Finite element method was used to determine mechanical stress distribution within the plaque. Assuming that crack propagation initiated at the sites of stress concentration, crack propagation due to pulsatile blood pressure was modeled. Results showed that crack propagation considerably changed the stress field within the plaque and in some cases led to initiation of secondary cracks. The lipid pool stiffness affected the location of crack formation and the rate and direction of crack propagation. Moreover, increasing the mean or pulse pressure decreased the number of cycles to rupture. It is suggested that crack propagation analysis can lead to a better recognition of factors involved in plaque rupture and more accurate determination of vulnerable plaques.

  8. A contribution to the modeling of metal plasticity and fracture: From continuum to discrete descriptions (United States)

    Keralavarma, Shyam Mohan

    The objective of this dissertation is to further the understanding of inelastic behavior in metallic materials. Despite the increasing use of polymeric composites in aircraft structures, high specific strength metals continue to be used in key components such as airframe, fuselage, wings, landing gear and hot engine parts. Design of metallic structures subjected to thermomechanical extremes in aerospace, automotive and nuclear applications requires consideration of the plasticity, creep and fracture behavior of these materials. Consideration of inelasticity and damage processes is also important in the design of metallic components used in functional applications such as thin films, flexible electronics and micro electro mechanical systems. Fracture mechanics has been largely successful in modeling damage and failure phenomena in a host of engineering materials. In the context of ductile metals, the Gurson void growth model remains one of the most successful and widely used models. However, some well documented limitations of the model in quantitative prediction of the fracture strains and failure modes at low triaxialities may be traceable to the limited representation of the damage microstructure in the model. In the first part of this dissertation, we develop an extended continuum model of void growth that takes into account details of the material microstructure such as the texture of the plastically deforming matrix and the evolution of the void shape. The need for such an extension is motivated by a detailed investigation of the effects of the two types of anisotropy on the materials' effective response using finite element analysis. The model is derived using the Hill--Mandel homogenization theory and an approximate limit analysis of a porous representative volume element. Comparisons with several numerical studies are presented towards a partial validation of the analytical model. Inelastic phenomena such as plasticity and creep result from the collective

  9. Small-scale behavior of single gravity-driven fingers in an initially dry fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.


    Experiments investigating the behavior of individual, gravity-driven fingers in an initially dry, rough-walled analog fracture are presented. Fingers were initiated from constant flow to a point source. Finger structure is described in detail; specific phenomena observed include: desaturation behind the finger-tip, variation in finger path, intermittent flow structures, finger-tip bifurcation, and formation of dendritic sub-fingers. Measurements were made of finger-tip velocity, finger width, and finger-tip length. Non-dimensional forms of the measured variables are analyzed relative to the independent parameters, flow rate and gravitational gradient.

  10. Fracture Behavior of Cold Sprayed 304 Stainless Steel Coating During Cold Rolling

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-ming; ZHANG Jun-bao; HAN Wei; ZHAO Jie


    The fracture behavior of cold sprayed 304 stainless steel coating in cold rolling process was studied. The 304 stainless steel coatings were deposited on low carbon steel substrate by cold gas dynamic spray (CGDS) and then cold rolled, respectively. The fracture morphology of the coatings was observed and analyzed, and the crack distri- butions along the longitudinal rolling direction of the coatings were also investigated and discussed. The results showed that the cohesive strength of the cold sprayed 304 stainless steel coating was too low to be cold rolled. Mi crocracks were formed in the as-sprayed coatings and ran perpendicularly to the rolling direction. The spacing dis- tance between these cracks decreased with the increase of the cold rolling reduction. In addition, it was also found that the initial crack generated at the surface of the coating and propagated from the surface to the interface along the weakly bonded particles. A theoretical analysis was developed for the coating fracture. It gave a critical minimum cohesive bonding strength of the coating for non-breaking in cold rolling process. The crack propagation manner of the cold rolled coatings was also discussed.

  11. Influence of surface-modified Ti02 nanoparticles on fracture behavior of injection molded polypropylene

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Zhong ZHANG; Hyung-Woo PARK; Xing ZHU


    We prepared surface-modified TiO2 nanopar-ticle (21 nm)/polypropylene nanocomposites using a twin-screw extruder and an injection molding machine. The TEM (transmission electron microscopy) and SEM (scan-ning electron microscopy) images showed homogeneous dispersion of nano-TiO2 at 1 vol.% filler content and weak nanoparticle matrix interfacial adhesion. It was found that the essential work of fracture (EWF) approach, usu-ally characterizing fracture toughness of ductile materials, was no longer applicable to the nanocomposite samples because of the extreme crack blunting and tearing pro-cesses observed in the EWF tests. As an alternative approach, the specific essential work-related yield was used for assessment of the plane-strain toughness, as sug-gested in the literature. The results indicated'that the addition of 1 vol.% nano-TiO2 did not toughen the poly-propylene (PP) matrix at all. On the other hand, it was observed from the EWF tensile curves that the nanopar-ticles enhanced the ductility of the PP matrix greatly, the reason of which was probably ascribed to the high level of molecular orientation of the injection molded samples, as revealed by the polarized optical microscopy (POM). Because of the highly ductile behavior induced by the nanoparticles, the fracture energy achieved two- to three-fold increase, depending on the ligament lengths of the samples. The difference between the toughness and ductility of nanocomposites was discussed.

  12. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)


    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  13. Numerical and experimental investigation of the fracture behavior of shock loaded alumina

    Institute of Scientific and Technical Information of China (English)


    Plate impact expeiments are conducted to investigate the dynamic behavior of alumina by using one stage light gas gun. A ve-locity interferometer system for reflectors (VISAR) is used to obtain Hugoniot elastic limit and the free surface velocity profile,which consists of an elastic wave followed immediately by a dispersive inelastic wave. The stress histories under different impact velocities are measured by in-material manganin gauges. Based on the experimental data a Hugoniot curve is fitted,which shows the compressive characteristics that alumina changes typically from elastic to "plastic" ,and under higher pressure it will be transferred to similar-fluid state. The turning point of the Hugoniot curve from a high pressure region to a low pressure region is about 11.4 GPa. The fracture process of alumina is simulated by way of finite element code. After the analysis of the fracture mechanism,the numerical results show an important role played by the nucleation and the growth of the cracks in the macro-scopic fracture of the alumina target. The numerical predictions of stress histories are compared with the experimental results,which indicates consistency between them.

  14. Strength properties and fracture behavior of ZrC particle-reinforced tungsten composite

    Institute of Scientific and Technical Information of China (English)

    王玉金; 宋桂明; 孟庆昌; 周玉


    The flexural strength of 30 % (volume fraction) ZrC particle-reinforced tungsten composite (ZrCp/W) at 20~1 200℃ were measured using three-point bending, and the fracture behaviors of the samples at 20 ℃ and 1000 ℃ were studied with a scanning electron microscope. As temperature increases, the strength of the composite increases firstly and the highest strength value, 829 MPa, is measured at 1 000 ℃, and then the strength decreases when temperature is over 1000 ℃. The fracture of the composite at 20 ℃, which is controlled by the crack initiating process, is brittle, and the corresponding stress-deflection curve is linear. There is a metastable growth and coalescence of the initial cracks during the fracture process of the samples at 1 000 ℃, and the stress-deflection curve displays a nonlinear characteristic. The good elevated strength of the composite is partly attributed to the W grain interior strength and ZrCp/W interface strength. The reinforcement at high temperature is mainly attributed to the load transfer of ZrCp/W interface and dislocation strengthening.

  15. [Establishment of Schatzker classification digital models of tibial plateau fractures and its application on virtual surgery]. (United States)

    Liu, Yong-gang; Zuo, Li-xin; Pei, Guo-xian; Dai, Ke; Sang, Jing-wei


    To explore the establishment of Schatzker classification digital model of tibial plateau fractures and its application in virtual surgery. Proximal tibial of one healthy male volunteer was examined with 64-slice spiral computed tomography (CT). The data were processed by software Mimics 10.01 and a model of proximal tibia was reconstructed. According to the Schatzker classification criteria of tibial plateau fractures, each type of fracture model was simulated.Screen-captures of fracture model were saved from different directions.Each type of fracture model was exported as video mode.Fracture model was imported into FreeForm modeling system.With a force feedback device, a surgeon could conduct virtual fracture operation simulation.Utilizing the GHOST of FreeForm modeling system, the software of virtual cutting, fracture reduction and fixation was developed.With a force feedback device PHANTOM, a surgeon could manipulate virtual surgical instruments and fracture classification model and simulate surgical actions such as assembly of surgical instruments, drilling, implantation of screw, reduction of fracture, bone grafting and fracture fixation, etc. The digital fracture model was intuitive, three-dimensional and realistic and it had excellent visual effect.Fracture could be observed and charted from optional direction and angle.Fracture model could rotate 360 ° in the corresponding video mode. The virtual surgical environment had a strong sense of reality, immersion and telepresence as well as good interaction and force feedback function in the FreeForm modeling system. The user could make the corresponding decisions about surgical method and choice of internal fixation according to the specific type of tibial plateau fracture as well as repeated operational practice in virtual surgery system. The digital fracture model of Schatzker classification is intuitive, three-dimensional, realistic and dynamic. The virtual surgery systems of Schatzker classifications make

  16. Cohesive zone modelling of interface fracture near flaws in adhesive joints

    DEFF Research Database (Denmark)

    Hansen, Peter Feraren; Jensen, Henrik Myhre


    A cohesive zone model is suggested for modelling of interface fracture near flaws in adhesive joints. A shear-loaded adhesive joint bonded with a planar circular bond region is modelled using both the cohesive zone model and a fracture mechanical model. Results from the models show good agreement...... of crack propagation on the location and shape of the crack front and on the initial joint strength. Subsequently, the cohesive zone model is used to model interface fracture through a planar adhesive layer containing a periodic array of elliptical flaws. The effects of flaw shape are investigated, as well...... on the fracture process zone width relative to the flaw dimensions. It is also seen that with increasing fracture process zone width, the strength variation with the flaw shape decreases, however, the strength is effected over a wider range of propagation, (C) 2004 Elsevier Ltd. All rights reserved....

  17. High-Temperature Mechanical Behavior and Fracture Analysis of a Low-Carbon Steel Related to Cracking (United States)

    Santillana, Begoña; Boom, Rob; Eskin, Dmitry; Mizukami, Hideo; Hanao, Masahito; Kawamoto, Masayuki


    Cracking in continuously cast steel slabs has been one of the main problems in casting for decades. In recent years, the use of computational models has led to a significant improvement in caster performance and product quality. However, these models require accurate thermomechanical properties as input data, which are either unreliable or nonexistent for many alloys of commercial interest. A major reason for this lack of reliable data is that high-temperature mechanical properties are difficult to measure. Several methods have been developed to assess the material strength during solidification, especially for light alloys. The tensile strength during solidification of a low carbon aluminum-killed (LCAK; obtained from Tata Steel Mainland Europe cast at the DSP plant in IJmuiden, the Netherlands) has been studied by a technique for high-temperature tensile testing, which was developed at Sumitomo Metal Industries in Japan. The experimental technique enables a sample to melt and solidify without a crucible, making possible the accurate measurement of load over a small solidification temperature range. In the current study, the tensile test results are analyzed and the characteristic zero-ductility and zero-strength temperatures are determined for this particular LCAK steel grade. The fracture surfaces are investigated following tensile testing, which provides an invaluable insight into the fracture mechanism and a better understanding with respect to the behavior of the steel during solidification. The role of minor alloying elements, like sulfur, in hot cracking susceptibility is also discussed.


    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; WANG Qiuju; SUN Wei


    The pathophysiology of tinnitus is poorly understood and treatments are often unsuccessful. A number of animal models have been developed in order to gain a better understanding of tinnitus. A great deal has been learned from these models re-garding the electrophysiological and neuroanatomical correlates of tinnitus following exposure to noise or ototoxic drugs. Re-liable behavioral data is important for determining whether such electrophysiological or neuroanatomical changes are indeed related to tinnitus. Of the many documented tinnitus animal behavioral paradigms, the acoustic startle reflex had been pro-posed as a simple method to identify the presence or absence of tinnitus. Several behavioral models based on conditioned re-sponse suppression paradigms have also been developed. In addition to determining the presence or absence of tinnitus, some of the behavioral paradigms have provided signs of the onset, frequency, and intensity of tinnitus in animals. Although none of these behavioral models have been proved to be a perfect model, these studies provide useful information on understanding the neural mechanisms underlying tinnitus.

  19. Influence of strain rate on fracture behavior of poly(methyl methacrylate)

    Institute of Scientific and Technical Information of China (English)

    赵荣国; 陈朝中


    The effect of strain rate on fracture behavior of poly(methyl methacrylate) was investigated.The uniaxial tensile rupture tests for the poly(methyl methacrylate) samples were carried out at different strain rates at ambient temperature.It is found that the elastic modulus of the material increases with increasing strain rate,while the elongation is reversal with strain rate.Simultaneously,there exists a critical strain rate within which the stress-strain curves overlap one another,and beyond which the curves depart from each other.The amount of energy added to the system due to work done by the imposed load was calculated,and the strain energy stored in the material at each strain rate was calculated by the current stress integral with respect to strain.The complementary strain energy,which is the difference between the work and the strain energy,was obtained and was considered to supply the surface energy to create a new crack surface in the polymeric material.It is found that the work done by the imposed load,which is needed for the fracture of poly(methyl methacrylate) sample,decreases with increasing strain rate,and the strain energy decreases with strain rate as well,which demonstrates that the polymeric material at high strain rate is easier to fracture than that at low strain rate.As the strain rate increases,the fracture mode changes from ductile,semi-ductile to brittle mode.The complementary strain energy almost sustains a constant at any strain rate.The density of surface energy,which characterizes the energy per unit area needed for creating crack surface,is a strain rate-independent material constant.

