WorldWideScience

Sample records for models estimated relative

  1. The relative pose estimation of aircraft based on contour model

    Science.gov (United States)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  2. Adequacy of relative and absolute risk models for lifetime risk estimate of radiation-induced cancer

    International Nuclear Information System (INIS)

    McBride, M.; Coldman, A.J.

    1988-03-01

    This report examines the applicability of the relative (multiplicative) and absolute (additive) models in predicting lifetime risk of radiation-induced cancer. A review of the epidemiologic literature, and a discussion of the mathematical models of carcinogenesis and their relationship to these models of lifetime risk, are included. Based on the available data, the relative risk model for the estimation of lifetime risk is preferred for non-sex-specific epithelial tumours. However, because of lack of knowledge concerning other determinants of radiation risk and of background incidence rates, considerable uncertainty in modelling lifetime risk still exists. Therefore, it is essential that follow-up of exposed cohorts be continued so that population-based estimates of lifetime risk are available

  3. Milestones of mathematical model for business process management related to cost estimate documentation in petroleum industry

    Science.gov (United States)

    Khamidullin, R. I.

    2018-05-01

    The paper is devoted to milestones of the optimal mathematical model for a business process related to cost estimate documentation compiled during construction and reconstruction of oil and gas facilities. It describes the study and analysis of fundamental issues in petroleum industry, which are caused by economic instability and deterioration of a business strategy. Business process management is presented as business process modeling aimed at the improvement of the studied business process, namely main criteria of optimization and recommendations for the improvement of the above-mentioned business model.

  4. Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.

    Science.gov (United States)

    Maldonado, G; Greenland, S

    1998-07-01

    A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.

  5. Data Sources for the Model-based Small Area Estimates of Cancer-Related Knowledge - Small Area Estimates

    Science.gov (United States)

    The model-based estimates of important cancer risk factors and screening behaviors are obtained by combining the responses to the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health Interview Survey (NHIS).

  6. Methodology for the Model-based Small Area Estimates of Cancer-Related Knowledge - Small Area Estimates

    Science.gov (United States)

    The HINTS is designed to produce reliable estimates at the national and regional levels. GIS maps using HINTS data have been used to provide a visual representation of possible geographic relationships in HINTS cancer-related variables.

  7. Relative risk estimation of Chikungunya disease in Malaysia: An analysis based on Poisson-gamma model

    Science.gov (United States)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2015-05-01

    Disease mapping is a method to display the geographical distribution of disease occurrence, which generally involves the usage and interpretation of a map to show the incidence of certain diseases. Relative risk (RR) estimation is one of the most important issues in disease mapping. This paper begins by providing a brief overview of Chikungunya disease. This is followed by a review of the classical model used in disease mapping, based on the standardized morbidity ratio (SMR), which we then apply to our Chikungunya data. We then fit an extension of the classical model, which we refer to as a Poisson-Gamma model, when prior distributions for the relative risks are assumed known. Both results are displayed and compared using maps and we reveal a smoother map with fewer extremes values of estimated relative risk. The extensions of this paper will consider other methods that are relevant to overcome the drawbacks of the existing methods, in order to inform and direct government strategy for monitoring and controlling Chikungunya disease.

  8. Estimating internal exposure risks by the relative risk and the National Institute of Health risk models

    International Nuclear Information System (INIS)

    Mehta, S.K.; Sarangapani, R.

    1995-01-01

    This paper presents tabulations of risk (R) and person-years of life lost (PYLL) for acute exposures of individual organs at ages 20 and 40 yrs for the Indian and Japanese populations to illustrate the effect of age at exposure in the two models. Results are also presented for the organ wise nominal probability coefficients (NPC) and PYLL for individual organs for the age distributed Indian population by the two models. The results presented show that for all organs the estimates of PYLL and NPC for the Indian population are lower than those for the Japanese population by both models except for oesophagus, breast and ovary by the relative risk (RR) model, where the opposite trend is observed. The results also show that the Indian all-cancer values of NPC averaged over the two models is 2.9 x 10 -2 Sv -1 , significantly lower than the world average value of 5x10 -2 Sv -1 estimated by the ICRP. (author). 9 refs., 2 figs., 2 tabs

  9. Cross-property relations and permeability estimation in model porous media

    International Nuclear Information System (INIS)

    Schwartz, L.M.; Martys, N.; Bentz, D.P.; Garboczi, E.J.; Torquato, S.

    1993-01-01

    Results from a numerical study examining cross-property relations linking fluid permeability to diffusive and electrical properties are presented. Numerical solutions of the Stokes equations in three-dimensional consolidated granular packings are employed to provide a basis of comparison between different permeability estimates. Estimates based on the Λ parameter (a length derived from electrical conduction) and on d c (a length derived from immiscible displacement) are found to be considerably more reliable than estimates based on rigorous permeability bounds related to pore space diffusion. We propose two hybrid relations based on diffusion which provide more accurate estimates than either of the rigorous permeability bounds

  10. Estimation of genetic parameters related to eggshell strength using random regression models.

    Science.gov (United States)

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  11. Fuel Burn Estimation Model

    Science.gov (United States)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  12. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study.

    Science.gov (United States)

    Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P

    2014-06-26

    To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.

  13. Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of Anaesthesia.

    Science.gov (United States)

    Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P

    2018-01-01

    The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.

  14. Software Cost-Estimation Model

    Science.gov (United States)

    Tausworthe, R. C.

    1985-01-01

    Software Cost Estimation Model SOFTCOST provides automated resource and schedule model for software development. Combines several cost models found in open literature into one comprehensive set of algorithms. Compensates for nearly fifty implementation factors relative to size of task, inherited baseline, organizational and system environment and difficulty of task.

  15. Evaluation of alternative age-based methods for estimating relative abundance from survey data in relation to assessment models

    DEFF Research Database (Denmark)

    Berg, Casper Willestofte; Nielsen, Anders; Kristensen, Kasper

    2014-01-01

    Indices of abundance from fishery-independent trawl surveys constitute an important source of information for many fish stock assessments. Indices are often calculated using area stratified sample means on age-disaggregated data, and finally treated in stock assessment models as independent...... observations. We evaluate a series of alternative methods for calculating indices of abundance from trawl survey data (delta-lognormal, delta-gamma, and Tweedie using Generalized Additive Models) as well as different error structures for these indices when used as input in an age-based stock assessment model...... the different indices produced. The stratified mean method is found much more imprecise than the alternatives based on GAMs, which are found to be similar. Having time-varying index variances is found to be of minor importance, whereas the independence assumption is not only violated but has significant impact...

  16. Relative efficiency of unequal versus equal cluster sizes in cluster randomized trials using generalized estimating equation models.

    Science.gov (United States)

    Liu, Jingxia; Colditz, Graham A

    2018-05-01

    There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Towards a Model Climatology of Relative Humidity in the Upper Troposphere for Estimation of Contrail and Contrail-Induced Cirrus

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, M.; Ott, L.; Oman, L.; Benson, C.; Pawson, S.; Douglass, A. R.; Stolarski, R. S.

    2011-01-01

    The formation of contrails and contrail cirrus is very sensitive to the relative humidity of the upper troposphere. To reduce uncertainty in an estimate of the radiative impact of aviation-induced cirrus, a model must therefore be able to reproduce the observed background moisture fields with reasonable and quantifiable fidelity. Here we present an upper tropospheric moisture climatology from a 26-year ensemble of simulations using the GEOS CCM. We compare this free-running model's moisture fields to those obtained from the MLS and AIRS satellite instruments, our most comprehensive observational databases for upper tropospheric water vapor. Published comparisons have shown a substantial wet bias in GEOS-5 assimilated fields with respect to MLS water vapor and ice water content. This tendency is clear as well in the GEOS CCM simulations. The GEOS-5 moist physics in the GEOS CCM uses a saturation adjustment that prevents supersaturation, which is unrealistic when compared to in situ moisture observations from MOZAIC aircraft and balloon sondes as we will show. Further, the large-scale satellite datasets also consistently underestimate super-saturation when compared to the in-situ observations. We place these results in the context of estimates of contrail and contrail cirrus frequency.

  18. MODEL-ASSISTED ESTIMATION OF THE GENETIC VARIABILITY IN PHYSIOLOGICAL PARAMETERS RELATED TO TOMATO FRUIT GROWTH UNDER CONTRASTED WATER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dario Constantinescu

    2016-12-01

    Full Text Available Drought stress is a major abiotic stres threatening plant and crop productivity. In case of fleshy fruits, understanding Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85 % and decreased its fresh weight (up to 60 %, big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16-18 % in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which i the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and ii the high dry matter content in control treatment (C was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4 and 8. The model was then applied to design ideotypes with high dry matter

  19. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    Science.gov (United States)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance

  20. Model linear absolute and relative risk estimates for cancer induced by ionizing radiation in Mexican cohort of occupationally exposed

    International Nuclear Information System (INIS)

    Alvarez, R.J.T.; Trovar, M.V.M; González, J.F.

    2015-01-01

    From the rate of natural mortality m s cancer (t) for every 100 thousand habitants, modeled by a fourth-degree polynomial function of the age data of the Mexican population (2008), and assuming: a) a relationship 1: 5 of cancer induced radiation respect to presented spontaneously, b) a size of initial cohort No = 100 k SOPs, c) a speed of H E = (2 ± 1) mSv / received by the SOPs from 18 to 65 years, d) a latency of 8 years for cancer induction after irradiation, e) a time tracking cohort to 75 years, f) and taking the coefficients absolute and relative risk BEIRs induction of cancer models II and VII (excluding leukemia); It determined: BEIR II for a total of 125 and 400 deaths from cancer for absolute and relative linear models respectively. For BEIR VII has a number of fatal cases of 345 and 927 deaths respectively for absolute and relative linear model cancer. [es

  1. Estimation of environment-related properties of chemicals for design of sustainable processes: Development of group-contribution+ (GC+) models and uncertainty analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Kalakul, Sawitree; Sarup, Bent

    2012-01-01

    The aim of this work is to develop group-3 contribution+ (GC+)method (combined group-contribution (GC) method and atom connectivity index (CI)) based 15 property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated...... property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality......, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22...

  2. Estimating the relative utility of screening mammography.

    Science.gov (United States)

    Abbey, Craig K; Eckstein, Miguel P; Boone, John M

    2013-05-01

    The concept of diagnostic utility is a fundamental component of signal detection theory, going back to some of its earliest works. Attaching utility values to the various possible outcomes of a diagnostic test should, in principle, lead to meaningful approaches to evaluating and comparing such systems. However, in many areas of medical imaging, utility is not used because it is presumed to be unknown. In this work, we estimate relative utility (the utility benefit of a detection relative to that of a correct rejection) for screening mammography using its known relation to the slope of a receiver operating characteristic (ROC) curve at the optimal operating point. The approach assumes that the clinical operating point is optimal for the goal of maximizing expected utility and therefore the slope at this point implies a value of relative utility for the diagnostic task, for known disease prevalence. We examine utility estimation in the context of screening mammography using the Digital Mammographic Imaging Screening Trials (DMIST) data. We show how various conditions can influence the estimated relative utility, including characteristics of the rating scale, verification time, probability model, and scope of the ROC curve fit. Relative utility estimates range from 66 to 227. We argue for one particular set of conditions that results in a relative utility estimate of 162 (±14%). This is broadly consistent with values in screening mammography determined previously by other means. At the disease prevalence found in the DMIST study (0.59% at 365-day verification), optimal ROC slopes are near unity, suggesting that utility-based assessments of screening mammography will be similar to those found using Youden's index.

  3. Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution+ (GC+) Property Models and Uncertainty Analysis

    Science.gov (United States)

    The aim of this work is to develop group-contribution+ (GC+) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncert...

  4. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    Science.gov (United States)

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application

  5. Model Related Estimates of time dependent quantiles of peak flows - case study for selected catchments in Poland

    Science.gov (United States)

    Strupczewski, Witold G.; Bogdanowich, Ewa; Debele, Sisay

    2016-04-01

    Under Polish climate conditions the series of Annual Maxima (AM) flows are usually a mixture of peak flows of thaw- and rainfall- originated floods. The northern, lowland regions are dominated by snowmelt floods whilst in mountainous regions the proportion of rainfall floods is predominant. In many stations the majority of AM can be of snowmelt origin, but the greatest peak flows come from rainfall floods or vice versa. In a warming climate, precipitation is less likely to occur as snowfall. A shift from a snow- towards a rain-dominated regime results in a decreasing trend in mean and standard deviations of winter peak flows whilst rainfall floods do not exhibit any trace of non-stationarity. That is why a simple form of trends (i.e. linear trends) are more difficult to identify in AM time-series than in Seasonal Maxima (SM), usually winter season time-series. Hence it is recommended to analyse trends in SM, where a trend in standard deviation strongly influences the time -dependent upper quantiles. The uncertainty associated with the extrapolation of the trend makes it necessary to apply a relationship for trend which has time derivative tending to zero, e.g. we can assume a new climate equilibrium epoch approaching, or a time horizon is limited by the validity of the trend model. For both winter and summer SM time series, at least three distributions functions with trend model in the location, scale and shape parameters are estimated by means of the GAMLSS package using the ML-techniques. The resulting trend estimates in mean and standard deviation are mutually compared to the observed trends. Then, using AIC measures as weights, a multi-model distribution is constructed for each of two seasons separately. Further, assuming a mutual independence of the seasonal maxima, an AM model with time-dependent parameters can be obtained. The use of a multi-model approach can alleviate the effects of different and often contradictory trends obtained by using and identifying

  6. Comparison of additive (absolute) risk projection models and multiplicative (relative) risk projection models in estimating radiation-induced lifetime cancer risk

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kusama, Tomoko

    1990-01-01

    Lifetime cancer risk estimates depend on risk projection models. While the increasing lengths of follow-up observation periods of atomic bomb survivors in Hiroshima and Nagasaki bring about changes in cancer risk estimates, the validity of the two risk projection models, the additive risk projection model (AR) and multiplicative risk projection model (MR), comes into question. This paper compares the lifetime risk or loss of life-expectancy between the two projection models on the basis of BEIR-III report or recently published RERF report. With Japanese cancer statistics the estimates of MR were greater than those of AR, but a reversal of these results was seen when the cancer hazard function for India was used. When we investigated the validity of the two projection models using epidemiological human data and animal data, the results suggested that MR was superior to AR with respect to temporal change, but there was little evidence to support its validity. (author)

  7. A Bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities.

    Science.gov (United States)

    Bobb, Jennifer F; Dominici, Francesca; Peng, Roger D

    2011-12-01

    Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this article, we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987-2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat-wave risk estimation is sensitive to model choice. Although model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models. © 2011, The International Biometric Society.

  8. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi.

    Science.gov (United States)

    Ramachandran, Vishnampettai G; Roy, Priyamvada; Das, Shukla; Mogha, Narendra Singh; Bansal, Ajay Kumar

    2016-01-01

    Aedes mosquitoes are responsible for transmitting the dengue virus. The mosquito lifecycle is known to be influenced by temperature, rainfall, and relative humidity. This retrospective study was planned to investigate whether climatic factors could be used to predict the occurrence of dengue in East Delhi. The number of monthly dengue cases reported over 19 years was obtained from the laboratory records of our institution. Monthly data of rainfall, temperature, and humidity collected from a local weather station were correlated with the number of monthly reported dengue cases. One-way analysis of variance was used to analyse whether the climatic parameters differed significantly among seasons. Four models were developed using negative binomial generalized linear model analysis. Monthly rainfall, temperature, humidity, were used as independent variables, and the number of dengue cases reported monthly was used as the dependent variable. The first model considered data from the same month, while the other three models involved incorporating data with a lag phase of 1, 2, and 3 months, respectively. The greatest number of cases was reported during the post-monsoon period each year. Temperature, rainfall, and humidity varied significantly across the pre-monsoon, monsoon, and post-monsoon periods. The best correlation between these three climatic factors and dengue occurrence was at a time lag of 2 months. This study found that temperature, rainfall, and relative humidity significantly affected dengue occurrence in East Delhi. This weather-based dengue empirical model can forecast potential outbreaks 2-month in advance, providing an early warning system for intensifying dengue control measures.

  9. Exposure to Traffic-related Air Pollution During Pregnancy and Term Low Birth Weight: Estimation of Causal Associations in a Semiparametric Model

    Science.gov (United States)

    Padula, Amy M.; Mortimer, Kathleen; Hubbard, Alan; Lurmann, Frederick; Jerrett, Michael; Tager, Ira B.

    2012-01-01

    Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000–2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants. PMID:23045474

  10. Model for traffic emissions estimation

    Science.gov (United States)

    Alexopoulos, A.; Assimacopoulos, D.; Mitsoulis, E.

    A model is developed for the spatial and temporal evaluation of traffic emissions in metropolitan areas based on sparse measurements. All traffic data available are fully employed and the pollutant emissions are determined with the highest precision possible. The main roads are regarded as line sources of constant traffic parameters in the time interval considered. The method is flexible and allows for the estimation of distributed small traffic sources (non-line/area sources). The emissions from the latter are assumed to be proportional to the local population density as well as to the traffic density leading to local main arteries. The contribution of moving vehicles to air pollution in the Greater Athens Area for the period 1986-1988 is analyzed using the proposed model. Emissions and other related parameters are evaluated. Emissions from area sources were found to have a noticeable share of the overall air pollution.

  11. NASA Software Cost Estimation Model: An Analogy Based Estimation Model

    Science.gov (United States)

    Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James

    2015-01-01

    The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K-­ nearest neighbor prediction model performance on the same data set.

  12. Cancer Related-Knowledge - Small Area Estimates

    Science.gov (United States)

    These model-based estimates are produced using statistical models that combine data from the Health Information National Trends Survey, and auxiliary variables obtained from relevant sources and borrow strength from other areas with similar characteristics.

  13. A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis.

    Science.gov (United States)

    Ford, Jennifer Lynn; Green, Joanne Balmer; Lietz, Georg; Oxley, Anthony; Green, Michael H

    2017-09-01

    Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy. Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy. Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data. Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion. Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides

  14. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  15. Estimating Parameters Related to the Lifespan of Passively Transferred and Vaccine-Induced Porcine Reproductive and Respiratory Syndrome Virus Type I Antibodies by Modeling Field Data

    Directory of Open Access Journals (Sweden)

    Mathieu Andraud

    2018-01-01

    Full Text Available The outputs of epidemiological models are strongly related to the structure of the model and input parameters. The latter are defined by fitting theoretical concepts to actual data derived from field or experimental studies. However, some parameters may remain difficult to estimate and are subject to uncertainty or sensitivity analyses to determine their variation range and their global impact on model outcomes. As such, the evaluation of immunity duration is often a puzzling issue requiring long-term follow-up data that are, most of time, not available. The present analysis aims at characterizing the kinetics of antibodies against Porcine Reproductive and Respiratory Syndrome virus (PRRSv from longitudinal data sets. The first data set consisted in the serological follow-up of 22 vaccinated gilts during 21 weeks post-vaccination (PV. The second one gathered the maternally derived antibodies (MDAs kinetics in piglets from three different farms up to 14 weeks of age. The peak of the PV serological response against PRRSv was reached 6.9 weeks PV on average with an average duration of antibodies persistence of 26.5 weeks. In the monitored cohort of piglets, the duration of passive immunity was found relatively short, with an average duration of 4.8 weeks. The level of PRRSv-MDAs was found correlated with the dams’ antibody titer at birth, and the antibody persistence was strongly related to the initial MDAs titers in piglets. These results evidenced the importance of PRRSv vaccination schedule in sows, to optimize the delivery of antibodies to suckling piglets. These estimates of the duration of active and passive immunity could be further used as input parameters of epidemiological models to analyze their impact on the persistence of PRRSv within farms.

  16. Relative Pose Estimation Algorithm with Gyroscope Sensor

    Directory of Open Access Journals (Sweden)

    Shanshan Wei

    2016-01-01

    Full Text Available This paper proposes a novel vision and inertial fusion algorithm S2fM (Simplified Structure from Motion for camera relative pose estimation. Different from current existing algorithms, our algorithm estimates rotation parameter and translation parameter separately. S2fM employs gyroscopes to estimate camera rotation parameter, which is later fused with the image data to estimate camera translation parameter. Our contributions are in two aspects. (1 Under the circumstance that no inertial sensor can estimate accurately enough translation parameter, we propose a translation estimation algorithm by fusing gyroscope sensor and image data. (2 Our S2fM algorithm is efficient and suitable for smart devices. Experimental results validate efficiency of the proposed S2fM algorithm.

  17. Uncertainty relations for approximation and estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaeha, E-mail: jlee@post.kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsutsui, Izumi, E-mail: izumi.tsutsui@kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-05-27

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  18. Uncertainty relations for approximation and estimation

    International Nuclear Information System (INIS)

    Lee, Jaeha; Tsutsui, Izumi

    2016-01-01

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  19. Statistical Model-Based Face Pose Estimation

    Institute of Scientific and Technical Information of China (English)

    GE Xinliang; YANG Jie; LI Feng; WANG Huahua

    2007-01-01

    A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.

  20. Closed-Loop Surface Related Multiple Estimation

    NARCIS (Netherlands)

    Lopez Angarita, G.A.

    2016-01-01

    Surface-related multiple elimination (SRME) is one of the most commonly used methods for suppressing surface multiples. However, in order to obtain an accurate surface multiple estimation, dense source and receiver sampling is required. The traditional approach to this problem is performing data

  1. Estimated incidence of cardiovascular complications related to type 2 diabetes in Mexico using the UKPDS outcome model and a population-based survey.

    Science.gov (United States)

    Reynoso-Noverón, Nancy; Mehta, Roopa; Almeda-Valdes, Paloma; Rojas-Martinez, Rosalba; Villalpando, Salvador; Hernández-Ávila, Mauricio; Aguilar-Salinas, Carlos A

    2011-01-07

    To estimate the incidence of complications, life expectancy and diabetes related mortality in the Mexican diabetic population over the next two decades using data from a nation-wide, population based survey and the United Kingdom Prospective Diabetes Study (UKPDS) outcome model. The cohort included all patients with type 2 diabetes evaluated during the National Health and Nutrition Survey (ENSANut) 2006. ENSANut is a probabilistic multistage stratified survey whose aim was to measure the prevalence of chronic diseases. A total of 47,152 households were visited. Results are shown stratified by gender, time since diagnosis (> or ≤ to 10 years) and age at the time of diagnosis (> or ≤ 40 years). The prevalence of diabetes in our cohort was 14.4%. The predicted 20 year-incidence for chronic complications per 1000 individuals are: ischemic heart disease 112, myocardial infarction 260, heart failure 113, stroke 101, and amputation 62. Furthermore, 539 per 1000 patients will have a diabetes-related premature death. The average life expectancy for the diabetic population is 10.9 years (95%CI 10.7-11.2); this decreases to 8.3 years after adjusting for quality of life (CI95% 8.1-8.5). Male sex and cases diagnosed after age 40 have the highest risk for developing at least one major complication during the next 20 years. Based on the current clinical profile of Mexican patients with diabetes, the burden of disease related complications will be tremendous over the next two decades.

  2. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  3. Blind estimation of a ship's relative wave heading

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Iseki, Toshio

    2012-01-01

    This article proposes a method to estimate a ship’s relative heading against the waves. The procedure relies purely on ship- board measurements of global responses such as motion components, accelerations and the bending moment amidships. There is no particular (mathematical) model connected to t...... to the estimate, and therefore it is called a ’blind estimate’. The approach is in this introductory study tested by analysing simulated data. The analysis reveals that it is possible to estimate a ship’s relative heading on the basis of shipboard measurements only....

  4. Estimated incidence of cardiovascular complications related to type 2 diabetes in Mexico using the UKPDS outcome model and a population-based survey

    Directory of Open Access Journals (Sweden)

    Aguilar-Salinas Carlos A

    2011-01-01

    Full Text Available Abstract Background To estimate the incidence of complications, life expectancy and diabetes related mortality in the Mexican diabetic population over the next two decades using data from a nation-wide, population based survey and the United Kingdom Prospective Diabetes Study (UKPDS outcome model Methods The cohort included all patients with type 2 diabetes evaluated during the National Health and Nutrition Survey (ENSANut 2006. ENSANut is a probabilistic multistage stratified survey whose aim was to measure the prevalence of chronic diseases. A total of 47,152 households were visited. Results are shown stratified by gender, time since diagnosis (> or ≤ to 10 years and age at the time of diagnosis (> or ≤ 40 years. Results The prevalence of diabetes in our cohort was 14.4%. The predicted 20 year-incidence for chronic complications per 1000 individuals are: ischemic heart disease 112, myocardial infarction 260, heart failure 113, stroke 101, and amputation 62. Furthermore, 539 per 1000 patients will have a diabetes-related premature death. The average life expectancy for the diabetic population is 10.9 years (95%CI 10.7-11.2; this decreases to 8.3 years after adjusting for quality of life (CI95% 8.1-8.5. Male sex and cases diagnosed after age 40 have the highest risk for developing at least one major complication during the next 20 years. Conclusions Based on the current clinical profile of Mexican patients with diabetes, the burden of disease related complications will be tremendous over the next two decades.

  5. A Bigraph Relational Model

    DEFF Research Database (Denmark)

    Beauquier, Maxime; Schürmann, Carsten

    2011-01-01

    In this paper, we present a model based on relations for bigraphical reactive system [Milner09]. Its defining characteristics are that validity and reaction relations are captured as traces in a multi-set rewriting system. The relational model is derived from Milner's graphical definition...

  6. Models as Relational Categories

    Science.gov (United States)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  7. Estimating Stochastic Volatility Models using Prediction-based Estimating Functions

    DEFF Research Database (Denmark)

    Lunde, Asger; Brix, Anne Floor

    to the performance of the GMM estimator based on conditional moments of integrated volatility from Bollerslev and Zhou (2002). The case where the observed log-price process is contaminated by i.i.d. market microstructure (MMS) noise is also investigated. First, the impact of MMS noise on the parameter estimates from......In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are derived. The finite sample performance of the PBEF based estimator is investigated in a Monte Carlo study, and compared...... to correctly account for the noise are investigated. Our Monte Carlo study shows that the estimator based on PBEFs outperforms the GMM estimator, both in the setting with and without MMS noise. Finally, an empirical application investigates the possible challenges and general performance of applying the PBEF...

  8. A Gaussian IV estimator of cointegrating relations

    DEFF Research Database (Denmark)

    Bårdsen, Gunnar; Haldrup, Niels

    2006-01-01

    In static single equation cointegration regression modelsthe OLS estimator will have a non-standard distribution unless regressors arestrictly exogenous. In the literature a number of estimators have been suggestedto deal with this problem, especially by the use of semi-nonparametricestimators. T......In static single equation cointegration regression modelsthe OLS estimator will have a non-standard distribution unless regressors arestrictly exogenous. In the literature a number of estimators have been suggestedto deal with this problem, especially by the use of semi...... in cointegrating regressions. These instruments are almost idealand simulations show that the IV estimator using such instruments alleviatethe endogeneity problem extremely well in both finite and large samples....

  9. Modeling the movement and equilibrium of water in the body of ruminants in relation to estimating body composition by deuterium oxide dilution

    International Nuclear Information System (INIS)

    Arnold, R.N.

    1986-01-01

    Deuterium oxide (D 2 O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D 2 O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the blood flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D 2 O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min

  10. Nonparametric estimation in models for unobservable heterogeneity

    OpenAIRE

    Hohmann, Daniel

    2014-01-01

    Nonparametric models which allow for data with unobservable heterogeneity are studied. The first publication introduces new estimators and their asymptotic properties for conditional mixture models. The second publication considers estimation of a function from noisy observations of its Radon transform in a Gaussian white noise model.

  11. MCMC estimation of multidimensional IRT models

    NARCIS (Netherlands)

    Beguin, Anton; Glas, Cornelis A.W.

