WorldWideScience

Sample records for models dems derived

  1. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Directory of Open Access Journals (Sweden)

    A. J. Cook

    2012-10-01

    Full Text Available A high resolution surface topography Digital Elevation Model (DEM is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S, based on ASTER Global Digital Elevation Model (GDEM data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM, and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (Digital Elevation Model (DEM), GRID derived from USGS .dem, Published in 2007, 1:600 (1in=50ft) scale, Shawnee County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  2. Coastal Digital Elevation Models (DEMs)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation models (DEMs) of U.S. and other coasts that typically integrate ocean bathymetry and land topography. The DEMs support NOAA's mission to understand...

  3. Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling

    Science.gov (United States)

    Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.

    2015-08-01

    The rapid progress of lidar technology has made the acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially in regards to the study of floodplain flow. However, high-resolution DEM data pose several disadvantages for floodplain modeling studies; e.g., the data sets contain many redundant interpolation points, large numbers of calculations are required to work with data, and the data do not match the size of the computational mesh. Two-dimensional (2-D) hydraulic modeling, which is a popular method for analyzing floodplain flow, offers highly precise elevation parameterization for computational mesh while ignoring much of the micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, thus enabling the calculation of flood water levels in DEM grid cells through local inverse distance-weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha detention basin, which is a flood storage area of Dongting Lake in China, by using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than simulations only with DEM.

  4. Catchment properties in the Kruger National Park derived from the new TanDEM-X Intermediate Digital Elevation Model (IDEM)

    Science.gov (United States)

    Baade, J.; Schmullius, C.

    2015-04-01

    Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unpreceded geometric resolution, precision and accuracy. First processed data sets (i. e. IDEM) with a geometric resolution of 0.4 to 3 arcsec have been made available for scientific purposes. This includes four 1° x 1° tiles covering the Kruger National Park in South Africa. Here we document the results of a local scale IDEM validation exercise utilizing RTK-GNSS-based ground survey points from a dried out reservoir basin and its vicinity characterized by pristine open Savanna vegetation. Selected precursor data sets (SRTM1, SRTM90, ASTER-GDEM2) were included in the analysis and highlight the immense progress in satellite-based Earth surface surveying over the past two decades. Surprisingly, the high precision and accuracy of the IDEM data sets have only little impact on the delineation of watersheds and the calculation of catchment size. But, when it comes to the derivation of topographic catchment properties (e.g. mean slope, etc.) the high resolution of the IDEM04 is of crucial importance, if - from a geomorphologist's view - it was not for the disturbing vegetation.

  5. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  6. Digtial Elevation Model (DEM) 250K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  7. Digitial Elevation Model (DEM) 100K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USG to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  8. Digital Elevation Model (DEM) 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  9. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means clusterin

  10. Digital Elevation Model (DEM), The OSIP 2.5FT gridded DEM was derived from LiDAR, Published in 2007, 1:600 (1in=50ft) scale, Ohio Geographically Referenced Information Program (OGRIP).

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  11. Digital Elevation Model (DEM), 5-ft dem derived from LIDAR point data. Some errors between mosaiced tile edges., Published in 2006, 1:600 (1in=50ft) scale, Lumpkin County, GA.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as...

  12. The New Global Digital Elevation Model : TanDEM-X DEM and its Final Performance

    Science.gov (United States)

    Gonzalez, Carolina; Rizzoli, Paola; Martone, Michele; Wecklich, Christopher; Borla Tridon, Daniela; Bachmann, Markus; Fritz, Thomas; Wessel, Birgit; Krieger, Gerhard; Zink, Manfred

    2017-04-01

    Digital elevation models (DEMs) have become widely used in many scientific and commercial applications and there are several local products have been developed in the last years. They provide a representation of the topographic features of the landscape. The importance of them is known and valued in every geoscience field, but they have also vast use in navigation and in other commercial areas. The main goal of the TanDEM-X (TerraSARX add-on for Digital Elevation Measurements) mission is the generation of a global DEM, homogeneous in quality with unprecedented global accuracy and resolution, which has been completed in mid-2016. For over four years, the almost identical satellites TerraSAR-X and TanDEM-X acquired single-pass interferometric SAR image pairs, from which is it possible to derive the topographic height by unwrapping the interferometric phase, unaffected by temporal decorrelation. Both satellites have been flying in close formation with a flexible geometric configuration. An optimized acquisition strategy aimed at achieving an absolute vertical accuracy much better than 10 meters and a relative vertical accuracy of 2 m and 4 m for flat and steep terrain, respectively, within a horizontal raster of 12 m x 12 m, which slightly varies depending on the geographic latitude. In this paper, we assess the performance of the global Tandem-X DEM, characterized in terms of relative and absolute vertical accuracy. The coverage statistics are also discussed in comparison to the previous almost global but with lower resolution DEM provided by the Shuttle Radar Topography Mission (SRTM). The exceptional quality of the global DEM is confirmed by the obtained results and the global TanDEM-X DEM is now ready to be distributed to the scientific and commercial community.

  13. Adaptive Filter in SAR Interferometry Derived DEM

    Institute of Scientific and Technical Information of China (English)

    XU Caijun; WANG Hua; WANG Jianglin; GE Linlin

    2005-01-01

    In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.

  14. The impact of resolution on the accuracy of hydrologic data derived from DEMs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrologic data derived from digital elevation models (DEM) has been regarded as an effective method in the spatial analysis of geographical information systems (GIS). However, both DEM resolution and terrain complexity has impacts on the accuracy of hydrologic derivatives. In this study, a multi-resolution and multi-relief comparative approach was used as a major methodology to investigate the accuracy of hydrologic data derived from DEMs. The experiment reveals that DEM terrain representation error affects the accuracy of DEM hydrological derivatives (drainage networks and watershed etc.). Coarser DEM resolutions can usually cause worse results. However, uncertain result commonly exists in this calculation. The derivative errors can be found closely related with DEM vertical resolution and terrain roughness. DEM vertical resolution can be found closely related with the accuracy of DEM hydrological derivatives, especially in the smooth plain area. If the mean slope is less than 4 degrees, the derived hydrologic data are usually unreliable. This result may be helpful in estimating the accuracy of the hydrologic derivatives and determining the DEM resolution that is appropriate to the accuracy requirement of a particular user. By applying a threshold value to subset the cells of a higher accumulation flow, a stream network of a specific network density can be extracted. Some very important geomorphologic characteristics, e.g., shallow and deep gullies, can be separately extracted by means of adjusting the threshold value. However, such a flow accumulation based processing method can not correctly derive those streams that pass through the working area because it is hard to accumulate enough flow direction values to express the stream channels at the stream's entrance area. Consequently, errors will definitely occur at the stream's entrance area. In addition, erroneous derivatives can also be found in deriving some particular rivers, e.g., perched (hanging up) rivers

  15. Accuracy of Cartosat-1 DEM and its derived attribute at multiple scale representation

    Indian Academy of Sciences (India)

    Samadrita Mukherjee; Sandip Mukherjee; A Bhardwaj; Anirban Mukhopadhyay; R D Garg; S Hazra

    2015-04-01

    Digital Elevation Model (DEM) provides basic information about terrain relief and is used for morphological characterisation, hydrological modelling and infrastructural studies. This paper investigates the accuracy of DEM and its derived attributes in multiple scales. This study was carried out for a part of Shiwalik Himalaya using Cartosat-1 stereo pair data. DEM at various cell sizes were generated and information content was compared using mean elevation, variance and entropy statistics. Various post-spacing DEMs were validated to understand variation in vertical accuracy along different scales. The vertical accuracy (3.14–7.24 m) is affected in larger spacing DEM and elevation is underestimated. Slope of terrain also has similar impacts. The DEM and slope accuracy are also affected by the terrain roughness while assessing coarser grid size.

  16. High-resolution DEM Effects on Geophysical Flow Models

    Science.gov (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  17. Evaluating Error of LIDAR Derived dem Interpolation for Vegetation Area

    Science.gov (United States)

    Ismail, Z.; Khanan, M. F. Abdul; Omar, F. Z.; Rahman, M. Z. Abdul; Mohd Salleh, M. R.

    2016-09-01

    Light Detection and Ranging or LiDAR data is a data source for deriving digital terrain model while Digital Elevation Model or DEM is usable within Geographical Information System or GIS. The aim of this study is to evaluate the accuracy of LiDAR derived DEM generated based on different interpolation methods and slope classes. Initially, the study area is divided into three slope classes: (a) slope class one (0° - 5°), (b) slope class two (6° - 10°) and (c) slope class three (11° - 15°). Secondly, each slope class is tested using three distinctive interpolation methods: (a) Kriging, (b) Inverse Distance Weighting (IDW) and (c) Spline. Next, accuracy assessment is done based on field survey tachymetry data. The finding reveals that the overall Root Mean Square Error or RMSE for Kriging provided the lowest value of 0.727 m for both 0.5 m and 1 m spatial resolutions of oil palm area, followed by Spline with values of 0.734 m for 0.5 m spatial resolution and 0.747 m for spatial resolution of 1 m. Concurrently, IDW provided the highest RMSE value of 0.784 m for both spatial resolutions of 0.5 and 1 m. For rubber area, Spline provided the lowest RMSE value of 0.746 m for 0.5 m spatial resolution and 0.760 m for 1 m spatial resolution. The highest value of RMSE for rubber area is IDW with the value of 1.061 m for both spatial resolutions. Finally, Kriging gave the RMSE value of 0.790m for both spatial resolutions.

