WorldWideScience

Sample records for models dems derived

  1. Development of a LiDAR derived digital elevation model (DEM) as Input to a METRANS geographic information system (GIS).

    Science.gov (United States)

    2011-05-01

    This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...

  2. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Directory of Open Access Journals (Sweden)

    A. J. Cook

    2012-10-01

    Full Text Available A high resolution surface topography Digital Elevation Model (DEM is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S, based on ASTER Global Digital Elevation Model (GDEM data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM, and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (Coastal Digital Elevation Models (DEMs)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation models (DEMs) of U.S. and other coasts that typically integrate ocean bathymetry and land topography. The DEMs support NOAA's mission to understand...

  3. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    Science.gov (United States)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  4. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  5. Digitial Elevation Model (DEM) 100K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USG to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  6. Digtial Elevation Model (DEM) 250K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  7. Digital Elevation Model (DEM) 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  8. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means

  9. Contours, This Layer was derived from the USGS National Elevation Dataset (NED) based on 7.5 minute Digital Elevation Model (DEM) image files., Published in 1999, 1:24000 (1in=2000ft) scale, Atlanta Regional Commission.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Contours dataset current as of 1999. This Layer was derived from the USGS National Elevation Dataset (NED) based on 7.5 minute Digital Elevation Model (DEM) image...

  10. Flood Inundation Mapping and Management using RISAT-1 derived Flood Inundation Areas, Cartosat-1 DEM and a River Flow Model

    Science.gov (United States)

    Kuldeep, K.; Garg, P. K.; Garg, R. D.

    2017-12-01

    The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.

  11. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    Science.gov (United States)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on

  12. ASTER Orthorectified Digital Elevation Model (DEM) V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L3 DEM and Orthorectified Images form a multi-file product that contains both the Digital Elevation Model (DEM), and the Orthorectified Image products....

  13. 5 Meter Alaska Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 5-meter ifsar-derived Digital Elevation Models (DEMs) over Alaska only. It is distributed as one-degree blocks with overedge. Horizontal...

  14. Coastal DEMs with Cross-Track Interferometry

    NARCIS (Netherlands)

    Greidanus, H.S.F.; Huising, E.J.; Platschorre, Y.; Bree, R.J.P. van; Halsema, D. van; Vaessen, E.M.J.

    1999-01-01

    Digital elevation models (DEMs) are produced from airborne radar cross-track interferometric measurements. Radar DEMs recorded from perpendicular orientations are intercompared, and compared to DEMs derived from airborne laser altimetry

  15. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  16. Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM) projection...

  17. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    Science.gov (United States)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  18. Historic Low Wall Detection via Topographic Parameter Images Derived from Fine-Resolution DEM

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2017-11-01

    Full Text Available Coral walls protect vegetation gardens from strong winds that sweep across Xiji Island, Taiwan Strait for half the year. Topographic parameters based on light detection and ranging (LiDAR-based high-resolution digital elevation model (DEM provide obvious correspondence with the expected form of landscape features. The information on slope, curvature, and openness can help identify the location of landscape features. This study applied the automatic landscape line detection to extract historic vegetable garden wall lines from a LiDAR-derived DEM. The three rapid processes used in this study included the derivation of topographic parameters, line extraction, and aggregation. The rules were extracted from a decision tree to check the line detection from multiple topographic parameters. Results show that wall line detection with multiple topographic parameter images is an alternative means of obtaining essential historic wall feature information. Multiple topographic parameters are highly related to low wall feature identification. Furthermore, the accuracy of wall feature detection is 74% compared with manual interpretation. Thus, this study provides rapid wall detection systems with multiple topographic parameters for further historic landscape management.

  19. Novel application of DEM to modelling comminution processes

    International Nuclear Information System (INIS)

    Delaney, Gary W; Cleary, Paul W; Sinnott, Matt D; Morrison, Rob D

    2010-01-01

    Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.

  1. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  2. TecDEM: A MATLAB Based Toolbox for understanding Tectonics from Digital Elevation Models

    Science.gov (United States)

    Shahzad, F.; Mahmood, S. A.; Gloaguen, R.

    2009-04-01

    TecDEM is a MATLAB based tool box for understanding the tectonics from digital elevation models (DEMs) of any area. These DEMs can be derived from data of any spatial resolution (Low, medium and High). In the first step we extract drainage network from the DEMs using flow grid approach. Drainage network is a group of streams having elevation and catchment area information as a function of spatial locations. We implement an array of stream structure to study this drainage network. Knickpoints can be identified on each stream of the drainage network by a graphical user interface and are helpful for understanding stream morphology. Stream profile analysis in steady state condition is applied on all streams to calculate geomorphic parameters and regional uplift rates. Hack index is calculated for all the profiles at a certain interval and over the change of knickpoints. Reports menu of this tool box generates detailed statistics report, complete tabulated report, graphical output of each analyzed stream profile and Hack index profile. All the calculated values are part of stream structure and is saved as .mat file for later use with this tool box. The spatial distribution of geomorphic parameters, uplift rates and knickpoints are exported as a shape files for visualization in professional GIS software. We test this tool box on DEMs from different tectonic settings worldwide and received verifiable results with other studies.

  3. The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods

    Science.gov (United States)

    Demir, Gokben; Akyurek, Zuhal

    2016-04-01

    Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs

  4. Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling

    Science.gov (United States)

    Chen, Huili; Liang, Qiuhua; Liu, Yong; Xie, Shuguang

    2018-04-01

    Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM.

  5. Modelling of Singapore's topographic transformation based on DEMs

    Science.gov (United States)

    Wang, Tao; Belle, Iris; Hassler, Uta

    2015-02-01

    Singapore's topography has been heavily transformed by industrialization and urbanization processes. To investigate topographic changes and evaluate soil mass flows, historical topographic maps of 1924 and 2012 were employed, and basic topographic features were vectorized. Digital elevation models (DEMs) for the two years were reconstructed based on vector features. Corresponding slope maps, a surface difference map and a scatter plot of elevation changes were generated and used to quantify and categorize the nature of the topographic transformation. The surface difference map is aggregated into five main categories of changes: (1) areas without significant height changes, (2) lowered-down areas where hill ranges were cut down, (3) raised-up areas where valleys and swamps were filled in, (4) reclaimed areas from the sea, and (5) new water-covered areas. Considering spatial proximity and configurations of different types of changes, topographic transformation can be differentiated as either creating inland flat areas or reclaiming new land from the sea. Typical topographic changes are discussed in the context of Singapore's urbanization processes. The two slope maps and elevation histograms show that generally, the topographic surface of Singapore has become flatter and lower since 1924. More than 89% of height changes have happened within a range of 20 m and 95% have been below 40 m. Because of differences in land surveying and map drawing methods, uncertainties and inaccuracies inherent in the 1924 topographic maps are discussed in detail. In this work, a modified version of a traditional scatter plot is used to present height transformation patterns intuitively. This method of deriving categorical maps of topographical changes from a surface difference map can be used in similar studies to qualitatively interpret transformation. Slope maps and histograms were also used jointly to reveal additional patterns of topographic change.

  6. A coupled DEM-CFD method for impulse wave modelling

    Science.gov (United States)

    Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista

    2015-04-01

    Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been

  7. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs

    Directory of Open Access Journals (Sweden)

    Omar E. Mora

    2018-01-01

    Full Text Available Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR derived Digital Elevation Models (DEMs to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.

  8. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    Science.gov (United States)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should

  9. Use of DEMs Derived from TLS and HRSI Data for Landslide Feature Recognition

    Directory of Open Access Journals (Sweden)

    Maurizio Barbarella

    2018-04-01

    Full Text Available This paper addresses the problems arising from the use of data acquired with two different remote sensing techniques—high-resolution satellite imagery (HRSI and terrestrial laser scanning (TLS—for the extraction of digital elevation models (DEMs used in the geomorphological analysis and recognition of landslides, taking into account the uncertainties associated with DEM production. In order to obtain a georeferenced and edited point cloud, the two data sets require quite different processes, which are more complex for satellite images than for TLS data. The differences between the two processes are highlighted. The point clouds are interpolated on a DEM with a 1 m grid size using kriging. Starting from these DEMs, a number of contour, slope, and aspect maps are extracted, together with their associated uncertainty maps. Comparative analysis of selected landslide features drawn from the two data sources allows recognition and classification of hierarchical and multiscale landslide components. Taking into account the uncertainty related to the map enables areas to be located for which one data source was able to give more reliable results than another. Our case study is located in Southern Italy, in an area known for active landslides.

  10. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping

    Directory of Open Access Journals (Sweden)

    Rubini Mahalingam

    2016-11-01

    Full Text Available Landslides are a major geohazard, which result in significant human, infrastructure, and economic losses. Landslide susceptibility mapping can help communities plan and prepare for these damaging events. Digital elevation models (DEMs are one of the most important data-sets used in landslide hazard assessment. Despite their frequent use, limited research has been completed to date on how the DEM source and spatial resolution can influence the accuracy of the produced landslide susceptibility maps. The aim of this paper is to analyse the influence of spatial resolutions and source of DEMs on landslide susceptibility mapping. For this purpose, Advanced Spaceborne Thermal Emission and Reflection (ASTER, National Elevation Dataset (NED, and Light Detection and Ranging (LiDAR DEMs were obtained for two study sections of approximately 140 km2 in north-west Oregon. Each DEM was resampled to 10, 30, and 50 m and slope and aspect grids were derived for each resolution. A set of nine spatial databases was constructed using geoinformation science (GIS for each of the spatial resolution and source. Additional factors such as distance to river and fault maps were included. An analytical hierarchical process (AHP, fuzzy logic model, and likelihood ratio-AHP representing qualitative, quantitative, and hybrid landslide mapping techniques were used for generating landslide susceptibility maps. The results from each of the techniques were verified with the Cohen's kappa index, confusion matrix, and a validation index based on agreement with detailed landslide inventory maps. The spatial resolution of 10 m, derived from the LiDAR data-set showed higher predictive accuracy in all the three techniques used for producing landslide susceptibility maps. At a resolution of 10 m, the output maps based on NED and ASTER had higher misclassification compared to the LiDAR-based outputs. Further, the 30-m LiDAR output showed improved results over the 10-m NED and 10-m

  11. Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area

    Science.gov (United States)

    Zainol Abidin, Ku Hasna Zainurin Ku; Razi, Mohd Adib Mohammad; Bukari, Saifullizan Mohd

    2018-04-01

    Flood is one type of natural disaster that occurs almost every year in Malaysia. Commonly the lowland areas are the worst affected areas. This kind of disaster is controllable by using an accurate data for proposing any kinds of solutions. Elevation data is one of the data used to produce solutions for flooding. Currently, the research about the application of Digital Elevation Model (DEM) in hydrology was increased where this kind of model will identify the elevation for required areas. University of Tun Hussein Onn Malaysia is one of the lowland areas which facing flood problems on 2006. Therefore, this area was chosen in order to produce DEM which focussed on University Health Centre (PKU) and drainage area around Civil and Environment Faculty (FKAAS). Unmanned Aerial Vehicle used to collect aerial photos data then undergoes a process of generating DEM according to three types of accuracy and quality from Agisoft PhotoScan software. The higher the level of accuracy and quality of DEM produced, the longer time taken to generate a DEM. The reading of the errors created while producing the DEM shows almost 0.01 different. Therefore, it has been identified there are some important parameters which influenced the accuracy of DEM.

  12. DEM investigation of weathered rocks using a novel bond contact model

    Directory of Open Access Journals (Sweden)

    Zhenming Shi

    2015-06-01

    Full Text Available The distinct element method (DEM incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stress–strain relationship and failure pattern of rocks.

  13. Digital Elevation Model (DEM), The county-wide DEM is published with a 20-foot grid size, though we have a more detailed DEM/DTM for some parts of the county, particularly the Green Bay Metro area, Published in 2000, 1:4800 (1in=400ft) scale, Brown County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2000. The county-wide DEM is published with a 20-foot grid size, though we have a more detailed DEM/DTM for some...

  14. Optimizing digital elevation models (DEMs) accuracy for planning and design of mobile communication networks

    Science.gov (United States)

    Hassan, Mahmoud A.

    2004-02-01

    Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.

  15. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  16. Accuracy of Cartosat-1 DEM and its derived attribute at multiple ...

    Indian Academy of Sciences (India)

    and information content was compared using mean elevation, variance and entropy statistics. Various ... required, but for local studies large scale represen- tation is ... been made to examine the effect of DEM accuracy ... accuracy of DEM is evaluated with respect to grid .... that loss of entropy is a measure of DEM quality or.

  17. OPEN-SOURCE DIGITAL ELEVATION MODEL (DEMs EVALUATION WITH GPS AND LiDAR DATA

    Directory of Open Access Journals (Sweden)

    N. F. Khalid

    2016-09-01

    Full Text Available Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available Digital Elevation Model (DEM datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.

  18. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    Science.gov (United States)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  19. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a 1 km resolution Digital Elevation Model (DEM) of Antarctica. The DEM combines measurements from the European Remote Sensing Satellite-1...

  20. Original Product Resolution (OPR) Source Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data collection is the Original Product Resolution (OPR) Digital Elevation Model (DEM) as provided to the USGS. This DEM is delivered in the original...

  1. Comparison of elevation derived from insar data with dem from topography map in Son Dong, Bac Giang, Viet Nam

    Science.gov (United States)

    Nguyen, Duy

    2012-07-01

    Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.

  2. Generation and performance assessment of the global TanDEM-X digital elevation model

    Science.gov (United States)

    Rizzoli, Paola; Martone, Michele; Gonzalez, Carolina; Wecklich, Christopher; Borla Tridon, Daniela; Bräutigam, Benjamin; Bachmann, Markus; Schulze, Daniel; Fritz, Thomas; Huber, Martin; Wessel, Birgit; Krieger, Gerhard; Zink, Manfred; Moreira, Alberto

    2017-10-01

    The primary objective of the TanDEM-X mission is the generation of a global, consistent, and high-resolution digital elevation model (DEM) with unprecedented global accuracy. The goal is achieved by exploiting the interferometric capabilities of the two twin SAR satellites TerraSAR-X and TanDEM-X, which fly in a close orbit formation, acting as an X-band single-pass interferometer. Between December 2010 and early 2015 all land surfaces have been acquired at least twice, difficult terrain up to seven or eight times. The acquisition strategy, data processing, and DEM calibration and mosaicking have been systematically monitored and optimized throughout the entire mission duration, in order to fulfill the specification. The processing of all data has finally been completed in September 2016 and this paper reports on the final performance of the TanDEM-X global DEM and presents the acquisition and processing strategy which allowed to obtain the final DEM quality. The results confirm the outstanding global accuracy of the delivered product, which can be now utilized for both scientific and commercial applications.

  3. Automated Quality Control for Ortholmages and DEMs

    DEFF Research Database (Denmark)

    Höhle, Joachim; Potucková, Marketa

    2005-01-01

    The checking of geometric accurancy of orthoimages and digital elevation models (DEMs) is discussed. As a reference, an existing orthoimage and a second orthoimage derived from an overlapping aerial image, are used. The proposed automated procedures for checking the orthoimages and DEMs are based...

  4. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed.

    Science.gov (United States)

    Zhang, Peipei; Liu, Ruimin; Bao, Yimeng; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-04-15

    The objective of this study was to enhance understanding of the sensitivity of the SWAT model to the resolutions of Digital Elevation Models (DEMs) based on the analysis of multiple evaluation indicators. The Xiangxi River, a large tributary of Three Gorges Reservoir in China, was selected as the study area. A range of 17 DEM spatial resolutions, from 30 to 1000 m, was examined, and the annual and monthly model outputs based on each resolution were compared. The following results were obtained: (i) sediment yield was greatly affected by DEM resolution; (ii) the prediction of dissolved oxygen load was significantly affected by DEM resolutions coarser than 500 m; (iii) Total Nitrogen (TN) load was not greatly affected by the DEM resolution; (iv) Nitrate Nitrogen (NO₃-N) and Total Phosphorus (TP) loads were slightly affected by the DEM resolution; and (v) flow and Ammonia Nitrogen (NH₄-N) load were essentially unaffected by the DEM resolution. The flow and dissolved oxygen load decreased more significantly in the dry season than in the wet and normal seasons. Excluding flow and dissolved oxygen, the uncertainties of the other Hydrology/Non-point Source (H/NPS) pollution indicators were greater in the wet season than in the dry and normal seasons. Considering the temporal distribution uncertainties, the optimal DEM resolutions for flow was 30-200 m, for sediment and TP was 30-100 m, for dissolved oxygen and NO₃-N was 30-300 m, for NH₄-N was 30 to 70 m and for TN was 30-150 m. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    Science.gov (United States)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  6. Application of Digital Elevation Model (DEM for description of soil microtopography changes in laboratory experiments

    Directory of Open Access Journals (Sweden)

    Stańczyk Tomasz

    2016-12-01

    Full Text Available In the study we evaluated spatial and quantitative changes in soil surface microtopography to describe water erosion process under simulated rain with use of a non-contact optical 3D scanner. The experiment was conducted in two variants: with and without drainage layer. Two clay soils collected from farmlands from the catchment of lake Zgorzała (Warsaw were investigated. Six tests of simulated rain were applied, with 55 mm·h−1. The surface roughness and microrelief were determined immediately after every 10 min of rainfall simulation by 3D scanner. The volume of surface and underground runoff as well as soil moisture were measured. The surface points coordinates obtained while scanning were interpolated using natural neighbour method and GIS software to generate Digital Elevation Models (DEM with a 0.5 mm resolution. Two DEM-derived surface roughness indices: Random Roughness (RR and Terrain Ruggedness Index (TRI were used for microrelief description. Calculated values of both roughness factors have decreased with time under the influence of rainfall in all analyzed variants. During the sprinkling the moisture of all samples had been growing rapidly from air-dry state reaching values close to the maximum water capacity (37–48% vol. in 20–30 min. Simultaneously the intensity of surface runoff was increasing and cumulative runoff value was: 17–35% for variants with drainage and 72–83% for the variants without drainage, relative to cumulative rainfall. The observed soil surface elevation changes were associated with aggregates decomposition, erosion and sedimentation, and above all, with a compaction of the soil, which was considered to be a dominant factor hindering the assessment of the erosion intensity of the of the scanned surface.

  7. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2015-02-01

    Full Text Available Downward-looking Linear Array Synthetic Aperture Radar (LASAR has many potential applications in the topographic mapping, disaster monitoring and reconnaissance applications, especially in the mountainous area. However, limited by the sizes of platforms, its resolution in the linear array direction is always far lower than those in the range and azimuth directions. This disadvantage leads to the blurring of Three-Dimensional (3D images in the linear array direction, and restricts the application of LASAR. To date, the research on 3D SAR image enhancement has focused on the sparse recovery technique. In this case, the one-to-one mapping of Digital Elevation Model (DEM brakes down. To overcome this, an optimal DEM reconstruction method for LASAR based on the variational model is discussed in an effort to optimize the DEM and the associated scattering coefficient map, and to minimize the Mean Square Error (MSE. Using simulation experiments, it is found that the variational model is more suitable for DEM enhancement applications to all kinds of terrains compared with the Orthogonal Matching Pursuit (OMPand Least Absolute Shrinkage and Selection Operator (LASSO methods.

  8. A photogrammetric DEM of Greenland based on 1978-1987 aerial photos: validation and integration with laser altimetry and satellite-derived DEMs

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Kjær, Kurt H.; Nuth, Christopher

    Here we present a DEM of Greenland covering all ice-free terrain and the margins of the GrIS and local glaciers and ice caps. The DEM is based on the 3534 photos used in the aero-triangulation which were recorded by the Danish Geodata Agency (then the Geodetic Institute) in survey campaigns...... spanning the period 1978-1987. The GrIS is covered tens of kilometers into the interior due to the large footprints of the photos (30 x 30 km) and control provided by the aero-triangulation. Thus, the data are ideal for providing information for analysis of ice marginal elevation change and also control...

  9. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  10. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  11. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification

    Science.gov (United States)

    O'Neil, Gina L.; Goodall, Jonathan L.; Watson, Layne T.

    2018-04-01

    Wetlands are important ecosystems that provide many ecological benefits, and their quality and presence are protected by federal regulations. These regulations require wetland delineations, which can be costly and time-consuming to perform. Computer models can assist in this process, but lack the accuracy necessary for environmental planning-scale wetland identification. In this study, the potential for improvement of wetland identification models through modification of digital elevation model (DEM) derivatives, derived from high-resolution and increasingly available light detection and ranging (LiDAR) data, at a scale necessary for small-scale wetland delineations is evaluated. A novel approach of flow convergence modelling is presented where Topographic Wetness Index (TWI), curvature, and Cartographic Depth-to-Water index (DTW), are modified to better distinguish wetland from upland areas, combined with ancillary soil data, and used in a Random Forest classification. This approach is applied to four study sites in Virginia, implemented as an ArcGIS model. The model resulted in significant improvement in average wetland accuracy compared to the commonly used National Wetland Inventory (84.9% vs. 32.1%), at the expense of a moderately lower average non-wetland accuracy (85.6% vs. 98.0%) and average overall accuracy (85.6% vs. 92.0%). From this, we concluded that modifying TWI, curvature, and DTW provides more robust wetland and non-wetland signatures to the models by improving accuracy rates compared to classifications using the original indices. The resulting ArcGIS model is a general tool able to modify these local LiDAR DEM derivatives based on site characteristics to identify wetlands at a high resolution.

  12. Systematic Analysis of Rocky Shore Morphology along 700km of Coastline Using LiDAR-derived DEMs

    Science.gov (United States)

    Matsumoto, H.; Dickson, M. E.; Masselink, G.

    2016-12-01

    Rock shore platforms occur along much of the world's coast and have a long history of study; however, uncertainty remains concerning the relative importance of various formative controls in different settings (e.g. wave erosion, weathering, tidal range, rock resistance, inheritance). Ambiguity is often attributed to intrinsic natural variability and the lack of preserved evidence on eroding rocky shores, but it could also be argued that previous studies are limited in scale, focusing on a small number of local sites, which restricts the potential for insights from broad, regional analyses. Here we describe a method, using LiDAR-derived digital elevation models (DEMs), for analysing shore platform morphology over an unprecedentedly wide area in which there are large variations in environmental conditions. The new method semi-automatically extracts shore platform profiles and systematically conducts morphometric analysis. We apply the method to 700 km of coast in the SW UK that is exposed to (i) highly energetic swell waves to local wind waves, (ii) macro to mega tidal ranges, and (iii) highly resistant igneous rocks to moderately hard sedimentary rocks. Computer programs are developed to estimate mean sea level, mean spring tidal range, wave height, and rock strength along the coastline. Filtering routines automatically select and remove profiles that are unsuitable for analysis. The large data-set of remaining profiles supports broad and systematic investigation of possible controls on platform morphology. Results, as expected, show wide scatter, because many formative controls are in play, but several trends exist that are generally consistent with relationships that have been inferred from local site studies. This paper will describe correlation analysis on platform morphology in relation to environmental conditions and also present a multi-variable empirical model derived from multi linear regression analysis. Interesting matches exist between platform gradients

  13. Grain breakage under uniaxial compression, through 3D DEM modelling

    Directory of Open Access Journals (Sweden)

    Nader François

    2017-01-01

    Full Text Available A breakable grain model is presented, using the concept of particles assembly. Grains of polyhedral shapes are generated, formed by joining together tetrahedral subgrains using cohesive bonds. Single grain crushing simulations are performed for multiple values of the intra-granular cohesion to study the effect on the grain’s strength. The same effect of intra-granular cohesion is studied under oedometric compression on samples of around 800 grains, which allows the evaluation of grain breakage model on the macroscopic behaviour. Grain size distribution curves and grain breakage ratios are monitored throughout the simulations.

  14. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  15. Effect of Rolling Resistance in Dem Models With Spherical Bodies

    Directory of Open Access Journals (Sweden)

    Dubina Radek

    2016-12-01

    Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.

  16. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  17. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  18. Effect of DEM resolution on rainfall-triggered landslide modeling within a triangulated network-based model. A case study in the Luquillo Forest, Puerto Rico

    Science.gov (United States)

    Arnone, E.; Dialynas, Y. G.; Noto, L. V.; Bras, R. L.

    2013-12-01

    Catchment slope distribution is one of the topographic characteristics that significantly control rainfall-triggered landslide modeling, in both direct and indirect ways. Slope directly determines the soil volume associated with instability. Indirectly slope also affects the subsurface lateral redistribution of soil moisture across the basin, which in turn determines the water pore pressure conditions that impact slope stability. In this study, we investigate the influence of DEM resolution on slope stability and the slope stability analysis by using a distributed eco-hydrological and landslide model, the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). The model implements a triangulated irregular network to describe the topography, and it is capable of evaluating vegetation dynamics and predicting shallow landslides triggered by rainfall. The impact of DEM resolution on the landslide prediction was studied using five TINs derived from five grid DEMs at different resolutions, i.e. 10, 20, 30, 50 and 70 m respectively. The analysis was carried out on the Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. Results showed that the use of the irregular mesh reduced the loss of accuracy in the derived slope distribution when coarser resolutions were used. The impact of the different resolutions on soil moisture patterns was important only when the lateral redistribution was considerable, depending on hydrological properties and rainfall forcing. In some cases, the use of different DEM resolutions did not significantly affect tRIBS-VEGGIE landslide output, in terms of landslide locations, and values of slope and soil moisture at failure.

  19. DEM ASSESSMENT DERIVED FROM CLOSE RANGE PHOTOGRAMMETRY: A CASE STUDY FROM KADAVUR AREA, KARUR DISTRICT, TAMIL NADU, INDIA

    Directory of Open Access Journals (Sweden)

    S. Anbarasan

    2012-07-01

    Full Text Available Close-Range Photogrammetry is an accurate, cost effective technique of collecting measurements of real world objects and conditions, directly from photographs. Photogrammetry utilizes digital images to obtain accurate measurements and geometric data of the object or area of interest, in order to provide spatial information for Engineering design, spatial surveys or 3D modeling. The benefits of close-range Photogrammetry over other field procedures are purported to be: Increased accuracy; complete as-built information; reduced costs; reduced on-site time; and effective for small and large projects. The same basic principle of traditional Aerial Photogrammetry can be applied to stereoscopic pictures taken from lower altitudes or from the ground. Terrestrial, ground-based, and close-range are all descriptive terms that refer to photos taken with an object-to-camera distance less than 300m (1000 feet. (Matthews, N.A, 2008. Close range Photogrammetry is a technique for obtaining the geometric information (e.g. position, distance, size and shape of any object in 3D space that was imaged on the two dimensional (2D photos, (Wolf, P.R, et.al, 2000 DEM Generation requires many processing and computation, such as camera calibration, stereo matching, editing, and interpolation. All the mentioned steps contribute to the quality of DEM. Image on close range Photogrammetry can be captured using three kind of camera: metric camera, semi-metric camera, and non-metric camera (Hanke, K., et.al, 2002. In this paper DEM quality assessed at Kadavur area, Karur district, Tamil Naudu, India using Close Range Photogrammetry technique, Commercial Digital Camera and Leica Photogrammetry Suite.

  20. Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts

    Science.gov (United States)

    Maspataud, Aurélie; Biscara, Laurie; Hébert, Hélène; Schmitt, Thierry; Créach, Ronan

    2015-04-01

    Building precise and up-to-date coastal DEMs is a prerequisite for accurate modeling and forecasting of hydrodynamic processes at local scale. Marine flooding, originating from tsunamis, storm surges or waves, is one of them. Some high resolution DEMs are being generated for multiple coast configurations (gulf, embayment, strait, estuary, harbor approaches, low-lying areas…) along French Atlantic and Channel coasts. This work is undertaken within the framework of the TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2017). DEMs boundaries were defined considering the vicinity of French civil nuclear facilities, site effects considerations and potential tsunamigenic sources. Those were identified from available historical observations. Seamless integrated topographic and bathymetric coastal DEMs will be used by institutions taking part in the study to simulate expected wave height at regional and local scale on the French coasts, for a set of defined scenarii. The main tasks were (1) the development of a new capacity of production of DEM, (2) aiming at the release of high resolution and precision digital field models referred to vertical reference frameworks, that require (3) horizontal and vertical datum conversions (all source elevation data need to be transformed to a common datum), on the basis of (4) the building of (national and/or local) conversion grids of datum relationships based on known measurements. Challenges in coastal DEMs development deal with good practices throughout model development that can help minimizing uncertainties. This is particularly true as scattered elevation data with variable density, from multiple sources (national hydrographic services, state and local government agencies, research organizations and private engineering companies) and from many different types (paper fieldsheets to be digitized, single beam echo sounder, multibeam sonar, airborne laser

  1. Digital Elevation Model (DEM), DEM data are useful for terrain analysis and modeling including slope and aspect calculations. They may be used to produced shaded relief maps and contour maps., Published in 2001, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2001. DEM data are useful for terrain analysis and modeling including slope and aspect calculations. They may be...

  2. IceBridge DMS L3 Photogrammetric DEM

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge DMS L3 Photogrammetric DEM (IODMS3) data set contains gridded digital elevation models and orthorectified images of Greenland derived from the Digital...

  3. kawaihae_dem.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  4. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  5. DEM modeling of failure mechanisms induced by excavations on the Moon

    Science.gov (United States)

    jiang, mingjing; shen, zhifu; Utili, Stefano

    2013-04-01

    2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.

  6. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    Science.gov (United States)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  7. Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling

    Directory of Open Access Journals (Sweden)

    Ruopu Li

    2013-12-01

    Full Text Available With extraordinary resolution and accuracy, Light Detection and Ranging (LiDAR-derived digital elevation models (DEMs have been increasingly used for watershed analyses and modeling by hydrologists, planners and engineers. Such high-accuracy DEMs have demonstrated their effectiveness in delineating watershed and drainage patterns at fine scales in low-relief terrains. However, these high-resolution datasets are usually only available as topographic DEMs rather than hydrologic DEMs, presenting greater land roughness that can affect natural flow accumulation. Specifically, locations of drainage structures such as road culverts and bridges were simulated as barriers to the passage of drainage. This paper proposed a geospatial method for producing LiDAR-derived hydrologic DEMs, which incorporates data collection of drainage structures (i.e., culverts and bridges, data preprocessing and burning of the drainage structures into DEMs. A case study of GIS-based watershed modeling in South Central Nebraska showed improved simulated surface water derivatives after the drainage structures were burned into the LiDAR-derived topographic DEMs. The paper culminates in a proposal and discussion of establishing a national or statewide drainage structure dataset.

  8. Google Earth's derived digital elevation model: A comparative assessment with Aster and SRTM data

    International Nuclear Information System (INIS)

    Rusli, N; Majid, M R; Din, A H M

    2014-01-01

    This paper presents a statistical analysis showing additional evidence that Digital Elevation Model (DEM) derived from Google Earth is commendable and has a good correlation with ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) and SRTM (Shuttle Radar Topography Mission) elevation data. The accuracy of DEM elevation points from Google Earth was compared against that of DEMs from ASTER and SRTM for flat, hilly and mountainous sections of a pre-selected rural watershed. For each section, a total of 5,000 DEM elevation points were extracted as samples from each type of DEM data. The DEM data from Google Earth and SRTM for flat and hilly sections are strongly correlated with the R 2 of 0.791 and 0.891 respectively. Even stronger correlation is shown for the mountainous section where the R 2 values between Google Earth's DEM and ASTER's and between Google Earth's DEM and SRTM's DEMs are respectively 0.917 and 0.865. Further accuracy testing was carried out by utilising the DEM dataset to delineate Muar River's watershed boundary using ArcSWAT2009, a hydrological modelling software. The result shows that the percentage differences of the watershed size delineated from Google Earth's DEM compared to those derived from Department of Irrigation and Drainage's data (using 20m-contour topographic map), ASTER and SRTM data are 9.6%, 10.6%, and 7.6% respectively. It is therefore justified to conclude that the DEM derived from Google Earth is relatively as acceptable as DEMs from other sources

  9. Revealing topographic lineaments through IHS enhancement of DEM data. [Digital Elevation Model

    Science.gov (United States)

    Murdock, Gary

    1990-01-01

    Intensity-hue-saturation (IHS) processing of slope (dip), aspect (dip direction), and elevation to reveal subtle topographic lineaments which may not be obvious in the unprocessed data are used to enhance digital elevation model (DEM) data from northwestern Nevada. This IHS method of lineament identification was applied to a mosiac of 12 square degrees using a Cray Y-MP8/864. Square arrays from 3 x 3 to 31 x 31 points were tested as well as several different slope enhancements. When relatively few points are used to fit the plane, lineaments of various lengths are observed and a mechanism for lineament classification is described. An area encompassing the gold deposits of the Carlin trend and including the Rain in the southeast to Midas in the northwest is investigated in greater detail. The orientation and density of lineaments may be determined on the gently sloping pediment surface as well as in the more steeply sloping ranges.

  10. Modeling Change of Topographic Spatial Structures with DEM Resolution Using Semi-Variogram Analysis and Filter Bank

    Directory of Open Access Journals (Sweden)

    Chunmei Wang

    2016-06-01

    Full Text Available In this paper, the way topographic spatial information changes with resolution was investigated using semi-variograms and an Independent Structures Model (ISM to identify the mechanisms involved in changes of topographic parameters as resolution becomes coarser or finer. A typical Loess Hilly area in the Loess Plateau of China was taken as the study area. DEMs with resolutions of 2.5 m and 25 m were derived from topographic maps with map scales of 1:10,000 using ANUDEM software. The ISM, in which the semi-variogram was modeled as the sum of component semi-variograms, was used to model the measured semi-variogram of the elevation surface. Components were modeled using an analytic ISM model and corresponding landscape components identified using Kriging and filter bank analyses. The change in the spatial components as resolution became coarser was investigated by modeling upscaling as a low pass linear filter and applying a general result to obtain an analytic model for the scaling process in terms of semi-variance. This investigation demonstrated how topographic structures could be effectively characterised over varying scales using the ISM model for the semi-variogram. The loss of information in the short range components with resolution is a major driver for the observed change in derived topographic parameters such as slope. This paper has helped to quantify how information is distributed among scale components and how it is lost in natural terrain surfaces as resolution becomes coarser. It is a basis for further applications in the field of geomorphometry.

  11. Investigating the Effects of Underplating at Raukumara Peninsula, New Zealand: Insights from DEM Modeling

    Science.gov (United States)

    Farrell, W. C.; Morgan, J.

    2017-12-01

    It is thought that subcretion and underplating are important processes at subduction zones worldwide. Despite its proposed common occurrence, the physical mechanisms controlling if underplating occurs and the rate of its associated uplift are poorly understood. Basic questions about the tectonic and geomechanical parameters governing subduction channel stability, subcretion, and the rate and shape of associated uplift have proven difficult to answer. In this study we employ the Discrete Element Method (DEM) to address these questions, using the Raukumara Peninsula of New Zealand as the real-world basis of many of our model inputs. Multiple geophysical datasets suggest that the Raukumara Peninsula is underlain by underplated sediments at Moho depths, and these may be responsible for anomalously high rates of uplift in the area. The combined geologic, geophysical, and geodetic data from the region serve to constrain model geometries and boundary conditions, allowing us to test the mechanisms for underplating and upper crustal response. The effects of surface processes and potential for shallow trenchward sliding are also investigated in the modeling effort.

  12. THE GLOBAL TANDEM-X DEM: PRODUCTION STATUS AND FIRST VALIDATION RESULTS

    Directory of Open Access Journals (Sweden)

    M. Huber

    2012-07-01

    Full Text Available The TanDEM-X mission will derive a global digital elevation model (DEM with satellite SAR interferometry. Two radar satellites (TerraSAR-X and TanDEM-X will map the Earth in a resolution and accuracy with an absolute height error of 10m and a relative height error of 2m for 90% of the data. In order to fulfill the height requirements in general two global coverages are acquired and processed. Besides the final TanDEM-X DEM, an intermediate DEM with reduced accuracy is produced after the first coverage is completed. The last step in the whole workflow for generating the TanDEM-X DEM is the calibration of remaining systematic height errors and the merge of single acquisitions to 1°x1° DEM tiles. In this paper the current status of generating the intermediate DEM and first validation results based on GPS tracks, laser scanning DEMs, SRTM data and ICESat points are shown for different test sites.

  13. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Science.gov (United States)

    Narita, Yoichi; Mio, Hiroshi; Orimoto, Takashi; Nomura, Seiji

    2017-06-01

    A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke) to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM) was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke's collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  14. Methodological application so as to obtain digital elevation models DEM in wetland areas

    International Nuclear Information System (INIS)

    Quintero, Deiby A; Montoya V, Diana M; Betancur, Teresita

    2009-01-01

    In order to understand hydrological systems and the description of flow processes that occur among its components it is essential to have a physiographic description that morphometric and relief characteristics. When local studies are performed, the basic cartography available, in the best case 1:25,000 scale, tends not to obey the needs required to represent the water dynamics that characterize the interactions between streams, aquifers and lenticular water bodies in flat zones particularly in those where there are wetlands localized in ancient F100D plains of rivers. A lack of financial resources is the principal obstacle to acquiring; information that is current and sufficient for the scale of the project. Geomorphologic conditions of flat relief zones are a good alternative for the construction of the new data. Using the basic cartography available and the new data, it is possible to obtain DEMs that are improved and consistent with the dynamics of surface and groundwater flows in the hydrological system. To accomplish this one must use spatial modeling tools coupled with Geographic Information System - GIS. This article present a methodological application for the region surrounding the catchment of wetland Cienaga Colombia in the Bajo Cauca region of Antioquia.

  15. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Stefan Erasmi

    2014-10-01

    Full Text Available Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM that were processed from two different imaging modes (Stripmap/High Resolution Spotlight using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE standards from the National System for Geospatial Intelligence (NSG at the HRE20 level.

  16. Modeling bubble heat transfer in gas-solid fluidized beds using DEM

    NARCIS (Netherlands)

    Patil, A.V.; Peters, E.A.J.F.; Kolkman, T.; Kuipers, J.A.M.