    1998-01-01

    A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization to a model with multidimensional ability parameters are discussed. The procedure is a generalization of a procedure by J. Albert (1992) for estimating the two-parameter normal ogive model. The procedure will

  12. Parameter Estimation of a Reliability Model of Demand-Caused and Standby-Related Failures of Safety Components Exposed to Degradation by Demand Stress and Ageing That Undergo Imperfect Maintenance

    Directory of Open Access Journals (Sweden)

    S. Martorell

    2017-01-01

    Full Text Available One can find many reliability, availability, and maintainability (RAM models proposed in the literature. However, such models become more complex day after day, as there is an attempt to capture equipment performance in a more realistic way, such as, explicitly addressing the effect of component ageing and degradation, surveillance activities, and corrective and preventive maintenance policies. Then, there is a need to fit the best model to real data by estimating the model parameters using an appropriate tool. This problem is not easy to solve in some cases since the number of parameters is large and the available data is scarce. This paper considers two main failure models commonly adopted to represent the probability of failure on demand (PFD of safety equipment: (1 by demand-caused and (2 standby-related failures. It proposes a maximum likelihood estimation (MLE approach for parameter estimation of a reliability model of demand-caused and standby-related failures of safety components exposed to degradation by demand stress and ageing that undergo imperfect maintenance. The case study considers real failure, test, and maintenance data for a typical motor-operated valve in a nuclear power plant. The results of the parameters estimation and the adoption of the best model are discussed.

  13. Model Estimates Of Gross Domestic Product In Relation to Export And Import Of Fuels, Focused on the Elasticity and Determination Of Directly and Indirectly Associated Rates

    Directory of Open Access Journals (Sweden)

    Gheorghe Săvoiu

    2016-03-01

    Full Text Available The article is based on several interrogative assumptions related to the positive impact of the crises and the recession on determinations in the econometric models of Romania’s GDP as a variable dependent in relation to the export and import of fuels. After a short introductory section, which details, in a relative manner, the overall goal and the objectives of the paper, a first section makes use of elasticity and the modern solutions of building the coefficient of elasticity, proposing an original alternative to existing variants, and afterwards the next section builds on these statistical tools in the econometric modeling of Romania’s GDP, starting from the ratios and value indicators and offering a few original models where the export and import of fuels are the key initial explanatory factors. The final remarks reinterpret the role of the energy resources, as well as that of the related flows, in enhancing statistical connections, and especially the role of crises and recessions in validating econometric models, by raising their degree of predictability.

  14. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals.

    Science.gov (United States)

    Stram, Daniel O; Leigh Pearce, Celeste; Bretsky, Phillip; Freedman, Matthew; Hirschhorn, Joel N; Altshuler, David; Kolonel, Laurence N; Henderson, Brian E; Thomas, Duncan C

    2003-01-01

    The US National Cancer Institute has recently sponsored the formation of a Cohort Consortium (http://2002.cancer.gov/scpgenes.htm) to facilitate the pooling of data on very large numbers of people, concerning the effects of genes and environment on cancer incidence. One likely goal of these efforts will be generate a large population-based case-control series for which a number of candidate genes will be investigated using SNP haplotype as well as genotype analysis. The goal of this paper is to outline the issues involved in choosing a method of estimating haplotype-specific risk estimates for such data that is technically appropriate and yet attractive to epidemiologists who are already comfortable with odds ratios and logistic regression. Our interest is to develop and evaluate extensions of methods, based on haplotype imputation, that have been recently described (Schaid et al., Am J Hum Genet, 2002, and Zaykin et al., Hum Hered, 2002) as providing score tests of the null hypothesis of no effect of SNP haplotypes upon risk, which may be used for more complex tasks, such as providing confidence intervals, and tests of equivalence of haplotype-specific risks in two or more separate populations. In order to do so we (1) develop a cohort approach towards odds ratio analysis by expanding the E-M algorithm to provide maximum likelihood estimates of haplotype-specific odds ratios as well as genotype frequencies; (2) show how to correct the cohort approach, to give essentially unbiased estimates for population-based or nested case-control studies by incorporating the probability of selection as a case or control into the likelihood, based on a simplified model of case and control selection, and (3) finally, in an example data set (CYP17 and breast cancer, from the Multiethnic Cohort Study) we compare likelihood-based confidence interval estimates from the two methods with each other, and with the use of the single-imputation approach of Zaykin et al. applied under both

  15. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  16. Method-related estimates of sperm vitality.

    Science.gov (United States)

    Cooper, Trevor G; Hellenkemper, Barbara

    2009-01-01

    Comparison of methods that estimate viability of human spermatozoa by monitoring head membrane permeability revealed that wet preparations (whether using positive or negative phase-contrast microscopy) generated significantly higher percentages of nonviable cells than did air-dried eosin-nigrosin smears. Only with the latter method did the sum of motile (presumed live) and stained (presumed dead) preparations never exceed 100%, making this the method of choice for sperm viability estimates.

  17. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  18. On the relation between S-Estimators and M-Estimators of multivariate location and covariance

    NARCIS (Netherlands)

    Lopuhaa, H.P.

    1987-01-01

    We discuss the relation between S-estimators and M-estimators of multivariate location and covariance. As in the case of the estimation of a multiple regression parameter, S-estimators are shown to satisfy first-order conditions of M-estimators. We show that the influence function IF (x;S F) of

  19. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  20. Modeling and estimating system availability

    International Nuclear Information System (INIS)

    Gaver, D.P.; Chu, B.B.

    1976-11-01

    Mathematical models to infer the availability of various types of more or less complicated systems are described. The analyses presented are probabilistic in nature and consist of three parts: a presentation of various analytic models for availability; a means of deriving approximate probability limits on system availability; and a means of statistical inference of system availability from sparse data, using a jackknife procedure. Various low-order redundant systems are used as examples, but extension to more complex systems is not difficult

  1. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  2. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  3. Parameter Estimation of Partial Differential Equation Models.

    Science.gov (United States)

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  4. A new relation to estimate nuclear radius

    International Nuclear Information System (INIS)

    Singh, M.; Kumar, Pradeep; Singh, Y.; Gupta, K.K.; Varshney, A.K.; Gupta, D.K.

    2013-01-01

    The uncertainty found in Grodzins semi empirical relation may be due to the non - consideration of asymmetry in the relation. In the present work we propose a new relation connecting B(E2; 2 1 + → 0 1 + ) and E2 1 + with asymmetric parameter γ

  5. Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment

    Science.gov (United States)

    Steffen, H.; Kaufmann, G.; Lampe, R.

    2014-06-01

    During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2-7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric

  6. Identification and Quantification of Uncertainties Related to Using Distributed X-band Radar Estimated Precipitation as input in Urban Drainage Models

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth

    The Local Area Weather Radar (LAWR) is a small scale weather radar providing distributed measurements of rainfall primarily for use as input in hydrological applications. As any other weather radar the LAWR measurement of the rainfall is an indirect measurement since it does not measure the rainf......The Local Area Weather Radar (LAWR) is a small scale weather radar providing distributed measurements of rainfall primarily for use as input in hydrological applications. As any other weather radar the LAWR measurement of the rainfall is an indirect measurement since it does not measure...... are quantified using statistical methods. Furthermore, the present calibration method is reviewed and a new extended calibration method has been developed and tested resulting in improved rainfall estimates. As part of the calibration analysis a number of elements affecting the LAWR performance were identified...... in connection with boundary assignment besides general improved understanding of the benefits and pitfalls in using distributed rainfall data as input to models. In connection with the use of LAWR data in urban drainage context, the potential for using LAWR data for extreme rainfall statistics has been studied...

  7. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  8. Estimation of a multivariate mean under model selection uncertainty

    Directory of Open Access Journals (Sweden)

    Georges Nguefack-Tsague

    2014-05-01

    Full Text Available Model selection uncertainty would occur if we selected a model based on one data set and subsequently applied it for statistical inferences, because the "correct" model would not be selected with certainty.  When the selection and inference are based on the same dataset, some additional problems arise due to the correlation of the two stages (selection and inference. In this paper model selection uncertainty is considered and model averaging is proposed. The proposal is related to the theory of James and Stein of estimating more than three parameters from independent normal observations. We suggest that a model averaging scheme taking into account the selection procedure could be more appropriate than model selection alone. Some properties of this model averaging estimator are investigated; in particular we show using Stein's results that it is a minimax estimator and can outperform Stein-type estimators.

  9. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  10. INTEGRATED SPEED ESTIMATION MODEL FOR MULTILANE EXPREESSWAYS

    Science.gov (United States)

    Hong, Sungjoon; Oguchi, Takashi

    In this paper, an integrated speed-estimation model is developed based on empirical analyses for the basic sections of intercity multilane expressway un der the uncongested condition. This model enables a speed estimation for each lane at any site under arb itrary highway-alignment, traffic (traffic flow and truck percentage), and rainfall conditions. By combin ing this model and a lane-use model which estimates traffic distribution on the lanes by each vehicle type, it is also possible to es timate an average speed across all the lanes of one direction from a traffic demand by vehicle type under specific highway-alignment and rainfall conditions. This model is exp ected to be a tool for the evaluation of traffic performance for expressways when the performance me asure is travel speed, which is necessary for Performance-Oriented Highway Planning and Design. Regarding the highway-alignment condition, two new estimators, called effective horizo ntal curvature and effective vertical grade, are proposed in this paper which take into account the influence of upstream and downstream alignment conditions. They are applied to the speed-estimation model, and it shows increased accuracy of the estimation.

  11. Discriminative Relational Topic Models.

    Science.gov (United States)

    Chen, Ning; Zhu, Jun; Xia, Fei; Zhang, Bo

    2015-05-01

    Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving prediction performance.

  12. Efficiently adapting graphical models for selectivity estimation

    DEFF Research Database (Denmark)

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.

    2013-01-01

    cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss...... in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...

  13. Semi-parametric estimation for ARCH models

    Directory of Open Access Journals (Sweden)

    Raed Alzghool

    2018-03-01

    Full Text Available In this paper, we conduct semi-parametric estimation for autoregressive conditional heteroscedasticity (ARCH model with Quasi likelihood (QL and Asymptotic Quasi-likelihood (AQL estimation methods. The QL approach relaxes the distributional assumptions of ARCH processes. The AQL technique is obtained from the QL method when the process conditional variance is unknown. We present an application of the methods to a daily exchange rate series. Keywords: ARCH model, Quasi likelihood (QL, Asymptotic Quasi-likelihood (AQL, Martingale difference, Kernel estimator

  14. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  15. Model-based estimation for dynamic cardiac studies using ECT

    International Nuclear Information System (INIS)

    Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.; Fessler, J.A.; Hero, A.O.

    1994-01-01

    In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed

  16. Model-based estimation for dynamic cardiac studies using ECT.

    Science.gov (United States)

    Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O

    1994-01-01

    The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.

  17. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...

  18. FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...

    African Journals Online (AJOL)

    This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...

  19. Robust estimation for ordinary differential equation models.

    Science.gov (United States)

    Cao, J; Wang, L; Xu, J

    2011-12-01

    Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.

  20. Direct Importance Estimation with Gaussian Mixture Models

    Science.gov (United States)

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  1. Thresholding projection estimators in functional linear models

    OpenAIRE

    Cardot, Hervé; Johannes, Jan

    2010-01-01

    We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

  2. Clock error models for simulation and estimation

    International Nuclear Information System (INIS)

    Meditch, J.S.

    1981-10-01

    Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction

  3. Estimation and uncertainty of reversible Markov models.

    Science.gov (United States)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-07

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.

  4. Estimating the temporal distribution of exposure-related cancers

    International Nuclear Information System (INIS)

    Carter, R.L.; Sposto, R.; Preston, D.L.

    1993-09-01

    The temporal distribution of exposure-related cancers is relevant to the study of carcinogenic mechanisms. Statistical methods for extracting pertinent information from time-to-tumor data, however, are not well developed. Separation of incidence from 'latency' and the contamination of background cases are two problems. In this paper, we present methods for estimating both the conditional distribution given exposure-related cancers observed during the study period and the unconditional distribution. The methods adjust for confounding influences of background cases and the relationship between time to tumor and incidence. Two alternative methods are proposed. The first is based on a structured, theoretically derived model and produces direct inferences concerning the distribution of interest but often requires more-specialized software. The second relies on conventional modeling of incidence and is implemented through readily available, easily used computer software. Inferences concerning the effects of radiation dose and other covariates, however, are not always obtainable directly. We present three examples to illustrate the use of these two methods and suggest criteria for choosing between them. The first approach was used, with a log-logistic specification of the distribution of interest, to analyze times to bone sarcoma among a group of German patients injected with 224 Ra. Similarly, a log-logistic specification was used in the analysis of time to chronic myelogenous leukemias among male atomic-bomb survivors. We used the alternative approach, involving conventional modeling, to estimate the conditional distribution of exposure-related acute myelogenous leukemias among male atomic-bomb survivors, given occurrence between 1 October 1950 and 31 December 1985. All analyses were performed using Poisson regression methods for analyzing grouped survival data. (J.P.N.)

  5. Robust estimation of event-related potentials via particle filter.

    Science.gov (United States)

    Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito

    2016-03-01

    In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Maya Gupta

    2010-04-01

    Full Text Available Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian estimates, depend on the accuracy of the prior parameters, but example simulations show that the performance can be substantially improved compared to maximum likelihood or state-of-the-art nonparametric estimators.

  7. Sparse estimation of polynomial dynamical models

    NARCIS (Netherlands)

    Toth, R.; Hjalmarsson, H.; Rojas, C.R.; Kinnaert, M.

    2012-01-01

    In many practical situations, it is highly desirable to estimate an accurate mathematical model of a real system using as few parameters as possible. This can be motivated either from appealing to a parsimony principle (Occam's razor) or from the view point of the utilization complexity in terms of

  8. A General Model for Estimating Macroevolutionary Landscapes.

    Science.gov (United States)

    Boucher, Florian C; Démery, Vincent; Conti, Elena; Harmon, Luke J; Uyeda, Josef

    2018-03-01

    The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models. The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely used in statistical mechanics: the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.].

  9. Correlation between the model accuracy and model-based SOC estimation

    International Nuclear Information System (INIS)

    Wang, Qianqian; Wang, Jiao; Zhao, Pengju; Kang, Jianqiang; Yan, Few; Du, Changqing

    2017-01-01

    State-of-charge (SOC) estimation is a core technology for battery management systems. Considerable progress has been achieved in the study of SOC estimation algorithms, especially the algorithm on the basis of Kalman filter to meet the increasing demand of model-based battery management systems. The Kalman filter weakens the influence of white noise and initial error during SOC estimation but cannot eliminate the existing error of the battery model itself. As such, the accuracy of SOC estimation is directly related to the accuracy of the battery model. Thus far, the quantitative relationship between model accuracy and model-based SOC estimation remains unknown. This study summarizes three equivalent circuit lithium-ion battery models, namely, Thevenin, PNGV, and DP models. The model parameters are identified through hybrid pulse power characterization test. The three models are evaluated, and SOC estimation conducted by EKF-Ah method under three operating conditions are quantitatively studied. The regression and correlation of the standard deviation and normalized RMSE are studied and compared between the model error and the SOC estimation error. These parameters exhibit a strong linear relationship. Results indicate that the model accuracy affects the SOC estimation accuracy mainly in two ways: dispersion of the frequency distribution of the error and the overall level of the error. On the basis of the relationship between model error and SOC estimation error, our study provides a strategy for selecting a suitable cell model to meet the requirements of SOC precision using Kalman filter.

  10. Estimating the economic impact of a repository from scenario-based surveys: Models of the relation of stated intent to actual behavior

    International Nuclear Information System (INIS)

    Easterling, D.; Morwitz, V.; Kunreuther, H.

    1990-12-01

    The task of estimating the economic impact of a facility as novel and long-lived as a high-level nuclear waste (HLNW) repository is fraught with uncertainty. One approach to the forecasting problems is to survey economic agents as to how they would respond when confronted with hypothetical repository scenarios. A series of such studies conducted for the state of Nevada have examined the potential impact of a Yucca Mountain repository on behavior such as planning conventions, attending conventions, vacationing, outmigration, immigration, and business location. In each case, respondents drawn from a target population report on whether a particular repository event (either some form of an accident, or simply the presence of the facility) would cause them to act any differently than they otherwise would. The responses to such a survey provide an indication of whether or not economic behavior would be altered. However, the analysis is inevitably plagued with the question of how much credence to place in the reports of intended behavior; can we believe what people report they would do in a hypothetical situation? The present study examines a more precise version of this question regarding the validity of stated intent data. After reviewing a variety of literature in the area of intent versus actual behavior, we provide an answer to the question, ''What levels of actual behavior are consistent with the intent data that have been observed in the repository surveys?'' More formally, we assume that we are generally interested in predicting the proportion of a sample who will actually perform a target behavior. 86 refs., 6 figs., 9 tabs

  11. Modelling maximum likelihood estimation of availability

    International Nuclear Information System (INIS)

    Waller, R.A.; Tietjen, G.L.; Rock, G.W.

    1975-01-01

    Suppose the performance of a nuclear powered electrical generating power plant is continuously monitored to record the sequence of failure and repairs during sustained operation. The purpose of this study is to assess one method of estimating the performance of the power plant when the measure of performance is availability. That is, we determine the probability that the plant is operational at time t. To study the availability of a power plant, we first assume statistical models for the variables, X and Y, which denote the time-to-failure and the time-to-repair variables, respectively. Once those statistical models are specified, the availability, A(t), can be expressed as a function of some or all of their parameters. Usually those parameters are unknown in practice and so A(t) is unknown. This paper discusses the maximum likelihood estimator of A(t) when the time-to-failure model for X is an exponential density with parameter, lambda, and the time-to-repair model for Y is an exponential density with parameter, theta. Under the assumption of exponential models for X and Y, it follows that the instantaneous availability at time t is A(t)=lambda/(lambda+theta)+theta/(lambda+theta)exp[-[(1/lambda)+(1/theta)]t] with t>0. Also, the steady-state availability is A(infinity)=lambda/(lambda+theta). We use the observations from n failure-repair cycles of the power plant, say X 1 , X 2 , ..., Xsub(n), Y 1 , Y 2 , ..., Ysub(n) to present the maximum likelihood estimators of A(t) and A(infinity). The exact sampling distributions for those estimators and some statistical properties are discussed before a simulation model is used to determine 95% simulation intervals for A(t). The methodology is applied to two examples which approximate the operating history of two nuclear power plants. (author)

  12. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.

    1980-05-01

    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  13. High-dimensional model estimation and model selection

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.

  14. Genomic instability related to zinc deficiency and excess in an in vitro model: is the upper estimate of the physiological requirements recommended for children safe?

    Science.gov (United States)

    Padula, Gisel; Ponzinibbio, María Virginia; Gambaro, Rocío Celeste; Seoane, Analía Isabel

    2017-08-01

    Micronutrients are important for the prevention of degenerative diseases due to their role in maintaining genomic stability. Therefore, there is international concern about the need to redefine the optimal mineral and vitamin requirements to prevent DNA damage. We analyzed the cytostatic, cytotoxic, and genotoxic effect of in vitro zinc supplementation to determine the effects of zinc deficiency and excess and whether the upper estimate of the physiological requirement recommended for children is safe. To achieve zinc deficiency, DMEM/Ham's F12 medium (HF12) was chelated (HF12Q). Lymphocytes were isolated from healthy female donors (age range, 5-10 yr) and cultured for 7 d as follows: negative control (HF12, 60 μg/dl ZnSO 4 ); deficient (HF12Q, 12 μg/dl ZnSO 4 ); lower level (HF12Q + 80 μg/dl ZnSO 4 ); average level (HF12Q + 180 μg/dl ZnSO 4 ); upper limit (HF12Q + 280 μg/dl ZnSO 4 ); and excess (HF12Q + 380 μg/dl ZnSO 4 ). The comet (quantitative analysis) and cytokinesis-block micronucleus cytome assays were used. Differences were evaluated with Kruskal-Wallis and ANOVA (p < 0.05). Olive tail moment, tail length, micronuclei frequency, and apoptotic and necrotic percentages were significantly higher in the deficient, upper limit, and excess cultures compared with the negative control, lower, and average limit ones. In vitro zinc supplementation at the lower and average limit (80 and 180 μg/dl ZnSO 4 ) of the physiological requirement recommended for children proved to be the most beneficial in avoiding genomic instability, whereas the deficient, upper limit, and excess (12, 280, and 380 μg/dl) cultures increased DNA and chromosomal damage and apoptotic and necrotic frequencies.

  15. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    Science.gov (United States)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  16. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    OpenAIRE

    Gupta; Srivastava

    2010-01-01

    Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian est...

  17. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  18. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  19. Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models

    Science.gov (United States)

    Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.

    2014-12-01

    We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.

  20. Estimation of the Thurstonian model for the 2-AC protocol

    DEFF Research Database (Denmark)

    Christensen, Rune Haubo Bojesen; Lee, Hye-Seong; Brockhoff, Per B.

    2012-01-01

    . This relationship makes it possible to extract estimates and standard errors of δ and τ from general statistical software, and furthermore, it makes it possible to combine standard regression modelling with the Thurstonian model for the 2-AC protocol. A model for replicated 2-AC data is proposed using cumulative......The 2-AC protocol is a 2-AFC protocol with a “no-difference” option and is technically identical to the paired preference test with a “no-preference” option. The Thurstonian model for the 2-AC protocol is parameterized by δ and a decision parameter τ, the estimates of which can be obtained...... by fairly simple well-known methods. In this paper we describe how standard errors of the parameters can be obtained and how exact power computations can be performed. We also show how the Thurstonian model for the 2-AC protocol is closely related to a statistical model known as a cumulative probit model...

  1. Comparing interval estimates for small sample ordinal CFA models.

    Science.gov (United States)

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading

  2. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  3. Models as Relational Categories

    Science.gov (United States)

    Kokkonen, Tommi

    2017-01-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other…

  4. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  5. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  6. Resource-estimation models and predicted discovery

    International Nuclear Information System (INIS)

    Hill, G.W.

    1982-01-01

    Resources have been estimated by predictive extrapolation from past discovery experience, by analogy with better explored regions, or by inference from evidence of depletion of targets for exploration. Changes in technology and new insights into geological mechanisms have occurred sufficiently often in the long run to form part of the pattern of mature discovery experience. The criterion, that a meaningful resource estimate needs an objective measure of its precision or degree of uncertainty, excludes 'estimates' based solely on expert opinion. This is illustrated by development of error measures for several persuasive models of discovery and production of oil and gas in USA, both annually and in terms of increasing exploration effort. Appropriate generalizations of the models resolve many points of controversy. This is illustrated using two USA data sets describing discovery of oil and of U 3 O 8 ; the latter set highlights an inadequacy of available official data. Review of the oil-discovery data set provides a warrant for adjusting the time-series prediction to a higher resource figure for USA petroleum. (author)

  7. Estimating maneuvers for precise relative orbit determination using GPS

    Science.gov (United States)

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs

    2017-01-01

    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  8. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  9. Estimating relative demand for wildlife: Conservation activity indicators

    Science.gov (United States)

    Gray, Gary G.; Larson, Joseph S.

    1982-09-01

    An alternative method of estimating relative demand among nonconsumptive uses of wildlife and among wildlife species is proposed. A demand intensity score (DIS), derived from the relative extent of an individual's involvement in outdoor recreation and conservation activities, is used as a weighting device to adjust the importance of preference rankings for wildlife uses and wildlife species relative to other members of a survey population. These adjusted preference rankings were considered to reflect relative demand levels (RDLs) for wildlife uses and for species by the survey population. This technique may be useful where it is not possible or desirable to estimate demand using traditional economic means. In one of the findings from a survey of municipal conservation commission members in Massachusetts, presented as an illustration of this methodology, poisonous snakes were ranked third in preference among five groups of reptiles. The relative demand level for poisonous snakes, however, was last among the five groups.

  10. Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam

    2007-07-01

    Full Text Available For the problem of estimation of Money demand model of Pakistan, money supply (M1 shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons are made on the basis standard errors of the estimated coefficients, standard error of regression, Akaike Information Criteria (AIC value, and the Durban-Watson statistic for autocorrelation. We further show that nearest neighbour regression estimator performs better when comparing with the other nonparametric kernel estimator.

  11. Estimating Drilling Cost and Duration Using Copulas Dependencies Models

    Directory of Open Access Journals (Sweden)

    M. Al Kindi

    2017-03-01

    Full Text Available Estimation of drilling budget and duration is a high-level challenge for oil and gas industry. This is due to the many uncertain activities in the drilling procedure such as material prices, overhead cost, inflation, oil prices, well type, and depth of drilling. Therefore, it is essential to consider all these uncertain variables and the nature of relationships between them. This eventually leads into the minimization of the level of uncertainty and yet makes a "good" estimation points for budget and duration given the well type. In this paper, the copula probability theory is used in order to model the dependencies between cost/duration and MRI (mechanical risk index. The MRI is a mathematical computation, which relates various drilling factors such as: water depth, measured depth, true vertical depth in addition to mud weight and horizontal displacement. In general, the value of MRI is utilized as an input for the drilling cost and duration estimations. Therefore, modeling the uncertain dependencies between MRI and both cost and duration using copulas is important. The cost and duration estimates for each well were extracted from the copula dependency model where research study simulate over 10,000 scenarios. These new estimates were later compared to the actual data in order to validate the performance of the procedure. Most of the wells show moderate - weak relationship of MRI dependence, which means that the variation in these wells can be related to MRI but to the extent that it is not the primary source.

  12. Analyzing Health-Related Quality of Life Data to Estimate Parameters for Cost-Effectiveness Models: An Example Using Longitudinal EQ-5D Data from the SHIFT Randomized Controlled Trial.

    Science.gov (United States)

    Griffiths, Alison; Paracha, Noman; Davies, Andrew; Branscombe, Neil; Cowie, Martin R; Sculpher, Mark

    2017-03-01

    The aim of this article is to discuss methods used to analyze health-related quality of life (HRQoL) data from randomized controlled trials (RCTs) for decision analytic models. The analysis presented in this paper was used to provide HRQoL data for the ivabradine health technology assessment (HTA) submission in chronic heart failure. We have used a large, longitudinal EuroQol five-dimension questionnaire (EQ-5D) dataset from the Systolic Heart Failure Treatment with the I f Inhibitor Ivabradine Trial (SHIFT) (clinicaltrials.gov: NCT02441218) to illustrate issues and methods. HRQoL weights (utility values) were estimated from a mixed regression model developed using SHIFT EQ-5D data (n = 5313 patients). The regression model was used to predict HRQoL outcomes according to treatment, patient characteristics, and key clinical outcomes for patients with a heart rate ≥75 bpm. Ivabradine was associated with an HRQoL weight gain of 0.01. HRQoL weights differed according to New York Heart Association (NYHA) class (NYHA I-IV, no hospitalization: standard care 0.82-0.46; ivabradine 0.84-0.47). A reduction in HRQoL weight was associated with hospitalizations within 30 days of an HRQoL assessment visit, with this reduction varying by NYHA class [-0.07 (NYHA I) to -0.21 (NYHA IV)]. The mixed model explained variation in EQ-5D data according to key clinical outcomes and patient characteristics, providing essential information for long-term predictions of patient HRQoL in the cost-effectiveness model. This model was also used to estimate the loss in HRQoL associated with hospitalizations. In SHIFT many hospitalizations did not occur close to EQ-5D visits; hence, any temporary changes in HRQoL associated with such events would not be captured fully in observed RCT evidence, but could be predicted in our cost-effectiveness analysis using the mixed model. Given the large reduction in hospitalizations associated with ivabradine this was an important feature of the analysis. The

  13. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    Science.gov (United States)

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  14. Relative azimuth inversion by way of damped maximum correlation estimates

    Science.gov (United States)

    Ringler, A.T.; Edwards, J.D.; Hutt, C.R.; Shelly, F.

    2012-01-01

    Horizontal seismic data are utilized in a large number of Earth studies. Such work depends on the published orientations of the sensitive axes of seismic sensors relative to true North. These orientations can be estimated using a number of different techniques: SensOrLoc (Sensitivity, Orientation and Location), comparison to synthetics (Ekstrom and Busby, 2008), or by way of magnetic compass. Current methods for finding relative station azimuths are unable to do so with arbitrary precision quickly because of limitations in the algorithms (e.g. grid search methods). Furthermore, in order to determine instrument orientations during station visits, it is critical that any analysis software be easily run on a large number of different computer platforms and the results be obtained quickly while on site. We developed a new technique for estimating relative sensor azimuths by inverting for the orientation with the maximum correlation to a reference instrument, using a non-linear parameter estimation routine. By making use of overlapping windows, we are able to make multiple azimuth estimates, which helps to identify the confidence of our azimuth estimate, even when the signal-to-noise ratio (SNR) is low. Finally, our algorithm has been written as a stand-alone, platform independent, Java software package with a graphical user interface for reading and selecting data segments to be analyzed.