  18. EVALUATING ERROR OF LIDAR DERIVED DEM INTERPOLATION FOR VEGETATION AREA

    Directory of Open Access Journals (Sweden)

    Z. Ismail

    2016-09-01

    Full Text Available Light Detection and Ranging or LiDAR data is a data source for deriving digital terrain model while Digital Elevation Model or DEM is usable within Geographical Information System or GIS. The aim of this study is to evaluate the accuracy of LiDAR derived DEM generated based on different interpolation methods and slope classes. Initially, the study area is divided into three slope classes: (a slope class one (0° – 5°, (b slope class two (6° – 10° and (c slope class three (11° – 15°. Secondly, each slope class is tested using three distinctive interpolation methods: (a Kriging, (b Inverse Distance Weighting (IDW and (c Spline. Next, accuracy assessment is done based on field survey tachymetry data. The finding reveals that the overall Root Mean Square Error or RMSE for Kriging provided the lowest value of 0.727 m for both 0.5 m and 1 m spatial resolutions of oil palm area, followed by Spline with values of 0.734 m for 0.5 m spatial resolution and 0.747 m for spatial resolution of 1 m. Concurrently, IDW provided the highest RMSE value of 0.784 m for both spatial resolutions of 0.5 and 1 m. For rubber area, Spline provided the lowest RMSE value of 0.746 m for 0.5 m spatial resolution and 0.760 m for 1 m spatial resolution. The highest value of RMSE for rubber area is IDW with the value of 1.061 m for both spatial resolutions. Finally, Kriging gave the RMSE value of 0.790m for both spatial resolutions.

  19. Hydrologic validation of a structure-from-motion DEM derived from low-altitude UAV imagery

    Science.gov (United States)

    Steiner, Florian; Marzolff, Irene; d'Oleire-Oltmanns, Sebastian

    2015-04-01

    The increasing ease of use of current Unmanned Aerial Vehicles (UAVs) and 3D image processing software has spurred the number of applications relying on high-resolution topographic datasets. Of particular significance in this field is "structure from motion" (SfM), a photogrammetric technique used to generate low-cost digital elevation models (DEMs) for erosion budgeting, measuring of glaciers/lava-flows, archaeological applications and others. It was originally designed to generate 3D-models of buildings, based on unordered collections of images and has become increasingly common in geoscience applications during the last few years. Several studies on the accuracy of this technique already exist, in which the SfM data is mostly compared with Lidar-generated terrain data. The results are mainly positive, indicating that the technique is suitable for such applications. This work aims at validating very high resolution SfM DEMs with a different approach: Not the original elevation data is validated, but data on terrain-related hydrological and geomorphometric parameters derived from the DEM. The study site chosen for this analysis is an abandoned agricultural field near the city of Taroudant, in the semi-arid southern part of Morocco. The site is characterized by aggressive rill and gully erosion and is - apart from sparsely scattered shrub cover - mainly featureless. An area of 5.7 ha, equipped with 30 high-precision ground control points (GCPs), was covered with an unmanned aerial vehicle (UAV) in two different heights (85 and 170 m). A selection of 160 images was used to generate several high-resolution DEMs (2 and 5 cm resolution) of the area using the fully automated SfM software AGISOFT Photoscan. For comparison purposes, a conventional photogrammetry-based workflow using the Leica Photogrammetry Suite was used to generate a DEM with a resolution of 5 cm (LPS DEM). The evaluation is done by comparison of the SfM DEM with the derived orthoimages and the LPS DEM

  1. Visualization and comparison of DEM-derived parameters. Application to volcanic areas

    Science.gov (United States)

    Favalli, Massimiliano; Fornaciai, Alessandro

    2017-08-01

    Digital Elevation Models (DEMs) are fruitfully used in volcanology as the topographic base for mapping and quantifying volcanic landforms. The increasing availability of free topographic data on the web, decreasing production costs for high-accuracy data and advances in computer technology, has triggered rapid growth of the number of DEM users in the volcanological community. DEMs are often visualized only as hill-shaded maps, and while this is among the major advantages in using them, the possibility of deriving a very large number of parameters from a single grid of elevation data makes DEMs a powerful tool for morphometric analysis. However, many of these parameters have almost the same informative content, and before starting to elaborate topographic data it is recommended to know a-priori what parameters best visualize the investigated landform, and therefore what is necessary and what is redundant. In this work, we review a number of analytical procedures used to parameterize and represent DEMs. A LIDAR-derived DEM matrix acquired over the Valle del Bove valley, on Mt. Etna, is used as test-case elevation data for deriving the parameters. We first review well known parameters such as hill-shading, slope and aspect, curvature, and roughness, before extending the review to some less common parameters such as Sky View Factor (SVF), openness, and Red Relief Image Maps (RRIM). For each parameter a description is given emphasizing how it can be used for identifying and delimiting specific volcanic elements. The analyzed surface parameters are then cross-compared in order to infer which of them is most uncorrelated, and the results are represented in the form of a correlation matrix. Finally, the reviewed DEM-derived parameters and the correlation matrix are used for analyzing the volcanic landforms of two case studies: Michoacán-Guanajuato volcanic field and a phonolitic lava flow at the Island of Tenerife.

  2. Effects of LiDAR Derived DEM Resolution on Hydrographic Feature Extraction

    Science.gov (United States)

    Yang, P.; Ames, D. P.; Glenn, N. F.; Anderson, D.

    2010-12-01

    This paper examines the effect of LiDAR-derived digital elevation model (DEM) resolution on digitally extracted stream networks with respect to known stream channel locations. Two study sites, Reynolds Creek Experimental Watershed (RCEW) and Dry Creek Experimental Watershed (DCEW), which represent terrain characteristics for lower and intermediate elevation mountainous watersheds in the Intermountain West, were selected as study areas for this research. DEMs reflecting bare earth ground were created from the LiDAR observations at a series of raster cell sizes (from 1 m to 60 m) using spatial interpolation techniques. The effect of DEM resolution on resulting hydrographic feature (specifically stream channel) derivation was studied. Stream length, watershed area, and sinuosity were explored at each of the raster cell sizes. Also, variation from known channel location as estimated by root mean square error (RMSE) between surveyed channel location and extracted channel was computed for each of the DEMs and extracted stream networks. As expected, the results indicate that the DEM based hydrographic extraction process provides more detailed hydrographic features at a finer resolution. RMSE between the known channel location and modeled locations generally increased with larger cell size DEM with a greater effect in the larger RCEW. Sensitivity analyses on sinuosity demonstrated that the resulting shape of streams obtained from LiDAR data matched best with the reference data at an intermediate cell size instead of highest resolution, which is at a range of cell size from 5 to 10 m likely due to original point spacing, terrain characteristics, and LiDAR noise influence. More importantly, the absolute sinuosity deviation displayed a smallest value at the cell size of 10 m in both experimental watersheds, which suggests that optimal cell size for LiDAR-derived DEMs used for hydrographic feature extraction is 10 m.

  3. Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data

    Directory of Open Access Journals (Sweden)

    Beni Raharjo

    2012-08-01

    Full Text Available This study evaluates the quality of the Advanced Spaceborne Thermal Emission Radiometer-Global Digital Elevation Model version 2 (ASTER GDEM2 in comparison with the previous version (GDEM1 as well as the Shuttle Radar Topographic Mission (SRTM DEM and topographic-map-derived DEM (Topo-DEM using inundation area analysis for the projected location of the Karian dam, Indonesia. In addition, the vertical accuracy of each DEM is evaluated using the Real-Time Kinematic differential Global Positioning Systems (RTK-dGPS data obtained from an intensive geodetic survey. The results of the inundation area analysis show that GDEM2 produced a higher maximum contour level (MCL (64 m than did GDEM1 (55 m, and thus, GDME2 has a better quality. In addition, the GDEM2-derived MCL is similar to those produced by SRTM DEM (69 m and Topo-DEM (62 m. The improvement in the contour level in GDEM2 is believed to be related to the successful removal of voids (artifacts and anomalies present in GDEM1. However, our RTK-dGPS results show that the vertical accuracy of GDEM2 is much lower than that of GDEM1 and the other DEMs, which is contradictory to the accuracy stated in the GDEM2 validation document. The vertical profiles of all DEMs show that GDEM2 contains a comparatively large number of undulation effects, thereby resulting in higher root mean square error (RMSE values. These undulation effects may have been introduced during the GDEM2 validation process. Although the results of this study may be site-specific, it is important that they be considered for the improvement of the next GDEM version.

  4. Shuttle radar DEM hydrological correction for erosion modelling in small catchments

    Science.gov (United States)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca

    2016-04-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  5. Mass changes of glaciers over the Central Karakoram derived from TanDEM-X and SRTM/X-SAR Digital Elevation Models

    Science.gov (United States)

    Rankl, Melanie; Braun, Matthias

    2015-04-01

    Snow cover and glaciers in the Karakoram region are important freshwater resources for many downriver communities as they provide water for irrigation and hydro power. A better understanding of current glacier changes is hence an important baseline information. Glaciers in the Karakoram have shown stable and positive glacier mass balances during recent years as well as stable and advancing termini positions. The Karakoram is also known for a large number of surge-type glaciers. Here, we present geodetic glacier elevation and mass changes using TanDEM-X and SRTM/X-SAR Digital Elevation Models between 2000 and 2012. Based on previous glacier inventories for the Karakoram, we show elevation changes and glacier mass balances for glaciers with advancing and stable termini between 2000 and 2012 as well as surge-type glaciers separately. In order to convert volume changes to mass changes, we applied different density scenarios (i.e., constant densities for ice and snow or zonally variable densities). Our findings show average glacier thickening of +0.01 ± 0.02 m a-1 or mass gain of +0.0099 ± 2.8x10-5 Gt a-1(using a density of 850 kg m-3) between 2000 and 2012 for parts of the Central Karakoram. Surge-type glaciers and advancing glaciers indicated slight surface lowering, while the majority of the studied glaciers showed stable termini and surface thickening. Our measurements are independent from varying penetration depths of the radar signal or temporal decorrelation between image acquisitions. Both datasets were acquired in the X-band frequency under assumed similar surface conditions. The bistatic TanDEM-X mission is highly suitable for interferometric processing due to high spatial resolutions and only 3 sec time lag between TanDEM-X and TerraSAR-X overpasses. We want to stress the enormous potential of the TanDEM-X mission to estimate geodetic glacier mass balances, in particular when compared to elevation data sets acquired in a similar frequency and comparable

  6. Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September...

  7. Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2011....

  8. Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2011....