    2014-01-01

    Discrete element method (DEM) simulations of a pseudo 2-D fluidized bed at non-isothermal conditions are presented. First implementation details are discussed. This is followed by a validation study where heating of a packed column by a flow of heated fluid is considered. Next hot gas injected into

  17. Numerical modelling of powder caking at REV scale by using DEM

    Science.gov (United States)

    Guessasma, Mohamed; Silva Tavares, Homayra; Afrassiabian, Zahra; Saleh, Khashayar

    2017-06-01

    This work deals with numerical simulation of powder caking process caused by capillary condensation phenomenon. Caking consists in unwanted agglomeration of powder particles. This process is often irreversible and not easy to predict. To reproduce mechanism involved by caking phenomenon we have used the Discrete Elements Method (DEM). In the present work, we mainly focus on the role of capillary condensation and subsequent liquid bridge formation within a granular medium exposed to fluctuations of ambient relative humidity. Such bridges cause an attractive force between particles, leading to the formation of a cake with intrinsic physicochemical and mechanical properties. By considering a Representative Elementary Volume (REV), the DEM is then performed by means of a MULTICOR-3D software tacking into account the properties of the cake (degree of saturation) in order to establish relationships between the microscopic parameters and the macroscopic behaviour (tensile strength).

  18. Numerical modelling of powder caking at REV scale by using DEM

    Directory of Open Access Journals (Sweden)

    Guessasma Mohamed

    2017-01-01

    Full Text Available This work deals with numerical simulation of powder caking process caused by capillary condensation phenomenon. Caking consists in unwanted agglomeration of powder particles. This process is often irreversible and not easy to predict. To reproduce mechanism involved by caking phenomenon we have used the Discrete Elements Method (DEM. In the present work, we mainly focus on the role of capillary condensation and subsequent liquid bridge formation within a granular medium exposed to fluctuations of ambient relative humidity. Such bridges cause an attractive force between particles, leading to the formation of a cake with intrinsic physicochemical and mechanical properties. By considering a Representative Elementary Volume (REV, the DEM is then performed by means of a MULTICOR-3D software tacking into account the properties of the cake (degree of saturation in order to establish relationships between the microscopic parameters and the macroscopic behaviour (tensile strength.

  19. Calculation Methods of Topographic Factors Modification Using Data Digital Elevation Model (DEM To Predict Erosion

    Directory of Open Access Journals (Sweden)

    Hengki Simanjuntak

    2018-03-01

    Full Text Available Erosion  is a crucial information for sustainable management of land resources within a particular watershed. The information of erosion is needed for land resource management planning, and is generally counted by USLE (Universal Soil Loss Equation. One of the parameters in USLE is topographic factor (LS. The determinations of LS in erosion estimation model are vary, both in terms of LS factor equation, as well as in terms of the length of the slope (λ and slope (s measurements. There are at least 3 methods used to calculate slope factors in spatial operation, i.e (1 Input of the LS Value from Table (INT, (2 Flow accumulation, and (3 Cell Size. The study was designed to obtain a method of calculation that gives the smallest topographic factor and in order to obtain a LS factors that similar to the slope information. Research location in Kampa Sub watershed, The LS determination in Kampa Sub watershed basically are with (INT and without calculating λ and s. INT method is determination without calculating λ and s, LS value is generate from the contour map and DEM SRTM by giving LS value from table reference of LS value. The Flow Accumulation and Cell Size are determination of LS Value by calculating λ and s. The Flow Accumulation method modifies the determination of λ and s using the middle value of s, λ per land use, and λ and s per cell. Cell Size method determines λ using the amount of cell size. The results showed that the “cell size” and "INT" methods were the best method for topographic factor (LS calculation, because LS value of “cell size” and "INT" methods are smaller than the flow accumulation method and the LS value similar to the slope information. LS value from that methods generated weighted value in average of 0,55−0,58. Keywords: cell size, flow accumulation, flow direction, the length of the slope, USLE

  20. Spectro-spatial relationship between UAV derived high resolution DEM and SWIR hyperspectral data: application to an ombrotrophic peatland

    Science.gov (United States)

    Arroyo-Mora, J. Pablo; Kalacska, Margaret; Lucanus, Oliver; Soffer, Raymond; Leblanc, George

    2017-10-01

    Peatlands cover 3% of the globe and are key ecosystems for climate regulation. To better understand the potential effects of climate change in peatlands, a major challenge is to determine the complex relationship between hydrology, microtopography, vegetation patterns, and gas exchange. Here we study the spectral and spatial relationship of microtopographic features (e.g. hollows and hummocks) and near-surface water through narrow-band spectral indices derived from hyperspectral imagery. We used a very high resolution digital elevation model (2.5 cm horizontal, 2.2 cm vertical resolution) derived from an UAV based Structure from Motion photogrammetry to map hollows and hummocks in the peatland area. We also created a 2 cm spatial resolution orthophoto mosaic to enhance the visual identification of these hollows and hummocks. Furthermore, we collected SWIR airborne hyperspectral (880-2450 nm) imagery at 1 m pixel resolution over four time periods, from April to June 2016 (phenological gradient: vegetation greening). Our results revealed an increase in the water indices values (NDWI1640 and NDWI2130) and a decrease in the moisture stress index (MSI) between April and June. In addition, for the same period the NDWI2130 shows a bimodal distribution indicating potential to quantitatively assess moisture differences between mosses and vascular plants. Our results, using the digital surface model to extract NDWI2130 values, showed significant differences between hollows and hummocks for each time period, with higher moisture values for hollows (i.e. moss dominated). However, for June, the water index for hummocks approximated the values found in hollows. Our study shows the advantages of using fine spatial and spectral scales to detect temporal trends in near surface water in a peatland.

  1. Kinetic parameters of grinding media in ball mills with various liner design and mill speed based on DEM modeling

    Science.gov (United States)

    Khakhalev, P. A.; Bogdanov, VS; Kovshechenko, V. M.

    2018-03-01

    The article presents analysis of the experiments in the ball mill of 0.5x0.3 m with four different liner types based on DEM modeling. The numerical experiment always complements laboratory research and allow obtaining high accuracy output data. An important property of the numerical experiment is the possibility of visualization of the results. The EDEM software allows calculating trajectory of the grinding bodies and kinetic parameters of each ball for the relative mill speed and the different types of mill’s liners.

  2. Topogrid Derived 10 Meter Resolution Digital Elevation Model of the Shenandoah National Park and Surrounding Region, Virginia

    Science.gov (United States)

    Chirico, Peter G.; Tanner, Seth D.

    2004-01-01

    Explanation The purpose of developing a new 10m resolution DEM of the Shenandoah National Park Region was to more accurately depict geologic structure, surfical geology, and landforms of the Shenandoah National Park Region in preparation for automated landform classification. Previously, only a 30m resolution DEM was available through the National Elevation Dataset (NED). During production of the Shenandoah10m DEM of the Park the Geography Discipline of the USGS completed a revised 10m DEM to be included into the NED. However, different methodologies were used to produce the two similar DEMs. The ANUDEM algorithm was used to develop the Shenadoah DEM data. This algorithm allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the elevation model. A statistical analysis using over 800 National Geodetic Survey (NGS) first and second order vertical control points reveals that the Shenandoah10m DEM, produced as a part of the Appalachian Blue Ridge Landscape project, has a vertical accuracy of ?4.87 meters. The metadata for the 10m NED data reports a vertical accuracy of ?7m. A table listing the NGS control points, the elevation comparison, and the RMSE for the Shenandoah10m DEM is provided. The process of automated terrain classification involves developing statistical signatures from the DEM for each type of surficial deposit and landform type. The signature will be a measure of several characteristics derived from the elevation data including slope, aspect, planform curvature, and profile curvature. The quality of the DEM is of critical importance when extracting terrain signatures. The highest possible horizontal and vertical accuracy is required. The more accurate Shenandoah 10m DEM can now be analyzed and integrated with the geologic observations to yield statistical correlations between the two in the development of landform and surface geology mapping projects.

  3. Inundation Analysis of Reservoir Flood Based on Computer Aided Design (CAD and Digital Elevation Model (DEM

    Directory of Open Access Journals (Sweden)

    Jiqing Li

    2018-04-01

    Full Text Available GIS (Geographic Information System can be used to combine multiple hydrologic data and geographic data for FIA (Flood Impact Assessment. For a developing country like China, a lot of geographic data is in the CAD (Computer Aided Design format. The commonly used method for converting CAD into DEM may result in data loss. This paper introduces a solution for the conversion between CAD data and DEM data. The method has been applied to the FIA based on the topographic map of CAD in Hanjiang River. When compared with the other method, the new method solves the data loss problem. Besides, the paper use GIS to simulate the inundation range, area, and the depth distribution of flood backwater. Based on the analysis, the author concludes: (1 the differences of the inundation areas between the flood of HQ100 and the flood of HQ50 are small. (2 The inundation depth shows a decreasing trend along the upstream of the river. (3 The inundation area less than 4 m in flood of HQ50 is larger than that in flood of HQ100, the result is opposite when the inundation depth is greater than 4 m. (4 The flood loss is 392.32 million RMB for flood of HQ50 and 610.02 million RMB for flood of HQ100. The method can be applied to FIA.

  4. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs in Tunisia and Algeria

    Directory of Open Access Journals (Sweden)

    Djamel Athmania

    2014-05-01

    Full Text Available Digital Elevation Models (DEMs including Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available for nearly the entire earth’s surface. DEMs that are usually subject to errors need to be evaluated using reference elevation data of higher accuracy. This work was performed to assess the vertical accuracy of the ASTER GDEM version 2, (ASTER GDEM2, the Consultative Group on International Agriculture Research-Consortium for Spatial Information (CGIAR-CSI SRTM version 4.1 (SRTM v4.1 and the systematic subsample GMTED2010, at their original spatial resolution, using Global Navigation Satellite Systems (GNSS validation points. Two test sites, the Anaguid Saharan platform in southern Tunisia and the Tebessa basin in north eastern Algeria, were chosen for accuracy assessment of the above mentioned DEMs, based on geostatistical and statistical measurements. Within the geostatistical approach, empirical variograms of each DEM were compared with those of the GPS validation points. Statistical measures were computed from the elevation differences between the DEM pixel value and the corresponding GPS point. For each DEM, a Root Mean Square Error (RMSE was determined for model validation. In addition, statistical tools such as frequency histograms and Q-Q plots were used to evaluate error distributions in each DEM. The results indicate that the vertical accuracy of SRTM model is much higher than ASTER GDEM2 and GMTED2010 for both sites. In Anaguid test site, the vertical accuracy of SRTM is estimated 3.6 m (in terms of RMSE 5.3 m and 4.5 m for the ASTERGDEM2 and GMTED2010 DEMs, respectively. In Tebessa test site, the overall vertical accuracy shows a RMSE of 9.8 m, 8.3 m and 9.6 m for ASTER GDEM 2, SRTM and GMTED2010 DEM, respectively. This work is the first study to report the

  5. A method to assess collision hazard of falling rock due to slope collapse application of DEM on modeling of earthquake triggered slope failure for nuclear power plants

    International Nuclear Information System (INIS)

    Nakase, Hitoshi; Cao, Guoqiang; Tabei, Kazuto; Tochigi, Hitoshi; Matsushima, Takashi

    2015-01-01

    Risk evaluation of slope failure against nuclear power plants, which is induced by unexpectedly large earthquakes, has been urgent need for disaster prevention measures. Specially, for risk evaluation of slope failure, understanding of information such as traveling distances, collision velocities, and collision energies is very important. Discrete Element Method (DEM) such as particle simulation method contributes important role on predicting the detailed behavior of slope failure physics. In this study, instead of accurately predicting the complicated behavior of sliding and falling for each rock, we introduce the DEM modeling to evaluate the average traveling distance of collapsed rocks and its statistical variability. First, we conduct the validation test of the proposed DEM model on the basis of reconstruction of experiment results. Next, we conducted the parametric studies to examine sensitivities of important parameters. Finally, validity of the proposed method is evaluated and its applicability and technical assignments are also discussed. (author)

  6. Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Subhodeep [National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). Research and Innovation Center; Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Guenther, Chris [National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). Research and Innovation Center; Rogers, William A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). Research and Innovation Center

    2018-02-08

    The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to fine tune the operating conditions of a spouted bed to achieve the desired operating condition.

  7. 2013 NOAA Topographic Lidar: US Virgin Islands Digital Elevation Models (DEMs)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Virgin Islands Topographic LiDAR Task Order involved collecting and delivering topographic elevation point data derived from multiple return light...

  8. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    Science.gov (United States)

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and

  9. The AviaDem forecasting model: illustration of a forecasting case at Amsterdam Schiphol Airport

    NARCIS (Netherlands)

    Veldhuis, J.; Lieshout, R.

    2010-01-01

    The paper describes an aviation market forecasting model which focuses on market forecasts for airports. Most forecasting models in use today assess aviation trends resulting from macroeconomic trends. The model described in this paper has this feature built in, but the added value of this model is

  10. Uplift mechanism for a shallow-buried structure in liquefiable sand subjected to seismic load: centrifuge model test and DEM modeling

    Science.gov (United States)

    Zhou, Jian; Wang, Zihan; Chen, Xiaoliang; Zhang, Jiao

    2014-06-01

    Based on a centrifuge model test and distinct element method (DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase (solid and fluid) fully coupled distinct element code. This code incorporates a particle-fluid coupling model by means of a "fixed coarse-grid" fluid scheme in PFC3D (Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.

  11. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  12. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  13. DEM-based research on the landform features of China

    Science.gov (United States)

    Tang, Guoan; Liu, Aili; Li, Fayuan; Zhou, Jieyu

    2006-10-01

    Landforms can be described and identified by parameterization of digital elevation model (DEM). This paper discusses the large-scale geomorphological characteristics of China based on numerical analysis of terrain parameters and develop a methodology for characterizing landforms from DEMs. The methodology is implemented as a two-step process. First, terrain variables are derived from a 1-km DEM in a given statistical unit including local relief, the earth's surface incision, elevation variance coefficient, roughness, mean slope and mean elevation. Second, every parameter regarded as a single-band image is combined into a multi-band image. Then ISODATA unsupervised classification and the Bayesian technique of Maximum Likelihood supervised classification are applied for landform classification. The resulting landforms are evaluated by the means of Stratified Sampling with respect to an existing map and the overall classification accuracy reaches to rather high value. It's shown that the derived parameters carry sufficient physiographic information and can be used for landform classification. Since the classification method integrates manifold terrain indexes, conquers the limitation of the subjective cognition, as well as a low cost, apparently it could represent an applied foreground in the classification of macroscopic relief forms. Furthermore, it exhibits significance in consummating the theory and the methodology of DEMs on digital terrain analysis.

  14. Urban DEM generation, analysis and enhancements using TanDEM-X

    Science.gov (United States)

    Rossi, Cristian; Gernhardt, Stefan

    2013-11-01

    This paper analyzes the potential of the TanDEM-X mission for the generation of urban Digital Elevation Models (DEMs). The high resolution of the sensors and the absence of temporal decorrelation are exploited. The interferometric chain and the problems encountered for correct mapping of urban areas are analyzed first. The operational Integrated TanDEM-X Processor (ITP) algorithms are taken as reference. The ITP main product is called the raw DEM. Whereas the ITP coregistration stage is demonstrated to be robust enough, large improvements in the raw DEM such as fewer percentages of phase unwrapping errors, can be obtained by using adaptive fringe filters instead of the conventional ones in the interferogram generation stage. The shape of the raw DEM in the layover area is also shown and determined to be regular for buildings with vertical walls. Generally, in the presence of layover, the raw DEM exhibits a height ramp, resulting in a height underestimation for the affected structure. Examples provided confirm the theoretical background. The focus is centered on high resolution DEMs produced using spotlight acquisitions. In particular, a raw DEM over Berlin (Germany) with a 2.5 m raster is generated and validated. For this purpose, ITP is modified in its interferogram generation stage by adopting the Intensity Driven Adaptive Neighbourhood (IDAN) algorithm. The height Root Mean Square Error (RMSE) between the raw DEM and a reference is about 8 m for the two classes defining the urban DEM: structures and non-structures. The result can be further improved for the structure class using a DEM generated with Persistent Scatterer Interferometry. A DEM fusion is thus proposed and a drop of about 20% in the RMSE is reported.

  15. DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses

    Science.gov (United States)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2015-10-01

    Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.

  16. 1 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution.The elevations in this Digital Elevation Model...

  17. Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders

    NARCIS (Netherlands)

    Korevaar, M.W.; Padding, J.T.; Hoef, van der M.A.; Kuipers, J.A.M.

    2014-01-01

    A model is proposed that incorporates contact charging (also known as triboelectric charging) of pneumatically conveyed powders in a DEM–CFD framework, which accounts for the electrostatic interactions, both between particles and between the particles and conducting walls. The simulation results

  18. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  19. Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsat spectral indices

    Science.gov (United States)

    Sadeghi, Yaser; St-Onge, Benoît; Leblon, Brigitte; Prieur, Jean-François; Simard, Marc

    2018-06-01

    We propose a method for mapping above-ground biomass (AGB) (Mg ha-1) in boreal forests based predominantly on Landsat 8 images and on canopy height models (CHM) generated using interferometric synthetic aperture radar (InSAR) from the Shuttle Radar Topographic Mission (SRTM) and the TanDEM-X mission. The original SRTM digital elevation model (DEM) was corrected by modelling the respective effects of landform and land cover on its errors and then subtracted from a TanDEM-X DSM to produce a SAR CHM. Among all the landform factors, the terrain curvature had the largest effect on SRTM elevation errors, with a r2 of 0.29. The NDSI was the best predictor of the residual SRTM land cover error, with a r2 of 0.30. The final SAR CHM had a RMSE of 2.45 m, with a bias of 0.07 m, compared to a lidar-based CHM. An AGB prediction model was developed based on a combination of the SAR CHM, TanDEM-X coherence, Landsat 8 NDVI, and other vegetation indices of RVI, DVI, GRVI, EVI, LAI, GNDVI, SAVI, GVI, Brightness, Greenness, and Wetness. The best results were obtained using a Random forest regression algorithm, at the stand level, yielding a RMSE of 26 Mg ha-1 (34% of average biomass), with a r2 of 0.62. This method has the potential of creating spatially continuous biomass maps over entire biomes using only spaceborne sensors and requiring only low-intensity calibration.

  20. Precise baseline determination for the TanDEM-X mission

    Science.gov (United States)

    Koenig, Rolf; Moon, Yongjin; Neumayer, Hans; Wermuth, Martin; Montenbruck, Oliver; Jäggi, Adrian

    The TanDEM-X mission will strive for generating a global precise Digital Elevation Model (DEM) by way of bi-static SAR in a close formation of the TerraSAR-X satellite, already launched on June 15, 2007, and the TanDEM-X satellite to be launched in May 2010. Both satellites carry the Tracking, Occultation and Ranging (TOR) payload supplied by the GFZ German Research Centre for Geosciences. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), and a Laser retro-reflector (LRR) for precise orbit determination (POD) and atmospheric sounding. The IGOR is of vital importance for the TanDEM-X mission objectives as the millimeter level determination of the baseline or distance between the two spacecrafts is needed to derive meter level accurate DEMs. Within the TanDEM-X ground segment GFZ is responsible for the operational provision of precise baselines. For this GFZ uses two software chains, first its Earth Parameter and Orbit System (EPOS) software and second the BERNESE software, for backup purposes and quality control. In a concerted effort also the German Aerospace Center (DLR) generates precise baselines independently with a dedicated Kalman filter approach realized in its FRNS software. By the example of GRACE the generation of baselines with millimeter accuracy from on-board GPS data can be validated directly by way of comparing them to the intersatellite K-band range measurements. The K-band ranges are accurate down to the micrometer-level and therefore may be considered as truth. Both TanDEM-X baseline providers are able to generate GRACE baselines with sub-millimeter accuracy. By merging the independent baselines by GFZ and DLR, the accuracy can even be increased. The K-band validation however covers solely the along-track component as the K-band data measure just the distance between the two GRACE satellites. In addition they inhibit an un-known bias which must be modelled in the comparison, so the

  1. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  2. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    Science.gov (United States)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  3. Estimating River Surface Elevation From ArcticDEM

    Science.gov (United States)

    Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.

    2018-04-01

    ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.

  4. Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India

    Science.gov (United States)

    Dikpal, Ramesh L.; Renuka Prasad, T. J.; Satish, K.

    2017-12-01

    The quantitative analysis of drainage system is an important aspect of characterization of watersheds. Using watershed as a basin unit in morphometric analysis is the most logical choice because all hydrological and geomorphic processes occur within the watershed. The Budigere Amanikere watershed a tributary of Dakshina Pinakini River has been selected for case illustration. Geoinformatics module consisting of ArcGIS 10.3v and Cartosat-1 Digital Elevation Model (DEM) version 1 of resolution 1 arc Sec ( 32 m) data obtained from Bhuvan is effectively used. Sheet and gully erosion are identified in parts of the study area. Slope in the watershed indicating moderate to least runoff and negligible soil loss condition. Third and fourth-order sub-watershed analysis is carried out. Mean bifurcation ratio ( R b) 3.6 specify there is no dominant influence of geology and structures, low drainage density ( D d) 1.12 and low stream frequency ( F s) 1.17 implies highly infiltration subsoil material and low runoff, infiltration number ( I f)1.3 implies higher infiltration capacity, coarse drainage texture ( T) 3.40 shows high permeable subsoil, length of overland flow ( L g) 0.45 indicates under very less structural disturbances, less runoff conditions, constant of channel maintenance ( C) 0.9 indicates higher permeability of subsoil, elongation ratio ( R e) 0.58, circularity ratio ( R c) 0.75 and form factor ( R f) 0.26 signifies sub-circular to more elongated basin with high infiltration with low runoff. It was observed from the hypsometric curves and hypsometric integral values of the watershed along with their sub basins that the drainage system is attaining a mature stage of geomorphic development. Additionally, Hypsometric curve and hypsometric integral value proves that the infiltration capacity is high as well as runoff is low in the watershed. Thus, these mormometric analyses can be used as an estimator of erosion status of watersheds leading to prioritization for taking

  5. 2014 USACE NCMP Topobathy Lidar DEM: Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  6. 2016 USGS Lidar DEM: Maine QL2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product: These are Digital Elevation Model (DEM) data for Franklin, Oxford, Piscataquis, and Somerset Counties, Maine as part of the required deliverables for the...

  7. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry

    Science.gov (United States)

    Slater, Thomas; Shepherd, Andrew; McMillan, Malcolm; Muir, Alan; Gilbert, Lin; Hogg, Anna E.; Konrad, Hannes; Parrinello, Tommaso

    2018-05-01

    We present a new digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m - a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry.

  8. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry

    Directory of Open Access Journals (Sweden)

    T. Slater

    2018-05-01

    Full Text Available We present a new digital elevation model (DEM of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are −0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m – a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry.

  9. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  10. Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications

    Directory of Open Access Journals (Sweden)

    Antonio Luis Montealegre

    2015-07-01

    Full Text Available Airborne Laser Scanning (ALS is capable of estimating a variety of forest parameters using different metrics extracted from the normalized heights of the point cloud using a Digital Elevation Model (DEM. In this study, six interpolation routines were tested over a range of land cover and terrain roughness in order to generate a collection of DEMs with spatial resolution of 1 and 2 m. The accuracy of the DEMs was assessed twice, first using a test sample extracted from the ALS point cloud, second using a set of 55 ground control points collected with a high precision Global Positioning System (GPS. The effects of terrain slope, land cover, ground point density and pulse penetration on the interpolation error were examined stratifying the study area with these variables. In addition, a Classification and Regression Tree (CART analysis allowed the development of a prediction uncertainty map to identify in which areas DEMs and Airborne Light Detection and Ranging (LiDAR derived products may be of low quality. The Triangulated Irregular Network (TIN to raster interpolation method produced the best result in the validation process with the training data set while the Inverse Distance Weighted (IDW routine was the best in the validation with GPS (RMSE of 2.68 cm and RMSE of 37.10 cm, respectively.

  11. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  12. A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

    Directory of Open Access Journals (Sweden)

    Geir Moholdt

    2012-05-01

    Full Text Available We present a new digital elevation model (DEM of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2 in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS and airborne laser altimetry, yielding root mean square (RMS errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

  13. MEaSUREs Greenland Ice Mapping Project (GIMP) Digital Elevation Model from GeoEye and WorldView Imagery, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of an enhanced resolution digital elevation model (DEM) for the Greenland Ice Sheet. The DEM is derived from sub-meter resolution,...

  14. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.

  15. Correction of Interferometric and Vegetation Biases in the SRTMGL1 Spaceborne DEM with Hydrological Conditioning towards Improved Hydrodynamics Modeling in the Amazon Basin

    Directory of Open Access Journals (Sweden)

    Sebastien Pinel

    2015-12-01

    Full Text Available In the Amazon basin, the recently released SRTM Global 1 arc-second (SRTMGL1 remains the best topographic information for hydrological and hydrodynamic modeling purposes. However, its accuracy is hindered by errors, partly due to vegetation, leading to erroneous simulations. Previous efforts to remove the vegetation signal either did not account for its spatial variability or relied on a single assumed percentage of penetration of the SRTM signal. Here, we propose a systematic approach over an Amazonian floodplain to remove the vegetation signal, addressing its heterogeneity by combining estimates of vegetation height and a land cover map. We improve this approach by interpolating the first results with drainage network, field and altimetry data to obtain a hydrological conditioned DEM. The averaged interferometric and vegetation biases over the forest zone were found to be −2.0 m and 7.4 m, respectively. Comparing the original and corrected DEM, vertical validation against Ground Control Points shows a RMSE reduction of 64%. Flood extent accuracy, controlled against Landsat and JERS-1 images, stresses improvements in low and high water periods (+24% and +18%, respectively. This study also highlights that a ground truth drainage network, as a unique input during the interpolation, achieves reasonable results in terms of flood extent and hydrological characteristics.

  16. Small catchments DEM creation using Unmanned Aerial Vehicles

    Science.gov (United States)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  17. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  18. HIGH RESOLUTION LANDCOVER MODELLING WITH PLÉIADES IMAGERY AND DEM DATA IN SUPPORT OF FINE SCALE LANDSCAPE THERMAL MODELLING

    Directory of Open Access Journals (Sweden)

    M. Thompson

    2017-11-01

    Full Text Available In the evaluation of air-borne thermal infrared imaging sensors, the use of simulated spectral infrared scenery is a cost-effective way to provide input to the sensor. The benefit of simulated scenes includes control over parameters governing the spectral and related thermal behaviour of the terrain as well as atmospheric conditions. Such scenes need to have a high degree of radiometric and geometric accuracy, as well as high resolution to account for small objects having different spectral and associated thermal properties. In support of this, innovative use of tri-stereo, ultra-high resolution Pléiades satellite imagery is being used to generated high detail, small scale quantitative terrain surface data to compliment comparable optical data in order to produce detailed urban and rural landscape datasets representative of different landscape features, within which spectrally defined characteristics can be subsequently matched to thermal signatures. Pléiades tri-stereo mode, acquired from the same orbit during the same pass, is particularly favourable for reaching the required metric accuracy because images are radiometrically and geometrically very homogeneous, which allows a very good radiometric matching for relief computation. The tri-stereo approach reduces noise and allows significantly enhanced relief description in landscapes where simple stereo imaging cannot see features, such as in dense urban areas or valley bottoms in steep, mountainous areas. This paper describes the datasets that have been generated for DENEL over the Hartebeespoort Dam region, west of Pretoria, South Africa. The final terrain datasets are generated by integrated modelling of both height and spectral surface characteristics within an object-based modelling environment. This approach provides an operational framework for rapid and highly accurate mapping of building and vegetation structure of wide areas, as is required in support of the evaluation of thermal

  19. Estimating Error in SRTM Derived Planform of a River in Data-poor Region and Subsequent Impact on Inundation Modeling

    Science.gov (United States)

    Bhuyian, M. N. M.; Kalyanapu, A. J.

    2017-12-01

    Accurate representation of river planform is critical for hydrodynamic modeling. Digital elevation models (DEM) often falls short in accurately representing river planform because they show the ground as it was during data acquisition. But, water bodies (i.e. rivers) change their size and shape over time. River planforms are more dynamic in undisturbed riverine systems (mostly located in data-poor regions) where remote sensing is the most convenient source of data. For many of such regions, Shuttle Radar Topographic Mission (SRTM) is the best available source of DEM. Therefore, the objective of this study is to estimate the error in SRTM derived planform of a river in a data-poor region and estimate the subsequent impact on inundation modeling. Analysis of Landsat image, SRTM DEM and remotely sensed soil data was used to classify the planform activity in an 185 km stretch of the Kushiyara River in Bangladesh. In last 15 years, the river eroded about 4.65 square km and deposited 7.55 square km area. Therefore, current (the year 2017) river planform is significantly different than the SRTM water body data which represents the time of SRTM data acquisition (the year 2000). The rate of planform shifting significantly increased as the river traveled to downstream. Therefore, the study area was divided into three reaches (R1, R2, and R3) from upstream to downstream. Channel slope and meandering ratio changed from 2x10-7 and 1.64 in R1 to 1x10-4 and 1.45 in R3. However, more than 60% erosion-deposition occurred in R3 where a high percentage of Fluvisols (98%) and coarse particles (21%) were present in the vicinity of the river. It indicates errors in SRTM water body data (due to planform shifting) could be correlated with the physical properties (i.e. slope, soil type, meandering ratio etc.) of the riverine system. The correlations would help in zoning activity of a riverine system and determine a timeline to update DEM for a given region. Additionally, to estimate the

  20. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  1. Boreal forest biomass classification with TanDEM-X

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena

    2013-01-01

    High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...

  2. Karst Depression Detection Using ASTER, ALOS/PRISM and SRTM-Derived Digital Elevation Models in the Bambuí Group, Brazil

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho

    2013-12-01

    Full Text Available Remote sensing has been used in karst studies to identify limestone terrain, describe exokarst features, analyze karst depressions, and detect geological structures important to karst development. The aim of this work is to investigate the use of ASTER-, SRTM- and ALOS/PRISM-derived digital elevation models (DEMs to detect and quantify natural karst depressions along the São Francisco River near Barreiras city, northeast Brazil. The study area is a karst landscape characterized by karst depressions (dolines, closed depressions in limestone, many of which contain standing water connected with the ground-water table. The base of dolines is typically sealed with an impermeable clay layer covered by standing water or herbaceous vegetation. We identify dolines by combining the extraction of sink depth from DEMs, morphometric analysis using GIS, and visual interpretation. Our methodology is a semi-automatic approach involving several steps: (a DEM acquisition; (b sink-depth calculation using the difference between the raw DEM and the corresponding DEM with sinks filled; and (c elimination of falsely identified karst depressions using morphometric attributes. The advantages and limitations of the applied methodology using different DEMs are examined by comparison with a sinkhole map generated from traditional geomorphological investigations based on visual interpretation of the high-resolution remote sensing images and field surveys. The threshold values of the depth, area size and circularity index appropriate for distinguishing dolines were identified from the maximum overall accuracy obtained by comparison with a true doline map. Our results indicate that the best performance of the proposed methodology for meso-scale karst feature detection was using ALOS/PRISM data with a threshold depth > 2 m; areas > 13,125 m2 and circularity indexes > 0.3 (overall accuracy of 0.53. The overall correct identification of around half of the true dolines suggests

  3. INFLUENCE OF DEM IN WATERSHED MANAGEMENT AS FLOOD ZONATION MAPPING

    Directory of Open Access Journals (Sweden)

    M. Alrajhi

    2016-06-01

    Full Text Available Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS, geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs of different resolution (30m, 20m,10m and 5m have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  4. Insight From the Statistics of Nothing: Estimating Limits of Change Detection Using Inferred No-Change Areas in DEM Difference Maps and Application to Landslide Hazard Studies

    Science.gov (United States)

    Haneberg, W. C.

    2017-12-01

    Remote characterization of new landslides or areas of ongoing movement using differences in high resolution digital elevation models (DEMs) created through time, for example before and after major rains or earthquakes, is an attractive proposition. In the case of large catastrophic landslides, changes may be apparent enough that simple subtraction suffices. In other cases, statistical noise can obscure landslide signatures and place practical limits on detection. In ideal cases on land, GPS surveys of representative areas at the time of DEM creation can quantify the inherent errors. In less-than-ideal terrestrial cases and virtually all submarine cases, it may be impractical or impossible to independently estimate the DEM errors. Examining DEM difference statistics for areas reasonably inferred to have no change, however, can provide insight into the limits of detectability. Data from inferred no-change areas of airborne LiDAR DEM difference maps of the 2014 Oso, Washington landslide and landslide-prone colluvium slopes along the Ohio River valley in northern Kentucky, show that DEM difference maps can have non-zero mean and slope dependent error components consistent with published studies of DEM errors. Statistical thresholds derived from DEM difference error and slope data can help to distinguish between DEM differences that are likely real—and which may indicate landsliding—from those that are likely spurious or irrelevant. This presentation describes and compares two different approaches, one based upon a heuristic assumption about the proportion of the study area likely covered by new landslides and another based upon the amount of change necessary to ensure difference at a specified level of probability.

  5. Derivation of radioecological parameters from the long-term emission of iodine-129. Final report; Ableitung von radiooekologischen Parametern aus dem langfristigen Eintrag von Iod-129. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Michel, R.; Klipsch, K.; Ernst, T.; Gorny, M.; Jakob, D.; Vahlbruch, J. [Zentrum fuer Strahlenschutz und Radiooekologie (ZSR), Universitaet Hannover (Germany); Synal, H.A. [Paul Scherrer Inst., ETH Hoenggerberg, Zuerich (Switzerland); Schnabel, C. [Institut fuer Teilchenphysik, ETH Hoenggerberg, Zuerich (Switzerland)

    2004-07-01

    In this project, the distribution and behaviour of {sup 129}I and {sup 127}I in the environment and its pathways through the environment to man were comprehensively investigated in order to provide a basis for estimating the radiation exposure to man due to releases of {sup 129}I. To this end, the actual situation in Lower Saxony, Germany, was studied for exemplary regions near to and far from the coast of the North Sea. Accelerator mass spectrometry, radiochemical neutron activation analysis, ion chromatography, and ICP-MS were applied to measure the iodine isotopes, {sup 129}I and P{sup 127}I, in sea-water, air, precipitation, surface and ground waters, soils, plants, animals, foodstuffs, total diet, and human and animal thyroid glands. For air-borne iodine, the speciation as well as the particle size distribution of aerosols was determined. Soil depth profiles were investigated down to depths of 2.5 m in order to study the iodine migration as well as individual surface soil samples to allow for the determination of transfer factors of the iodine isotopes into plants. From the analytical results radioecological parameters for the long-term behaviour of {sup 129}I in the pedo- and biosphere were derived. The iodine isotopes are in severe disequilibrium in the different environmental compartments. The pre-nuclear equilibrium {sup 129}I/{sup 127}I ratio in the biosphere was determined to be 2.0 x 10{sup -13} with a geometric standard deviation of 1.39. Today, the environmental isotopic ratios in Northern Germany range from 10{sup -6} to 10{sup -10}. The highest ratios are found in North Sea water, the lowest in deep soil samples and ground water. The North Sea appears as the dominant source of air-borne iodine in Northern Germany due to the emissions of European reprocessing plants. The results are discussed with respect to their radiological relevance and in view of the general protection of the environment, i.e. air, water, soil and the biosphere. (orig.)

  6. A 'simple' hybrid model for power derivatives

    International Nuclear Information System (INIS)

    Lyle, Matthew R.; Elliott, Robert J.

    2009-01-01

    This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)

  7. Volcanic activity at Etna volcano, Sicily, Italy between June 2011 and March 2017 studied with TanDEM-X SAR interferometry

    Science.gov (United States)

    Kubanek, J.; Raible, B.; Westerhaus, M.; Heck, B.

    2017-12-01

    High-resolution and up-to-date topographic data are of high value in volcanology and can be used in a variety of applications such as volcanic flow modeling or hazard assessment. Furthermore, time-series of topographic data can provide valuable insights into the dynamics of an ongoing eruption. Differencing topographic data acquired at different times enables to derive areal coverage of lava, flow volumes, and lava extrusion rates, the most important parameters during ongoing eruptions for estimating hazard potential, yet most difficult to determine. Anyhow, topographic data acquisition and provision is a challenge. Very often, high-resolution data only exists within a small spatial extension, or the available data is already outdated when the final product is provided. This is especially true for very dynamic landscapes, such as volcanoes. The bistatic TanDEM-X radar satellite mission enables for the first time to generate up-to-date and high-resolution digital elevation models (DEMs) repeatedly using the interferometric phase. The repeated acquisition of TanDEM-X data facilitates the generation of a time-series of DEMs. Differencing DEMs generated from bistatic TanDEM-X data over time can contribute to monitor topographic changes at active volcanoes, and can help to estimate magmatic ascent rates. Here, we use the bistatic TanDEM-X data to investigate the activity of Etna volcano in Sicily, Italy. Etna's activity is characterized by lava fountains and lava flows with ash plumes from four major summit crater areas. Especially the newest crater, the New South East Crater (NSEC) that was formed in 2011 has been highly active in recent years. Over one hundred bistatic TanDEM-X data pairs were acquired between January 2011 and March 2017 in StripMap mode, covering episodes of lava fountaining and lava flow emplacement at Etna's NSEC and its surrounding area. Generating DEMs of every bistatic data pair enables us to assess areal extension of the lava flows, to

  8. Combined Usage of TanDEM-X and CryoSat-2 for Generating a High Resolution Digital Elevation Model of Fast Moving Ice Stream and Its Application in Grounding Line Estimation

    Directory of Open Access Journals (Sweden)

    Seung Hee Kim

    2017-02-01

    Full Text Available Definite surface topography of ice provides fundamental information for most glaciologists to study climate change. However, the topography at the marginal region of ice sheets exhibits noticeable dynamical changes from fast flow velocity and large thinning rates; thus, it is difficult to determine instantaneous topography. In this study, the surface topography of the marginal region of Thwaites Glacier in the Amundsen Sector of West Antarctica, where ice melting and thinning are prevailing, is extracted using TanDEM-X interferometry in combination with data from the near-coincident CryoSat-2 radar altimeter. The absolute height offset, which has been a persistent problem in applying the interferometry technique for generating DEMs, is determined by linear least-squares fitting between the uncorrected TanDEM-X heights and reliable reference heights from CryoSat-2. The reliable heights are rigorously selected at locations of high normalized cross-correlation and low RMS heights between segments of data points. The generated digital elevation model with the resolved absolute height offset is assessed with airborne laser altimeter data from the Operation IceBridge that were acquired five months after TanDEM-X and show high correlation with biases of 3.19 m and −4.31 m at the grounding zone and over the ice sheet surface, respectively. For practical application of the generated DEM, grounding line estimation assuming hydrostatic equilibrium was carried out, and the feasibility was seen through comparison with the previous grounding line. Finally, it is expected that the combination of interferometry and altimetery with similar datasets can be applied at regions even with a lack of ground control points.