  15. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    Science.gov (United States)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  16. Estimating Body Related Soft Biometric Traits in Video Frames

    Directory of Open Access Journals (Sweden)

    Olasimbo Ayodeji Arigbabu

    2014-01-01

    Full Text Available Soft biometrics can be used as a prescreening filter, either by using single trait or by combining several traits to aid the performance of recognition systems in an unobtrusive way. In many practical visual surveillance scenarios, facial information becomes difficult to be effectively constructed due to several varying challenges. However, from distance the visual appearance of an object can be efficiently inferred, thereby providing the possibility of estimating body related information. This paper presents an approach for estimating body related soft biometrics; specifically we propose a new approach based on body measurement and artificial neural network for predicting body weight of subjects and incorporate the existing technique on single view metrology for height estimation in videos with low frame rate. Our evaluation on 1120 frame sets of 80 subjects from a newly compiled dataset shows that the mentioned soft biometric information of human subjects can be adequately predicted from set of frames.

  17. A single model procedure for estimating tank calibration equations

    International Nuclear Information System (INIS)

    Liebetrau, A.M.

    1997-10-01

    A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes

  18. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  19. Working covariance model selection for generalized estimating equations.

    Science.gov (United States)

    Carey, Vincent J; Wang, You-Gan

    2011-11-20

    We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    Science.gov (United States)

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Estimation of nuclear power-related expenditures in fiscal 1982

    International Nuclear Information System (INIS)

    1981-01-01

    In fiscal 1982 (April to March, 1983), the research and development on nuclear power should be promoted actively and extensively by taking the appropriate measures. In view of the importance, the budgetary expenditures are to be estimated duly for the purpose, considering also the stringent financial situation. The budgetary expenditures for nuclear power estimated for the fiscal year 1982 are about 292,800 Million in total and the obligation act limit is about 139,900 Million. The following matters are described: nuclear power-related measures for securing nuclear power safety, promotion of nuclear power generation, establishment of the nuclear fuel cycle, development of power reactors, research on nuclear fusion, strengthening of the foundation in nuclear power research, development and utilization, promotion of international cooperation, etc.; estimated budgetary expenditures; tables of budgetary demands in various categories. (J.P.N.)

  2. AMEM-ADL Polymer Migration Estimation Model User's Guide

    Science.gov (United States)

    The user's guide of the Arthur D. Little Polymer Migration Estimation Model (AMEM) provides the information on how the model estimates the fraction of a chemical additive that diffuses through polymeric matrices.

  3. Benefit Estimation Model for Tourist Spaceflights

    Science.gov (United States)

    Goehlich, Robert A.

    2003-01-01

    It is believed that the only potential means for significant reduction of the recurrent launch cost, which results in a stimulation of human space colonization, is to make the launcher reusable, to increase its reliability, and to make it suitable for new markets such as mass space tourism. But such space projects, that have long range aspects are very difficult to finance, because even politicians would like to see a reasonable benefit during their term in office, because they want to be able to explain this investment to the taxpayer. This forces planners to use benefit models instead of intuitive judgement to convince sceptical decision-makers to support new investments in space. Benefit models provide insights into complex relationships and force a better definition of goals. A new approach is introduced in the paper that allows to estimate the benefits to be expected from a new space venture. The main objective why humans should explore space is determined in this study to ``improve the quality of life''. This main objective is broken down in sub objectives, which can be analysed with respect to different interest groups. Such interest groups are the operator of a space transportation system, the passenger, and the government. For example, the operator is strongly interested in profit, while the passenger is mainly interested in amusement, while the government is primarily interested in self-esteem and prestige. This leads to different individual satisfactory levels, which are usable for the optimisation process of reusable launch vehicles.

  4. Nonparametric Estimation of Regression Parameters in Measurement Error Models

    Czech Academy of Sciences Publication Activity Database

    Ehsanes Saleh, A.K.M.D.; Picek, J.; Kalina, Jan

    2009-01-01

    Roč. 67, č. 2 (2009), s. 177-200 ISSN 0026-1424 Grant - others:GA AV ČR(CZ) IAA101120801; GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z10300504 Keywords : asymptotic relative efficiency(ARE) * asymptotic theory * emaculate mode * Me model * R-estimation * Reliabilty ratio(RR) Subject RIV: BB - Applied Statistics, Operational Research

  5. Contributions in Radio Channel Sounding, Modeling, and Estimation

    DEFF Research Database (Denmark)

    Pedersen, Troels

    2009-01-01

    This thesis spans over three strongly related topics in wireless communication: channel-sounding, -modeling, and -estimation. Three main problems are addressed: optimization of spatio-temporal apertures for channel sounding; estimation of per-path power spectral densities (psds); and modeling...... relies on a ``propagation graph'' where vertices  represent scatterers and edges represent the wave propagation conditions between scatterers.  The graph has a recursive structure, which permits modeling of the transfer function of the graph. We derive a closed-form expression of the infinite......-bounce impulse response. This expression is used for simulation of the impulse response of randomly generated propagation graphs. The obtained realizations exhibit the well-observed  exponential power decay versus delay and specular-to-diffuse transition....

  6. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  7. Estimating Predictive Variance for Statistical Gas Distribution Modelling

    International Nuclear Information System (INIS)

    Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo

    2009-01-01

    Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

  8. Remaining lifetime modeling using State-of-Health estimation

    Science.gov (United States)

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model

  9. Relative Pose Estimation and Accuracy Verification of Spherical Panoramic Image

    Directory of Open Access Journals (Sweden)

    XIE Donghai

    2017-11-01

    Full Text Available This paper improves the method of the traditional 5-point relative pose estimation algorithm, and proposes a relative pose estimation algorithm which is suitable for spherical panoramic images. The algorithm firstly computes the essential matrix, then decomposes the essential matrix to obtain the rotation matrix and the translation vector using SVD, and finally the reconstructed three-dimensional points are used to eliminate the error solution. The innovation of the algorithm lies the derivation of panorama epipolar formula and the use of the spherical distance from the point to the epipolar plane as the error term for the spherical panorama co-planarity function. The simulation experiment shows that when the random noise of the image feature points is within the range of pixel, the error of the three Euler angles is about 0.1°, and the error between the relative translational displacement and the simulated value is about 1.5°. The result of the experiment using the data obtained by the vehicle panorama camera and the POS shows that:the error of the roll angle and pitch angle can be within 0.2°, the error of the heading angle can be within 0.4°, and the error between the relative translational displacement and the POS can be within 2°. The result of our relative pose estimation algorithm is used to generate the spherical panoramic epipolar images, then we extract the key points between the spherical panoramic images and calculate the errors in the column direction. The result shows that the errors is less than 1 pixel.

  10. State-Level Estimates of Cancer-Related Absenteeism Costs

    Science.gov (United States)

    Tangka, Florence K.; Trogdon, Justin G.; Nwaise, Isaac; Ekwueme, Donatus U.; Guy, Gery P.; Orenstein, Diane

    2016-01-01

    Background Cancer is one of the top five most costly diseases in the United States and leads to substantial work loss. Nevertheless, limited state-level estimates of cancer absenteeism costs have been published. Methods In analyses of data from the 2004–2008 Medical Expenditure Panel Survey, the 2004 National Nursing Home Survey, the U.S. Census Bureau for 2008, and the 2009 Current Population Survey, we used regression modeling to estimate annual state-level absenteeism costs attributable to cancer from 2004 to 2008. Results We estimated that the state-level median number of days of absenteeism per year among employed cancer patients was 6.1 days and that annual state-level cancer absenteeism costs ranged from $14.9 million to $915.9 million (median = $115.9 million) across states in 2010 dollars. Absenteeism costs are approximately 6.5% of the costs of premature cancer mortality. Conclusions The results from this study suggest that lost productivity attributable to cancer is a substantial cost to employees and employers and contributes to estimates of the overall impact of cancer in a state population. PMID:23969498

  11. Dynamic Diffusion Estimation in Exponential Family Models

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 20, č. 11 (2013), s. 1114-1117 ISSN 1070-9908 R&D Projects: GA MŠk 7D12004; GA ČR GA13-13502S Keywords : diffusion estimation * distributed estimation * paremeter estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.639, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0396518.pdf

  12. UAV State Estimation Modeling Techniques in AHRS

    Science.gov (United States)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  13. Parameter estimation of component reliability models in PSA model of Krsko NPP

    International Nuclear Information System (INIS)

    Jordan Cizelj, R.; Vrbanic, I.

    2001-01-01

    In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)

  14. A Maximum Likelihood Estimation of Vocal-Tract-Related Filter Characteristics for Single Channel Speech Separation

    Directory of Open Access Journals (Sweden)

    Dansereau Richard M

    2007-01-01

    Full Text Available We present a new technique for separating two speech signals from a single recording. The proposed method bridges the gap between underdetermined blind source separation techniques and those techniques that model the human auditory system, that is, computational auditory scene analysis (CASA. For this purpose, we decompose the speech signal into the excitation signal and the vocal-tract-related filter and then estimate the components from the mixed speech using a hybrid model. We first express the probability density function (PDF of the mixed speech's log spectral vectors in terms of the PDFs of the underlying speech signal's vocal-tract-related filters. Then, the mean vectors of PDFs of the vocal-tract-related filters are obtained using a maximum likelihood estimator given the mixed signal. Finally, the estimated vocal-tract-related filters along with the extracted fundamental frequencies are used to reconstruct estimates of the individual speech signals. The proposed technique effectively adds vocal-tract-related filter characteristics as a new cue to CASA models using a new grouping technique based on an underdetermined blind source separation. We compare our model with both an underdetermined blind source separation and a CASA method. The experimental results show that our model outperforms both techniques in terms of SNR improvement and the percentage of crosstalk suppression.

  15. A Maximum Likelihood Estimation of Vocal-Tract-Related Filter Characteristics for Single Channel Speech Separation

    Directory of Open Access Journals (Sweden)

    Mohammad H. Radfar

    2006-11-01

    Full Text Available We present a new technique for separating two speech signals from a single recording. The proposed method bridges the gap between underdetermined blind source separation techniques and those techniques that model the human auditory system, that is, computational auditory scene analysis (CASA. For this purpose, we decompose the speech signal into the excitation signal and the vocal-tract-related filter and then estimate the components from the mixed speech using a hybrid model. We first express the probability density function (PDF of the mixed speech's log spectral vectors in terms of the PDFs of the underlying speech signal's vocal-tract-related filters. Then, the mean vectors of PDFs of the vocal-tract-related filters are obtained using a maximum likelihood estimator given the mixed signal. Finally, the estimated vocal-tract-related filters along with the extracted fundamental frequencies are used to reconstruct estimates of the individual speech signals. The proposed technique effectively adds vocal-tract-related filter characteristics as a new cue to CASA models using a new grouping technique based on an underdetermined blind source separation. We compare our model with both an underdetermined blind source separation and a CASA method. The experimental results show that our model outperforms both techniques in terms of SNR improvement and the percentage of crosstalk suppression.

  16. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  17. Performances of some estimators of linear model with ...

    African Journals Online (AJOL)

    The estimators are compared by examing the finite properties of estimators namely; sum of biases, sum of absolute biases, sum of variances and sum of the mean squared error of the estimated parameter of the model. Results show that when the autocorrelation level is small (ρ=0.4), the MLGD estimator is best except when ...

  18. On population size estimators in the Poisson mixture model.

    Science.gov (United States)

    Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua

    2013-09-01

    Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.

  19. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  20. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  1. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  2. Target oriented relational model finding

    OpenAIRE

    Cunha, Alcino; Macedo, Nuno Filipe Moreira; Guimarães, Tiago Miguel Moreira

    2014-01-01

    Lecture Notes in Computer Science 8411, 2014 Model finders are becoming useful in many software engineering problems. Kodkod is one of the most popular, due to its support for relational logic (a combination of first order logic with relational algebra operators and transitive closure), allowing a simpler specification of constraints, and support for partial instances, allowing the specification of a priori (exact, but potentially partial) knowledge about a problem's solution. However, in ...

  3. Efficient estimation of semiparametric copula models for bivariate survival data

    KAUST Repository

    Cheng, Guang

    2014-01-01

    A semiparametric copula model for bivariate survival data is characterized by a parametric copula model of dependence and nonparametric models of two marginal survival functions. Efficient estimation for the semiparametric copula model has been recently studied for the complete data case. When the survival data are censored, semiparametric efficient estimation has only been considered for some specific copula models such as the Gaussian copulas. In this paper, we obtain the semiparametric efficiency bound and efficient estimation for general semiparametric copula models for possibly censored data. We construct an approximate maximum likelihood estimator by approximating the log baseline hazard functions with spline functions. We show that our estimates of the copula dependence parameter and the survival functions are asymptotically normal and efficient. Simple consistent covariance estimators are also provided. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2013 Elsevier Inc.

  4. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-09-01

    Full Text Available A new algorithm called maximum correntropy unscented Kalman filter (MCUKF is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC, the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

  5. Mathematical model of transmission network static state estimation

    Directory of Open Access Journals (Sweden)

    Ivanov Aleksandar

    2012-01-01

    Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.

  6. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.

    2013-01-01

    PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus

  7. Uncertainty related to Environmental Data and Estimated Extreme Events

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    The design loads on rubble mound breakwaters are almost entirely determined by the environmental conditions, i.e. sea state, water levels, sea bed characteristics, etc. It is the objective of sub-group B to identify the most important environmental parameters and evaluate the related uncertainties...... including those corresponding to extreme estimates typically used for design purposes. Basically a design condition is made up of a set of parameter values stemming from several environmental parameters. To be able to evaluate the uncertainty related to design states one must know the corresponding joint....... Consequently this report deals mainly with each parameter separately. Multi parameter problems are briefly discussed in section 9. It is important to notice that the quantified uncertainties reported in section 7.7 represent what might be regarded as typical figures to be used only when no more qualified...

  8. Risk Estimates and Risk Factors Related to Psychiatric Inpatient Suicide

    DEFF Research Database (Denmark)

    Madsen, Trine; Erlangsen, Annette; Nordentoft, Merete

    2017-01-01

    trends, and socio-demographic and clinical risk factors of suicide in psychiatric inpatients. Psychiatric inpatients have a very high risk of suicide relative to the background population, but it remains challenging for clinicians to identify those patients that are most likely to die from suicide during......People with mental illness have an increased risk of suicide. The aim of this paper is to provide an overview of suicide risk estimates among psychiatric inpatients based on the body of evidence found in scientific peer-reviewed literature; primarily focusing on the relative risks, rates, time...... admission. Most studies are based on low power, thus compromising quality and generalisability. The few studies with sufficient statistical power mainly identified non-modifiable risk predictors such as male gender, diagnosis, or recent deliberate self-harm. Also, the predictive value of these predictors...

  9. Risk Estimates and Risk Factors Related to Psychiatric Inpatient Suicide

    DEFF Research Database (Denmark)

    Madsen, Trine; Erlangsen, Annette; Nordentoft, Merete

    2017-01-01

    People with mental illness have an increased risk of suicide. The aim of this paper is to provide an overview of suicide risk estimates among psychiatric inpatients based on the body of evidence found in scientific peer-reviewed literature; primarily focusing on the relative risks, rates, time...... trends, and socio-demographic and clinical risk factors of suicide in psychiatric inpatients. Psychiatric inpatients have a very high risk of suicide relative to the background population, but it remains challenging for clinicians to identify those patients that are most likely to die from suicide during...... is low. It would be of great benefit if future studies would be based on large samples while focusing on modifiable predictors over the course of an admission, such as hopelessness, depressive symptoms, and family/social situations. This would improve our chances of developing better risk assessment...

  10. A Probabilistic Cost Estimation Model for Unexploded Ordnance Removal

    National Research Council Canada - National Science Library

    Poppe, Peter

    1999-01-01

    ...) contaminated sites that the services must decontaminate. Existing models for estimating the cost of UXO removal often require a high level of expertise and provide only a point estimate for the costs...

  11. Work related injuries: estimating the incidence among illegally employed immigrants

    Directory of Open Access Journals (Sweden)

    Fadda Emanuela

    2010-12-01

    Full Text Available Abstract Background Statistics on occupational accidents are based on data from registered employees. With the increasing number of immigrants employed illegally and/or without regular working visas in many developed countries, it is of interest to estimate the injury rate among such unregistered workers. Findings The current study was conducted in an area of North-Eastern Italy. The sources of information employed in the present study were the Accidents and Emergencies records of a hospital; the population data on foreign-born residents in the hospital catchment area (Health Care District 4, Primary Care Trust 20, Province of Verona, Veneto Region, North-Eastern Italy; and the estimated proportion of illegally employed workers in representative samples from the Province of Verona and the Veneto Region. Of the 419 A&E records collected between January and December 2004 among non European Union (non-EU immigrants, 146 aroused suspicion by reporting the home, rather than the workplace, as the site of the accident. These cases were the numerator of the rate. The number of illegally employed non-EU workers, denominator of the rate, was estimated according to different assumptions and ranged from between 537 to 1,338 individuals. The corresponding rates varied from 109.1 to 271.8 per 1,000 non-EU illegal employees, against 65 per 1,000 reported in Italy in 2004. Conclusions The results of this study suggest that there is an unrecorded burden of illegally employed immigrants suffering from work related injuries. Additional efforts for prevention of injuries in the workplace are required to decrease this number. It can be concluded that the Italian National Institute for the Insurance of Work Related Injuries (INAIL probably underestimates the incidence of these accidents in Italy.

  12. Work related injuries: estimating the incidence among illegally employed immigrants.

    Science.gov (United States)

    Mastrangelo, Giuseppe; Rylander, Ragnar; Buja, Alessandra; Marangi, Gianluca; Fadda, Emanuela; Fedeli, Ugo; Cegolon, Luca

    2010-12-08

    Statistics on occupational accidents are based on data from registered employees. With the increasing number of immigrants employed illegally and/or without regular working visas in many developed countries, it is of interest to estimate the injury rate among such unregistered workers. The current study was conducted in an area of North-Eastern Italy. The sources of information employed in the present study were the Accidents and Emergencies records of a hospital; the population data on foreign-born residents in the hospital catchment area (Health Care District 4, Primary Care Trust 20, Province of Verona, Veneto Region, North-Eastern Italy); and the estimated proportion of illegally employed workers in representative samples from the Province of Verona and the Veneto Region. Of the 419 A&E records collected between January and December 2004 among non European Union (non-EU) immigrants, 146 aroused suspicion by reporting the home, rather than the workplace, as the site of the accident. These cases were the numerator of the rate. The number of illegally employed non-EU workers, denominator of the rate, was estimated according to different assumptions and ranged from between 537 to 1,338 individuals. The corresponding rates varied from 109.1 to 271.8 per 1,000 non-EU illegal employees, against 65 per 1,000 reported in Italy in 2004. The results of this study suggest that there is an unrecorded burden of illegally employed immigrants suffering from work related injuries. Additional efforts for prevention of injuries in the workplace are required to decrease this number. It can be concluded that the Italian National Institute for the Insurance of Work Related Injuries (INAIL) probably underestimates the incidence of these accidents in Italy.

  13. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  14. Estimation of Stochastic Volatility Models by Nonparametric Filtering

    DEFF Research Database (Denmark)

    Kanaya, Shin; Kristensen, Dennis

    2016-01-01

    /estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...

  15. Volatility estimation using a rational GARCH model

    Directory of Open Access Journals (Sweden)

    Tetsuya Takaishi

    2018-03-01

    Full Text Available The rational GARCH (RGARCH model has been proposed as an alternative GARCHmodel that captures the asymmetric property of volatility. In addition to the previously proposedRGARCH model, we propose an alternative RGARCH model called the RGARCH-Exp model thatis more stable when dealing with outliers. We measure the performance of the volatility estimationby a loss function calculated using realized volatility as a proxy for true volatility and compare theRGARCH-type models with other asymmetric type models such as the EGARCH and GJR models.We conduct empirical studies of six stocks on the Tokyo Stock Exchange and find that a volatilityestimation using the RGARCH-type models outperforms the GARCH model and is comparable toother asymmetric GARCH models.

  16. Estimation of curve number by DAWAST model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tai Cheol; Park, Seung Ki; Moon, Jong Pil [Chungnam National University, Taejon (Korea, Republic of)

    1997-10-31

    It is one of the most important factors to determine the effective rainfall for estimation of flood hydrograph in design schedule. SCS curve number (CN) method has been frequently used to estimate the effective rainfall of synthesized design flood hydrograph for hydraulic structures. But, it should be cautious to apply SCS-CN originally developed in U.S.A to watersheds in Korea, because characteristics of watersheds in Korea and cropping patterns especially like a paddy land cultivation are quite different from those in USA. New CN method has been introduced. Maximum storage capacity which was herein defined as U{sub max} can be calibrated from the stream flow data and converted to new CN-I of driest condition of soil moisture in the given watershed. Effective rainfall for design flood hydrograph can be estimated by the curve number developed in the watersheds in Korea. (author). 14 refs., 5 tabs., 3 figs.

  17. Performance of monitoring networks estimated from a Gaussian plume model

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Hienen, J.F.A.

    1990-10-01

    In support of the ECN study on monitoring strategies after nuclear accidents, the present report describes the analysis of the performance of a monitoring network in a square grid. This network is used to estimate the distribution of the deposition pattern after a release of radioactivity into the atmosphere. The analysis is based upon a single release, a constant wind direction and an atmospheric dispersion according to a simplified Gaussian plume model. A technique is introduced to estimate the parameters in this Gaussian model based upon measurements at specific monitoring locations and linear regression, although this model is intrinsically non-linear. With these estimated parameters and the Gaussian model the distribution of the contamination due to deposition can be estimated. To investigate the relation between the network and the accuracy of the estimates for the deposition, deposition data have been generated by the Gaussian model, including a measurement error by a Monte Carlo simulation and this procedure has been repeated for several grid sizes, dispersion conditions, number of measurements per location, and errors per single measurement. The present technique has also been applied for the mesh sizes of two networks in the Netherlands, viz. the Landelijk Meetnet Radioaciviteit (National Measurement Network on Radioactivity, mesh size approx. 35 km) and the proposed Landelijk Meetnet Nucleaire Incidenten (National Measurement Network on Nuclear Incidents, mesh size approx. 15 km). The results show accuracies of 11 and 7 percent, respectively, if monitoring locations are used more than 10 km away from the postulated accident site. These figures are based upon 3 measurements per location and a dispersion during neutral weather with a wind velocity of 4 m/s. For stable weather conditions and low wind velocities, i.e. a small plume, the calculated accuracies are at least a factor 1.5 worse.The present type of analysis makes a cost-benefit approach to the

  18. Regression estimators for generic health-related quality of life and quality-adjusted life years.

    Science.gov (United States)

    Basu, Anirban; Manca, Andrea

    2012-01-01

    To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.

  19. ESTIMATION OF INTRINSIC AND EXTRINSIC ENVIRONMENT FACTORS OF AGE-RELATED TOOTH COLOUR CHANGES

    Czech Academy of Sciences Publication Activity Database

    Hyšpler, P.; Jezbera, D.; Fürst, T.; Mikšík, Ivan; Waclawek, M.

    2010-01-01

    Roč. 17, č. 4 (2010), s. 515-525 ISSN 1898-6196 Institutional research plan: CEZ:AV0Z50110509 Keywords : age-related colour changes of teeth * intrinsic and extrinsic factors * 3D mathematical regression models * estimation of real age Subject RIV: ED - Physiology Impact factor: 0.294, year: 2010

  20. Epistemology and Rosen's Modeling Relation

    International Nuclear Information System (INIS)

    Dress, W.B.

    1999-01-01

    Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism

  1. Modeling biology using relational databases.

    Science.gov (United States)

    Peitzsch, Robert M

    2003-02-01

    There are several different methodologies that can be used for designing a database schema; no one is the best for all occasions. This unit demonstrates two different techniques for designing relational tables and discusses when each should be used. These two techniques presented are (1) traditional Entity-Relationship (E-R) modeling and (2) a hybrid method that combines aspects of data warehousing and E-R modeling. The method of choice depends on (1) how well the information and all its inherent relationships are understood, (2) what types of questions will be asked, (3) how many different types of data will be included, and (4) how much data exists.

  2. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  3. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  4. Lag space estimation in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...

  5. Persuasion, Politeness and Relational Models

    Directory of Open Access Journals (Sweden)

    Jerzy Świątek

    2017-06-01

    Full Text Available Politeness Theory, just like Grice’s Cooperative Principle, points out that pragmatic analysis of language behaviour has to be grounded in extra-linguistic facts of social (or even biological nature. Additionally, despite the slightly misleading label, Politeness Theory provides a sound methodology to explain some persuasive as well as politeness phenomena. In the same vein, the so called Relational Model Theory provides another theoretical framework for the explanation of persuasive phenomena and persuasive language. Both Relational Model Theory and Politeness Theory show that persuasion is also to be understood as a rational response to not-so-rational social and biological needs. In the article an attempt is made to compare the two theories focusing on their explanatory power in reference to language choices aiming at enhancing the persuasive potential of a language message.

  6. Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections

    Science.gov (United States)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna, T.; Mykkeltveit, S.

    2017-01-01

    Declared North Korean nuclear tests in 2006, 2009, 2013 and 2016 were observed seismically at regional and teleseismic distances. Waveform similarity allows the events to be located relatively with far greater accuracy than the absolute locations can be determined from seismic data alone. There is now significant redundancy in the data given the large number of regional and teleseismic stations that have recorded multiple events, and relative location estimates can be confirmed independently by performing calculations on many mutually exclusive sets of measurements. Using a 1-D global velocity model, the distances between the events estimated using teleseismic P phases are found to be approximately 25 per cent shorter than the distances between events estimated using regional Pn phases. The 2009, 2013 and 2016 events all take place within 1 km of each other and the discrepancy between the regional and teleseismic relative location estimates is no more than about 150 m. The discrepancy is much more significant when estimating the location of the more distant 2006 event relative to the later explosions with regional and teleseismic estimates varying by many hundreds of metres. The relative location of the 2006 event is challenging given the smaller number of observing stations, the lower signal-to-noise ratio and significant waveform dissimilarity at some regional stations. The 2006 event is however highly significant in constraining the absolute locations in the terrain at the Punggye-ri test-site in relation to observed surface infrastructure. For each seismic arrival used to estimate the relative locations, we define a slowness scaling factor which multiplies the gradient of seismic traveltime versus distance, evaluated at the source, relative to the applied 1-D velocity model. A procedure for estimating correction terms which reduce the double-difference time residual vector norms is presented together with a discussion of the associated uncertainty. The modified

  7. Persuasion, Politeness and Relational Models

    OpenAIRE

    Jerzy Świątek

    2017-01-01

    Politeness Theory, just like Grice’s Cooperative Principle, points out that pragmatic analysis of language behaviour has to be grounded in extra-linguistic facts of social (or even biological) nature. Additionally, despite the slightly misleading label, Politeness Theory provides a sound methodology to explain some persuasive as well as politeness phenomena. In the same vein, the so called Relational Model Theory provides another theoretical framework for the explanation of persuasive phenome...

  8. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    Science.gov (United States)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  9. Group-Contribution based Property Estimation and Uncertainty analysis for Flammability-related Properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Marcarie, Camille; Abildskov, Jens

    2016-01-01

    regression and outlier treatment have been applied to achieve high accuracy. Furthermore, linear error propagation based on covariance matrix of estimated parameters was performed. Therefore, every estimated property value of the flammability-related properties is reported together with its corresponding 95......%-confidence interval of the prediction. Compared to existing models the developed ones have a higher accuracy, are simple to apply and provide uncertainty information on the calculated prediction. The average relative error and correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 0.91 for UFL, 2...

  10. Extreme Quantile Estimation in Binary Response Models

    Science.gov (United States)

    1990-03-01

    in Cancer Research," Biometria , VoL 66, pp. 307-316. Hsi, B.P. [1969], ’The Multiple Sample Up-and-Down Method in Bioassay," Journal of the American...New Method of Estimation," Biometria , VoL 53, pp. 439-454. Wetherill, G.B. [1976], Sequential Methods in Statistics, London: Chapman and Hall. Wu, C.FJ

  11. Robust Estimation and Forecasting of the Capital Asset Pricing Model

    NARCIS (Netherlands)

    G. Bian (Guorui); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2013-01-01

    textabstractIn this paper, we develop a modified maximum likelihood (MML) estimator for the multiple linear regression model with underlying student t distribution. We obtain the closed form of the estimators, derive the asymptotic properties, and demonstrate that the MML estimator is more

  12. Robust Estimation and Forecasting of the Capital Asset Pricing Model

    NARCIS (Netherlands)

    G. Bian (Guorui); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2010-01-01

    textabstractIn this paper, we develop a modified maximum likelihood (MML) estimator for the multiple linear regression model with underlying student t distribution. We obtain the closed form of the estimators, derive the asymptotic properties, and demonstrate that the MML estimator is more

  13. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  14. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  15. Performances Of Estimators Of Linear Models With Autocorrelated ...