  9. Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2016....

  10. Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September...

  11. Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2012....

  12. Coastal DEMs with Cross-Track Interferometry

    NARCIS (Netherlands)

    Greidanus, H.S.F.; Huising, E.J.; Platschorre, Y.; Bree, R.J.P. van; Halsema, D. van; Vaessen, E.M.J.

    1999-01-01

    Digital elevation models (DEMs) are produced from airborne radar cross-track interferometric measurements. Radar DEMs recorded from perpendicular orientations are intercompared, and compared to DEMs derived from airborne laser altimetry

  13. Validation of DEMs Derived from High Resolution SAR Data: a Case Study on Barcelona

    Science.gov (United States)

    Sefercik, U. G.; Schunert, A.; Soergel, U.; Watanabe, K.

    2012-07-01

    In recent years, Synthetic Aperture Radar (SAR) data have been widely used for scientific applications and several SAR missions were realized. The active sensor principle and the signal wavelength in the order of centimeters provide all-day and all-weather capabilities, respectively. The modern German TerraSAR-X (TSX) satellite provides high spatial resolution down to one meter. Based on such data SAR Interferometry may yield high quality digital surface models (DSMs), which includes points located on 3d objects such as vegetation, forest, and elevated man-made structures. By removing these points, digital elevation model (DEM) representing the bare ground of Earth is obtained. The primary objective of this paper is the validation of DEMs obtained from TSX SAR data covering Barcelona area, Spain, in the framework of a scientific project conducted by ISPRS Working Group VII/2 "SAR Interferometry" that aims the evaluation of DEM derived from data of modern SAR satellite sensors. Towards this purpose, a DSM was generated with 10 m grid spacing using TSX StripMap mode SAR data and converted to a DEM by filtering. The accuracy results have been presented referring the comparison with a more accurate (10 cm-1 m) digital terrain model (DTM) derived from large scale photogrammetry. The results showed that the TSX DEM is quite coherent with the topography and the accuracy is in between ±8-10 m. As another application, the persistent scatterer interferometry (PSI) was conducted using TSX data and the outcomes were compared with a 3d city model available in Google Earth, which is known to be very precise because it is based on LIDAR data. The results showed that PSI outcomes are quite coherent with reference data and the RMSZ of differences is around 2.5 m.

  14. Evaluation of lidar-derived DEMs through terrain analysis and field comparison

    Science.gov (United States)

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; Stephen P. Prisley

    2015-01-01

    Topographic analysis of watershed-scale soil and hydrological processes using digital elevation models (DEMs) is commonplace, but most studies have used DEMs of 10 m resolution or coarser. Availability of higher-resolution DEMs created from light detection and ranging (lidar) data is increasing but their suitability for such applications has received little critical...

  15. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  16. Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM)...

  17. Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM) projection...

  18. Digital Elevation Model (DEM), Published in 2007, City of Dubuque.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from Orthoimagery information as of 2007. Data by this publisher are often provided in State...

  19. Modeling Glacier Elevation Change from DEM Time Series

    Directory of Open Access Journals (Sweden)

    Di Wang

    2015-08-01

    Full Text Available In this study, a methodology for glacier elevation reconstruction from Digital Elevation Model (DEM time series (tDEM is described for modeling the evolution of glacier elevation and estimating related volume change, with focus on medium-resolution and noisy satellite DEMs. The method is robust with respect to outliers in individual DEM products. Fox Glacier and Franz Josef Glacier in New Zealand are used as test cases based on 31 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEMs and the Shuttle Radar Topography Mission (SRTM DEM. We obtained a mean surface elevation lowering rate of −0.51 ± 0.02 m·a−1 and −0.09 ± 0.02 m·a−1 between 2000 and 2014 for Fox and Franz Josef Glacier, respectively. The specific volume difference between 2000 and 2014 was estimated as −0.77 ± 0.13 m·a−1 and −0.33 ± 0.06 m·a−1 by our tDEM method. The comparably moderate thinning rates are mainly due to volume gains after 2013 that compensate larger thinning rates earlier in the series. Terminus thickening prevailed between 2002 and 2007.

  20. APPLICATION OF LIDAR-DERIVED DEM FOR DETECTION OF MASS MOVEMENTS ON A LANDSLIDE

    Directory of Open Access Journals (Sweden)

    M. Barbarella

    2014-01-01

    Full Text Available In order to reliably detect changes in the surficial morphology of a landslide, measurements performed at the different epochs being compared have to comply with certain characteristics such as allowing the reconstruction of the surface from acquired points and a resolution sufficiently high to provide a proper description of details. Terrestrial Laser Scanning survey enables to acquire large amounts of data and therefore potentially allows knowing even small details of a landslide. By appropriate additional field measurements, point clouds can be referenced to a common reference system with high accuracy, so that scans effectively share the same system. In this note we present the monitoring of a large landslide by two surveys carried out two years apart from each other. The adopted reference frame consists of a network of GNSS (Global Navigation Satellite Systems permanent stations that constitutes a system of controlled stability over time. Knowledge of the shape of the surface comes from the generation of a DEM (Digital Elevation Model. Some algorithms are compared and the analysis is performed by means of the evaluation of some statistical parameters using cross-validation. In general, evaluation of mass displacements occurred between two surveys is possible differencing the corresponding DEMs, but then arises the need to distinguish the different behaviors of the various landslide bodies that could be present among the slope. Here landslide bodies' identification has been carried out considering geomorphological criteria, making also use of DEM derived products, such as contour maps, slope and aspect maps.

  1. ElevationDEM_DEM1m

    Data.gov (United States)

    Vermont Center for Geographic Information — A "Bare Earth" Digital Elevation Model (DEM) data represents the bare ground surface without any objects like plants and buildings on it, was derived from the best...

  2. A photogrammetric DEM of Greenland based on 1978-1987 aerial photos: validation and integration with laser altimetry and satellite-derived DEMs

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Kjær, Kurt H.; Nuth, Christopher

    50 km to ICESat laser altimetry in order to evaluate the coherency. We complement the aero-photogrammetric DEM with modern laser altimetry and DEMs derived from stereoscopic satellite imagery (AST14DMO) to examine the mass variability of the Northeast Greenland Ice Stream (NEGIS). Our analysis...

  3. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    Science.gov (United States)

    Mao, Y.; Ye, A.; Xu, J.; Ma, F.; Deng, X.; Miao, C.; Gong, W.; Di, Z.

    2014-07-01

    A high-resolution and high-accuracy drainage network map is a prerequisite for simulating the water cycle in land surface hydrological models. The objective of this study was to develop a new automated extraction of drainage network model, which can get high-precision continuous drainage network on high-resolution DEM (Digital Elevation Model). The high-resolution DEM need too much computer resources to extract drainage network. The conventional GIS method often can not complete to calculate on high-resolution DEM of big basins, because the number of grids is too large. In order to decrease the computation time, an advanced distributed automated extraction of drainage network model (Adam) was proposed in the study. The Adam model has two features: (1) searching upward from outlet of basin instead of sink filling, (2) dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales).

  4. Visualizing impact structures using high-resolution LiDAR-derived DEMs: A case study of two structures in Missouri

    Science.gov (United States)

    Finn, Michael P.; Krizanich, Gary W.; Evans, Kevin R.; Cox, Melissa R.; Yamamoto, Kristina H.

    2015-01-01

    Evidence suggests that a crypto-explosive hypothesis and a meteorite impact hypothesis may be partly correct in explaining several anomalous geological features in the middle of the United States. We used a primary geographic information science (GIScience) technique of creating a digital elevation model (DEM) of two of these features that occur in Missouri. The DEMs were derived from airborne light detection and ranging, or LiDAR. Using these DEMs, we characterized the Crooked Creek structure in southern Crawford County and the Weaubleau structure in southeastern St. Clair County, Missouri. The mensuration and study of exposed and buried impact craters implies that the craters may have intrinsic dimensions which could only be produced by collision. The results show elevations varying between 276 and 348 m for Crooked Creek and between 220 and 290 m for Weaubleau structure. These new high- resolution DEMs are accurate enough to allow for precise measurements and better interpretations of geological structures, particularly jointing in the carbonate rocks, and they show greater definition of the central uplift area in the Weaubleau structure than publicly available DEMs.

  5. DEM investigation of weathered rocks using a novel bond contact model

    Institute of Scientific and Technical Information of China (English)

    Zhenming Shi; Tao Jiang; Mingjing Jiang; Fang Liu; Ning Zhang

    2015-01-01

    The distinct element method (DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by para-metric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks.

  6. A photogrammetric DEM of Greenland based on 1978-1987 aerial photos: validation and integration with laser altimetry and satellite-derived DEMs

    Science.gov (United States)

    Korsgaard, N. J.; Kjaer, K. H.; Nuth, C.; Khan, S. A.

    2014-12-01

    Here we present a DEM of Greenland covering all ice-free terrain and the margins of the GrIS and local glaciers and ice caps. The DEM is based on the 3534 photos used in the aero-triangulation which were recorded by the Danish Geodata Agency (then the Geodetic Institute) in survey campaigns spanning the period 1978-1987. The GrIS is covered tens of kilometers into the interior due to the large footprints of the photos (30 x 30 km) and control provided by the aero-triangulation. Thus, the data are ideal for providing information for analysis of ice marginal elevation change and also control for satellite-derived DEMs.The results of the validation, error assessments and predicted uncertainties are presented. We test the DEM using Airborne Topographic Mapper (IceBridge ATM) as reference data; evaluate the a posteriori covariance matrix from the aero-triangulation; and co-register DEM blocks of 50 x 50 km to ICESat laser altimetry in order to evaluate the coherency.We complement the aero-photogrammetric DEM with modern laser altimetry and DEMs derived from stereoscopic satellite imagery (AST14DMO) to examine the mass variability of the Northeast Greenland Ice Stream (NEGIS). Our analysis suggests that dynamically-induced mass loss started around 2003 and continued throughout 2014.