  9. 2015 USACE NCMP Topobathy Lidar DEM: Avalon (NJ)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  10. 2013 USACE NCMP Topobathy Lidar DEM: Niihau (HI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  11. 2015 USACE NCMP Topobathy Lidar DEM: Sand Island (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  12. 2016 USACE NCMP Topobathy Lidar DEM: Gulf Coast (TX)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 meter grid size, generated from data collected by the...

  13. 2016 NOAA Topobathy Lidar DEM: Upper Lake Michigan Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) was created from data collected by Leading Edge Geomatics using a Leica Chiroptera II Bathymetric & Topographic Sensor. The...

  14. 2015 USACE NCMP Topobathy Lidar DEM: Egmont Key (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These 1 m gridded bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations generated from data collected by the Coastal Zone...

  15. Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — A Digital Elevation Model (DEM), ice thickness grid, and bedrock elevation grid of Greenland acquired as part of the PARCA program are available in ASCII text format...

  16. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods

    Directory of Open Access Journals (Sweden)

    J. L. Bamber

    2009-05-01

    Full Text Available Digital elevation models (DEMs of the whole of Antarctica have been derived, previously, from satellite radar altimetry (SRA and limited terrestrial data. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage. The latter have excellent spatial coverage but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM based on a trade-off between resolution and interpolated cells, which was found to be 1 km. This resulted in just under 32% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data and used to produce an error map. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves – the Filchner-Ronne and Ross – where the surface expression of flow of ice streams and outlet glaciers can be traced from the grounding line to the calving front. The surface expression of subglacial lakes and other basal features are also illustrated. We also use the DEM to derive new estimates of balance velocities and ice divide locations.

  17. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology

    Science.gov (United States)

    Gomez, Christopher; Hayakawa, Yuichi; Obanawa, Hiroyuki

    2015-08-01

    SfM-MVS (Structure from Motion and Multiple-View Stereophotogrammetry) is part of a series of technological progresses brought to the field of earth-sciences during the last decade or so, which has allowed geoscientists to collect unprecedented precise and extensive DSMs (Digital Surface Model) for virtually no cost, rivaling LiDAR (Light Detection and Ranging) technology. Previous work on SfM-MVS in geosciences has been solely exploring data acquired for the purpose of SfM-MVS, but no research has been done in the exploration of photographic archives for geomorphological purposes. Therefore, the present publications aims to present the usage of SfM-MVS applied to historical aerial photographs in Japan, in order to (1) demonstrate the potentials to extract topographical and vegetation data and (2) to present the potential for chronological analysis of landscape evolution. SfM-MVS was implemented on black-and-white and colour aerial photographs of 1966, 1976, 1996, 2006 and 2013, using the commercial software Photoscanpro®. Firstly, the photographs were masked, tied to GPS points; secondly the positions of the cameras and the 3D pointcloud were calculated; and thirdly the 3D surface was created. Data were then exported in the GIS software ArcGIS for analysis. Results also proved satisfactory for the reconstruction of 3D past-geomorphological landscapes in coastal areas, riverine areas, and in hilly and volcanic areas. They also prove that the height of trees and large vegetation features can also be calculated from aerial photographs alone. Diachronic analysis of the evolution in 3D landforms presented more difficulties, because the resolution of the early photographs was lower than the recent ones. Volume and surface calculations should therefore be conducted carefully. Although the method holds merit and great promise in the exploration of active landscapes that have widely changed during the 20th century; the authors have also reflected on the issues linked to

  18. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level

    Science.gov (United States)

    Sharma, Arabinda; Tiwari, K. N.

    2014-11-01

    The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for

  19. Verification of two-dimensional LBM-DEM coupling approach and its application in modeling episodic sand production in borehole

    Directory of Open Access Journals (Sweden)

    Yanhui Han

    2017-06-01

    Full Text Available The lattice Boltzmann method (LBM is implemented in the Particle Flow Code (PFC as a pore-scale CFD module and coupled with the particulate discrete element assemblage in PFC using an immersed boundary scheme. The implementation of LBM and LBM-PFC coupling is validated with the analytical solutions in a couple of hydrodynamics and fluid-particle interaction problems, i.e., the accuracy of LBM as a CFD solver is verified by solving channel flow driven by a pressure gradient for which the closed-form solution is also derived; the accuracy of LBM-PFC coupling is validated by solving flow across a cylinder, Taylor-Couette flow, Kármán vortex street, and fluid flow through a cylinder array. To demonstrate potential applications of this coupling code, a perforation cavity subjected to axial fluid flush is then tested, showing that the collapse and reconstruction of sand arch in the perforation cavity can be reproduced in this coupling system. The developed system is ready for exploring more complicated physical issues involved in sand production.

  20. Deriving simulators for hybrid Chi models

    NARCIS (Netherlands)

    Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.

    2006-01-01

    The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an

  1. Digital Elevation Model (DEM), LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos & 2' contours. The Lidar LAS data has been classified to bare-earth as well as first-return points., Published in 2009, 1:1200 (1in=100ft) scale, Maryland National Capital Park and Planning Commission.

    Data.gov (United States)

    NSGIC Non-Profit | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2009. LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos...

  2. A NEW HIGH-RESOLUTION ELEVATION MODEL OF GREENLAND DERIVED FROM TANDEM-X

    Directory of Open Access Journals (Sweden)

    B. Wessel

    2016-06-01

    Full Text Available In this paper we present for the first time the new digital elevation model (DEM for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite elevations as ground control points (GCPs are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  3. Price models for oil derivates in Slovenia

    International Nuclear Information System (INIS)

    Nemac, F.; Saver, A.

    1995-01-01

    In Slovenia, a law is currently applied according to which any change in the price of oil derivatives is subject to the Governmental approval. Following the target of getting closer to the European Union, the necessity has arisen of finding ways for the introduction of liberalization or automated approach to price modifications depending on oscillations of oil derivative prices on the world market and the rate of exchange of the American dollar. It is for this reason that at the Agency for Energy Restructuring we made a study for the Ministry of Economic Affairs and Development regarding this issue. We analysed the possible models for the formation of oil derivative prices for Slovenia. Based on the assessment of experiences of primarily the west European countries, we proposed three models for the price formation for Slovenia. In future, it is expected that the Government of the Republic of Slovenia will make a selection of one of the proposed models to be followed by enforcement of price liberalization. The paper presents two representative models for price formation as used in Austria and Portugal. In the continuation the authors analyse the application of three models that they find suitable for the use in Slovenia. (author)

  4. DEM Calibration Approach: design of experiment

    Science.gov (United States)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  5. Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs

    Directory of Open Access Journals (Sweden)

    J. Bechet

    2016-10-01

    Full Text Available The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs produced from terrestrial laser scanner (TLS. The objectives are (1 to detect and (2 to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion–deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall

  6. Comparison Between Topographic Expression of RADARSAT and DEM in Simpang Pulai to Pos Selim, Malaysia

    Directory of Open Access Journals (Sweden)

    M.F.Ramli

    2010-01-01

    Full Text Available Radar and digital elevation model had been utilised in many structural studies. The main objective of this study is to compare the RADARSAT and digital elevation model for lineament interpretation which probably represent the main joints or faults along the Simpang Pulai to Pos Selim highway, Malaysia. These joints and faults may influence the instability along the highway. Manual comparison in terms of topographical aspect was undertaken between RADARSAT with 25 m spatial resolution and digital elevation model derived from 20 m contour interval of the topographical map. The previously interpreted lineaments of more than 2 km in the study area was draped over the RADARSAT and digital elevation model to compared whether the lineament concurred with the topographical representation. The interpreted lineaments were derived from Landsat TM of 1990 and 2002, where the DEM had been utilised in the negative lineament determination. It is concluded that the application RADARSAT is not very useful in terms of topographical expression in the structural geological interpretation for the study area compared to DEM derived from contour data. Further work is suggested before any conclusion can be confidently derived.

  7. Modeling of heat conduction via fractional derivatives

    Science.gov (United States)

    Fabrizio, Mauro; Giorgi, Claudio; Morro, Angelo

    2017-09-01

    The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo-Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo-Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo-Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier's law does not.

  8. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  9. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    Science.gov (United States)

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  10. BOREAS HYP-8 DEM Data Over The NSA-MSA and SSA-MSA in The AEAC Projection

    Science.gov (United States)

    Knapp, David E.; Hall, Forrest G. (Editor); Wang, Xue-Wen; Band, L. E.; Smith, David E. (Technical Monitor)

    2000-01-01

    These data were derived from the original Digital Elevation Models (DEMs) produced by the Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team. The original DEMs were in the Universal Transverse Mercator (UTM) projection, while this product is projected in the Albers Equal-Area Conic (AEAC) projection. The pixel size of the data is 100 meters, which is appropriate for the 1:50,000-scale contours from which the DEMs were made. The original data were compiled from information available in the 1970s and 1980s. This data set covers the two Modeling Sub-Areas (MSAs) that are contained within the Southern Study Area (SSA) and the Northern Study Area (NSA). The data are stored in binary, image format files. The DEM data over the NSA-MSA and SSA-MSA in the AEAC projection are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  11. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT

    Directory of Open Access Journals (Sweden)

    Waranyu Buakhao

    2016-01-01

    Full Text Available A digital elevation model (DEM is an important spatial input for automatic extraction of topographic parameters for the soil and water assessment tool (SWAT. The objective of this study was to investigate the impact of DEM resolution (from 5 to 90 m on the delineation process of a SWAT model with two types of watershed characteristics (flat area and mountain area and three sizes of watershed area (about 20,000, 200,000, and 1,500,000 hectares. The results showed that the total lengths of the streamline, main channel slope, watershed area, and area slope were significantly different when using the DEM datasets to delineate. Delineation using the SRTM DEM (90 m, ASTER DEM (30 m, and LDD DEM (5 m for all watershed characteristics showed that the watershed sizes and shapes obtained were only slightly different, whereas the area slopes obtained were significantly different. The total lengths of the generated streams increased when the resolution of the DEM used was higher. The stream slopes obtained using the small area sizes were insignificant, whereas the slopes obtained using the large area sizes were significantly different. This suggests that water resource model users should use the ASTER DEM as opposed to a finer resolution DEM for model input to save time for the model calibration and validation.

  12. Research on a dem Coregistration Method Based on the SAR Imaging Geometry

    Science.gov (United States)

    Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.

    2018-04-01

    Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.

  13. Enhanced ASTER DEMs for Decadal Measurements of Glacier Elevation Changes

    Science.gov (United States)

    Girod, L.; Nuth, C.; Kääb, A.

    2016-12-01

    Elevation change data is critical to the understanding of a number of geophysical processes, including glaciers through the measurement their volume change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on-board the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available today, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. We developed MMASTER, an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. Our sensor modeling does not require ground control points and thus potentially allows for automatic processing of large data volumes. When compared to ground truth data, we have assessed a ±5m accuracy in DEM differencing when using our processing method, improved from the ±30m when using the AST14DMO DEM product. We demonstrate and discuss this improved ASTER DEM quality for a number of glaciers in Greenland (See figure attached), Alaska, and Svalbard. The quality of our measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will thus help to better understand the response of glaciers to climate change and their influence on runoff and sea level.

  14. DEM - distribution energy management

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A; Kekkonen, V; Koreneff, G [VTT Energy, Espoo (Finland); and others

    1998-08-01

    The electricity market was de-regulated in Finland at the end of 1995 and the customers can now freely choose their power suppliers. The national grid and local distribution network operators are now separated from the energy business. The network operators transmit the electric power to the customers on equal terms regardless from whom the power is purchased. The Finnish national grid is owned by one company Finnish Power Grid PLC (Fingrid). The major shareholders of Fingrid are the state of Finland, two major power companies and institutional investors. In addition there are about 100 local distribution utilities operating the local 110 kV, 20 kV and 0.4 kV networks. The distribution utilities are mostly owned by the municipalities and towns. In each network one energy supplier is always responsible for the hourly energy balance in the network (a `host`) and it also has the obligation to provide public energy prices accessible to any customer in the network`s area. The Finnish regulating authorities nominate such a supplier who has a dominant market share in the network`s area as the supplier responsible for the network`s energy balance. A regulating authority, called the Electricity Market Centre, ensures that the market is operating properly. The transmission prices and public energy prices are under the Electricity Market Centre`s control. For domestic and other small customers the cost of hourly metering (ca. 1000 US$) would be prohibitive and therefore the use of conventional energy metering and load models is under consideration by the authorities. Small customer trade with the load models (instead of the hourly energy recording) is scheduled to start in the first half of 1998. In this presentation, the problems of energy management from the standpoint of the energy trading and distributing companies in the new situation are first discussed. The topics covered are: the hourly load data management, the forecasting and estimation of hourly energy demands

  15. Landslide-susceptibility analysis using light detection and ranging-derived digital elevation models and logistic regression models: a case study in Mizunami City, Japan

    Science.gov (United States)

    Wang, Liang-Jie; Sawada, Kazuhide; Moriguchi, Shuji

    2013-01-01

    To mitigate the damage caused by landslide disasters, different mathematical models have been applied to predict landslide spatial distribution characteristics. Although some researchers have achieved excellent results around the world, few studies take the spatial resolution of the database into account. Four types of digital elevation model (DEM) ranging from 2 to 20 m derived from light detection and ranging technology to analyze landslide susceptibility in Mizunami City, Gifu Prefecture, Japan, are presented. Fifteen landslide-causative factors are considered using a logistic-regression approach to create models for landslide potential analysis. Pre-existing landslide bodies are used to evaluate the performance of the four models. The results revealed that the 20-m model had the highest classification accuracy (71.9%), whereas the 2-m model had the lowest value (68.7%). In the 2-m model, 89.4% of the landslide bodies fit in the medium to very high categories. For the 20-m model, only 83.3% of the landslide bodies were concentrated in the medium to very high classes. When the cell size decreases from 20 to 2 m, the area under the relative operative characteristic increases from 0.68 to 0.77. Therefore, higher-resolution DEMs would provide better results for landslide-susceptibility mapping.

  16. Inferring sediment connectivity from high-resolution DEMs of Difference

    Science.gov (United States)

    Heckmann, Tobias; Vericat, Damià

    2017-04-01

    Topographic changes due to the erosion and deposition of bedrock, sediments and soil can be measured by differencing Digital Elevation Models (DEM) acquired at different points in time. So-called morphological sediment budgets can be computed from such DEMs of Difference (DoD) on an areal rather than a point basis. The advent of high-resolution and highly accurate surveying techniques (e.g. LiDAR, SfM), together with recent advances of survey platforms (e.g. UaVs) provides opportunities to improve the spatial and temporal scale (in terms of extent and resolution), the availability and quality of such measurements. Many studies have used DoD to investigate and interpret the spatial pattern of positive and negative vertical differences in terms of erosion and deposition, or of horizontal movement. Vertical differences can be converted to volumes, and negative (erosion) and positive (deposition) volumetric changes aggregated for spatial units (e.g., landforms, hillslopes, river channels) have been used to compute net balances. We argue that flow routing algorithms common in digital terrain analysis provide a means to enrich DoD-based investigations with some information about (potential) sediment pathways - something that has been widely neglected in previous studies. Where the DoD indicates a positive surface change, flow routing delineates the upslope area where the deposited sediment has potentially been derived from. In the downslope direction, flow routing indicates probable downslope pathways of material eroded/detached/entrained where the DoD shows negative surface change. This material has either been deposited along these pathways or been flushed out of the area of investigation. This is a question of sediment connectivity, a property of a system (i.e. a hillslope, a sub-/catchment) that describes its potential to move sediment through itself. The sediment pathways derived from the DEM are related to structural connectivity, while the spatial pattern of (net

  17. High-accuracy single-pass InSAR DEM for large-scale flood hazard applications

    Science.gov (United States)

    Schumann, G.; Faherty, D.; Moller, D.

    2017-12-01

    In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.

  18. EVALUATING THE ACCURACY OF DEM GENERATION ALGORITHMS FROM UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    J. J. Ruiz

    2013-08-01

    Full Text Available In this work we evaluated how the use of different positioning systems affects the accuracy of Digital Elevation Models (DEMs generated from aerial imagery obtained with Unmanned Aerial Vehicles (UAVs. In this domain, state-of-the-art DEM generation algorithms suffer from typical errors obtained by GPS/INS devices in the position measurements associated with each picture obtained. The deviations from these measurements to real world positions are about meters. The experiments have been carried out using a small quadrotor in the indoor testbed at the Center for Advanced Aerospace Technologies (CATEC. This testbed houses a system that is able to track small markers mounted on the UAV and along the scenario with millimeter precision. This provides very precise position measurements, to which we can add random noise to simulate errors in different GPS receivers. The results showed that final DEM accuracy clearly depends on the positioning information.

  19. A tracer diffusion model derived from microstructure

    International Nuclear Information System (INIS)

    Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus

    2012-01-01

    of reference, is shown to be given by the ratio of the effective diffusivity to the apparent diffusivity for an assumed non-interacting solute, such as tritiated water. Finally, the utility of the model and derivation of the model parameters are demonstrated with tracer diffusion data from the open literature for compacted bentonite. (authors)

  20. Numerical simulation of structure integrated cold storages with the model CST-WM; Numerische Simulation gebaeudeintegrierter Kaeltespeicher mit dem Modell CST-WM

    Energy Technology Data Exchange (ETDEWEB)

    Koppatz, Stefan; Urbaneck, Thorsten; Platzer, Bernd [TU Chemnitz (Germany). Fakultaet Maschinenbau; Kalz, Doreen; Sonntag, Martin [Fraunhofer ISE, Freiburg (Germany). Bereich Energieeffiziente und Solare Kuehlung

    2013-04-15

    Decentralized, structure integrated cold water storaged have been purpose of research in Germany for a short time, which is why appropriate system simulation models for mapping their thermal performance are missing. Intention of this article is the presentation of the MATLAB CST-WM model, which is adapted to the special requirements of this storage type in order to differ from existent models. Thereby, a specific method reduces the programming and computation effort.

  1. German model. Challenge on the way to the 21st century. Das Deutschland-Modell. Herausforderungen auf dem Weg ins 21. Jahrhundert

    Energy Technology Data Exchange (ETDEWEB)

    Pestel, E.; Bauerschmidt, R.; Gottwaldt, M.; Huebl, L.; Moeller, K.P.; Oest, W.; Stroebele, W.

    1980-06-01

    The German model is a consequent continuation of the work which has already lead to the Mesarovic-Pestel world-model and the 2nd report to the Club of Rome: The authors, members of the Institut fuer angewandte Systemforschung und Prognose (ISP) at Hanover, founded in 1975 by Professor Pestel, show the problems and challenges on the way to the 21st century on the basis of numerous model calculations. The German model consists of a number of coupled sub-models investigating the developments in the fields of population, education, economics, energy and labour market. Germany's role in the international network and its contribution to the North-South dialogue is taken into consideration. In the much-discussed energy sector, the calculations show that future requirements will probably be much lower than expected. Until the turn of the century, there will be no serious problems in energy and raw materials supply and consequently no structural changes.

  2. Influence of Terraced area DEM Resolution on RUSLE LS Factor

    Science.gov (United States)

    Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Viollette

    2017-04-01

    Topography has a large impact on the erosion of soil by water. Slope steepness and slope length are combined (the LS factor) in the universal soil-loss equation (USLE) and its revised version (RUSLE) for predicting soil erosion. The LS factor is usually extracted from a digital elevation model (DEM). The grid size of the DEM will thus influence the LS factor and the subsequent calculation of soil loss. Terracing is considered as a support practice factor (P) in the USLE/RUSLE equations, which is multiplied with the other USLE/RUSLE factors. However, as terraces change the slope length and steepness, they also affect the LS factor. The effect of DEM grid size on the LS factor has not been investigated for a terraced area. We obtained a high-resolution DEM by unmanned aerial vehicles (UAVs) photogrammetry, from which the slope steepness, slope length, and LS factor were extracted. The changes in these parameters at various DEM resolutions were then analysed. The DEM produced detailed LS-factor maps, particularly for low LS factors. High (small valleys, gullies, and terrace ridges) and low (flats and terrace fields) spatial frequencies were both sensitive to changes in resolution, so the areas of higher and lower slope steepness both decreased with increasing grid size. Average slope steepness decreased and average slope length increased with grid size. Slope length, however, had a larger effect than slope steepness on the LS factor as the grid size varied. The LS factor increased when the grid size increased from 0.5 to 30-m and increased significantly at grid sizes >5-m. The LS factor was increasingly overestimated as grid size decreased. The LS factor decreased from grid sizes of 30 to 100-m, because the details of the terraced terrain were gradually lost, but the factor was still overestimated.

  3. Modelling vertical error in LiDAR-derived digital elevation models

    Science.gov (United States)

    Aguilar, Fernando J.; Mills, Jon P.; Delgado, Jorge; Aguilar, Manuel A.; Negreiros, J. G.; Pérez, José L.

    2010-01-01

    A hybrid theoretical-empirical model has been developed for modelling the error in LiDAR-derived digital elevation models (DEMs) of non-open terrain. The theoretical component seeks to model the propagation of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of ground sampled points in open terrain, towards interpolated points. The interpolation methods used for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case, interpolation is performed using an inverse distance weighting (IDW) method with the local support of the five closest neighbours, although it would be possible to utilize other interpolation methods. The empirical component refers to what is known as "information loss". This is the error purely due to modelling the continuous terrain surface from only a discrete number of points plus the error arising from the interpolation process. The SDE must be previously calculated from a suitable number of check points located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the gridding error. For model calibration, data for 29 study sites, 200×200 m in size, belonging to different areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric methods. The developed methodology was validated against two different LiDAR datasets. The first dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK. The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both terrain slope and sampling density were incorporated in the empirical component through the calibration phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856 ; p reasonably good fit to the predicted errors. Even better results were achieved in the more rugged morphology of the Gador mountain range dataset. The findings

  4. Landslide Detection in the Carlyon Beach, WA Peninsula: Analysis Of High Resolution DEMs

    Science.gov (United States)

    Fayne, J.; Tran, C.; Mora, O. E.

    2017-12-01

    Landslides are geological events caused by slope instability and degradation, leading to the sliding of large masses of rock and soil down a mountain or hillside. These events are influenced by topography, geology, weather and human activity, and can cause extensive damage to the environment and infrastructure, such as the destruction of transportation networks, homes, and businesses. It is therefore imperative to detect early-warning signs of landslide hazards as a means of mitigation and disaster prevention. Traditional landslide surveillance consists of field mapping, but the process is expensive and time consuming. This study uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) and k-means clustering and Gaussian Mixture Model (GMM) to analyze surface roughness and extract spatial features and patterns of landslides and landslide-prone areas. The methodology based on several feature extractors employs an unsupervised classifier on the Carlyon Beach Peninsula in the state of Washington to attempt to identify slide potential terrain. When compared with the independently compiled landslide inventory map, the proposed algorithm correctly classifies up to 87% of the terrain. These results suggest that the proposed methods and LiDAR-derived DEMs can provide important surface information and be used as efficient tools for digital terrain analysis to create accurate landslide maps.

  5. Which DEM is best for analyzing fluvial landscape development in mountainous terrains?

    Science.gov (United States)

    Boulton, Sarah J.; Stokes, Martin

    2018-06-01

    Regional studies of fluvial landforms and long-term (Quaternary) landscape development in remote mountain landscapes routinely use satellite-derived DEM data sets. The SRTM and ASTER DEMs are the most commonly utilised because of their longer availability, free cost, and ease of access. However, rapid technological developments mean that newer and higher resolution DEM data sets such as ALOS World 3D (AW3D) and TanDEM-X are being released to the scientific community. Geomorphologists are thus faced with an increasingly problematic challenge of selecting an appropriate DEM for their landscape analyses. Here, we test the application of four medium resolution DEM products (30 m = SRTM, ASTER, AW3D; 12 m = TanDEM-X) for qualitative and quantitative analysis of a fluvial mountain landscape using the Dades River catchment (High Atlas Mountains, Morocco). This landscape comprises significant DEM remote sensing challenges, notably a high mountain relief, steep slopes, and a deeply incised high sinuosity drainage network with narrow canyon/gorge reaches. Our goal was to see which DEM produced the most representative best fit drainage network and meaningful quantification. To achieve this, we used ArcGIS and Stream Profiler platforms to generate catchment hillshade and slope rasters and to extract drainage network, channel long profile and channel slope, and area data. TanDEM-X produces the clearest landscape representation but with channel routing errors in localised high relief areas. Thirty-metre DEMs are smoother and less detailed, but the AW3D shows the closest fit to the real drainage network configuration. The TanDEM-X elevation values are the closest to field-derived GPS measurements. Long profiles exhibit similar shapes but with minor differences in length, elevation, and the degree of noise/smoothing, with AW3D producing the best representation. Slope-area plots display similarly positioned slope-break knickpoints with modest differences in steepness and concavity

  6. ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    F. J. Aguilar

    2016-06-01

    Full Text Available Digital Elevation Models (DEMs are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2 provided by the Spanish Government (PNOA Programme over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed. In every case, the remaining points (scattered observed points were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI. Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM. Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.

  7. Envolving the Operations of the TerraSAR-X/TanDEM-X Mission Planning System during the TanDEM-X Science Phase

    OpenAIRE

    Stathopoulos, Fotios; Guillermin, Guillaume; Garcia Acero, Carlos; Reich, Karin; Mrowka, Falk

    2016-01-01

    After the successful Global Coverage of the Digital Elevation Model, the TanDEM-X Science phase was initiated in September of 2014, dedicated to the demonstration of innovative techniques and experiments. The TanDEM-X Science phase had a large impact on the TerraSAR-X/TanDEM-X Mission Planning System. The two main challenges were the formation flying changes and the activation of a new acquisition mode, the so called Dual Receive Antenna (DRA) acquisition mode. This paper describes all action...

  8. Cross Validation on the Equality of Uav-Based and Contour-Based Dems

    Science.gov (United States)

    Ma, R.; Xu, Z.; Wu, L.; Liu, S.

    2018-04-01

    Unmanned Aerial Vehicles (UAV) have been widely used for Digital Elevation Model (DEM) generation in geographic applications. This paper proposes a novel framework of generating DEM from UAV images. It starts with the generation of the point clouds by image matching, where the flight control data are used as reference for searching for the corresponding images, leading to a significant time saving. Besides, a set of ground control points (GCP) obtained from field surveying are used to transform the point clouds to the user's coordinate system. Following that, we use a multi-feature based supervised classification method for discriminating non-ground points from ground ones. In the end, we generate DEM by constructing triangular irregular networks and rasterization. The experiments are conducted in the east of Jilin province in China, which has been suffered from soil erosion for several years. The quality of UAV based DEM (UAV-DEM) is compared with that generated from contour interpolation (Contour-DEM). The comparison shows a higher resolution, as well as higher accuracy of UAV-DEMs, which contains more geographic information. In addition, the RMSE errors of the UAV-DEMs generated from point clouds with and without GCPs are ±0.5 m and ±20 m, respectively.

  9. Vulnerable Derivatives and Good Deal Bounds: A Structural Model

    DEFF Research Database (Denmark)

    Murgoci, Agatha

    2013-01-01

    We price vulnerable derivatives -- i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modeled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...

  10. Spatial Characterization of Landscapes through Multifractal Analysis of DEM

    Directory of Open Access Journals (Sweden)

    P. L. Aguado

    2014-01-01

    Full Text Available Landscape evolution is driven by abiotic, biotic, and anthropic factors. The interactions among these factors and their influence at different scales create a complex dynamic. Landscapes have been shown to exhibit numerous scaling laws, from Horton’s laws to more sophisticated scaling of heights in topography and river network topology. This scaling and multiscaling analysis has the potential to characterise the landscape in terms of the statistical signature of the measure selected. The study zone is a matrix obtained from a digital elevation model (DEM (map 10 × 10 m, and height 1 m that corresponds to homogeneous region with respect to soil characteristics and climatology known as “Monte El Pardo” although the water level of a reservoir and the topography play a main role on its organization and evolution. We have investigated whether the multifractal analysis of a DEM shows common features that can be used to reveal the underlying patterns and information associated with the landscape of the DEM mapping and studied the influence of the water level of the reservoir on the applied analysis. The results show that the use of the multifractal approach with mean absolute gradient data is a useful tool for analysing the topography represented by the DEM.

  11. High Resolution Airborne InSAR DEM of Bagley Ice Valley, South-central Alaska: Geodetic Validation with Airborne Laser Altimeter Data

    Science.gov (United States)

    Muskett, R. R.; Lingle, C. S.; Echelmeyer, K. A.; Valentine, V. B.; Elsberg, D.

    2001-12-01

    Bagley Ice Valley, in the St. Elias and Chugach Mountains of south-central Alaska, is an integral part of the largest connected glacierized terrain on the North American continent. From the flow divide between Mt. Logan and Mt. St. Elias, Bagley Ice Valley flows west-northwest for some 90 km down a slope of less than 1o, at widths up to 15 km, to a saddle-gap where it turns south-west to become Bering Glacier. During 4-13 September 2000, an airborne survey of Bagley Ice Valley was performed by Intermap Technologies, Inc., using their Star-3i X-band SAR interferometer. The resulting digital elevation model (DEM) covers an area of 3243 km2. The DEM elevations are orthometric heights, in meters above the EGM96 geoid. The horizontal locations of the 10-m postings are with respect to the WGS84 ellipsoid. On 26 August 2000, 9 to 18 days prior to the Intermap Star-3i survey, a small-aircraft laser altimeter profile was acquired along the central flow line for validation. The laser altimeter data consists of elevations above the WGS84 ellipsoid and orthometric heights above GEOID99-Alaska. Assessment of the accuracy of the Intermap Star-3i DEM was made by comparison of both the DEM orthometric heights and elevations above the WGS84 ellipsoid with the laser altimeter data. Comparison of the orthometric heights showed an average difference of 5.4 +/- 1.0 m (DEM surface higher). Comparison of elevations above the WGS84 ellipsoid showed an average difference of -0.77 +/- 0.93 m (DEM surface lower). This indicates that the X-band Star-3i interferometer was penetrating the glacier surface by an expected small amount. The WGS84 comparison is well within the 3 m RMS accuracy quoted for GT-3 DEM products. Snow accumulation may have occurred, however, on Bagley Ice Valley between 26 August and 4-13 September 2000. This will be estimated using a mass balance model and used to correct the altimeter-derived surface heights. The new DEM of Bagley Ice Valley will provide a reference

  12. Remarks on the microscopic derivation of the collective model

    International Nuclear Information System (INIS)

    Toyoda, T.; Wildermuth, K.

    1984-01-01

    The rotational part of the phenomenological collective model of Bohr and Mottelson and others is derived microscopically, starting with the Schrodinger equation written in projection form and introducing a new set of 'relative Euler angles'. In order to derive the local Schrodinger equation of the collective model, it is assumed that the intrinsic wave functions give strong peaking properties to the overlapping kernels

  13. ArcticDEM Year 3; Improving Coverage, Repetition and Resolution

    Science.gov (United States)

    Morin, P. J.; Porter, C. C.; Cloutier, M.; Howat, I.; Noh, M. J.; Willis, M. J.; Candela, S. G.; Bauer, G.; Kramer, W.; Bates, B.; Williamson, C.

    2017-12-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. The ArcticDEM project is using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency, petascale computing, and open source photogrammetry software to produce a time-tagged 2m posting elevation model and a 5m posting mosaic of the entire Arctic region. As ArcticDEM enters its third year, the region has gone from having some of the sparsest and poorest elevation data to some of the most precise and complete data of any region on the globe. To date, we have produced and released over 80,000,000 km2 as 57,000 - 2m posting, time-stamped DEMs. The Arctic, on average, is covered four times though there are hotspots with more than 100 DEMs. In addition, the version 1 release includes a 5m posting mosaic covering the entire 20,000,000 km2 region. All products are publically available through arctidem.org, ESRI web services, and a web viewer. The final year of the project will consist of a complete refiltering of clouds/water and re-mosaicing of all elevation data. Since inception of the project, post-processing techniques have improved significantly, resulting in fewer voids, better registration, sharper coastlines, and fewer inaccuracies due to clouds. All ArcticDEM data will be released in 2018. Data, documentation, web services and web viewer are available at arcticdem.org

  14. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  15. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar DEM: Rogue River Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses portions of Coos, Curry, Douglas, Jackson, and Josephine Counties.The bare earth digital elevation model (DEM) represents the earth's surface...

  16. VT Lidar Hydro-flattened DEM (0.7 meter) - 2014 - Chittenden, Lamoille, Orleans, & Washington Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following...

  17. Evaluation of TanDEMx and SRTM DEM on watershed simulated ...

    Indian Academy of Sciences (India)

    57

    **Department of Environmental and Water Resource Engineering. School of Civil .... Few studies have investigated the impact of DEM on watershed delineation like ..... on Integrating GIS and Environmental Modelling, Santa Fe, New. Mexico.

  18. VT Lidar Hydro-flattened DEM (0.7 meter) - 2015 - Windham County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Windham County 2015 0.7m and Digital Elevation Model (DEM) dataset of the following...

  19. Rational Models for Inflation-Linked Derivatives

    DEFF Research Database (Denmark)

    Dam, Henrik; Macrina, Andrea; Skovmand, David

    2018-01-01

    in a multiplicative manner that allows for closed-form pricing of vanilla inflation products suchlike zero-coupon swaps, caps and floors, year-on-year swaps, caps and floors, and the exotic limited price index swap. The model retains the attractive features of a nominal multi-curve interest rate model such as closed...

  20. Eine Analyse des Zusammenhangs zwischen dem Konsum von Alkopops und dem Problemverhalten von Jugendlichen

    OpenAIRE

    Metzner, Cornelia Beate Isabel

    2007-01-01

    Zielsetzung: In dieser Arbeit wird untersucht, ob bei Jugendlichen ein Zusammenhang zwischen dem Konsum von Alkopops einerseits und dem sonstigen Alkoholtrinkverhalten, dem Konsum von Zigaretten und illegalen Drogen sowie weiteren Risikoverhaltensweisen andererseits besteht, ferner ob sich Unterschiede im Verhalten von Jungen und Mädchen ergeben. Theoretischer und empirischer Hintergrund: �Alkopops�, d. h. Mischgetränke diverser Hersteller aus Likör bzw. Schnaps und Limonade sowie wein- ...

  1. Large-baseline InSAR for precise topographic mapping: a framework for TanDEM-X large-baseline data

    Directory of Open Access Journals (Sweden)

    M. Pinheiro

    2017-09-01

    Full Text Available The global Digital Elevation Model (DEM resulting from the TanDEM-X mission provides information about the world topography with outstanding precision. In fact, performance analysis carried out with the already available data have shown that the global product is well within the requirements of 10 m absolute vertical accuracy and 2 m relative vertical accuracy for flat to moderate terrain. The mission's science phase took place from October 2014 to December 2015. During this phase, bistatic acquisitions with across-track separation between the two satellites up to 3.6 km at the equator were commanded. Since the relative vertical accuracy of InSAR derived elevation models is, in principle, inversely proportional to the system baseline, the TanDEM-X science phase opened the doors for the generation of elevation models with improved quality with respect to the standard product. However, the interferometric processing of the large-baseline data is troublesome due to the increased volume decorrelation and very high frequency of the phase variations. Hence, in order to fully profit from the increased baseline, sophisticated algorithms for the interferometric processing, and, in particular, for the phase unwrapping have to be considered. This paper proposes a novel dual-baseline region-growing framework for the phase unwrapping of the large-baseline interferograms. Results from two experiments with data from the TanDEM-X science phase are discussed, corroborating the expected increased level of detail of the large-baseline DEMs.

  2. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  3. DEM analysis of FOXSI-2 microflare using AIA observations

    Science.gov (United States)

    Athiray Panchapakesan, Subramania; Glesener, Lindsay; Vievering, Juliana; Camilo Buitrago-Casas, Juan; Christe, Steven; Inglis, Andrew; Krucker, Sam; Musset, Sophie

    2017-08-01

    The second flight of Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment was successfully completed on 11 December 2014. FOXSI makes direct imaging and spectral observation of the Sun in hard X-rays using grazing incidence optics modules which focus X-rays onto seven focal plane detectors kept at a 2m distance, in the energy range 4 to 20 keV, to study particle acceleration and coronal heating. Significant HXR emissions were observed by FOXSI during microflare events with A0.5 and A2.5 class, as classified by GOES, that occurred during FOXSI-2 flight.Spectral analysis of FOXSI data for these events indicate presence of plasma at higher temperatures (>10MK). We attempt to study the plasma content in the corona at different temperatures, characterized by the differential emission measure (DEM), over the FOXSI-2 observed flare regions using the Atmospheric Imaging Assembly (SDO/AIA) data. We utilize AIA observations in different EUV filters that are sensitive to ionized iron lines, to determine the DEM by using a regularized inversion method. This poster will show the properties of hot plasma as derived from FOXSI-2 HXR spectra with supporting DEM analysis using AIA observations.