    African Journals Online (AJOL)

    The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...

  16. Maximum likelihood estimation of finite mixture model for economic data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  17. Crash data modeling with a generalized estimator.

    Science.gov (United States)

    Ye, Zhirui; Xu, Yueru; Lord, Dominique

    2018-05-11

    The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  19. Daily Discharge Estimation in Talar River Using Lazy Learning Model

    Directory of Open Access Journals (Sweden)

    Zahra Abdollahi

    2017-03-01

    Full Text Available Introduction: River discharge as one of the most important hydrology factors has a vital role in physical, ecological, social and economic processes. So, accurate and reliable prediction and estimation of river discharge have been widely considered by many researchers in different fields such as surface water management, design of hydraulic structures, flood control and ecological studies in spetialand temporal scale. Therefore, in last decades different techniques for short-term and long-term estimation of hourly, daily, monthly and annual discharge have been developed for many years. However, short-term estimation models are less sophisticated and more accurate.Various global and local algorithms have been widely used to estimate hydrologic variables. The current study effort to use Lazy Learning approach to evaluate the adequacy of input data in order to follow the variation of discharge and also simulate next-day discharge in Talar River in KasilianBasinwhere is located in north of Iran with an area of 66.75 km2. Lazy learning is a local linear modelling approach in which generalization beyond the training data is delayed until a query is made to the system, as opposed to in eager learning, where the system tries to generalize the training data before receiving queries Materials and Methods: The current study was conducted in Kasilian Basin, where is located in north of Iran with an area of 66.75 km2. The main river of this basin joins to Talar River near Valicbon village and then exit from the watershed. Hydrometric station located near Valicbon village is equipped with Parshall flume and Limnogragh which can record river discharge of about 20 cubic meters per second.In this study, daily data of discharge recorded in Valicbon station related to 2002 to 2012 was used to estimate the discharge of 19 September 2012. The mean annual discharge of considered river was also calculated by using available data about 0.441 cubic meters per second. To

  20. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  1. Applicability of models to estimate traffic noise for urban roads.

    Science.gov (United States)

    Melo, Ricardo A; Pimentel, Roberto L; Lacerda, Diego M; Silva, Wekisley M

    2015-01-01

    Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.

  2. Report on estimated nuclear energy related cost for fiscal 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The report first describes major actions planned to be taken in Japan in fiscal 1991 in the field of nuclear energy utilization. Major activities to be made for comprehensive strengthening of safety assurance measures are described, focusing on improvement of nuclear energy related safety regulations, promotion of research for safety assurance, improvement and strengthening of disaster prevention measures, environmental radioactivity surveys, control of exposure of workers engaged in radioactivity related jobs, etc. The report then describes actions required for the establishment of a nuclear fuel cycle, focusing on the procurement of uranium resources, establishment of a uranium enrichment process, reprocessing of spent fuel, application of recovered uranium, etc. Other activities are required for the development of new type reactors, effective application of plutonium, development of basic techniques, international contributions, cooperation with the public. Then, the report summarizes estimated costs required for the activities to be performed by the Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation, National Institute of Radiological Sciences, Institute of Physical and Chemical Research. (N.K.)

  3. Conditional density estimation using fuzzy GARCH models

    NARCIS (Netherlands)

    Almeida, R.J.; Bastürk, N.; Kaymak, U.; Costa Sousa, da J.M.; Kruse, R.; Berthold, M.R.; Moewes, C.; Gil, M.A.; Grzegorzewski, P.; Hryniewicz, O.

    2013-01-01

    Abstract. Time series data exhibits complex behavior including non-linearity and path-dependency. This paper proposes a flexible fuzzy GARCH model that can capture different properties of data, such as skewness, fat tails and multimodality in one single model. Furthermore, additional information and

  4. A nonparametric mixture model for cure rate estimation.

    Science.gov (United States)

    Peng, Y; Dear, K B

    2000-03-01

    Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.

  5. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  6. Relation of whole blood carboxyhemoglobin concentration to ambient carbon monoxide exposure estimated using regression.

    Science.gov (United States)

    Rudra, Carole B; Williams, Michelle A; Sheppard, Lianne; Koenig, Jane Q; Schiff, Melissa A; Frederick, Ihunnaya O; Dills, Russell

    2010-04-15

    Exposure to carbon monoxide (CO) and other ambient air pollutants is associated with adverse pregnancy outcomes. While there are several methods of estimating CO exposure, few have been evaluated against exposure biomarkers. The authors examined the relation between estimated CO exposure and blood carboxyhemoglobin concentration in 708 pregnant western Washington State women (1996-2004). Carboxyhemoglobin was measured in whole blood drawn around 13 weeks' gestation. CO exposure during the month of blood draw was estimated using a regression model containing predictor terms for year, month, street and population densities, and distance to the nearest major road. Year and month were the strongest predictors. Carboxyhemoglobin level was correlated with estimated CO exposure (rho = 0.22, 95% confidence interval (CI): 0.15, 0.29). After adjustment for covariates, each 10% increase in estimated exposure was associated with a 1.12% increase in median carboxyhemoglobin level (95% CI: 0.54, 1.69). This association remained after exclusion of 286 women who reported smoking or being exposed to secondhand smoke (rho = 0.24). In this subgroup, the median carboxyhemoglobin concentration increased 1.29% (95% CI: 0.67, 1.91) for each 10% increase in CO exposure. Monthly estimated CO exposure was moderately correlated with an exposure biomarker. These results support the validity of this regression model for estimating ambient CO exposures in this population and geographic setting.

  7. Estimating High-Dimensional Time Series Models

    DEFF Research Database (Denmark)

    Medeiros, Marcelo C.; Mendes, Eduardo F.

    We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly......, larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency), and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. A simulation study shows...

  8. Optimal covariance selection for estimation using graphical models

    OpenAIRE

    Vichik, Sergey; Oshman, Yaakov

    2011-01-01

    We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...

  9. Temporal rainfall estimation using input data reduction and model inversion

    Science.gov (United States)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a

  10. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  11. Estimating Dynamic Equilibrium Models using Macro and Financial Data

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Posch, Olaf; van der Wel, Michel

    We show that including financial market data at daily frequency, along with macro series at standard lower frequency, facilitates statistical inference on structural parameters in dynamic equilibrium models. Our continuous-time formulation conveniently accounts for the difference in observation...... of the estimators and estimate the model using 20 years of U.S. macro and financial data....

  12. mathematical models for estimating radio channels utilization

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.

  13. Linear Regression Models for Estimating True Subsurface ...

    Indian Academy of Sciences (India)

    47

    The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.

  14. An Estimation of Construction and Demolition Debris in Seoul, Korea: Waste Amount, Type, and Estimating Model.

    Science.gov (United States)

    Seo, Seongwon; Hwang, Yongwoo

    1999-08-01

    Construction and demolition (C&D) debris is generated at the site of various construction activities. However, the amount of the debris is usually so large that it is necessary to estimate the amount of C&D debris as accurately as possible for effective waste management and control in urban areas. In this paper, an effective estimation method using a statistical model was proposed. The estimation process was composed of five steps: estimation of the life span of buildings; estimation of the floor area of buildings to be constructed and demolished; calculation of individual intensity units of C&D debris; and estimation of the future C&D debris production. This method was also applied in the city of Seoul as an actual case, and the estimated amount of C&D debris in Seoul in 2021 was approximately 24 million tons. Of this total amount, 98% was generated by demolition, and the main components of debris were concrete and brick.

  15. Static models, recursive estimators and the zero-variance approach

    KAUST Repository

    Rubino, Gerardo

    2016-01-07

    When evaluating dependability aspects of complex systems, most models belong to the static world, where time is not an explicit variable. These models suffer from the same problems than dynamic ones (stochastic processes), such as the frequent combinatorial explosion of the state spaces. In the Monte Carlo domain, on of the most significant difficulties is the rare event situation. In this talk, we describe this context and a recent technique that appears to be at the top performance level in the area, where we combined ideas that lead to very fast estimation procedures with another approach called zero-variance approximation. Both ideas produced a very efficient method that has the right theoretical property concerning robustness, the Bounded Relative Error one. Some examples illustrate the results.

  16. Estimating small area health-related characteristics of populations: a methodological review

    Directory of Open Access Journals (Sweden)

    Azizur Rahman

    2017-05-01

    Full Text Available Estimation of health-related characteristics at a fine local geographic level is vital for effective health promotion programmes, provision of better health services and population-specific health planning and management. Lack of a micro-dataset readily available for attributes of individuals at small areas negatively impacts the ability of local and national agencies to manage serious health issues and related risks in the community. A solution to this challenge would be to develop a method that simulates reliable small-area statistics. This paper provides a significant appraisal of the methodologies for estimating health-related characteristics of populations at geographical limited areas. Findings reveal that a range of methodologies are in use, which can be classified as three distinct set of approaches: i indirect standardisation and individual level modelling; ii multilevel statistical modelling; and iii micro-simulation modelling. Although each approach has its own strengths and weaknesses, it appears that microsimulation- based spatial models have significant robustness over the other methods and also represent a more precise means of estimating health-related population characteristics over small areas.

  17. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    Science.gov (United States)

    Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors

  18. GLUE Based Uncertainty Estimation of Urban Drainage Modeling Using Weather Radar Precipitation Estimates

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2011-01-01

    Distributed weather radar precipitation measurements are used as rainfall input for an urban drainage model, to simulate the runoff from a small catchment of Denmark. It is demonstrated how the Generalized Likelihood Uncertainty Estimation (GLUE) methodology can be implemented and used to estimate...

  19. Ballistic model to estimate microsprinkler droplet distribution

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca

    2003-01-01

    Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.

  20. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  1. Cokriging model for estimation of water table elevation

    International Nuclear Information System (INIS)

    Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.

    1989-01-01

    In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model

  2. Weibull Parameters Estimation Based on Physics of Failure Model

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...

  3. A Dynamic Travel Time Estimation Model Based on Connected Vehicles

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2015-01-01

    Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.

  4. Model-based Small Area Estimates of Cancer Risk Factors and Screening Behaviors - Small Area Estimates

    Science.gov (United States)

    These model-based estimates use two surveys, the Behavioral Risk Factor Surveillance System (BRFSS) and the National Health Interview Survey (NHIS). The two surveys are combined using novel statistical methodology.

  5. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  6. Estimating adolescent sleep need using dose-response modeling.

    Science.gov (United States)

    Short, Michelle A; Weber, Nathan; Reynolds, Chelsea; Coussens, Scott; Carskadon, Mary A

    2018-04-01

    This study will (1) estimate the nightly sleep need of human adolescents, (2) determine the time course and severity of sleep-related deficits when sleep is reduced below this optimal quantity, and (3) determine whether sleep restriction perturbs the circadian system as well as the sleep homeostat. Thirty-four adolescents aged 15 to 17 years spent 10 days and nine nights in the sleep laboratory. Between two baseline nights and two recovery nights with 10 hours' time in bed (TIB) per night, participants experienced either severe sleep restriction (5-hour TIB), moderate sleep restriction (7.5-hour TIB), or no sleep restriction (10-hour TIB) for five nights. A 10-minute psychomotor vigilance task (PVT; lapse = response after 500 ms) and the Karolinska Sleepiness Scale were administered every 3 hours during wake. Salivary dim-light melatonin onset was calculated at baseline and after four nights of each sleep dose to estimate circadian phase. Dose-dependent deficits to sleep duration, circadian phase timing, lapses of attention, and subjective sleepiness occurred. Less TIB resulted in less sleep, more lapses of attention, greater subjective sleepiness, and larger circadian phase delays. Sleep need estimated from 10-hour TIB sleep opportunities was approximately 9 hours, while modeling PVT lapse data suggested that 9.35 hours of sleep is needed to maintain optimal sustained attention performance. Sleep restriction perturbs homeostatic and circadian systems, leading to dose-dependent deficits to sustained attention and sleepiness. Adolescents require more sleep for optimal functioning than typically obtained.

  7. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  8. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  9. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries

    2014-01-01

    , surface turbulence characteristics. In this study, we follow a theory that is different from the local gust concept as described above. In this theory, the gust at the surface is non-local; it is produced by the deflection of air parcels flowing in the boundary layer and brought down to the surface...... from the Danish site Høvsøre help us to understand the limitation of the traditional method. Good agreement was found between the extreme gust atlases for South Africa and the existing map made from a limited number of measurements across the country. Our study supports the non-local gust theory. While...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...

  10. Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation

    Science.gov (United States)

    Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G.

    2018-02-01

    The increasing availability of earth observations necessitates mathematical methods to optimally combine such data with hydrologic models. Several algorithms exist for such purposes, under the umbrella of data assimilation (DA). However, DA methods are often applied in a suboptimal fashion for complex real-world problems, due largely to several practical implementation issues. One such issue is error characterization, which is known to be critical for a successful assimilation. Mischaracterized errors lead to suboptimal forecasts, and in the worst case, to degraded estimates even compared to the no assimilation case. Model uncertainty characterization has received little attention relative to other aspects of DA science. Traditional methods rely on subjective, ad hoc tuning factors or parametric distribution assumptions that may not always be applicable. We propose a novel data-driven approach (named SDMU) to model uncertainty characterization for DA studies where (1) the system states are partially observed and (2) minimal prior knowledge of the model error processes is available, except that the errors display state dependence. It includes an approach for estimating the uncertainty in hidden model states, with the end goal of improving predictions of observed variables. The SDMU is therefore suited to DA studies where the observed variables are of primary interest. Its efficacy is demonstrated through a synthetic case study with low-dimensional chaotic dynamics and a real hydrologic experiment for one-day-ahead streamflow forecasting. In both experiments, the proposed method leads to substantial improvements in the hidden states and observed system outputs over a standard method involving perturbation with Gaussian noise.

  11. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  12. Estimating confidence intervals in predicted responses for oscillatory biological models.

    Science.gov (United States)

    St John, Peter C; Doyle, Francis J

    2013-07-29

    The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently

  13. IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2017-12-01

    Full Text Available Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1 design of new types of draft gears and air distributors; 2 development of methods for controlling the movement of conventional and connected trains; 3 creation of appropriate process flow diagrams; 4 development of energy-saving methods of train driving; 5 revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76; 6 when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7 when creating computer simulators for the training of locomotive drivers; 8 assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity

  14. Modeling patterns in data using linear and related models

    International Nuclear Information System (INIS)

    Engelhardt, M.E.

    1996-06-01

    This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models

  15. Model improves oil field operating cost estimates

    International Nuclear Information System (INIS)

    Glaeser, J.L.

    1996-01-01

    A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis

  16. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  17. Fundamental Frequency and Model Order Estimation Using Spatial Filtering

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    extend this procedure to account for inharmonicity using unconstrained model order estimation. The simulations show that beamforming improves the performance of the joint estimates of fundamental frequency and the number of harmonics in low signal to interference (SIR) levels, and an experiment......In signal processing applications of harmonic-structured signals, estimates of the fundamental frequency and number of harmonics are often necessary. In real scenarios, a desired signal is contaminated by different levels of noise and interferers, which complicate the estimation of the signal...... parameters. In this paper, we present an estimation procedure for harmonic-structured signals in situations with strong interference using spatial filtering, or beamforming. We jointly estimate the fundamental frequency and the constrained model order through the output of the beamformers. Besides that, we...

  18. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  19. Comparing estimates of genetic variance across different relationship models.

    Science.gov (United States)

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Information matrix estimation procedures for cognitive diagnostic models.

    Science.gov (United States)

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  1. Estimating cardiovascular disease incidence from prevalence: a spreadsheet based model

    Directory of Open Access Journals (Sweden)

    Xue Feng Hu

    2017-01-01

    Full Text Available Abstract Background Disease incidence and prevalence are both core indicators of population health. Incidence is generally not as readily accessible as prevalence. Cohort studies and electronic health record systems are two major way to estimate disease incidence. The former is time-consuming and expensive; the latter is not available in most developing countries. Alternatively, mathematical models could be used to estimate disease incidence from prevalence. Methods We proposed and validated a method to estimate the age-standardized incidence of cardiovascular disease (CVD, with prevalence data from successive surveys and mortality data from empirical studies. Hallett’s method designed for estimating HIV infections in Africa was modified to estimate the incidence of myocardial infarction (MI in the U.S. population and incidence of heart disease in the Canadian population. Results Model-derived estimates were in close agreement with observed incidence from cohort studies and population surveillance systems. This method correctly captured the trend in incidence given sufficient waves of cross-sectional surveys. The estimated MI declining rate in the U.S. population was in accordance with the literature. This method was superior to closed cohort, in terms of the estimating trend of population cardiovascular disease incidence. Conclusion It is possible to estimate CVD incidence accurately at the population level from cross-sectional prevalence data. This method has the potential to be used for age- and sex- specific incidence estimates, or to be expanded to other chronic conditions.

  2. Asymptotics for Estimating Equations in Hidden Markov Models

    DEFF Research Database (Denmark)

    Hansen, Jørgen Vinsløv; Jensen, Jens Ledet

    Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...

  3. Online State Space Model Parameter Estimation in Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Z. Gallehdari

    2014-06-01

    The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.

  4. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  5. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  6. Person Appearance Modeling and Orientation Estimation using Spherical Harmonics

    NARCIS (Netherlands)

    Liem, M.C.; Gavrila, D.M.

    2013-01-01

    We present a novel approach for the joint estimation of a person's overall body orientation, 3D shape and texture, from overlapping cameras. Overall body orientation (i.e. rotation around torso major axis) is estimated by minimizing the difference between a learned texture model in a canonical

  7. Inverse Gaussian model for small area estimation via Gibbs sampling

    African Journals Online (AJOL)

    We present a Bayesian method for estimating small area parameters under an inverse Gaussian model. The method is extended to estimate small area parameters for finite populations. The Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the method by application to ...

  8. Performances of estimators of linear auto-correlated error model ...

    African Journals Online (AJOL)

    The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...

  9. Nonparametric volatility density estimation for discrete time models

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2005-01-01

    We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared process is proposed

  10. Parameter Estimates in Differential Equation Models for Population Growth

    Science.gov (United States)

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  11. Review Genetic prediction models and heritability estimates for ...

    African Journals Online (AJOL)

    edward

    2015-05-09

    May 9, 2015 ... Instead, through stepwise inclusion of type traits in the PH model, the .... Great Britain uses a bivariate animal model for all breeds, ... Štípková, 2012) and then applying linear models to the combined datasets with the ..... multivariate analyses, it is difficult to use indicator traits to estimate longevity early in life ...

  12. Parameter estimation of electricity spot models from futures prices

    NARCIS (Netherlands)

    Aihara, ShinIchi; Bagchi, Arunabha; Imreizeeq, E.S.N.; Walter, E.

    We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate

  13. Estimating the Competitive Storage Model with Trending Commodity Prices

    OpenAIRE

    Gouel , Christophe; LEGRAND , Nicolas

    2017-01-01

    We present a method to estimate jointly the parameters of a standard commodity storage model and the parameters characterizing the trend in commodity prices. This procedure allows the influence of a possible trend to be removed without restricting the model specification, and allows model and trend selection based on statistical criteria. The trend is modeled deterministically using linear or cubic spline functions of time. The results show that storage models with trend are always preferred ...

  14. Functional Mixed Effects Model for Small Area Estimation.

    Science.gov (United States)

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  15. Development of simple kinetic models and parameter estimation for ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-09-28

    Sep 28, 2016 ... estimation for simulation of recombinant human serum albumin ... and recombinant protein production by P. pastoris without requiring complex models. Key words: ..... SDS-PAGE and showed the same molecular size as.

  16. COPS model estimates of LLEA availability near selected reactor sites

    International Nuclear Information System (INIS)

    Berkbigler, K.P.

    1979-11-01

    The COPS computer model has been used to estimate local law enforcement agency (LLEA) officer availability in the neighborhood of selected nuclear reactor sites. The results of these analyses are presented both in graphic and tabular form in this report

  17. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  18. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Empirical model for estimating the surface roughness of machined ... as well as surface finish is one of the most critical quality measure in mechanical products. ... various cutting speed have been developed using regression analysis software.

  19. Context Tree Estimation in Variable Length Hidden Markov Models

    OpenAIRE

    Dumont, Thierry

    2011-01-01

    We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of Finesso and Lorenzo(Consistent estimation of the order for Markov and hidden Markov chains(1990)) and E.Gassiat and S.Boucheron (Optimal error exp...

  20. Relative abundance estimations of Chengal trees in a tropical rainforest by using modified canopy fractional cover (mCFC)

    International Nuclear Information System (INIS)

    Hassan, N

    2014-01-01

    Tree species composition estimations are important to sustain forest management. This study estimates relative abundance of useful timber tree species (chengal) using Hyperion EO-1 satellite data. For the estimation, modified Canopy Fractional Cover (mCFC) was developed using Canopy Fractional Cover (CFC). mCFC was more sensitive to estimate relative abundance of chengal trees rather than Mixture Tuned Matched Filtering (MTMF). Meanwhile, MTMF was more sensitive to estimate the relative abundance of undisturbed forest. Accuracy suggests that the mCFC model is better to explain relative abundance of chengal trees than MTMF. Therefore, it can be concluded that relative abundance of tree species extracted from Hyperion EO-1 satellite data using modified Canopy Fractional Cover is an obtrusive approach used for identifying tree species composition

  1. Relative abundance estimations of chengal tree in a tropical rainforest by using modified Canopy Fractional Cover (mCFC)

    International Nuclear Information System (INIS)

    Hassan, N

    2014-01-01

    Tree species composition estimations are important to sustain forest management. This study challenged estimates of relative abundance of useful timber tree species (chengal) using Hyperion EO-1 satellite data. For the estimation, modified Canopy Fractional Cover (mCFC) was developed using Canopy Fractional Cover (CFC). mCFC was more sensitive to estimate relative abundance of chengal trees rather than Mixture Tuned Matched Filtering (MTMF). Meanwhile, MTMF was more sensitive to estimate the relative abundance of undisturbed forest. Accuracy suggests that the mCFC model is better to explain relative abundance of chengal trees than MTMF. Therefore, it can be concluded that relative abundance of trees species extracted from Hyperion EO-1 satellite data using modified Canopy Fractional Cover is an obtrusive approach used for identifying trees species composition

  2. Estimation of Model's Marginal likelihood Using Adaptive Sparse Grid Surrogates in Bayesian Model Averaging

    Science.gov (United States)

    Zeng, X.

    2015-12-01

    A large number of model executions are required to obtain alternative conceptual models' predictions and their posterior probabilities in Bayesian model averaging (BMA). The posterior model probability is estimated through models' marginal likelihood and prior probability. The heavy computation burden hinders the implementation of BMA prediction, especially for the elaborated marginal likelihood estimator. For overcoming the computation burden of BMA, an adaptive sparse grid (SG) stochastic collocation method is used to build surrogates for alternative conceptual models through the numerical experiment of a synthetical groundwater model. BMA predictions depend on model posterior weights (or marginal likelihoods), and this study also evaluated four marginal likelihood estimators, including arithmetic mean estimator (AME), harmonic mean estimator (HME), stabilized harmonic mean estimator (SHME), and thermodynamic integration estimator (TIE). The results demonstrate that TIE is accurate in estimating conceptual models' marginal likelihoods. The BMA-TIE has better predictive performance than other BMA predictions. TIE has high stability for estimating conceptual model's marginal likelihood. The repeated estimated conceptual model's marginal likelihoods by TIE have significant less variability than that estimated by other estimators. In addition, the SG surrogates are efficient to facilitate BMA predictions, especially for BMA-TIE. The number of model executions needed for building surrogates is 4.13%, 6.89%, 3.44%, and 0.43% of the required model executions of BMA-AME, BMA-HME, BMA-SHME, and BMA-TIE, respectively.

  3. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    Science.gov (United States)

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  4. Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models

    Science.gov (United States)

    Raykov, Tenko

    2005-01-01

    A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…

  5. Kernel PLS Estimation of Single-trial Event-related Potentials

    Science.gov (United States)

    Rosipal, Roman; Trejo, Leonard J.

    2004-01-01

    Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.

  6. Optimal difference-based estimation for partially linear models

    KAUST Repository

    Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  7. Optimal difference-based estimation for partially linear models

    KAUST Repository

    Zhou, Yuejin

    2017-12-16

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  8. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  9. The relative efficiency of three methods of estimating herbage mass ...

    African Journals Online (AJOL)

    The methods involved were randomly placed circular quadrats; randomly placed narrow strips; and disc meter sampling. Disc meter and quadrat sampling appear to be more efficient than strip sampling. In a subsequent small plot grazing trial the estimates of herbage mass, using the disc meter, had a consistent precision ...

  10. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. Estimating radiation-induced cancer risk using MVK two-stage model for carcinogenesis

    International Nuclear Information System (INIS)

    Kai, M.; Kusama, T.; Aoki, Y.

    1993-01-01

    Based on the carcinogenesis model as proposed by Moolgavkar et al., time-dependent relative risk models were derived for projecting the time variation in excess relative risk. If it is assumed that each process is described by time-independent linear dose-response relationship, the time variation in excess relative risk is influenced by the parameter related with the promotion process. The risk model based carcinogenesis theory would play a marked role in estimating radiation-induced cancer risk in constructing a projection model or transfer model

  12. Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2014-01-01

    Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.

  13. Some statistical considerations related to the estimation of cancer risk following exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Land, C.E.; Pierce, D.A.

    1983-01-01

    Statistical theory and methodology provide the logical structure for scientific inference about the cancer risk associated with exposure to ionizing radiation. Although much is known about radiation carcinogenesis, the risk associated with low-level exposures is difficult to assess because it is too small to measure directly. Estimation must therefore depend upon mathematical models which relate observed risks at high exposure levels to risks at lower exposure levels. Extrapolated risk estimates obtained using such models are heavily dependent upon assumptions about the shape of the dose-response relationship, the temporal distribution of risk following exposure, and variation of risk according to variables such as age at exposure, sex, and underlying population cancer rates. Expanded statistical models, which make explicit certain assumed relationships between different data sets, can be used to strengthen inferences by incorporating relevant information from diverse sources. They also allow the uncertainties inherent in information from related data sets to be expressed in estimates which partially depend upon that information. To the extent that informed opinion is based upon a valid assessment of scientific data, the larger context of decision theory, which includes statistical theory, provides a logical framework for the incorporation into public policy decisions of the informational content of expert opinion

  14. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  15. Bayesian Nonparametric Model for Estimating Multistate Travel Time Distribution

    Directory of Open Access Journals (Sweden)

    Emmanuel Kidando

    2017-01-01

    Full Text Available Multistate models, that is, models with more than two distributions, are preferred over single-state probability models in modeling the distribution of travel time. Literature review indicated that the finite multistate modeling of travel time using lognormal distribution is superior to other probability functions. In this study, we extend the finite multistate lognormal model of estimating the travel time distribution to unbounded lognormal distribution. In particular, a nonparametric Dirichlet Process Mixture Model (DPMM with stick-breaking process representation was used. The strength of the DPMM is that it can choose the number of components dynamically as part of the algorithm during parameter estimation. To reduce computational complexity, the modeling process was limited to a maximum of six components. Then, the Markov Chain Monte Carlo (MCMC sampling technique was employed to estimate the parameters’ posterior distribution. Speed data from nine links of a freeway corridor, aggregated on a 5-minute basis, were used to calculate the corridor travel time. The results demonstrated that this model offers significant flexibility in modeling to account for complex mixture distributions of the travel time without specifying the number of components. The DPMM modeling further revealed that freeway travel time is characterized by multistate or single-state models depending on the inclusion of onset and offset of congestion periods.

  16. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2018-07-01

    Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A financial planning model for estimating hospital debt capacity.