  7. A 30 meter Digital Elevation Model (DEM) of the San Gorgonio Pass area, Riverside County, California.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital Elevation Models (DEMs) are digital records of terrain elevations at regularly spaced intervals. The interval between elevations of 7.5 minute DEMs is...

  8. The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods

    Science.gov (United States)

    Demir, Gokben; Akyurek, Zuhal

    2016-04-01

    Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs

  9. The influence of accuracy, grid size, and interpolation method on the hydrological analysis of LiDAR derived dems: Seneca Nation of Indians, Irving NY

    Science.gov (United States)

    Clarkson, Brian W.

    Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) provide accurate, high resolution digital surfaces for precise topographic analysis. The following study investigates the accuracy of LiDAR derived DEMs by calculating the Root Mean Square Error (RMSE) of multiple interpolation methods with grid cells ranging from 0.5 to 10-meters. A raster cell with smaller dimensions will drastically increase the amount of detail represented in the DEM by increasing the number of elevation values across the study area. Increased horizontal resolutions have raised the accuracy of the interpolated surfaces and the contours generated from the digitized landscapes. As the raster grid cells decrease in size, the level of detail of hydrological processes will significantly improve compared to coarser resolutions including the publicly available National Elevation Datasets (NEDs). Utilizing a LiDAR derived DEM with the lowest RMSE as the 'ground truth', watershed boundaries were delineated for a sub-basin of the Clear Creek Watershed within the territory of the Seneca Nation of Indians located in Southern Erie County, NY. An investigation of the watershed area and boundary location revealed considerable differences comparing the results of applying different interpretation methods on DEM datasets of different horizontal resolutions. Stream networks coupled with watersheds were used to calculate peak flow values for the 10-meter NEDs and LiDAR derived DEMs.

  10. The TanDEM-X Digital Elevation Model and Terrestrial Impact Craters

    OpenAIRE

    Gottwald, Manfred; Fritz, Thomas; Breit, Helko; Schättler, Birgit; Harris, Alan

    2014-01-01

    We use the global digital elevation model (DEM) generated in the TanDEM-X mission for mapping further confirmed terrestrial impact craters. This DEM provides the most accurate spaceborne global elevation data. It permits detailed studies of the topography of the sites of simple and complex structures with unprecedented accuracy.

  11. A coupled DEM-CFD method for impulse wave modelling

    Science.gov (United States)

    Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista

    2015-04-01

    Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been

  12. Simulation on slope uncertainty derived from DEMs at different resolution levels: a case study in the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    TANGGuoan; ZHAOMudan; LITianwen; LIUYongmei; ZHANGTing

    2003-01-01

    Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as(0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.

  13. AMES Stereo Pipeline Derived DEM Accuracy Experiment Using LROC-NAC Stereopairs and Weighted Spatial Dependence Simulation for Lunar Site Selection

    Science.gov (United States)

    Laura, J. R.; Miller, D.; Paul, M. V.

    2012-03-01

    An accuracy assessment of AMES Stereo Pipeline derived DEMs for lunar site selection using weighted spatial dependence simulation and a call for outside AMES derived DEMs to facilitate a statistical precision analysis.

  14. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2014-07-01

    distributed automated extraction of drainage network model (Adam was proposed in the study. The Adam model has two features: (1 searching upward from outlet of basin instead of sink filling, (2 dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales.

  15. DEM modeling of flexible structures against granular material avalanches

    Science.gov (United States)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  16. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography

    Science.gov (United States)

    Thomas, I. A.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.-E.; Dunlop, P.; Murphy, P. N. C.

    2017-02-01

    Defining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m-2), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m-2) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70-100% and 10-84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of 'breakthrough' and 'delivery' points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75-100% and 0-100%, respectively). Optimal DEM resolutions of 1-2 m were identified for modelling HSAs, which balanced the need

  17. Vibration induced flow in hoppers: DEM 2D polygon model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.

  18. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping

    Directory of Open Access Journals (Sweden)

    Rubini Mahalingam

    2016-11-01

    Full Text Available Landslides are a major geohazard, which result in significant human, infrastructure, and economic losses. Landslide susceptibility mapping can help communities plan and prepare for these damaging events. Digital elevation models (DEMs are one of the most important data-sets used in landslide hazard assessment. Despite their frequent use, limited research has been completed to date on how the DEM source and spatial resolution can influence the accuracy of the produced landslide susceptibility maps. The aim of this paper is to analyse the influence of spatial resolutions and source of DEMs on landslide susceptibility mapping. For this purpose, Advanced Spaceborne Thermal Emission and Reflection (ASTER, National Elevation Dataset (NED, and Light Detection and Ranging (LiDAR DEMs were obtained for two study sections of approximately 140 km2 in north-west Oregon. Each DEM was resampled to 10, 30, and 50 m and slope and aspect grids were derived for each resolution. A set of nine spatial databases was constructed using geoinformation science (GIS for each of the spatial resolution and source. Additional factors such as distance to river and fault maps were included. An analytical hierarchical process (AHP, fuzzy logic model, and likelihood ratio-AHP representing qualitative, quantitative, and hybrid landslide mapping techniques were used for generating landslide susceptibility maps. The results from each of the techniques were verified with the Cohen's kappa index, confusion matrix, and a validation index based on agreement with detailed landslide inventory maps. The spatial resolution of 10 m, derived from the LiDAR data-set showed higher predictive accuracy in all the three techniques used for producing landslide susceptibility maps. At a resolution of 10 m, the output maps based on NED and ASTER had higher misclassification compared to the LiDAR-based outputs. Further, the 30-m LiDAR output showed improved results over the 10-m NED and 10-m

  19. ElevationDEM_DEM1p4m

    Data.gov (United States)

    Vermont Center for Geographic Information — "Bare Earth" Digital Elevation Model (DEM) data, i.e., a bare ground surface without any objects like plants and buildings on it, was derived from the best available...

  20. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    Science.gov (United States)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  1. Modeling slow deformation of polygonal particles using DEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We introduce two improvements in the numerical scheme to simulate collision and slow shearing of irregular particles. First, we propose an alternative approach based on simple relations to compute the frictional contact forces. The approach improves efficiency and accuracy of the Discrete Element Method (DEM) when modeling the dynamics of the granular packing. We determine the proper upper limit for the integration step in the standard numerical scheme using a wide range of material parameters. To this end, we study the kinetic energy decay in a stress controlled test between two particles. Second, we show that the usual way of defining the contact plane between two polygonal particles is, in general, not unique which leads to discontinuities in the direction of the contact plane while particles move. To solve this drawback, we introduce an accurate definition for the contact plane based on the shape of the overlap area between touching particles, which evolves continuously in time.

  2. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data

    Directory of Open Access Journals (Sweden)

    Aire Olesk

    2016-08-01

    Full Text Available In this study, four models describing the interferometric coherence of the forest vegetation layer are proposed and compared with the TanDEM-X data. Our focus is on developing tools for hemiboreal forest height estimation from single-pol interferometric SAR measurements, suitable for wide area forest mapping with limited a priori information. The multi-temporal set of 19 TanDEM-X interferometric pairs and the 90th percentile forest height maps are derived from Airborne LiDAR Scanning (ALS, covering an area of 2211 ha of forests over Estonia. Three semi-empirical models along with the Random Volume over Ground (RVoG model are examined for applicable parameter ranges and model performance under various conditions for over 3000 forest stands. This study shows that all four models performed well in describing the relationship between forest height and interferometric coherence. Use of an advanced model with multiple parameters is not always justified when modeling the volume decorrelation in the boreal and hemiboreal forests. The proposed set of semi-empirical models, show higher robustness compared to a more advanced RVoG model under a range of seasonal and environmental conditions during data acquisition. We also examine the dynamic range of parameters that different models can take and propose optimal conditions for forest stand height inversion for operationally-feasible scenarios.

  3. A time series of TanDEM-X digital elevation models to monitor a glacier surge

    Science.gov (United States)

    Wendt, Anja; Mayer, Christoph; Lambrecht, Astrid; Floricioiu, Dana

    2016-04-01

    Bivachny Glacier, a tributary of the more than 70 km long Fedchenko Glacier in the Pamir Mountains, Central Asia, is a surge-type glacier with three known surges during the 20th century. In 2011, the most recent surge started which, in contrast to the previous ones, evolved down the whole glacier and reached the confluence with Fedchenko Glacier. Spatial and temporal glacier volume changes can be derived from high-resolution digital elevation models (DEMs) based on bistatic InSAR data from the TanDEM-X mission. There are nine DEMs available between 2011 and 2015 covering the entire surge period in time steps from few months up to one year. During the surge, the glacier surface elevation increased by up to 130 m in the lower part of the glacier; and change rates of up to 0.6 m per day were observed. The surface height dataset was complemented with glacier surface velocity information from TerraSAR-X/ TanDEM-X data as well as optical Landsat imagery. While the glacier was practically stagnant in 2000 after the end of the previous surge in the 1990s, the velocity increase started in 2011 in the upper reaches of the ablation area and successively moved downwards and intensified, reaching up to 4.0 m per day. The combination of surface elevation changes and glacier velocities, both of high temporal and spatial resolution, provides the unique opportunity to describe and analyse the evolution of the surge in unprecedented detail. Especially the relation between the mobilization front and the local mass transport provides insight into the surge dynamics.

  4. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  5. Open-Source Digital Elevation Model (DEMs) Evaluation with GPS and LiDAR Data

    Science.gov (United States)

    Khalid, N. F.; Din, A. H. M.; Omar, K. M.; Khanan, M. F. A.; Omar, A. H.; Hamid, A. I. A.; Pa'suya, M. F.

    2016-09-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM), Shuttle Radar Topography Mission (SRTM), and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) are freely available Digital Elevation Model (DEM) datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS) observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR) dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.

  6. ElevationDEM_DEM1M2005

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  7. ElevationDEM_DEM2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  8. ElevationDEM_DEM1M2009

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  9. ElevationDEM_DEM1M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  10. ElevationDEM_DEM1M2007

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM, DEMHF...