  20. Multi-rate mass transfer modeling of two-phase flow in highly heterogeneous fractured and porous media (United States)

    Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco


    We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.

  1. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.


    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  2. A mechanism-based approach to modeling ductile fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Hammi, Youssef; Antoun, Bonnie R.; Klein, Patrick A.; Foulk, James W., III; McFadden, Sam X.


    Ductile fracture in metals has been observed to result from the nucleation, growth, and coalescence of voids. The evolution of this damage is inherently history dependent, affected by how time-varying stresses drive the formation of defect structures in the material. At some critically damaged state, the softening response of the material leads to strain localization across a surface that, under continued loading, becomes the faces of a crack in the material. Modeling localization of strain requires introduction of a length scale to make the energy dissipated in the localized zone well-defined. In this work, a cohesive zone approach is used to describe the post-bifurcation evolution of material within the localized zone. The relations are developed within a thermodynamically consistent framework that incorporates temperature and rate-dependent evolution relationships motivated by dislocation mechanics. As such, we do not prescribe the evolution of tractions with opening displacements across the localized zone a priori. The evolution of tractions is itself an outcome of the solution of particular, initial boundary value problems. The stress and internal state of the material at the point of bifurcation provides the initial conditions for the subsequent evolution of the cohesive zone. The models we develop are motivated by in-situ scanning electron microscopy of three-point bending experiments using 6061-T6 aluminum and 304L stainless steel, The in situ observations of the initiation and evolution of fracture zones reveal the scale over which the failure mechanisms act. In addition, these observations are essential for motivating the micromechanically-based models of the decohesion process that incorporate the effects of loading mode mixity, temperature, and loading rate. The response of these new cohesive zone relations is demonstrated by modeling the three-point bending configuration used for the experiments. In addition, we survey other methods with the potential

  3. Finite element model of the Jefferson fracture: comparison with a cadaver model. (United States)

    Bozkus, H; Karakas, A; Hanci, M; Uzan, M; Bozdag, E; Sarioglu, A C


    This study tries to explain the reason why the Jefferson fracture is a burst fracture, using two different biomechanical models: a finite element model (FEM) and a cadaver model used to determine strain distribution in C1 during axial static compressive loading. For the FEM model, a three-dimensional model of C1 was obtained from a 29-year-old healthy human, using axial CT scans with intervals of 1.0 mm. The mesh model was composed of 8200 four-noded isoparametric tetrahedrons and 37,400 solid elements. The material properties of the cortical bone of the vertebra were assessed according to the previous literature and were assumed to be linear isotropic and homogeneous for all elements. Axial static compressive loads were applied at between 200 and 1200 N. The strain and stress (maximum shear and von Mises) analyses were determined on the clinically relevant fracture lines of anterior and posterior arches. The results of the FEM were compared with a cadaver model. The latter comprised the C1 bone of a cadaver placed in a methylmethacrylate foam. Axial static compressive loads between 200 and 1200 N were applied by an electrohydraulic testing machine. Strain values were measured using strain gauges, which were cemented to the bone where the clinically relevant fracture lines of the anterior and posterior arches were located. As a result, compressive strain was observed on the outer surface of the anterior arch and inferior surface of the posterior arch. In addition, there was tensile strain on the inner surface of the anterior arch and superior surface of the posterior arch. The strain values obtained from the two experimental models showed similar trends. The FEM analysis revealed that maximum strain changes occurred where the maximum shear and von Mises stresses were concentrated. The changes in the C1 strain and stress values during static axial loading biomechanically prove that the Jefferson fracture is a burst fracture.

  4. Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory. Part I: Model Formulation and Analytical Expressions (United States)

    Wang, Ding; Qu, Shou-Li; Ding, Ping-Bo; Zhao, Qun


    The presence of bedding-parallel fractures at any scale in a rock will considerably add to its compliance and elastic anisotropy. Those properties will be more significantly affected when there is a relatively high degree of connectivity between the fractures and the corresponding interconnected pores. This contribution uses linear poroelasticity to reveal the characteristics of the full frequency-dependent compliance of an infinitely extended fracture model assuming the periodicity of the fractured structures. The fracture compliance tensor is complex-valued due to the wave-induced fluid flow between fractures and pores. The interaction between the adjacent fractures is considered under fluid mass conservation throughout the whole pore space. The quantitative effects of fracture (volume) density (the ratio between fracture thickness and spacing) and host rock porosity are analyzed by the diffusion equation for a relatively low-frequency band. The model in this paper is equivalent to the classical dry linear slip model when the bulk modulus of fluid in the fractures tends to zero. For the liquid-filled case, the model becomes the anisotropic Gassmann's model and sealed saturated linear slip model at the low-frequency and high-frequency limits, respectively. Using the dynamic compliance definition, we can effectively distinguish the saturating fluids in the fractures with the same order magnitude of bulk modulus (e.g., water and oil) using the compliance ratio method. Additionally, the modified dynamic model can be simplified as acceptable empirical formulas if the strain on the fractures induced by the incoming waves is small enough.

  5. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  6. Effect of leptin on bone metabolism in rat model of traumatic brain injury and femoral fracture

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; YUAN Ji-shan; ZHANG Hong-xi; DING Hua; TANG Xing-guo; WEI Yong-zhong


    Objective: To observe serum and callus leptin expression within the setting of fracture and traumatic brain injury (TBI).Methods: Atotal of 64 male SD rats were randomized equally into 4 groups: nonoperated group, TBI group, fraeture group, and fracture+TBI group. Rats were sacrificed at 2, 4, 8 and 12 weeks after fracture+TBI. Serum leptin was detected using radioimmunoassay, and callus formation was measured radiologically. Callus leptin was analyzed by immunohistochemistry.Results: Serum ieptin levels in the fracture group, TBI group and combined fracture+TBI group were all significantly increased compared with control group at the 2 week time-point (P<0.05). Serum leptin in the combined fracture +TBI group was significantly higher than that in the fracture and TBI groups at 4 and 8 weeks after injury (P<0. 05).The percentage of leptin-positive cells in the fracture+TBI callus and callus volume were significantly higher than those in the fracture-only group (P<0.01).Conclusions: We demonstrated elevated leptin expression within healing bone especially in the first 8 weeks in a rat model of fracture and TBI. A close association exists between leptin levels and the degree of callus formation in fractures.

  7. Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H


    One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.

  8. Ductile Fracture of AHSS Sheets under Multi-axial Loading: Experiments and Modeling (United States)

    Dunand, M.; Mohr, D.


    Fracture experiments on TRIP-assisted steel sheets covering a wide range of stress states (from shear to equibiaxial tension) are performed to create a comprehensive experimental database to calibrate and evaluate the shear-modified Gurson model (Nielsen and Tvergaard, 2010) and the Modified Mohr-Coulomb (MMC) fracture model (Bai and Wierzbicki, 2010). The experimental program includes notched tensile tests as well as fracture experiments on butterfly-shaped specimens under combined tension and shear loading. Both phenomenological fracture models are physics-inspired and take the effect of the first and third stress tensor invariants into account in predicting the onset of ductile fracture. The MMC model is based on the assumption that the initiation of fracture is determined by a critical stress state, while the shear-modified Gurson model assumes void growth as the governing mechanism. The model accuracy is quantified based on the predictions of the displacements to fracture for experiments which have not been used for calibration. It is found that the MMC model predictions agree well with all experiments (less than 4% error), while less accurate predictions are observed for the shear-modified Gurson model. A comparison of plots of the strain to fracture as a function of the stress triaxiality and the normalized third invariant reveals significant differences between the two models except within the vicinity of stress states that have been used for calibration.

  9. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.


    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  10. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications (United States)

    Webber, Kyle G.; Vögler, Malte; Khansur, Neamul H.; Kaeswurm, Barbara; Daniels, John E.; Schader, Florian H.


    There has been considerable progress in the development of large strain lead-free perovskite ferroelectrics over the past decade. Under certain conditions, the electromechanical properties of some compositions now match or even surpass commercially available lead-containing materials over a wide temperature range, making them potentially attractive for non-resonant displacement applications. However, the phenomena responsible for the large unipolar strains and piezoelectric responses can be markedly different to classical ferroelectrics such as Pb(Zr,Ti)O3 and BaTiO3. Despite the promising electromechanical properties, there is little understanding of the mechanical properties and fracture behavior, which is crucial for their implementation into applications where they will be exposed to large electrical, mechanical, and thermal fields. This work discusses and reviews the current understanding of the mechanical behavior of large-strain perovskite lead-free ferroelectrics for use in actuators and provides recommendations for further work in this important field.

  11. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites (United States)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.


    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  12. Analogue Behavioral Modeling of GTO

    Directory of Open Access Journals (Sweden)

    Y. Azzouz


    Full Text Available An analog behavioral model of high power gate turn-off thyristor (GTO is developed in this paper. The fundamental methodology for the modeling of this power electronic circuit is based on the use of the realistic diode consideration of non-linear junctions. This modeling technique enables to perform different simulations taking into account the turn-on and turn-off transient behaviors in real-time. The equivalent circuits were simulated with analog software developed in our laboratory. It was shown that the tested simple and compact model allows the generation of accurate physical characteristics of power thyristors under dynamic conditions. The model understudy was validated with analog simulations based on operational amplifier devices.

  13. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)


    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  14. Upscaling Fracture Network Models to Continua: An Example Using Weathered Granitic Rock (United States)

    Clark, A.; Doe, T.; Jones, J. W.


    In the early 1990's, a proposed landfill site on the Campo Indian Reservation in San Diego County, California, was the object of a characterization program involving over ninety exploration and monitoring wells, geophysical investigations, flow meter logging, tracer testing, and fracture characterization. This intensively studied site rests on deeply weathered tonalite. The weathered zone extends several tens to about 100 feet below the surface; however, the deeply weathered material follows hydraulically active fractures to even greater depths. The flow meter logging was especially valuable both for locating conductive fractures but also, in un- pumped mode, for defining regions of upward and downward vertical flow. The deep weathering on the conductive fractures gives each pathway a large effective porosity that translates to lower flow velocities compared with unweathered fractures with similar transmissivities. The simulation of the groundwater flow at this site used a local-scale fracture network model which was upscaled to a continuum code at regional scales. At the largest scale we generated a small number of major fractures to match the topographic lineaments. At an intermediate scale we had geophysical lineaments that were deterministic under the site footprint, and stochastic elsewhere using generation parameters based on the lengths, orientations and intensities of the deterministic features. The fractures of the most detailed scale were background fractures that were stochastically generated from borehole data. The site-scale fracture network model was incorporated into a regional-scale MODFLOW model, by overlaying the MODFLOW grid on the fracture network model and calculating equivalent porous medium properties for each MODFLOW grid cell using the Oda tensor method. This fast algorithm calculates a permeability tensor for each MODFLOW grid cell by summing the oriented area-weighted permeabilities of each fracture. The resulting MODFLOW model was then

  15. Modeling and characterization of interfacial adhesion and fracture (United States)

    Yao, Qizhou


    The loss of interfacial adhesion is mostly seen in the failure of polymer adhesive joints. In addition to the intrinsic physical attraction across the interface, the interfacial adhesion strength is believed to highly depend on a number of factors, such as adhesive chemistry/structure, surface topology, fracture pattern, thermal and elastic mismatch across the interface. The fracture failure of an adhesive joint involves basically three aspects, namely, the intrinsic interfacial strength, the driving force for fracture and other energy dissipation. One may define the intrinsic interfacial strength as the maximum value of the intrinsic interfacial adhesion. The total work done by external forces to the component that contains the interface is partitioned into two parts. The first part is consumed by all other energy dissipation mechanisms (plasticity, heat generation, viscosity, etc.). The second part is used to debond the interface. This amount should equal to the intrinsic adhesion of the interface according to the laws of conservation of energy. It is clear that in order to understand the fundamental physics of adhesive joint failure, one must be able to characterize the intrinsic interfacial adhesion and be able to identify all the major energy dissipation mechanisms involved in the debonding process. In this study, both physical and chemical adhesion mechanisms were investigated for an aluminum-epoxy interface. The physical bonding energy was estimated by computing the Van de Waals forces across the interface. A hydration model was proposed and the associated chemical bonding energy was calculated through molecular simulations. Other energy dissipation mechanisms such as plasticity and thermal residual stresses were also identified and investigated for several four-point bend specimens. In particular, a micromechanics based model was developed to estimate the adhesion enhancement due to surface roughness. It is found that for this Al-epoxy system the major

  16. Numerical modelling of single-phase flow in rough fractures with contacts (United States)

    Olkiewicz, Piotr; Dabrowski, Marcin


    Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in oil and gas production systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. The distribution of the apertures of fracture and contact area are the key parameters with regard to the fracture transmissivity. We use the method of correlated random fields [Mourzenko, 1996] to generate synthetic fracture geometry in 3D. The flow of an incompressible Newtonian viscous fluid in geological formation can be approximated by the Stokes, the Stokes-Brinkman or the Reynolds models. We use our own implementation of the finite element method based on MILAMIN [Dabrowski, 2008] to solve governing partial differential equation over domain. We compare the Stokes, the Stokes-Brinkamn and the Reynolds models for fracture flow based on systematic numerical simulations for a wide range of geometric parameters. Mismatch between the Reynolds and the Stokes models becomes significant with increasing fracture roughness or contact area. The Stokes-Brinkman model is more accurate than Reynolds models due to additional Laplacian term, which allows to fulfil no-slip boundary condition. We present condition when the Reynolds and the Stokes-Brinkman models are valid. In the last three decades many authors used the Reynolds equation for studying fracture flow because of its simplicity. We recommend using the Stokes-Brinkman model for fracture flow, which allows to fulfil no-slip boundary condition on asperities boundary and is more accurate for rough fractures than the Reynolds model.