    Science.gov (United States)

    Hopkins, D S; Heath, D; Levin, P J

    1982-01-01

    A computer-based financial planning model was formulated to measure the impact of a major capital improvement project on the fiscal health of Stanford University Hospital. The model had to be responsive to many variables and easy to use, so as to allow for the testing of numerous alternatives. Special efforts were made to identify the key variables that needed to be presented in the model and to include all known links between capital investment, debt, and hospital operating expenses. Growth in the number of patient days of care was singled out as a major source of uncertainty that would have profound effects on the hospital's finances. Therefore this variable was subjected to special scrutiny in terms of efforts to gauge expected demographic trends and market forces. In addition, alternative base runs of the model were made under three distinct patient-demand assumptions. Use of the model enabled planners at the Stanford University Hospital (a) to determine that a proposed modernization plan was financially feasible under a reasonable (that is, not unduly optimistic) set of assumptions and (b) to examine the major sources of risk. Other than patient demand, these sources were found to be gross revenues per patient, operating costs, and future limitations on government reimbursement programs. When the likely financial consequences of these risks were estimated, both separately and in combination, it was determined that even if two or more assumptions took a somewhat more negative turn than was expected, the hospital would be able to offset adverse consequences by a relatively minor reduction in operating costs. PMID:7111658

  18. Improving Relative Combat Power Estimation: The Road to Victory

    Science.gov (United States)

    2014-06-13

    was unthinkable before. Napoleon Bonaparte achieved a superior warfighting system compared to his opponents, which resulted in SOF. Napoleon’s...observations about combat power estimation and force empoloyment, remain valid. Napoleon also offered thoughts about combat power and superiority whe he...force. However, Napoleon did not think one- sidedly about the problem. He also said: “The moral is to the physical as three to one.”11 This dual

  19. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  20. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Science.gov (United States)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  1. Marginal Maximum Likelihood Estimation of Item Response Models in R

    Directory of Open Access Journals (Sweden)

    Matthew S. Johnson

    2007-02-01

    Full Text Available Item response theory (IRT models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixed- and/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have successfully utilized IRT-like models in a wide variety of applications. This paper discusses the three major methods of estimation in IRT and develops R functions utilizing the built-in capabilities of the R environment to find the marginal maximum likelihood estimates of the generalized partial credit model. The currently available R packages ltm is also discussed.

  2. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  3. [Using log-binomial model for estimating the prevalence ratio].

    Science.gov (United States)

    Ye, Rong; Gao, Yan-hui; Yang, Yi; Chen, Yue

    2010-05-01

    To estimate the prevalence ratios, using a log-binomial model with or without continuous covariates. Prevalence ratios for individuals' attitude towards smoking-ban legislation associated with smoking status, estimated by using a log-binomial model were compared with odds ratios estimated by logistic regression model. In the log-binomial modeling, maximum likelihood method was used when there were no continuous covariates and COPY approach was used if the model did not converge, for example due to the existence of continuous covariates. We examined the association between individuals' attitude towards smoking-ban legislation and smoking status in men and women. Prevalence ratio and odds ratio estimation provided similar results for the association in women since smoking was not common. In men however, the odds ratio estimates were markedly larger than the prevalence ratios due to a higher prevalence of outcome. The log-binomial model did not converge when age was included as a continuous covariate and COPY method was used to deal with the situation. All analysis was performed by SAS. Prevalence ratio seemed to better measure the association than odds ratio when prevalence is high. SAS programs were provided to calculate the prevalence ratios with or without continuous covariates in the log-binomial regression analysis.

  4. Language Adaptation for Extending Post-Editing Estimates for Closely Related Languages

    Directory of Open Access Journals (Sweden)

    Rios Miguel

    2016-10-01

    Full Text Available This paper presents an open-source toolkit for predicting human post-editing efforts for closely related languages. At the moment, training resources for the Quality Estimation task are available for very few language directions and domains. Available resources can be expanded on the assumption that MT errors and the amount of post-editing required to correct them are comparable across related languages, even if the feature frequencies differ. In this paper we report a toolkit for achieving language adaptation, which is based on learning new feature representation using transfer learning methods. In particular, we report performance of a method based on Self-Taught Learning which adapts the English-Spanish pair to produce Quality Estimation models for translation from English into Portuguese, Italian and other Romance languages using the publicly available Autodesk dataset.

  5. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  6. On the Estimation of Standard Errors in Cognitive Diagnosis Models

    Science.gov (United States)

    Philipp, Michel; Strobl, Carolin; de la Torre, Jimmy; Zeileis, Achim

    2018-01-01

    Cognitive diagnosis models (CDMs) are an increasingly popular method to assess mastery or nonmastery of a set of fine-grained abilities in educational or psychological assessments. Several inference techniques are available to quantify the uncertainty of model parameter estimates, to compare different versions of CDMs, or to check model…

  7. Estimation of pure autoregressive vector models for revenue series ...

    African Journals Online (AJOL)

    This paper aims at applying multivariate approach to Box and Jenkins univariate time series modeling to three vector series. General Autoregressive Vector Models with time varying coefficients are estimated. The first vector is a response vector, while others are predictor vectors. By matrix expansion each vector, whether ...

  8. Vacuum expectation values for four-fermion operators. Model estimates

    International Nuclear Information System (INIS)

    Zhitnitskij, A.R.

    1985-01-01

    Some simple models (a system with a heavy quark, the rarefied insatanton gas) are used to investigate the problem of factorizability. Characteristics of vacuum fluctuations responsible for saturation of four-fermion vacuum expectation values which are known phenomenologically are discussed. A qualitative agreement between the model and phenomenologic;l estimates has been noted

  9. Vacuum expectation values of four-fermion operators. Model estimates

    International Nuclear Information System (INIS)

    Zhitnitskii, A.R.

    1985-01-01

    Simple models (a system with a heavy quark, a rarefied instanton gas) are used to study problems of factorizability. A discussion is given of the characteristics of the vacuum fluctuations responsible for saturation of the phenomenologically known four-fermion vacuum expectation values. Qualitative agreement between the model and phenomenological estimates is observed

  10. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  11. Simplification of an MCNP model designed for dose rate estimation

    Science.gov (United States)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  12. Simplification of an MCNP model designed for dose rate estimation

    Directory of Open Access Journals (Sweden)

    Laptev Alexander

    2017-01-01

    Full Text Available A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  13. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    Brabec, M.; Jilek, K.

    2004-01-01

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  14. PARAMETER ESTIMATION AND MODEL SELECTION FOR INDOOR ENVIRONMENTS BASED ON SPARSE OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Y. Dehbi

    2017-09-01

    Full Text Available This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  15. Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations

    Science.gov (United States)

    Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.

    2017-09-01

    This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  16. Unemployment estimation: Spatial point referenced methods and models

    KAUST Repository

    Pereira, Soraia

    2017-06-26

    Portuguese Labor force survey, from 4th quarter of 2014 onwards, started geo-referencing the sampling units, namely the dwellings in which the surveys are carried. This opens new possibilities in analysing and estimating unemployment and its spatial distribution across any region. The labor force survey choose, according to an preestablished sampling criteria, a certain number of dwellings across the nation and survey the number of unemployed in these dwellings. Based on this survey, the National Statistical Institute of Portugal presently uses direct estimation methods to estimate the national unemployment figures. Recently, there has been increased interest in estimating these figures in smaller areas. Direct estimation methods, due to reduced sampling sizes in small areas, tend to produce fairly large sampling variations therefore model based methods, which tend to

  17. Parameter Estimation in Stochastic Grey-Box Models

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2004-01-01

    An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...... and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term....

  18. METHODOLOGY RELATED TO ESTIMATION OF INVESTMENT APPEAL OF RURAL SETTLEMENTS

    Directory of Open Access Journals (Sweden)

    A. S. Voshev

    2010-03-01

    Full Text Available Conditions for production activity vary considerably from region to region, from area to area, from settlement to settlement. In this connection, investors are challenged to choose an optimum site for a new enterprise. To make the decision, investors follow such references as: investment potential and risk level; their interrelation determines investment appeal of a country, region, area, city or rural settlement. At present Russia faces a problem of «black boxes» represented by a lot of rural settlements. No effective and suitable techniques of quantitative estimation of investment potential, rural settlement risks and systems to make the given information accessible for potential investors exist until now.

  19. The problematic estimation of "imitation effects" in multilevel models

    Directory of Open Access Journals (Sweden)

    2003-09-01

    Full Text Available It seems plausible that a person's demographic behaviour may be influenced by that among other people in the community, for example because of an inclination to imitate. When estimating multilevel models from clustered individual data, some investigators might perhaps feel tempted to try to capture this effect by simply including on the right-hand side the average of the dependent variable, constructed by aggregation within the clusters. However, such modelling must be avoided. According to simulation experiments based on real fertility data from India, the estimated effect of this obviously endogenous variable can be very different from the true effect. Also the other community effect estimates can be strongly biased. An "imitation effect" can only be estimated under very special assumptions that in practice will be hard to defend.

  20. Development on electromagnetic impedance function modeling and its estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  1. Parametric model to estimate containment loads following an ex-vessel steam spike

    International Nuclear Information System (INIS)

    Lopez, R.; Hernandez, J.; Huerta, A.

    1998-01-01

    This paper describes the use of a relatively simple parametric model to estimate containment loads following an ex-vessel steam spike. The study was motivated because several PSAs have identified containment loads accompanying reactor vessel failures as a major contributor to early containment failure. The paper includes a detailed description of the simple but physically sound parametric model which was adopted to estimate containment loads following a steam spike into the reactor cavity. (author)

  2. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  3. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    Directory of Open Access Journals (Sweden)

    Lujiang Liu

    2016-06-01

    Full Text Available Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective.

  4. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  5. Advanced empirical estimate of information value for credit scoring models

    Directory of Open Access Journals (Sweden)

    Martin Řezáč

    2011-01-01

    Full Text Available Credit scoring, it is a term for a wide spectrum of predictive models and their underlying techniques that aid financial institutions in granting credits. These methods decide who will get credit, how much credit they should get, and what further strategies will enhance the profitability of the borrowers to the lenders. Many statistical tools are avaiable for measuring quality, within the meaning of the predictive power, of credit scoring models. Because it is impossible to use a scoring model effectively without knowing how good it is, quality indexes like Gini, Kolmogorov-Smirnov statisic and Information value are used to assess quality of given credit scoring model. The paper deals primarily with the Information value, sometimes called divergency. Commonly it is computed by discretisation of data into bins using deciles. One constraint is required to be met in this case. Number of cases have to be nonzero for all bins. If this constraint is not fulfilled there are some practical procedures for preserving finite results. As an alternative method to the empirical estimates one can use the kernel smoothing theory, which allows to estimate unknown densities and consequently, using some numerical method for integration, to estimate value of the Information value. The main contribution of this paper is a proposal and description of the empirical estimate with supervised interval selection. This advanced estimate is based on requirement to have at least k, where k is a positive integer, observations of socres of both good and bad client in each considered interval. A simulation study shows that this estimate outperform both the empirical estimate using deciles and the kernel estimate. Furthermore it shows high dependency on choice of the parameter k. If we choose too small value, we get overestimated value of the Information value, and vice versa. Adjusted square root of number of bad clients seems to be a reasonable compromise.

  6. Uncertainty in estimating and mitigating industrial related GHG emissions

    International Nuclear Information System (INIS)

    El-Fadel, M.; Zeinati, M.; Ghaddar, N.; Mezher, T.

    2001-01-01

    Global climate change has been one of the challenging environmental concerns facing policy makers in the past decade. The characterization of the wide range of greenhouse gas emissions sources and sinks as well as their behavior in the atmosphere remains an on-going activity in many countries. Lebanon, being a signatory to the Framework Convention on Climate Change, is required to submit and regularly update a national inventory of greenhouse gas emissions sources and removals. Accordingly, an inventory of greenhouse gases from various sectors was conducted following the guidelines set by the United Nations Intergovernmental Panel on Climate Change (IPCC). The inventory indicated that the industrial sector contributes about 29% to the total greenhouse gas emissions divided between industrial processes and energy requirements at 12 and 17%, respectively. This paper describes major mitigation scenarios to reduce emissions from this sector based on associated technical, economic, environmental, and social characteristics. Economic ranking of these scenarios was conducted and uncertainty in emission factors used in the estimation process was emphasized. For this purpose, theoretical and experimental emission factors were used as alternatives to default factors recommended by the IPCC and the significance of resulting deviations in emission estimation is presented. (author)

  7. Heritability estimates for yield and related traits in bread wheat

    International Nuclear Information System (INIS)

    Din, R.; Jehan, S.; Ibraullah, A.

    2009-01-01

    A set of 22 experimental wheat lines along with four check cultivars were evaluated in in-irrigated and unirrgated environments with objectives to determine genetic and phenotypic variation and heritability estimates for yield and its traits- The two environments were statistically at par for physiological maturity, plant height, spikes m/sub -2/. spike lets spike/sup -1/ and 1000-grain weight. Highly significant genetic variability existed among wheat lines (P < 0.0 I) in the combined analysis across two test environments for traits except 1000- grain weight. Genotypes x environment interactions were non-significant for traits indicating consistent performance of lines in two test environments. However lines and check cultivars were two to five days early in maturity under unirrigated environment. Plant height, spikes m/sup -2/ and 1000-grain weight also reduced under unirrigated environments. Genetic variances were greater than Environmental variances for most of traits- Heritability estimates were of higher magnitude (0.74 to 0.96) for plant height, medium (0.31 to 0.56) for physiological maturity. spikelets spike/sup -1/ (unirrigated) and 1000-grain weight, and low for spikes m/sup -2/. (author)

  8. Perspectives on Modelling BIM-enabled Estimating Practices

    Directory of Open Access Journals (Sweden)

    Willy Sher

    2014-12-01

    Full Text Available BIM-enabled estimating processes do not replace or provide a substitute for the traditional approaches used in the architecture, engineering and construction industries. This paper explores the impact of BIM on these traditional processes.  It identifies differences between the approaches used with BIM and other conventional methods, and between the various construction professionals that prepare estimates. We interviewed 17 construction professionals from client organizations, contracting organizations, consulting practices and specialist-project firms. Our analyses highlight several logical relationships between estimating processes and BIM attributes. Estimators need to respond to the challenges BIM poses to traditional estimating practices. BIM-enabled estimating circumvents long-established conventions and traditional approaches, and focuses on data management.  Consideration needs to be given to the model data required for estimating, to the means by which these data may be harnessed when exported, to the means by which the integrity of model data are protected, to the creation and management of tools that work effectively and efficiently in multi-disciplinary settings, and to approaches that narrow the gap between virtual reality and actual reality.  Areas for future research are also identified in the paper.

  9. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  10. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...

  11. Model Year 2017 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  12. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  13. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  14. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  15. Model Year 2018 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-12-07

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  16. Models of economic geography: dynamics, estimation and policy evaluation

    OpenAIRE

    Knaap, Thijs

    2004-01-01

    In this thesis we look at economic geography models from a number of angles. We started by placing the theory in a context of preceding theories, both earlier work on spatial economics and other children of the monopolistic competition ‘revolution.’ Next, we looked at the theoretical properties of these models, especially when we allow firms to have different demand functions for intermediate goods. We estimated the model using a dataset on US states, and computed a number of counterfactuals....

  17. Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods

    Science.gov (United States)

    Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.

    2014-12-01

    Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.

  18. Relative estimation of the mineral ages using uranium migration

    International Nuclear Information System (INIS)

    Danis, A.

    1990-01-01

    Using the uranium fission track micro mapping technique the correlation between the age and uranium migration from inclusions was studied. It is shown that during geological time, as function of the mineral, its age and its uranium migration speed, the pattern of the track, clusters corresponding to the uranium inclusions got a typical feature. Thus for a bulk polished geological sample it is possible to establish an age succession of the constituent minerals as a function of the track cluster patterns. Also, it is shown that knowing the migration speed of the uranium in a mineral it is possible to estimate the age of this mineral by measuring the migration distance on the micro mapping. (Author)

  19. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  20. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Shelton Peiris

    2017-12-01

    Full Text Available This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV components in order to develop the General Long Memory SV (GLMSV model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.

  1. Model-Based Estimation of Ankle Joint Stiffness.

    Science.gov (United States)

    Misgeld, Berno J E; Zhang, Tony; Lüken, Markus J; Leonhardt, Steffen

    2017-03-29

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model's inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  2. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  3. A new geometric-based model to accurately estimate arm and leg inertial estimates.

    Science.gov (United States)

    Wicke, Jason; Dumas, Geneviève A

    2014-06-03

    Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. Copyright © 2014. Published by Elsevier Ltd.

  4. Dimensional Model for Estimating Factors influencing Childhood Obesity: Path Analysis Based Modeling

    Directory of Open Access Journals (Sweden)

    Maryam Kheirollahpour

    2014-01-01

    Full Text Available The main objective of this study is to identify and develop a comprehensive model which estimates and evaluates the overall relations among the factors that lead to weight gain in children by using structural equation modeling. The proposed models in this study explore the connection among the socioeconomic status of the family, parental feeding practice, and physical activity. Six structural models were tested to identify the direct and indirect relationship between the socioeconomic status and parental feeding practice general level of physical activity, and weight status of children. Finally, a comprehensive model was devised to show how these factors relate to each other as well as to the body mass index (BMI of the children simultaneously. Concerning the methodology of the current study, confirmatory factor analysis (CFA was applied to reveal the hidden (secondary effect of socioeconomic factors on feeding practice and ultimately on the weight status of the children and also to determine the degree of model fit. The comprehensive structural model tested in this study suggested that there are significant direct and indirect relationships among variables of interest. Moreover, the results suggest that parental feeding practice and physical activity are mediators in the structural model.

  5. Combining Empirical and Stochastic Models for Extreme Floods Estimation

    Science.gov (United States)

    Zemzami, M.; Benaabidate, L.

    2013-12-01

    Hydrological models can be defined as physical, mathematical or empirical. The latter class uses mathematical equations independent of the physical processes involved in the hydrological system. The linear regression and Gradex (Gradient of Extreme values) are classic examples of empirical models. However, conventional empirical models are still used as a tool for hydrological analysis by probabilistic approaches. In many regions in the world, watersheds are not gauged. This is true even in developed countries where the gauging network has continued to decline as a result of the lack of human and financial resources. Indeed, the obvious lack of data in these watersheds makes it impossible to apply some basic empirical models for daily forecast. So we had to find a combination of rainfall-runoff models in which it would be possible to create our own data and use them to estimate the flow. The estimated design floods would be a good choice to illustrate the difficulties facing the hydrologist for the construction of a standard empirical model in basins where hydrological information is rare. The construction of the climate-hydrological model, which is based on frequency analysis, was established to estimate the design flood in the Anseghmir catchments, Morocco. The choice of using this complex model returns to its ability to be applied in watersheds where hydrological information is not sufficient. It was found that this method is a powerful tool for estimating the design flood of the watershed and also other hydrological elements (runoff, volumes of water...).The hydrographic characteristics and climatic parameters were used to estimate the runoff, water volumes and design flood for different return periods.

  6. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  7. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  8. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  9. Global parameter estimation for thermodynamic models of transcriptional regulation.

    Science.gov (United States)

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  11. A single model procedure for tank calibration function estimation

    International Nuclear Information System (INIS)

    York, J.C.; Liebetrau, A.M.

    1995-01-01

    Reliable tank calibrations are a vital component of any measurement control and accountability program for bulk materials in a nuclear reprocessing facility. Tank volume calibration functions used in nuclear materials safeguards and accountability programs are typically constructed from several segments, each of which is estimated independently. Ideally, the segments correspond to structural features in the tank. In this paper the authors use an extension of the Thomas-Liebetrau model to estimate the entire calibration function in a single step. This procedure automatically takes significant run-to-run differences into account and yields an estimate of the entire calibration function in one operation. As with other procedures, the first step is to define suitable calibration segments. Next, a polynomial of low degree is specified for each segment. In contrast with the conventional practice of constructing a separate model for each segment, this information is used to set up the design matrix for a single model that encompasses all of the calibration data. Estimation of the model parameters is then done using conventional statistical methods. The method described here has several advantages over traditional methods. First, modeled run-to-run differences can be taken into account automatically at the estimation step. Second, no interpolation is required between successive segments. Third, variance estimates are based on all the data, rather than that from a single segment, with the result that discontinuities in confidence intervals at segment boundaries are eliminated. Fourth, the restrictive assumption of the Thomas-Liebetrau method, that the measured volumes be the same for all runs, is not required. Finally, the proposed methods are readily implemented using standard statistical procedures and widely-used software packages

  12. Model-Based Estimation of Ankle Joint Stiffness

    Directory of Open Access Journals (Sweden)

    Berno J. E. Misgeld

    2017-03-01

    Full Text Available We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.

  13. Model-Based Estimation of Ankle Joint Stiffness

    Science.gov (United States)

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  14. Motion estimation by data assimilation in reduced dynamic models

    International Nuclear Information System (INIS)

    Drifi, Karim

    2013-01-01

    Motion estimation is a major challenge in the field of image sequence analysis. This thesis is a study of the dynamics of geophysical flows visualized by satellite imagery. Satellite image sequences are currently underused for the task of motion estimation. A good understanding of geophysical flows allows a better analysis and forecast of phenomena in domains such as oceanography and meteorology. Data assimilation provides an excellent framework for achieving a compromise between heterogeneous data, especially numerical models and observations. Hence, in this thesis we set out to apply variational data assimilation methods to estimate motion on image sequences. As one of the major drawbacks of applying these assimilation techniques is the considerable computation time and memory required, we therefore define and use a model reduction method in order to significantly decrease the necessary computation time and the memory. We then explore the possibilities that reduced models provide for motion estimation, particularly the possibility of strictly imposing some known constraints on the computed solutions. In particular, we show how to estimate a divergence free motion with boundary conditions on a complex spatial domain [fr

  15. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  16. Modeling, estimation and optimal filtration in signal processing

    CERN Document Server

    Najim, Mohamed

    2010-01-01

    The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing.Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed.Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented.Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and the

  17. The Impact of Statistical Leakage Models on Design Yield Estimation

    Directory of Open Access Journals (Sweden)

    Rouwaida Kanj

    2011-01-01

    Full Text Available Device mismatch and process variation models play a key role in determining the functionality and yield of sub-100 nm design. Average characteristics are often of interest, such as the average leakage current or the average read delay. However, detecting rare functional fails is critical for memory design and designers often seek techniques that enable accurately modeling such events. Extremely leaky devices can inflict functionality fails. The plurality of leaky devices on a bitline increase the dimensionality of the yield estimation problem. Simplified models are possible by adopting approximations to the underlying sum of lognormals. The implications of such approximations on tail probabilities may in turn bias the yield estimate. We review different closed form approximations and compare against the CDF matching method, which is shown to be most effective method for accurate statistical leakage modeling.

  18. Efficient estimation of feedback effects with application to climate models

    International Nuclear Information System (INIS)

    Cacugi, D.G.; Hall, M.C.G.

    1984-01-01

    This work presents an efficient method for calculating the sensitivity of a mathematical model's result to feedback. Feedback is defined in terms of an operator acting on the model's dependent variables. The sensitivity to feedback is defined as a functional derivative, and a method is presented to evaluate this derivative using adjoint functions. Typically, this method allows the individual effect of many different feedbacks to be estimated with a total additional computing time comparable to only one recalculation. The effects on a CO 2 -doubling experiment of actually incorporating surface albedo and water vapor feedbacks in radiative-convective model are compared with sensivities calculated using adjoint functions. These sensitivities predict the actual effects of feedback with at least the correct sign and order of magnitude. It is anticipated that this method of estimation the effect of feedback will be useful for more complex models where extensive recalculations for each of a variety of different feedbacks is impractical

  19. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  20. Comparison of physically based catchment models for estimating Phosphorus losses

    OpenAIRE

    Nasr, Ahmed Elssidig; Bruen, Michael

    2003-01-01

    As part of a large EPA-funded research project, coordinated by TEAGASC, the Centre for Water Resources Research at UCD reviewed the available distributed physically based catchment models with a potential for use in estimating phosphorous losses for use in implementing the Water Framework Directive. Three models, representative of different levels of approach and complexity, were chosen and were implemented for a number of Irish catchments. This paper reports on (i) the lessons and experience...

  1. A model-based approach to estimating forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2006-01-01

    A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...

  2. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    Science.gov (United States)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  3. Constrained Optimization Approaches to Estimation of Structural Models

    DEFF Research Database (Denmark)

    Iskhakov, Fedor; Rust, John; Schjerning, Bertel

    2015-01-01

    We revisit the comparison of mathematical programming with equilibrium constraints (MPEC) and nested fixed point (NFXP) algorithms for estimating structural dynamic models by Su and Judd (SJ, 2012). They used an inefficient version of the nested fixed point algorithm that relies on successive app...

  4. Constrained Optimization Approaches to Estimation of Structural Models

    DEFF Research Database (Denmark)

    Iskhakov, Fedor; Jinhyuk, Lee; Rust, John

    2016-01-01

    We revisit the comparison of mathematical programming with equilibrium constraints (MPEC) and nested fixed point (NFXP) algorithms for estimating structural dynamic models by Su and Judd (SJ, 2012). Their implementation of the nested fixed point algorithm used successive approximations to solve t...

  5. Parameter estimation in stochastic mammogram model by heuristic optimization techniques.

    NARCIS (Netherlands)

    Selvan, S.E.; Xavier, C.C.; Karssemeijer, N.; Sequeira, J.; Cherian, R.A.; Dhala, B.Y.

    2006-01-01

    The appearance of disproportionately large amounts of high-density breast parenchyma in mammograms has been found to be a strong indicator of the risk of developing breast cancer. Hence, the breast density model is popular for risk estimation or for monitoring breast density change in prevention or

  6. A general predictive model for estimating monthly ecosystem evapotranspiration

    Science.gov (United States)

    Ge Sun; Karrin Alstad; Jiquan Chen; Shiping Chen; Chelcy R. Ford; al. et.

    2011-01-01

    Accurately quantifying evapotranspiration (ET) is essential for modelling regional-scale ecosystem water balances. This study assembled an ET data set estimated from eddy flux and sapflow measurements for 13 ecosystems across a large climatic and management gradient from the United States, China, and Australia. Our objectives were to determine the relationships among...

  7. Determining input values for a simple parametric model to estimate ...

    African Journals Online (AJOL)

    Estimating soil evaporation (Es) is an important part of modelling vineyard evapotranspiration for irrigation purposes. Furthermore, quantification of possible soil texture and trellis effects is essential. Daily Es from six topsoils packed into lysimeters was measured under grapevines on slanting and vertical trellises, ...

  8. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  9. Revaluating the Tanzi-Model to Estimate the Underground Economy

    NARCIS (Netherlands)

    Ferwerda, J.; Deleanu, I.; Unger, B.

    Since the early 1980s, the interest in the nature and size of the non-measured economy (both the informal and the illegal one) was born among researchers in the US. Since then, several models to estimate the shadow and/or the underground economy appeared in the literature, each with its own

  10. Bayesian nonparametric estimation of hazard rate in monotone Aalen model

    Czech Academy of Sciences Publication Activity Database

    Timková, Jana

    2014-01-01

    Roč. 50, č. 6 (2014), s. 849-868 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : Aalen model * Bayesian estimation * MCMC Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/timkova-0438210.pdf

  11. Models for the analytic estimation of low energy photon albedo

    International Nuclear Information System (INIS)

    Simovic, R.; Markovic, S.; Ljubenov, V.

    2005-01-01

    This paper shows some monoenergetic models for estimation of photon reflection in the energy range from 20 keV to 80 keV. Using the DP0 approximation of the H-function we have derived the analytic expressions of the η and R functions in purpose to facilitate photon reflection analyses as well as the radiation shield designee. (author) [sr

  12. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  13. Remote sensing estimates of impervious surfaces for pluvial flood modelling

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin

    This paper investigates the accuracy of medium resolution (MR) satellite imagery in estimating impervious surfaces for European cities at the detail required for pluvial flood modelling. Using remote sensing techniques enables precise and systematic quantification of the influence of the past 30...

  14. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  15. Review Genetic prediction models and heritability estimates for ...

    African Journals Online (AJOL)

    edward

    2015-05-09

    May 9, 2015 ... Heritability estimates for functional longevity have been expressed on an original or a logarithmic scale with PH models. Ducrocq & Casella (1996) defined heritability on a logarithmic scale and modified under simulation to incorporate the tri-gamma function (γ) as used by Sasaki et al. (2012) and Terawaki ...

  16. Mathematical models for estimating radio channels utilization when ...

    African Journals Online (AJOL)

    Definition of the radio channel utilization indicator is given. Mathematical models for radio channels utilization assessment by real-time flows transfer in the wireless self-organized network are presented. Estimated experiments results according to the average radio channel utilization productivity with and without buffering of ...