  11. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    Science.gov (United States)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  12. Digital Elevation Model (DEM), 5 Meter Auto-correlated DEM, Published in 2006, 1:24000 (1in=2000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2006. It is described...

  13. Digital Elevation Model (DEM), 2 Meter LIDAR Bare Earth DEM, Published in 2006, 1:12000 (1in=1000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2006. It is described...

  14. Digital Elevation Model (DEM), Allegany County DEM 10 ft pixel, Published in 2005, 1:1200 (1in=100ft) scale, Allegany County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2005. It is described as...

  15. Digital Elevation Model (DEM), Topographic survey of Eureka Township, Published in unknown, Eureka County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from Field Survey/GPS information as of unknown. It is described as 'Topographic survey of...

  16. A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the...

  17. Digital Elevation Model (DEM), Published in unknown, DeKalb County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from LIDAR information as of unknown. Data by this publisher are often provided in State...

  18. A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the...

  19. San Francisco Bay-Delta bathymetric/topographic digital elevation model(DEM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This...

  20. Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico

    Science.gov (United States)

    Huggel, C.; Schneider, D.; Miranda, P. Julio; Delgado Granados, H.; Kääb, A.

    2008-02-01

    Lahars are among the most serious and far-reaching volcanic hazards. In regions with potential interactions of lahars with populated areas and human structures the assessment of the related hazards is crucial for undertaking appropriate mitigating actions and reduce the associated risks. Modeling of lahars has become an important tool in such assessments, in particular where the geologic record of past events is insufficient. Mass-flow modeling strongly relies on digital terrain data. Availability of digital elevation models (DEMs), however, is often limited and thus an obstacle to lahar modeling. Remote-sensing technology has now opened new perspectives in generating DEMs. In this study, we evaluate the feasibility of DEMs derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) for lahar modeling on Popocatépetl Volcano, Mexico. Two GIS-based models are used for lahar modeling, LAHARZ and a flow-routing-based debris-flow model (modified single-flow direction model, MSF), both predicting areas potentially affected by lahars. Results of the lahar modeling show that both the ASTER and SRTM DEMs are basically suitable for use with LAHARZ and MSF. Flow-path prediction is found to be more reliable with SRTM data, though with a coarser spatial resolution. Errors of the ASTER DEM affecting the prediction of flow paths due to the sensor geometry are associated with deeply incised gorges with north-facing slopes. LAHARZ is more sensitive to errors of the ASTER DEM than the MSF model. Lahar modeling with the ASTER DEM results in a more finely spaced predicted inundation area but does not add any significant information in comparison with the SRTM DEM. Lahars at Popocatépetl are modeled with volumes of 1 × 10 5 to 8 × 10 6 m 3 based on ice-melt scenarios of the glaciers on top of the volcano and data on recent and historical lahar events. As regards recently observed lahars, the travel

  1. DEM-based Modeling at the Hillslope Scale: Recent Results and Future Process Research Needs

    Science.gov (United States)

    McDonnell, J.; Coles, A.; Gabrielli, C. P.; Appels, W. M.; Ameli, A.

    2015-12-01

    Hillslope scale patterns of overland flow, infiltration, subsurface stormflow and groundwater recharge are all topographically mediated. However, the mechanisms by which macro-, meso- and micro-topographies control filling and spilling of lateral flow, and vertical infiltration, are still poorly understood. Here we present high-resolution DEMs derived from ground-based LiDAR, airborne LiDAR, and GPR (ground penetrating rebar!) with model analysis to examine the topographic controls on water flow at three distinct hillslopes. We explore surface topographic effects on rainfall- and snowmelt-infiltration and overland flow on the Canadian Prairies; the surface and subsurface topographic controls on lateral subsurface stormflow generation and groundwater recharge at a steep, wet temperate rainforest in New Zealand; and subsurface topographic controls on patterns of groundwater recharge at a forested hillslope on the Georgia Piedmont in the United States. We demonstrate how these studies reveal future research needs for improving DEM-based watershed delineation and modeling along with some surprising similarities between topographic controls on soil surface infiltration and overland flow and twin subsurface processes at the soil-bedrock interface.

  2. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model

    Science.gov (United States)

    Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin

    2016-09-01

    The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.

  3. Automated Quality Control for Ortholmages and DEMs

    DEFF Research Database (Denmark)

    Höhle, Joachim; Potucková, Marketa

    2005-01-01

    The checking of geometric accurancy of orthoimages and digital elevation models (DEMs) is discussed. As a reference, an existing orthoimage and a second orthoimage derived from an overlapping aerial image, are used. The proposed automated procedures for checking the orthoimages and DEMs are based...

  4. Automatic Delineation of Sea-Cliff Limits Using Lidar-Derived High-Resolution DEMs in Southern California

    Science.gov (United States)

    Palaseanu, M.; Danielson, J.; Foxgrover, A. C.; Barnard, P.; Thatcher, C.; Brock, J. C.

    2014-12-01

    Seacliff erosion is a serious hazard with implications for coastal management, and is often estimated using successive hand digitized cliff tops or bases (toe) to assess cliff retreat. Traditionally the recession of the cliff top or cliff base is obtained from aerial photographs, topographic maps, or in situ surveys. Irrespective of how or what is measured to categorize cliff erosion, the position of the cliff top and cliff base is important. Habitually, the cliff top and base are hand digitized even when using high resolution lidar derived DEMs. Even if efforts were made to standardize and eliminate as much as possible any digitizing subjectivity, the delineation of cliffs is time consuming, and depends on the analyst's interpretation. We propose an automatic procedure to delineate the cliff top and base from high resolution bare-earth DEMs. The method is based on bare-earth high-resolution DEMs, generalized coastal shorelines and approximate measurements of distance between the shoreline and the cliff top. The method generates orthogonal transects and profiles with a minimum spacing equal to the DEM resolution and extracts for each profile xyz coordinates for cliff's top and toe, as well as second major positive and negative inflections (second top and toe) along the profile. The difference between the automated and digitized top and toe, respectively, is smaller than the DEM error margin for over 82% of the top points and 86% of the toe points along a stretch of coast in Del Mar, CA. The larger errors were due either to the failure to remove all vegetation from the bare-earth DEM or errors of interpretation during hand digitizing. The automatic method was further applied between Point Conception and Los Angeles Harbor, CA. This automatic method is repeatable, takes advantage of the bare-earth high-resolution, and is more efficient.

  5. Assessment of a Near-Global 30-meter Resolution DEM Derived from the Publicly Available SRTM Data Set for Use in Orthorectification of Satellite SAR Imagery

    Science.gov (United States)

    McDonald, K. C.; Chapman, B.; Podest, E.; Jimenez, A.

    2007-12-01

    The Shuttle Radar Topography Mission (SRTM) utilized an interferometric synthetic aperture radar (InSAR) flown onboard the space shuttle Endeavour to obtain high resolution elevation data of Earth's land surface. Virtually all land surface between +/- 60 degrees latitude was mapped. Regions within these bounds contain some data gaps but this represents less than 0.2 % of the coverage. Standard publicly-available data sets from SRTM include a 3 arc-second (~90 meter) resolution Digital Elevation Model (DEM) with absolute average global vertical accuracy of approximately 4 to 5 meters. A 1 arc-second (~30 meter) resolution DEM has also been developed, but only the portion of the data set covering the United States is publicly available. The finished version of these products has been edited for pixel-level errors and delineation of coastlines and water bodies, although some data voids are still present. Utilizing such DEMs of appropriate resolution in a common framework with satellite synthetic aperture radar (SAR) data allows robust ortho-rectification and geo-referencing of the SAR data sets. We have derived a 1 arc-second resolution DEM over the entire domain of the SRTM coverage using a 3- dimensional interpolation scheme applied to the 3 arc-second SRTM DEM. Development of this product involves (1) translation of SRTM products into the WGS84 datum, (2) interpolation of the lower resolution DEMs to 1 arc- second, and (3) assembly of the global-scale 1 arc-second DEM. We assess effectiveness of this interpolation scheme through comparative statistical analysis of the 3 arc-second finished product, the 1 arc-second finished product, and the 1 arc-second interpolated product over selected test regions within the USA where all products are available. Comparisons are also made to standard GTOPO30 products for regions inside and outside of the USA. Comparisons are presented for regions representative of gentle and complex terrain. Ortho-rectification of SAR data such

  6. Digital Elevation Model (DEM), digital elevation model, Published in unknown, Louisiana State University - Louisiana Geographic Information Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from LIDAR information as of unknown. It is described as 'digital elevation model'. Data by...

  7. Application of Digital Elevation Model (DEM for description of soil microtopography changes in laboratory experiments

    Directory of Open Access Journals (Sweden)

    Stańczyk Tomasz

    2016-12-01

    Full Text Available In the study we evaluated spatial and quantitative changes in soil surface microtopography to describe water erosion process under simulated rain with use of a non-contact optical 3D scanner. The experiment was conducted in two variants: with and without drainage layer. Two clay soils collected from farmlands from the catchment of lake Zgorzała (Warsaw were investigated. Six tests of simulated rain were applied, with 55 mm·h−1. The surface roughness and microrelief were determined immediately after every 10 min of rainfall simulation by 3D scanner. The volume of surface and underground runoff as well as soil moisture were measured. The surface points coordinates obtained while scanning were interpolated using natural neighbour method and GIS software to generate Digital Elevation Models (DEM with a 0.5 mm resolution. Two DEM-derived surface roughness indices: Random Roughness (RR and Terrain Ruggedness Index (TRI were used for microrelief description. Calculated values of both roughness factors have decreased with time under the influence of rainfall in all analyzed variants. During the sprinkling the moisture of all samples had been growing rapidly from air-dry state reaching values close to the maximum water capacity (37–48% vol. in 20–30 min. Simultaneously the intensity of surface runoff was increasing and cumulative runoff value was: 17–35% for variants with drainage and 72–83% for the variants without drainage, relative to cumulative rainfall. The observed soil surface elevation changes were associated with aggregates decomposition, erosion and sedimentation, and above all, with a compaction of the soil, which was considered to be a dominant factor hindering the assessment of the erosion intensity of the of the scanned surface.