  17. Modeling of fracture of protective concrete structures under impact loads

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, P. A., E-mail:; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)


    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  18. Modeling of Agent Behavior Using Behavioral Specifications

    NARCIS (Netherlands)

    Sharpanskykh, A.; Treur, J.


    The behavioral dynamics of a cognitive agent can be considered both from an external and an internal perspective. From the external perspective, behavior is described by specifying (temporal) correlations between input and output states of the agent. From the internal perspective the agent’s dynamic

  19. An opinion-driven behavioral dynamics model for addictive behaviors (United States)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.


    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  20. Geological discrete fracture network model for the Olkiluoto site, Eurajoki, Finland. Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Fox, A.; Forchhammer, K.; Pettersson, A. [Golder Associates AB, Stockholm (Sweden); La Pointe, P.; Lim, D-H. [Golder Associates Inc. (Finland)


    This report describes the methods, analyses, and conclusions of the modeling team in the production of the 2010 revision to the geological discrete fracture network (DFN) model for the Olkiluoto Site in Finland. The geological DFN is a statistical model for stochastically simulating rock fractures and minor faults at a scale ranging from approximately 0.05 m to approximately 565m; deformation zones are expressly excluded from the DFN model. The DFN model is presented as a series of tables summarizing probability distributions for several parameters necessary for fracture modeling: fracture orientation, fracture size, fracture intensity, and associated spatial constraints. The geological DFN is built from data collected during site characterization (SC) activities at Olkiluoto, which is selected to function as a final deep geological repository for spent fuel and nuclear waste from the Finnish nuclear power program. Data used in the DFN analyses include fracture maps from surface outcrops and trenches, geological and structural data from cored drillholes, and fracture information collected during the construction of the main tunnels and shafts at the ONKALO laboratory. Unlike the initial geological DFN, which was focused on the vicinity of the ONKALO tunnel, the 2010 revisions present a model parameterization for the entire island. Fracture domains are based on the tectonic subdivisions at the site (northern, central, and southern tectonic units) presented in the Geological Site Model (GSM), and are further subdivided along the intersection of major brittle-ductile zones. The rock volume at Olkiluoto is dominated by three distinct fracture sets: subhorizontally-dipping fractures striking north-northeast and dipping to the east that is subparallel to the mean bedrock foliation direction, a subvertically-dipping fracture set striking roughly north-south, and a subvertically-dipping fracture set striking approximately east-west. The subhorizontally-dipping fractures

  1. Comparison of GTN Model and XFEM for Fracture Mechanics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Jun; Chang, Yoon Suk [Kyung Hee University, Youngin (Korea, Republic of)


    The simulation of discontinuities such as stationary and growing cracks by conventional finite element(FE) method is limited for bulk materials due to the necessity of computationally expensive remeshing process and high mesh densities. Accordingly, several advanced finite element techniques have been introduced to model crack propagation without remeshing. However, there are still many modeling uncertainties relating to arbitrary discontinuities in respect of accuracy and efficiency. In order to overcome this problem, eXtended Finite Element Method(XFEM) which allows the presence of discontinuities in elements by enriching degrees of freedom(DOF) with special displacement function was developed by Belytschko and Black. In this paper, the XFEM was applied to tensile tests for API X65 steel to implement crack simulation based on fracture mechanics analyses and verify through the comparison with the preceding study using Gurson-Tvergaard-Needleman (GTN) model. In this paper, a comprehensive numerical analyses were carried out to verify an adequacy of the XFEM by comparing its results with those obtained from experiments and GTN model. The XFEM has an efficiency due to the accessibility to the corresponding parameters such as cohesive strength, cohesive energy and critical separation. Also, visualization of crack simulation has an advantage compared to the GTN model. In these respects, the XFEM can be widely used in industrial fields and further analyses for bulk materials are needed.

  2. Fracture Networks in Sea Ice

    Directory of Open Access Journals (Sweden)

    Jonas Nesland Vevatne


    Full Text Available Fracturing and refreezing of sea ice in the Kara sea are investigated using complex networkanalysis. By going to the dual network, where the fractures are nodes and their intersectionslinks, we gain access to topological features which are easy to measure and hence comparewith modeled networks. Resulting network reveal statistical properties of the fracturing process.The dual networks have a broad degree distribution, with a scale-free tail, high clusteringand efficiency. The degree-degree correlation profile shows disassortative behavior, indicatingpreferential growth. This implies that long, dominating fractures appear earlier than shorterfractures, and that the short fractures which are created later tend to connect to the longfractures.The knowledge of the fracturing process is used to construct growing fracture network (GFNmodel which provides insight into the generation of fracture networks. The GFN model isprimarily based on the observation that fractures in sea ice are likely to end when hitting existingfractures. Based on an investigation of which fractures survive over time, a simple model forrefreezing is also added to the GFN model, and the model is analyzed and compared to the realnetworks.

  3. Micro-mechanical analysis and modelling of the behavior and brittle fracture of a french 16MND5 steel: role of microstructural heterogeneities; Analyse et modelisation micromecanique du comportement et de la rupture fragile de l'acier 16MND5: prise en compte des heterogeneites microstructurales

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, J.Ph


    Reactor Pressure Vessel is the second containment barrier between nuclear fuel and the environment. Electricite de France's reactors are made with french 16MND5 low-alloyed steel (equ. ASTM A508 Cl.3). Various experimental techniques (scanning electron microscopy, X-ray diffraction...) are set up in order to characterize mechanical heterogeneities inside material microstructure during tensile testing at different low temperatures [-150 C;-60 C]. Heterogeneities can be seen as the effect of both 'polycrystalline' and 'composite' microstructural features. Interphase (until 150 MPa in average between ferritic and bainitic macroscopic stress state) and intra-phase (until 100 MPa in average between ferritic orientations) stress variations are highlighted. Modelling involves micro-mechanical description of plastic glide, mean fields models and realistic three-dimensional aggregates, all put together inside a multi-scale approach. Calibration is done on macroscopic stress-strain curves at different low temperatures, and modelling reproduces experimental stress heterogeneities. This modelling allows to apply a local micro-mechanical fracture criterion for crystallographic cleavage. Deterministic computations of time to fracture for different carbides random selection provide a way to express probability of fracture for the elementary volume. Results are in good agreement with hypothesis made by local approach to fracture. Hence, the main difference is that no dependence to loading nor microstructure features is supposed for probability of fracture on the representative volume: this dependence is naturally introduced by modelling. (author)

  4. Hydraulic properties of fracture networks; Analyse des proprietes hydrauliques des reseaux de fractures: discussion des modeles d'ecoulement compatibles avec les principales proprietes geometriques

    Energy Technology Data Exchange (ETDEWEB)

    Dreuzy, J.R. de


    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  5. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application


    Zhanghua Lian; Ying Zhang; Xu Zhao; Shidong Ding; Tiejun Lin


    Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, ...

  6. Behavior Modeling -- Foundations and Applications

    DEFF Research Database (Denmark)

    This book constitutes revised selected papers from the six International Workshops on Behavior Modelling - Foundations and Applications, BM-FA, which took place annually between 2009 and 2014. The 9 papers presented in this volume were carefully reviewed and selected from a total of 58 papers...

  7. Mechanical Behavior and Fracture Toughness Evaluation of Multiphase Polymer Nanocomposites Using Impact and J-Integral via Locus Method

    Directory of Open Access Journals (Sweden)

    Bishnu P. Panda


    Full Text Available Fracture behaviors of fibrillar silicate clay (MMT filled thermoplastic polyolefin (TPO containing polypropylene (PP blended with ethylene-propylene-diene monomer (EPDM were systematically investigated using impact test method and J-integral by locus method. Drastic increase in impact strength is observed for all developed compositions and generally shows higher value for the selected phases containing dispersed nanoclay in PP matrix. A fracture mechanics approach has been adopted by mode I test, and the effects of specimen geometry have been investigated. Increase in interlaminar fracture energy value, Gc, and J-integral value, Jc, is marked as the crack propagated through the composite; that is, a rising “R-curve” is observed. Toughness measurements revealed that the fracture toughness increased with increasing clay content reaching maximum at 3 wt% of clay than pure PP. Moreover, enhancement of fracture toughness was more remarkable than that of stiffness. The fracture surfaces taken from different specimens were observed for exploring the fracture mechanisms using transmission electron microscopy (TEM revealed a strong particle-matrix adhesion.

  8. Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures. (United States)

    Ju, Yang; Zhang, Qingang; Zheng, Jiangtao; Chang, Chun; Xie, Heping


    The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures.

  9. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang


    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  10. Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures (United States)

    Ju, Yang; Zhang, Qingang; Zheng, Jiangtao; Chang, Chun; Xie, Heping


    The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures.

  11. Biomechanical analysis of four types of internal fixation in subtrochanteric fracture models. (United States)

    Wang, Jie; Ma, Xin-long; Ma, Jian-xiong; Xing, Dan; Yang, Yang; Zhu, Shao-wen; Ma, Bao-yi; Chen, Yang; Feng, Rui; Jia, Hao-bo; Yu, Jing-tao


    To compare the biomechanical properties of four types of internal fixation (proximal femoral nail [PFN], dynamic hip screw [DHS], dynamic condylar screw [DCS], and proximal femoral locking plate [PFLP]) for different types of subtrochanteric fractures. Thirty-two antiseptic femurs were randomly divided into four groups. After internal fixation had been implanted, different types of subtrochanteric fracture models were produced and each tested under vertical, torsional and vertical damage loads. The stiffness ratio of PFN in each fracture model and failure load were the highest in the four groups; however, the torsional stiffness ratio was the lowest. Tension strain ratios of DHS and DCS on the lateral side became compression strain ratios with restoration of the medial fragment. The stiffness ratio of DHS was lower than PFLP in each fracture model, torsional stiffness ratio was the highest in fracture models II to V and the failure load was lower only than PFN. The stiffness ratio and failure load of DCS were both the lowest, torsional stiffness ratio was similar to PFLP's in fracture models II to V. The stiffness ratio of PFLP was only lower than PFN's in each fracture model, but the failure load was lower than DHS's. Four types of internal fixation achieve better stabilities for type I subtrochanteric fractures. PFN and PFLP produce reliable stability in type IIIA subtrochanteric fractures. If the medial buttress is restored, DCS can be considered. For type IV subtrochanteric fractures, only PFN provides stable fixation. PFLP is suitable for comminuted fractures with large fragments. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  12. Cognitive Modeling of Social Behaviors (United States)

    Clancey, William J.; Sierhuis, Maarten; Damer. Bruce; Brodsky, Boris


    The driving theme of cognitive modeling for many decades has been that knowledge affects how and which goals are accomplished by an intelligent being (Newell 1991). But when one examines groups of people living and working together, one is forced to recognize that whose knowledge is called into play, at a particular time and location, directly affects what the group accomplishes. Indeed, constraints on participation, including roles, procedures, and norms, affect whether an individual is able to act at all (Lave & Wenger 1991; Jordan 1992; Scribner & Sachs 1991). To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual &nd as ways of carrying out activities (Clancey 1997a, 2002b). This requires for the psychologist a shift from only modeling goals and tasks - why people do what they do - to modeling behavioral patterns-what people do-as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). This analysis is particular inspired by activity theory (Leont ev 1979). While acknowledging that knowledge (relating goals and operations) is fundamental for intelligent behavior, activity theory claims that a broader driver is the person s motives and conceptualization of activities. Such understanding of human interaction is normative (i.e., viewed with respect to social standards), affecting how knowledge is called into play and applied in practice. Put another way, how problems are discovered and framed, what methods are chosen, and indeed who even cares or has the authority to act, are all

  13. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.


    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  14. Comparison of Measured and Modelled Hydraulic Conductivities of Fractured Sandstone Cores (United States)

    Baraka-Lokmane, S.; Liedl, R.; Teutsch, G.

    - A new method for characterising the detailed fracture geometry in sandstone cores is presented. This method is based on the impregnation of samples with coloured resin, without significant disturbance of the fractures. The fractures are made clearly visible by the resin, thus allowing the fracture geometry to be examined digitally. In order to model the bulk hydraulic conductivity, the samples are sectioned serially perpendicular to the flow direction. The hydraulic conductivity of individual sections is estimated by summing the contribution of the matrix and each fracture from the digital data. Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical method are compared with actual physical conductivity values measured from fluid experiments carried out prior to sectioning. The predicted conductivity from the fracture geometry parameters (e.g., fracture aperture, fracture width, fracture length and fracture relative roughness all measured using an optical method) is in good agreement with the independent physical measurements, thereby validating the approach.

  15. Seepage flow behaviors of multi-stage fractured horizontal wells in arbitrary shaped shale gas reservoirs (United States)

    Zhao, Yu-Long; Shan, Bao-Chao; Zhang, Lie-Hui; Liu, Qi-Guo


    The horizontal well incorporated with massive hydraulic fracturing has become a key and necessary technology to develop shale gas reservoirs efficiently, and transient pressure analysis is a practical method to evaluate the effectiveness of the fracturing. Until now, however, the related studies on the pressure of such wells have mainly focused on regular outer-boundaries, such as infinite, circular and rectangular boundary shapes, which do not always fulfill the practical conditions and, of course, could cause errors. By extending the boundary element method (BEM) into the application of multi-staged fractured horizontal wells, this paper presents a way of analyzing the transient pressure in arbitrary shaped shale gas reservoirs considering ad-/de-sorption and diffusion of the shale gas with the ‘tri-porosity’ mechanism model. The boundary integral equation can be obtained by coupling the fundamental solution of the Helmholtz equation with the dimensionless diffusivity equation. After discretizing the outer-boundaries and the fractures, the boundary integral equations are linearized and the coefficient matrix of the pressure on the boundaries is assembled, after which bottom-hole pressure can be calculated conveniently. Comparing the BEM solution with semi-analytical solution cases, the accuracy of the new solution can be validated. Then, the characteristic curves of the dimensionless pseudo pressure, as well as its derivative for a well in shale gas reservoirs, are drawn, based on which the parameters’ sensitivity analyses are also conducted. This paper not only enriches the well testing theory and method in shale gas reservoirs, but also provides an effective method to solve problems with complex inner- and outer-boundaries.