  17. Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2010-01-01

    Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficul...

  18. Model-based state estimator for an intelligent tire

    NARCIS (Netherlands)

    Goos, J.; Teerhuis, A. P.; Schmeitz, A. J.C.; Besselink, I.; Nijmeijer, H.

    2017-01-01

    In this work a Tire State Estimator (TSE) is developed and validated using data from a tri-axial accelerometer, installed at the inner liner of the tire. The Flexible Ring Tire (FRT) model is proposed to calculate the tire deformation. For a rolling tire, this deformation is transformed into

  19. Model-based State Estimator for an Intelligent Tire

    NARCIS (Netherlands)

    Goos, J.; Teerhuis, A.P.; Schmeitz, A.J.C.; Besselink, I.J.M.; Nijmeijer, H.

    2016-01-01

    In this work a Tire State Estimator (TSE) is developed and validated using data from a tri-axial accelerometer, installed at the inner liner of the tire. The Flexible Ring Tire (FRT) model is proposed to calculate the tire deformation. For a rolling tire, this deformation is transformed into

  20. Temporal validation for landsat-based volume estimation model

    Science.gov (United States)

    Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan

    2015-01-01

    Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...

  1. Depth Compensation Model for Gaze Estimation in Sport Analysis

    DEFF Research Database (Denmark)

    Batista Narcizo, Fabricio; Hansen, Dan Witzner

    2015-01-01

    is tested in a totally controlled environment with aim to check the influences of eye tracker parameters and ocular biometric parameters on its behavior. We also present a gaze estimation method based on epipolar geometry for binocular eye tracking setups. The depth compensation model has shown very...

  2. Models for estimation of carbon sequestered by Cupressus ...

    African Journals Online (AJOL)

    This study compared models for estimating carbon sequestered aboveground in Cupressus lusitanica plantation stands at Wondo Genet College of Forestry and Natural Resources, Ethiopia. Relationships of carbon storage with tree component and stand age were also investigated. Thirty trees of three different ages (5, ...

  3. An improved COCOMO software cost estimation model | Duke ...

    African Journals Online (AJOL)

    In this paper, we discuss the methodologies adopted previously in software cost estimation using the COnstructive COst MOdels (COCOMOs). From our analysis, COCOMOs produce very high software development efforts, which eventually produce high software development costs. Consequently, we propose its extension, ...

  4. An Approach to Quality Estimation in Model-Based Development

    DEFF Research Database (Denmark)

    Holmegaard, Jens Peter; Koch, Peter; Ravn, Anders Peter

    2004-01-01

    We present an approach to estimation of parameters for design space exploration in Model-Based Development, where synthesis of a system is done in two stages. Component qualities like space, execution time or power consumption are defined in a repository by platform dependent values. Connectors...

  5. An Adjusted Discount Rate Model for Fuel Cycle Cost Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Kang, G. B.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Owing to the diverse nuclear fuel cycle options available, including direct disposal, it is necessary to select the optimum nuclear fuel cycles in consideration of the political and social environments as well as the technical stability and economic efficiency of each country. Economic efficiency is therefore one of the significant evaluation standards. In particular, because nuclear fuel cycle cost may vary in each country, and the estimated cost usually prevails over the real cost, when evaluating the economic efficiency, any existing uncertainty needs to be removed when possible to produce reliable cost information. Many countries still do not have reprocessing facilities, and no globally commercialized HLW (High-level waste) repository is available. A nuclear fuel cycle cost estimation model is therefore inevitably subject to uncertainty. This paper analyzes the uncertainty arising out of a nuclear fuel cycle cost evaluation from the viewpoint of a cost estimation model. Compared to the same discount rate model, the nuclear fuel cycle cost of a different discount rate model is reduced because the generation quantity as denominator in Equation has been discounted. Namely, if the discount rate reduces in the back-end process of the nuclear fuel cycle, the nuclear fuel cycle cost is also reduced. Further, it was found that the cost of the same discount rate model is overestimated compared with the different discount rate model as a whole.

  6. An Adjusted Discount Rate Model for Fuel Cycle Cost Estimation

    International Nuclear Information System (INIS)

    Kim, S. K.; Kang, G. B.; Ko, W. I.

    2013-01-01

    Owing to the diverse nuclear fuel cycle options available, including direct disposal, it is necessary to select the optimum nuclear fuel cycles in consideration of the political and social environments as well as the technical stability and economic efficiency of each country. Economic efficiency is therefore one of the significant evaluation standards. In particular, because nuclear fuel cycle cost may vary in each country, and the estimated cost usually prevails over the real cost, when evaluating the economic efficiency, any existing uncertainty needs to be removed when possible to produce reliable cost information. Many countries still do not have reprocessing facilities, and no globally commercialized HLW (High-level waste) repository is available. A nuclear fuel cycle cost estimation model is therefore inevitably subject to uncertainty. This paper analyzes the uncertainty arising out of a nuclear fuel cycle cost evaluation from the viewpoint of a cost estimation model. Compared to the same discount rate model, the nuclear fuel cycle cost of a different discount rate model is reduced because the generation quantity as denominator in Equation has been discounted. Namely, if the discount rate reduces in the back-end process of the nuclear fuel cycle, the nuclear fuel cycle cost is also reduced. Further, it was found that the cost of the same discount rate model is overestimated compared with the different discount rate model as a whole

  7. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    Science.gov (United States)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  8. Runtime and Inversion Impacts on Estimation of Moisture Retention Relations by Centrifuge

    Science.gov (United States)

    Sigda, J. M.; Wilson, J. L.

    2003-12-01

    the impact of different runtimes and different inversion techniques on estimated moisture retention parameters. Moisture retention data were collected for a number of poorly lithified sands and indurated deformed sands using the UFA centrifuge system (Conca and Wright, 1990). Parameters for the van Genuchten model were estimated for short and long runtimes with one inversion technique. Model parameters were re-estimated for one other inversion technique and a simple averaging approach which does not involve inversion. Our results demonstrate that the averaging approach greatly underestimates the van Genuchten n parameter relative to the inversion techniques. Insufficient runtimes also have a significant impact on estimated parameters. Our analysis indicates a need, barring method standardization, for practitioners to include information about inversion technique and runtime criteria when presenting centrifuge moisture retention results.

  9. Cost estimation model for advanced planetary programs, fourth edition

    Science.gov (United States)

    Spadoni, D. J.

    1983-01-01

    The development of the planetary program cost model is discussed. The Model was updated to incorporate cost data from the most recent US planetary flight projects and extensively revised to more accurately capture the information in the historical cost data base. This data base is comprised of the historical cost data for 13 unmanned lunar and planetary flight programs. The revision was made with a two fold objective: to increase the flexibility of the model in its ability to deal with the broad scope of scenarios under consideration for future missions, and to maintain and possibly improve upon the confidence in the model's capabilities with an expected accuracy of 20%. The Model development included a labor/cost proxy analysis, selection of the functional forms of the estimating relationships, and test statistics. An analysis of the Model is discussed and two sample applications of the cost model are presented.

  10. Eigenspace perturbations for structural uncertainty estimation of turbulence closure models

    Science.gov (United States)

    Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).

  11. The Estimation Modelling of Damaged Areas by Harmful Animals

    Science.gov (United States)

    Jang, R.; Sung, M.; Hwang, J.; Jeon, S. W.

    2017-12-01

    The Republic of Korea has undergone rapid development and urban development without sufficient consideration of the environment. This type of growth is accompanied by a reduction in forest area and wildlife habitat. It is a phenomenon that affects the habitat of large mammals more than small. Especially in Korea, the damage caused by wild boar(Sus scrofa) is harsher than other large mammalian species like water deer(Hydropotes inermis), which also means that the number of these reported cases of this species is higher than ones of other mammals. Wild boar has three to eight cubs per year and it is possible to breed every year, which makes it more populous comparing with the fragmented habitats. It could be regarded as one of the top predators in Korea, which it is inevitable for humans to intervene this creature in population control. In addition, some individuals have been forced to be retreated from other habitats in major habitats, or to invade human activity areas for food activity, thereby destroying crops. Ultimately, this mammal species has been treated as farm pest animals through committing road kills and urban emergences. In this study, we has estimated possible farm pest animal present points from the damage district using 2,505 hazardous wildlife damage areas with four types of geological informations, four kinds of forest information, land cover, and distribution of farmland occurred in Gyeongnam province in Korea. In the estimating model, utilizing MAXENT, information of background point was set to 10,000, 70% of the damaged sites were used to construct the model, 30% was used for verification, and 10 times of crossvalidate were proceeded - verified by AUC of ROC. As a result of analyses, AUC was 0.847, and the percent contribution of the forest information was the distance toward inner-forest areas, 36.1%, the land cover, 16.5%, the distance from the field, 14.9%. Furthermore, the permutation importance was 24.9% of the cover, 12.3% of the height

  12. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  13. New Estimates of Numerical Values Related to a Simplex

    Directory of Open Access Journals (Sweden)

    Mikhail V. Nevskii

    2017-01-01

    if \\(\\xi_n=n.\\ This statement is valid only in one direction. There exists a simplex \\(S\\subset Q_5\\ such that the boundary of the simplex \\(5S\\ contains all the vertices of the cube \\(Q_5\\. We describe a one-parameter family of simplices contained in \\(Q_5\\ with the property \\(\\alpha(S=\\xi(S=5.\\ These simplices were found with the use of numerical and symbolic computations. %Numerical experiments allow to discover Another new result is an inequality \\(\\xi_6\\ <6.0166\\. %Прежняя оценка имела вид \\(6\\leq \\xi_6\\leq 6.6\\. We also systematize some of our estimates of numbers \\(\\xi_n\\, \\(\\theta_n\\, \\(\\varkappa_n\\ derived by~now. The symbol \\(\\theta_n\\ denotes the minimal norm of interpolation projection on the space of linear functions of \\(n\\ variables as~an~operator from \\(C(Q_n\\ to~\\(C(Q_n\\.

  14. Bayes estimation of the general hazard rate model

    International Nuclear Information System (INIS)

    Sarhan, A.

    1999-01-01

    In reliability theory and life testing models, the life time distributions are often specified by choosing a relevant hazard rate function. Here a general hazard rate function h(t)=a+bt c-1 , where c, a, b are constants greater than zero, is considered. The parameter c is assumed to be known. The Bayes estimators of (a,b) based on the data of type II/item-censored testing without replacement are obtained. A large simulation study using Monte Carlo Method is done to compare the performance of Bayes with regression estimators of (a,b). The criterion for comparison is made based on the Bayes risk associated with the respective estimator. Also, the influence of the number of failed items on the accuracy of the estimators (Bayes and regression) is investigated. Estimations for the parameters (a,b) of the linearly increasing hazard rate model h(t)=a+bt, where a, b are greater than zero, can be obtained as the special case, letting c=2

  15. System health monitoring using multiple-model adaptive estimation techniques

    Science.gov (United States)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary

  16. Gridded rainfall estimation for distributed modeling in western mountainous areas

    Science.gov (United States)

    Moreda, F.; Cong, S.; Schaake, J.; Smith, M.

    2006-05-01

    Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall

  17. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  18. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  19. STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE ...

    African Journals Online (AJOL)

    Test

    Results are highly accurate and promising for all models based on Lewis' criteria. ... hydrological cycle. Future increases in ... STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE HUMIDITY OF OGUN BASIN, NIGERIA. 71 ...

  20. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  1. Estimation Parameters And Modelling Zero Inflated Negative Binomial

    Directory of Open Access Journals (Sweden)

    Cindy Cahyaning Astuti

    2016-11-01

    Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.

  2. Negative binomial models for abundance estimation of multiple closed populations

    Science.gov (United States)

    Boyce, Mark S.; MacKenzie, Darry I.; Manly, Bryan F.J.; Haroldson, Mark A.; Moody, David W.

    2001-01-01

    Counts of uniquely identified individuals in a population offer opportunities to estimate abundance. However, for various reasons such counts may be burdened by heterogeneity in the probability of being detected. Theoretical arguments and empirical evidence demonstrate that the negative binomial distribution (NBD) is a useful characterization for counts from biological populations with heterogeneity. We propose a method that focuses on estimating multiple populations by simultaneously using a suite of models derived from the NBD. We used this approach to estimate the number of female grizzly bears (Ursus arctos) with cubs-of-the-year in the Yellowstone ecosystem, for each year, 1986-1998. Akaike's Information Criteria (AIC) indicated that a negative binomial model with a constant level of heterogeneity across all years was best for characterizing the sighting frequencies of female grizzly bears. A lack-of-fit test indicated the model adequately described the collected data. Bootstrap techniques were used to estimate standard errors and 95% confidence intervals. We provide a Monte Carlo technique, which confirms that the Yellowstone ecosystem grizzly bear population increased during the period 1986-1998.

  3. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  4. Relational models for knowledge sharing behavior

    NARCIS (Netherlands)

    Boer, N.I.; Berends, J.J.; Baalen, P.

    2011-01-01

    In this paper we explore the relational dimension of knowledge sharing behavior by proposing a comprehensive theoretical framework for studying knowledge sharing in organizations. This theoretical framework originates from (Fiske, 1991) and (Fiske, 1992) Relational Models Theory (RMT). The RMT

  5. Application of Parameter Estimation for Diffusions and Mixture Models

    DEFF Research Database (Denmark)

    Nolsøe, Kim

    The first part of this thesis proposes a method to determine the preferred number of structures, their proportions and the corresponding geometrical shapes of an m-membered ring molecule. This is obtained by formulating a statistical model for the data and constructing an algorithm which samples...... with the posterior score function. From an application point of view this methology is easy to apply, since the optimal estimating function G(;Xt1 ; : : : ;Xtn ) is equal to the classical optimal estimating function, plus a correction term which takes into account the prior information. The methology is particularly...

  6. Models for genotype by environment interaction estimation on halomorphic soil

    Directory of Open Access Journals (Sweden)

    Dimitrijević Miodrag

    2006-01-01

    Full Text Available In genotype by environment interaction estimation, as well as, in total trial variability anal­ysis several models are in use. The most often used are Analysis of variance, Eberhart and Russell model and AMMI model. Each of the models has its own specificities, in the way of sources of varia­tion comprehension and treatment. It is known that agriculturally less productive environments increase errors, dimmish reaction differences between genotypes and decrease repeatability of conditions during years. A sample consisting on six bread wheat varieties was studied in three veg­etation periods on halomorphic soil, solonetz type in Banat (vil. Kumane. Genotype by environ­ment interaction was quantified using ANOVA, Eberhart and Russell model and AMMI model. The results were compared not only on pure solonetz soil (control, but also on two level of ameliora­tion (25 and 50t/ha phosphor-gypsum.

  7. ANFIS-Based Modeling for Photovoltaic Characteristics Estimation

    Directory of Open Access Journals (Sweden)

    Ziqiang Bi

    2016-09-01

    Full Text Available Due to the high cost of photovoltaic (PV modules, an accurate performance estimation method is significantly valuable for studying the electrical characteristics of PV generation systems. Conventional analytical PV models are usually composed by nonlinear exponential functions and a good number of unknown parameters must be identified before using. In this paper, an adaptive-network-based fuzzy inference system (ANFIS based modeling method is proposed to predict the current-voltage characteristics of PV modules. The effectiveness of the proposed modeling method is evaluated through comparison with Villalva’s model, radial basis function neural networks (RBFNN based model and support vector regression (SVR based model. Simulation and experimental results confirm both the feasibility and the effectiveness of the proposed method.

  8. Methodologies for Quantitative Systems Pharmacology (QSP) Models: Design and Estimation.

    Science.gov (United States)

    Ribba, B; Grimm, H P; Agoram, B; Davies, M R; Gadkar, K; Niederer, S; van Riel, N; Timmis, J; van der Graaf, P H

    2017-08-01

    With the increased interest in the application of quantitative systems pharmacology (QSP) models within medicine research and development, there is an increasing need to formalize model development and verification aspects. In February 2016, a workshop was held at Roche Pharma Research and Early Development to focus discussions on two critical methodological aspects of QSP model development: optimal structural granularity and parameter estimation. We here report in a perspective article a summary of presentations and discussions. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  9. Estimation of stature from sternum - Exploring the quadratic models.

    Science.gov (United States)

    Saraf, Ashish; Kanchan, Tanuj; Krishan, Kewal; Ateriya, Navneet; Setia, Puneet

    2018-04-14

    Identification of the dead is significant in examination of unknown, decomposed and mutilated human remains. Establishing the biological profile is the central issue in such a scenario, and stature estimation remains one of the important criteria in this regard. The present study was undertaken to estimate stature from different parts of the sternum. A sample of 100 sterna was obtained from individuals during the medicolegal autopsies. Length of the deceased and various measurements of the sternum were measured. Student's t-test was performed to find the sex differences in stature and sternal measurements included in the study. Correlation between stature and sternal measurements were analysed using Karl Pearson's correlation, and linear and quadratic regression models were derived. All the measurements were found to be significantly larger in males than females. Stature correlated best with the combined length of sternum, among males (R = 0.894), females (R = 0.859), and for the total sample (R = 0.891). The study showed that the models derived for stature estimation from combined length of sternum are likely to give the most accurate estimates of stature in forensic case work when compared to manubrium and mesosternum. Accuracy of stature estimation further increased with quadratic models derived for the mesosternum among males and combined length of sternum among males and females when compared to linear regression models. Future studies in different geographical locations and a larger sample size are proposed to confirm the study observations. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Directory of Open Access Journals (Sweden)

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  11. Estimating the prevalence of 26 health-related indicators at neighbourhood level in the Netherlands using structured additive regression.

    Science.gov (United States)

    van de Kassteele, Jan; Zwakhals, Laurens; Breugelmans, Oscar; Ameling, Caroline; van den Brink, Carolien

    2017-07-01

    Local policy makers increasingly need information on health-related indicators at smaller geographic levels like districts or neighbourhoods. Although more large data sources have become available, direct estimates of the prevalence of a health-related indicator cannot be produced for neighbourhoods for which only small samples or no samples are available. Small area estimation provides a solution, but unit-level models for binary-valued outcomes that can handle both non-linear effects of the predictors and spatially correlated random effects in a unified framework are rarely encountered. We used data on 26 binary-valued health-related indicators collected on 387,195 persons in the Netherlands. We associated the health-related indicators at the individual level with a set of 12 predictors obtained from national registry data. We formulated a structured additive regression model for small area estimation. The model captured potential non-linear relations between the predictors and the outcome through additive terms in a functional form using penalized splines and included a term that accounted for spatially correlated heterogeneity between neighbourhoods. The registry data were used to predict individual outcomes which in turn are aggregated into higher geographical levels, i.e. neighbourhoods. We validated our method by comparing the estimated prevalences with observed prevalences at the individual level and by comparing the estimated prevalences with direct estimates obtained by weighting methods at municipality level. We estimated the prevalence of the 26 health-related indicators for 415 municipalities, 2599 districts and 11,432 neighbourhoods in the Netherlands. We illustrate our method on overweight data and show that there are distinct geographic patterns in the overweight prevalence. Calibration plots show that the estimated prevalences agree very well with observed prevalences at the individual level. The estimated prevalences agree reasonably well with the

  12. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Ji, Dongxu; Tseng, King Jet

    2017-01-01

    Highlights: •SOC and capacity are dually estimated with online adapted battery model. •Model identification and state dual estimate are fully decoupled. •Multiple timescales are used to improve estimation accuracy and stability. •The proposed method is verified with lab-scale experiments. •The proposed method is applicable to different battery chemistries. -- Abstract: Reliable online estimation of state of charge (SOC) and capacity is critically important for the battery management system (BMS). This paper presents a multi-timescale method for dual estimation of SOC and capacity with an online identified battery model. The model parameter estimator and the dual estimator are fully decoupled and executed with different timescales to improve the model accuracy and stability. Specifically, the model parameters are online adapted with the vector-type recursive least squares (VRLS) to address the different variation rates of them. Based on the online adapted battery model, the Kalman filter (KF)-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form of dual estimation. Experimental results suggest that the proposed method estimates the model parameters, SOC, and capacity in real time with fast convergence and high accuracy. Experiments on both lithium-ion battery and vanadium redox flow battery (VRB) verify the generality of the proposed method on multiple battery chemistries. The proposed method is also compared with other existing methods on the computational cost to reveal its superiority for practical application.

  13. Nonparametric Estimation of Distributions in Random Effects Models

    KAUST Repository

    Hart, Jeffrey D.

    2011-01-01

    We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.

  14. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  15. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  16. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  17. Is the Rational Addiction model inherently impossible to estimate?

    Science.gov (United States)

    Laporte, Audrey; Dass, Adrian Rohit; Ferguson, Brian S

    2017-07-01

    The Rational Addiction (RA) model is increasingly often estimated using individual level panel data with mixed results; in particular, with regard to the implied rate of time discount. This paper suggests that the odd values of the rate of discount frequently found in the literature may in fact be a consequence of the saddle-point dynamics associated with individual level inter-temporal optimization problems. We report the results of Monte Carlo experiments estimating RA-type difference equations that seem to suggest the possibility that the presence of both a stable and an unstable root in the dynamic process may create serious problems for the estimation of RA equations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  19. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Urban scale air quality modelling using detailed traffic emissions estimates

    Science.gov (United States)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  2. A probabilistic model for estimating the waiting time until the simultaneous collapse of two contingencies

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1991-01-01

    The Double Contingency Principle (DCP) is widely applied to criticality safety practice in the United States. Most practitioners base their application of the principle on qualitative, intuitive assessments. The recent trend toward probabilistic safety assessments provides a motive to search for a quantitative, probabilistic foundation for the DCP. A Markov model is tractable and leads to relatively simple results. The model yields estimates of mean time to simultaneous collapse of two contingencies as a function of estimates of mean failure times and mean recovery times of two independent contingencies. The model is a tool that can be used to supplement the qualitative methods now used to assess effectiveness of the DCP. (Author)

  3. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  4. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    Science.gov (United States)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  5. Evaporation estimation of rift valley lakes: comparison of models.

    Science.gov (United States)

    Melesse, Assefa M; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  6. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Tibebe Dessalegne

    2009-12-01

    Full Text Available Evapotranspiration (ET accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  7. Sparse estimation of model-based diffuse thermal dust emission

    Science.gov (United States)

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  8. Estimators of the Relations of Equivalence, Tolerance and Preference Based on Pairwise Comparisons with Random Errors

    Directory of Open Access Journals (Sweden)

    Leszek Klukowski

    2012-01-01

    Full Text Available This paper presents a review of results of the author in the area of estimation of the relations of equivalence, tolerance and preference within a finite set based on multiple, independent (in a stochastic way pairwise comparisons with random errors, in binary and multivalent forms. These estimators require weaker assumptions than those used in the literature on the subject. Estimates of the relations are obtained based on solutions to problems from discrete optimization. They allow application of both types of comparisons - binary and multivalent (this fact relates to the tolerance and preference relations. The estimates can be verified in a statistical way; in particular, it is possible to verify the type of the relation. The estimates have been applied by the author to problems regarding forecasting, financial engineering and bio-cybernetics. (original abstract

  9. Model for Estimation of Fuel Consumption of Cruise Ships

    Directory of Open Access Journals (Sweden)

    Morten Simonsen

    2018-04-01

    Full Text Available This article presents a model to estimate the energy use and fuel consumption of cruise ships that sail Norwegian waters. Automatic identification system (AIS data and technical information about cruise ships provided input to the model, including service speed, total power, and number of engines. The model was tested against real-world data obtained from a small cruise vessel and both a medium and large cruise ship. It is sensitive to speed and the corresponding engine load profile of the ship. A crucial determinate for total fuel consumption is also associated with hotel functions, which can make a large contribution to the overall energy use of cruise ships. Real-world data fits the model best when ship speed is 70–75% of service speed. With decreased or increased speed, the model tends to diverge from real-world observations. The model gives a proxy for calculation of fuel consumption associated with cruise ships that sail to Norwegian waters and can be used to estimate greenhouse gas emissions and to evaluate energy reduction strategies for cruise ships.

  10. Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates

    Directory of Open Access Journals (Sweden)

    Piotr Białowolski

    2012-03-01

    Full Text Available The aim of this paper is to construct a forecasting model oriented on predicting basic macroeconomic variables, namely: the GDP growth rate, the unemployment rate, and the consumer price inflation. In order to select the set of the best regressors, Bayesian Averaging of Classical Estimators (BACE is employed. The models are atheoretical (i.e. they do not reflect causal relationships postulated by the macroeconomic theory and the role of regressors is played by business and consumer tendency survey-based indicators. Additionally, survey-based indicators are included with a lag that enables to forecast the variables of interest (GDP, unemployment, and inflation for the four forthcoming quarters without the need to make any additional assumptions concerning the values of predictor variables in the forecast period.  Bayesian Averaging of Classical Estimators is a method allowing for full and controlled overview of all econometric models which can be obtained out of a particular set of regressors. In this paper authors describe the method of generating a family of econometric models and the procedure for selection of a final forecasting model. Verification of the procedure is performed by means of out-of-sample forecasts of main economic variables for the quarters of 2011. The accuracy of the forecasts implies that there is still a need to search for new solutions in the atheoretical modelling.

  11. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  12. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  13. Modelling and estimating degradation processes with application in structural reliability

    International Nuclear Information System (INIS)

    Chiquet, J.

    2007-06-01

    The characteristic level of degradation of a given structure is modeled through a stochastic process called the degradation process. The random evolution of the degradation process is governed by a differential system with Markovian environment. We put the associated reliability framework by considering the failure of the structure once the degradation process reaches a critical threshold. A closed form solution of the reliability function is obtained thanks to Markov renewal theory. Then, we build an estimation methodology for the parameters of the stochastic processes involved. The estimation methods and the theoretical results, as well as the associated numerical algorithms, are validated on simulated data sets. Our method is applied to the modelling of a real degradation mechanism, known as crack growth, for which an experimental data set is considered. (authors)

  14. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....

  15. Estimation and Inference for Very Large Linear Mixed Effects Models

    OpenAIRE

    Gao, K.; Owen, A. B.

    2016-01-01

    Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...

  16. MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS

    Directory of Open Access Journals (Sweden)

    D. N. Mironov

    2011-01-01

    Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.

  17. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  18. Estimation of Continuous Time Models in Economics: an Overview

    OpenAIRE

    Clifford R. Wymer

    2009-01-01

    The dynamics of economic behaviour is often developed in theory as a continuous time system. Rigorous estimation and testing of such systems, and the analysis of some aspects of their properties, is of particular importance in distinguishing between competing hypotheses and the resulting models. The consequences for the international economy during the past eighteen months of failures in the financial sector, and particularly the banking sector, make it essential that the dynamics of financia...

  19. ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction

    International Nuclear Information System (INIS)

    Toledo, Maria Luíza Guerra de; Freitas, Marta A.; Colosimo, Enrico A.; Gilardoni, Gustavo L.

    2015-01-01

    An appropriate maintenance policy is essential to reduce expenses and risks related to equipment failures. A fundamental aspect to be considered when specifying such policies is to be able to predict the reliability of the systems under study, based on a well fitted model. In this paper, the classes of models Arithmetic Reduction of Age and Arithmetic Reduction of Intensity are explored. Likelihood functions for such models are derived, and a graphical method is proposed for model selection. A real data set involving failures in trucks used by a Brazilian mining is analyzed considering models with different memories. Parameters, namely, shape and scale for Power Law Process, and the efficiency of repair were estimated for the best fitted model. Estimation of model parameters allowed us to derive reliability estimators to predict the behavior of the failure process. These results are a valuable information for the mining company and can be used to support decision making regarding preventive maintenance policy. - Highlights: • Likelihood functions for imperfect repair models are derived. • A goodness-of-fit technique is proposed as a tool for model selection. • Failures in trucks owned by a Brazilian mining are modeled. • Estimation allowed deriving reliability predictors to forecast the future failure process of the trucks

  20. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  1. Estimating the Multilevel Rasch Model: With the lme4 Package

    Directory of Open Access Journals (Sweden)

    Harold Doran

    2007-02-01

    Full Text Available Traditional Rasch estimation of the item and student parameters via marginal maximum likelihood, joint maximum likelihood or conditional maximum likelihood, assume individuals in clustered settings are uncorrelated and items within a test that share a grouping structure are also uncorrelated. These assumptions are often violated, particularly in educational testing situations, in which students are grouped into classrooms and many test items share a common grouping structure, such as a content strand or a reading passage. Consequently, one possible approach is to explicitly recognize the clustered nature of the data and directly incorporate random effects to account for the various dependencies. This article demonstrates how the multilevel Rasch model can be estimated using the functions in R for mixed-effects models with crossed or partially crossed random effects. We demonstrate how to model the following hierarchical data structures: a individuals clustered in similar settings (e.g., classrooms, schools, b items nested within a particular group (such as a content strand or a reading passage, and c how to estimate a teacher × content strand interaction.