  8. Modelling die filling with charged particles using DEM/CFD

    Institute of Scientific and Technical Information of China (English)

    Emmanuel Nkem Nwose; Chunlei Pei; Chuan-Yu Wu

    2012-01-01

    The effects of electrostatic charge on powder flow behaviour during die filling in a vacuum and in air were analysed using a coupled discrete element method and computational fluid dynamics (DEM/CFD) code,in which long range electrostatic interactions were implemented.The present 2D simulations revealed that both electrostatic charge and the presence of air can affect the powder flow behaviour during die filling.It was found that the electrostatic charge inhibited the flow of powders into the die and induced a loose packing structure.At the same filling speed,increasing the electrostatic charge led to a decrease in the fill ratio which quantifies the volumetric occupancy of powder in the die.In addition,increasing the shoe speed caused a further decrease in the fill ratio,which was characterised using the concept of critical filling speed.When the electrostatic charge was low,the air/particle interaction was strong so that a lower critical filling speed was obtained for die filling in air than in a vacuum.With high electrostatic charge,the electrostatic interactions became dominant.Consequently,similar fill ratio and critical filling speed were obtained for die filling in air and in a vacuum.

  9. DEM resolution effects on shallow landslide hazard and soil redistribution modelling

    NARCIS (Netherlands)

    Claessens, L.F.G.; Heuvelink, G.B.M.; Schoorl, J.M.; Veldkamp, A.

    2005-01-01

    In this paper we analyse the effects of digital elevation model (DEM) resolution on the results of a model that simulates spatially explicit relative shallow landslide hazard and soil redistribution patterns and quantities. We analyse distributions of slope, specific catchment area and relative haza

  10. Laser altimetry data of Chang’E-1 and the global lunar DEM model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Laser AltiMeter (LAM), as one of the main payloads of Chang’E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang’E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang’E-1 reveals a new lowest point, clearly lower than that of SELENE.

  11. Estimating Digital Terrain Model in forest areas from TanDEM-X and Stereo-photogrammetric technique by means of Random Volume over Ground model

    Science.gov (United States)

    Lee, S. K.; Fatoyinbo, T. E.; Lagomasino, D.; Osmanoglu, B.; Feliciano, E. A.

    2015-12-01

    The Digital Terrain Model (DTM) in forest areas is invaluable information for various environmental, hydrological and ecological studies, for example, watershed delineation, vegetation canopy height, water dynamic modeling, forest biomass and carbon estimations. There are few solutions to extract bare-earth Digital Elevation Model information. Airborne lidar systems are widely and successfully used for estimating bare-earth DEMs with centimeter-order accuracy and high spatial resolution. However, expensive cost of operation and small image coverage prevent the use of airborne lidar sensors for large- or global-scale. Although IceSAT/GLAS (Ice, Cloud, and Land Elevation Satellite/Geoscience Laser Altimeter System) lidar data sets have been available for global DTM estimate with relatively lower cost, the large footprint size of 70 m and the interval of 172 m are insufficient for various applications. In this study we propose to extract higher resolution bare-earth DEM over vegetated areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) images by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) forest canopy height inversion. The bare-earth DEM is obtained by complex volume decorrelation in the RVoG model with the DSM estimated by stereo-photogrammetric technique. Forest canopy height can be estimated by subtracting the estimated bare-earth model from the DSM. Finally, the DTM from airborne lidar system was used to validate the bare-earth DEM and forest canopy height estimates.

  12. Anti-aliasing filters for deriving high-accuracy DEMs from TLS data: A case study from Freeport, Texas

    Science.gov (United States)

    Xiong, Lin.; Wang, Guoquan; Wessel, Paul

    2017-03-01

    Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3 cm×3 cm) to handprint (e.g., 10 cm×10 cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain manageable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing caused by downsampling have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem of regridding dense TLS data. The TLS data collected from the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as an anti-aliasing filter. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with two different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.

  13. San Francisco Bay-Delta bathymetric/topographic digital elevation model (DEM)

    Science.gov (United States)

    Fregoso, Theresa; Wang, Rueen-Fang; Ateljevich, Eli; Jaffe, Bruce E.

    2017-01-01

    A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute (ESRI), ArcGIS Topo to Raster module to interpolate grids from single beam bathymetric surveys collected by DWR, the Army Corp of Engineers (COE), the National Oceanic and Atmospheric Administration (NOAA), and the USGS, into a continuous surface. The Topo to Raster interpolation method was specifically designed to create hydrologically correct DEMs from point, line, and polygon data (Environmental Systems Research Institute, Inc., 2015). Elevation contour lines were digitized based on the single beam point data for control of channel morphology during the interpolation process. Checks were performed to ensure that the interpolated surfaces honored the source bathymetry, and additional contours and (or) point data were added as needed to help constrain the data. The original data were collected in the tidal datum Mean Lower or Low Water (MLLW) or the National Geodetic Vertical Datum of 1929 (NGVD29). All data were converted to NGVD29.The 2005 USGS DEM was updated by DWR, first by converting the DEM to the current modern datum of North American Vertical Datum of 1988 (NAVD88) and then by following the methodology of the USGS DEM, established for the 2005 DEM (Foxgrover and others, 2005) for adding newly collected single and multibeam bathymetric data. They then included topographic data from lidar surveys, providing the first DEM that included the land/water interface (Wang and Ateljevich, 2012).The USGS further updated and expanded the DWR DEM with the inclusion of USGS interpolated sections of single beam

  14. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  15. An assessment of TanDEM-X GlobalDEM over rural and urban areas

    Science.gov (United States)

    Koudogbo, Fifamè N.; Duro, Javier; Huber, Martin; Rudari, Roberto; Eddy, Andrew; Lucas, Richard

    2014-10-01

    Digital Elevation Model (DEM) is a key input for the development of risk management systems. Main limitation of the current available DEM is the low level of resolution. DEMs such as STRM 90m or ASTER are globally available free of charge, but offer limited use, for example, to flood modelers in most geographic areas. TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), the first bistatic SAR can fulfil this gap. The mission objective is the generation of a consistent global digital elevation model with an unprecedented accuracy according to the HRTI-3 (High Resolution Terrain Information) specifications. The mission opens a new era in risk assessment. In the framework of ALTAMIRA INFORMATION research activities, the DIAPASON (Differential Interferometric Automated Process Applied to Survey Of Nature) processing chain has been successfully adapted to TanDEM-X CoSSC (Coregistered Slant Range Single Look Complex) data processing. In this study the capability of CoSSC data for DEM generation is investigated. Within the on-going FP7 RASOR project (Rapid Analysis and Spatialisation and Of Risk), the generated DEM are compared with Intermediate DEM derived from the TanDEM-X first global coverage. The results are presented and discussed.

  16. A DEM contact model for history-dependent powder flows

    Science.gov (United States)

    Hashibon, Adham; Schubert, Raphael; Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder handling process chain that greatly influences the characteristic structure and properties of the final part. Predictive modelling and simulation of the die-filling process can greatly contribute to the optimization of the part and the whole production procedure, e.g. by predicting the resulting powder compaction structure as a function of filling process parameters. The rheology of powders can be very difficult to model especially if heterogeneous agglomeration or time-dependent consolidation effects occur. We present a new discrete element contact force model that enables modelling complex powder flow characteristics including direct time-dependent consolidation effects and load history-dependent cohesion to describe the filling process of complex, difficult to handle powders. The model is demonstrated for simple flow and an industrial powder flow.

  17. Parametrisation of a DEM model for railway ballast under different load cases.

    Science.gov (United States)

    Suhr, Bettina; Six, Klaus

    2017-01-01

    The prediction quality of discrete element method (DEM) models for railway ballast can be expected to depend on three points: the geometry representation of the single particles, the used contact models and the parametrisation using principal experiments. This works aims at a balanced approach, where none of the points is addressed with excessive depth. In a first step, a simple geometry representation is chosen and the simplified Hertz-Mindlin contact model is used. When experimental data of cyclic compression tests and monotonic direct shear tests are considered, the model can be parametrised to fit either one of the two tests, but not both with the same set of parameters. Similar problems can be found in literature for monotonic and cyclic triaxial tests of railway ballast. In this work, the comparison between experiment and simulation is conducted using the entire data of the test, e.g. shear force over shear path curve from the direct shear test. In addition to a visual comparison of the results also quantitative errors based on the sum of squares are defined. To improve the fit of the DEM model to both types of experiments, an extension on the Hertz-Mindlin contact law is used, which introduces additional physical effects (e.g. breakage of edges or yielding). This model introduces two extra material parameters and is successfully parametrised. Using only one set of parameters, the results of the DEM simulation are in good accordance with both experimental cyclic compression test and monotonic directs shear test.

  18. DEM Based Modeling: Grid or TIN? The Answer Depends

    Science.gov (United States)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  19. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  20. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  1. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  2. A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California

    Science.gov (United States)

    Barnard, Patrick L.; Hoover, Daniel

    2010-01-01

    A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.

  3. DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction.

    Science.gov (United States)

    Furukawa, Ryoichi; Kadota, Kazunori; Noguchi, Tetsuro; Shimosaka, Atsuko; Shirakawa, Yoshiyuki

    2017-01-26

    The closed-die compaction behaviour of D-mannitol granules has been simulated by the discrete element method (DEM) to investigate the granule rearrangement and fracture behaviour during compaction which affects the compactibility of the tablet. The D-mannitol granules produced in a fluidized bed were modelled as agglomerates of primary particles connected by linear spring bonds. The validity of the model granule used in the DEM simulation was demonstrated by comparing to the experimental results of a uniaxial compression test. During uniaxial compression, the numerical results of the force-displacement curve corresponded reasonably well to the experimental data. The closed-die compaction of the modelled granules was carried out to investigate the rearrangement and fracture behaviours of the granule at different upper platen velocities. The forces during closed-die compaction calculated by DEM fluctuated in the low-pressure region due to the rearrangement of granules. A Heckel analysis showed that the force fluctuation occurred at the initial bending region of the Heckel plot, which represents the granule rearrangement and fracture. Furthermore, the upper platen velocity affected the trend of compaction forces, which can lead to compaction failure due to capping. These results could contribute to designing the appropriate granules during closed-die compaction.