  16. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite (United States)

    Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.


    The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This study uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random size obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.

  17. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yanbin [Tsinghua University, Advanced Materials Institute, Graduate School at Shenzhen, Shenzhen (China); City University of Hong Kong, Department of Physics and Materials Science, Kowloon Tong (China); Tang, Guoyi [Tsinghua University, Advanced Materials Institute, Graduate School at Shenzhen, Shenzhen (China); Shek, Chanhung [City University of Hong Kong, Department of Physics and Materials Science, Kowloon Tong (China); Zhu, Yaohua [Hong Kong Polytechnic University, Department of Industrial and Systems Engineering, Kowloon (China)


    The effect of electropulsing treatment (EPT) on the microstructure, mechanical properties, and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip at room temperature was investigated. The results indicated that EPT accelerated the spheroidizing and dissolution of {beta} phase tremendously in the aged Mg-9Al-1Zn alloy strip. The EPT-induced microstructural change resulted in remarkably increasing elongation to failure, remained tensile strength unchanged. A mechanism for rapid spheroidizing and dissolution process of {beta} phase during EPT was proposed based on the reduction of nucleation thermodynamic barrier and enhancement of atomic diffusion. Fracture analysis showed that with increase in frequency of EPT transgranular dimple fracture becomes predominant instead of the quasicleavage fracture. (orig.)

  18. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip (United States)

    Jiang, Yanbin; Tang, Guoyi; Shek, Chanhung; Zhu, Yaohua


    The effect of electropulsing treatment (EPT) on the microstructure, mechanical properties, and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip at room temperature was investigated. The results indicated that EPT accelerated the spheroidizing and dissolution of β phase tremendously in the aged Mg-9Al-1Zn alloy strip. The EPT-induced microstructural change resulted in remarkably increasing elongation to failure, remained tensile strength unchanged. A mechanism for rapid spheroidizing and dissolution process of β phase during EPT was proposed based on the reduction of nucleation thermodynamic barrier and enhancement of atomic diffusion. Fracture analysis showed that with increase in frequency of EPT transgranular dimple fracture becomes predominant instead of the quasicleavage fracture.

  19. Tight gas reservoir simulation: Modeling discrete irregular strata-bound fracture network flow, including dynamic recharge from the matrix

    Energy Technology Data Exchange (ETDEWEB)

    McKoy, M.L., Sams, W.N.


    The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

  20. On the Fictitious Crack Model of Concrete Fracture

    DEFF Research Database (Denmark)

    Brincker, Rune; Dahl, Henrik

    in the fracture zone is discussed, and an alternative energy formulation is given and males it possible to distinguish between stable and unstable situations. The reformulated sub-structure method is implemented on computer in a way that makes it possible to use a multilinear stress......-crack-opening-displacement relation for the material in the fracture zone, and some qualitative results are given....

  1. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [University of Utah; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deo, Milind [University of Utah; Jiang, Shu [Energy & Geoscience Institute


    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of

  2. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.


    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  3. Implementation of a flaw model to the fracturing around a vertical shaft

    CSIR Research Space (South Africa)

    Van de Steen, B


    Full Text Available This paper investigates whether a micromechanical model developed to investigate the relation between the basic failure processes at grain-scale and the macroscopic failure pattern can be applied to model the fracturing around large...

  4. Proximal humeral fractures: a biomechanical comparison of locking plate constructs in a cadaveric 3-part fracture model. (United States)

    Rose, David M; Sutter, Edward G; Mears, Simon C; Gupta, Rohit R; Belkoff, Stephen M


    The purpose of our study was to biomechanically compare, under cyclic loading conditions, fracture site motion, humeral head collapse, and intra-articular hardware penetration in simulated 3-part osteoporotic proximal humeral fractures stabilized with 1 of 2 locking-plate constructs. We performed fixation on simulated 3-part proximal humeral fractures in 10 pairs of cadaveric osteoporotic humeri with a Hand Innovations S3 Proximal Humerus Plate (S3 plate) or an LCP Proximal Humerus Plate (LCP plate; 1 each for each pair). The specimens were potted, mounted on a materials testing machine, and subjected to 5000 cycles of abduction in the scapular plane, loading through the supraspinatus tendon. Interfragmentary displacement at 2 virtual points (the most medial aspect of the calcar and the most superior aspect of the osteotomy line between the greater tuberosity and humeral head) was measured using an optical tracking system. Humeral head rotation was also measured. We used a generalized linear latent and mixed model to check for an effect of cyclic loading and treatment on the parameters of interest (significance, P fracture site motion, it is unknown whether the magnitude of the motion is clinically significant.

  5. A novel computer algorithm for modeling and treating mandibular fractures: A pilot study. (United States)

    Rizzi, Christopher J; Ortlip, Timothy; Greywoode, Jewel D; Vakharia, Kavita T; Vakharia, Kalpesh T


    To describe a novel computer algorithm that can model mandibular fracture repair. To evaluate the algorithm as a tool to model mandibular fracture reduction and hardware selection. Retrospective pilot study combined with cross-sectional survey. A computer algorithm utilizing Aquarius Net (TeraRecon, Inc, Foster City, CA) and Adobe Photoshop CS6 (Adobe Systems, Inc, San Jose, CA) was developed to model mandibular fracture repair. Ten different fracture patterns were selected from nine patients who had already undergone mandibular fracture repair. The preoperative computed tomography (CT) images were processed with the computer algorithm to create virtual images that matched the actual postoperative three-dimensional CT images. A survey comparing the true postoperative image with the virtual postoperative images was created and administered to otolaryngology resident and attending physicians. They were asked to rate on a scale from 0 to 10 (0 = completely different; 10 = identical) the similarity between the two images in terms of the fracture reduction and fixation hardware. Ten mandible fracture cases were analyzed and processed. There were 15 survey respondents. The mean score for overall similarity between the images was 8.41 ± 0.91; the mean score for similarity of fracture reduction was 8.61 ± 0.98; and the mean score for hardware appearance was 8.27 ± 0.97. There were no significant differences between attending and resident responses. There were no significant differences based on fracture location. This computer algorithm can accurately model mandibular fracture repair. Images created by the algorithm are highly similar to true postoperative images. The algorithm can potentially assist a surgeon planning mandibular fracture repair. 4. Laryngoscope, 2016 127:331-336, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Semi-analytical model of cross-borehole flow experiments for fractured medium characterization (United States)

    Roubinet, D.; Irving, J.; Day-Lewis, F. D.


    The study of fractured rocks is extremely important in a wide variety of research fields where the fractures and faults can represent either rapid access to some resource of interest or potential pathways for the migration of contaminants in the subsurface. Identification of their presence and determination of their properties are critical and challenging tasks that have led to numerous fracture characterization methods. Among these methods, cross-borehole flowmeter analysis aims to evaluate fracture connections and hydraulic properties from vertical-flow-velocity measurements conducted in one or more observation boreholes under forced hydraulic conditions. Previous studies have demonstrated that analysis of these data can provide important information on fracture connectivity, transmissivity, and storativity. Estimating these properties requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. Quantitative analysis of cross-borehole flowmeter experiments, in particular, requires modeling formulations that: (i) can be adapted to a variety of fracture and experimental configurations; (ii) can take into account interactions between the boreholes because their radii of influence may overlap; and (iii) can be readily cast into an inversion framework that allows for not only the estimation of fracture hydraulic properties, but also an assessment of estimation error. To this end, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. Our model addresses the above needs and provides a flexible and computationally efficient semi-analytical framework having strong potential for future adaptation to more complex configurations. The proposed modeling approach is demonstrated


    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-fang; GUO Geng-xin


    Three-dimensional seepage in double fractured media was modeled in this paper.The determination of hydraulic conductivity tensor of rock mass is a vital problem for the sea water intrusion or sea water encroachment and seepage of fissured medium.According to the geological and hydrogeological conditions for the 2nd-stage construction of the Three Gorges Project (TGP), the physical and mathematical models for the groundwater movement through the 3D double fractured media of rock mass during construction were established in this paper.Based on discontinuity-control inverse theory, some related parameters of double fractured media were inversed with flux being the known quantity and calibration of water table the objective function.Synchronously, the seepage field of the construction region was systematically analyzed and simulated, the results of which exhibit that the double fractured media model of fracture water can comprehensively and correctly describe the geological and hydrogeological conditions in the construction region.

  8. A fully-coupled geomechanics and flow model for hydraulic fracturing and reservoir engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Charoenwongsa, S.; Kazemi, H.; Miskimins, J.; Fakcharoenphol [Colorado School of Mines, Golden, CO (United States)


    A fully coupled geomechanics flow model was used to assess how the changes in pore pressure and temperature influence rock stresses in tight gas reservoirs. The finite difference method was used to develop simulations for phases, components, and thermal stresses. A wave component was used to model the propagation of the strain displacement front as well as changes in stress with time. Fluid and heat flow volumes were modelled separately from rock formation properties. The influence of hydraulic fracturing on stress distributions surrounding the fracture was investigated as well as the effect of filter cake and filtrate. Results of the study showed that significant changes in shear stresses near hydraulic fractures occur as a result of hydraulic fracture face displacement perpendicular to the fracture face. While temperature effects also caused changes in stress distributions, changes in pore pressure did not significantly impact shear stresses as the filtrate did not travel very far into the reservoir. 17 refs., 17 figs.

  9. A phase-field model for ductile fracture at finite strains and its experimental verification (United States)

    Ambati, Marreddy; Kruse, Roland; De Lorenzis, Laura


    In this paper, a phase-field model for ductile fracture previously proposed in the kinematically linear regime is extended to the three-dimensional finite strain setting, and its predictions are qualitatively and quantitatively compared with several experimental results, both from ad-hoc tests carried out by the authors and from the available literature. The proposed model is based on the physical assumption that fracture occurs when a scalar measure of the accumulated plastic strain reaches a critical value, and such assumption is introduced through the dependency of the phase-field degradation function on this scalar measure. The proposed model is able to capture the experimentally observed sequence of elasto-plastic deformation, necking and fracture phenomena in flat specimens; the occurrence of cup-and-cone fracture patterns in axisymmetric specimens; the role played by notches and by their size on the measured displacement at fracture; and the sequence of distinct cracking events observed in more complex specimens.

  10. Lattice modeling of fracture processes in numerical concrete with irregular shape aggregates

    NARCIS (Netherlands)

    Qian, Z.; Schlangen, H.E.J.G.


    The fracture processes in concrete can be simulated by lattice fracture model [1]. A lattice network is usually constructed on top of the material structure of concrete, and then the mechanical properties of lattice elements are assigned, corresponding with the phases they represent. The material st

  11. Virtual fracture reduction of the acetabulum using a rigid body biomechanical model


    Boudissa, Mehdi; Chabanas, Matthieu; Oliveri, Hadrien; Tonetti, Jérôme


    International audience; Acetabular fractures are a challenge in orthopaedic surgery. A simple rigid body biomechanical model of the hip is proposed to simulate the fracture reduction. The action of surgical tools can be simulated interactively, which enables clinicians to evaluate different strategies for a better surgical planning.

  12. Coupled continuum modeling of fracture reactivation and induced seismicity during enhanced geothermal operations

    NARCIS (Netherlands)

    Wassing, B.B.T.; Wees, J.D. van; Fokker, P.A.


    We developed a coupled code to obtain a better understanding of the role of pore pressure changes in causing fracture reactivation and seismicity during EGS. We implemented constitutive models for fractures in a continuum approach, which is advantageous because of the ease of integration in existing

  13. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation (United States)

    Mendoza-Torres, F.; Diaz-Viera, M. A.


    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  14. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))


    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  15. Energy dissipation and contour integral characterizing fracture behavior of incremental plasticity

    Institute of Scientific and Technical Information of China (English)

    Qi-Lin He; Lin-Zhi Wu; Ming Li; Hong-Bo Chen


    Jep-integral is derived for characterizing the fracture behavior of elastic-plastic materials. The Jep-integral differs from Rice's J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The Jep-integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The Jep-integral possesses clearly clear physical meaning: (1) the value Jeptjp evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of Jepfar-ss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.

  16. Numerical investigations of rib fracture failure models in different dynamic loading conditions. (United States)

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam


    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  17. Requirements for investigating the temperature-dependent fracture behavior of irradiated materials by indentation

    Energy Technology Data Exchange (ETDEWEB)

    Sacksteder, Irène, E-mail: [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany); Hostettler, Simon [Synton-MDP Inc., Nidau (Switzerland); Charbonneau, Grégoire; Albinski, Bartlomiej; Schneider, Hans-Christian [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen (Germany)


    Highlights: • A custom-made indenter is designed for indentations at high temperature. • The instrumented indentation technique at high temperature will be used to investigate temperature dependent fracture mechanisms in structural materials. • A finite-element based model has been validated with a view to predict crack initiation and propagation in Eurofer97 and tungsten-like materials. -- Abstract: The instrumented indentation technique is an interesting testing tool to examine temperature-dependent fracture mechanisms. It is planned to be used to generate cracks at defined temperatures in hard and brittle metallic materials. The present study describes the properties needed for the use of a new type of indenter operating at high temperature. The indenter was designed to meet mechanical and thermal requirements and other constraints relating to the operation of functional units of the indentation instrument. Additionally, a finite element model has been built with a view to predict indentation induced cracks in Eurofer97 and tungsten. The model has been validated both with the theory of Hertz and experimentally by comparison with indentation curves.