  4. Landbrugets trædemølle

    DEFF Research Database (Denmark)

    Hansen, Henning Otte

    2016-01-01

    Teorien om landbrugets trædemølle siger, at teknologi medfører stigende produktivitet, stigende udbud og dermed faldende priser. Dermed øges behovet for ny teknologi. Det vedvarende teknologipres gavner de innovative landmænd, mens de mere afventende landmænd kun oplever de negative virkninger i...... form af prisfald. I denne artikel beskrives nærmere de enkelte elementer i trædemøllen. Samtidig vurderes trædemøllens betydning og mulige påvirkning. Det konkluderes, at trædemøllen, dens forudsætninger og afledte virkninger stadig er fuldt gældende. Det er ikke muligt for et enkelt land eller region...... af bremse trædemøllen på lang sigt. På lokalt plan kan man løse nogle sociale og økonomiske problemer skabt af trædemøllen gennem nemmere afvandring....

  5. The infinitesimal model: Definition, derivation, and implications.

    Science.gov (United States)

    Barton, N H; Etheridge, A M; Véber, A

    2017-12-01

    Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence

  6. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  7. Silicon Carbide Derived Carbons: Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  8. Wind gust models derived from field data

    Science.gov (United States)

    Gawronski, W.

    1995-01-01

    Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.

  9. A spatial structural derivative model for ultraslow diffusion

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2017-01-01

    Full Text Available This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.

  10. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data

    Science.gov (United States)

    Sahoo, Ramendra; Jain, Vikrant

    2018-02-01

    Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.

  11. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM

    Science.gov (United States)

    Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui

    2004-02-01

    With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.

  12. Aerial photography flight quality assessment with GPS/INS and DEM data

    Science.gov (United States)

    Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao

    2018-01-01

    The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.

  13. Analysis of Drude model using fractional derivatives without singular kernels

    Directory of Open Access Journals (Sweden)

    Jiménez Leonardo Martínez

    2017-11-01

    Full Text Available We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF, and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.

  14. Hydraulic fracturing - an attempt of DEM simulation

    Science.gov (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  15. An experimentally validated DEM study of powder mixing in a paddle blade mixer

    OpenAIRE

    Pantaleev, Stefan; Yordanova, Slavina; Janda, Alvaro; Marigo, Michele; Ooi, Jin

    2017-01-01

    An investigation on the predictive capabilities of Discrete Element Method simulations of a powder mixing process in a laboratory scale paddle blade mixer is presented. The visco-elasto-plastic frictional adhesive DEM contactmodel of Thakur et al. (2014) was used to represent the cohesive behaviour of an aluminosilicate powder in which the model parameters were determined using experimental flow energy measurements from the FT4powder rheometer. DEM simulations of the mixing process using the ...

  16. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    Directory of Open Access Journals (Sweden)

    K. Wu

    2018-01-01

    Full Text Available Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs. Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM (2000 and from TerraSAR-X/TanDEM-X (2014, this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 % or 0.71 ± 0.06 % a−1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a−1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980–2000, consistent with a warming climate.

  17. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    Science.gov (United States)

    Wu, Kunpeng; Liu, Shiyin; Jiang, Zongli; Xu, Junli; Wei, Junfeng; Guo, Wanqin

    2018-01-01

    Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate) glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs). Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs) derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM) (2000) and from TerraSAR-X/TanDEM-X (2014), this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 %) or 0.71 ± 0.06 % a-1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a-1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980-2000, consistent with a warming climate.

  18. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  19. Inflationary models with non-minimally derivative coupling

    International Nuclear Information System (INIS)

    Yang, Nan; Fei, Qin; Gong, Yungui; Gao, Qing

    2016-01-01

    We derive the general formulae for the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL. (paper)

  20. Large deflection of viscoelastic beams using fractional derivative model

    International Nuclear Information System (INIS)

    Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad

    2013-01-01

    This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.

  1. Large Scale Landform Mapping Using Lidar DEM

    Directory of Open Access Journals (Sweden)

    Türkay Gökgöz

    2015-08-01

    Full Text Available In this study, LIDAR DEM data was used to obtain a primary landform map in accordance with a well-known methodology. This primary landform map was generalized using the Focal Statistics tool (Majority, considering the minimum area condition in cartographic generalization in order to obtain landform maps at 1:1000 and 1:5000 scales. Both the primary and the generalized landform maps were verified visually with hillshaded DEM and an orthophoto. As a result, these maps provide satisfactory visuals of the landforms. In order to show the effect of generalization, the area of each landform in both the primary and the generalized maps was computed. Consequently, landform maps at large scales could be obtained with the proposed methodology, including generalization using LIDAR DEM.

  2. Glacier Volume Change Estimation Using Time Series of Improved Aster Dems

    Science.gov (United States)

    Girod, Luc; Nuth, Christopher; Kääb, Andreas

    2016-06-01

    Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be

  3. GLACIER VOLUME CHANGE ESTIMATION USING TIME SERIES OF IMPROVED ASTER DEMS

    Directory of Open Access Journals (Sweden)

    L. Girod

    2016-06-01

    Full Text Available Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER system embarked on the Terra (EOS AM-1 satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter

  4. Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Tassi, E

    2014-01-01

    We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems

  5. Direct regional quasi-geoid determination using EGM2008 and DEM: A case study for Mainland China and its vicinity areas

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-11-01

    Full Text Available Earth's gravity model (EGM helps people better determine the figure of Earth, which is generally represented by a global geoid. For a considerable amount of practical applications, people use quasi-geoid to approximate the geoid, thus the quasi-geoid is also treated as an important height datum. In this study we revisit the method to directly determine regional quasi-geoid using EGM and digital elevation model (DEM, on the basis of Molodensky theory. According to the method we obtain a 5′ × 5′ quasi-geoid for Mainland China and its vicinity areas, based on the EGM2008 gravitational potential model and the Shuttle Radar Topography Mission (SRTM DEM model. By comparing height anomalies derived from EGM2008 with observations at 70 GPS/leveling points in areas including northwest, mid-west, mid-east and southeast of China, we find that the 5′ × 5′ EGM2008 quasi-geoid well fits the GPS/leveling results, with average deviations less than 10 cm for the selected areas in east China (with mainly plain topography and ∼20 cm for the selected areas in west China (highland or mountainous areas. We also discuss a few technical issues for directly determining height anomalies based on EGM and DEM, under the frame of Molodensky theory.

  6. TanDEM-X the Earth surface observation project from space level - basis and mission status

    Directory of Open Access Journals (Sweden)

    Jerzy Wiśniowski

    2015-03-01

    Full Text Available TanDEM-X is DLR (Deutsches Zentrum für Luft- und Raumfahrt the Earth surface observation project using high-resolution SAR interferometry. It opens a new era in space borne radar remote sensing. The system is based on two satellites: TerraSAR-X (TSX and TanDEM-X (TDX flying on the very close, strictly controlled orbits. This paper gives an overview of the radar technology and overview of the TanDEM-X mission concept which is based on several innovative technologies. The primary objective of the mission is to deliver a global digital elevation model (DEM with an unprecedented accuracy, which is equal to or surpass the HRTI-3 specifications (12 m posting, relative height accuracy ±2 m for slope < 20% and ±4 m for slope > 20% [8]. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications.[b]Keywords[/b]: remote sensing, Bistatic SAR, digital elevation model (DEM, Helix formation, SAR interferomery, HRTI-3, synchronization

  7. Extracting Urban Morphology for Atmospheric Modeling from Multispectral and SAR Satellite Imagery

    Science.gov (United States)

    Wittke, S.; Karila, K.; Puttonen, E.; Hellsten, A.; Auvinen, M.; Karjalainen, M.

    2017-05-01

    This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1) Digital Elevation Model (DEM) and 2) land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP).

  8. EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Wittke

    2017-05-01

    Full Text Available This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1 Digital Elevation Model (DEM and 2 land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP.

  9. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  10. Recent Elevation Changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, Alaska, from ICESat Altimetry, Star-3i Airborne, and SRTM Spaceborne DEMs

    Science.gov (United States)

    Muskett, R. R.; Sauber, J. M.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.; Echelmeyer, K. A.

    2005-12-01

    Three- to 5-year surface elevation changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, in the eastern Chugach and St. Elias Mtns of south-central Alaska, are estimated using ICESat-derived data and digital elevation models (DEMs) derived from interferometric synthetic aperture radar (InSAR) data. The surface elevations of these glaciers are influenced by climatic warming superimposed on surge dynamics (in the case of Bagley Ice Valley) and tidewater glacier dynamics (in the cases of Guyot and Yahtse Glaciers) in this coastal high-precipitation regime. Bagley Ice Valley / Bering Glacier last surged in 1993-95. Guyot and Yahtse Glaciers, as well as the nearby Tyndell Glacier, have experienced massive tidewater retreat during the past century, as well as during recent decades. The ICESat-derived elevation data we employ were acquired in early autumn in both 2003 and 2004. The NASA/NIMA Shuttle Radar Topography Mission (SRTM) DEM that we employ was derived from X-band InSAR data acquired during this 11-22 Feb. 2000 mission and processed by the German Aerospace Center. This DEM was corrected for estimated systematic error, and a mass balance model was employed to account for seasonal snow accumulation. The Star-3i airborne, X-band, InSAR-derived DEM that we employ was acquired 4-13 Sept. 2000 by Intermap Technologies, Inc., and was also processed by them. The ICESat-derived profiles crossing Bagley Ice Valley, differenced with Star-3i DEM elevations, indicate preliminary mean along-profile elevation increases of 5.6 ± 3.4 m at 1315 m altitude, 7.4 ± 2.7 m at 1448 m altitude, 4.7 ± 1.9 m at 1557 m altitude, 1.3 ± 1.4 m at 1774 m altitude, and 2.5 ± 1.5 m at 1781 m altitude. This is qualitatively consistent with the rising surface on Bagley Ice Valley observed by Muskett et al. [2003]. The ICESat-derived profiles crossing Yahtse Glacier, differenced with the SRTM DEM elevations, indicate preliminary mean elevation changes (negative implies decrease) of -0.9 ± 3

  11. Deriving the Dividend Discount Model in the Intermediate Microeconomics Class

    Science.gov (United States)

    Norman, Stephen; Schlaudraff, Jonathan; White, Karianne; Wills, Douglas

    2013-01-01

    In this article, the authors show that the dividend discount model can be derived using the basic intertemporal consumption model that is introduced in a typical intermediate microeconomics course. This result will be of use to instructors who teach microeconomics to finance students in that it demonstrates the value of utility maximization in…

  12. On a derivation of the Salam-Weinberg model

    International Nuclear Information System (INIS)

    Squires, E.J.

    1979-01-01

    It is shown how the graded Lie-algebra structure of a recent derivation of the Salam-Weinberg model might arise from the form of allowed transformations on the lepton lagrangian in a 6-dimensional space. The possibility that the model might allow two identically coupled leptonic sectors, and others in which the chiralites are reversed, are discussed. (Auth.)

  13. Some remarks on the small-distance derivative model

    International Nuclear Information System (INIS)

    Jannussis, A.

    1985-01-01

    In the present work the new expressions of the derivatives for small distance are investigated according to Gonzales-Diaz model. This model is noncanonical, is a particular case of the Lie-admissible formulation and has applications for distance and time scales comparable with the Planck dimensions

  14. State-Space Modelling of Loudspeakers using Fractional Derivatives

    DEFF Research Database (Denmark)

    King, Alexander Weider; Agerkvist, Finn T.

    2015-01-01

    This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...

  15. S1-Leitlinie Lipödem.

    Science.gov (United States)

    Reich-Schupke, Stefanie; Schmeller, Wilfried; Brauer, Wolfgang Justus; Cornely, Manuel E; Faerber, Gabriele; Ludwig, Malte; Lulay, Gerd; Miller, Anya; Rapprich, Stefan; Richter, Dirk Frank; Schacht, Vivien; Schrader, Klaus; Stücker, Markus; Ure, Christian

    2017-07-01

    Die vorliegende überarbeitete Leitlinie zum Lipödem wurde unter der Federführung der Deutschen Gesellschaft für Phlebologie (DGP) erstellt und finanziert. Die Inhalte beruhen auf einer systematischen Literaturrecherche und dem Konsens von acht medizinischen Fachgesellschaften und Berufsverbänden. Die Leitlinie beinhaltet Empfehlungen zu Diagnostik und Therapie des Lipödems. Die Diagnose ist dabei auf der Basis von Anamnese und klinischem Befund zu stellen. Charakteristisch ist eine umschriebene, symmetrisch lokalisierte Vermehrung des Unterhautfettgewebes an den Extremitäten mit deutlicher Disproportion zum Stamm. Zusätzlich finden sich Ödeme, Hämatomneigung und eine gesteigerte Schmerzhaftigkeit der betroffenen Körperabschnitte. Weitere apparative Untersuchungen sind bisher besonderen Fragestellungen vorbehalten. Die Erkrankung ist chronisch progredient mit individuell unterschiedlichem und nicht vorhersehbarem Verlauf. Die Therapie besteht aus vier Säulen, die individuell kombiniert und an das aktuelle Beschwerdebild angepasst werden sollten: komplexe physikalische Entstauungstherapie (manuelle Lymphdrainage, Kompressionstherapie, Bewegungstherapie, Hautpflege), Liposuktion und plastisch-chirurgische Interventionen, Ernährung und körperliche Aktivität sowie ggf. additive Psychotherapie. Operative Maßnahmen sind insbesondere dann angezeigt, wenn trotz konsequent durchgeführter konservativer Therapie noch Beschwerden bestehen bzw. eine Progredienz des Befundes und/oder der Beschwerden auftritt. Eine begleitend zum Lipödem bestehende morbide Adipositas sollte vor einer Liposuktion therapeutisch angegangen werden. © 2017 The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.

  16. COMPARISON AND CO-REGISTRATION OF DEMS GENERATED FROM HiRISE AND CTX IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2016-06-01

    Full Text Available Images from two sensors, the High-Resolution Imaging Science Experiment (HiRISE and the Context Camera (CTX, both on-board the Mars Reconnaissance Orbiter (MRO, were used to generate high-quality DEMs (Digital Elevation Models of the Martian surface. However, there were discrepancies between the DEMs generated from the images acquired by these two sensors due to various reasons, such as variations in boresight alignment between the two sensors during the flight in the complex environment. This paper presents a systematic investigation of the discrepancies between the DEMs generated from the HiRISE and CTX images. A combined adjustment algorithm is presented for the co-registration of HiRISE and CTX DEMs. Experimental analysis was carried out using the HiRISE and CTX images collected at the Mars Rover landing site and several other typical regions. The results indicated that there were systematic offsets between the HiRISE and CTX DEMs in the longitude and latitude directions. However, the offset in the altitude was less obvious. After combined adjustment, the offsets were eliminated and the HiRISE and CTX DEMs were co-registered to each other. The presented research is of significance for the synergistic use of HiRISE and CTX images for precision Mars topographic mapping.

  17. Estuarine Bathymetric Digital Elevation Models (30 meter and 3 arc second resolution) Derived From Source Hydrographic Survey Soundings Collected by NOAA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Bathymetric Digital Elevation Models (DEM) were generated from original point soundings collected during hydrographic surveys conducted by the National Ocean...

  18. Turbulence modeling with fractional derivatives: Derivation from first principles and initial results

    Science.gov (United States)

    Epps, Brenden; Cushman-Roisin, Benoit

    2017-11-01

    Fluid turbulence is an outstanding unsolved problem in classical physics, despite 120+ years of sustained effort. Given this history, we assert that a new mathematical framework is needed to make a transformative breakthrough. This talk offers one such framework, based upon kinetic theory tied to the statistics of turbulent transport. Starting from the Boltzmann equation and ``Lévy α-stable distributions'', we derive a turbulence model that expresses the turbulent stresses in the form of a fractional derivative, where the fractional order is tied to the transport behavior of the flow. Initial results are presented herein, for the cases of Couette-Poiseuille flow and 2D boundary layers. Among other results, our model is able to reproduce the logarithmic Law of the Wall in shear turbulence.

  19. 3D DEM analyses of the 1963 Vajont rock slide

    Science.gov (United States)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  20. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  1. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  2. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  3. Aspects of the derivative coupling model in four dimensions

    International Nuclear Information System (INIS)

    Aste, Andreas

    2014-01-01

    A concise discussion of a 3 + 1-dimensional derivative coupling model, in which a massive Dirac field couples to the four-gradient of a massless scalar field, is given in order to elucidate the role of different concepts in quantum field theory like the regularization of quantum fields as operator-valued distributions, correlation distributions, locality, causality, and field operator gauge transformations. (orig.)

  4. Aspects of the derivative coupling model in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aste, Andreas [University of Basel, Department of Physics, Basel (Switzerland); Paul Scherrer Institute, Villigen (Switzerland)

    2014-01-15

    A concise discussion of a 3 + 1-dimensional derivative coupling model, in which a massive Dirac field couples to the four-gradient of a massless scalar field, is given in order to elucidate the role of different concepts in quantum field theory like the regularization of quantum fields as operator-valued distributions, correlation distributions, locality, causality, and field operator gauge transformations. (orig.)

  5. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...

  6. Modelling ocean-colour-derived chlorophyll a

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2018-01-01

    Full Text Available This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a in this paper. We compare the derived Chl a to the actual model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter. The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation

  7. Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai‘i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011-2013

    Science.gov (United States)

    Poland, Michael P.

    2014-01-01

    Differencing digital elevation models (DEMs) derived from TerraSAR add-on for Digital Elevation Measurements (TanDEM-X) synthetic aperture radar imagery provides a measurement of elevation change over time. On the East Rift Zone (EZR) of Kīlauea Volcano, Hawai‘i, the effusion of lava causes changes in topography. When these elevation changes are summed over the area of an active lava flow, it is possible to quantify the volume of lava emplaced at the surface during the time spanned by the TanDEM-X data—a parameter that can be difficult to measure across the entirety of an ~100 km2 lava flow field using ground-based techniques or optical remote sensing data. Based on the differences between multiple TanDEM-X-derived DEMs collected days to weeks apart, the mean dense-rock equivalent time-averaged discharge rate of lava at Kīlauea between mid-2011 and mid-2013 was approximately 2 m3/s, which is about half the long-term average rate over the course of Kīlauea's 1983–present ERZ eruption. This result implies that there was an increase in the proportion of lava stored versus erupted, a decrease in the rate of magma supply to the volcano, or some combination of both during this time period. In addition to constraining the time-averaged discharge rate of lava and the rates of magma supply and storage, topographic change maps derived from space-based TanDEM-X data provide insights into the four-dimensional evolution of Kīlauea's ERZ lava flow field. TanDEM-X data are a valuable complement to other space-, air-, and ground-based observations of eruptive activity at Kīlauea and offer great promise at locations around the world for aiding with monitoring not just volcanic eruptions but any hazardous activity that results in surface change, including landslides, floods, earthquakes, and other natural and anthropogenic processes.

  8. Time Series of Tropical-Forest Structure from TanDEM-X, Transformed to Time Series of Biomass by MODIS

    Science.gov (United States)

    Treuhaft, R. N.; Baccini, A.; Goncalves, F. G.; Lei, Y.; Keller, M.; Walker, W. S.

    2017-12-01

    Tropical forests account for about 50% of the world's forested biomass, and play a critical role in the control of atmospheric carbon dioxide. Large-scale (1000's of km) changes in forest structure and biomass bear on global carbon source-sink dynamics, while small-scale (phase-height observation, we show forest phase-height time series from the TanDEM-X radar interferometer at X-band (3 cm), taken with monthly and sub-hectare temporal and spatial resolution, respectively. The measurements were taken with more than 30 TanDEM-X passes over Tapajós National Forest in the Brazilian Amazon between 2011 and 2014. The transformation of phase-height rates into aboveground biomass (AGB) rates is based on the idea that the change in AGB due to a change in phase-height depends on the plot's AGB. Plots with higher AGB will produce more AGB for a given increase in height or phase-height. Postulating a power-law dependence of plot-level mass density on physical height, we previously found that the best conversion factors for transforming phase-height rate to AGB rate were indeed dependent on AGB. For 78 plots, we demonstrated AGB rates from InSAR phase-height rates using AGB from field measurements. For regional modeling of the Amazon Basin, field measurements of AGB, to specify the conversion factors, is impractical. Conversion factors from InSAR phase-height rate to AGB rate in this talk will be based on AGB derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). AGB measurement from MODIS is based on the spectral reflectance of 7 bands from the visible to short wave infrared, and auxiliary metrics describing the variance in reflectance. The mapping of MODIS reflectance to AGB is enabled by training a machine learning algorithm with lidar-derived AGB data, which are in turn trained by field measurements for small areas. The performance of TanDEM-X AGB rate from MODIS-derived conversion factors will be compared to that derived from field-based conversion

  9. Operational derivation of Boltzmann distribution with Maxwell's demon model.

    Science.gov (United States)

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-11-24

    The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction.

  10. The role of DEM at CERN

    CERN Document Server

    Van der Bij, E

    2005-01-01

    The DEM group in the Technical Support department provides services for the fabrication of special printed circuits that are invaluable for the whole particle physics community. The capability is based around a core technology that is developed by using skills to etch and process materials that are not commonly used in industry, combined with production methods used in PCB manufacturing. The role of the prototyping facilities is to assist engineers and physicists and to offer them easy access to competencies often not available from industry. At the same time, with the expertise and production capacity available, it makes that CERN is always geared up to handle emergency situations. The design office and the assembly workshop that are also part of DEM have similar roles that lower the cost and improve the quality and maintainability of electronics developed at CERN.

  11. Granular dynamics, contact mechanics and particle system simulations a DEM study

    CERN Document Server

    Thornton, Colin

    2015-01-01

    This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...

  12. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

    Directory of Open Access Journals (Sweden)

    Nguyen Trung Kien

    2017-01-01

    Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

  13. Gauge coupling unification in superstring derived standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1992-11-01

    I discuss gauge coupling unification in a class of superstring standard-like models, which are derived in the free fermionic formulation. Recent calculations indicate that the superstring unification scale is at O(10 18 GeV) while the minimal supersymmetric standard model is consistent with LEP data if the unification scale is at O(10 16 )GeV. A generic feature of the superstring standard-like models is the appearance of extra color triplets (D,D), and electroweak doublets (l,l), in vector-like representations, beyond the supersymmetric standard model. I show that the gauge coupling unification at O(10 18 GeV) in the superstring standard-like models can be consistent with LEP data. I present an explicit standard-like model that can realize superstring gauge coupling unification. (author)

  14. Determination of the hydrological properties of a small-scale catchment area in Northern Greece from ASTER and SRTM DEMs and accuracy assessment with a local DTM

    Science.gov (United States)

    Tzanou, E. A.; Vergos, G. S.

    2012-04-01

    The combined use of Geographic Information Systems and recent high-resolution Digital Elevation Models (DEMs) from Remote Sensing imagery offers a unique opportunity to study the hydrological properties of basin and catchment dynamics and derive the hydrological features of specific regions of various spatial scales. Until recently, the availability of global DEMs was restricted to low-resolution and accuracy models, e.g., ETOPO5, ETOPO2 and GTOPO30, compared to local Digital Terrain Models (DTMs) derived from photogrammetric methods and offered usually in the form of topographic maps of various scales. The advent of the SRTM and ASTER missions, offer some new tools and opportunities in order to use their data within a GIS to study the hydrological properties of basins and consequently validate their performance both amongst each other, as well as in terms of the results derived from a local DTM. The present work focuses on the use of the recent SRTM v2 90 m and ASTER v2 30 m DEMs along with the national 500 m DTM generated by the Hellenic Military Geographic Service (HMGS), within a GIS in order to assess their performance in determining the hydrological properties of basins. To this respect, the ArcHydro extension tool of ArcGIS v9.3 and HEC-GeoRAS v4.3 have been exploited to determine the hydrographic data of the basins under study which are located in Northern Greece. The hydrological characteristics refer to stream geometry, curve number, flooding areas, etc. as well as the topographic characteristics of the basin itself, such as aspect, hillshade, slope e.t.c..

  15. Hamiltonian derivation of the nonhydrostatic pressure-coordinate model

    Science.gov (United States)

    Salmon, Rick; Smith, Leslie M.

    1994-07-01

    In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.

  16. VT Data - Lidar Hydro-flattened DEM (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m and Digital Elevation Model (DEM) dataset of the...

  17. Extraction of Terraces on the Loess Plateau from High-Resolution DEMs and Imagery Utilizing Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Hanqing Zhao

    2017-05-01

    Full Text Available Abstract: Terraces are typical artificial landforms on the Loess Plateau, with ecological functions in water and soil conservation, agricultural production, and biodiversity. Recording the spatial distribution of terraces is the basis of monitoring their extent and understanding their ecological effects. The current terrace extraction method mainly relies on high-resolution imagery, but its accuracy is limited due to vegetation coverage distorting the features of terraces in imagery. High-resolution topographic data reflecting the morphology of true terrace surfaces are needed. Terraces extraction on the Loess Plateau is challenging because of the complex terrain and diverse vegetation after the implementation of “vegetation recovery”. This study presents an automatic method of extracting terraces based on 1 m resolution digital elevation models (DEMs and 0.3 m resolution Worldview-3 imagery as auxiliary information used for object-based image analysis (OBIA. A multi-resolution segmentation method was used where slope, positive and negative terrain index (PN, accumulative curvature slope (AC, and slope of slope (SOS were determined as input layers for image segmentation by correlation analysis and Sheffield entropy method. The main classification features based on DEMs were chosen from the terrain features derived from terrain factors and texture features by gray-level co-occurrence matrix (GLCM analysis; subsequently, these features were determined by the importance analysis on classification and regression tree (CART analysis. Extraction rules based on DEMs were generated from the classification features with a total classification accuracy of 89.96%. The red band and near-infrared band of images were used to exclude construction land, which is easily confused with small-size terraces. As a result, the total classification accuracy was increased to 94%. The proposed method ensures comprehensive consideration of terrain, texture, shape, and

  18. Dem Generation from Close-Range Photogrammetry Using Extended Python Photogrammetry Toolbox

    Science.gov (United States)

    Belmonte, A. A.; Biong, M. M. P.; Macatulad, E. G.

    2017-10-01

    Digital elevation models (DEMs) are widely used raster data for different applications concerning terrain, such as for flood modelling, viewshed analysis, mining, land development, engineering design projects, to name a few. DEMs can be obtained through various methods, including topographic survey, LiDAR or photogrammetry, and internet sources. Terrestrial close-range photogrammetry is one of the alternative methods to produce DEMs through the processing of images using photogrammetry software. There are already powerful photogrammetry software that are commercially-available and can produce high-accuracy DEMs. However, this entails corresponding cost. Although, some of these software have free or demo trials, these trials have limits in their usable features and usage time. One alternative is the use of free and open-source software (FOSS), such as the Python Photogrammetry Toolbox (PPT), which provides an interface for performing photogrammetric processes implemented through python script. For relatively small areas such as in mining or construction excavation, a relatively inexpensive, fast and accurate method would be advantageous. In this study, PPT was used to generate 3D point cloud data from images of an open pit excavation. The PPT was extended to add an algorithm converting the generated point cloud data into a usable DEM.

  19. Novel Thiazole Derivatives of Medicinal Potential: Synthesis and Modeling

    Directory of Open Access Journals (Sweden)

    Nour E. A. Abdel-Sattar

    2017-01-01

    Full Text Available This paper reports on the synthesis of new thiazole derivatives that could be profitably exploited in medical treatment of tumors. Molecular electronic structures have been modeled within density function theory (DFT framework. Reactivity indices obtained from the frontier orbital energies as well as electrostatic potential energy maps are discussed and correlated with the molecular structure. X-ray crystallographic data of one of the new compounds is measured and used to support and verify the theoretical results.

  20. Derivative Geometric Modeling of Basic Rotational Solids on CATIA

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-bao; PAN Zi-jian; ZHU Yu-xiang; LI Jun

    2011-01-01

    Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.

  1. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  2. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?

    Science.gov (United States)

    Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C. L.; Lejeune, P.; Colinet, G.; Degré, A.

    2017-03-01

    Erosion and deposition modelling should rely on field data. Currently these data are seldom available at large spatial scales and/or at high spatial resolution. In addition, conventional erosion monitoring approaches are labour intensive and costly. This calls for the development of new approaches for field erosion data acquisition. As a result of rapid technological developments and low cost, unmanned aerial vehicles (UAV) have recently become an attractive means of generating high resolution digital elevation models (DEMs). The use of UAV to observe and quantify gully erosion is now widely established. However, in some agro-pedological contexts, soil erosion results from multiple processes, including sheet and rill erosion, tillage erosion and erosion due to harvest of root crops. These diffuse erosion processes often represent a particular challenge because of the limited elevation changes they induce. In this study, we propose to assess the reliability and development perspectives of UAV to locate and quantify erosion and deposition in a context of an agricultural watershed with silt loam soils and a smooth relief. Erosion and deposition rates derived from high resolution DEM time series are compared to field measurements. The UAV technique demonstrates a high level of flexibility and can be used, for instance, after a major erosive event. It delivers a very high resolution DEM (pixel size: 6 cm) which allows us to compute high resolution runoff pathways. This could enable us to precisely locate runoff management practices such as fascines. Furthermore, the DEMs can be used diachronically to extract elevation differences before and after a strongly erosive rainfall and be validated by field measurements. While the analysis for this study was carried out over 2 years, we observed a tendency along the slope from erosion to deposition. Erosion and deposition patterns detected at the watershed scale are also promising. Nevertheless, further development in the

  3. Ab initio derivation of model energy density functionals

    International Nuclear Information System (INIS)

    Dobaczewski, Jacek

    2016-01-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)

  4. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  5. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  6. Impact of mesh and DEM resolutions in SEM simulation of 3D seismic response

    NARCIS (Netherlands)

    Khan, Saad; van der Meijde, M.; van der Werff, H.M.A.; Shafique, Muhammad

    2017-01-01

    This study shows that the resolution of a digital elevation model (DEM) and model mesh strongly influences 3D simulations of seismic response. Topographic heterogeneity scatters seismic waves and causes variation in seismic response (am-plification and deamplification of seismic amplitudes) at the

  7. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods

    Science.gov (United States)

    Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.

    2015-01-01

    Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due

  8. Multi-scale sensitivity analysis of pile installation using DEM

    Science.gov (United States)

    Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni

    2017-12-01

    The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.

  9. Yukawa couplings in Superstring derived Standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1991-01-01

    I discuss Yukawa couplings in Standard-like models which are derived from Superstring in the free fermionic formulation. I introduce new notation for the construction of these models. I show how choice of boundary conditions selects a trilevel Yukawa coupling either for +2/3 charged quark or for -1/3 charged quark. I prove this selection rule. I make the conjecture that in this class of standard-like models a possible connection may exist between the requirements of F and D flatness at the string level and the heaviness of the top quark relative to lighter quarks and leptons. I discuss how the choice of boundary conditions determines the non vanishing mass terms for quartic order terms. I discuss the implication on the mass of the top quark. (author)

  10. Multi-factor energy price models and exotic derivatives pricing

    Science.gov (United States)

    Hikspoors, Samuel

    The high pace at which many of the world's energy markets have gradually been opened to competition have generated a significant amount of new financial activity. Both academicians and practitioners alike recently started to develop the tools of energy derivatives pricing/hedging as a quantitative topic of its own. The energy contract structures as well as their underlying asset properties set the energy risk management industry apart from its more standard equity and fixed income counterparts. This thesis naturally contributes to these broad market developments in participating to the advances of the mathematical tools aiming at a better theory of energy contingent claim pricing/hedging. We propose many realistic two-factor and three-factor models for spot and forward price processes that generalize some well known and standard modeling assumptions. We develop the associated pricing methodologies and propose stable calibration algorithms that motivate the application of the relevant modeling schemes.

  11. Evaluation of fracturing process of soft rocks at great depth by AE measurement and DEM simulation

    International Nuclear Information System (INIS)

    Aoki, Kenji; Mito, Yoshitada; Kurokawa, Susumu; Matsui, Hiroya; Niunoya, Sumio; Minami, Masayuki

    2007-01-01

    The authors developed the stress-based evaluation system of EDZ by AE monitoring and Distinct Element Method (DEM) simulation. In order to apply this system to the soft rock site, the authors try to grasp the relationship between AE parameters, stress change and rock fracturing process by performing the high stiffness tri-axial compression tests including AE measurements on the soft rock samples, and its simulations by DEM using bonded particle model. As the result, it is found that change in predominant AE frequency is effective to evaluate fracturing process in sedimentary soft rocks, and the relationship between stress change and fracturing process is also clarified. (author)

  12. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    Science.gov (United States)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  13. Neural assembly models derived through nano-scale measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Branda, Catherine; Schiek, Richard Louis; Warrender, Christina E.; Forsythe, James Chris

    2009-09-01

    This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resulting data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.

  14. Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging

    Czech Academy of Sciences Publication Activity Database

    Prokešová, R.; Kardoš, M.; Tábořík, Petr; Medveďová, A.; Stacke, V.; Chudý, F.

    2014-01-01

    Roč. 224, NOV 1 (2014), s. 86-101 ISSN 0169-555X R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : earthflow * surface displacement * strain modelling * DEM differencing * kinematic behaviour Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.577, year: 2013

  15. IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-07-01

    Full Text Available The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original

  16. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.

    Science.gov (United States)

    Mori, Yoshikazu; Hirokawa, Takatsugu; Aoki, Katsuyuki; Satomi, Hisanori; Takeda, Shuichi; Aburada, Masaki; Miyamoto, Ken-ichi

    2008-05-01

    We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.

  17. Extraction and Validation of Geomorphological Features from EU-DEM in The Vicinity of the Mygdonia Basin, Northern Greece

    Science.gov (United States)

    Mouratidis, Antonios; Karadimou, Georgia; Ampatzidis, Dimitrios

    2017-12-01

    The European Union Digital Elevation Model (EU-DEM) is a relatively new, hybrid elevation product, principally based on SRTM DEM and ASTER GDEM data, but also on publically available Russian topographic maps for regions north of 60° N. More specifically, EU-DEM is a Digital Surface Model (DSM) over Europe from the Global Monitoring for Environment and Security (GMES) Reference Data Access (RDA) project - a realisation of the Copernicus (former GMES) programme, managed by the European Commission/DG Enterprise and Industry. Even if EU-DEM is indeed more reliable in terms of elevation accuracy than its constituents, it ought to be noted that it is not representative of the original elevation measurements, but is rather a secondary (mathematical) product. Therefore, for specific applications, such as those of geomorphological interest, artefacts may be induced. To this end, the purpose of this paper is to investigate the performance of EU-DEM for geomorphological applications and compare it against other available datasets, i.e. topographic maps and (almost) global DEMs such as SRTM, ASTER-GDEM and WorldDEM™. This initial investigation is carried out in Central Macedonia, Northern Greece, in the vicinity of the Mygdonia basin, which corresponds to an area of particular interest for several geoscience applications. This area has also been serving as a test site for the systematic validation of DEMs for more than a decade. Consequently, extensive elevation datasets and experience have been accumulated over the years, rendering the evaluation of new elevation products a coherent and useful exercise on a local to regional scale. In this context, relief classification, drainage basin delineation, slope and slope aspect, as well as extraction and classification of drainage network are performed and validated among the aforementioned elevation sources. The achieved results focus on qualitative and quantitative aspects of automatic geomorphological feature extraction from

  18. Deriving a model for influenza epidemics from historical data.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia

    2011-09-01

    In this report we describe how we create a model for influenza epidemics from historical data collected from both civilian and military societies. We derive the model when the population of the society is unknown but the size of the epidemic is known. Our interest lies in estimating a time-dependent infection rate to within a multiplicative constant. The model form fitted is chosen for its similarity to published models for HIV and plague, enabling application of Bayesian techniques to discriminate among infectious agents during an emerging epidemic. We have developed models for the progression of influenza in human populations. The model is framed as a integral, and predicts the number of people who exhibit symptoms and seek care over a given time-period. The start and end of the time period form the limits of integration. The disease progression model, in turn, contains parameterized models for the incubation period and a time-dependent infection rate. The incubation period model is obtained from literature, and the parameters of the infection rate are fitted from historical data including both military and civilian populations. The calibrated infection rate models display a marked difference in which the 1918 Spanish Influenza pandemic differed from the influenza seasons in the US between 2001-2008 and the progression of H1N1 in Catalunya, Spain. The data for the 1918 pandemic was obtained from military populations, while the rest are country-wide or province-wide data from the twenty-first century. We see that the initial growth of infection in all cases were about the same; however, military populations were able to control the epidemic much faster i.e., the decay of the infection-rate curve is much higher. It is not clear whether this was because of the much higher level of organization present in a military society or the seriousness with which the 1918 pandemic was addressed. Each outbreak to which the influenza model was fitted yields a separate set of

  19. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Science.gov (United States)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  20. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  1. Derivation of Event-B Models from OWL Ontologies

    Directory of Open Access Journals (Sweden)

    Alkhammash Eman H.

    2016-01-01

    Full Text Available The derivation of formal specifications from large and complex requirements is a key challenge in systems engineering. In this paper we present an approach that aims to address this challenge by building formal models from OWL ontologies. An ontology is used in the field of knowledge representation to capture a clear view of the domain and to produce a concise and unambiguous set of domain requirements. We harness the power of ontologies to handle inconsistency of domain requirements and produce clear, concise and unambiguous set of domain requirements for Event-B modelling. The proposed approach works by generating Attempto Controlled English (ACE from the OWL ontology and then maps the ACE requirements to develop Event-B models. ACE is a subset of English that can be unambiguously translated into first-order logic. There is an injective mapping between OWL ontology and a subset of ACE. ACE is a suitable interlingua for producing the mapping between OWL and Event-B models for many reasons. Firstly, ACE is easy to learn and understand, it hides the math of OWL and would be natural to use by everybody. Secondly ACE has a parser that converts ACE texts into Discourse Representation Structures (DRS. Finally, ACE can be extended to target a richer syntactic subset of Event-B which ultimately would facilitate the translation of ACE requirements to Event-B.