  4. Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM

    CERN Document Server

    Robinson, Martin; Ramaioli, Marco

    2013-01-01

    We present a meshless simulation method for multiphase fluid-particle flows coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM). Rather than fully resolving the interstitial fluid, which is often infeasible, the unresolved fluid model is based on the locally averaged Navier Stokes equations, which are coupled with a DEM model for the solid phase. In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a purely particle-based method and enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries. It can be used for both one and two-way coupling and is applicable to both dilute and dense particle flows. A comprehensive validation procedure for fluid-particle simulations is presented and applied to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical model...

  5. Digital Elevation Model (DEM), LiDAR-based Digital Elevation Model (DEM) in Esri GRID format. 5 foot resolution countywide., Published in 2010, 1:1200 (1in=100ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2010. It is described as...

  6. Coupling photogrammetric data with DFN-DEM model for rock slope hazard assessment

    Science.gov (United States)

    Donze, Frederic; Scholtes, Luc; Bonilla-Sierra, Viviana; Elmouttie, Marc

    2013-04-01

    Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques [Poropat, 2001] and coupled DFN-DEM models [Harthong et al., 2012] provides a methodology that can be applied to complex 3D configurations. DFN-DEM formulation [Scholtès & Donzé, 2012a,b] has been chosen for modeling since it can explicitly take into account the fracture sets. Analyses conducted in 3D can produce very complex and unintuitive failure mechanisms. Therefore, a modeling strategy must be established in order to identify the key features which control the stability. For this purpose, a realistic case is presented to show the overall methodology from the photogrammetry acquisition to the mechanical modeling. By combining Sirovision and YADE Open DEM [Kozicki & Donzé, 2008, 2009], it can be shown that even for large camera to rock slope ranges (tested about one kilometer), the accuracy of the data are sufficient to assess the role of the structures on the stability of a jointed rock slope. In this case, on site stereo pairs of 2D images were taken to create 3D surface models. Then, digital identification of structural features on the unstable block zone was processed with Sirojoint software [Sirovision, 2010]. After acquiring the numerical topography, the 3D digitalized and meshed surface was imported into the YADE Open DEM platform to define the studied rock mass as a closed (manifold) volume to define the bounding volume for numerical modeling. The discontinuities were then imported as meshed planar elliptic surfaces into the model. The model was then submitted to gravity loading. During this step, high values of cohesion were assigned to the discontinuities in order to avoid failure or block displacements triggered by inertial effects. To assess the respective role of the pre-existing discontinuities in the block stability, different configurations have been tested as well as different degree of

  7. ElevationDEM_DEM3p2M

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Chittenden County 2004 3.2m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  8. ElevationDEM_DEM1p6M2008

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  9. ElevationDEM_DEM0p7M2013

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area: Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  10. ElevationDEM_DEM1p6M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  11. ElevationDEM_DEM3p2M2004

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Chittenden County 2004 3.2m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  12. ElevationDEM_DEM0p7M2015

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Windham County 2015 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  13. ElevationDEM_DEM1p6M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  14. Digital Elevation Model (DEM), Published in 1996, 1:2400 (1in=200ft) scale, Shawano County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 1996. Data by this...

  15. Digital Elevation Model (DEM), Published in 2007, 1:12000 (1in=1000ft) scale, Door County, Wisconsin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2007. Data by this...

  16. Digital Elevation Model (DEM), Published in 2005, 1:24000 (1in=2000ft) scale, Sauk County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from LIDAR information as of 2005. Data by this...

  17. Digital Elevation Model (DEM), Published in 2000, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:7200 (1in=600ft) scale as of 2000. Data by this publisher are often provided in State Plane coordinate...

  18. Digital Elevation Model (DEM), Published in 2000, 1:12000 (1in=1000ft) scale, Off.of Admin - ITSD.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Other information as of 2000. Data by this...

  19. Digital Elevation Model (DEM), Published in 2004, 1:2400 (1in=200ft) scale, St. Croix County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 2004. Data by this...

  20. Digital Elevation Model (DEM), Published in unknown, 1:4800 (1in=400ft) scale, Stokes County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from LIDAR information as of unknown. Data by this...

  1. Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts

    Science.gov (United States)

    Maspataud, Aurélie; Biscara, Laurie; Hébert, Hélène; Schmitt, Thierry; Créach, Ronan

    2015-04-01

    Building precise and up-to-date coastal DEMs is a prerequisite for accurate modeling and forecasting of hydrodynamic processes at local scale. Marine flooding, originating from tsunamis, storm surges or waves, is one of them. Some high resolution DEMs are being generated for multiple coast configurations (gulf, embayment, strait, estuary, harbor approaches, low-lying areas…) along French Atlantic and Channel coasts. This work is undertaken within the framework of the TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2017). DEMs boundaries were defined considering the vicinity of French civil nuclear facilities, site effects considerations and potential tsunamigenic sources. Those were identified from available historical observations. Seamless integrated topographic and bathymetric coastal DEMs will be used by institutions taking part in the study to simulate expected wave height at regional and local scale on the French coasts, for a set of defined scenarii. The main tasks were (1) the development of a new capacity of production of DEM, (2) aiming at the release of high resolution and precision digital field models referred to vertical reference frameworks, that require (3) horizontal and vertical datum conversions (all source elevation data need to be transformed to a common datum), on the basis of (4) the building of (national and/or local) conversion grids of datum relationships based on known measurements. Challenges in coastal DEMs development deal with good practices throughout model development that can help minimizing uncertainties. This is particularly true as scattered elevation data with variable density, from multiple sources (national hydrographic services, state and local government agencies, research organizations and private engineering companies) and from many different types (paper fieldsheets to be digitized, single beam echo sounder, multibeam sonar, airborne laser

  2. DEM-based model for reconstructing volcano's morphology from primary volcanic landforms

    Science.gov (United States)

    Gayer, Eric; Lopez, Philippe; Michon, Laurent

    2014-05-01

    Volumes of magma intruded in and emitted by volcanoes through time can be estimated by reconstruction of volcano's morphology and time sequence. Classical approaches for quantifying magma volumes on active volcanoes are based on the difference between pre- and post-eruption digital elevation models (DEM), but this kind of approach needs the pre-eruptive surfaces to be available. For old and eroded volcanoes these surfaces are poorly constrained. However, because the geometrical form of many volcanic edifices exhibits a remarkable symmetry we propose, here, a new approach using primary volcanic landforms in order to estimate the amount of the both erupted and eroded material and to locate eruptive centers. A large fraction of composite volcanoes have near constant slope on their flanks and a form that is concave upwards near their summits. But many phenomena can lead to non-symetrical edifices and complex morphologies can result, for example from parasitic centers of volcanism on the flanks, from alternation of short effusive and explosive construction phases, from flank or caldera collapses, or from glacial and other types of erosion. In this study we propose that, on the first order approximation, complex morphologies can be modeled by piling regular cones. In this model, cones centers and slopes are derived by fitting primary volcanic landform with a linear function :elevation=f(distance from center). Such an approach allows to estimate both errors on location of the eruptive center and on the volume of the resulting cones. This model can then be used for quantifying volume of erupted and eroded material, and for quantifying catastrophic events as giant landslides or flank collapse. This approach is tested on four different active volcanoes : Mount Mayon (Philippines), Mount Fuji (Japan), Mount Etna (Sicily) and Mount Teide (Canary Island) to estimate errors in volume between modeled and actual edifices. It is then used on volcanoes of La Réunion hotspot to

  3. Application Research of DEMs-STP Mixture Model in 3D Stratum Modeling%DEMs-STP混合模型在三维地层建模中的应用研究

    Institute of Scientific and Technical Information of China (English)

    衣昕; 贾瑞生

    2012-01-01

    本文提出了一个多层DEM(Digital Elevation Model,DEM)及似三棱柱(Similar Tri-Prism,STP)混合的三维地层模型DEMs-STP,该模型使用多层DEM构建地表及地质分层界面,使用STP构造层间地质体,改进了STP的切割处理,并利用IDL作为开发工具,实现了三维可视化.实验结果表明,DEMs-STP混合数据模型具有同时表示空间对象表面和内部结构的能力,适合地质勘探领域的三维建模.

  4. Hydrological modeling using high resolution dem to level control on highways

    Science.gov (United States)

    Akbulut, Zeynep; Cömert, Çetin

    2016-04-01

    Floods are natural disasters that must be managed, controlled and taken precautions before it happens considering the damage they inflicted to environment and human lives. As to highways, the main vein of urban life flow, must be taken into consideration as a different entity that affected by excessive rainfalls and floods. Due to inadequate drainage that allow rainfall to form water ponds on highways cause vehicles to lose control and that lead vehicles to have traffic accidents. To reduce the traffic accidents caused by ponding waters on highways we need to know area of inundation and water depths. In this context we used FLO-2D Basic Model (2009) to hydrological modeling of Black Sea Coastal Highway with meteorological and hydrological data using a Digital Elevation Model (DEM). In this study, ponding areas on highways determined by simulating the rainfall with a high resolution DEM that can represent the actual road surface correctly. With this information, General Directorate of Highways (GDH) in Turkey can adjust the cross-sectional and longitudinal slope or build better and bigger drainage structures where water accumulated to prevent ponding. With the results obtained from Hydrological Model, GDH can rapidly control highways conformity to regulations before highways come into service. Also these ponding areas acquired by reveals where to prioritize in flood risk managements. Key Words: Area of Inundation, Digital Elevation Model, FLO-2D, Hydrological Modeling, Highway, Rainfall-Runoff Simulation, Water Depth.