  18. A Methodology for Calculating EGS Electricity Generation Potential Based on the Gringarten Model for Heat Extraction From Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad


    Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGS electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.

  19. Fracture behavior of structurally compromised non-vital maxillary premolars restored using experimental fiber reinforced composite crowns.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Kreulen, C.M.; Bell-Ronnlof, A.M. Le; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H.J.


    PURPOSE: To study the fracture behavior of direct resin composite crowns with or without experimental fiber reinforcement. METHODS: Clinical crowns of single-rooted maxillary premolars were cut off at the cemento-enamel junction. Canals were prepared with Gates Glidden drills up to size 4. No additi

  20. SR 97 - Alternative models project. Discrete fracture network modelling for performance assessment of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, B.; Eiben, T. [Golder Associates Inc., Seattle (United States); Follin, S.; Andersson, Johan [Golder Grundteknik KB, Stockholm (Sweden)


    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modeling approaches for geosphere performance assessment for a single hypothetical site. The hypothetical site, arbitrarily named Aberg is based on parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The Aberg model domain, boundary conditions and canister locations are defined as a common reference case to facilitate comparisons between approaches. This report presents the results of a discrete fracture pathways analysis of the Aberg site, within the context of the SR 97 performance assessment exercise. The Aberg discrete fracture network (DFN) site model is based on consensus Aberg parameters related to the Aespoe HRL site. Discrete fracture pathways are identified from canister locations in a prototype repository design to the surface of the island or to the sea bottom. The discrete fracture pathways analysis presented in this report is used to provide the following parameters for SKB's performance assessment transport codes FARF31 and COMP23: * F-factor: Flow wetted surface normalized with regards to flow rate (yields an appreciation of the contact area available for diffusion and sorption processes) [TL{sup -1}]. * Travel Time: Advective transport time from a canister location to the environmental discharge [T]. * Canister Flux: Darcy flux (flow rate per unit area) past a representative canister location [LT{sup -1}]. In addition to the above, the discrete fracture pathways analysis in this report also provides information about: additional pathway parameters such as pathway length, pathway width, transport aperture, reactive surface area and transmissivity, percentage of canister locations with pathways to the surface discharge, spatial pattern of pathways and pathway discharges, visualization of pathways, and

  1. Analytical modeling of gas production rate in tight channel sand formation and optimization of artificial fracture. (United States)

    Wang, Ruifei; Song, Hongqing; Tang, Hewei; Wang, Yuhe; Killough, John; Huang, Gang


    Permeability variation in tight channel sand formation makes an important role in gas production. Based on the features of channel sand formation, a mathematical model has been established considering anisotropy of permeability. The analytical solutions were derived for productivity of both vertical wells and vertically fractured wells. Simulation results show that, gas production rate of anisotropic channel sand formation is less than that of isotropic formation. For vertically fractured well, artificial fracture direction, drainage radius, permeability ratio and fracture half-length have considerable influence on production rate. The optimum fracture direction should be deviated less than π/8 from the maximum permeability direction (or the channel direction). In addition, the analytical model was verified by in situ measured data. The research provides theoretical basis for the development of tight channel sand gas reservoirs.

  2. Ab initio-based fracture toughness estimates and transgranular traction-separation modelling of zirconium hydrides (United States)

    Olsson, P. A. T.; Kese, K.; Kroon, M.; Alvarez Holston, A.-M.


    In this work we report the results of an ab initio study of the transgranular fracture toughness and cleavage of brittle zirconium hydrides. We use the Griffith-Irwin relation to assess the fracture toughness using calculated surface energy and estimated isotropic Voigt-Reuss-Hill averages of the elastic constants. The calculated fracture toughness values are found to concur well with experimental data, which implies that fracture is dominated by cleavage failure. To investigate the cleavage energetics, we model the decohesion process. To describe the interplanar interaction we adopt Rose’s universal binding energy relation, which is found to reproduce the behaviour accurately. The modelling shows that the work of fracture and ductility decreases with increasing hydrogen content.

  3. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan


    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  4. Weibull Probability Model for Fracture Strength of Aluminium (1101)-Alumina Particle Reinforced Metal Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    A.Suresh Babu; V.Jayabalan


    In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus.Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function.In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 μm)reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model.Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained.Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications.An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.

  5. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.


    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  6. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations (United States)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing


    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  7. An extended finite element model for modelling localised fracture of reinforced concrete beams in fire


    Liao, F; Huang, Z.


    Open Access funded by Engineering and Physical Sciences Research Council under a Creative Commons license. A robust finite element procedure for modelling the localised fracture of reinforced concrete beams at elevated temperatures is developed. In this model a reinforced concrete beam is represented as an assembly of 4-node quadrilateral plain concrete, 3-node main reinforcing steel bar, and 2-node bond-link elements. The concrete element is subdivided into layers for considering the temp...

  8. Development of an Animal Model of Thoracolumbar Burst Fracture-Induced Acute Spinal Cord Injury (United States)



  9. Development of an Animal Model of Thoracolumbar Burst Fracture Induced Acute Spinal Cord Injury (United States)


    AWARD NUMBER: W81XWH-14-2-0013 TITLE: DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE- INDUCED ACUTE SPINAL CORD INJURY...2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY 5b...controlled spinal cord impactor for use in large animal models of SCI in order to more reliably recreate the human injury. A custom designed spinal cord

  10. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    Energy Technology Data Exchange (ETDEWEB)


    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.

  11. Development and implementation of a fluid flow code to evaluate block hydraulic behaviors of the fractured rock masses (United States)

    Um, Jeong-Gi; Han, Jisu; Lee, Dahye; Cho, Taechin


    A computer program code was developed to estimate the hydraulic head distribution through the 2-D DFN(discrete fracture network) blocks considering hydraulic aperture of the individual fractures, and to determine flow quantity, directional block hydraulic conductivity and principal hydraulic conductivity tensor according to fracture geometry such as orientation, frequency and size of the fracture network systems. The generated stochastic DFN system is assumed to have a network structure in which the equivalent flow pipe composed linear fractures is complexly connected. DFN systems often include individual or group of sub-network that are isolated from a network that can act as fluid flow passages from one flow boundary to another, and the fluid flow is completely blocked due to lack of connectivity. Fractures that are completely or partially isolated in the DFN system do not contribute to the overall fluid flow through the DFN system and add to the burden of numerical computation. This sometimes leads to numerical instability and failure to provide a solution. In this study, geometric and mathematical routines were designed and implemented to classify and eliminate such sub-networks. The developed program code can calculate the total head at each node connected to the flow path with various aperture as well as hydraulic conductivity of the individual flow pipe using the SOR method. Numerical experiments have been carried out to explore the applicability of the developed program code. A total of 108 stochastic 2-D DFN blocks of 20 m×20 m with various hydraulic aperture were prepared using two joint sets with fixed input parameters of fracture orientation, frequency and size distribution. The hydraulic anisotropy and the chance for equivalent continuum behavior of the DFN system were found to depend on the variability of fracture aperture.

  12. Microstructural parameters governing cleavage fracture behaviors in the ductile-brittle transition region in reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won-Jon; Lee, Bong-Sang; Oh, Yong-Jun; Huh, Moo-Young; Hong, Jun-Hwa


    The fracture behaviors in the ductile-brittle transition region of reactor pressure vessel (RPV) steels with similar chemical compositions but different manufacturing processes were examined in view of cleavage fracture stress at crack-tip. The steels typically had a variation in grain size and carbide size distribution through the different manufacturing processes. Fracture toughness was evaluated by using a statistical method in accordance to the ASTM standard E1921. From the fractography of the tested specimens, it was found that fracture toughness of the steels increased with increasing distance from the crack-tip to the cleavage initiating location, namely cleavage initiation distance (CID, X{sub f}) and its statistical mean value (K{sub JC(med)}) was proportional to the cleavage fracture stress ({sigma}{sub f}) determined from finite-element (FE) calculation at cleavage initiating location. On the other hand, {sigma}{sub f} could also be calculated by applying the size of microstructural parameters, such as carbide, grain and bainite packet, into the Griffith's theory for brittle fracture. Among the parameters, the {sigma}{sub f} obtained from the mean diameter of the carbides above 1% of the total population was in good agreement with the {sigma}{sub f} value from the FE calculation for the five different steels. The results suggest that the fracture toughness of bainitic RPV steels in the transition region is mostly influenced by only some 1% of total carbides and the critical step for cleavage fracture of the RPV steels should be the propagation of this carbide size crack to the adjacent ferrite matrix.

  13. Physical chemistry of glass fracture

    Energy Technology Data Exchange (ETDEWEB)

    Michalske, T.A. [Sandia National Laboratories, Albuquerque, NM (United States)


    Since silica glass is a brittle material, its susceptibility to fracture often limits its use in technological applications. Previous studies have demonstrated that the fracture resistance of silica glass is decreased greatly by the presence of chemically reactive species such as water. By studying the effect of controlled amounts of reactive gases on the fracture rate in silica glass, the authors have developed chemical kinetics based models to describe the molecular level processes that lead to stress corrosion fracture of glass. A key aspect of our chemical kinetics based model is the measurement of the stress dependence for the hydrolysis of siloxane bonds. The authors derive the stress dependence for hydrolysis from reaction rate studies that are conducted on strained cyclosiloxane model compounds. The chemical kinetic parameter derived from model compounds is used to successfully predict the fracture behavior of bulk silica glass and the mechanical fatigue of high-strength silica glass fibers in various reactive chemical environments.

  14. Evaluation of fracture models through pressurized-thermal-shock testing

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C.E.; Bryan, R.H.; Bass, B.R.; Nanstad, R.K.


    Two multiple-transient pressurized-thermal-shock experiments (PTSEs) have been conducted under the NRC-sponsored Heavy-Section Steel Technology (HSST) program. The first test (PTSE-1) employed an SA-508 class 2 steel with high Charpy upper-shelf energy level and a relatively high brittle-to-ductile transition temperature. The second test (PTSE-2) used a 2 1/4 Cr-1 Mo steel (SA-387 grade 22) that had been given a special heat treatment to yield a low Charpy upper-shelf energy level and attendant low tearing resistance. Each experiment included two combined thermal and pressure transients that give rise to propagation and arrest of an initial long flaw that extended about 10% through the thick wall of the test cylinder. Both materials exhibited the ability to inhibit crack propagation by warm prestressing, high initiation toughness values and high crack-arrest toughness values. Cleavage initiation and arrest are modeled well by available fracture theories. However, calculations of ductile tearing based on resistance curves did not consistently predict the observed tearing.

  15. Mathematical modelling on transport of petroleum hydrocarbons in saturated fractured rocks

    Indian Academy of Sciences (India)

    G Suresh Kumar


    The present paper addresses critical issues that describe the dissolution mass transfer of petroleum hydrocarbons in a saturated subsurface system. The field procedure associated with the estimation of Light Non-Aqueous Phase Liquid (LNAPL) thickness in site monitor wells is revisited. A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly complex and limited, and hence, deserve a special attention as the fate and transport of the petroleum hydrocarbons are not uncommon in saturated fractured rocks. In this context, an improved mathematical model has been proposed that will better describe the dissolution kinetics of petroleum hydrocarbons in saturated fractured rocks at the scale of a single fracture using dual-porosity concept. The lumped mass transfer coefficient in a classical porous medium proposed depends on mean grain size, while the same parameter has been replaced by an equivalent average thickness of fracture aperture that better describes the LNAPL dissolution rate in a coupled fracture-matrix system. A set of nonlinear coupled partial differential equations is deduced for a coupled fracture-matrix system in analogy with the differential equations of a classical porous medium. The proposed mathematical model may work well for the fracture aperture thicknesses varying between 100 and 500 microns with a relatively low Reynolds Number and initial NAPL saturation.

  16. On our best behavior: optimality models in human behavioral ecology. (United States)

    Driscoll, Catherine


    This paper discusses problems associated with the use of optimality models in human behavioral ecology. Optimality models are used in both human and non-human animal behavioral ecology to test hypotheses about the conditions generating and maintaining behavioral strategies in populations via natural selection. The way optimality models are currently used in behavioral ecology faces significant problems, which are exacerbated by employing the so-called 'phenotypic gambit': that is, the bet that the psychological and inheritance mechanisms responsible for behavioral strategies will be straightforward. I argue that each of several different possible ways we might interpret how optimality models are being used for humans face similar and additional problems. I suggest some ways in which human behavioral ecologists might adjust how they employ optimality models; in particular, I urge the abandonment of the phenotypic gambit in the human case.

  17. An Integrated Modeling Analysis of Unsaturated Flow Patterns inFractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.


    Characterizing percolation patterns in unsaturated zones hasposed a greater challenge to numerical modeling investigations thancomparable saturated zone studies, because of the heterogeneous nature ofunsaturated media as well as the great number of variables impactingunsaturated zone flow. This paper presents an integrated modelingmethodology for quantitatively characterizing percolation patterns in theunsaturated zone of Yucca Mountain, Nevada, a proposed undergroundrepository site for storing high-level radioactive waste. It takes intoaccount the multiple coupled processes of air, water, heat flow andchemical isotopic transport in Yucca Mountain s highly heterogeneous,unsaturated fractured tuffs. The modeling approach integrates a widevariety of moisture, pneumatic, thermal, and isotopic geochemical fielddata into a comprehensive three-dimensional numerical model for modelinganalyses. Modeling results are examined against different types offield-measured data and then used to evaluate different hydrogeologicalconceptual models and their results of flow patterns in the unsaturatedzone. In particular, this integration model provides a much clearerunderstanding of percolation patterns and flow behavior through theunsaturated zone, both crucial issues in assessing repositoryperformance. The integrated approach for quantifying Yucca Mountain sflow system is also demonstrated to provide a comprehensive modeling toolfor characterizing flow and transport processes in complex subsurfacesystems.