  2. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  3. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs

    Science.gov (United States)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Mukhopadhyay, Biswajit

    2014-02-01

    Extraction of watershed areas from Digital Elevation Models (DEMs) is increasingly required in a variety of environmental analyses. It is facilitated by the availability of DEMs based on remotely sensed data, and by Geographical Information System (GIS) software. However, accurate delineation depends on the quality of the DEM and the methodology adopted. This paper considers automated and supervised delineation in a case study of the Upper Indus Basin (UIB), Pakistan, for which published estimates of the basin area show significant disagreement, ranging from 166,000 to 266,000 km2. Automated delineation used ArcGIS Archydro and hydrology tools applied to three good quality DEMs (two from SRTM data with 90m resolution, and one from 30m resolution ASTER data). Automatic delineation defined a basin area of c.440,000 km2 for the UIB, but included a large area of internal drainage in the western Tibetan Plateau. It is shown that discrepancies between different estimates reflect differences in the initial extent of the DEM used for watershed delineation, and the unchecked effect of iterative pit-filling of the DEM (going beyond the filling of erroneous pixels to filling entire closed basins). For the UIB we have identified critical points where spurious addition of catchment area has arisen, and use Google Earth to examine the geomorphology adjacent to these points, and also examine the basin boundary data provided by the HydroSHEDS database. We show that the Pangong Tso watershed and some other areas in the western Tibetan plateau are not part of the UIB, but are areas of internal drainage. Our best estimate of the area of the Upper Indus Basin (at Besham Qila) is 164,867 km2 based on the SRTM DEM, and 164,853 km2 using the ASTER DEM). This matches the catchment area measured by WAPDA SWHP. An important lesson from this investigation is that one should not rely on automated delineation, as iterative pit-filling can produce spurious drainage networks and basins, when

  4. Impacts of DEM resolution and area threshold value uncertainty on ...

    African Journals Online (AJOL)

    ... that DEM resolution influences the selected flow accumulation threshold value; the suitable flow accumulation threshold value increases as the DEM resolution increases, and shows greater variability for basins with lower drainage densities. The link between drainage area threshold value and stream network extraction ...

  5. Protein model discrimination using mutational sensitivity derived from deep sequencing.

    Science.gov (United States)

    Adkar, Bharat V; Tripathi, Arti; Sahoo, Anusmita; Bajaj, Kanika; Goswami, Devrishi; Chakrabarti, Purbani; Swarnkar, Mohit K; Gokhale, Rajesh S; Varadarajan, Raghavan

    2012-02-08

    A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. DemQSAR: predicting human volume of distribution and clearance of drugs.

    Science.gov (United States)

    Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter

    2011-12-01

    In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VD(ss)) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VD(ss) and CL is

  7. Estimating Horizontal Displacement between DEMs by Means of Particle Image Velocimetry Techniques

    Directory of Open Access Journals (Sweden)

    Juan F. Reinoso

    2015-12-01

    Full Text Available To date, digital terrain model (DTM accuracy has been studied almost exclusively by computing its height variable. However, the largely ignored horizontal component bears a great influence on the positional accuracy of certain linear features, e.g., in hydrological features. In an effort to fill this gap, we propose a means of measurement different from the geomatic approach, involving fluid mechanics (water and air flows or aerodynamics. The particle image velocimetry (PIV algorithm is proposed as an estimator of horizontal differences between digital elevation models (DEM in grid format. After applying a scale factor to the displacement estimated by the PIV algorithm, the mean error predicted is around one-seventh of the cell size of the DEM with the greatest spatial resolution, and around one-nineteenth of the cell size of the DEM with the least spatial resolution. Our methodology allows all kinds of DTMs to be compared once they are transformed into DEM format, while also allowing comparison of data from diverse capture methods, i.e., LiDAR versus photogrammetric data sources.

  8. Sediment delivery estimates in water quality models altered by resolution and source of topographic data.

    Science.gov (United States)

    Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T

    2014-01-01

    Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. On the equivalence between the thirring model and a derivative coupling model

    International Nuclear Information System (INIS)

    Gomes, M.; Silva, A.J. da.

    1986-07-01

    The equivalence between the Thirring model and the fermionic sector of the theory of a Dirac field interacting via derivate coupling with two boson fields is analysed. For a certain choice of the parameters the two models have the same fermionic Green functions. (Author) [pt

  10. Fusion of Multi-Source Satellite Data and DEMs to Create a New Glacier Inventory for Novaya Zemlya

    Directory of Open Access Journals (Sweden)

    Philipp Rastner

    2017-11-01

    Full Text Available Monitoring glacier changes in remote Arctic regions are strongly facilitated by satellite data. This is especially true for the Russian Arctic where recently increased optical and SAR satellite imagery (Landsat 8 OLI, Sentinel 1/2, and digital elevation models (TanDEM-X, ArcticDEM are becoming available. These datasets offer new possibilities to create high-quality glacier inventories. Here, we present a new glacier inventory derived from a fusion of multi-source satellite data for Novaya Zemlya in the Russian Arctic. We mainly used Landsat 8 OLI data to automatically map glaciers with the band ratio method. Missing debris-covered glacier parts and misclassified lakes were manually corrected. Whereas perennial snow fields were a major obstacle in glacier identification, seasonal snow was identified and removed using Landsat 5 TM scenes from the year 1998. Drainage basins were derived semi-automatically using the ArcticDEM (gap-filled by the ASTER GDEM V2 and manually corrected using fringes from ALOS PALSAR. The new glacier inventory gives a glacierized area of 22,379 ± 246.16 km2 with 1474 glacier entities >0.05 km2. The region is dominated by large glaciers, as 909 glaciers <0.5 km2 (62% by number cover only 156 ± 1.7 km2 or 0.7% of the area, whereas 49 glaciers >100 km2 (3.3% by number cover 18,724 ± 205.9 km2 or 84%. In total, 41 glaciers are marine terminating covering an area of 16,063.7 ± 118.8 km2. The mean elevation is 596 m for all glaciers in the study region (528 m in the northern part, 641 in the southern part. South-east (north-west facing glaciers cover >35% (20% of the area. For the smaller glaciers in the southern part we calculated an area loss of ~5% (52.5 ± 4.5 km2 from 2001 to 2016.

  11. DFT application for chlorin derivatives photosensitizer drugs modeling

    Science.gov (United States)

    Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.

    2018-04-01

    Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.

  12. Multiscale geomorphometric modeling of Mercury

    Science.gov (United States)

    Florinsky, I. V.

    2018-02-01

    Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.

  13. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  14. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs

    Science.gov (United States)

    Zhang, Xiaojie; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa

    2016-01-01

    Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is a technique that can be used to generate DEMs. But the accuracy of InSAR is greatly limited by geometrical distortions, atmospheric effect, and decorrelations, particularly in mountainous areas, such as western China where no high quality DEM has so far been accomplished. Since each of InSAR DEMs generated using data of different frequencies and baselines has their own advantages and disadvantages, it is therefore very potential to overcome some of the limitations of InSAR by fusing Multi-baseline and Multi-frequency Interferometric Results (MMIRs). This paper proposed a fusion method based on Extended Kalman Filter (EKF), which takes the InSAR-derived DEMs as states in prediction step and the flattened interferograms as observations in control step to generate the final fused DEM. Before the fusion, detection of layover and shadow regions, low-coherence regions and regions with large height error is carried out because MMIRs in these regions are believed to be unreliable and thereafter are excluded. The whole processing flow is tested with TerraSAR-X and Envisat ASAR datasets. Finally, the fused DEM is validated with ASTER GDEM and national standard DEM of China. The results demonstrate that the proposed method is effective even in low coherence areas.

  15. Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    International Nuclear Information System (INIS)

    Fornaciai, A.; Bisson, M.; Mazzarini, F.; Del Carlo, P.; Pasquare, G.

    2009-01-01

    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identify different surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Paven Volcanic Field (PVF). PFV is a Quaternary fissural structure belonging to the black-arc extensional areas of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented [it

  16. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150 Nd

  17. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    Science.gov (United States)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  18. ASPECTS OF DEM GENERATION FROM UAS IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Greiwe

    2013-08-01

    Full Text Available Since a few years, micro UAS (unmanned aerial systems with vertical take off and landing capabilities like quadro- or octocopter are used as sensor platform for Aerophotogrammetry. Since the restricted payload of micro UAS with a total weight up of 5 kg (payload only up to 1.5 kg, these systems are often equipped with small format cameras. These cameras can be classified as amateur cameras and it is often the case, that these systems do not meet the requirements of a geometric stable camera for photogrammetric measurement purposes. However, once equipped with a suitable camera system, an UAS is an interesting alternative to expensive manned flights for small areas. The operating flight height of the above described UAS is about 50 up to 150 meters above ground level. This low flight height lead on the one hand to a very high spatial resolution of the aerial imagery. Depending on the cameras focal length and the sensor's pixel size, the ground sampling distance (GSD is usually about 1 up to 5 cm. This high resolution is useful especially for the automatic generation of homologous tie-points, which are a precondition for the image alignment (bundle block adjustment. On the other hand, the image scale depends on the object's height and the UAV operating height. Objects like mine heaps or construction sites show high variations of the object's height. As a result, operating the UAS with a constant flying height will lead to high variations in the image scale. For some processing approaches this will lead to problems e.g. the automatic tie-point generation in stereo image pairs. As precondition to all DEM generating approaches, first of all a geometric stable camera, sharp images are essentially. Well known calibration parameters are necessary for the bundle adjustment, to control the exterior orientations. It can be shown, that a simultaneous on site camera calibration may lead to misaligned aerial images. Also, the success rate of an automatic tie

  19. A Remote Sensing-Derived Corn Yield Assessment Model

    Science.gov (United States)

    Shrestha, Ranjay Man

    be further associated with the actual yield. Utilizing satellite remote sensing products, such as daily NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m pixel size, the crop yield estimation can be performed at a very fine spatial resolution. Therefore, this study examined the potential of these daily NDVI products within agricultural studies and crop yield assessments. In this study, a regression-based approach was proposed to estimate the annual corn yield through changes in MODIS daily NDVI time series. The relationship between daily NDVI and corn yield was well defined and established, and as changes in corn phenology and yield were directly reflected by the changes in NDVI within the growing season, these two entities were combined to develop a relational model. The model was trained using 15 years (2000-2014) of historical NDVI and county-level corn yield data for four major corn producing states: Kansas, Nebraska, Iowa, and Indiana, representing four climatic regions as South, West North Central, East North Central, and Central, respectively, within the U.S. Corn Belt area. The model's goodness of fit was well defined with a high coefficient of determination (R2>0.81). Similarly, using 2015 yield data for validation, 92% of average accuracy signified the performance of the model in estimating corn yield at county level. Besides providing the county-level corn yield estimations, the derived model was also accurate enough to estimate the yield at finer spatial resolution (field level). The model's assessment accuracy was evaluated using the randomly selected field level corn yield within the study area for 2014, 2015, and 2016. A total of over 120 plot level corn yield were used for validation, and the overall average accuracy was 87%, which statistically justified the model's capability to estimate plot-level corn yield. Additionally, the proposed model was applied to the impact estimation by examining the changes in corn yield

  20. Modeling Anti-HIV Activity of HEPT Derivatives Revisited. Multiregression Models Are Not Inferior Ones

    International Nuclear Information System (INIS)

    Basic, Ivan; Nadramija, Damir; Flajslik, Mario; Amic, Dragan; Lucic, Bono

    2007-01-01

    Several quantitative structure-activity studies for this data set containing 107 HEPT derivatives have been performed since 1997, using the same set of molecules by (more or less) different classes of molecular descriptors. Multivariate Regression (MR) and Artificial Neural Network (ANN) models were developed and in each study the authors concluded that ANN models are superior to MR ones. We re-calculated multivariate regression models for this set of molecules using the same set of descriptors, and compared our results with the previous ones. Two main reasons for overestimation of the quality of the ANN models in previous studies comparing with MR models are: (1) wrong calculation of leave-one-out (LOO) cross-validated (CV) correlation coefficient for MR models in Luco et al., J. Chem. Inf. Comput. Sci. 37 392-401 (1997), and (2) incorrect estimation/interpretation of leave-one-out (LOO) cross-validated and predictive performance and power of ANN models. More precise and fairer comparison of fit and LOO CV statistical parameters shows that MR models are more stable. In addition, MR models are much simpler than ANN ones. For real testing the predictive performance of both classes of models we need more HEPT derivatives, because all ANN models that presented results for external set of molecules used experimental values in optimization of modeling procedure and model parameters

  1. A Novel DEM Approach to Simulate Block Propagation on Forested Slopes

    Science.gov (United States)

    Toe, David; Bourrier, Franck; Dorren, Luuk; Berger, Frédéric

    2018-03-01

    In order to model rockfall on forested slopes, we developed a trajectory rockfall model based on the discrete element method (DEM). This model is able to take the complex mechanical processes at work during an impact into account (large deformations, complex contact conditions) and can explicitly simulate block/soil, block/tree contacts as well as contacts between neighbouring trees. In this paper, we describe the DEM model developed and we use it to assess the protective effect of different types of forest. In addition, we compared it with a more classical rockfall simulation model. The results highlight that forests can significantly reduce rockfall hazard and that the spatial structure of coppice forests has to be taken into account in rockfall simulations in order to avoid overestimating the protective role of these forest structures against rockfall hazard. In addition, the protective role of the forests is mainly influenced by the basal area. Finally, the advantages and limitations of the DEM model were compared with classical rockfall modelling approaches.

  2. Dementia Population Risk Tool (DemPoRT): study protocol for a predictive algorithm assessing dementia risk in the community.

    Science.gov (United States)

    Fisher, Stacey; Hsu, Amy; Mojaverian, Nassim; Taljaard, Monica; Huyer, Gregory; Manuel, Douglas G; Tanuseputro, Peter

    2017-10-24

    The burden of disease from dementia is a growing global concern as incidence increases dramatically with age, and average life expectancy has been increasing around the world. Planning for an ageing population requires reliable projections of dementia prevalence; however, existing population projections are simple and have poor predictive accuracy. The Dementia Population Risk Tool (DemPoRT) will predict incidence of dementia in the population setting using multivariable modelling techniques and will be used to project dementia prevalence. The derivation cohort will consist of elderly Ontario respondents of the Canadian Community Health Survey (CCHS) (2001, 2003, 2005 and 2007; 18 764 males and 25 288 females). Prespecified predictors include sociodemographic, general health, behavioural, functional and health condition variables. Incident dementia will be identified through individual linkage of survey respondents to population-level administrative healthcare databases (1797 and 3281 events, and 117 795 and 166 573 person-years of follow-up, for males and females, respectively, until 31 March 2014). Using time of first dementia capture as the primary outcome and death as a competing risk, sex-specific proportional hazards regression models will be estimated. The 2008/2009 CCHS survey will be used for validation (approximately 4600 males and 6300 females). Overall calibration and discrimination will be assessed as well as calibration within predefined subgroups of importance to clinicians and policy makers. Research ethics approval has been granted by the Ottawa Health Science Network Research Ethics Board. DemPoRT results will be submitted for publication in peer-review journals and presented at scientific meetings. The algorithm will be assessable online for both population and individual uses. ClinicalTrials.gov NCT03155815, pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No

  3. DEM GENERATION FROM HIGH RESOLUTION SATELLITE IMAGES THROUGH A NEW 3D LEAST SQUARES MATCHING ALGORITHM

    Directory of Open Access Journals (Sweden)

    T. Kim

    2012-09-01

    Full Text Available Automated generation of digital elevation models (DEMs from high resolution satellite images (HRSIs has been an active research topic for many years. However, stereo matching of HRSIs, in particular based on image-space search, is still difficult due to occlusions and building facades within them. Object-space matching schemes, proposed to overcome these problem, often are very time consuming and critical to the dimensions of voxels. In this paper, we tried a new least square matching (LSM algorithm that works in a 3D object space. The algorithm starts with an initial height value on one location of the object space. From this 3D point, the left and right image points are projected. The true height is calculated by iterative least squares estimation based on the grey level differences between the left and right patches centred on the projected left and right points. We tested the 3D LSM to the Worldview images over 'Terrassa Sud' provided by the ISPRS WG I/4. We also compared the performance of the 3D LSM with the correlation matching based on 2D image space and the correlation matching based on 3D object space. The accuracy of the DEM from each method was analysed against the ground truth. Test results showed that 3D LSM offers more accurate DEMs over the conventional matching algorithms. Results also showed that 3D LSM is sensitive to the accuracy of initial height value to start the estimation. We combined the 3D COM and 3D LSM for accurate and robust DEM generation from HRSIs. The major contribution of this paper is that we proposed and validated that LSM can be applied to object space and that the combination of 3D correlation and 3D LSM can be a good solution for automated DEM generation from HRSIs.

  4. Currents, HF Radio-derived, Monterey Bay, Normal Model, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements, with missing values filled in by a normal model....

  5. VT USGS NED Hydro-flattened DEM (30 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VTHYDRODEM was created to produce a "hydrologically correct" DEM, compliant with the Vermont Hydrography Dataset (VHD) in support of the "flow...

  6. An Overview of the CapDEM Integrated Engineering Environment

    National Research Council Canada - National Science Library

    Lam, Sylvia; Poursina, Shiva; Spafford, Tim

    2005-01-01

    In order to gain a better understanding of the approach and the technology requirements to support collaborative engineering activities, the Collaborative Capability Definition, Engineering and Management (CapDEM...

  7. A model for acoustic absorbent materials derived from coconut fiber

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2014-03-01

    Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.

  8. RADAR INTERFEROMETRY APPLICATION FOR DIGITAL ELEVATION MODEL IN MOUNT BROMO, INDONESIA

    Directory of Open Access Journals (Sweden)

    Noorlaila Hayati

    2015-06-01

    Full Text Available This paper reviewed the result and processing of digital elevation model (DEM using L-Band ALOS PALSAR data and two-pass radar interferometry method in Bromo Mountain region. Synthetic Aperture Radar is an advanced technology that has been used to monitor deformation, land cover change, image detection and especially topographic information such as DEM.  We used two scenes of SAR imageries to generate DEM extraction which assumed there is no deformation effect between two acquisitions. We could derive topographic information using phase difference by combining two single looks complex (SLC images called focusing process. The next steps were doing interferogram generation, phase unwrapping and geocoding. DEM-InSAR was compared to SRTM 90m that there were significant elevation differences between two DEMs such as smoothing surface and detail topographic. Particularly for hilly areas, DEM-InSAR showed better quality than SRTM 90 m where the elevation could have 25.94 m maximum gap. Although the processing involved adaptive filter to amplify the phase signal, we concluded that InSAR DEM result still had error noise because of signal wavelength, incidence angle, SAR image relationship, and only using ascending orbit direction.

  9. Ice shelf melt rates in Greenland and Antarctica using time-tagged digital imagery from World View and TanDEM-X

    Science.gov (United States)

    Charolais, A.; Rignot, E. J.; Milillo, P.; Scheuchl, B.; Mouginot, J.

    2017-12-01

    The floating extensions of glaciers, or ice shelves, melt vigorously in contact with ocean waters. Melt is non uniform, with the highest melt taking place in the deepest part of the cavity, where thermal forcing is the greatest because of 1) the pressure dependence of the freezing point of the seawater/ice mixture and 2) subglacial water injects fresh, buoyant, cold melt water to fuel stronger ice-ocean interactions. Melt also forms along preferential channels, which are not stationary, and create lines of weakness in the shelf. Ice shelf melt rates have been successfully measured from space over the entire Antarctic continent and on the ice shelves in Greenland using an Eulerian approach that combines ice thickness, ice velocity vectors, surface mass balance data, and measurements of ice thinning rates. The Eulerian approach is limited by the precision of the thickness gradients, typically of a few km, and requires significant spatial averaging to remove advection effects. A Lagrangian approach has been shown to be robust to advection effects and provides higher resolution details. We implemented a Lagrangian methodology for time-tagged World View DEMs by the Polar Geoscience Center (PGS) at the University of Minnesota and time-tagged TanDEM-X DEMs separated by one year. We derive melt rates on a 300-m grid with a precision of a few m/yr. Melt is strongest along grounding lines and along preferred channels. Channels are non-stationary because melt is not the same on opposite sides of the channels. Examining time series of data and comparing with the time-dependent grounding line positions inferred from satellite radar interferometry, we evaluate the magnitude of melt near the grounding line and even within the grounding zone. A non-zero melt rate in the grounding zone has vast implications for ice sheet modeling. This work is funded by a grant from NASA Cryosphere Program.

  10. Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension

    Directory of Open Access Journals (Sweden)

    Claus Altmayer

    2015-03-01

    Full Text Available Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension (Teil 2 von Bernt Ahrenholz (Hrsg. (2009, Empirische Befunde zu DaZ-Erwerb und Sprachförderung. Beiträge aus dem 3. ‚Workshop Kinder mit Migrationshintergrund‘; Karen Schramm & Christoph Schröder (Hrsg. (2009, Empirische Zugänge zu Spracherwerb und Sprachförderung in Deutsch als Zweitsprache; Stefan Jeuk (2010, Deutsch als Zweitsprache in der Schule. Grundlagen - Diagnose – Förderung

  11. Combined SDO/AIA, Hinode/XRT and FOXSI-2 microflare observations - DEM analysis and energetics

    Science.gov (United States)

    Panchapakesan, S. A.; Glesener, L.; Vievering, J. T.; Ryan, D.; Christe, S.; Inglis, A. R.; Buitrago-Casas, J. C.; Musset, S.; Krucker, S.

    2017-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket makes directimaging and spectral observation of the Sun in hard X-rays (HXRs) using highlysensitive focusing HXR optics. The second flight of FOXSI was launchedsuccessfully on 11 December 2014 and observed significant HXR emissions duringmicroflares. Some of these flares showed heating up to severalmillion Kelvin and were visible in the Extreme Ultraviolet (EUV) with the AtmosphericImaging Assembly (SDO/AIA). Spectral observations from FOXSI suggest emission upto 10-12 MK. We utilize SDO/AIA EUV, Hinode/XRT soft X-ray, and FOXSI-2 highenergy X-ray observations to derive the differential emission measure (DEM) ofthe microflares. The AIA and XRT observations provide broad temperaturecoverage but are poorly constrained at the hotter end. We therefore use FOXSI-2to better determine the high temperature component, thus producing a moreconstrained DEM than is possible with typically available observations. We usethis more highly constrained DEM to investigate the energetics of the observedmicroflares.

  12. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  13. All you need is shape: Predicting shear banding in sand with LS-DEM

    Science.gov (United States)

    Kawamoto, Reid; Andò, Edward; Viggiani, Gioacchino; Andrade, José E.

    2018-02-01

    This paper presents discrete element method (DEM) simulations with experimental comparisons at multiple length scales-underscoring the crucial role of particle shape. The simulations build on technological advances in the DEM furnished by level sets (LS-DEM), which enable the mathematical representation of the surface of arbitrarily-shaped particles such as grains of sand. We show that this ability to model shape enables unprecedented capture of the mechanics of granular materials across scales ranging from macroscopic behavior to local behavior to particle behavior. Specifically, the model is able to predict the onset and evolution of shear banding in sands, replicating the most advanced high-fidelity experiments in triaxial compression equipped with sequential X-ray tomography imaging. We present comparisons of the model and experiment at an unprecedented level of quantitative agreement-building a one-to-one model where every particle in the more than 53,000-particle array has its own avatar or numerical twin. Furthermore, the boundary conditions of the experiment are faithfully captured by modeling the membrane effect as well as the platen displacement and tilting. The results show a computational tool that can give insight into the physics and mechanics of granular materials undergoing shear deformation and failure, with computational times comparable to those of the experiment. One quantitative measure that is extracted from the LS-DEM simulations that is currently not available experimentally is the evolution of three dimensional force chains inside and outside of the shear band. We show that the rotations on the force chains are correlated to the rotations in stress principal directions.

  14. Knowledge discovery from models of soil properties developed through data mining

    NARCIS (Netherlands)

    Bui, E.N.; Henderson, B.L.; Viergever, K.

    2006-01-01

    We modelled the distribution of soil properties across the agricultural zone on the Australian continent using data mining and knowledge discovery from databases (DM&KDD) tools. Piecewise linear tree models were built choosing from 19 climate variables, digital elevation model (DEM) and derived

  15. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  16. Combined DEM Extration Method from StereoSAR and InSAR

    Science.gov (United States)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  17. Calculation of emissions into rivers in Germany using the MONERIS model. Nutrients, heavy metals and polycyclic aromatic hydrocarbons; Berechnung von Stoffeintraegen in die Fliessgewaesser Deutschlands mit dem Modell MONERIS. Naehrstoffe, Schwermetalle und Polyzyklische aromatische Kohlenwasserstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Stephan; Scherer, Ulrike; Wander, Ramona [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Wasser und Gewaesserentwicklung; Behrendt, Horst; Venohr, Markus; Optiz, Dieter [Leibniz-Institut fuer Gewaesseroekologie und Binnenfischerei im Forschungsverbund Berlin e.V., Berlin (Germany); Hillenbrand, Thomas; Marscheider-Weidemann, Frank; Goetz, Thomas [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (Germany)

    2010-09-15

    The aim of both projects was a methodological development of the MONERIS model to quantify emissions from point and diffuse sources into Germany's surface waters. Both projects are based on consistent sub-basins and the according basic data as well as homogenous calculation algorithms that are adapted to the specifications of each substance group. The research encompasses Germany's large river basins as well as their catchment areas outside Germany and in total covers an area of 650,000 km{sup 2}. This was divided into 3456 analytical units (2759 of those in Germany), the average catchment areas being 190 km{sup 2} (135 km{sup 2} in Germany). All input data was collected and preprocessed with the highest spatial and temporal resolution possible based on the detailed topology. The modelling was performed in individual annual steps for the period between 1983-2005. For the evaluation of the temporal trends the data was aggregated for the periods 1983-1987 (''1985''), 1993-1997 (''1995''), 1998-2002 (''2000'') and 2003-2005 (''2005'') to soften the impact of hydrological influences. The basic data and model results for all sub-basins, years and substance groups of both projects were merged into one database. Additionally, a web-based graphical user interface was developed to visualise the emissions for any area aggregation can be visualised. The completion of both projects delivered for the first time ever homogenous instruments that can identify the most important sources and contamination hotspots for different relevant substance groups in larger river basins which can then serve as a basis for further analyses to achieve efficient measures to reduce pollution. (orig.)

  18. The Arbitrage Pricing Model: A Pedagogic Derivation and a Spreadsheet-Based Illustration

    Directory of Open Access Journals (Sweden)

    Clarence C. Y. Kwan

    2016-05-01

    Full Text Available This paper derives, from a pedagogic perspective, the Arbitrage Pricing Model, which is an important asset pricing model in modern finance. The derivation is based on the idea that, if a self-financed investment has no risk exposures, the payoff from the investment can only be zero. Microsoft Excel plays an important pedagogic role in this paper. The Excel illustration not only helps students recognize more fully the various nuances in the model derivation, but also serves as a good starting point for students to explore on their own the relevance of the noise issue in the model derivation.

  19. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  20. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  1. CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solids phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.

  2. Experimental dem Extraction from Aster Stereo Pairs and 3d Registration Based on Icesat Laser Altimetry Data in Upstream Area of Lambert Glacier, Antarctica

    Science.gov (United States)

    Hai, G.; Xie, H.; Chen, J.; Chen, L.; Li, R.; Tong, X.

    2017-09-01

    DEM Extraction from ASTER stereo pairs and three-dimensional registration by reference to ICESat laser altimetry data are carried out in upstream area of Lambert Glacier, East Antarctica. Since the study area is located in inland of East Antarctica where few textures exist, registration between DEM and ICESat data is performed. Firstly, the ASTER DEM generation is based on rational function model (RFM) and the procedure includes: a) rational polynomial coefficient (RPC) computation from ASTER metadata, b) L1A image product de-noise and destriping, c) local histogram equalization and matching, d) artificial collection of tie points and bundle adjustment, and e) coarse-to-fine hierarchical matching of five levels and grid matching. The matching results are filtered semi-automatically. Hereafter, DEM is interpolated using spline method with ground points converted from matching points. Secondly, the generated ASTER DEM is registered to ICESat data in three-dimensional space after Least-squares rigid transformation using singular value decomposition (SVD). The process is stated as: a) correspondence selection of terrain feature points from ICESat and DEM profiles, b) rigid transformation of generated ASTER DEM using selected feature correspondences based on least squares technique. The registration shows a good result that the elevation difference between DEM and ICESat data is low with a mean value less than 2 meters and the standard deviation around 7 meters. This DEM is generated and specially registered in Antarctic typical region without obvious ground rock control points and serves as true terrain input for further radar altimetry simulation.

  3. Investigating the global transport of trace species and the stratoshere-troposphere-exchange with the Lagrangian model ECHAM4/ATTILA; Untersuchungen zum globalen Spurenstofftransport und Stratosphaeren-Troposphaeren-Austausch mit dem Lagrangeschen Modell ECHAM4/ATTILA

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.

    2001-07-01

    Investigating the chemical composition of the atmosphere and its influence on the global climate involves a large number of trace species. Therefore, the Lagrangian transport scheme ATTILA has been developed in this thesis. ATTILA runs online in the general circulation model ECHAM4 and, thus, can be used efficiently for studies involving many tracers. The present study discusses the problems which arise when applying Lagrangian methods on long range and global scale, and describes in detail the solutions developed for ATTILA. Transport experiments with both short-lived and long-lived tracers clearly show that ATTILA is numerically much less diffusive than the operational semi-Lagrangian scheme of ECHAM. It could be shown that the enhanced meridional transport in the tropopause region and the overestimated downward flux through the tropopause in ECHAM are rather due to the numerical properties of the semi-Lagrangian scheme than due to an incorrect circulation. Furthermore, the stratospheric dynamics has been investigated in this study by analysing trajectories and by calculating age spectra and mass fluxes. (orig.)

  4. Influence of different DEMs on the quality of the InSAR results: case study over Bankya and Mirovo areas

    Science.gov (United States)

    Nikolov, Hristo; Atanasova, Mila

    2017-10-01

    information could be supplemented by adding such from Sentinel-1 derived by us. During this research two local DEMs have been extracted from the tiles including the areas of investigation, one using SRTM data and one from ASTER, and after this procedure both were compared to the DEM gathered by leveling measurements. Finally conclusions are drawn and a direction for future research steps is provided.

  5. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-01-01

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ☉

  6. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  7. DEM Simulation of Particle Stratification and Segregation in Stockpile Formation

    Directory of Open Access Journals (Sweden)

    Zhang Dizhe

    2017-01-01

    Full Text Available Granular stockpiles are commonly observed in nature and industry, and their formation has been extensively investigated experimentally and mathematically in the literature. One of the striking features affecting properties of stockpiles are the internal patterns formed by the stratification and segregation processes. In this work, we conduct a numerical study based on DEM (discrete element method model to study the influencing factors and triggering mechanisms of these two phenomena. With the use of a previously developed mixing index, the effects of parameters including size ratio, injection height and mass ratio are investigated. We found that it is a void-filling mechanism that differentiates the motions of particles with different sizes. This mechanism drives the large particles to flow over the pile surface and segregate at the pile bottom, while it also pushes small particles to fill the voids between large particles, giving rise to separate layers. Consequently, this difference in motion will result in the observed stratification and segregation phenomena.

  8. Algumas anedotas sobre Demóstenes: uma releitura

    Directory of Open Access Journals (Sweden)

    Maddalena Vallozza

    2013-06-01

    Full Text Available Muitas das anedotas sobre Demóstenes estão relacionados a seus problemas de voz e a suas dificuldades no momento da hypokrisis. Eu proponho uma reinterpretação das páginas em que eles nos são transmitidos: de Quintiliano (11, 3, a principal testemunha, a Cícero (Orator 26 e 56-58, Brutus 142, De Oratore I 261 e III 213, do autor da seção sobre Demóstenes nas Vidas dos Dez Oradores (844 d-845 b à Vida de Demóstene, de Plutarco. Com base nisso, particularmente graças a Plutarco, que cita Hermipo e Demétrio de Fáleros, é possível formular a hipótese de que a tradição nasceu no Perípato, na área de interesses pela hypokrisis que demonstram o perdido Perì hypokríseos de Teofrasto e os fragmentos da Retórica de Demétrio de Fáleros.

  9. Empirically derived neighbourhood rules for urban land-use modelling

    DEFF Research Database (Denmark)

    Hansen, Henning Sten

    2012-01-01

    Land-use modelling and spatial scenarios have gained attention as a means to meet the challenge of reducing uncertainty in spatial planning and decision making. Many of the recent modelling efforts incorporate cellular automata to accomplish spatially explicit land-use-change modelling. Spatial...

  10. Flat directions in left-right symmetric string derived models

    International Nuclear Information System (INIS)

    Cleaver, Gerald B.; Clements, David J.; Faraggi, Alon E.

    2002-01-01

    The only string models known to reproduce the minimal supersymmetric standard model in the low energy effective field theory are those constructed in the free fermionic formulation. We demonstrate the existence of quasirealistic free fermionic heterotic string models in which supersymmetric singlet flat directions do not exist. This raises the possibility that supersymmetry is broken perturbatively in such models by the one-loop Fayet-Iliopoulos term. We show, however, that supersymmetric flat directions that utilize vacuum expectation values of some non-Abelian fields in the massless string spectrum do exist in the model. We argue that hidden sector condensates lift the flat directions and break supersymmetry hierarchically

  11. Numerical Investigation of Simultaneously Deposition and Re-Entrainment Fouling Processes in Corrugated Tubes by Coupling CFD and DEM

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Computational Fluid Dynamics (CFD) software OpenFOAM is coupled to the Discrete Element Method (DEM) software LIGGGHTS using the coupling software CFDEM. A four-way coupling is used to model fluid-particle and particle-particle interactions and thereby allowing for a particle fouling layer to build up along...

  12. Drainage network extraction from a high-resolution DEM using parallel programming in the .NET Framework

    Science.gov (United States)

    Du, Chao; Ye, Aizhong; Gan, Yanjun; You, Jinjun; Duan, Qinyun; Ma, Feng; Hou, Jingwen

    2017-12-01

    High-resolution Digital Elevation Models (DEMs) can be used to extract high-accuracy prerequisite drainage networks. A higher resolution represents a larger number of grids. With an increase in the number of grids, the flow direction determination will require substantial computer resources and computing time. Parallel computing is a feasible method with which to resolve this problem. In this paper, we proposed a parallel programming method within the .NET Framework with a C# Compiler in a Windows environment. The basin is divided into sub-basins, and subsequently the different sub-basins operate on multiple threads concurrently to calculate flow directions. The method was applied to calculate the flow direction of the Yellow River basin from 3 arc-second resolution SRTM DEM. Drainage networks were extracted and compared with HydroSHEDS river network to assess their accuracy. The results demonstrate that this method can calculate the flow direction from high-resolution DEMs efficiently and extract high-precision continuous drainage networks.

  13. Investigation of the fluidized bed-chemical vapor deposition (FBCVD) process using CFD-DEM method

    International Nuclear Information System (INIS)

    Liu Malin; Liu Rongzheng; Wen Yuanyun; Liu Bing; Shao Youlin

    2014-01-01

    The CFD-DEM-CVD multiscale coupling simulation concept was proposed based on the mass/momentum/energy transfer involved in the FB-CVD process. The pyrolysis process of the reaction gas in the spouted bed can be simulated by CFD method, then the concentration field and velocity field can be extracted and coupled with the particle movement behavior which can be simulated by DEM. Particle deposition process can be described by the CVD model based on particle position, velocity and neighboring gas concentration. This multiscale coupling method can be implemented in the Fluent@-EDEM@ software with their UDF (User Definition Function) and API (Application Programming Interface). Base on the multiscale coupling concept, the criterion for evaluating FB-CVD process is given. At first, the volume in the coating furnace is divided into two parts (active coating area and non-active coating area) based on simulation results of chemical pyrolysis process. Then the residence time of all particles in the active coating area can be obtained using the CFD-DEM simulation method. The residence time distribution can be used as a criterion for evaluating the gas-solid contact efficiency and operation performance of the coating furnace. At last different coating parameters of the coating furnace are compared based on the proposed criterion. And also, the future research emphasis is discussed. (author)

  14. KAJIAN PEMANFAATAN DEM SRTM & GOOGLE EARTH UNTUK PARAMETER PENILAIAN POTENSI KERUGIAN EKONOMI AKIBAT BANJIR ROB

    Directory of Open Access Journals (Sweden)

    Arief L Nugraha

    2013-12-01

    Full Text Available Tidal flood is a significant threat for the economic growth rate in the city of Semarang. The threat mitigation requires planning, thereby reducing the impact of the losses. The availability of global data with free access can provide solutions in disaster management, the data are SRTM DEM and Google Earth. With both of these data can be mapped potential economic losses caused by tidal flooding. With the techniques of remote sensing and GIS to handle the SRTM DEM data and Google Earth, the techniques can be generated maps and models of tidal inundation area maps woke up in the city of Semarang. Analysis of potential economic losses can be calculated by doing an overlay of the two maps generated. The results achieved from this study is SRTM DEM and Google Earth can able to produce thematic maps of situational tidal flood disaster so that it can be used as a parameter value calculation of the potential economic losses. This study also obtain the result that the area of ​​land affected by the tidal flood an area of ​​8339.31 hectares and the number of buildings reaching 78 299 pieces, which the district that has the highest impact on the tidal flood that North Semarang.