  2. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  3. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  4. In-phase and quadrature imbalance modeling, estimation, and compensation

    CERN Document Server

    Li, Yabo

    2013-01-01

    This book provides a unified IQ imbalance model and systematically reviews the existing estimation and compensation schemes. It covers the different assumptions and approaches that lead to many models of IQ imbalance. In wireless communication systems, the In-phase and Quadrature (IQ) modulator and demodulator are usually used as transmitter (TX) and receiver (RX), respectively. For Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter (ADC) limited systems, such as multi-giga-hertz bandwidth millimeter-wave systems, using analog modulator and demodulator is still a low power and l

  5. Estimating true evolutionary distances under the DCJ model.

    Science.gov (United States)

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  6. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  7. Averaging models: parameters estimation with the R-Average procedure

    Directory of Open Access Journals (Sweden)

    S. Noventa

    2010-01-01

    Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.

  8. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  9. Model independent foreground power spectrum estimation using WMAP 5-year data

    International Nuclear Information System (INIS)

    Ghosh, Tuhin; Souradeep, Tarun; Saha, Rajib; Jain, Pankaj

    2009-01-01

    In this paper, we propose and implement on WMAP 5 yr data a model independent approach of foreground power spectrum estimation for multifrequency observations of the CMB experiments. Recently, a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that the CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 yr maps following a self-contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behavior of synchrotron spectral index variation over different regions of the sky. We use the full sky Haslam map as an external template to increase the degrees of freedom, while computing the synchrotron spectral index over the frequency range from 408 MHz to 94 GHz. We compare our results with those obtained from maximum entropy method foreground maps, which are formed in pixel space. We find that relative to our model independent estimates maximum entropy method maps overestimate the foreground power close to galactic plane and underestimates it at high latitudes.

  10. Formulation of uncertainty relation of error and disturbance in quantum measurement by using quantum estimation theory

    International Nuclear Information System (INIS)

    Yu Watanabe; Masahito Ueda

    2012-01-01

    Full text: When we try to obtain information about a quantum system, we need to perform measurement on the system. The measurement process causes unavoidable state change. Heisenberg discussed a thought experiment of the position measurement of a particle by using a gamma-ray microscope, and found a trade-off relation between the error of the measured position and the disturbance in the momentum caused by the measurement process. The trade-off relation epitomizes the complementarity in quantum measurements: we cannot perform a measurement of an observable without causing disturbance in its canonically conjugate observable. However, at the time Heisenberg found the complementarity, quantum measurement theory was not established yet, and Kennard and Robertson's inequality erroneously interpreted as a mathematical formulation of the complementarity. Kennard and Robertson's inequality actually implies the indeterminacy of the quantum state: non-commuting observables cannot have definite values simultaneously. However, Kennard and Robertson's inequality reflects the inherent nature of a quantum state alone, and does not concern any trade-off relation between the error and disturbance in the measurement process. In this talk, we report a resolution to the complementarity in quantum measurements. First, we find that it is necessary to involve the estimation process from the outcome of the measurement for quantifying the error and disturbance in the quantum measurement. We clarify the implicitly involved estimation process in Heisenberg's gamma-ray microscope and other measurement schemes, and formulate the error and disturbance for an arbitrary quantum measurement by using quantum estimation theory. The error and disturbance are defined in terms of the Fisher information, which gives the upper bound of the accuracy of the estimation. Second, we obtain uncertainty relations between the measurement errors of two observables [1], and between the error and disturbance in the

  11. Estimating differential reproductive success from nests of related individuals, with application to a study of the Mottled Sculpin, Cottus bairdi

    Science.gov (United States)

    Beatrix Jones; Gary D. Grossman; Daniel C.I. Walsh; Brady A. Porter; John C. Avise; Anthony C. Flumera

    2007-01-01

    Understanding how variation in reproductive success is related to demography is a critical component in understanding the life history of an organism. Parentage analysis using molecular markers can be used to estimate the reproductive success of different groups of individuals in natural populations. Previous models have been developed for cases where offspring are...

  12. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  13. Relative contributions of sampling effort, measuring, and weighing to precision of larval sea lamprey biomass estimates

    Science.gov (United States)

    Slade, Jeffrey W.; Adams, Jean V.; Cuddy, Douglas W.; Neave, Fraser B.; Sullivan, W. Paul; Young, Robert J.; Fodale, Michael F.; Jones, Michael L.

    2003-01-01

    We developed two weight-length models from 231 populations of larval sea lampreys (Petromyzon marinus) collected from tributaries of the Great Lakes: Lake Ontario (21), Lake Erie (6), Lake Huron (67), Lake Michigan (76), and Lake Superior (61). Both models were mixed models, which used population as a random effect and additional environmental factors as fixed effects. We resampled weights and lengths 1,000 times from data collected in each of 14 other populations not used to develop the models, obtaining a weight and length distribution from reach resampling. To test model performance, we applied the two weight-length models to the resampled length distributions and calculated the predicted mean weights. We also calculated the observed mean weight for each resampling and for each of the original 14 data sets. When the average of predicted means was compared to means from the original data in each stream, inclusion of environmental factors did not consistently improve the performance of the weight-length model. We estimated the variance associated with measures of abundance and mean weight for each of the 14 selected populations and determined that a conservative estimate of the proportional contribution to variance associated with estimating abundance accounted for 32% to 95% of the variance (mean = 66%). Variability in the biomass estimate appears more affected by variability in estimating abundance than in converting length to weight. Hence, efforts to improve the precision of biomass estimates would be aided most by reducing the variability associated with estimating abundance.

  14. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  15. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images

    International Nuclear Information System (INIS)

    Linares-Rodriguez, Alvaro; Ruiz-Arias, José Antonio; Pozo-Vazquez, David; Tovar-Pescador, Joaquin

    2013-01-01

    An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery. - Highlights: • Daily solar radiation data are generated using an artificial neural network ensemble. • Eleven Meteosat channels observations and a clear sky term are used as model inputs. • Model exploits all information within infrared Meteosat channels. • Measured data for a year from 83 ground stations are used. • The proposed approach has better performance than existing models on daily basis

  16. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  17. Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects

    Directory of Open Access Journals (Sweden)

    Guangjie Li

    2015-07-01

    Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.

  18. Estimating social carrying capacity through computer simulation modeling: an application to Arches National Park, Utah

    Science.gov (United States)

    Benjamin Wang; Robert E. Manning; Steven R. Lawson; William A. Valliere

    2001-01-01

    Recent research and management experience has led to several frameworks for defining and managing carrying capacity of national parks and related areas. These frameworks rely on monitoring indicator variables to ensure that standards of quality are maintained. The objective of this study was to develop a computer simulation model to estimate the relationships between...

  19. Improved variational estimates for the mass gap in the 2-dimensional XY-model

    International Nuclear Information System (INIS)

    Patkos, A.; Hari Dass, N.D.

    1982-07-01

    The variational estimate obtained recently for the mass gap of the 2-dimensional XY-model is improved by extending the treatment to higher powers of the transfer operator. The relativistic dispersion relation for single particle states of low momentum is also verified. (Auth.)

  20. Calculation of prevalence estimates through differential equations: application to stroke-related disability.

    Science.gov (United States)

    Mar, Javier; Sainz-Ezkerra, María; Moler-Cuiral, Jose Antonio

    2008-01-01

    Neurological diseases now make up 6.3% of the global burden of disease mainly because they cause disability. To assess disability, prevalence estimates are needed. The objective of this study is to apply a method based on differential equations to calculate the prevalence of stroke-related disability. On the basis of a flow diagram, a set of differential equations for each age group was constructed. The linear system was solved analytically and numerically. The parameters of the system were obtained from the literature. The model was validated and calibrated by comparison with previous results. The stroke prevalence rate per 100,000 men was 828, and the rate for stroke-related disability was 331. The rates steadily rose with age, but the group between the ages of 65 and 74 years had the highest total number of individuals. Differential equations are useful to represent the natural history of neurological diseases and to make possible the calculation of the prevalence for the various states of disability. In our experience, when compared with the results obtained by Markov models, the benefit of the continuous use of time outweighs the mathematical requirements of our model. (c) 2008 S. Karger AG, Basel.

  1. Evapotranspiration Estimates for a Stochastic Soil-Moisture Model

    Science.gov (United States)

    Chaleeraktrakoon, Chavalit; Somsakun, Somrit

    2009-03-01

    Potential evapotranspiration is information that is necessary for applying a widely used stochastic model of soil moisture (I. Rodriguez Iturbe, A. Porporato, L. Ridolfi, V. Isham and D. R. Cox, Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation, Proc. Roy. Soc. London A455 (1999) 3789-3805). An objective of the present paper is thus to find a proper estimate of the evapotranspiration for the stochastic model. This estimate is obtained by comparing the calculated soil-moisture distribution resulting from various techniques, such as Thornthwaite, Makkink, Jensen-Haise, FAO Modified Penman, and Blaney-Criddle, with an observed one. The comparison results using five sequences of daily soil-moisture for a dry season from November 2003 to April 2004 (Udornthani Province, Thailand) have indicated that all methods can be used if the weather information required is available. This is because their soil-moisture distributions are alike. In addition, the model is shown to have its ability in approximately describing the phenomenon at a weekly or biweekly time scale which is desirable for agricultural engineering applications.

  2. Correlation length estimation in a polycrystalline material model

    International Nuclear Information System (INIS)

    Simonovski, I.; Cizelj, L.

    2005-01-01

    This paper deals with the correlation length estimated from a mesoscopic model of a polycrystalline material. The correlation length can be used in some macroscopic material models as a material parameter that describes the internal length. It can be estimated directly from the strain and stress fields calculated from a finite-element model, which explicitly accounts for the selected mesoscopic features such as the random orientation, shape and size of the grains. A crystal plasticity material model was applied in the finite-element analysis. Different correlation lengths were obtained depending on the used set of crystallographic orientations. We determined that the different sets of crystallographic orientations affect the general level of the correlation length, however, as the external load is increased the behaviour of correlation length is similar in all the analyzed cases. The correlation lengths also changed with the macroscopic load. If the load is below the yield strength the correlation lengths are constant, and are slightly higher than the average grain size. The correlation length can therefore be considered as an indicator of first plastic deformations in the material. Increasing the load above the yield strength creates shear bands that temporarily increase the values of the correlation lengths calculated from the strain fields. With a further load increase the correlation lengths decrease slightly but stay above the average grain size. (author)

  3. Rainfall estimation with TFR model using Ensemble Kalman filter

    Science.gov (United States)

    Asyiqotur Rohmah, Nabila; Apriliani, Erna

    2018-03-01

    Rainfall fluctuation can affect condition of other environment, correlated with economic activity and public health. The increasing of global average temperature is influenced by the increasing of CO2 in the atmosphere, which caused climate change. Meanwhile, the forests as carbon sinks that help keep the carbon cycle and climate change mitigation. Climate change caused by rainfall intensity deviations can affect the economy of a region, and even countries. It encourages research on rainfall associated with an area of forest. In this study, the mathematics model that used is a model which describes the global temperatures, forest cover, and seasonal rainfall called the TFR (temperature, forest cover, and rainfall) model. The model will be discretized first, and then it will be estimated by the method of Ensemble Kalman Filter (EnKF). The result shows that the more ensembles used in estimation, the better the result is. Also, the accurateness of simulation result is influenced by measurement variable. If a variable is measurement data, the result of simulation is better.

  4. The complex model of risk and progression of AMD estimation

    Directory of Open Access Journals (Sweden)

    V. S. Akopyan

    2012-01-01

    Full Text Available Purpose: to develop a method and a statistical model to estimate individual risk of AMD and the risk for progression to advanced AMD using clinical and genetic risk factors.Methods: A statistical risk assessment model was developed using stepwise binary logistic regression analysis. to estimate the population differences in the prevalence of allelic variants of genes and for the development of models adapted to the population of Moscow region genotyping and assessment of the influence of other risk factors was performed in two groups: patients with differ- ent stages of AMD (n = 74, and control group (n = 116. Genetic risk factors included in the study: polymorphisms in the complement system genes (C3 and CFH, genes at 10q26 locus (ARMS2 and HtRA1, polymorphism in the mitochondrial gene Mt-ND2. Clinical risk factors included in the study: age, gender, high body mass index, smoking history.Results: A comprehensive analysis of genetic and clinical risk factors for AMD in the study group was performed. Compiled statis- tical model assessment of individual risk of AMD, the sensitivity of the model — 66.7%, specificity — 78.5%, AUC = 0.76. Risk factors of late AMD, compiled a statistical model describing the probability of late AMD, the sensitivity of the model — 66.7%, specificity — 78.3%, AUC = 0.73. the developed system allows determining the most likely version of the current late AMD: dry or wet.Conclusion: the developed test system and the mathematical algorhythm for determining the risk of AMD, risk of progression to advanced AMD have fair diagnostic informative and promising for use in clinical practice.

  5. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    Science.gov (United States)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  6. Model uncertainty of various settlement estimation methods in shallow tunnels excavation; case study: Qom subway tunnel

    Science.gov (United States)

    Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb

    2017-10-01

    In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.

  7. Estimation of spatial uncertainties of tomographic velocity models

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.; Du, Z.; Querendez, E. [SINTEF Petroleum Research, Trondheim (Norway)

    2012-12-15

    This research project aims to evaluate the possibility of assessing the spatial uncertainties in tomographic velocity model building in a quantitative way. The project is intended to serve as a test of whether accurate and specific uncertainty estimates (e.g., in meters) can be obtained. The project is based on Monte Carlo-type perturbations of the velocity model as obtained from the tomographic inversion guided by diagonal and off-diagonal elements of the resolution and the covariance matrices. The implementation and testing of this method was based on the SINTEF in-house stereotomography code, using small synthetic 2D data sets. To test the method the calculation and output of the covariance and resolution matrices was implemented, and software to perform the error estimation was created. The work included the creation of 2D synthetic data sets, the implementation and testing of the software to conduct the tests (output of the covariance and resolution matrices which are not implicitly provided by stereotomography), application to synthetic data sets, analysis of the test results, and creating the final report. The results show that this method can be used to estimate the spatial errors in tomographic images quantitatively. The results agree with' the known errors for our synthetic models. However, the method can only be applied to structures in the model, where the change of seismic velocity is larger than the predicted error of the velocity parameter amplitudes. In addition, the analysis is dependent on the tomographic method, e.g., regularization and parameterization. The conducted tests were very successful and we believe that this method could be developed further to be applied to third party tomographic images.

  8. Estimation of Relative Economic Weights of Hanwoo Carcass Traits Based on Carcass Market Price

    Science.gov (United States)

    Choy, Yun Ho; Park, Byoung Ho; Choi, Tae Jung; Choi, Jae Gwan; Cho, Kwang Hyun; Lee, Seung Soo; Choi, You Lim; Koh, Kyung Chul; Kim, Hyo Sun

    2012-01-01

    The objective of this study was to estimate economic weights of Hanwoo carcass traits that can be used to build economic selection indexes for selection of seedstocks. Data from carcass measures for determining beef yield and quality grades were collected and provided by the Korean Institute for Animal Products Quality Evaluation (KAPE). Out of 1,556,971 records, 476,430 records collected from 13 abattoirs from 2008 to 2010 after deletion of outlying observations were used to estimate relative economic weights of bid price per kg carcass weight on cold carcass weight (CW), eye muscle area (EMA), backfat thickness (BF) and marbling score (MS) and the phenotypic relationships among component traits. Price of carcass tended to increase linearly as yield grades or quality grades, in marginal or in combination, increased. Partial regression coefficients for MS, EMA, BF, and for CW in original scales were +948.5 won/score, +27.3 won/cm2, −95.2 won/mm and +7.3 won/kg when all three sex categories were taken into account. Among four grade determining traits, relative economic weight of MS was the greatest. Variations in partial regression coefficients by sex categories were great but the trends in relative weights for each carcass measures were similar. Relative economic weights of four traits in integer values when standardized measures were fit into covariance model were +4:+1:−1:+1 for MS:EMA:BF:CW. Further research is required to account for the cost of production per unit carcass weight or per unit production under different economic situations. PMID:25049531

  9. Computer model for estimating electric utility environmental noise

    International Nuclear Information System (INIS)

    Teplitzky, A.M.; Hahn, K.J.

    1991-01-01

    This paper reports on a computer code for estimating environmental noise emissions from the operation and the construction of electric power plants that was developed based on algorithms. The computer code (Model) is used to predict octave band sound power levels for power plant operation and construction activities on the basis of the equipment operating characteristics and calculates off-site sound levels for each noise source and for an entire plant. Estimated noise levels are presented either as A-weighted sound level contours around the power plant or as octave band levels at user defined receptor locations. Calculated sound levels can be compared with user designated noise criteria, and the program can assist the user in analyzing alternative noise control strategies

  10. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  11. Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models

    Directory of Open Access Journals (Sweden)

    Marius Pesavento

    2004-08-01

    Full Text Available A novel algebraic method for the simultaneous estimation of MIMO channel parameters from channel sounder measurements is developed. We consider a parametric multipath propagation model with P discrete paths where each path is characterized by its complex path gain, its directions of arrival and departure, time delay, and Doppler shift. This problem is treated as a special case of the multidimensional harmonic retrieval problem. While the well-known ESPRIT-type algorithms exploit shift-invariance between specific partitions of the signal matrix, the rank reduction estimator (RARE algorithm exploits their internal Vandermonde structure. A multidimensional extension of the RARE algorithm is developed, analyzed, and applied to measurement data recorded with the RUSK vector channel sounder in the 2 GHz band.

  12. Use of econometric models to estimate expenditure shares.

    Science.gov (United States)

    Trogdon, Justin G; Finkelstein, Eric A; Hoerger, Thomas J

    2008-08-01

    To investigate the use of regression models to calculate disease-specific shares of medical expenditures. Medical Expenditure Panel Survey (MEPS), 2000-2003. Theoretical investigation and secondary data analysis. Condition files used to define the presence of 10 medical conditions. Incremental effects of conditions on expenditures, expressed as a fraction of total expenditures, cannot generally be interpreted as shares. When the presence of one condition increases treatment costs for another condition, summing condition-specific shares leads to double-counting of expenditures. Condition-specific shares generated from multiplicative models should not be summed. We provide an algorithm that allows estimates based on these models to be interpreted as shares and summed across conditions.

  13. GNSS Positioning Performance Analysis Using PSO-RBF Estimation Model

    Directory of Open Access Journals (Sweden)

    Jgouta Meriem

    2017-06-01

    Full Text Available Positioning solutions need to be more precise and available. The most frequent method used nowadays includes a GPS receiver, sometimes supported by other sensors. Generally, GPS and GNSS suffer from spreading perturbations that produce biases on pseudo-range measurements. With a view to optimize the use of the satellites received, we offer a positioning algorithm with pseudo range error modelling with the contribution of an appropriate filtering process. Extended Kalman Filter, The Rao- Blackwellized filter are among the most widely used algorithms to predict errors and to filter the high frequency noise. This paper describes a new method of estimating the pseudo-range errors based on the PSO-RBF model which achieves an optimal training criterion. This model is appropriate of its method to predict the GPS corrections for accurate positioning, it reduce the positioning errors at high velocities by more than 50% compared to the RLS or EKF methods.

  14. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  15. A quasi-independence model to estimate failure rates

    International Nuclear Information System (INIS)

    Colombo, A.G.

    1988-01-01

    The use of a quasi-independence model to estimate failure rates is investigated. Gate valves of nuclear plants are considered, and two qualitative covariates are taken into account: plant location and reactor system. Independence between the two covariates and an exponential failure model are assumed. The failure rate of the components of a given system and plant is assumed to be a constant, but it may vary from one system to another and from one plant to another. This leads to the analysis of a contingency table. A particular feature of the model is the different operating time of the components in the various cells which can also be equal to zero. The concept of independence of the covariates is then replaced by that of quasi-independence. The latter definition, however, is used in a broader sense than usual. Suitable statistical tests are discussed and a numerical example illustrates the use of the method. (author)

  16. Integrated traffic conflict model for estimating crash modification factors.

    Science.gov (United States)

    Shahdah, Usama; Saccomanno, Frank; Persaud, Bhagwant

    2014-10-01

    Crash modification factors (CMFs) for road safety treatments are usually obtained through observational models based on reported crashes. Observational Bayesian before-and-after methods have been applied to obtain more precise estimates of CMFs by accounting for the regression-to-the-mean bias inherent in naive methods. However, sufficient crash data reported over an extended period of time are needed to provide reliable estimates of treatment effects, a requirement that can be a challenge for certain types of treatment. In addition, these studies require that sites analyzed actually receive the treatment to which the CMF pertains. Another key issue with observational approaches is that they are not causal in nature, and as such, cannot provide a sound "behavioral" rationale for the treatment effect. Surrogate safety measures based on high risk vehicle interactions and traffic conflicts have been proposed to address this issue by providing a more "causal perspective" on lack of safety for different road and traffic conditions. The traffic conflict approach has been criticized, however, for lacking a formal link to observed and verified crashes, a difficulty that this paper attempts to resolve by presenting and investigating an alternative approach for estimating CMFs using simulated conflicts that are linked formally to observed crashes. The integrated CMF estimates are compared to estimates from an empirical Bayes (EB) crash-based before-and-after analysis for the same sample of treatment sites. The treatment considered involves changing left turn signal priority at Toronto signalized intersections from permissive to protected-permissive. The results are promising in that the proposed integrated method yields CMFs that closely match those obtained from the crash-based EB before-and-after analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sensitivity and uncertainty analysis for the annual phosphorus loss estimator model.

    Science.gov (United States)

    Bolster, Carl H; Vadas, Peter A

    2013-07-01

    Models are often used to predict phosphorus (P) loss from agricultural fields. Although it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study we assessed the effect of model input error on predictions of annual P loss by the Annual P Loss Estimator (APLE) model. Our objectives were (i) to conduct a sensitivity analyses for all APLE input variables to determine which variables the model is most sensitive to, (ii) to determine whether the relatively easy-to-implement first-order approximation (FOA) method provides accurate estimates of model prediction uncertainties by comparing results with the more accurate Monte Carlo simulation (MCS) method, and (iii) to evaluate the performance of the APLE model against measured P loss data when uncertainties in model predictions and measured data are included. Our results showed that for low to moderate uncertainties in APLE input variables, the FOA method yields reasonable estimates of model prediction uncertainties, although for cases where manure solid content is between 14 and 17%, the FOA method may not be as accurate as the MCS method due to a discontinuity in the manure P loss component of APLE at a manure solid content of 15%. The estimated uncertainties in APLE predictions based on assumed errors in the input variables ranged from ±2 to 64% of the predicted value. Results from this study highlight the importance of including reasonable estimates of model uncertainty when using models to predict P loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Ramesh K. Singh

    2015-12-01

    Full Text Available The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC model, Surface Energy Balance Algorithm for Land (SEBAL model, Surface Energy Balance System (SEBS model, and the Operational Simplified Surface Energy Balance (SSEBop model—using Landsat images to estimate evapotranspiration (ET in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1 and a high Nash–Sutcliffe coefficient of efficiency (>0.80, whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  19. Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example

    KAUST Repository

    Allmaras, Moritz

    2013-02-07

    All mathematical models of real-world phenomena contain parameters that need to be estimated from measurements, either for realistic predictions or simply to understand the characteristics of the model. Bayesian statistics provides a framework for parameter estimation in which uncertainties about models and measurements are translated into uncertainties in estimates of parameters. This paper provides a simple, step-by-step example-starting from a physical experiment and going through all of the mathematics-to explain the use of Bayesian techniques for estimating the coefficients of gravity and air friction in the equations describing a falling body. In the experiment we dropped an object from a known height and recorded the free fall using a video camera. The video recording was analyzed frame by frame to obtain the distance the body had fallen as a function of time, including measures of uncertainty in our data that we describe as probability densities. We explain the decisions behind the various choices of probability distributions and relate them to observed phenomena. Our measured data are then combined with a mathematical model of a falling body to obtain probability densities on the space of parameters we seek to estimate. We interpret these results and discuss sources of errors in our estimation procedure. © 2013 Society for Industrial and Applied Mathematics.

  20. A data assimilating model for estimating Southern Ocean biogeochemistry

    Science.gov (United States)

    Verdy, A.; Mazloff, M. R.

    2017-09-01

    A Biogeochemical Southern Ocean State Estimate (B-SOSE) is introduced that includes carbon and oxygen fields as well as nutrient cycles. The state estimate is constrained with observations while maintaining closed budgets and obeying dynamical and thermodynamic balances. Observations from profiling floats, shipboard data, underway measurements, and satellites are used for assimilation. The years 2008-2012 are chosen due to the relative abundance of oxygen observations from Argo floats during this time. The skill of the state estimate at fitting the data is assessed. The agreement is best for fields that are constrained with the most observations, such as surface pCO2 in Drake Passage (44% of the variance captured) and oxygen profiles (over 60% of the variance captured at 200 and 1000 m). The validity of adjoint method optimization for coupled physical-biogeochemical state estimation is demonstrated with a series of gradient check experiments. The method is shown to be mature and ready to synthesize in situ biogeochemical observations as they become more available. Documenting the B-SOSE configuration and diagnosing the strengths and weaknesses of the solution informs usage of this product as both a climate baseline and as a way to test hypotheses. Transport of Intermediate Waters across 32°S supplies significant amounts of nitrate to the Atlantic Ocean (5.57 ± 2.94 Tmol yr-1) and Indian Ocean (5.09 ± 3.06 Tmol yr-1), but much less nitrate reaches the Pacific Ocean (1.78 ± 1.91 Tmol yr-1). Estimates of air-sea carbon dioxide fluxes south of 50°S suggest a mean uptake of 0.18 Pg C/yr for the time period analyzed.

  1. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  2. A guide for estimating dynamic panel models: the macroeconomics models specifiness

    International Nuclear Information System (INIS)

    Coletta, Gaetano

    2005-10-01

    The aim of this paper is to review estimators for dynamic panel data models, a topic in which the interest has grown recently. As a consequence 01 this late interest, different estimation techniques have been proposed in the last few years and, given the last development of the subject, there is still a lack 01 a comprehensive guide for panel data applications, and for macroeconomics panel data models in particular. Finally, we also provide some indications about the Stata software commands to estimate dynamic panel data models with the techniques illustrated in the paper [it

  3. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    Science.gov (United States)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  4. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.

    Science.gov (United States)

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely

  5. Oscillation estimates relative to p-homogeneous forms and Kato measures data

    Directory of Open Access Journals (Sweden)

    Marco Biroli

    2006-11-01

    Full Text Available We state pointwise estimate for the positive subsolutions associated to a p-homogeneous form and nonnegative Radon measures data. As a by-product we establish an oscillation’s estimate for the solutions relative to Kato measures data.

  6. Estimates of the relative specific yield of aquifers from geo-electrical ...

    African Journals Online (AJOL)

    This paper discusses a method of estimating aquifer specific yield based on surface resistivity sounding measurements supplemented with data on water conductivity. The practical aim of the method is to suggest a parallel low cost method of estimating aquifer properties. The starting point is the Archie's law, which relates ...

  7. An estimator for the relative entropy rate of path measures for stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Opper, Manfred, E-mail: manfred.opper@tu-berlin.de

    2017-02-01

    We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.