  18. Creating Three-dimensional Printed Models of Acetabular Fractures for Use as Educational Tools. (United States)

    Manganaro, Matthew S; Morag, Yoav; Weadock, William J; Yablon, Corrie M; Gaetke-Udager, Kara; Stein, Erica B


    Acetabular fractures are frequently encountered in some clinical practices, and the precise classification of these fractures greatly influences treatments and outcomes. The authors identified the need for an educational aid when teaching acetabular fracture classifications, given the complex spatial anatomy and the nonintuitive classification system that is commonly used. Three-dimensional ( 3D three-dimensional ) printing is an evolving technique that has applications as an educational aid, providing the student with a tangible object to interact with and learn from. In this article, the authors review their experience creating 3D three-dimensional printed models of the hip for educational purposes. Their goal was to create 3D three-dimensional printed models for use as educational aids when teaching acetabular fracture classifications. Complex cases involving a combination of fracture types, subtle nondisplaced fractures, and/or fractures with associated osteopenia or artifacts were excluded. The selected computed tomographic (CT) scans were loaded into a medical 3D three-dimensional volume-rendering program, and a 3D three-dimensional volumetric model was created. Standard Tessellation Language ( STL Standard Tessellation Language ) files were then exported to STL Standard Tessellation Language model-editing software and edited to retain only the involved hemipelvis. In some cases, the proximal femur and ipsilateral hemisacrum may be included to emphasize hip alignment or disruption of the force transfer. Displaced fracture fragments can be printed as separate segments or a single unit after the addition of struts. Printing was performed by using an additive manufacturing principle, with approximately 36-48 hours needed for printing, postprocessing, and drying. The cost to print a 1:1 scale model was approximately $100-$200, depending on the amount of plastic material used. These models can then be painted according to the two-column theory regarding acetabular

  19. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity (United States)

    Gelet, R.; Loret, B.; Khalili, N.


    The constitutive thermo-hydro-mechanical equations of fractured media are embodied in the theory of mixtures applied to three-phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro-mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.

  20. Quasi-static tensile deformation and fracture behavior of a highly particle-filled composite using digital image correlation method

    Institute of Scientific and Technical Information of China (English)


    Polymer bonded explosives (PBXs) are highly particle-filled composite materials.This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (SCB) test.The deformation and fracture process of a pre-notched SCB sample with a random speckle pattern is recorded by a charge coupled device camera.The displacement and strain fields on the observed surface during the loading process are obtained by using the digital image correlation method....

  1. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.


    The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

  2. New P3D Hydraulic Fracturing Model Based on the Radial Flow

    Institute of Scientific and Technical Information of China (English)

    鲁连军; 孙逢春; 肖海华; 安申法


    Pseudo three-dimension (P3D) hydraulic fracturing models often overpredict the fracture height for a poorly contained fracture. To solve this problem, a new method is presented in shaping the P3D fracture geometry on the basis of the fundamental theory and the original 1D fluid flow is replaced with a more representatively radial flow. The distribution of the fluid in the modified fluid field is analyzed and a sound explanation to the problem is given. Due to the consideration of the fluid flow in the vertical direction, the modified model can predict the fracture height much better. To validate the rationality of the radial fluid flow assumption, the distribution of the fluid in the modified fluid field is simulated with the plane potential flow by using finite element method. And the results agree effectively with those from the assumption. Through comparing with the full 3D model, the results show that this new P3D model can be used to aid the fracturing design and predict the fracture height under poorly contained situation.

  3. Influence of Nickel Particle Reinforcement on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Composite

    Directory of Open Access Journals (Sweden)

    Manoj Gupta


    Full Text Available The microstructure, tensile properties, cyclic stress amplitude fatigue response and final fracture behavior of a magnesium alloy, denoted as AZ31, discontinuously reinforced with nano-particulates of aluminum oxide and micron size nickel particles is presented and discussed. The tensile properties, high cycle fatigue and final fracture behavior of the discontinuously reinforced magnesium alloy are compared with the unreinforced counterpart (AZ31. The elastic modulus and yield strength of the dual particle reinforced magnesium alloy is marginally higher than of the unreinforced counterpart. However, the tensile strength of the composite is lower than the monolithic counterpart. The ductility quantified by elongation to failure over 0.5 inch (12.7 mm gage length of the test specimen showed minimal difference while the reduction in specimen cross-section area of the composite is higher than that of the monolithic counterpart. At the microscopic level, cyclic fatigue fractures of both the composite and the monolithic alloy clearly revealed features indicative of the occurrence of locally ductile and brittle mechanisms. Over the range of maximum stress and at two different load ratios the cyclic fatigue resistance of the magnesium alloy composite is superior to the monolithic counterpart. The mechanisms responsible for improved cyclic fatigue life and resultant fracture behavior of the composite microstructure are highlighted.

  4. Influence of geometry on the fracturing behavior of textile reinforced cement monitored by acoustic emission (United States)

    Aggelis, D. G.; Blom, J.; El Kadi, M.; Wastiels, J.


    In this work the flexural behavior of textile reinforced cement (TRC) laminate is examined using acoustic emission (AE). The TRC composite is a combination of inorganic phosphate cement (IPC) with randomly distributed glass fibres. IPC has been developed at the "Vrije Universiteit Brussel" and shows a neutral pH meaning that glass fibers are hardly attacked. During bending, stresses lead to the activation of damage mechanisms like matrix cracking, delaminations and fiber pull-out being in succession or overlapping in time. AE records the responses of the damage propagation events and allows the monitoring of the fracture behavior from the onset to the final stage. The effect of the span in three-point bending tests, which is varied to create different stress fields, is targeted. Parameters like duration and frequency reveal information about the mode of the damage sources in relation to the span. Results show that as the span decreases, the dominant damage mode shifts away from bending and acquires more shear characteristics by increasing the interlaminar shearing events.

  5. Fractured Identity: A Framework for Understanding Young Asian American Women's Self-harm and Suicidal Behaviors. (United States)

    Hahm, Hyeouk Chris; Gonyea, Judith G; Chiao, Christine; Koritsanszky, Luca Anna


    Despite the high suicide rate among young Asian American women, the reasons for this phenomenon remain unclear. This qualitative study explored the family experiences of 16 young Asian American women who are children of immigrants and report a history of self-harm and/or suicidal behaviors. Our findings suggest that the participants experienced multiple types of "disempowering parenting styles" that are characterized as: abusive, burdening, culturally disjointed, disengaged, and gender-prescriptive parenting. Tied to these family dynamics is the double bind that participants suffer. Exposed to multiple types of negative parenting, the women felt paralyzed by opposing forces, caught between a deep desire to satisfy their parents' expectations as well as societal expectations and to simultaneously rebel against the image of "the perfect Asian woman." Torn by the double bind, these women developed a "fractured identity," which led to the use of "unsafe coping" strategies. Trapped in a "web of pain," the young women suffered alone and engaged in self-harm and suicidal behaviors.

  6. Hygrothermal effects on dynamic mechanical snalysis and fracture behavior of polymeric composites

    Directory of Open Access Journals (Sweden)

    Michelle Leali Costa


    Full Text Available Polymer composites used above their glass transition temperatures Tg present a substantial degradation of physical properties; therefore a material's glass transition temperature and its change with moisture absorption are of practical importance. Little attention has been paid to the role of the adhesive bonding between the reinforcing fiber and matrix, particularly for BMI matrix. In this work the effect of moisture on the dynamic mechanical behavior and the fiber/matrix interface was investigated. Two systems were evaluated: carbon fabric/epoxy and carbon fabric/bismaleimide laminates. The results demonstrated that the moisture absorbed by the laminates causes either reversible or irreversible plasticization of the matrix. The humidity combined with the temperature effects may cause significant changes in the Tg matrix and toughness affecting the laminate strength. Moisture absorption was correlated to the fracture mode of the laminate demonstrating the deleterious effect of moisture on the interface. This leads to debonding between fiber and matrix. This behavior was investigated by scanning electron microscopy and dynamic mechanical analysis.

  7. Analysis and modeling of parking behavior

    Institute of Scientific and Technical Information of China (English)


    Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibrium with a positive parking fee and uses a paired combinatorial logit model to analyze the effect of trip integrative cost on parking behavior and concludes from empirical results that the parking behavior model performs well.

  8. Numerical Simulation of Rock Fracturing under Uniaxial Compression Using Virtual Internal Bond Model

    Institute of Scientific and Technical Information of China (English)

    KE Chang-ren; JIANG Jun-ling; GE Xiu-run


    A multi-scale virtual internal bond (VIB) model for the isotropic materials has been recently proposed to describe the material deformation and fracturing. During the simulation process of material fracturing using VIB, the fracture criterion is directly built into the constitutive formulation of the material using the cohesive force law. Enlightened by the similarity of the damage constitutive model of rock under uniaxial compression and the cohesive force law of VIB, a VIB density function of rock under uniaxial compression is suggested. The elastic modulus tensor is formulated on the basis of the density function. Thus the complete deformation process of rock under the uniaxial compression is simulated.

  9. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G


    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  10. Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Hyun; Ha, Sang Yul; Kim, Ki Tae [Pohang University of Science and Technology, Pohang (Korea, Republic of)


    The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and {delta}5-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.

  11. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.;


    ). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand......A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation...... efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers...

  12. Analysis of mixed-mode fracture in concrete using interface elements and a cohesive crack model

    Indian Academy of Sciences (India)

    Víctor O García-Álvarez; Ravindra Gettu; Ignacio Carol


    The paper presents a model, based on nonlinear fracture mechanics, for analysing crack propagation in quasi-brittle materials, such as concrete. The work is limited to two-dimensions, and therefore, the fracture modes of interest are mode I (pure tension) and mode II (pure shear). The constitutive model has been implemented in the context of the finite element method using interface elements. The fracture is simulated through a discrete crack represented by the interface with a cohesive crack stress-separation relation derived from the model, which is based on a fracture criterion, together with a flow rule and a softening law. The model is used for simulating results from an experimental study on beams with centric and eccentric notches of high and normal strength concretes, and explaining other test results available in the literature.

  13. Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels

    CSIR Research Space (South Africa)

    Sellers, EJ


    Full Text Available A series of physical and numerical model tests were performed to investigate the behaviour of the rock surrounding circular excavations under high confining pressures. The aim was to provide information on the formation of fractures around deep...

  14. Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture (United States)

    Yang, Lang; Peel, Nicola; Clowes, Jackie A; McCloskey, Eugene V; Eastell, Richard


    Several DXA-based structural engineering models (SEMs) of the proximal femur have been developed to estimate stress caused by sideway falls. Their usefulness in discriminating hip fracture has not yet been established and we therefore evaluated these models. The hip DXA scans of 51 postmenopausal women with hip fracture (30 femoral neck, 17 trochanteric, and 4 unspecified) and 153 age-, height-, and weight-matched controls were reanalyzed using a special version of Hologic’s software that produced a pixel-by-pixel BMD map. For each map, a curved-beam, a curved composite-beam, and a finite element model were generated to calculate stress within the bone when falling sideways. An index of fracture risk (IFR) was defined over the femoral neck, trochanter, and total hip as the stress divided by the yield stress at each pixel and averaged over the regions of interest. Hip structure analysis (HSA) was also performed using Hologic APEX analysis software. Hip BMD and almost all parameters derived from HSA and SEM were discriminators of hip fracture on their own because their ORs were significantly >1. Because of the high correlation of total hip BMD to HSA and SEM-derived parameters, only the bone width discriminated hip fracture independently from total hip BMD. Judged by the area under the receiver operating characteristics curve, the trochanteric IFR derived from the finite element model was significant better than total hip BMD alone and similar to the total hip BMD plus bone width in discriminating all hip fracture and femoral neck fracture. No index was better than total hip BMD for discriminating trochanteric fractures. In conclusion, the finite element model has the potential to replace hip BMD in discriminating hip fractures. PMID:18767924

  15. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics (United States)

    Benz, W.; Asphaug, E.


    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  16. A practical model for fluid flow in discrete-fracture porous media by using the numerical manifold method (United States)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan


    In this study, a numerical manifold method (NMM) model is developed to analyze flow in porous media with discrete fractures in a non-conforming mesh. This new model is based on a two-cover-mesh system with a uniform triangular mathematical mesh and boundary/fracture-divided physical covers, where local independent cover functions are defined. The overlapping parts of the physical covers are elements where the global approximation is defined by the weighted average of the physical cover functions. The mesh is generated by a tree-cutting algorithm. A new model that does not introduce additional degrees of freedom (DOF) for fractures was developed for fluid flow in fractures. The fracture surfaces that belong to different physical covers are used to represent fracture flow in the direction of the fractures. In the direction normal to the fractures, the fracture surfaces are regarded as Dirichlet boundaries to exchange fluxes with the rock matrix. Furthermore, fractures that intersect with Dirichlet or Neumann boundaries are considered. Simulation examples are designed to verify the efficiency of the tree-cutting algorithm, the calculation's independency from the mesh orientation, and accuracy when modeling porous media that contain fractures with multiple intersections and different orientations. The simulation results show good agreement with available analytical solutions. Finally, the model is applied to cases that involve nine intersecting fractures and a complex network of 100 fractures, both of which achieve reasonable results. The new model is very practical for modeling flow in fractured porous media, even for a geometrically complex fracture network with large hydraulic conductivity contrasts between fractures and the matrix.