  15. UV Stellar Distribution Model for the Derivation of Payload

    Directory of Open Access Journals (Sweden)

    Young-Jun Choi

    1999-12-01

    Full Text Available We present the results of a model calculation of the stellar distribution in a UV and centered at 2175Å corresponding to the well-known bump in the interstellar extinction curve. The stellar distribution model used here is based on the Bahcall-Soneira galaxy model (1980. The source code for model calculation was designed by Brosch (1991 and modified to investigate various designing factors for UV satellite payload. The model predicts UV stellar densities in different sky directions, and its results are compared with the TD-1 star counts for a number of sky regions. From this study, we can determine the field of view, size of optics, angular resolution, and number of stars in one orbit. There will provide the basic constrains in designing a satellite payload for UV observations.

  16. One loop beta functions and fixed points in higher derivative sigma models

    International Nuclear Information System (INIS)

    Percacci, Roberto; Zanusso, Omar

    2010-01-01

    We calculate the one loop beta functions of nonlinear sigma models in four dimensions containing general two- and four-derivative terms. In the O(N) model there are four such terms and nontrivial fixed points exist for all N≥4. In the chiral SU(N) models there are in general six couplings, but only five for N=3 and four for N=2; we find fixed points only for N=2, 3. In the approximation considered, the four-derivative couplings are asymptotically free but the coupling in the two-derivative term has a nonzero limit. These results support the hypothesis that certain sigma models may be asymptotically safe.

  17. Rigorous theoretical derivation of lumped models to transmission line systems

    International Nuclear Information System (INIS)

    Zhao Jixiang

    2012-01-01

    By virtue of the negative electric parameter concept, i.e. negative lumped resistance, inductance, conductance and capacitance (N-RLGC), the lumped equivalent models of transmission line systems, including the circuit model, two-port π-network and T-network, are given. We start from the N-segment-ladder-like equivalent networks composed distributed parameters, and achieve the input impedance in the form of a continued fraction. Utilizing the continued fraction theory, the expressions of input impedance are obtained under three kinds of extreme cases, i.e. the load impedances are equal to zero, infinity and characteristic impedance, respectively. When the number of segment N is limited to infinity, they are transformed to lumped elements. Comparison between the distributed model and lumped model of transmission lines, the expression of tanh γd, which is the key term in the transmission line equations, are obtained by RLGC, furthermore, according to input admittance, admittance matrix and ABCD matrix of transmission lines, the lumped equivalent circuit models, π-networks and T-networks have been given. The models are verified in the frequency and time domain, respectively, showing that the models are accurate and efficient. (semiconductor integrated circuits)

  18. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    observed properties of variance swap dynamics and allows for jumps in volatility and returns. An affine specification using L´evy processes as building blocks leads to analytically tractable pricing formulas for options on variance swaps as well as efficient numerical methods for pricing of European......We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... options on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options...

  19. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  20. A hidden markov model derived structural alphabet for proteins.

    Science.gov (United States)

    Camproux, A C; Gautier, R; Tufféry, P

    2004-06-04

    Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction.

  1. Modeling spot markets for electricity and pricing electricity derivatives

    Science.gov (United States)

    Ning, Yumei

    Spot prices for electricity have been very volatile with dramatic price spikes occurring in restructured market. The task of forecasting electricity prices and managing price risk presents a new challenge for market players. The objectives of this dissertation are: (1) to develop a stochastic model of price behavior and predict price spikes; (2) to examine the effect of weather forecasts on forecasted prices; (3) to price electricity options and value generation capacity. The volatile behavior of prices can be represented by a stochastic regime-switching model. In the model, the means of the high-price and low-price regimes and the probabilities of switching from one regime to the other are specified as functions of daily peak load. The probability of switching to the high-price regime is positively related to load, but is still not high enough at the highest loads to predict price spikes accurately. An application of this model shows how the structure of the Pennsylvania-New Jersey-Maryland market changed when market-based offers were allowed, resulting in higher price spikes. An ARIMA model including temperature, seasonal, and weekly effects is estimated to forecast daily peak load. Forecasts of load under different assumptions about weather patterns are used to predict changes of price behavior given the regime-switching model of prices. Results show that the range of temperature forecasts from a normal summer to an extremely warm summer cause relatively small increases in temperature (+1.5%) and load (+3.0%). In contrast, the increases in prices are large (+20%). The conclusion is that the seasonal outlook forecasts provided by NOAA are potentially valuable for predicting prices in electricity markets. The traditional option models, based on Geometric Brownian Motion are not appropriate for electricity prices. An option model using the regime-switching framework is developed to value a European call option. The model includes volatility risk and allows changes

  2. Comparing pharmacophore models derived from crystallography and NMR ensembles

    Science.gov (United States)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.

  3. Algorithm for Financial Derivatives Evaluation in a Generalized Multi-Heston Model

    Directory of Open Access Journals (Sweden)

    Dan Negura

    2013-02-01

    Full Text Available In this paper we show how could a financial derivative be estimated based on an assumed Multi-Heston model support.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model

  4. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    Science.gov (United States)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  5. Calculus for cognitive scientists derivatives, integrals and models

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book provides a self-study program on how mathematics, computer science and science can be usefully and seamlessly intertwined. Learning to use ideas from mathematics and computation is essential for understanding approaches to cognitive and biological science. As such the book covers calculus on one variable and two variables and works through a number of interesting first-order ODE models. It clearly uses MatLab in computational exercises where the models cannot be solved by hand, and also helps readers to understand that approximations cause errors – a fact that must always be kept in mind.

  6. Understanding forest-derived biomass supply with GIS modelling

    DEFF Research Database (Denmark)

    Hock, B. K.; Blomqvist, L.; Hall, P.

    2012-01-01

    distribution, and the cost of delivery as forests are frequently remote from energy users. A GIS-based model was developed to predict supply curves of forest biomass material for a site or group of sites, both now and in the future. The GIS biomass supply model was used to assist the New Zealand Energy...... Efficiency and Conservation Authority's development of a national target for biomass use for industrial heat production, to determine potential forest residue volumes for industrial heat and their delivery costs for 19 processing plants of the dairy company Fonterra, and towards investigating options...

  7. Using statistical compatibility to derive advanced probabilistic fatigue models

    Czech Academy of Sciences Publication Activity Database

    Fernández-Canteli, A.; Castillo, E.; López-Aenlle, M.; Seitl, Stanislav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1131-1140 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue models * Statistical compatibility * Functional equations Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Deriving vehicle-to-grid business models from consumer preferences

    NARCIS (Netherlands)

    Bohnsack, René; van den Hoed, Robert; Oude Reimer, Hugo

    2015-01-01

    Combining electric cars with utility services seems to be a natural fit and holds the promise to tackle various mobility as well as electricity challenges at the same time. So far no viable business model for vehicle-to-grid technology has emerged, raising the question which characteristics a

  9. Derivation of Monotone Decision Models from Non-Monotone Data

    NARCIS (Netherlands)

    Daniëls, H.A.M.; Velikova, M.V.

    2003-01-01

    The objective of data mining is the extraction of knowledge from databases. In practice, one often encounters difficulties with models that are constructed purely by search, without incorporation of knowledge about the domain of application.In economic decision making such as credit loan approval or

  10. A fractal derivative constitutive model for three stages in granite creep

    Directory of Open Access Journals (Sweden)

    R. Wang

    Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation

  11. Strategies to Automatically Derive a Process Model from a Configurable Process Model Based on Event Data

    Directory of Open Access Journals (Sweden)

    Mauricio Arriagada-Benítez

    2017-10-01

    Full Text Available Configurable process models are frequently used to represent business workflows and other discrete event systems among different branches of large organizations: they unify commonalities shared by all branches and describe their differences, at the same time. The configuration of such models is usually done manually, which is challenging. On the one hand, when the number of configurable nodes in the configurable process model grows, the size of the search space increases exponentially. On the other hand, the person performing the configuration may lack the holistic perspective to make the right choice for all configurable nodes at the same time, since choices influence each other. Nowadays, information systems that support the execution of business processes create event data reflecting how processes are performed. In this article, we propose three strategies (based on exhaustive search, genetic algorithms and a greedy heuristic that use event data to automatically derive a process model from a configurable process model that better represents the characteristics of the process in a specific branch. These strategies have been implemented in our proposed framework and tested in both business-like event logs as recorded in a higher educational enterprise resource planning system and a real case scenario involving a set of Dutch municipalities.

  12. Quality of terrestrial data derived from UAV photogrammetry: a case study of the Hetao irrigation district in northern China

    Science.gov (United States)

    Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Violette

    2017-04-01

    Most crops in northern China are irrigated, but the topography affects water use, soil erosion, runoff and yields,. Technologies for collecting high-resolution topographic data are essential for adequately assessing these effects. Ground surveys and techniques of light detection and ranging have good accuracy, but data acquisition can be time-consuming and expensive for large catchments. Recent rapid technological development has provided new, flexible, high-resolution methods for collecting topographic data, such as photogrammetry using unmanned aerial vehicles (UAVs). The accuracy of UAV photogrammetry for generating high-resolution digital elevation models (DEMs) and for determining the width of irrigation channels, however, has not been assessed. We used a fixed-wing UAV for collecting high-resolution (0.15 m) topographic data for the Hetao irrigation district, the third largest irrigation district in China. We surveyed 112 ground checkpoints (GCPs) using a real-time kinematic global positioning system to evaluate the accuracy of the DEMs and channel widths. A comparison of manually measured channel widths with the widths derived from the DEMs indicated that the DEM-derived widths had vertical and horizontal root mean square errors of 13.0 and 7.9 cm, respectively. UAV photogrammetric data can thus be used for land surveying, digital mapping, calculating channel capacity, monitoring crops, and predicting yields, with the advantages of economy, speed, and ease.

  13. ASTER Global DEM contribution to GEOSS demonstrates open data sharing

    Science.gov (United States)

    Sohre, T.; Duda, K. A.; Meyer, D. J.; Behnke, J.; Nasa Esdis Lp Daac

    2010-12-01

    across all the GEOSS Societal Benefit areas was shown. The release of the global tiled research-grade DEM resulted in a significant increase in demand for ASTER elevation models, and increased awareness of related products. No cost access to these data has also promoted new applications of remotely sensed data, increasing their use across the full range of the GEOSS societal benefit areas. In addition, the simplified data access and greatly expanded pool of users resulted in a number of suggestions from researchers in many disciplines for possible enhancements to future versions of the ASTER GDEM. The broad distribution of the product can be directly attributed to the adoption of fundamental GEOSS data sharing principles, which are directed toward expanded access by minimizing time delay and cost, thus facilitating data use for education, research, and a range of other applications. The ASTER GDEM demonstrated the need and user demand for an improved global DEM product as well as the added benefit of not only “full and open” distribution, but “free and open” distribution.

  14. Improving low-relief coastal LiDAR DEMs with hydro-conditioning of fine-scale and artificial drainages

    Directory of Open Access Journals (Sweden)

    Thomas Richard Allen

    2015-11-01

    Full Text Available Improvements in Light Detection and Ranging (LiDAR technology and spatial analysis of high-resolution digital elevation models (DEMs have advanced the accuracy and diversity of applications for coastal hazards and natural resources management. This article presents a concise synthesis of LiDAR analysis for coastal flooding and management applications in low-relief coastal plains and a case study demonstration of a new, efficient drainage mapping algorithm. The impetus for these LiDAR applications follows historic flooding from Hurricane Floyd in 1999, after which the State of North Carolina and the Federal Emergency Management Agency undertook extensive LiDAR data acquisition and technological developments for high-resolution floodplain mapping. An efficient algorithm is outlined for hydro-conditioning bare earth LiDAR DEMs using available US Geological Survey National Hydrography Dataset canal and ditch vectors. The methodology is illustrated in Moyock, North Carolina, for refinement of hydro-conditioning by combines pre-existing bare earth DEMs with spatial analysis of LiDAR point clouds in segmented and buffered ditch and canal networks. The methodology produces improved maps of fine-scale drainage, reduced omission of areal flood inundation, and subwatershed delineations that typify heavily ditched and canalled drainage areas. These preliminary results illustrate the capability of the technique to improve the representation of ditches in DEMs as well as subsequent flow and inundation modeling that could spur further research on low-relief coastal LiDAR applications.

  15. Resource Management in Diffserv On DemAnd (RODA) PHR

    NARCIS (Netherlands)

    Westberg, L.; Jacobsson, M.; de Kogel, M.; Oosthoek, S.; Partain, D.; Rexhepi, V.; Wallentin, P.; Karagiannis, Georgios

    The purpose of this draft is to present the Resource Management in Diffserv (RMD) On DemAnd (RODA) Per Hop Reservation (PHR) protocol. The RODA PHR protocol is used on a per-hop basis in a Differentiated Services (Diffserv) domain and extends the Diffserv Per Hop Behavior (PHB) with resource

  16. Eine neue Tornaria aus dem Ostindischen Archipel (Tornaria Sunieri)

    NARCIS (Netherlands)

    Stiasny, G.

    1921-01-01

    Da aus dem malayischen Archipel durch die Siboga-Monographie Spengels (2) zwar eine Anzahl Enteropneusten, jedoch nur eine einzige Tornaria bekannt worden ist, war anzunehmen, dass noch andere Tornarien in diesem Gebiete nachzuweisen sein würden. Von dieser Erwartung ausgehend wandte ich mich an

  17. Artificial terraced field extraction based on high resolution DEMs

    Science.gov (United States)

    Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan

    2017-04-01

    With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.

  18. Evaluating DEM results with FEM perspectives of load : soil interaction

    NARCIS (Netherlands)

    Tadesse, D.

    2004-01-01

    Keywords: Load - soil interaction, soil structure, soil mechanical properties, FEM (Finite Element Method), Plaxis (Finite Element Code), granular particles, shear stress, DEM (Distinct Element Method),

  19. Grain sedimentation with SPH-DEM and its validation

    NARCIS (Netherlands)

    Robinson, M.J.; Luding, Stefan; Ramaioli, Marco; Yu, A; Dong, K; Yang, R; Luding, S

    2013-01-01

    Our mesoscale simulation method [M. Robinson, S. Luding, and M. Ramaioli, submitted (2013)] for multiphase fluid-particle flows couples Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) and enjoys the flexibility of meshless methods, such as being capable to handling free

  20. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  1. CHARACTERIZING AND PROPAGATING MODELING UNCERTAINTIES IN PHOTOMETRICALLY DERIVED REDSHIFT DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Abrahamse, Augusta; Knox, Lloyd; Schmidt, Samuel; Thorman, Paul; Anthony Tyson, J.; Zhan Hu

    2011-01-01

    The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from multi-band imaging surveys. The accuracy of the photometric redshifts measured in these surveys depends not only on the quality of the flux data, but also on a number of modeling assumptions that enter into both the training set and spectral energy distribution (SED) fitting methods of photometric redshift estimation. In this work we focus on the latter, considering two types of modeling uncertainties: uncertainties in the SED template set and uncertainties in the magnitude and type priors used in a Bayesian photometric redshift estimation method. We find that SED template selection effects dominate over magnitude prior errors. We introduce a method for parameterizing the resulting ignorance of the redshift distributions, and for propagating these uncertainties to uncertainties in cosmological parameters.

  2. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  3. Stochastic Modeling of Wind Derivatives in Energy Markets

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2018-05-01

    Full Text Available We model the logarithm of the spot price of electricity with a normal inverse Gaussian (NIG process and the wind speed and wind power production with two Ornstein–Uhlenbeck processes. In order to reproduce the correlation between the spot price and the wind power production, namely between a pure jump process and a continuous path process, respectively, we replace the small jumps of the NIG process by a Brownian term. We then apply our models to two different problems: first, to study from the stochastic point of view the income from a wind power plant, as the expected value of the product between the electricity spot price and the amount of energy produced; then, to construct and price a European put-type quanto option in the wind energy markets that allows the buyer to hedge against low prices and low wind power production in the plant. Calibration of the proposed models and related price formulas is also provided, according to specific datasets.

  4. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Van Luik, A.E.; Williford, R.E.; Doctor, P.G.; Pacific Northwest Lab., Richland, WA; Roy F. Weston, Inc./Rogers and Assoc. Engineering Corp., Rockville, MD)

    1984-01-01

    Part of a strategy for evaluating the compliance of geologic repositories with Federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilitistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative released from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  5. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Doctor, P.G.; Williford, R.E.; Van Luik, A.E.

    1984-11-01

    Part of a strategy for evaluating the compliance of geologic repositories with federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative releases from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  6. Using Annotated Conceptual Models to Derive Information System Implementations

    Directory of Open Access Journals (Sweden)

    Anthony Berglas

    1994-05-01

    Full Text Available Producing production quality information systems from conceptual descriptions is a time consuming process that employs many of the world's programmers. Although most of this programming is fairly routine, the process has not been amenable to simple automation because conceptual models do not provide sufficient parameters to make all the implementation decisions that are required, and numerous special cases arise in practice. Most commercial CASE tools address these problems by essentially implementing a waterfall model in which the development proceeds from analysis through design, layout and coding phases in a partially automated manner, but the analyst/programmer must heavily edit each intermediate stage. This paper demonstrates that by recognising the nature of information systems, it is possible to specify applications completely using a conceptual model that has een annotated with additional parameters that guide automated implementation. More importantly, it will be argued that a manageable number of annotations are sufficient to implement realistic applications, and techniques will be described that enabled the author's commercial CASE tool, the Intelligent Develope to automated implementation without requiring complex theorem proving technology.

  7. Autonomous learning derived from experimental modeling of physical laws.

    Science.gov (United States)

    Grabec, Igor

    2013-05-01

    This article deals with experimental description of physical laws by probability density function of measured data. The Gaussian mixture model specified by representative data and related probabilities is utilized for this purpose. The information cost function of the model is described in terms of information entropy by the sum of the estimation error and redundancy. A new method is proposed for searching the minimum of the cost function. The number of the resulting prototype data depends on the accuracy of measurement. Their adaptation resembles a self-organized, highly non-linear cooperation between neurons in an artificial NN. A prototype datum corresponds to the memorized content, while the related probability corresponds to the excitability of the neuron. The method does not include any free parameters except objectively determined accuracy of the measurement system and is therefore convenient for autonomous execution. Since representative data are generally less numerous than the measured ones, the method is applicable for a rather general and objective compression of overwhelming experimental data in automatic data-acquisition systems. Such compression is demonstrated on analytically determined random noise and measured traffic flow data. The flow over a day is described by a vector of 24 components. The set of 365 vectors measured over one year is compressed by autonomous learning to just 4 representative vectors and related probabilities. These vectors represent the flow in normal working days and weekends or holidays, while the related probabilities correspond to relative frequencies of these days. This example reveals that autonomous learning yields a new basis for interpretation of representative data and the optimal model structure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. a High Precision dem Extraction Method Based on Insar Data

    Science.gov (United States)

    Wang, Xinshuang; Liu, Lingling; Shi, Xiaoliang; Huang, Xitao; Geng, Wei

    2018-04-01

    In the 13th Five-Year Plan for Geoinformatics Business, it is proposed that the new InSAR technology should be applied to surveying and mapping production, which will become the innovation driving force of geoinformatics industry. This paper will study closely around the new outline of surveying and mapping and then achieve the TerraSAR/TanDEM data of Bin County in Shaanxi Province in X band. The studying steps are as follows; Firstly, the baseline is estimated from the orbital data; Secondly, the interferometric pairs of SAR image are accurately registered; Thirdly, the interferogram is generated; Fourth, the interferometric correlation information is estimated and the flat-earth phase is removed. In order to solve the phase noise and the discontinuity phase existing in the interferometric image of phase, a GAMMA adaptive filtering method is adopted. Aiming at the "hole" problem of missing data in low coherent area, the interpolation method of low coherent area mask is used to assist the phase unwrapping. Then, the accuracy of the interferometric baseline is estimated from the ground control points. Finally, 1 : 50000 DEM is generated, and the existing DEM data is used to verify the accuracy through statistical analysis. The research results show that the improved InSAR data processing method in this paper can obtain the high-precision DEM of the study area, exactly the same with the topography of reference DEM. The R2 can reach to 0.9648, showing a strong positive correlation.

  9. Deriving the nuclear shell model from first principles

    Science.gov (United States)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  10. Re-derived overclosure bound for the inert doublet model

    Science.gov (United States)

    Biondini, S.; Laine, M.

    2017-08-01

    We apply a formalism accounting for thermal effects (such as modified Sommerfeld effect; Salpeter correction; decohering scatterings; dissociation of bound states), to one of the simplest WIMP-like dark matter models, associated with an "inert" Higgs doublet. A broad temperature range T ˜ M/20 . . . M/104 is considered, stressing the importance and less-understood nature of late annihilation stages. Even though only weak interactions play a role, we find that resummed real and virtual corrections increase the tree-level overclosure bound by 1 . . . 18%, depending on quartic couplings and mass splittings.

  11. An Investigation into Solution Verification for CFD-DEM

    Energy Technology Data Exchange (ETDEWEB)

    Fullmer, William D. [National Energy Technology Lab. (NETL), AECOM, Morgantown, WV (United States); Musser, Jordan [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-10-01

    This report presents the study of the convergence behavior of the computational fluid dynamicsdiscrete element method (CFD-DEM) method, specifically National Energy Technology Laboratory’s (NETL) open source MFiX code (MFiX-DEM) with a diffusion based particle-tocontinuum filtering scheme. In particular, this study focused on determining if the numerical method had a solution in the high-resolution limit where the grid size is smaller than the particle size. To address this uncertainty, fixed particle beds of two primary configurations were studied: i) fictitious beds where the particles are seeded with a random particle generator, and ii) instantaneous snapshots from a transient simulation of an experimentally relevant problem. Both problems considered a uniform inlet boundary and a pressure outflow. The CFD grid was refined from a few particle diameters down to 1/6th of a particle diameter. The pressure drop between two vertical elevations, averaged across the bed cross-section was considered as the system response quantity of interest. A least-squares regression method was used to extrapolate the grid-dependent results to an approximate “grid-free” solution in the limit of infinite resolution. The results show that the diffusion based scheme does yield a converging solution. However, the convergence is more complicated than encountered in simpler, single-phase flow problems showing strong oscillations and, at times, oscillations superimposed on top of globally non-monotonic behavior. The challenging convergence behavior highlights the importance of using at least four grid resolutions in solution verification problems so that (over-determined) regression-based extrapolation methods may be applied to approximate the grid-free solution. The grid-free solution is very important in solution verification and VVUQ exercise in general as the difference between it and the reference solution largely determines the numerical uncertainty. By testing

  12. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  13. On (in)stabilities of perturbations in mimetic models with higher derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yunlong; Shen, Liuyuan [Department of Physics, Nanjing University, Nanjing 210093 (China); Mou, Yicen; Li, Mingzhe, E-mail: zylakx@163.com, E-mail: sly12271103@163.com, E-mail: moinch@mail.ustc.edu.cn, E-mail: limz@ustc.edu.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-08-01

    Usually when applying the mimetic model to the early universe, higher derivative terms are needed to promote the mimetic field to be dynamical. However such models suffer from the ghost and/or the gradient instabilities and simple extensions cannot cure this pathology. We point out in this paper that it is possible to overcome this difficulty by considering the direct couplings of the higher derivatives of the mimetic field to the curvature of the spacetime.

  14. Der Ritter mit dem Hemd : drei Fassungen einer mittelalterlichen Erzählung

    OpenAIRE

    Dunphy, Graeme

    2011-01-01

    Unter den zahlreichen Motiven, die in der mittelalterlichen Literatur mit Frauendienst verbunden sind, gehört das vom Ritter mit dem Hemd zu den besonders interessanten. Es erscheint zunächst in dem ersten von fünf Fabliaux aus einer verlorenen Turiner Handschrift, die dem sonst unbekannten altfranzösischen Dichter Jacques de Baisieux zugeschrieben werden, einer heiteren Kurzgeschichte mit dem Titel "Des trois chevaliers et del chainse". In der vorliegenden Untersuchung gilt es, der Frage der...

  15. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    Science.gov (United States)

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A critical view on temperature modelling for application in weather derivatives markets

    International Nuclear Information System (INIS)

    Šaltytė Benth, Jūratė; Benth, Fred Espen

    2012-01-01

    In this paper we present a stochastic model for daily average temperature. The model contains seasonality, a low-order autoregressive component and a variance describing the heteroskedastic residuals. The model is estimated on daily average temperature records from Stockholm (Sweden). By comparing the proposed model with the popular model of Campbell and Diebold (2005), we point out some important issues to be addressed when modelling the temperature for application in weather derivatives market. - Highlights: ► We present a stochastic model for daily average temperature, containing seasonality, a low-order autoregressive component and a variance describing the heteroskedastic residuals. ► We compare the proposed model with the popular model of Campbell and Diebold (2005). ► Some important issues to be addressed when modelling the temperature for application in weather derivatives market are pointed out.

  17. On the COSMO-SkyMed Exploitation for Interferometric DEM Generation

    Science.gov (United States)

    Teresa, C. M.; Raffaele, N.; Oscar, N. D.; Fabio, B.

    2011-12-01

    DEM products for Earth observation space-borne applications are being to play a role of increasing importance due to the new generation of high resolution sensors (both optical and SAR). These new sensors demand elevation data for processing and, on the other hand, they provide new possibilities for DEM generation. Till now, for what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) has been the reference product for scientific applications all over the world. SRTM mission [1] had the challenging goal to meet the requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications. However, new generation of high resolution sensors (including SAR) pose new requirements for elevation data in terms of vertical precision and spatial resolution. DEM are usually used as ancillary input in different processing steps as for instance geocoding and Differential SAR Interferometry. In this context, the recent SAR missions of DLR (TerraSAR-X and TanDEM-X) and ASI (COSMO-SkyMed) can play a promising role thanks to their high resolution both in space and time. In particular, the present work investigates the potentialities of the COSMO/SkyMed (CSK) constellation for ground elevation measurement with particular attention devoted to the impact of the improved spatial resolution wrt the previous SAR sensors. The recent scientific works, [2] and [3], have shown the advantages of using CSK in the monitoring of terrain deformations caused by landslides, earthquakes, etc. On the other hand, thanks to the high spatial resolution, CSK appears to be very promising in monitoring man-made structures, such as buildings, bridges, railways and highways, thus enabling new potential applications (urban applications, precise DEM, etc.). We present results obtained by processing both SPOTLIGHT and STRIPMAP acquisitions through standard SAR Interferometry as well as multi-pass interferometry [4] with the aim of measuring ground elevation. Acknowledgments

  18. Der Stoff, aus dem Atome sind

    CERN Multimedia

    Butscher, R

    2004-01-01

    Quarks are hidden in protons and neutrinos - in the heart of atoms. 40 years before, they were only a elegant trick to put in order the chaos of particles. Nowadays, researchers came up with different model and also questions to answer like: Why do we never see quarks alone? (6 pages)

  19. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach

    Directory of Open Access Journals (Sweden)

    Alireza Baghbanan

    2017-06-01

    Full Text Available Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.

  20. CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.; Sabaka, T.J.

    2009-01-01

    We have derived a model of the near-Earth's magnetic field using more than 10 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C. This model is an update of the two previous models, CHAOS (Olsen et al. 2006) and xCHAOS (Olsen & Mandea 2008). Data...... by minimizing the second time derivative of the squared magnetic field intensity at the core-mantle boundary. The CHAOS-2 model describes rapid time changes, as monitored by the ground magnetic observatories, much better than its predecessors....

  1. Constructing Palaeo-DEMs in landscape evolution: example of the Geren catchment, Turkey

    Science.gov (United States)

    van Gorp, Wouter; Schoorl, Jeroen M.; Veldkamp, Tom; Maddy, Darrel; Demir, Tuncer; Aytac, Serdar

    2017-04-01

    How to reconstruct the past landscape and how does this influence your modelling results? This is an important paradigma in the soilscape and landscape evolution modelling community. Here an example of Turkey will be presented where a 300 ka LEM simulation requested to the thoroughly think about the initial landscape as an important input. What information can be used to know the morphology of a landscape 300 ka ago? The Geren catchment, a tributary of the upstream Gediz river near Kula, Turkey, has been influenced by base level changes during the Late Pleistocene and Holocene. Different lavaflows have blocked the Gediz and Geren river several times over in the timespan of the last 300 ka -200 Ka and in the recent Holocene. The heavily dissected Geren catchment shows a landscape evolution which is more complex than just a reaction on these base level changes. The steps and inputs of the palaeo DEM reconstruction will be presented and the modelling results will be presented. Keywords: Digital Elevation Model, Palaeo DEMs, Numerical modelling

  2. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  3. On a business cycle model with fractional derivative under narrow-band random excitation

    International Nuclear Information System (INIS)

    Lin, Zifei; Li, Jiaorui; Li, Shuang

    2016-01-01

    This paper analyzes the dynamics of a business cycle model with fractional derivative of order  α (0 < α < 1) subject to narrow-band random excitation, in which fractional derivative describes the memory property of the economic variables. Stochastic dynamical system concepts are integrated into the business cycle model for understanding the economic fluctuation. Firstly, the method of multiple scales is applied to derive the model to obtain the approximate analytical solution. Secondly, the effect of economic policy with fractional derivative on the amplitude of the economic fluctuation and the effect on stationary probability density are studied. The results show macroeconomic regulation and control can lower the stable amplitude of economic fluctuation. While in the process of equilibrium state, the amplitude is magnified. Also, the macroeconomic regulation and control improves the stability of the equilibrium state. Thirdly, how externally stochastic perturbation affects the dynamics of the economy system is investigated.

  4. Forest biomass mapping from fusion of GEDI Lidar data and TanDEM-X InSAR data

    Science.gov (United States)

    Qi, W.; Hancock, S.; Armston, J.; Marselis, S.; Dubayah, R.

    2017-12-01

    Mapping forest above-ground biomass (hereafter biomass) can significantly improve our ability to assess the role of forest in terrestrial carbon budget and to analyze the ecosystem productivity. Global Ecosystem Dynamic Investigation (GEDI) mission will provide the most complete lidar observations of forest vertical structure and has the potential to provide global-scale forest biomass data at 1-km resolution. However, GEDI is intrinsically a sampling mission and will have a between-track spacing of 600 m. An increase in adjacent-swath distance and the presence of cloud cover may also lead to larger gaps between GEDI tracks. In order to provide wall-to-wall forest biomass maps, fusion algorithms of GEDI lidar data and TanDEM-X InSAR data were explored in this study. Relationship between biomass and lidar RH metrics was firstly developed and used to derive biomass values over GEDI tracks which were simulated using airborne lidar data. These GEDI biomass values were then averaged in each 1-km cell to represent the biomass density within that cell. Whereas for cells without any GEDI observations, regression models developed between GEDI-derived biomass and TDX InSAR variables were applied to predict biomass over those places. Based on these procedures, contiguous biomass maps were finally generated at 1-km resolution over three representative forest types. Uncertainties for these biomass maps were also estimated at 1 km following methods developed in Saarela et al. (2016). Our results indicated great potential of GEDI/TDX fusion for large-scale biomass mapping. Saarela, S., Holm, S., Grafstrom, A., Schnell, S., Naesset, E., Gregoire, T.G., Nelson, R.F., & Stahl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73, 895-910

  5. MAPPING OF THE RUSSIAN NORTHERN SEAS BOTTOM RELIEF USING DIGITAL ELEVATION MODELS

    Directory of Open Access Journals (Sweden)

    S. M. Koshel

    2014-01-01

    Full Text Available The task of the project is the design of the digital elevation models (DEM of the bottoms of Barents Sea, Pechora Sea, and the White Sea. Accuracy (resolution of DEMs allows for adequate delineation of morphological structures and peculiarities of the sea bottoms and the design of bathymetrical and derivative maps. DEMs of the sea bottom were compiled using data from navigation charts of different scales, where additional isobaths were drawn manually taking into account the classification features of the bottom topography forms. Next procedures were carried out: scanning of these charts, processing of scanned images, isobaths vectorization and creation of attribute tables, vector layers transformation to geographical coordinates as well editing, merging and joining of the map sheets, correction of geometry and attributes. For generation of digital model of bottom topography it is important to choose algorithm which allows for representation all of the sea bottom features expressed by isobaths in most details. The original algorithm based on fast calculation of distances to the two different nearest isobaths was used. Interpretation of isolines as vector linear objects is the main peculiarity of this algorithm. The resulted DEMs were used to design bathymetrical maps of Barents Sea of 1:2 500 000 scale, Pechora Sea of 1:1 000 000 scale, and White Sea of 1:750 000 scale. Different derivative maps were compiled based on DEM of the White Sea.

  6. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm

    Science.gov (United States)

    Qin, Cheng-Zhi; Zhan, Lijun

    2012-06-01

    As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU

  7. A semi-automated tool for reducing the creation of false closed depressions from a filled LIDAR-derived digital elevation model

    Science.gov (United States)

    Waller, John S.; Doctor, Daniel H.; Terziotti, Silvia

    2015-01-01

    Closed depressions on the land surface can be identified by ‘filling’ a digital elevation model (DEM) and subtracting the filled model from the original DEM. However, automated methods suffer from artificial ‘dams’ where surface streams cross under bridges and through culverts. Removal of these false depressions from an elevation model is difficult due to the lack of bridge and culvert inventories; thus, another method is needed to breach these artificial dams. Here, we present a semi-automated workflow and toolbox to remove falsely detected closed depressions created by artificial dams in a DEM. The approach finds the intersections between transportation routes (e.g., roads) and streams, and then lowers the elevation surface across the roads to stream level allowing flow to be routed under the road. Once the surface is corrected to match the approximate location of the National Hydrologic Dataset stream lines, the procedure is repeated with sequentially smaller flow accumulation thresholds in order to generate stream lines with less contributing area within the watershed. Through multiple iterations, artificial depressions that may arise due to ephemeral flow paths can also be removed. Preliminary results reveal that this new technique provides significant improvements for flow routing across a DEM and minimizes artifacts within the elevation surface. Slight changes in the stream flow lines generally improve the quality of flow routes; however some artificial dams may persist. Problematic areas include extensive road ditches, particularly along divided highways, and where surface flow crosses beneath road intersections. Limitations do exist, and the results partially depend on the quality of data being input. Of 166 manually identified culverts from a previous study by Doctor and Young in 2013, 125 are within 25 m of culverts identified by this tool. After three iterations, 1,735 culverts were identified and cataloged. The result is a reconditioned

  8. DEM study of granular flow around blocks attached to inclined walls

    Directory of Open Access Journals (Sweden)

    Samsu Joel

    2017-01-01

    Full Text Available Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i flow analysis in terms of flow patterns and particle velocities, (ii force distributions within the model geometry, and (iii wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  9. DEM study of granular flow around blocks attached to inclined walls

    Science.gov (United States)

    Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng

    2017-06-01

    Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  10. Deriving the expected utility of a predictive model when the utilities are uncertain.

    Science.gov (United States)

    Cooper, Gregory F; Visweswaran, Shyam

    2005-01-01

    Predictive models are often constructed from clinical databases with the goal of eventually helping make better clinical decisions. Evaluating models using decision theory is therefore natural. When constructing a model using statistical and machine learning methods, however, we are often uncertain about precisely how the model will be used. Thus, decision-independent measures of classification performance, such as the area under an ROC curve, are popular. As a complementary method of evaluation, we investigate techniques for deriving the expected utility of a model under uncertainty about the model's utilities. We demonstrate an example of the application of this approach to the evaluation of two models that diagnose coronary artery disease.

  11. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    Energy Technology Data Exchange (ETDEWEB)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a

  12. Derivation of a well-posed and multidimensional drift-flux model for boiling flows

    International Nuclear Information System (INIS)

    Gregoire, O.; Martin, M.

    2005-01-01

    In this note, we derive a multidimensional drift-flux model for boiling flows. Within this framework, the distribution parameter is no longer a scalar but a tensor that might account for the medium anisotropy and the flow regime. A new model for the drift-velocity vector is also derived. It intrinsically takes into account the effect of the friction pressure loss on the buoyancy force. On the other hand, we show that most drift-flux models might exhibit a singularity for large void fraction. In order to avoid this singularity, a remedy based on a simplified three field approach is proposed. (authors)

  13. An extended car-following model considering the acceleration derivative in some typical traffic environments

    Science.gov (United States)

    Zhou, Tong; Chen, Dong; Liu, Weining

    2018-03-01

    Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.

  14. PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models

    NARCIS (Netherlands)

    Meehan, Terrence F.; Conte, Nathalie; Goldstein, Theodore; Inghirami, Giorgio; Murakami, Mark A.; Brabetz, Sebastian; Gu, Zhiping; Wiser, Jeffrey A.; Dunn, Patrick; Begley, Dale A.; Krupke, Debra M.; Bertotti, Andrea; Bruna, Alejandra; Brush, Matthew H.; Byrne, Annette T.; Caldas, Carlos; Christie, Amanda L.; Clark, Dominic A.; Dowst, Heidi; Dry, Jonathan R.; Doroshow, James H.; Duchamp, Olivier; Evrard, Yvonne A.; Ferretti, Stephane; Frese, Kristopher K.; Goodwin, Neal C.; Greenawalt, Danielle; Haendel, Melissa A.; Hermans, Els; Houghton, Peter J.; Jonkers, Jos; Kemper, Kristel; Khor, Tin O.; Lewis, Michael T.; Lloyd, K. C. Kent; Mason, Jeremy; Medico, Enzo; Neuhauser, Steven B.; Olson, James M.; Peeper, Daniel S.; Rueda, Oscar M.; Seong, Je Kyung; Trusolino, Livio; Vinolo, Emilie; Wechsler-Reya, Robert J.; Weinstock, David M.; Welm, Alana; Weroha, S. John; Amant, Frédéric; Pfister, Stefan M.; Kool, Marcel; Parkinson, Helen; Butte, Atul J.; Bult, Carol J.

    2017-01-01

    Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models

  15. Patient-Derived Xenograft Models : An Emerging Platform for Translational Cancer Research

    NARCIS (Netherlands)

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinska, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Maelandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These

  16. Lagrangian derivation of the two coupled field equations in the Janus cosmological model

    Science.gov (United States)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-05-01

    After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.