  8. Estimating the clinical benefits of vaccinating boys and girls against HPV-related diseases in Europe

    International Nuclear Information System (INIS)

    Marty, Rémi; Roze, Stéphane; Bresse, Xavier; Largeron, Nathalie; Smith-Palmer, Jayne

    2013-01-01

    HPV is related to a number of cancer types, causing a considerable burden in both genders in Europe. Female vaccination programs can substantially reduce the incidence of HPV-related diseases in women and, to some extent, men through herd immunity. The objective was to estimate the incremental benefit of vaccinating boys and girls using the quadrivalent HPV vaccine in Europe versus girls-only vaccination. Incremental benefits in terms of reduction in the incidence of HPV 6, 11, 16 and 18-related diseases (including cervical, vaginal, vulvar, anal, penile, and head and neck carcinomas and genital warts) were assessed. The analysis was performed using a model constructed in Microsoft®Excel, based on a previously-published dynamic transmission model of HPV vaccination and published European epidemiological data on incidence of HPV-related diseases. The incremental benefits of vaccinating 12-year old girls and boys versus girls-only vaccination was assessed (70% vaccine coverage were assumed for both). Sensitivity analyses around vaccine coverage and duration of protection were performed. Compared with screening alone, girls-only vaccination led to 84% reduction in HPV 16/18-related carcinomas in females and a 61% reduction in males. Vaccination of girls and boys led to a 90% reduction in HPV 16/18-related carcinomas in females and 86% reduction in males versus screening alone. Relative to a girls-only program, vaccination of girls and boys led to a reduction in female and male HPV-related carcinomas of 40% and 65%, respectively and a reduction in the incidence of HPV 6/11-related genital warts of 58% for females and 71% for males versus girls-only vaccination. In Europe, the vaccination of 12-year old boys and girls against HPV 6, 11, 16 and 18 would be associated with substantial additional clinical benefits in terms of reduced incidence of HPV-related genital warts and carcinomas versus girls-only vaccination. The incremental benefits of adding boys vaccination are

  9. Prognostic modelling options for remaining useful life estimation by industry

    Science.gov (United States)

    Sikorska, J. Z.; Hodkiewicz, M.; Ma, L.

    2011-07-01

    Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.

  10. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  11. Development of Property Models with Uncertainty Estimate for Process Design under Uncertainty

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Sarup, Bent; Abildskov, Jens

    more reliable predictions with a new and improved set of model parameters for GC (group contribution) based and CI (atom connectivity index) based models and to quantify the uncertainties in the estimated property values from a process design point-of-view. This includes: (i) parameter estimation using....... The comparison of model prediction uncertainties with reported range of measurement uncertainties is presented for the properties with related available data. The application of the developed methodology to quantify the effect of these uncertainties on the design of different unit operations (distillation column......, the developed methodology can be used to quantify the sensitivity of process design to uncertainties in property estimates; obtain rationally the risk/safety factors in process design; and identify additional experimentation needs in order to reduce most critical uncertainties....

  12. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion.

    Science.gov (United States)

    Derrick, Timothy R; Edwards, W Brent; Fellin, Rebecca E; Seay, Joseph F

    2016-02-08

    The purpose of this research was to utilize a series of models to estimate the stress in a cross section of the tibia, located 62% from the proximal end, during walking. Twenty-eight male, active duty soldiers walked on an instrumented treadmill while external force data and kinematics were recorded. A rigid body model was used to estimate joint moments and reaction forces. A musculoskeletal model was used to gather muscle length, muscle velocity, moment arm and orientation information. Optimization procedures were used to estimate muscle forces and finally internal bone forces and moments were applied to an inhomogeneous, subject specific bone model obtained from CT scans to estimate stress in the bone cross section. Validity was assessed by comparison to stresses calculated from strain gage data in the literature and sensitivity was investigated using two simplified versions of the bone model-a homogeneous model and an ellipse approximation. Peak compressive stress occurred on the posterior aspect of the cross section (-47.5 ± 14.9 MPa). Peak tensile stress occurred on the anterior aspect (27.0 ± 11.7 MPa) while the location of peak shear was variable between subjects (7.2 ± 2.4 MPa). Peak compressive, tensile and shear stresses were within 0.52 MPa, 0.36 MPa and 3.02 MPa respectively of those calculated from the converted strain gage data. Peak values from a inhomogeneous model of the bone correlated well with homogeneous model (normal: 0.99; shear: 0.94) as did the normal ellipse model (r=0.89-0.96). However, the relationship between shear stress in the inhomogeneous model and ellipse model was less accurate (r=0.64). The procedures detailed in this paper provide a non-invasive and relatively quick method of estimating cross sectional stress that holds promise for assessing injury and osteogenic stimulus in bone during normal physical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Micro, nanosystems and systems on chips modeling, control, and estimation

    CERN Document Server

    Voda, Alina

    2013-01-01

    Micro and nanosystems represent a major scientific and technological challenge, with actual and potential applications in almost all fields of the human activity. The aim of the present book is to present how concepts from dynamical control systems (modeling, estimation, observation, identification, feedback control) can be adapted and applied to the development of original very small-scale systems and of their human interfaces. The application fields presented here come from micro and nanorobotics, biochips, near-field microscopy (AFM and STM) and nanosystems networks. Alina Voda has drawn co

  14. Estimation for a Weibull accelerated life testing model

    International Nuclear Information System (INIS)

    Glaser, R.E.

    1984-01-01

    It is sometimes reasonable to assume that the lifetime distribution of an item belongs to a certain parametric family, and that actual parameter values depend upon the testing environment of the item. In the two-parameter Weibull family setting, suppose both the shape and scale parameters are expressible as functions of the testing environment. For various models of functional dependency on environment, maximum likelihood methods are used to estimate characteristics of interest at specified environmental levels. The methodology presented handles exact, censored, and grouped data. A detailed accelerated life testing analysis of stress-rupture data for Kevlar/epoxy composites is given. 10 references, 1 figure, 2 tables

  15. LBM estimation of thermal conductivity in meso-scale modelling

    International Nuclear Information System (INIS)

    Grucelski, A

    2016-01-01

    Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)

  16. A Descriptive Evaluation of Automated Software Cost-Estimation Models,

    Science.gov (United States)

    1986-10-01

    Version 1.03D) * PCOC (Version 7.01) - PRICE S • SLIM (Version 1.1) • SoftCost (Version 5. 1) * SPQR /20 (Version 1. 1) - WICOMO (Version 1.3) These...produce detailed GANTT and PERT charts. SPQR /20 is based on a cost model developed at ITT. In addition to cost, schedule, and staffing estimates, it...cases and test runs required, and the effectiveness of pre-test and test activities. SPQR /20 also predicts enhancement and maintenance activities. C

  17. New relation for critical exponents in the Ising model

    International Nuclear Information System (INIS)

    Pishtshev, A.

    2007-01-01

    The Ising model in a transverse field is considered at T=0. From the analysis of the power low behaviors of the energy gap and the order parameter as functions of the field a new relation between the respective critical exponents, β>=1/(8s 2 ), is derived. By using the Suzuki equivalence from this inequality a new relation for critical exponents in the Ising model, β>=1/(8ν 2 ), is obtained. A number of numerical examples for different cases illustrates the generality and validity of the relation. By applying this relation the estimation ν=(1/4) 1/3 ∼0.62996 for the 3D-Ising model is proposed

  18. Models and relations in economics and econometrics

    DEFF Research Database (Denmark)

    Juselius, Katarina

    1999-01-01

    Based on a money market analysis using the cointegrated VAR model the paper demonstrates some possible pitfalls in macroeconomic inference as a direct consequence of inadequate stochastic model formulation. A number of questions related to concepts such as empirical and theoretical steady...

  19. Relating business modelling and enterprise architecture

    NARCIS (Netherlands)

    Meertens, Lucas Onno

    2013-01-01

    This thesis proposes a methodology for creating business models, evaluating them, and relating them to enterprise architecture. The methodology consists of several steps, leading from an organization’s current situation to a target situation, via business models and enterprise architecture.

  20. Absolute Monotonicity of Functions Related To Estimates of First Eigenvalue of Laplace Operator on Riemannian Manifolds

    Directory of Open Access Journals (Sweden)

    Feng Qi

    2014-10-01

    Full Text Available The authors find the absolute monotonicity and complete monotonicity of some functions involving trigonometric functions and related to estimates the lower bounds of the first eigenvalue of Laplace operator on Riemannian manifolds.

  1. Significance of relative velocity in drag force or drag power estimation for a tethered float

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sastry, J.S.

    There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...

  2. On the Relationships between Jeffreys Modal and Weighted Likelihood Estimation of Ability under Logistic IRT Models

    Science.gov (United States)

    Magis, David; Raiche, Gilles

    2012-01-01

    This paper focuses on two estimators of ability with logistic item response theory models: the Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jeffreys' prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal (JM) estimator. It is established that under…

  3. Estimating climate change impact on irrigation demand using integrated modelling

    International Nuclear Information System (INIS)

    Zupanc, Vesna; Pintar, Marina

    2004-01-01

    Water is basic element in agriculture, and along with the soil characteristics, it remains the essential for the growth and evolution of plants. Trends of air temperature and precipitation for Slovenia indicate the increase of the air temperature and reduction of precipitation during the vegetation period, which will have a substantial impact on rural economy in Slovenia. The impact of climate change will be substantial for soil the water balance. Distinctive drought periods in past years had great impact on rural plants in light soils. Climate change will most probably also result in drought in soils which otherwise provide optimal water supply for plants. Water balance in the cross section of the rooting depth is significant for the agriculture. Mathematical models enable smaller amount of measurements in a certain area by means of measurements carried out only in characteristic points serving for verification and calibration of the model. Combination of on site measurements and mathematical modelling proved to be an efficient method for understanding of processes in nature. Climate scenarios made for the estimation of the impact of climate change are based on the general circulation models. A study based on a hundred year set of monthly data showed that in Slovenia temperature would increase at min. by 2.3 o C, and by 5.6 o C at max and by 4.5 o C in average. Valid methodology for the estimate of the impact of climate change applies the model using a basic set of data for a thirty year period (1961-1990) and a changed set of climate input parameters on one hand, and, on the other, a comparison of output results of the model. Estimating climate change impact on irrigation demand for West Slovenia for peaches and nectarines grown on Cambisols and Fluvisols was made using computer model SWAP. SWAP is a precise and power too[ for the estimation of elements of soil water balance at the level of cross section of the monitored and studied profile from the soil surface

  4. An improved model for estimating pesticide emissions for agricultural LCA

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Birkved, Morten; Hauschild, Michael Zwicky

    2011-01-01

    Credible quantification of chemical emissions in the inventory phase of Life Cycle Assessment (LCA) is crucial since chemicals are the dominating cause of the human and ecotoxicity-related environmental impacts in Life Cycle Impact Assessment (LCIA). When applying LCA for assessment of agricultural...... products, off-target pesticide emissions need to be quantified as accurately as possible because of the considerable toxicity effects associated with chemicals designed to have a high impact on biological organisms like for example insects or weed plants. PestLCI was developed to estimate the fractions...

  5. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    Science.gov (United States)

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  6. Small Area Model-Based Estimators Using Big Data Sources

    Directory of Open Access Journals (Sweden)

    Marchetti Stefano

    2015-06-01

    Full Text Available The timely, accurate monitoring of social indicators, such as poverty or inequality, on a finegrained spatial and temporal scale is a crucial tool for understanding social phenomena and policymaking, but poses a great challenge to official statistics. This article argues that an interdisciplinary approach, combining the body of statistical research in small area estimation with the body of research in social data mining based on Big Data, can provide novel means to tackle this problem successfully. Big Data derived from the digital crumbs that humans leave behind in their daily activities are in fact providing ever more accurate proxies of social life. Social data mining from these data, coupled with advanced model-based techniques for fine-grained estimates, have the potential to provide a novel microscope through which to view and understand social complexity. This article suggests three ways to use Big Data together with small area estimation techniques, and shows how Big Data has the potential to mirror aspects of well-being and other socioeconomic phenomena.

  7. Oracle estimation of parametric models under boundary constraints.

    Science.gov (United States)

    Wong, Kin Yau; Goldberg, Yair; Fine, Jason P

    2016-12-01

    In many classical estimation problems, the parameter space has a boundary. In most cases, the standard asymptotic properties of the estimator do not hold when some of the underlying true parameters lie on the boundary. However, without knowledge of the true parameter values, confidence intervals constructed assuming that the parameters lie in the interior are generally over-conservative. A penalized estimation method is proposed in this article to address this issue. An adaptive lasso procedure is employed to shrink the parameters to the boundary, yielding oracle inference which adapt to whether or not the true parameters are on the boundary. When the true parameters are on the boundary, the inference is equivalent to that which would be achieved with a priori knowledge of the boundary, while if the converse is true, the inference is equivalent to that which is obtained in the interior of the parameter space. The method is demonstrated under two practical scenarios, namely the frailty survival model and linear regression with order-restricted parameters. Simulation studies and real data analyses show that the method performs well with realistic sample sizes and exhibits certain advantages over standard methods. © 2016, The International Biometric Society.

  8. Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    Directory of Open Access Journals (Sweden)

    Liu Zhang

    2017-01-01

    Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.

  9. ESTIMATION OF THE KNOWLEDGE SPILLOVER EFFECTS BETWEEN FIRMS IN BIO-RELATED INDUSTRIES

    OpenAIRE

    Kim, Hanho; Kim, Jae-Kyung

    2005-01-01

    Knowledge spillover is a kind of externality originating from imperfect appropriation of R&D performances, which implies that the knowledge created by one agent could be transmitted to other related agents by affecting their R&D or other economic performances. For the estimation of knowledge spillover effects based on firm-level patent data between firms in bio-related industries, patents production function, as a proxy of knowledge production function, is formulated and estimated. Knowledge ...

  10. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    Science.gov (United States)

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  11. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    Science.gov (United States)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  12. Assessing Interval Estimation Methods for Hill Model Parameters in a High-Throughput Screening Context (IVIVE meeting)

    Science.gov (United States)

    The Hill model of concentration-response is ubiquitous in toxicology, perhaps because its parameters directly relate to biologically significant metrics of toxicity such as efficacy and potency. Point estimates of these parameters obtained through least squares regression or maxi...

  13. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model

    Science.gov (United States)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.

  14. Protein Simulation Data in the Relational Model.

    Science.gov (United States)

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.

  15. [Application of predictive model to estimate concentrations of chemical substances in the work environment].

    Science.gov (United States)

    Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Jakubowski, Marek; Maciaszek, Piotr; Janasik, Beata

    2010-01-01

    Based on the Estimation and Assessment of Substance Exposure (EASE) predictive model implemented into the European Union System for the Evaluation of Substances (EUSES 2.1.), the exposure to three chosen organic solvents: toluene, ethyl acetate and acetone was estimated and compared with the results of measurements in workplaces. Prior to validation, the EASE model was pretested using three exposure scenarios. The scenarios differed in the decision tree of pattern of use. Five substances were chosen for the test: 1,4-dioxane tert-methyl-butyl ether, diethylamine, 1,1,1-trichloroethane and bisphenol A. After testing the EASE model, the next step was the validation by estimating the exposure level and comparing it with the results of measurements in the workplace. We used the results of measurements of toluene, ethyl acetate and acetone concentrations in the work environment of a paint and lacquer factory, a shoe factory and a refinery. Three types of exposure scenarios, adaptable to the description of working conditions were chosen to estimate inhalation exposure. Comparison of calculated exposure to toluene, ethyl acetate and acetone with measurements in workplaces showed that model predictions are comparable with the measurement results. Only for low concentration ranges, the measured concentrations were higher than those predicted. EASE is a clear, consistent system, which can be successfully used as an additional component of inhalation exposure estimation. If the measurement data are available, they should be preferred to values estimated from models. In addition to inhalation exposure estimation, the EASE model makes it possible not only to assess exposure-related risk but also to predict workers' dermal exposure.

  16. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    Science.gov (United States)

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  17. Disturbance estimation of nuclear power plant by using reduced-order model

    International Nuclear Information System (INIS)

    Tashima, Shin-ichi; Wakabayashi, Jiro

    1983-01-01

    An estimation method is proposed of multiplex disturbances which occur in a nuclear power plant. The method is composed of two parts: (i) the identification of a simplified model of multi-input and multi-output to describe the related system response, and (ii) the design of a Kalman filter to estimate the multiplex disturbance. Concerning the simplified model, several observed signals are firstly selected as output variables which can well represent the system response caused by the disturbances. A reduced-order model is utilized for designing the disturbance estimator. This is based on the following two considerations. The first is that the disturbance is assumed to be of a quasistatic nature. The other is based on the intuition that there exist a few dominant modes between the disturbances and the selected observed signals and that most of the non-dominant modes which remain may not affect the accuracy of the disturbance estimator. The reduced-order model is furtherly transformed to a single-output model using a linear combination of the output signals, where the standard procedure of the structural identification is evaded. The parameters of the model thus transformed are calculated by the generalized least square method. As for the multiplex disturbance estimator, the Kalman filtering method is applied by compromising the following three items : (a) quick response to disturbance, (b) reduction of estimation error in the presence of observation noises, and (c) the elimination of cross-interference between the disturbances to the plant and the estimates from the Kalman filter. The effectiveness of the proposed method is verified through some computer experiments using a BWR plant simulator. (author)

  18. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  19. Research on parafoil stability using a rapid estimate model

    Directory of Open Access Journals (Sweden)

    Hua YANG

    2017-10-01

    Full Text Available With the consideration of rotation between canopy and payload of parafoil system, a four-degree-of-freedom (4-DOF longitudinal static model was used to solve parafoil state variables in straight steady flight. The aerodynamic solution of parafoil system was a combination of vortex lattice method (VLM and engineering estimation method. Based on small disturbance assumption, a 6-DOF linear model that considers canopy additional mass was established with benchmark state calculated by 4-DOF static model. Modal analysis of a dynamic model was used to calculate the stability parameters. This method, which is based on a small disturbance linear model and modal analysis, is high-efficiency to the study of parafoil stability. It is well suited for rapid stability analysis in the preliminary stage of parafoil design. Using this method, this paper shows that longitudinal and lateral stability will both decrease when a steady climbing angle increases. This explains the wavy track of the parafoil observed during climbing.

  20. Comparison of different models for non-invasive FFR estimation

    Science.gov (United States)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  1. Principles of parametric estimation in modeling language competition.

    Science.gov (United States)

    Zhang, Menghan; Gong, Tao

    2013-06-11

    It is generally difficult to define reasonable parameters and interpret their values in mathematical models of social phenomena. Rather than directly fitting abstract parameters against empirical data, we should define some concrete parameters to denote the sociocultural factors relevant for particular phenomena, and compute the values of these parameters based upon the corresponding empirical data. Taking the example of modeling studies of language competition, we propose a language diffusion principle and two language inheritance principles to compute two critical parameters, namely the impacts and inheritance rates of competing languages, in our language competition model derived from the Lotka-Volterra competition model in evolutionary biology. These principles assign explicit sociolinguistic meanings to those parameters and calculate their values from the relevant data of population censuses and language surveys. Using four examples of language competition, we illustrate that our language competition model with thus-estimated parameter values can reliably replicate and predict the dynamics of language competition, and it is especially useful in cases lacking direct competition data.

  2. Estimation of landfill emission lifespan using process oriented modeling

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Ricken, Tim; Widmann, Renatus

    2006-01-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section

  3. Models for estimating the radiation hazards of uranium mines

    International Nuclear Information System (INIS)

    Wise, K.N.

    1982-01-01

    Hazards to the health of workers in uranium mines derive from the decay products of radon and from uranium and its descendants. Radon daughters in mine atmospheres are either attached to aerosols or exist as free atoms and their physical state determines in which part of the lung the daughters deposit. The factors which influence the proportions of radon daughters attached to aerosols, their deposition in the lung and the dose received by the cells in lung tissue are discussed. The estimation of dose to tissue from inhalation or ingestion of uranium and daughters is based on a different set of models which have been applied in recent ICRP reports. The models used to describe the deposition of particulates, their movement in the gut and their uptake by organs, which form the basis for future limits on the concentration of uranium and daughters in air or on their intake with food, are outlined

  4. Models for estimating the radiation hazards of uranium mines

    International Nuclear Information System (INIS)

    Wise, K.N.

    1990-01-01

    Hazards to the health of workers in uranium mines derive from the decay products of radon and from uranium and its descendants. Radon daughters in mine atmospheres are either attached to aerosols or exist as free atoms and their physical state determines in which part of the lung the daughters deposit. The factors which influence the proportions of radon daughters attached to aerosols, their deposition in the lung and the dose received by the cells in lung tissue are discussed. The estimation of dose to tissue from inhalation of ingestion or uranium and daughters is based on a different set of models which have been applied in recent ICRP reports. The models used to describe the deposition of particulates, their movement in the gut and their uptake by organs, which form the basis for future limits on the concentration of uranium and daughters in air or on their intake with food, are outlined. 34 refs., 12 tabs., 9 figs

  5. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  6. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  7. Results and Error Estimates from GRACE Forward Modeling over Antarctica

    Science.gov (United States)

    Bonin, Jennifer; Chambers, Don

    2013-04-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.

  8. Reduced Order Modeling in General Relativity

    Science.gov (United States)

    Tiglio, Manuel

    2014-03-01

    Reduced Order Modeling is an emerging yet fast developing filed in gravitational wave physics. The main goals are to enable fast modeling and parameter estimation of any detected signal, along with rapid matched filtering detecting. I will focus on the first two. Some accomplishments include being able to replace, with essentially no lost of physical accuracy, the original models with surrogate ones (which are not effective ones, that is, they do not simplify the physics but go on a very different track, exploiting the particulars of the waveform family under consideration and state of the art dimensional reduction techniques) which are very fast to evaluate. For example, for EOB models they are at least around 3 orders of magnitude faster than solving the original equations, with physically equivalent results. For numerical simulations the speedup is at least 11 orders of magnitude. For parameter estimation our current numbers are about bringing ~100 days for a single SPA inspiral binary neutron star Bayesian parameter estimation analysis to under a day. More recently, it has been shown that the full precessing problem for, say, 200 cycles, can be represented, through some new ideas, by a remarkably compact set of carefully chosen reduced basis waveforms (~10-100, depending on the accuracy requirements). I will highlight what I personally believe are the challenges to face next in this subarea of GW physics and where efforts should be directed. This talk will summarize work in collaboration with: Harbir Antil (GMU), Jonathan Blackman (Caltech), Priscila Canizares (IoA, Cambridge, UK), Sarah Caudill (UWM), Jonathan Gair (IoA. Cambridge. UK), Scott Field (UMD), Chad R. Galley (Caltech), Frank Herrmann (Germany), Han Hestahven (EPFL, Switzerland), Jason Kaye (Brown, Stanford & Courant). Evan Ochsner (UWM), Ricardo Nochetto (UMD), Vivien Raymond (LIGO, Caltech), Rory Smith (LIGO, Caltech) Bela Ssilagyi (Caltech) and MT (UMD & Caltech).

  9. Incorporating Latent Variables into Discrete Choice Models - A Simultaneous Estimation Approach Using SEM Software

    Directory of Open Access Journals (Sweden)

    Dirk Temme

    2008-12-01

    Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

  10. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  11. Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach

    Science.gov (United States)

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. PMID:23096056

  12. A Comparison of Alternative Estimators of Linearly Aggregated Macro Models

    Directory of Open Access Journals (Sweden)

    Fikri Akdeniz

    2012-07-01

    Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.

  13. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  14. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    Science.gov (United States)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  15. New aerial survey and hierarchical model to estimate manatee abundance

    Science.gov (United States)

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  16. Re-evaluating neonatal-age models for ungulates: does model choice affect survival estimates?

    Directory of Open Access Journals (Sweden)

    Troy W Grovenburg

    Full Text Available New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old ungulates: 76 white-tailed deer (Odocoileus virginianus in Minnesota and South Dakota, 61 mule deer (O. hemionus in California, and 37 pronghorn (Antilocapra americana in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i

  17. Biochemical transport modeling, estimation, and detection in realistic environments

    Science.gov (United States)

    Ortner, Mathias; Nehorai, Arye

    2006-05-01

    Early detection and estimation of the spread of a biochemical contaminant are major issues for homeland security applications. We present an integrated approach combining the measurements given by an array of biochemical sensors with a physical model of the dispersion and statistical analysis to solve these problems and provide system performance measures. We approximate the dispersion model of the contaminant in a realistic environment through numerical simulations of reflected stochastic diffusions describing the microscopic transport phenomena due to wind and chemical diffusion using the Feynman-Kac formula. We consider arbitrary complex geometries and account for wind turbulence. Localizing the dispersive sources is useful for decontamination purposes and estimation of the cloud evolution. To solve the associated inverse problem, we propose a Bayesian framework based on a random field that is particularly powerful for localizing multiple sources with small amounts of measurements. We also develop a sequential detector using the numerical transport model we propose. Sequential detection allows on-line analysis and detecting wether a change has occurred. We first focus on the formulation of a suitable sequential detector that overcomes the presence of unknown parameters (e.g. release time, intensity and location). We compute a bound on the expected delay before false detection in order to decide the threshold of the test. For a fixed false-alarm rate, we obtain the detection probability of a substance release as a function of its location and initial concentration. Numerical examples are presented for two real-world scenarios: an urban area and an indoor ventilation duct.

  18. Nonspinning numerical relativity waveform surrogates: assessing the model

    Science.gov (United States)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  19. Grid-search Moment Tensor Estimation: Implementation and CTBT-related Application

    Science.gov (United States)

    Stachnik, J. C.; Baker, B. I.; Rozhkov, M.; Friberg, P. A.; Leifer, J. M.

    2017-12-01

    This abstract presents a review work related to moment tensor estimation for Expert Technical Analysis at the Comprehensive Test Ban Treaty Organization. In this context of event characterization, estimation of key source parameters provide important insights into the nature of failure in the earth. For example, if the recovered source parameters are indicative of a shallow source with large isotropic component then one conclusion is that it is a human-triggered explosive event. However, an important follow-up question in this application is - does an alternative hypothesis like a deeper source with a large double couple component explain the data approximately as well as the best solution? Here we address the issue of both finding a most likely source and assessing its uncertainty. Using the uniform moment tensor discretization of Tape and Tape (2015) we exhaustively interrogate and tabulate the source eigenvalue distribution (i.e., the source characterization), tensor orientation, magnitude, and source depth. The benefit of the grid-search is that we can quantitatively assess the extent to which model parameters are resolved. This provides a valuable opportunity during the assessment phase to focus interpretation on source parameters that are well-resolved. Another benefit of the grid-search is that it proves to be a flexible framework where different pieces of information can be easily incorporated. To this end, this work is particularly interested in fitting teleseismic body waves and regional surface waves as well as incorporating teleseismic first motions when available. Being that the moment tensor search methodology is well-established we primarily focus on the implementation and application. We present a highly scalable strategy for systematically inspecting the entire model parameter space. We then focus on application to regional and teleseismic data recorded during a handful of natural and anthropogenic events, report on the grid-search optimum, and

  20. KONVERGENSI ESTIMATOR DALAM MODEL MIXTURE BERBASIS MISSING DATA

    Directory of Open Access Journals (Sweden)

    N Dwidayati

    2014-06-01

    Full Text Available Abstrak __________________________________________________________________________________________ Model mixture dapat mengestimasi proporsi pasien yang sembuh (cured dan fungsi survival pasien tak sembuh (uncured. Pada kajian ini, model mixture dikembangkan untuk  analisis cure rate berbasis missing data. Ada beberapa metode yang dapat digunakan untuk analisis missing data. Salah satu metode yang dapat digunakan adalah Algoritma EM, Metode ini didasarkan pada 2 (dua langkah, yaitu: (1 Expectation Step dan (2 Maximization Step. Algoritma EM merupakan pendekatan iterasi untuk mempelajari model dari data dengan nilai hilang melalui 4 (empat langkah, yaitu(1 pilih himpunan inisial dari parameter untuk sebuah model, (2 tentukan nilai ekspektasi untuk data hilang, (3 buat induksi parameter model baru dari gabungan nilai ekspekstasi dan data asli, dan (4 jika parameter tidak converged, ulangi langkah 2 menggunakan model baru. Berdasar kajian yang dilakukan dapat ditunjukkan bahwa pada algoritma EM, log-likelihood untuk missing data mengalami kenaikan setelah dilakukan setiap iterasi dari algoritmanya. Dengan demikian berdasar algoritma EM, barisan likelihood konvergen jika likelihood terbatas ke bawah.   Abstract __________________________________________________________________________________________ Model mixture can estimate proportion of recovering patient  and function of patient survival do not recover. At this study, model mixture developed to analyse cure rate bases on missing data. There are some method which applicable to analyse missing data. One of method which can be applied is Algoritma EM, This method based on 2 ( two step, that is: ( 1 Expectation Step and ( 2 Maximization Step. EM Algorithm is approach of iteration to study model from data with value loses through 4 ( four step, yaitu(1 select;chooses initial gathering from parameter for a model, ( 2 determines expectation value for data to lose, ( 3 induce newfangled parameter