  17. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L. [Argonne National Lab., IL (United States)


    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  18. Behavioral animal models of depression. (United States)

    Yan, Hua-Cheng; Cao, Xiong; Das, Manas; Zhu, Xin-Hong; Gao, Tian-Ming


    Depression is a chronic, recurring and potentially life-threatening illness that affects up to 20% of the population across the world. Despite its prevalence and considerable impact on human, little is known about its pathogenesis. One of the major reasons is the restricted availability of validated animal models due to the absence of consensus on the pathology and etiology of depression. Besides, some core symptoms such as depressed mood, feeling of worthlessness, and recurring thoughts of death or suicide, are impossible to be modeled on laboratory animals. Currently, the criteria for identifying animal models of depression rely on either of the 2 principles: actions of known antidepressants and responses to stress. This review mainly focuses on the most widely used animal models of depression, including learned helplessness, chronic mild stress, and social defeat paradigms. Also, the behavioral tests for screening antidepressants, such as forced swimming test and tail suspension test, are also discussed. The advantages and major drawbacks of each model are evaluated. In prospective, new techniques that will be beneficial for developing novel animal models or detecting depression are discussed.

  19. Upscaling of the specific surface area for reactive transport modelling in fractured rock (United States)

    Cvetkovic, Vladimir


    The impact of flow heterogeneity on chemical transport from single to multiple fractures, is investigated. The emphasis is on the dynamic nature of the specific surface area (SSA) due to heterogeneity of the flow, relative to a purely geometrical definition. It is shown how to account for SSA as a random variable in modelling multi-component reactions. The flow-dependent SSA is interpreted probabilistically, following inert tracer particles along individual fractures. Upscaling to a fracture network is proposed as a time-domain random walk based on the statistics of SSA for single fractures. Statistics of SSA are investigated for three correlation structures of transmissivity, one classical multi-gaussian, and two non-Gaussian. The coefficient of variation of single fracture SSA decreases monotonously with the distance over the fracture length; the CV of the upscaled SSA reduces further such that after ca 20 fractures it is under 0.1 for a disconnected field, and around 0.2 for connected and multi-gaussian fields. This implies that after 10-20 fractures, uncertainty in SSA is significantly reduced, justifying the use of an effective value. A conservative, lower bound for the dimensionless upscaled effective SSA was found to be 1, suitable for all heterogeneity structures, assuming the cubic hydraulic law applicable.

  20. Recent Developments in Multiscale and Multiphase Modelling of the Hydraulic Fracturing Process

    Directory of Open Access Journals (Sweden)

    Yong Sheng


    Full Text Available Recently hydraulic fracturing of rocks has received much attention not only for its economic importance but also for its potential environmental impact. The hydraulically fracturing technique has been widely used in the oil (EOR and gas (EGR industries, especially in the USA, to extract more oil/gas through the deep rock formations. Also there have been increasing interests in utilising the hydraulic fracturing technique in geological storage of CO2 in recent years. In all cases, the design and implementation of the hydraulic fracturing process play a central role, highlighting the significance of research and development of this technique. However, the uncertainty behind the fracking mechanism has triggered public debates regarding the possible effect of this technique on human health and the environment. This has presented new challenges in the study of the hydraulic fracturing process. This paper describes the hydraulic fracturing mechanism and provides an overview of past and recent developments of the research performed towards better understandings of the hydraulic fracturing and its potential impacts, with particular emphasis on the development of modelling techniques and their implementation on the hydraulic fracturing.

  1. Particle Decision Making Processes in Fractured Media: The Battle Between Models (United States)

    Sund, N. L.; Parashar, R.; Pham, H. V.


    During a random walk through a discrete fracture network, a particle moves at a constant velocity through a fracture segment and when it arrives at a fracture intersection it chooses a path, changes velocity, and repeats the process. The set of possible velocities the particle may choose depends on which intersection it is at, inducing a correlation between its current and next velocity. This process of traveling at a constant velocity then choosing a new velocity is also a good approximation to transport in (non-fractured) porous media.For times greater than the Taylor time scale (L^2/D, where L is the length scale over which a particle must travel to sample the full range of velocities in the system and D is the diffusion coefficient), the particle's decision making process can be neglected. In fractured and highly heterogeneous porous media, however, this length scale (and time scale consequently) can be prohibitively long. Even for field scale applications, it's possible that this decision making process may not be neglected. Several upscaled models have been developed that either explicitly or implicitly model this decision making process, including continuous time random walk with a coupled space and time step distribution, multi-rate mass transfer models, the spatial Markov model, and a hybrid approach based on the Boltzmann transport equation. We ask: how do these models perform in predicting transport at scales of interest? To answer this question, we upscale transport using a variety of models in simple 2D discrete fracture networks, where transport through each fracture is purely advective (no longitudinal diffusion), yet fully mixed (infinite transverse diffusion) and there is no mass exchange between the fracture network and the rock matrix it is embedded in. This simplified testing ground reveals whether the question of "how" to model the decision process is as important as "whether" to model it.

  2. Mass Transport Modelling in low permeability Fractured Rock: Eulerian versus Lagrangian approaches. (United States)

    Capilla, J. E.; Rodrigo, J.; Llopis, C.; Grisales, C.; Gomez-Hernandez, J. J.


    Modeling flow and mass transport in fractured rocks can not be always successfully addressed by means of discrete fracture models which can fail due to the difficulty to be calibrated to experimental measurements. This is due to the need of having an accurate knowledge of fractures geometry and of the bidimensional distribution of hydrodynamic parameters on them. Besides, these models tend to be too rigid in the sense of not being able to re-adapt themselves correcting deficiencies or errors in the fracture definition. An alternative approach is assuming a pseudo-continuum media in which fractures are represented by the introduction of discretization blocks of very high hydraulic conductivity (K). This kind of model has been successfully tested in some real cases where the stochastic inversion of the flow equation has been performed to obtain equally likely K fields. However, in this framework, Eulerian mass transport modeling yields numerical dispersion and oscillations that make very difficult the analysis of tracer tests and the inversion of concentration data to identify K fields. In this contribution we present flow and mass transport modelling results in a fractured medium approached by a pseudo-continuum. The case study considered is based on data from a low permeability formation and both Eulerian and Lagrangian approaches have been applied. K fields in fractures are modeled as realizations of a stochastic process conditional to piezometric head data. Both a MultiGaussian and a non-multiGaussian approches are evaluated. The final goal of this research is obtaining K fields able to reproduce field tracer tests. Results show the important numerical problems found when applying an Eurelian approach and the possibilities of avoiding them with a 3D implementation of the Lagrangian random walk method. Besides, we see how different can be mass transport predictions when Gaussian and non-Gaussian models are assumed for K fields in fractures.

  3. Extremely Low-Stress Triaxiality Tests in Calibration of Fracture Models in Metal-Cutting Simulation (United States)

    Šebek, František; Kubík, Petr; Petruška, Jindřich; Hůlka, Jiří


    The cutting process is now combined with machining, milling, or drilling as one of the widespread manufacturing operations. It is used across various fields of engineering. From an economical point of view, it is desirable to maintain the process in the most effective way in terms of the fracture surface quality or minimizing the burr. It is not possible to manage this experimentally in mass production. Therefore, it is convenient to use numerical computation. To include the crack initiation and propagation in the computations, it is necessary to implement a suitable ductile fracture criterion. Uncoupled ductile fracture models need to be calibrated first from fracture tests when the test selection is crucial. In the present article, there were selected widespread uncoupled ductile fracture models calibrated with, among others, an extremely low-stress triaxiality test realized through the compression of a cylinder with a specific recess. The whole experimental program together with the cutting process experiment were carried out on AISI 1045 carbon steel. After the fracture models were calibrated and the cutting process was simulated with their use, fracture surfaces and force responses from computations were compared with those experimentally obtained and concluding remarks were made.

  4. A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait. (United States)

    Fritz, Jessica M; Guan, Yabo; Wang, Mei; Smith, Peter A; Harris, Gerald F


    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder characterized by skeletal deformities and increased bone fragility. There is currently no established clinical method for quantifying fracture risk in OI patients. This study begins the development of a patient-specific model for femur fracture risk assessment and prediction based on individuals' gait analysis data, bone geometry from imaging and material properties from nanoindentation (Young's modulus=19 GPa, Poisson's ratio=0.3). Finite element models of the femur were developed to assess fracture risk of the femur in a pediatric patient with OI type I. Kinetic data from clinical gait analysis was used to prescribe loading conditions on the femoral head and condyles along with muscle forces on the bone's surface. von Mises stresses were analyzed against a fracture strength of 115 MPa. The patient with OI whose femur was modeled showed no risk of femoral fracture during normal gait. The highest stress levels occurred during the mid-stance and loading responses phases of gait. The location of high stress migrated throughout the femoral diaphysis across the gait cycle. Maximum femoral stress levels occurred during the gait cycle phases associated with the highest loading. The fracture risk (fracture strength/von Mises stress), however, was low. This study provides a relevant method for combining functional activity, material property and analytical methods to improve patient monitoring.

  5. Statistics of modelled conductive fractures based on Laxemar and Forsmark. Site descriptive model data

    Energy Technology Data Exchange (ETDEWEB)

    Stigsson, Martin


    The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section

  6. Modeling software behavior a craftsman's approach

    CERN Document Server

    Jorgensen, Paul C


    A common problem with most texts on requirements specifications is that they emphasize structural models to the near exclusion of behavioral models-focusing on what the software is, rather than what it does. If they do cover behavioral models, the coverage is brief and usually focused on a single model. Modeling Software Behavior: A Craftsman's Approach provides detailed treatment of various models of software behavior that support early analysis, comprehension, and model-based testing. Based on the popular and continually evolving course on requirements specification models taught by the auth

  7. Relationship of electrical resistance end morphological changes thigh rats after modeling of open fracture (experimental study

    Directory of Open Access Journals (Sweden)

    Pavlova T.M.


    Full Text Available Background. Due to the development of industry, increasing number of vehicles on the roads rate of traumatic injuries among adult population causing disability and mortality is still high in all countries of the world. Among all fractures of long bones open diaphyseal fractures ranges from 28% to 53%. Objective. To study the relationship of electrical resistance and morphological features of the femur of white male rats after modeling the open fracture. Methods. Studies were conducted on white male rats aged about 3 months. Digital multimeter UT70B was used to measure the electrical resistance of bones in experimental animals after 1 and 3 hours of experimental modeling of opened bone fracture. Histological and electron microscopic studies were performed to evaluate bone structure. Results. 1 hour after modeling an open bone fracture it was detected the presence of empty lacunae or gaps filled with detritus. 3 hours after the experiment cellular density in the first studied area was reduced 4.1 times, in the second area - 3.2 times comparing with the control. Conclusion. These histological examination and study of the electrical resistance of bone fragments after re-fracture (with or without coagulation fragments indicate similar changes in direction of the bone. Electrical resistance after testing in the clinical setting can be used for testing the bone fragments after an open fracture to assess viability. We have developed a technique for evaluation the electrical resistance making it possible to predict the viability of bone tissue with opened diaphyseal fractures of extremities on early stages. Citation: Pavlova TM, Berezka MI. [Relationship of electrical resistance end morphological changes thigh rats after mod-eling of open fracture (experimental study]. Morphologia. 2016;10(2:31-9. Ukrainian.

  8. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki [and others


    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  9. Well test analysis in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K.


    In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

  10. On the intergranular fracture behavior of high-temperature plastic deformation of 1420 Al-Li alloy

    Institute of Scientific and Technical Information of China (English)


    The tensile deformation hot simulation test of as-cast 1420 Al-Li alloy was performed on Gleeble-1500 Thermal Simulator in the deformation temperature range from 350 to 450 ℃, and the strain rate range from 0.01 to 10.0 s-1.The tensile fracture behavior of the 1420 Al-Li alloy at high temperature was studied experimently. The results show that the tensile fracture mode of the 1420 Al-Li alloy at high temperature is changed from typical transgranular ductile fracture to intergranular brittle fracture with the increase of the deformation temperature and the strain rate. It is made out that the precipitation of LiH is the fundamental reason for the intergranular brittle fracture of the 1420 Al-Li alloy at high temperature. The mechanism of hydrogen embrittlement of the 1420 Al-Li alloy at high temperature was discussed, and it was proposed that the hydrogen embrittlement at high temperature is an integrated function of the dynamic and the static force, which enrichs the theories of hydrogen embrittlement.

  11. Nonlinear System Identification and Behavioral Modeling

    CERN Document Server

    Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul


    The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.

  12. Numerical Modelling of Extended Leak-Off Test with a Pre-Existing Fracture (United States)

    Lavrov, A.; Larsen, I.; Bauer, A.


    Extended leak-off test (XLOT) is one of the few techniques available for stress measurements in oil and gas wells. Interpretation of the test is often difficult since the results depend on a multitude of factors, including the presence of natural or drilling-induced fractures in the near-well area. Coupled numerical modelling of XLOT has been performed to investigate the pressure behaviour during the flowback phase as well as the effect of a pre-existing fracture on the test results in a low-permeability formation. Essential features of XLOT known from field measurements are captured by the model, including the saw-tooth shape of the pressure vs injected volume curve, and the change of slope in the pressure vs time curve during flowback used by operators as an indicator of the bottomhole pressure reaching the minimum in situ stress. Simulations with a pre-existing fracture running from the borehole wall in the radial direction have revealed that the results of XLOT are quite sensitive to the orientation of the pre-existing fracture. In particular, the fracture initiation pressure and the formation breakdown pressure increase steadily with decreasing angle between the fracture and the minimum in situ stress. Our findings seem to invalidate the use of the fracture initiation pressure and the formation breakdown pressure for stress measurements or rock strength evaluation purposes.