  17. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  18. New Fokker-Planck derivation of heavy gas models for neutron thermalization

    International Nuclear Information System (INIS)

    Larsen, E.W.; Williams, M.M.R.

    1990-01-01

    This paper is concerned with the derivation of new generalized heavy gas models for the infinite medium neutron energy spectrum equation. Our approach is general and can be used to derive improved Fokker-Planck approximations for other types of kinetic equations. In this paper we obtain two distinct heavy gas models, together with estimates for the corresponding errors. The models are shown in a special case to reduce to modified heavy gas models proposed earlier by Corngold (1962). The error estimates show that both of the new models should be more accurate than Corngold's modified heavy gas model, and that the first of the two new models should generally be more accurate than the second. (author)

  19. Interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model

    International Nuclear Information System (INIS)

    Kostron, H.; Swartz, M.R.; Miller, D.C.; Martuza, R.L.

    1986-01-01

    The effects of hematoporphyrin derivative, light, and cobalt 60 ( 60 Co) irradiation were studied in a rat glioma model using an in vivo and an in vitro clonogenic assay. There was no effect on tumor growth by visible light or by a single dose of 60 Co irradiation at 4 Gy or 8 Gy, whereas 16 Gy inhibited tumor growth to 40% versus the control. Hematoporphyrin derivative alone slightly stimulated growth (P less than 0.1). Light in the presence of 10 mg hematoporphyrin derivative/kg inhibited tumor growth to 32%. 60 Co irradiation in the presence of hematoporphyrin derivative produced a significant tumor growth inhibition (P less than 0.02). This growth inhibition was directly related to the concentration of hematoporphyrin derivative. The addition of 60 Co to light in the presence of hematoporphyrin derivative produced a greater growth inhibition than light or 60 Co irradiation alone. This effect was most pronounced when light was applied 30 minutes before 60 Co irradiation. Our experiments in a subcutaneous rat glioma model suggest a radiosensitizing effect of hematoporphyrin derivative. Furthermore, the photodynamic inactivation is enhanced by the addition of 60 Co irradiation. These findings may be of importance in planning new treatment modalities in malignant brain tumors

  20. DERIVAÇÃO DE REDE DE DRENAGEM A PARTIR DE DADOS DO SRTM / DERIVING DRAINAGE NETWORK FROM SRTM DATA

    Directory of Open Access Journals (Sweden)

    Walter Collischonn

    2008-08-01

    Full Text Available The development and improvement of Geographic Information Systems and geoprocessing algorithms,together with the increase in computational capacity and data availability from remote sensing, becamepossible to prepare information for hydrologic studies of large areas with relative low cost and incrediblespeed. This paper describes the use of SRTM data to derive drainage network and related products, suchas accumulated drainage areas and river lengths, with application to the Uruguay river basin. Six distinctDigital Elevation Models (DEMs were used, varying the spatial resolution and applying the stream burningpre-processing technique. The main limitations of the DEM-derived drainage network refer to the incapacityof representing river meanders that are smaller than the pixel size and the problem of artificial sinuosity thatoccurs when the width of the river is larger than pixel side.

  1. Variables influencing the use of derivatives in South Africa – the development of a conceptual model

    Directory of Open Access Journals (Sweden)

    Stefan Schwegler

    2011-03-01

    Full Text Available This paper, which is the first in a two-part series, sets out the development of a conceptual model on the variables influencing investors’ decisions to use derivatives in their portfolios. Investor-specific variables include: the investor’s needs, goals and return expectations, the investor’s knowledge of financial markets, familiarity with different asset classes including derivative instruments, and the investor’s level of wealth and level of risk tolerance. Market-specific variables include: the level of volatility, standardisation, regulation and liquidity in a market, the level of information available on derivatives, the transparency of price determination, taxes, brokerage costs and product availability.

  2. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2017-01-01

    Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.

  3. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    Science.gov (United States)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  4. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    International Nuclear Information System (INIS)

    Aoki, Shuntaro; Yamada, Yusuke

    2015-01-01

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two

  5. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Almeida, Lucilla C.; Su, Jian

    2015-01-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  6. An equilibrium pricing model for weather derivatives in a multi-commodity setting

    International Nuclear Information System (INIS)

    Lee, Yongheon; Oren, Shmuel S.

    2009-01-01

    Many industries are exposed to weather risk. Weather derivatives can play a key role in hedging and diversifying such risk because the uncertainty in a company's profit function can be correlated to weather condition which affects diverse industry sectors differently. Unfortunately the weather derivatives market is a classical example of an incomplete market that is not amenable to standard methodologies used for derivative pricing in complete markets. In this paper, we develop an equilibrium pricing model for weather derivatives in a multi-commodity setting. The model is constructed in the context of a stylized economy where agents optimize their hedging portfolios which include weather derivatives that are issued in a fixed quantity by a financial underwriter. The supply and demand resulting from hedging activities and the supply by the underwriter are combined in an equilibrium pricing model under the assumption that all agents maximize some risk averse utility function. We analyze the gains due to the inclusion of weather derivatives in hedging portfolios and examine the components of that gain attributable to hedging and to risk sharing. (author)

  7. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    Science.gov (United States)

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  8. Modeling the Interest Rate Term Structure: Derivatives Contracts Dynamics and Evaluation

    Directory of Open Access Journals (Sweden)

    Pedro L. Valls Pereira

    2005-06-01

    Full Text Available This article deals with a model for the term structure of interest rates and the valuation of derivative contracts directly dependent on it. The work is of a theoretical nature and deals, exclusively, with continuous time models, making ample use of stochastic calculus results and presents original contributions that we consider relevant to the development of the fixed income market modeling. We develop a new multifactorial model of the term structure of interest rates. The model is based on the decomposition of the yield curve into the factors level, slope, curvature, and the treatment of their collective dynamics. We show that this model may be applied to serve various objectives: analysis of bond price dynamics, valuation of derivative contracts and also market risk management and formulation of operational strategies which is presented in another article.

  9. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-06-01

    Full Text Available In this study we demonstrate how energy and mass fluxes vary in space and time for Grey and Tyndall glaciers at the Southern Patagonia Icefield (SPI. Despite the overall glacier retreat of most Patagonian glaciers, a recent increase in mass loss has been observed, but individual glaciers respond differently in terms of spatial and temporal changes. In this context, the detailed investigation of the effect of mass balance processes on recent glacier response to climate forcing still needs refinement. We therefore quantify surface energy-fluxes and climatic mass balance of the two neighboring glaciers, Grey and Tyndall. The COupled Snow and Ice energy and MAss balance model COSIMA is applied to assess recent surface energy and climatic mass balance variability with a high temporal and spatial resolution for a 16-year period between April 2000 and March 2016. The model is driven by downscaled 6-hourly atmospheric data derived from ERA-Interim reanalysis and MODIS/Terra Snow Cover and validated against ablation measurements made in single years. High resolution precipitation fields are determined by using an analytical orographic precipitation model. Frontal ablation is estimated as residual of climatic mass balance and geodetic mass balance derived from TanDEM-X/SRTM between 2000 and 2014. We simulate a positive glacier-wide mean annual climatic mass balance of +1.02 ± 0.52 m w.e. a−1 for Grey Glacier and of +0.68 ± 0.54 m w.e. a−1 for Tyndall Glacier between 2000 and 2014. Climatic mass balance results show a high year to year variability. Comparing climatic mass balance results with previous studies underlines the high uncertainty in climatic mass balance modeling with respect to accumulation on the SPI. Due to the lack of observations accumulation estimates differ from previous studies based on the methodological approaches. Mean annual ice loss by frontal ablation is estimated to be 2.07 ± 0.70 m w.e. a−1 for Grey Glacier and 3.26 ± 0

  10. Der Meteorologe : (aus dem Band "V". Tallinn 1998) / Elo Viiding ; aus dem Estnischen von Gisbert Jänicke

    Index Scriptorium Estoniae

    Viiding, Elo, 1974-

    2002-01-01

    Sisu : Die Möglichkeit des Meteorologen = Meteoroloogi võimalikkusest ; "Der Meteorologe kam 1990 in die Stadt..." = "Meteoroloog saabus linna aastal 1990..." ; "Was wäre dir "Arbeit" des Meteorologen..." = "Mis oleks meteoroloogi töö..." ; "Und ein Unglück für den Meteorologen ist es auch..." = "Ja Meteoroloogi õnnetus on veel see..." ; Angst vor dem Altwerden des Meteorologen = Hirm Meteoroloogi vanakssaamise ees ; Fest. Geschenk = Pidu. Kink ; "Wenn der Meteorologe eine Grösse sieht, ist er darüber..." = "Kui meteoroloog näeb suurust, on ta selle kohal..." ; Der Meteorologe wird im Saal erwartet = Meteoroloogi oodatakse saali ; "Das Abkommen mit der Meteorologenerwartung kündigen..." = "Katkestada leping meteoroloogiootusega..." ; "Die "Wege des Herrn" sind der Meteorologe..." = "Looja tee" on Meteoroloog..." ; Von dem Fremden, der im Saal den Meteorologen traf = Võõra lugu, kes Meteoroloogi saalis kohtas ; "Den Fremden hervorzuhusten, der von dem..." = "Köhida enesest välja võõras, kes tahtis teha..." ; Der Fremde beruhigt sich nicht = Võõras ei jää rahule

  11. Conference Innovations in Derivatives Market : Fixed Income Modeling, Valuation Adjustments, Risk Management, and Regulation

    CERN Document Server

    Grbac, Zorana; Scherer, Matthias; Zagst, Rudi

    2016-01-01

    This book presents 20 peer-reviewed chapters on current aspects of derivatives markets and derivative pricing. The contributions, written by leading researchers in the field as well as experienced authors from the financial industry, present the state of the art in: • Modeling counterparty credit risk: credit valuation adjustment, debit valuation adjustment, funding valuation adjustment, and wrong way risk. • Pricing and hedging in fixed-income markets and multi-curve interest-rate modeling. • Recent developments concerning contingent convertible bonds, the measuring of basis spreads, and the modeling of implied correlations. The recent financial crisis has cast tremendous doubts on the classical view on derivative pricing. Now, counterparty credit risk and liquidity issues are integral aspects of a prudent valuation procedure and the reference interest rates are represented by a multitude of curves according to their different periods and maturities. A panel discussion included in the book (featuring D...

  12. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Gun-Sik Cho

    2017-01-01

    Full Text Available Summary: Pluripotent stem cells (PSCs offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs. Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases. : Pluripotent stem cell (PSC-derived cells remain fetal like, and this has become a major impediment to modeling adult diseases. Cho et al. find that PSC-derived cardiomyocytes mature into adult cardiomyocytes when transplanted into neonatal rat hearts. This method can serve as a tool to understand maturation and pathogenesis in human cardiomyocytes. Keywords: cardiomyocyte, maturation, iPS, cardiac progenitor, neonatal, disease modeling, cardiomyopathy, ARVC, T-tubule, calcium transient, sarcomere shortening

  13. [Julia Rosche. Zwischen den Fronten. Die Rolle Estlands zwischen dem Hitler-Stalin-Pakt und dem Ende des Zweiten Weltkriegs im internationalen Kontext] / Olaf Mertelsmann

    Index Scriptorium Estoniae

    Mertelsmann, Olaf, 1969-

    2014-01-01

    Arvustus: Rosche, Julia. Zwischen den Fronten. Die Rolle Estlands zwischen dem Hitler-Stalin-Pakt und dem Ende des Zweiten Weltkriegs im internationalen Kontext. Diplomica Verlag. Hamburg 2012. Unter demselben Titel mit identischem Text auch: Grin Verlag. München 2013

  14. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, CFD-DEM (computational fluid dynamics - discrete element method has been used to model the 2 phase flow composed of solid particle and gas in the fluidised bed. This technique uses the Eulerian and the Langrangian methods to solve fluid and particles respectively. Each particle is treated as a discrete entity whose motion is governed by Newton's laws of motion. The particle-particle and particle-wall interaction is modelled using the classical contact mechanics. The particles motion is coupled with the volume averaged equations of the fluid dynamics using drag law. In fluidised bed, particles start experiencing drag once the fluid is passing through. The solid particles response to it once drag experienced is just equal to the weight of the particles. At this moment pressure drop across the bed is just equal to the weight of particles divide by the cross-section area. This is the first regime of fluidization, also referred as ‘the regime of minimum fluidization’. In this study, phenomenon of minimum fluidization is studied using CFD-DEM simulation with 4 different sizes of particles 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm diameters. The results are presented in the form of pressure drop across the bed with the fluid superficial velocity. The achieved results are found in good agreement with the experimental and theoretical data available in literature.

  15. An Automated Processing Algorithm for Flat Areas Resulting from DEM Filling and Interpolation

    Directory of Open Access Journals (Sweden)

    Xingwei Liu

    2017-11-01

    Full Text Available Correction of digital elevation models (DEMs for flat areas is a critical process for hydrological analyses and modeling, such as the determination of flow directions and accumulations, and the delineation of drainage networks and sub-basins. In this study, a new algorithm is proposed for flat correction/removal. It uses the puddle delineation (PD program to identify depressions (including their centers and overflow/spilling thresholds, compute topographic characteristics, and further fill the depressions. Three different levels of elevation increments are used for flat correction. The first and second level of increments create flows toward the thresholds and centers of the filled depressions or flats, while the third level of small random increments is introduced to cope with multiple threshold conditions. A set of artificial surfaces and two real-world landscapes were selected to test the new algorithm. The results showed that the proposed method was not limited by the shapes, the number of thresholds, and the surrounding topographic conditions of flat areas. Compared with the traditional methods, the new algorithm simplified the flat correction procedure and reduced the final elevation increments by 5.71–33.33%. This can be used to effectively remove/correct topographic flats and create flat-free DEMs.

  16. A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market

    Directory of Open Access Journals (Sweden)

    Lina Song

    2018-01-01

    Full Text Available Fractional differential equation has been introduced to the financial theory, which presents new ideas and tools for the theoretical researches and the practical applications. In the work, an approximate semianalytical solution of the time-fractional European option pricing model is derived using the method of combining the enhanced technique of Adomian decomposition method with the finite difference method. And then the result is introduced in China’s financial market. The work makes every effort to test the feasibility of the fractional derivative model in the actual financial market.

  17. Construction of integrable model Kohn-Sham potentials by analysis of the structure of functional derivatives

    International Nuclear Information System (INIS)

    Gaiduk, Alex P.; Staroverov, Viktor N.

    2011-01-01

    A directly approximated exchange-correlation potential should, by construction, be a functional derivative of some density functional in order to avoid unphysical results. Using generalized gradient approximations (GGAs) as an example, we show that functional derivatives of explicit density functionals have a very rigid inner structure, the knowledge of which allows one to build the entire functional derivative from a small part. Based on this analysis, we develop a method for direct construction of integrable Kohn-Sham potentials. As an illustration, we transform the model potential of van Leeuwen and Baerends (which is not a functional derivative) into a semilocal exchange potential that has a parent GGA, yields accurate energies, and is free from the artifacts inherent in existing semilocal potential approximations.

  18. A model for the derivation of new transport limits for non-fixed contamination

    International Nuclear Information System (INIS)

    Thierfeldt, S.; Lorenz, B.; Hesse, J.

    2004-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn more than 40 years ago. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has now been developed which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project. The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination

  19. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    Science.gov (United States)

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  20. A model for the derivation of new transport limits for non-fixed contamination

    Energy Technology Data Exchange (ETDEWEB)

    Thierfeldt, S. [Brenk Systemplanung GmbH, Aachen (Germany); Lorenz, B. [GNS Gesellschaft fuer Nuklearservice, Essen (Germany); Hesse, J. [RWE Power AG, Essen (Germany)

    2004-07-01

    The IAEA Regulations for the Safe Transport of Radioactive Material contain requirements for contamination limits on packages and conveyances used for the transport of radioactive material. Current contamination limits for packages and conveyances under routine transport conditions have been derived from a model proposed by Fairbairn more than 40 years ago. This model has proven effective if used with pragmatism, but is based on very conservative as well as extremely simple assumptions which is in no way appropriate any more and which is not compatible with ICRP recommendations regarding radiation protection standards. Therefore, a new model has now been developed which reflects all steps of the transport process. The derivation of this model has been fostered by the IAEA by initiating a Co-ordinated Research Project. The results of the calculations using this model could be directly applied as new nuclide specific transport limits for the non-fixed contamination.

  1. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges.

    Science.gov (United States)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya; Phanthong, Phetcharat; Schmid, Benjamin; Nielsen, Troels T; Freude, Kristine K

    2017-10-25

    The rising prevalence of progressive neurodegenerative diseases coupled with increasing longevity poses an economic burden at individual and societal levels. There is currently no effective cure for the majority of neurodegenerative diseases and disease-affected tissues from patients have been difficult to obtain for research and drug discovery in pre-clinical settings. While the use of animal models has contributed invaluable mechanistic insights and potential therapeutic targets, the translational value of animal models could be further enhanced when combined with in vitro models derived from patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide the opportunity to model disease development, uncover novel mechanisms and test potential therapeutics. Here we review findings from iPSC-based modeling of selected neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and spinocerebellar ataxia. Furthermore, we discuss the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    Science.gov (United States)

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  3. Research on the method of extracting DEM based on GBInSAR

    Science.gov (United States)

    Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping

    2016-05-01

    Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.

  4. Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland

    Directory of Open Access Journals (Sweden)

    Woroszkiewicz Małgorzata

    2017-06-01

    Full Text Available The TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X mission launched in 2010 is another programme – after the Shuttle Radar Topography Mission (SRTM in 2000 – that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM provided by the German Aerospace Center (DLR under the project “Accuracy assessment of a Digital Elevation Model based on TanDEM-X data” for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE, was 0.77 m.

  5. Characterization of cohesive powders for bulk handling and DEM modelling

    NARCIS (Netherlands)

    Thakur, S.C.; Imole, Olukayode Isaiah; Wojtkowski, Mateusz Bronislaw; Magnanimo, Vanessa; Montes, E.C.; Ramaioli, Marco; Ahmadian, H.; Ooi, J.Y.; Bischoff, M.; Ramm, E.; Onate, E; Owen, R.; Wriggers, P.

    2013-01-01

    The flow behaviour of granular materials is relevant for many industrial applications including the pharmaceutical, chemical, consumer goods and food industries. A key issue is the accurate characterisation of these powders under different loading conditions and flow regimes, for example in mixers,

  6. Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas

    Science.gov (United States)

    Leitão, João P.; Moy de Vitry, Matthew; Scheidegger, Andreas; Rieckermann, Jörg

    2016-04-01

    Precise and detailed digital elevation models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM, such as airplane light detection and ranging (lidar) DEMs and point and contour maps, remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of unmanned aerial vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, 14 UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch, and (iv) weather conditions. In addition, we compared the best-quality UAV DEM to a conventional lidar-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to lidar-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g. buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional lidar-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is

  7. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  8. Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schroedinger model

    International Nuclear Information System (INIS)

    Basu-Mallick, B.; Bhattacharyya, Tanaya

    2002-01-01

    We find that the quantum monodromy matrix associated with a derivative nonlinear Schroedinger (DNLS) model exhibits U(2) or U(1,1) symmetry depending on the sign of the related coupling constant. By using a variant of quantum inverse scattering method which is directly applicable to field theoretical models, we derive all possible commutation relations among the operator valued elements of such monodromy matrix. Thus, we obtain the commutation relation between creation and annihilation operators of quasi-particles associated with DNLS model and find out the S-matrix for two-body scattering. We also observe that, for some special values of the coupling constant, there exists an upper bound on the number of quasi-particles which can form a soliton state for the quantum DNLS model

  9. CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling. In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature. The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990, it has been assumed that the fluidised gas-particle medium is isothermal. The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990. Their assumption that the system is isothermal also appears to be valid.

  10. 1963 Vajont rock slide: a comparison between 3D DEM and 3D FEM

    Science.gov (United States)

    Crosta, Giovanni; Utili, Stefano; Castellanza, Riccardo; Agliardi, Federico; Bistacchi, Andrea; Weng Boon, Chia

    2013-04-01

    Data on the exact location of the failure surface of the landslide have been used as the starting point for the modelling of the landslide. 3 dimensional numerical analyses were run employing both the discrete element method (DEM) and a Finite Element Method (FEM) code. In this work the focus is on the prediction of the movement of the landlside during its initial phase of detachment from Mount Toc. The results obtained by the two methods are compared and conjectures on the observed discrepancies of the predictions between the two methods are formulated. In the DEM simulations the internal interaction of the sliding blocks and the expansion of the debris is obtained as a result of the kinematic interaction among the rock blocks resulting from the jointing of the rock mass involved in the slide. In the FEM analyses, the c-phi reduction technique was employed along the predefine failure surface until the onset of the landslide occurred. In particular, two major blocks of the landslide were identified and the stress, strain and displacement fields at the interface between the two blocks were analysed in detail.

  11. Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging

    Science.gov (United States)

    Prokešová, Roberta; Kardoš, Miroslav; Tábořík, Petr; Medveďová, Alžbeta; Stacke, Václav; Chudý, František

    2014-11-01

    Large earthflow-type landslides are destructive mass movement phenomena with highly unpredictable behaviour. Knowledge of earthflow kinematics is essential for understanding the mechanisms that control its movements. The present paper characterises the kinematic behaviour of a large earthflow near the village of Ľubietová in Central Slovakia over a period of 35 years following its most recent reactivation in 1977. For this purpose, multi-temporal spatial data acquired by point-based in-situ monitoring and optical remote sensing methods have been used. Quantitative data analyses including strain modelling and DEM differencing techniques have enabled us to: (i) calculate the annual landslide movement rates; (ii) detect the trend of surface displacements; (iii) characterise spatial variability of movement rates; (iv) measure changes in the surface topography on a decadal scale; and (v) define areas with distinct kinematic behaviour. The results also integrate the qualitative characteristics of surface topography, in particular the distribution of surface structures as defined by a high-resolution DEM, and the landslide subsurface structure, as revealed by 2D resistivity imaging. Then, the ground surface kinematics of the landslide is evaluated with respect to the specific conditions encountered in the study area including slope morphology, landslide subsurface structure, and local geological and hydrometeorological conditions. Finally, the broader implications of the presented research are discussed with particular focus on the role that strain-related structures play in landslide kinematic behaviour.

  12. Pathway computation in models derived from bio-science text sources

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Jensen, Per Anker

    2017-01-01

    This paper outlines a system, OntoScape, serving to accomplish complex inference tasks on knowledge bases and bio-models derived from life-science text corpora. The system applies so-called natural logic, a form of logic which is readable for humans. This logic affords ontological representations...

  13. Derivation and Numerical Approximation of the Quantum Drift Diffusion Model for Semiconductors

    International Nuclear Information System (INIS)

    Ohnmar Nwe

    2004-06-01

    This paper is concerned with the study of the quantum drift diffusion equation for semiconductors. Derivation of the mathematical model, which describes the electeon flow through a semiconductor device due to the application of a voltage, is considered and studied in numerical point of view by using some methods

  14. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  15. A generalized one-factor term structure model and pricing of interest rate derivative securities

    NARCIS (Netherlands)

    Jiang, George J.

    1997-01-01

    The purpose of this paper is to propose a nonparametric interest rate term structure model and investigate its implications on term structure dynamics and prices of interest rate derivative securities. The nonparametric spot interest rate process is estimated from the observed short-term interest

  16. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2016-01-01

    Full Text Available In this article we propose a new fractional derivative without singular kernel. We consider the potential application for modeling the steady heat-conduction problem. The analytical solution of the fractional-order heat flow is also obtained by means of the Laplace transform.

  17. Market segment derivation and profiling via a finite mixture model framework

    NARCIS (Netherlands)

    Wedel, M; Desarbo, WS

    The Marketing literature has shown how difficult it is to profile market segments derived with finite mixture models. especially using traditional descriptor variables (e.g., demographics). Such profiling is critical for the proper implementation of segmentation strategy. we propose a new finite

  18. Optimization of Particle Search Algorithm for CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    G. Baryshev

    2013-09-01

    Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.

  19. Der antiskeptische Boden unter dem Gehirn im Tank

    OpenAIRE

    Müller, Olaf L.

    2001-01-01

    Crispin Wright hat die bislang beste Rekonstruktion von Putnams Beweis gegen die skeptische Hypothese vom Gehirn im Tank vorgelegt. Aber selbst in Wrights Fassung hat der Beweis einen Mangel: Er wird mithilfe eines Prädikates wie z.B. "Tiger" geführt und funktioniert nur, wenn man sich darauf verlassen kann, dass es Tiger wirklich gibt. Aber die Skeptikerin bestreitet, über die Existenz von Tigern bescheid zu wissen. Das Problem lässt sich dadurch beheben, dass man den Beweis – statt mit dem ...

  20. Modeling of the influence of transparency of the derivatives market on financial depth

    Directory of Open Access Journals (Sweden)

    Irina Burdenko

    2016-07-01

    Full Text Available The market of derivative tools becomes an integral part of the financial market, the functions which are carrying out in it peculiar only to it: hedging, distribution of risks, ensuring liquidity of basic assets, information support of future movement of the prices, decrease in asymmetry of information in the financial markets. However, the insufficiency or lack of transparent information can lead to emergence of the crisis phenomena, shocks in the financial market and growth of system risk. Emergence of need for strengthening of information function of the market of derivatives changes of requirements to transparency of information had been caused by financial crisis of 2008-2009. In this article the attempt of an assessment of influence was made by means of autoregressive models the change of requirements to standard transparency, such as qualitative characteristic of the derivatives market, on quantitative indices of the financial market, in particular financial depth. The results of research demonstrate that reforming of the legislation concerning strengthening of transparency in the derivatives market positively influences the growth of financial depth. The research of this question will promote the best understanding of importance of reforming of regulation of the derivatives market, in particular strengthening of requirements to transparency. Recommendations of the further researches concern the needs of input of reforms of financial regulation in the derivatives market in Ukraine, and, thus, to provide the corresponding conditions for his development

  1. Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements

    Directory of Open Access Journals (Sweden)

    M. A. Geller

    1997-09-01

    Full Text Available This paper uses dissipation values derived from UARS/HRDI observations in a recently published diurnal-tide model. These model structures compare quite well with the UARS/HRDI observations with respect to the annual variation of the diurnal tidal amplitudes and the size of the amplitudes themselves. It is suggested that the annual variation of atmospheric dissipation in the mesosphere-lower thermosphere is a major controlling factor in determining the annual variation of the diurnal tide.

  2. Precise troposphere delay model for Egypt, as derived from radiosonde data

    Directory of Open Access Journals (Sweden)

    M.A. Abdelfatah

    2015-06-01

    Real GPS data of six stations in 8-day period were used for the assessment of zenith part of PTD model against the available international models. These international models include Saastamoinen, Hopfield, and the local Egyptian dry model proposed by Mousa & El-Fiky. The data were processed using Bernese software version 5.0. The closure error results indicate that the PTD model is the best model in all session, but when the available radiosonde stations are less, the accuracy of PTD model is near to classic models. As radiosonde data for all ten stations are not available every session, it is recommended to use one of the regularization techniques for database to overcome missing data and derive consistent tropospheric delay information.

  3. Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

    Science.gov (United States)

    Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto

    2014-01-01

    Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190

  4. Evaluating measurement of dynamic constructs: defining a measurement model of derivatives.

    Science.gov (United States)

    Estabrook, Ryne

    2015-03-01

    While measurement evaluation has been embraced as an important step in psychological research, evaluating measurement structures with longitudinal data is fraught with limitations. This article defines and tests a measurement model of derivatives (MMOD), which is designed to assess the measurement structure of latent constructs both for analyses of between-person differences and for the analysis of change. Simulation results indicate that MMOD outperforms existing models for multivariate analysis and provides equivalent fit to data generation models. Additional simulations show MMOD capable of detecting differences in between-person and within-person factor structures. Model features, applications, and future directions are discussed. (c) 2015 APA, all rights reserved).

  5. Derivation of inner magnetospheric electric field (UNH-IMEF model using Cluster data set

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2008-09-01

    Full Text Available We derive an inner magnetospheric electric field (UNH-IMEF model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4. Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS. Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.

  6. Derivation of inner magnetospheric electric field (UNH-IMEF model using Cluster data set

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2008-09-01

    Full Text Available We derive an inner magnetospheric electric field (UNH-IMEF model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4. Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS. Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.

  7. GIS-based debris flow source and runout susceptibility assessment from DEM data – a case study in NW Nicaragua

    Directory of Open Access Journals (Sweden)

    J. M. Vilaplana

    2007-11-01

    Full Text Available In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk

  8. To the question on accuracy of forest heights’ measurements by the TanDEM-X radar interferometry data

    Directory of Open Access Journals (Sweden)

    T. N. Chimitdorzhiev

    2016-08-01

    Full Text Available The paper presents the validation results of the InSAR method for determining the forest canopy height, based on TanDEM-X and ALOS PALSAR data. The research conducted on the territory of the Baikal-Kudara forest area of the Republic of Buryatia (52°10'N, 106°48'E. Forest vegetation is represented mainly by conifers – pine, and spruce, with a small admixture of deciduous trees – aspen, birch, etc. The forest vegetation height was determined by subtracting the digital elevation model (DEM of the digital terrain model (DTM. DEM is built according to the L-band (wavelength of 23.5 cm ALOS PALSAR satellite with horizontal co-polarization mode. In the investigation it was assumed that a radar signal of ALOS PALSAR passes all forest thickness and reflected from the underlying surface, made it possible to recover terrain under forest canopy. DTM has been built using the TanDEM-X data (wavelength 3 cm. In this case, it was assumed that the radar echoes scattered from a some virtual phase centers of scattering surface, which characterizes the upper limit of the continuous forest canopy. To check the accuracy of satellite definitions of forest height in study area were made high-precision geodetic measurement of trees heights using electronic total station and the coordinates of geographic control points using differential GPS receivers. The discrepancy between the satellite and ground-based measurements at 11 test sites did not exceed 2 m, which is mainly due to the difference in measurement techniques: height of individual trees by ground methods and continuous forest canopy height using radar interferometry.

  9. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy

    OpenAIRE

    Cho, Gun-Sik; Lee, Dong I.; Tampakakis, Emmanouil; Murphy, Sean; Andersen, Peter; Uosaki, Hideki; Chelko, Stephen; Chakir, Khalid; Hong, Ingie; Seo, Kinya; Vincent Chen, Huei-Sheng; Chen, Xiongwen; Basso, Cristina; Houser, Steven R.; Tomaselli, Gordon F.

    2017-01-01

    Summary: Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonata...

  10. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  11. A new visco-elasto-plastic model via time-space fractional derivative

    Science.gov (United States)

    Hei, X.; Chen, W.; Pang, G.; Xiao, R.; Zhang, C.

    2018-02-01

    To characterize the visco-elasto-plastic behavior of metals and alloys we propose a new constitutive equation based on a time-space fractional derivative. The rheological representative of the model can be analogous to that of the Bingham-Maxwell model, while the dashpot element and sliding friction element are replaced by the corresponding fractional elements. The model is applied to describe the constant strain rate, stress relaxation and creep tests of different metals and alloys. The results suggest that the proposed simple model can describe the main characteristics of the experimental observations. More importantly, the model can also provide more accurate predictions than the classic Bingham-Maxwell model and the Bingham-Norton model.

  12. Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000

    DEFF Research Database (Denmark)

    Olsen, Nils; Lowes, F.; Sabaka, T.J.

    2005-01-01

    the zonal coefficients g(1)(0), g(3)(0),..., by 1-2 nT. We describe the reason for this contamination, and present a method to correct for it. Since not only OSVM but probably all main field models that are derived primarily from data around local midnight suffer from this effect, the presented scheme can...

  13. Dataset of curcumin derivatives for QSAR modeling of anti cancer against P388 cell line

    Directory of Open Access Journals (Sweden)

    Yum Eryanti

    2016-12-01

    Full Text Available The dataset of curcumin derivatives consists of 45 compounds (Table 1 with their anti cancer biological activity (IC50 against P388 cell line. 45 curcumin derivatives were used in the model development where 30 of these compounds were in the training set and the remaining 15 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA method. Based on the method, r2 value, r2 (CV value of 0.81, 0.67 were obtained. The QSAR model was also employed to predict the biological activity of compounds in the test set. Predictive correlation coefficient r2 values of 0.88 were obtained for the test set.

  14. GPU based contouring method on grid DEM data

    Science.gov (United States)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  15. Effect of aging in HDPE blended with DEM in decalin

    International Nuclear Information System (INIS)

    Silva, P.; Albano, C.; Karam, A.; Vargas, M.G.; Perera, R.

    2006-01-01

    Electron paramagnetic resonance (EPR) was used to study the effect of aging on irradiated samples of high-density polyethylene (HDPE) blended with diethyl maleate (DEM) in different proportions. Initially, we synthesize the HDPE using bis-(cyclopentadienyl) zirconium dichloride and P-MAO. The functionalization of the synthesized HDPE was carried out in a 10% weight/vol of polyethylene in decalin solution using different percentages of diethyl maleate (5, 10, 15 and 30% in weight). The samples were irradiated at 5, 15 and 30 kGy. An exponential decay in the total free radicals concentration was observed in the pure HDPE sample at the 15 and 30 kGy irradiation doses, as it was expected. For the 15 and 30 kGy irradiation doses the HDPE blended with 15 and 30% of DEM in decalin shows an increase in the total free radical concentrations as the storage time is increased. This behavior has been interpreted in terms of trapped free radicals. (Author)

  16. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  17. A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics

    Science.gov (United States)

    Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.

    2018-03-01

    Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.

  18. On the derivation of approximations to cellular automata models and the assumption of independence.

    Science.gov (United States)

    Davies, K J; Green, J E F; Bean, N G; Binder, B J; Ross, J V

    2014-07-01

    Cellular automata are discrete agent-based models, generally used in cell-based applications. There is much interest in obtaining continuum models that describe the mean behaviour of the agents in these models. Previously, continuum models have been derived for agents undergoing motility and proliferation processes, however, these models only hold under restricted conditions. In order to narrow down the reason for these restrictions, we explore three possible sources of error in deriving the model. These sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continuous-time model and the assumption of independence between the state of sites. We present a rigorous analysis in order to gain a greater understanding of the significance of these three issues. By finding a limiting regime that accurately approximates the conservation equation for the cellular automata, we are able to conclude that the inaccuracy between our approximation and the cellular automata is completely based on the assumption of independence. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A robust method of thin plate spline and its application to DEM construction

    Science.gov (United States)

    Chen, Chuanfa; Li, Yanyan

    2012-11-01

    In order to avoid the ill-conditioning problem of thin plate spline (TPS), the orthogonal least squares (OLS) method was introduced, and a modified OLS (MOLS) was developed. The MOLS of TPS (TPS-M) can not only select significant points, termed knots, from large and dense sampling data sets, but also easily compute the weights of the knots in terms of back-substitution. For interpolating large sampling points, we developed a local TPS-M, where some neighbor sampling points around the point being estimated are selected for computation. Numerical tests indicate that irrespective of sampling noise level, the average performance of TPS-M can advantage with smoothing TPS. Under the same simulation accuracy, the computational time of TPS-M decreases with the increase of the number of sampling points. The smooth fitting results on lidar-derived noise data indicate that TPS-M has an obvious smoothing effect, which is on par with smoothing TPS. The example of constructing a series of large scale DEMs, located in Shandong province, China, was employed to comparatively analyze the estimation accuracies of the two versions of TPS and the classical interpolation methods including inverse distance weighting (IDW), ordinary kriging (OK) and universal kriging with the second-order drift function (UK). Results show that regardless of sampling interval and spatial resolution, TPS-M is more accurate than the classical interpolation methods, except for the smoothing TPS at the finest sampling interval of 20 m, and the two versions of kriging at the spatial resolution of 15 m. In conclusion, TPS-M, which avoids the ill-conditioning problem, is considered as a robust method for DEM construction.

  20. FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    Directory of Open Access Journals (Sweden)

    Ruitao Peng

    2016-01-01

    Full Text Available Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear.

  1. Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives

    Directory of Open Access Journals (Sweden)

    Koca Ilknur

    2017-01-01

    Full Text Available Recently Hristov using the concept of a relaxation kernel with no singularity developed a new model of elastic heat diffusion equation based on the Caputo-Fabrizio fractional derivative as an extended version of Cattaneo model of heat diffusion equation. In the present article, we solve exactly the Cattaneo-Hristov model and extend it by the concept of a derivative with non-local and non-singular kernel by using the new Atangana-Baleanu derivative. The Cattaneo-Hristov model with the extended derivative is solved analytically with the Laplace transform, and numerically using the Crank-Nicholson scheme.

  2. Low-derivative operators of the Standard Model effective field theory via Hilbert series methods

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Landon; Martin, Adam [Department of Physics, University of Notre Dame,Nieuwland Science Hall, Notre Dame, IN 46556 (United States)

    2016-02-12

    In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N{sub f}=1 operators.

  3. Low-derivative operators of the Standard Model effective field theory via Hilbert series methods

    International Nuclear Information System (INIS)

    Lehman, Landon; Martin, Adam

    2016-01-01

    In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N_f=1 operators.