  13. The research on delayed fracture behavior of high-strength bolts in steel structure (United States)

    Li, Guo dong; Li, Nan


    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  14. Fracture behaviors induced by electromagnetic force in a long cylindrical superconductor (United States)

    Zeng, Jun; Zhou, You-He; Yong, Hua-Dong


    In the present work, the crack problem of a long cylindrical superconductor with a center crack is investigated. The Bean and Kim model of critical state are considered, and the stress intensity factors are calculated for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, respectively. Based on the finite element method, the variation laws of the stress intensity factors for different magnetic field are obtained first. As the applied field decreases, the stress intensity factors increase quickly first, and then decrease gradually after they reach a peak value. Subsequently, for every length of the crack, the maximum of the stress intensity factor is calculated. Numerical results obtained show that, the FC activation process has more significant influence on the stress intensity factors than the ZFC activation process. Finally, the results obtained from Bean model and Kim model are compared. When the dimensionless parameter p is lesser, the results in two different critical state models are equal almost. Generally speaking, all of the results are useful for understanding the critical state model and the fracture mechanism of high-temperature superconductors.

  15. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre


    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints

  16. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology


    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes. 25 refs, 17 tabs, 43 figs.

  17. Physical Modeling and Analysis of Seismic Data from a Simulated Fractured Medium (United States)

    Mahmoudian, Faranak

    This thesis studies the physical seismic modeling of a simulated fractured medium to examine variations of seismic reflection amplitudes with source-receiver offset and azimuth (AVAZ). The intent is to extract information about the fracture orientation and magnitude of the anisotropy of a naturally fractured medium. The simulated fractured medium is constructed from phenolic LE-grade material which exhibits orthorhombic symmetry. For initial characterization of the phenolic model, its elastic stiffness coefficients were determined from group velocities. The group velocities along various directions were obtained from three-component physical model transmission data. The phenolic model approximates a weakly anisotropic layer with horizontal transverse isotropy (HTI). Three-dimensional (3D) physical model reflection data were acquired over a model consisting of the simulated fractured layer sandwiched between two isotropic plexiglas layers submerged in water. Interference between primary and ghost events was avoided with a careful 3D seismic survey design. After deterministic amplitude corrections, including a correction for the directivity effect of the physical model transducers, reflection amplitudes agreed with the amplitudes predicted by the Zoeppritz equations, confirming the suitability of the 3D physical model data for a quantitative amplitude analysis. Linear AVAZ inversions for the fracture orientation and HTI anisotropic parameters (including shear-wave splitting parameter) were performed on P-wave reflection amplitudes from the top of the simulated fractured medium. Sensitivity analysis of the inversions results, including variations of the background velocity model and maximum incident angle used, confirms the accuracy of the amplitude analysis. The results reveal that the amplitude analysis of the P-wave data alone allows for extraction the information about the shear-wave anisotropy confined in the P-wave multi-offset and multi-azimuth amplitude data

  18. Modeling lahar behavior and hazards (United States)

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.


    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  19. Modelling of fractured reservoirs. Case of multi-scale media; Modelisation des reservoirs fractures. Cas des milieux multi-echelles

    Energy Technology Data Exchange (ETDEWEB)

    Henn, N.


    Some of the most productive oil and gas reservoirs are found in formations crossed by multi-scale fractures/faults. Among them, conductive faults may closely control reservoir performance. However, their modelling encounters numerical and physical difficulties linked with (a) the necessity to keep an explicit representation of faults through small-size grid blocks, (b) the modelling of multiphase flow exchanges between the fault and the neighbouring medium. In this thesis, we propose a physically-representative and numerically efficient modelling approach in order to incorporate sub-vertical conductive faults in single and dual-porosity simulators. To validate our approach and demonstrate its efficiency, simulation results of multiphase displacements in representative field sector models are presented. (author)

  20. Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study (United States)

    Wang, Neng; Xia, Shuman


    A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.

  1. Hydraulic fracturing model featuring initiation beyond the wellbore wall for directional well in coal bed (United States)

    Li, Yuwei; Jia, Dan; Wang, Meng; Liu, Jia; Fu, Chunkai; Yang, Xinliang; Ai, Chi


    In developing internal fracture systems in coal beds, the initiation mechanism differs greatly from that of conventional ones and initiations may be produced beyond the wellbore wall. This paper describes the features of the internal structure of coal beds and RFPA2D simulation is used to attest the possible occurrence of initiation beyond the wellbore wall in coal bed hydraulic fracturing. Using the theory of elasticity and fracture mechanics, we analyse the stress distribution in the vicinal coal rock. Then by taking into consideration the effects of the spatial relationship between coal bed cleats and the wellbore, we establish a model for calculating both tensile and shear initiation pressure that occur along cleats beyond the wellbore wall. The simulation in this paper indicates that for shear initiations that happen along coal cleats, the pressure required to initiate fracture for cleats beyond the wellbore wall is evidently lower than that on the wellbore wall, thus it is easier to initiate shear fractures for cleats beyond the wellbore wall. For tensile failure, the pressure required to initiate tensile fracture for cleats beyond the wellbore wall is obviously higher than that for cleats at the wellbore wall, thus it is easier to initiate tensile fractures for cleats at the wellbore wall. On the one hand, this paper has proved the possible occurrence of initiations beyond the wellbore wall and has changed the current assumption that hydraulic fractures can only occur at the wellbore wall. On the other hand, the established theoretical model provides a new approach to calculating the initiation pressure in hydraulic fracturing.

  2. A New Ductile Fracture Criterion for Various Deformation Conditions Based on Microvoid Model

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ke; DONG Xiang-huai


    To accurately predict the occurrence of ductile fracture in metal forming processes, the Gurson-Tvergaard (GT) porous material model with optimized adjustment parameters is adopted to analyze the macroscopic stress-strain response, and a practical void nucleation law is proposed with a few material constants for engineering applications. Mechanical and metallographie analyses of uniaxial tension, torsion and upsetting experiments are performed. According to the character of the metal forming processes, the basic mechanisms of ductile fracture are divided into two modes: tension-type mode and shear-type mode. A unified fracture criterion is proposed for wide applicable range, and the comparison of experimental results with numerical analysis results confirms the validity of the newly proposed ductile fracture criterion based on the GT porous material model.

  3. A multiscale model of distributed fracture and permeability in solids in all-round compression

    CERN Document Server

    De Bellis, Maria Laura; Ortiz, Michael; Pandolfi, Anna


    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of a tensile or shear resistance in the undamaged material. Secondary faults may form in a hierarchical orga- nization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the dam- aged material. The approach is particularly appealing as a means of modeling low permeability oil and gas reservoirs stimulated by hydraulic fracturing.

  4. Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media

    Directory of Open Access Journals (Sweden)

    Wenwen Zhong


    Full Text Available Numerical simulation of two-phase flow in fractured porous media is an important topic in the subsurface flow, environmental problems, and petroleum reservoir engineering. The conventional model does not work well in many cases since it lacks the memory property of fracture media. In this paper, we develop a new numerical formulation with fractional time derivative for two-phase flow in fractured porous media. In the proposed formulation, the different fractional time derivatives are applied to fracture and matrix regions since they have different memory properties. We further develop a two-level time discrete method, which uses a large time step for the pressure and a small time step size for the saturation. The pressure equation is solved implicitly in each large time step, while the saturation is updated by an explicit fractional time scheme in each time substep. Finally, the numerical tests are carried out to demonstrate the effectiveness of the proposed numerical model.

  5. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks (United States)

    Jha, B.; Juanes, R.


    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  6. Modeling and Simulation of Pore Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Paul Meakin; Alexandre Tartakovsky


    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  7. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

    Energy Technology Data Exchange (ETDEWEB)

    Meakin, Paul; Tartakovsky, Alexandre M.


    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  8. Fracture behavior of stainless steel-toughened NiAl composite plate (United States)

    Nardone, Vincent C.


    Analysis of the tensile and fracture behavior of a composite system consisting of boron carbide particulate-reinforced NiAl with continuous 304 stainless steel toughening regions was performed. The composite was fabricated by extrusion, with the toughening regions extending along the length of the plate in the extrusion direction. Mechanical properties were determined as a function of orientation. Tensile testing revealed that the composite modulus varied only slightly as a function of testing direction, the strength was approximately 25 pct greater in the longitudinal relative to the transverse orientation, and the transverse failure strain was only 0.3 pct compared to values in excess of 10 pct for longitudinal testing. Notched Charpy impact testing indicated that the energy absorption values varied significantly as a function of specimen location and crack growth direction, ranging from 2 to 40 Joules. In addition, K IC values measured on subsize compact tension samples were found to range from 17 to 27 MPa ṡ m1/2. It was also established that the K max values determined from the maximum load measured during compact tension testing were similar to the K Q values calculated from instrumented notched Charpy impact testing. Finally, the fatigue crack growth characteristics of the composite were determined as a function of orientation.

  9. Mechanical performance of external fixators with wires for the treatment of bone fractures--Part I: Load-displacement behavior. (United States)

    Delprete, C; Gola, M M


    Using matrix algebra, a mathematical model is formulated for a particular type of external fixator with wires (system developed by Ilizarov) for the treatment of bone fractures. The mathematical model is used to give a linear estimate of the stiffness under lateral and axial loads in a representative number of practical conditions. Relative displacements of the bone ends at the fracture site are calculated not only in the common case of a gap, but also for various angles of inclined sliding contact; in this case, a realistic load is applied and nonlinear stiffening of the wires under transversal loads is iteratively taken into account.

  10. Numerical modeling of oil displacement by water from fractured-pore reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kats, R.M.; Avakyan, E.A.


    The process of oil displacement by water in a fractured-pore bed in a two-dimensional statement is mathematically modelled directly. The initial is a two-dimensional filtering model of two immiscible liquids with regard for the capillary forces and gravity in the porous medium. Adaptation of this model for the case of fractured-pore collector is done by reducing the filtering and geometric parameters of this model according to the parameters of the reservoir model represented by a continuum with double porosity, and making the appropriate changes in the algorithm and the computation program.

  11. A new fracture model for the prediction of longwall caving characteristics

    Institute of Scientific and Technical Information of China (English)

    Venticinque Gaetano; Nemcik Jan; Ren Ting


    A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which has been implemented to the finite difference FLAC code as a constitutive FISH user-defined-model. Validation of the model has been studied on the basis of comparing the transitional failure modes in rock. It is shown that the model is capable of accurately simulating fracture distributions over entire brittle to ductile rock phases. The application of the model during longwall retreat simulation highlighted several caving characteristics relevant to varying geological condition. The distribution and behaviour of modelled fractures were both realistic and shown to provide an enhanced post failure analysis to geological structures in FLAC. Moreover, the model introduces new potential insight towards the failure analysis of more complicated problems. This is best suited towards improving safety and efficiency in mines through the prediction of various key fractures and caving characteristics of geological structures.

  12. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks (United States)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.


    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.

  13. A Comprehensive Model of Customers’ Complaint Behavior

    Directory of Open Access Journals (Sweden)

    Masoud Mousavi


    Full Text Available The purpose of this article is to determine the factors influencing the complaint behavior of service customers and suggested a model that gives a dynamic view of customer’s complaint behavior. The conceptual model supported by study and research done in the context of complaint behavior analysis. In addition, numerous science researches in different industries (services and products supported the model. Research findings show that the complaint behavior of customers is a very complex behavior of customer dissatisfaction. Many factors determine the type and severity of complaints and these factors can be classified into four factors such as personal (individual factors, service factors, situational factors and macro element. Different Kinds of people’s coping strategies is an effective factor in the selection of complaint behavior type. Analyzing and identifying different factors that cause the complaint behavior is important for different types of services. This model is a comprehensive one in complaint behavior that identifies important factors.

  14. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [Universiyt of Utah; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deo, Milind


    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.

  15. A simplified fracture network model for studying the efficiency of a single well semi open loop heat exchanger in fractured crystalline rock (United States)

    de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy


    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.

  16. The properties and fracture behavior of ion plasma sprayed TiN coating on stainless steel substrate (United States)

    Orlova, Dina V.; Goncharenko, Igor M.; Danilov, Vladimir I.; Lobach, Maxim I.; Danilova, Lidiya V.; Shlyakhova, Galina V.


    The wear resistance and fracture behavior of ion plasma sprayed TiN coating were studied; the results are presented. The coating was applied to the stainless steel substrate using a vacuum arc method. The samples were tested by active loading. With varying coating thickness, its characteristics were found to change. Multiple cracking would occur in the deformed sample, with fragment borders aligned normal to the extension axis.

  17. Investigation on fracture behavior of the welded joint HAZ of ultra-fine grain steel SS400

    Institute of Scientific and Technical Information of China (English)

    朱政强; 陈立功; 荆洪阳; 葛景国; 倪纯珍; 饶德林


    The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the "fitness for purpose" principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability's improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).

  18. Ductile damage Cam-Clay plasticity and fracture modeling of shale based on nano-characterization experiment (United States)

    Bennett, K. C.; Borja, R. I.


    A finite strain ductile damage formulation of Modified Cam-Clay (MCC) plasticity has been developed in order to model the observed elastoplastic behavior of shale at nano- to micro-scales. Nano-indentation combined with both 2D and 3D imaging was performed on a sample of Woodford shale. Significant plastic deformation was observed in the nano-indentation testing, and nano-scale resolution FIB-SEM imaging of the post-indented regions has revealed that the plastic deformation is accompanied by extensive micro-fracture of the shale's highly heterogeneous micro-structure. A spatial tensor that is similar to Eshelby's energy momentum tensor is shown to be energy conjugate to the plastic velocity gradient under large