  4. An algorithm for generation of DEMs from contour lines considering geomorphic features

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rui

    2016-04-01

    Full Text Available Geomorphic information is omitted from many existing methods of generating gridded digital elevation models (DEMs from contour lines, resulting in significant errors during interpolation. Here, we present an advanced schema for improvement of the comprehensive regionalized method of linear interpolation. This approach uses a moving fitting method for an interpolated point and selects elevation points that are representative of geomorphic features as a whole to improve interpolation quality. A total of 16 points are selected, according to certain criteria, in eight directions surrounding the interpolated point; thus, there are two points in each direction, which is sufficient to provide an accurate representation of the geomorphic features of the DEM. Our method introduces virtual control points to prevent sudden changes in the interpolation results, which helps to overcome problems related to the distortion of the local geospatial distribution in areas where feature geomorphic information is inadequate. We construct the spline interpolation function using intersection points and virtual control points, all of which are applied to compute the point elevation. Moreover, we index all elevation values and spatial points of linear features using the R-tree method to ensure that points related to an interpolated position can be retrieved as quickly as possible. Finally, we test our method using a coal mine elevation dataset. The results confirm that our proposed method can generate DEMs smoothly and, in particular, avoid problems related to local distortion.    Resumen La información geomórfica se omite en muchos de los métodos de generación de Modelos Digitales de Elevación (DEM, en inglés que se elaboran a partir de líneas de contorno, lo que resulta en errores significativos durante la interpolación. En este trabajo se presenta un esquema avanzado para el mejoramiento del método comprensivo regionalizado de interpolación lineal. Esta

  5. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    Science.gov (United States)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  6. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  7. Relating derived relations as a model of analogical reasoning: reaction times and event-related potentials.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-11-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to cheese") derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar-similar responding to be significantly faster than different-different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different-different waveforms were significantly more negative than similar-similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar-similar responding is relationally "simpler" than, and functionally distinct from, different-different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations.

  8. Derivation of the Verlinde formula from Chern-Simons theory and the G/G model

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1993-01-01

    We give a derivation of the Verlinde formula for the G k WZW model from Chern-Simons theory, without taking recourse to CFT, by calculating explicitly the partition function Z ΣxS 1 of Σ x S 1 with an arbitrary number of labelled punctures. By what is essentially a suitable gauge choice, Z ΣxS 1 is reduced to the partition function of an abelian topological field theory on Σ (a deformation of non-abelian BF and Yang-Mills theory) whose evaluation is straightforward. This relates the Verlinde formula to the Ray-Singer torsion of Σ x S 1 . We derive the G k /G k model from Chern-Simons theory, proving their equivalence, and give an alternative derivation of the Verlinde formula by calculating the G k /G k path integral via a functional version of the Weyl integral formula. From this point of view the Verlinde formula arises from the corresponding jacobian, the Weyl determinant. Also, a novel derivation of the shift k → k + h is given, based on the index of the twisted Dolbeault complex. (orig.)

  9. A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.

  10. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    Science.gov (United States)

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Bermuda 3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Bermuda DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the islands of Bermuda...

  12. U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Virgin Islands DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the Virgin...

  13. Bermuda 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Bermuda DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the islands of Bermuda...

  14. British Columbia 3 arc-second Bathymetric Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second British Columbia DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM covers the coastal area...

  15. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  16. The Accuracy and Reproducibility of Linear Measurements Made on CBCT-derived Digital Models.

    Science.gov (United States)

    Maroua, Ahmad L; Ajaj, Mowaffak; Hajeer, Mohammad Y

    2016-04-01

    To evaluate the accuracy and reproducibility of linear measurements made on cone-beam computed tomography (CBCT)-derived digital models. A total of 25 patients (44% female, 18.7 ± 4 years) who had CBCT images for diagnostic purposes were included. Plaster models were obtained and digital models were extracted from CBCT scans. Seven linear measurements from predetermined landmarks were measured and analyzed on plaster models and the corresponding digital models. The measurements included arch length and width at different sites. Paired t test and Bland-Altman analysis were used to evaluate the accuracy of measurements on digital models compared to the plaster models. Also, intraclass correlation coefficients (ICCs) were used to evaluate the reproducibility of the measurements in order to assess the intraobserver reliability. The statistical analysis showed significant differences on 5 out of 14 variables, and the mean differences ranged from -0.48 to 0.51 mm. The Bland-Altman analysis revealed that the mean difference between variables was (0.14 ± 0.56) and (0.05 ± 0.96) mm and limits of agreement between the two methods ranged from -1.2 to 0.96 and from -1.8 to 1.9 mm in the maxilla and the mandible, respectively. The intraobserver reliability values were determined for all 14 variables of two types of models separately. The mean ICC value for the plaster models was 0.984 (0.924-0.999), while it was 0.946 for the CBCT models (range from 0.850 to 0.985). Linear measurements obtained from the CBCT-derived models appeared to have a high level of accuracy and reproducibility.

  17. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2010-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)

  18. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2011-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)

  19. Intercomparison of DEM-based approaches for the identification of flood-prone areas in different geomorphologic and climatic conditions

    Science.gov (United States)

    Samela, Caterina; Nardi, Fernando; Grimaldi, Salvatore; De Paola, Francesco; Sole, Aurelia; Manfreda, Salvatore

    2014-05-01

    Floods represent the most critical natural hazard for many countries and their frequency appears to be increasing in recent times. The legal constraints of public administrators and the growing interest of private companies (e.g., insurance companies) in identifying the areas exposed to the flood risk, is determining the necessity of developing new tools for the risk classification over large areas. Nowadays, among the numerous hydrologic and hydraulic methods regularly used for practical applications, 2-D hydraulic modeling represents the most accurate approach for deriving detailed inundation maps. Nevertheless, data requirement for these modeling approaches is certainly onerous, limiting their applicability over large areas. On this issue, the terrain morphology may provide an extraordinary amount of information useful to detect areas that are particularly prone to serious flooding. In the present work, we compare the reliability of different DEM-derived quantitative morphologic descriptors in characterizing the relationships between geomorphic attributes and flood exposure. The tests are carried out using techniques of pattern classification, such as linear binary classifiers (Degiorgis et al., 2012), whose ability is evaluated through performance measures. Simple and composed morphologic features are taken into account. The morphological features are: the upslope contributing area (A), the local slope (S), the length of the path that hydrologically connects the location under exam to the nearest element of the drainage network (D), the difference in elevation between the cell under exam and the final point of the same path (H), the curvature (downtriangle2H). In addition to the mentioned features, the study takes into consideration a number of composed indices, such as: the modified topographic index (Manfreda et al., 2011), the downslope index (DI) proposed by Hjerdt et al. (2004), the ratio between the elevation difference H and the distance to the network D

  20. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    Science.gov (United States)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  1. Using scale heights derived from bottomside ionograms for modelling the IRI topside profile

    Directory of Open Access Journals (Sweden)

    B. W. Reinisch

    2004-01-01

    Full Text Available Groundbased ionograms measure the Chapman scale height HT at the F2-layer peak that is used to construct the topside profile. After a brief review of the topside model extrapolation technique, comparisons are presented between the modeled profiles with incoherent scatter radar and satellite measurements for the mid latitude and equatorial ionosphere. The total electron content TEC, derived from measurements on satellite beacon signals, is compared with the height-integrated profiles ITEC from the ionograms. Good agreement is found with the ISR profiles and with results using the low altitude TOPEX satellite. The TEC values derived from GPS signal analysis are systematically larger than ITEC. It is suggested to use HT , routinely measured by a large number of Digisondes around the globe, for the construction of the IRI topside electron density profile.

  2. Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative

    Science.gov (United States)

    Owolabi, Kolade M.

    2018-01-01

    In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.

  3. A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market

    OpenAIRE

    Song, Lina

    2018-01-01

    Fractional differential equation has been introduced to the financial theory, which presents new ideas and tools for the theoretical researches and the practical applications. In the work, an approximate semianalytical solution of the time-fractional European option pricing model is derived using the method of combining the enhanced technique of Adomian decomposition method with the finite difference method. And then the result is introduced in China’s financial market. The work makes every e...

  4. Estimation efficiency of usage satellite derived and modelled biophysical products for yield forecasting

    Science.gov (United States)

    Kolotii, Andrii; Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii; Ostapenko, Vadim; Oliinyk, Tamara

    2015-04-01

    Efficient and timely crop monitoring and yield forecasting are important tasks for ensuring of stability and sustainable economic development [1]. As winter crops pay prominent role in agriculture of Ukraine - the main focus of this study is concentrated on winter wheat. In our previous research [2, 3] it was shown that usage of biophysical parameters of crops such as FAPAR (derived from Geoland-2 portal as for SPOT Vegetation data) is far more efficient for crop yield forecasting to NDVI derived from MODIS data - for available data. In our current work efficiency of usage such biophysical parameters as LAI, FAPAR, FCOVER (derived from SPOT Vegetation and PROBA-V data at resolution of 1 km and simulated within WOFOST model) and NDVI product (derived from MODIS) for winter wheat monitoring and yield forecasting is estimated. As the part of crop monitoring workflow (vegetation anomaly detection, vegetation indexes and products analysis) and yield forecasting SPIRITS tool developed by JRC is used. Statistics extraction is done for landcover maps created in SRI within FP-7 SIGMA project. Efficiency of usage satellite based and modelled with WOFOST model biophysical products is estimated. [1] N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "Sensor Web approach to Flood Monitoring and Risk Assessment", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 815-818. [2] F. Kogan, N. Kussul, T. Adamenko, S. Skakun, O. Kravchenko, O. Kryvobok, A. Shelestov, A. Kolotii, O. Kussul, and A. Lavrenyuk, "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," International Journal of Applied Earth Observation and Geoinformation, vol. 23, pp. 192-203, 2013. [3] Kussul O., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kolotii A, "Assessment of relative efficiency of using MODIS data to winter wheat yield forecasting in Ukraine", in: IGARSS 2013, 21-26 July 2013, Melbourne, Australia, pp. 3235 - 3238.

  5. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    Science.gov (United States)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  6. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  7. A statistical model for deriving probability distributions of contamination for accidental releases

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Davison, A.C.

    1986-01-01

    Results generated from a detailed long-range transport model, MESOS, simulating dispersal of a large number of hypothetical releases of radionuclides in a variety of meteorological situations over Western Europe have been used to derive a simpler statistical model, MESOSTAT. This model may be used to generate probability distributions of different levels of contamination at a receptor point 100-1000 km or so from the source (for example, across a frontier in another country) without considering individual release and dispersal scenarios. The model is embodied in a series of equations involving parameters which are determined from such factors as distance between source and receptor, nuclide decay and deposition characteristics, release duration, and geostrophic windrose at the source. Suitable geostrophic windrose data have been derived for source locations covering Western Europe. Special attention has been paid to the relatively improbable extreme values of contamination at the top end of the distribution. The MESOSTAT model and its development are described, with illustrations of its use and comparison with the original more detailed modelling techniques. (author)

  8. Comparison of digital elevation models for aquatic data development.

    Science.gov (United States)

    Sharon Clarke; Kelly. Burnett

    2003-01-01

    Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS) are widely available and commonly used in analyzing aquatic systems. However, these DEMs are of relatively coarse resolution, were inconsistently produced (i.e., Level 1 versus Level 2 DEMs), and lack drainage enforcement. Such issues may hamper efforts to accurately model...

  9. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    Science.gov (United States)

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  10. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Chen, Youhua [University of Science and Technology of China, Hefei, Anhui 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2016-05-15

    Highlights: • A CFD-DEM coupled numerical model is built based on the prototypical blanket pebble bed. • The numerical model can be applied to simulate heat transfer of a pebble bed and estimate effective thermal conductivity. • The numerical model agrees well with the theoretical SZB model. • Effective thermal conductivity of pebble beds for WCCB is estimated by the current model. - Abstract: The mono-sized beryllium pebble bed and the multi-sized Li{sub 2}TiO{sub 3}/Be{sub 12}Ti mixed pebble bed are the main schemes for the Water-cooled ceramic breeder blanket (WCCB) of China Fusion Engineering Test Reactor (CFETR). And the effective thermal conductivity (k{sub eff}) of the pebble beds is important to characterize the thermal performance of WCCB. In this study, a one-way coupled CFD-DEM method was employed to simulate heat transfer and estimate k{sub eff}. The geometric topology of a prototypical blanket pebble bed was produced by the discrete element method (DEM). Based on the geometric topology, the temperature distribution and the k{sub eff} were obtained by the computational fluid dynamics (CFD) analysis. The current numerical model presented a good performance to calculate k{sub eff} of the beryllium pebble bed, and according to the modeling of the Li{sub 2}TiO{sub 3}/Be{sub 12}Ti mixed pebble bed, k{sub eff} was estimated with values ranged between 2.0 and 4.0 W/(m∙K).

  11. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    Science.gov (United States)

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70° N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of j”kulhlaup flooding events), possible

  12. Mixing height derived from the DMI-HIRLAM NWP model, and used for ETEX dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.H.; Rasmussen, A. [Danish Meteorological Inst., Copenhagen (Denmark)

    1997-10-01

    For atmospheric dispersion modelling it is of great significance to estimate the mixing height well. Mesoscale and long-range diffusion models using output from numerical weather prediction (NWP) models may well use NWP model profiles of wind, temperature and humidity in computation of the mixing height. This is dynamically consistent, and enables calculation of the mixing height for predicted states of the atmosphere. In autumn 1994, the European Tracer Experiment (ETEX) was carried out with the objective to validate atmospheric dispersion models. The Danish Meteorological Institute (DMI) participates in the model evaluations with the Danish Emergency Response Model of the Atmosphere (DERMA) using NWP model data from the DMI version of the High Resolution Limited Area Model (HIRLAM) as well as from the global model of the European Centre for Medium-Range Weather Forecast (ECMWF). In DERMA, calculation of mixing heights are performed based on a bulk Richardson number approach. Comparing with tracer gas measurements for the first ETEX experiment, a sensitivity study is performed for DERMA. Using DMI-HIRLAM data, the study shows that optimum values of the critical bulk Richardson number in the range 0.15-0.35 are adequate. These results are in agreement with recent mixing height verification studies against radiosonde data. The fairly large range of adequate critical values is a signature of the robustness of the method. Direct verification results against observed missing heights from operational radio-sondes released under the ETEX plume are presented. (au) 10 refs.

  13. Landscape unit based digital elevation model development for the freshwater wetlands within the Arthur C. Marshall Loxahatchee National Wildlife Refuge, Southeastern Florida

    Science.gov (United States)

    Xie, Zhixiao; Liu, Zhongwei; Jones, John W.; Higer, Aaron L.; Telis, Pamela A.

    2011-01-01

    The hydrologic regime is a critical limiting factor in the delicate ecosystem of the greater Everglades freshwater wetlands in south Florida that has been severely altered by management activities in the past several decades. "Getting the water right" is regarded as the key to successful restoration of this unique wetland ecosystem. An essential component to represent and model its hydrologic regime, specifically water depth, is an accurate ground Digital Elevation Model (DEM). The Everglades Depth Estimation Network (EDEN) supplies important hydrologic data, and its products (including a ground DEM) have been well received by scientists and resource managers involved in Everglades restoration. This study improves the EDEN DEMs of the Loxahatchee National Wildlife Refuge, also known as Water Conservation Area 1 (WCA1), by adopting a landscape unit (LU) based interpolation approach. The study first filtered the input elevation data based on newly available vegetation data, and then created a separate geostatistical model (universal kriging) for each LU. The resultant DEMs have encouraging cross-validation and validation results, especially since the validation is based on an independent elevation dataset (derived by subtracting water depth measurements from EDEN water surface elevations). The DEM product of this study will directly benefit hydrologic and ecological studies as well as restoration efforts. The study will also be valuable for a broad range of wetland studies.

  14. Intermediate modeling between kinetic equations and hydrodynamic limits: derivation, analysis and simulations

    International Nuclear Information System (INIS)

    Parisot, M.

    2011-01-01

    This work is dedicated study of a problem resulting from plasma physics: the thermal transfer of electrons in a plasma close to equilibrium Maxwellian. Firstly, a dimensional study of the Vlasov-Fokker-Planck-Maxwell system is performed, allowing one hand to identify a physically relevant parameter of scale and also to define mathematically the contours of validity domain. The asymptotic regime called Spitzer-Harm is studied for a relatively general class of collision operator. The following part of this work is devoted to the derivation and study of the hydrodynamic limit of the system of Vlasov-Maxwell-Landau outside the strictly asymptotic. A model proposed by Schurtz and Nicolais located in this context and analyzed. The particularity of this model lies in the application of a delocalization operation in the heat flux. The link with non-local models of Luciani and Mora is established as well as mathematics properties as the principle of maximum and entropy dissipation. Then a formal derivation from the Vlasov equations with a simplified collision operator, is proposed. The derivation, inspired by the recent work of D. Levermore, involves decomposition methods according to the spherical harmonics and methods of closing called diffusion methods. A hierarchy of intermediate models between the kinetic equations and the hydrodynamic limit is described. In particular a new hydrodynamic system integro-differential by nature, is proposed. The Schurtz and Nicolai model appears as a simplification of the system resulting from the derivation, assuming a steady flow of heat. The above results are then generalized to account for the internal energy dependence which appears naturally in the equation establishment. The existence and uniqueness of the solution of the nonstationary system are established in a simplified framework. The last part is devoted was the implementation of a specific numerical scheme to solve these models. We propose a finite volume approach can be

  15. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China); Guo, Haibing [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: inpclane@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Solid tritium breeding blanket applying pebble bed concept is promising for fusion reactors. Tritium bred in the pebble bed is purged out by inert gas. The flow characteristics of the purge gas are important for the tritium transport from the solid breeder materials. In this study, a randomly packed pebble bed was generated by Discrete Element Method (DEM) and verified by radial porosity distribution. The flow parameters of the purge gas in channels were solved by Computational Fluid Dynamics (CFD) method. The results show that the normalized velocity magnitudes have the same damped oscillating patterns with radial porosity distribution. Besides, the bypass flow near the wall cannot be ignored in this model, and it has a slight increase with inlet velocity. Furthermore, higher purging efficiency becomes with higher inlet velocity and especially higher in near wall region.

  16. Coupled DEM-CFD analyses of landslide-induced debris flows

    CERN Document Server

    Zhao, Tao

    2017-01-01

    This book reflects the latest research results in computer modelling of landslide-induced debris flows. The book establishes an understanding of the initiation and propagation mechanisms of landslides by means of numerical simulations, so that mitigation strategies to reduce the long-term losses from landslide hazards can be devised. In this context, the book employs the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to investigate the mechanical and hydraulic behaviour of granular materials involved in landslides – an approach that yields meaningful insights into the flow mechanisms, concerning e.g. the mobilization of sediments, the generation and dissipation of excess pore water pressures, and the evolution of effective stresses. As such, the book provides valuable information, useful methods and robust numerical tools that can be successfully applied in the field of debris flow research.

  17. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Sean J. Ashton, Matthias Arenz The intention of the study presented here is to compare the electrochemical oxidation tendencies of a pristine Ketjen Black EC300 high surface area (HSA) carbon black, and four graphitised counterparts...... heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  18. Pharmakobotanische Untersuchungen von Lavendelsorten auf dem Plattensee- Plateau

    Directory of Open Access Journals (Sweden)

    Tóth, Frida

    2014-09-01

    Full Text Available Auf dem Hof Dörgicsei Levendula Major GmbH wurden 9 Lavendelsorten (6 Sorten von Lavandula angustifolia und 3 Sorten von Lavandula x intermedia untersucht. Neben den morphologischen und Wachstumseigenschaften wurden auch Frisch- und Trockengewichte bewertet. Quantitative und qualitative Untersuchungen von den Blüten- und Ätherischöldrogen wurden auch durchgeführt. Die statistische Analyse zeigte signifikant höhere Erträge bei den Sorten L. angustifolia ’Essence Purple’ und L. x intermedia ’Edelweiss’. Gehalt und Zusammensetzung von ätherischem Öl war eindeutig bei der Sorte L. angustifolia ’Ellagance Purple’ am günstigsten.

  19. Dementia-free life expectancy (demFLE) in the Netherlands

    NARCIS (Netherlands)

    Perenboom, R.J.M.; Boshuizen, H.C.; Breteler, M.M.B.; Alewijn, O.; Water, H.P.A. van de

    1996-01-01

    To gain an insight into the burden of dementia in an aging society, life expectancy with dementia and its counterpart dementia-free life expectancy (DemFLE) in The Netherlands are presented. Sullivan's method was used to calculate DemFLE. For elderly living either independently or in homes for the

  20. Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint.

    Science.gov (United States)

    Mwakaboko, Alinanuswe S; Zwanenburg, Binne

    2011-04-01

    Strigolactones are important signaling compounds in the plant kingdom. Here we focus on their germination stimulatory effect on seeds of the parasitic weeds Striga and Orobanche spp. and more particularly on the design and synthesis of new active strigolactone analogs derived from simple cyclic ketones. New analogs derived from 1-indanone, 1-tetralone, cyclopentanone, cyclohexanone and a series of substituted cyclohexanones (including carvone and pulegone) are prepared by formylation of the ketones with ethyl formate followed by coupling with a halo butenolide. Both enantiomers of the analog derived from 1-tetralone have been prepared by employing a homochiral synthon for the coupling reaction. For three other strigolactone analogs the antipodes have been obtained by chromatography on a chiral column. All analogs have an appreciable germinating activity towards seeds of Striga hermomonthica and Orobanche crenata and O. cernua. Stereoisomers having the same configuration at the D-ring as in naturally occurring strigol have a higher stimulatory effect than the corresponding antipodes. The analogs obtained from 1-indanone and 1-tetralone have an activity comparable with that of the well known stimulant GR 24. Analogs derived from 2-phenyl-cylohexanone, carvone and pulegone also have a good germinating response. The results show that the working model for designing new bioactive strigolactones is applicable.

  1. In silico modeling predicts drug sensitivity of patient-derived cancer cells.

    Science.gov (United States)

    Pingle, Sandeep C; Sultana, Zeba; Pastorino, Sandra; Jiang, Pengfei; Mukthavaram, Rajesh; Chao, Ying; Bharati, Ila Sri; Nomura, Natsuko; Makale, Milan; Abbasi, Taher; Kapoor, Shweta; Kumar, Ansu; Usmani, Shahabuddin; Agrawal, Ashish; Vali, Shireen; Kesari, Santosh

    2014-05-21

    Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling ("omics") data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer.

  2. Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment

    Directory of Open Access Journals (Sweden)

    Clare eScott

    2013-12-01

    Full Text Available Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDX are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy.PDX models have been applied to preclinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial ovarian cancer PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues

  3. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    DEFF Research Database (Denmark)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon

    2017-01-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped......A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model...... by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors....

  4. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN, the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05. The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011. The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05, demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN.

  5. An Improved dem Construction Method for Mudflats Based on BJ-1 Small Satellite Images: a Case Study on Bohai Bay

    Science.gov (United States)

    Wu, D.; Du, Y.; Su, F.; Huang, W.; Zhang, L.

    2018-04-01

    The topographic measurement of muddy tidal flat is restricted by the difficulty of access to the complex, wide-range and dynamic tidal conditions. Then the waterline detection method (WDM) has the potential to investigate the morph-dynamics quantitatively by utilizing large archives of satellite images. The study explores the potential for using WDM with BJ-1 small satellite images to construct a digital elevation model (DEM) of a wide and grading mudflat. Three major conclusions of the study are as follows: (1) A new intelligent correlating model of waterline detection considering different tidal stages and local geographic conditions was explored. With this correlative algorithm waterline detection model, a series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of a year. The model proved to detect waterlines more efficiently and exactly. (2) The spatial structure of elevation superimposing on the points of waterlines was firstly constructed and a more accurate hydrodynamic ocean tide grid model was used. By the newly constructed abnormal hydrology evaluation model, a more reasonable and reliable set of waterline points was acquired to construct a smoother TIN and GRID DEM. (3) DEM maps of Bohai Bay, with a spatial resolution of about 30 m and height accuracy of about 0.35 m considering LiDAR and 0.19 m considering RTK surveying were constructed over an area of about 266 km2. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible and is an effective tool for monitoring the tidal flats.

  6. Quantitative Analysis of Accuracy of Voidage Computations in CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    H. A. Khawaja

    2012-06-01

    Full Text Available CFD-DEM (Computational Fluid Dynamics – Discrete Element Modelling is a two-phase flow numerical modelling technique, where the Eulerian method is used for the fluid and the Lagrangian method for the particles. The two phases are coupled by a fluid-particle interaction force (i.e. drag force which is computed using a correlation. In a two-phase flow, one critical parameter is the voidage (or void fraction, which is defined as the ratio of the volume occupied by the fluid to the total volume. In a CFD-DEM simulation the local voidage is computed by calculating the volume of particles in a given fluid cell. For spherical particles, this computation is difficult when a particle is on the boundary of fluid cells. In this case, it is usual to compute the volume of a particle in a fluid cell approximately. One such approximation divides the volume of a particle into each cell in the same ratio as an equivalent cube of width equal to the particle diameter. Whilst this approach is computationally straight forward, the approximation introduces an error in the voidage computation. Here we estimate the error by comparing the approximate volume calculation with an exact (numerical computation of the volume of a particle in a fluid cell. The results show that the error varies with the position of the particle relative to the cell boundary. A new approach is suggested which limits the error to less than 2.5 %, without significantly increasing the computational complexity.

  7. Dynamics Under Location Uncertainty: Model Derivation, Modified Transport and Uncertainty Quantification

    Science.gov (United States)

    Resseguier, V.; Memin, E.; Chapron, B.; Fox-Kemper, B.

    2017-12-01

    In order to better observe and predict geophysical flows, ensemble-based data assimilation methods are of high importance. In such methods, an ensemble of random realizations represents the variety of the simulated flow's likely behaviors. For this purpose, randomness needs to be introduced in a suitable way and physically-based stochastic subgrid parametrizations are promising paths. This talk will propose a new kind of such a parametrization referred to as modeling under location uncertainty. The fluid velocity is decomposed into a resolved large-scale component and an aliased small-scale one. The first component is possibly random but time-correlated whereas the second is white-in-time but spatially-correlated and possibly inhomogeneous and anisotropic. With such a velocity, the material derivative of any - possibly active - tracer is modified. Three new terms appear: a correction of the large-scale advection, a multiplicative noise and a possibly heterogeneous and anisotropic diffusion. This parameterization naturally ensures attractive properties such as energy conservation for each realization. Additionally, this stochastic material derivative and the associated Reynolds' transport theorem offer a systematic method to derive stochastic models. In particular, we will discuss the consequences of the Quasi-Geostrophic assumptions in our framework. Depending on the turbulence amount, different models with different physical behaviors are obtained. Under strong turbulence assumptions, a simplified diagnosis of frontolysis and frontogenesis at the surface of the ocean is possible in this framework. A Surface Quasi-Geostrophic (SQG) model with a weaker noise influence has also been simulated. A single realization better represents small scales than a deterministic SQG model at the same resolution. Moreover, an ensemble accurately predicts extreme events, bifurcations as well as the amplitudes and the positions of the simulation errors. Figure 1 highlights this last

  8. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.

    Science.gov (United States)

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-02-23

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling.

  9. Modeling marbled murrelet (Brachyramphus marmoratus) habitat using LiDAR-derived canopy data

    Science.gov (United States)

    Hagar, Joan C.; Eskelson, Bianca N.I.; Haggerty, Patricia K.; Nelson, S. Kim; Vesely, David G.

    2014-01-01

    LiDAR (Light Detection And Ranging) is an emerging remote-sensing tool that can provide fine-scale data describing vertical complexity of vegetation relevant to species that are responsive to forest structure. We used LiDAR data to estimate occupancy probability for the federally threatened marbled murrelet (Brachyramphus marmoratus) in the Oregon Coast Range of the United States. Our goal was to address the need identified in the Recovery Plan for a more accurate estimate of the availability of nesting habitat by developing occupancy maps based on refined measures of nest-strand structure. We used murrelet occupancy data collected by the Bureau of Land Management Coos Bay District, and canopy metrics calculated from discrete return airborne LiDAR data, to fit a logistic regression model predicting the probability of occupancy. Our final model for stand-level occupancy included distance to coast, and 5 LiDAR-derived variables describing canopy structure. With an area under the curve value (AUC) of 0.74, this model had acceptable discrimination and fair agreement (Cohen's κ = 0.24), especially considering that all sites in our sample were regarded by managers as potential habitat. The LiDAR model provided better discrimination between occupied and unoccupied sites than did a model using variables derived from Gradient Nearest Neighbor maps that were previously reported as important predictors of murrelet occupancy (AUC = 0.64, κ = 0.12). We also evaluated LiDAR metrics at 11 known murrelet nest sites. Two LiDAR-derived variables accurately discriminated nest sites from random sites (average AUC = 0.91). LiDAR provided a means of quantifying 3-dimensional canopy structure with variables that are ecologically relevant to murrelet nesting habitat, and have not been as accurately quantified by other mensuration methods.

  10. Deriving albedo maps for HAPEX-Sahel from ASAS data using kernel-driven BRDF models

    Directory of Open Access Journals (Sweden)

    P. Lewis

    1999-01-01

    Full Text Available This paper describes the application and testing of a method for deriving spatial estimates of albedo from multi-angle remote sensing data. Linear kernel-driven models of surface bi-directional reflectance have been inverted against high spatial resolution multi-angular, multi- spectral airborne data of the principal cover types within the HAPEX-Sahel study site in Niger, West Africa. The airborne data are obtained from the NASA Airborne Solid-state Imaging Spectrometer (ASAS instrument, flown in Niger in September and October 1992. The maps of model parameters produced are used to estimate integrated reflectance properties related to spectral albedo. Broadband albedo has been estimated from this by weighting the spectral albedo for each pixel within the map as a function of the appropriate spectral solar irradiance and proportion of direct and diffuse illumination. Partial validation of the results was performed by comparing ASAS reflectance and derived directional-hemispherical reflectance with simulations of a millet canopy made with a complex geometric canopy reflectance model, the Botanical Plant Modelling System (BPMS. Both were found to agree well in magnitude. Broadband albedo values derived from the ASAS data were compared with ground-based (point sample albedo measurements and found to agree extremely well. These results indicate that the linear kernel-driven modelling approach, which is to be used operationally to produce global 16 day, 1 km albedo maps from forthcoming NASA Earth Observing System spaceborne data, is both sound and practical for the estimation of angle-integrated spectral reflectance quantities related to albedo. Results for broadband albedo are dependent on spectral sampling and on obtaining the correct spectral weigthings.

  11. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Directory of Open Access Journals (Sweden)

    Daniel R. Bayzigitov

    2016-01-01

    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  12. Application of QSAR models in analysis of antibacterial activity of some benzimidazole derivatives against Sarcina lutea

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2013-01-01

    Full Text Available In the present paper, a quantitative structure activity relationship (QSAR has been carried out on a series of 2-methyl and 2-aminobenzimidazole derivatives to identify the lipophilicity requirements for their inhibitory activity against bacteria Sarcina lutea. The tested compounds displayed in vitro antibacterial activity and minimum inhibitory concentration (MIC was determined for all compounds. The partition coefficients of the studied compounds were measured by the shake flask method (log P and by theoretical calculation (Clog P. The relationships between lipophilicity descriptors and antibacterial activities were investigated and the mathematical models have been developed as a calibration models for predicting the inhibitory activity of this class of compounds. The models were validated by leave-one-out (LOO technique as well as by the calculation of statistical parameters for the established models. Therefore, QSAR analysis reveals that lipophilicity descriptor govern the inhibitory activity of benzimidazoles studied against Sarcina lutea.

  13. Derivation of Continuum Models from An Agent-based Cancer Model: Optimization and Sensitivity Analysis.

    Science.gov (United States)

    Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank

    2017-01-01

    Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Robust 3D Quantification of Glacial Landforms: A Use of Idealised Drumlins in a Real DEM

    Science.gov (United States)

    Hillier, J. K.; Smith, M. S.

    2012-04-01

    Drumlins' attributes, such as height (h) and volume (V ), may preserve important information about the dynamics of former ice sheets. However, measurement errors are large (e.g., 39.2% of V within ±25% of their real values for the 'cookie cutter') and, in general, poorly understood. To accurately quantify the morphology of glacial landforms, the relief belonging to that landform must be reliably isolated from other components of the landscape (e.g. buildings, hills). A number of techniques have been proposed for this regional-residual separation (RRS). Which is best? Justifications for those applied remain qualitative assertions. A recently developed, novel method using idealised drumlins of known size (hin, V in) in a real digital elevation model (DEM) is used to quantitatively determine the best RRS technique, allowing general guidelines for quantifying glacial landforms to be proposed. 184 drumlins with digitised outlines in western Central Scotland are used as a case study. The NEXTMap surface model (DSM) is the primary dataset employed. A variety of techniques are then investigated for their ability to recover sizes (hr, V r). A metric, ɛ, is used that maximises the number of Hr/Hin values near 1.0 whilst giving equal weight to different drumlin sizes: a metric dominated by the large number of small drumlins is not desirable. For simplicity, the semi-automated 'cookie cutter' technique is used as a baseline for comparison. This removes heights within a drumlin from a DEM, cuts a hole, then estimates its basal surface by interpolating across the space with a fully tensioned bi-cubic spline (-T1). Metrics for h and V are ɛh = 0.885 and ɛV = 0.247. Other tensions do not improve this significantly, with ɛV of 0.245 at best, but using Delauney triangulation reduces ɛV to 0.206. Windowed 'sliding median' filters, which do not require heights within drumlins to be removed, attain a minimum ɛV of 0.470 at a best width of 340 m (-Fm340). Finally, even crudely

  15. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model

    OpenAIRE

    Yousefifard, Mahmoud; Nasirinezhad, Farinaz; Shardi Manaheji, Homa; Janzadeh, Atousa; Hosseini, Mostafa; Keshavarz, Mansoor

    2016-01-01

    Background Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. Methods A compression model was used to induce SCI in a rat model. A w...

  16. Particle Reduction Strategies - PAREST. Influence of the boundary conditions from the global chemistry transport model TM5 on the regional aerosol chemistry transport model REM CALGRID; Strategien zur Verminderung der Feinstaubbelastung - PAREST. Einfluss der Randbedingungen aus dem globalen Chemie-Transport-Modell TM5 auf das regionale Aerosol-Chemie-Transport-Modell REM-CALGRID. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kerschbaumer, Andreas; Hannig, Katrin [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung

    2013-06-15

    In this report the coupling of a global model is presented with a continental model. It examines how far the forecasts of regional air quality in Europe are affected by the choice of boundary conditions. The focus of this report is to analyze the influence of different boundary conditions on the calculated soil concentrations of ozone and PM10. A model evaluation, however, was not the aim of this study. [German] In diesem Bericht wird die Koppelung eines Globalmodells mit einem kontinentalen Modell vorgestellt. Es wird untersucht, wie weit die Prognosen der regionalen Luftqualitaet in Europa von der Wahl der Randbedingungen beeinflusst werden. Der Schwerpunkt des vorliegenden Berichts liegt in der Analyse des Einflusses der verschiedenen Randbedingungen auf die berechneten Bodenkonzentrationen von Ozon und PM10. Eine Modellevaluierung hingegen war nicht Ziel dieser Studie.

  17. Antitumor activity of the multikinase inhibitor regorafenib in patient-derived xenograft models of gastric cancer.

    Science.gov (United States)

    Huynh, Hung; Ong, Richard; Zopf, Dieter

    2015-10-29

    Unresectable gastric cancer is associated with poor outcomes, with few treatment options available after failure of cytotoxic chemotherapy. Clinical trials of targeted therapies have generally shown no survival benefit in gastric cancer, with the exceptions of the antibodies ramucirumab (anti-VEGFR2) and trastuzumab (anti-HER2/neu). Given the efficacy of the multikinase inhibitor regorafenib in other gastrointestinal tumors, we investigated its potential in gastric cancer. The antitumor activity of oral regorafenib was assessed in eight murine patient-derived gastric cancer xenograft models. Dose-response experiments assessed the efficacy and tolerability of oral regorafenib 5, 10, and 15 mg/kg/day in two models, with 10 mg/kg/day selected for further investigation in all eight models. Tumor weight and volume was monitored during treatment; tumor cell proliferation, angiogenesis, apoptosis, and intracellular signaling were assessed using immunohistochemistry and Western blotting of total tumor lysates at the end of treatment. Regorafenib showed dose-dependent inhibition of tumor growth and was well tolerated, with no significant decreases in bodyweight or evident toxicity. Regorafenib 10 mg/kg/day significantly inhibited tumor growth in all eight models (72 to 96 %; all p Regorafenib reduced tumor angiogenesis 3- to 11-fold versus controls in all models (all p Regorafenib was effective in patient-derived models of gastric cancer of different histological subtypes, with inhibition of tumor growth, angiogenesis, and tumor-cell proliferation observed in almost all models. These findings are consistent with the observed activity of regorafenib in preclinical models of other gastrointestinal tumors, and support further clinical investigation in gastric cancer.

  18. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy.

    Science.gov (United States)

    Cho, Gun-Sik; Lee, Dong I; Tampakakis, Emmanouil; Murphy, Sean; Andersen, Peter; Uosaki, Hideki; Chelko, Stephen; Chakir, Khalid; Hong, Ingie; Seo, Kinya; Chen, Huei-Sheng Vincent; Chen, Xiongwen; Basso, Cristina; Houser, Steven R; Tomaselli, Gordon F; O'Rourke, Brian; Judge, Daniel P; Kass, David A; Kwon, Chulan

    2017-01-10

    Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Estimating Derived Response Levels at the Savannah River Site for Use with Emergency Response Models

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    2002-01-01

    Emergency response computer models at the Savannah River Site (SRS) are coupled with real-time meteorological data to estimate dose to individuals downwind of accidental radioactive releases. Currently, these models estimate doses for inhalation and shine pathways, but do not consider dose due to ingestion of contaminated food products. The Food and Drug Administration (FDA) has developed derived intervention levels (DIL) which refer to the radionuclide-specific concentration in food present throughout the relevant period of time, with no intervention, that could lead to an individual receiving a radiation dose equal to the protective action guide. In the event of an emergency, concentrations in various food types are compared with these levels to make interdictions decisions. Prior to monitoring results being available, concentrations in the environmental media (i.e. soil), called derived response levels (DRLs), can be estimated from the DILs and directly compared with computer output to provide preliminary guidance as to whether intervention is necessary. Site-specific derived response levels (DRLs) are developed for ingestion pathways pertinent to SRS: milk, meat, fish, grain, produce, and beverage. This provides decision-makers with an additional tool for use immediately following an accident prior to the acquisition of food monitoring data

  20. Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment

    Science.gov (United States)

    Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia

    2015-04-01

    Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to