  5. A Huber-derived Robust Multi-quadric Interpolation Method for DEM Construction%DEM建模的多面函数Huber抗差算法

    Institute of Scientific and Technical Information of China (English)

    陈传法; 刘凤英; 闫长青; 戴洪磊; 郭金运; 刘国林

    2016-01-01

    In this paper,we propose a robust multi-quadric method (MQ-H) based on Huber loss function to conduct interpolations of contaminated spatial points,especially those derived from remote-sensing techniques.The objective function of the MQ-H has two main parts;an improved Huber loss function and a regularized penalty term used to improve robustness and avoid overfitting,respectively.A mathematical surface,subject to model error with different distributions,was employed to comparatively analyze the robustness of the MQ-H,the classical MQ,and a least absolute deviation based MQ (MQ-L).The results indicated that when sample errors follow a normal distribution or a Laplacian distribution,the performance of MQ-H is comparatively better than those of MQ,and more accurate than MQ-L.For sample errors with a contaminated normal distribution and Cauchy distribution,MQ-H is more robust than MQ-L and MQ.Moreover,MQ with the improved Huber loss function is superior to MQ with the classical Huber loss function.A real-world example of DEM construction with stereo-image-derived elevation points indicates that compared to the classical interpolation methods including IDW (inverse distance weighting),OK (ordinary Kriging) and ANUDEM (Australian National University DEM),MQ-H has a better ability to reduce the impact of outliers while maintaining subtle terrain features suitable for qualitative analysis.%为了抑制采样点中粗差对数字高程模型(digital elevation model,DEM)建模的影响,以较高精度的多面函数(multi-quadric,MQ)为基函数,由改进Huber损失函数和权重惩罚项组成目标函数,发展了MQ抗差插值算法(MQ-H).通过优化MQ-H目标函数,采样点权重计算最终转换为方程组求解.以数学曲面为研究对象,将MQ-H计算结果与传统MQ及最小绝对偏差MQ(MQ-I)进行比较,结果表明:当采样误差服从正态分布时,MQ-H计算精度与传统MQ相当,而远高于MQ L;当采样误差服从拉普拉斯分布时,MQ-H计

  6. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  7. Tectonic development of the Northwest Bonaparte Basin, Australia by using Digital Elevation Model (DEM)

    Science.gov (United States)

    Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Ragab Gaafar, Gamal; Yusoff, AP Wan Ismail Wan

    2016-02-01

    The Bonaparte Basin consist of majorly offshore part is situated at Australia's NW continental margin, covers an area of approx. 270,000km2. Bonaparte Basin having a number of sub-basins and platform areas of Paleozoic and Mesozoic is structurally complex. This research established the geologic and geomorphologic studies using Digital Elevation Model (DEM) as a substitute approach in morphostructural analysis to unravel the geological complexities. Although DEMs have been in practice since 1990s, they still have not become common tool for mapping studies. The research work comprised of regional structural analysis with the help of integrated elevation data, satellite imageries, available open topograhic images and internal geological maps with interpreted seismic. The structural maps of the study area have been geo-referenced which further overlaid onto SRTM data and satellite images for combined interpretation which facilitate to attain Digital Elevation Model of the study area. The methodology adopts is to evaluate and redefine development of geodynamic processes involved in formation of Bonaparte Basin. The main objectives is to establish the geological histories by using digital elevation model. The research work will be useful to incorporate different tectonic events occurred at different Geological times in a digital elevation model. The integrated tectonic analysis of different digital data sets benefitted substantially from combining them into a common digital database. Whereas, the visualization software facilitates the overlay and combined interpretation of different data sets which is helpful to reveal hidden information not obvious or accessible otherwise for regional analysis.

  8. Digital Elevation Model (DEM), 20' Grid DEM for Iredell County provided by 2003 Floodplain Mapping Program data, Published in 2007, 1:600 (1in=50ft) scale, Iredell County GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  9. Digital Elevation Model (DEM), 10' DEM from LIDAR (1.2 m raw point spacing, 36.6 cm vertical accuracy, 50 cm horizontal), Published in 2008, 1:1200 (1in=100ft) scale, CITY OF PORTAGE.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2008. It is described as...

  10. Digital Elevation Model (DEM), DEM created from LIDAR data collected in the spring of 2009 as part of an MPO aerial/contour collection., Published in 2009, 1:600 (1in=50ft) scale, City of Bismarck.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2009. It is described as...

  11. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale and well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.

  12. NTHMP DEM Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. kawaihae_dem.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  14. NOAA VDatum DEM Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  15. DEM generated from InSAR in mountainous terrain and its accuracy analysis

    Science.gov (United States)

    Hu, Hongbing; Zhan, Yulan

    2011-02-01

    Digital Elevation Model (DEM) derived from survey data is accurate but it is very expensive and time-consuming. In recent years, remote sensing techniques including Synthetic Apenture Radar Interferometry (InSAR) had been developed as a powerful method to derive high precision DEM, especially in mountainous or deep forest areas. The purpose of this paper is to illustrate the principle of InSAR and show the result of a case study in Gejiu city, Yunnan province, China. The accuracy of DEM derived from InSAR (abbreviation as InSAR-DEM) is also evaluated by comparing it with DEM generated from topographic map at the scale of 1:50000 (abbreviation as TOP-DEM). The result shows that: (1)The general precision of the whole selected area acquired by subtracting InSAR-DEM from TOP-DEM is that the maximum, the minimum, the RMSE, and the mean of difference of the two DEMs are 203m, -188m, 26.9m and 5.7m respectively. (2)The topographic trend represented by the two DEMs is coincident, even though TOP-DEM is finer than InSAR-DEM, especial at the valley. (3) Contour maps with the interval of 100m and 50m converted from InSAR-DEM and TOP-DEM respectively show accordant relief trend. Contour from TOP-DEM is smoother than that of from InSAR-DEM, while Contour from InSAR-DEM has more islands than that of from TOP-DEM.(4) Coherence has great influence on the precision of InSAR-DEM, the precision of low-coherence area approaches 100 m while that of high-coherence area can up to m level. (5) The relief trend of 6 profiles represented by InSAR-DEM and TOP-DEM is accordant with tiny difference in partial minutiae. InSAR-DEM displays hypsographies at relative flat areas including surface of water, which reflects the influence of flat earth on InSAR to a certain extent.

  16. Effect of DEM Source and Resolution on Extracting River Network and Watershed within Multi-Lake Area in Tibet

    Science.gov (United States)

    Li, Yang; Li, Gang; Lin, Hui

    2014-11-01

    DEM defines drainage structures and basin through conducting overland flow simulation. Two matured DEM Sources are SRTM DEM (Shuttle Radar Topographic Mission) and ASTER GDEM (Advanced Space borne Thermal Emission and Reflection Radiometer Global Digital Elevation Model); The accuracy of hydrological characters that derived from DEM decreased from high resolution to coarse resolution and appeared to be different in different data source (Vaze,Teng, & Spencer, 2010).

  17. Review of Digital Elevation Model (DEM) Based Research on China Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    Tang Guo'an; Ge Shanshan; Li Fayuan; Zhou Jieyu

    2005-01-01

    The Loess Plateau is one of the hot research areas for its specific geographical features. In resent years, with the establishment of national multi-scale DEMs and the perfection of DEM based digital terrain analysis methods, new thoughts and methodologies have been constructed for the Loess Plateau research. This paper introduces the characteristics of DEM data, analyses the development stages of DEM applied in the Loess Plateau research, and discusses its further possible research direction. More discussions are focused on slope spectrum and its concept, as well as the significance in the Loess Plateau research.

  18. An Adaptive Integration Model of Vector Polyline to DEM Data Based on Spherical Degeneration Quadtree Grids

    Science.gov (United States)

    Zhao, X. S.; Wang, J. J.; Yuan, Z. Y.; Gao, Y.

    2013-10-01

    Traditional geometry-based approach can maintain the characteristics of vector data. However, complex interpolation calculations limit its applications in high resolution and multi-source spatial data integration at spherical scale in digital earth systems. To overcome this deficiency, an adaptive integration model of vector polyline and spherical DEM is presented. Firstly, Degenerate Quadtree Grid (DQG) which is one of the partition models for global discrete grids, is selected as a basic framework for the adaptive integration model. Secondly, a novel shift algorithm is put forward based on DQG proximity search. The main idea of shift algorithm is that the vector node in a DQG cell moves to the cell corner-point when the displayed area of the cell is smaller or equal to a pixel of screen in order to find a new vector polyline approximate to the original one, which avoids lots of interpolation calculations and achieves seamless integration. Detailed operation steps are elaborated and the complexity of algorithm is analyzed. Thirdly, a prototype system has been developed by using VC++ language and OpenGL 3D API. ASTER GDEM data and DCW roads data sets of Jiangxi province in China are selected to evaluate the performance. The result shows that time consumption of shift algorithm decreased about 76% than that of geometry-based approach. Analysis on the mean shift error from different dimensions has been implemented. In the end, the conclusions and future works in the integration of vector data and DEM based on discrete global grids are also given.

  19. Sensitivity of a Floodplain Hydrodynamic Model to Satellite-Based DEM Scale and Accuracy: Case Study—The Atchafalaya Basin

    Directory of Open Access Journals (Sweden)

    Hahn Chul Jung

    2015-06-01

    Full Text Available The hydrodynamics of low-lying riverine floodplains and wetlands play a critical role in hydrology and ecosystem processes. Because small topographic features affect floodplain storage and flow velocity, a hydrodynamic model setup of these regions imposes more stringent requirements on the input Digital Elevation Model (DEM compared to upland regions with comparatively high slopes. This current study provides a systematic approach to evaluate the required relative vertical accuracy and spatial resolution of current and future satellite-based altimeters within the context of DEM requirements for 2-D floodplain hydrodynamic models. A case study is presented for the Atchafalaya Basin with a model domain of 1190 km2. The approach analyzes the sensitivity of modeled floodplain water elevation and velocity to typical satellite-based DEM grid-box scale and vertical error, using a previously calibrated version of the physically-based flood inundation model (LISFLOOD-ACC. Results indicate a trade-off relationship between DEM relative vertical error and grid-box size. Higher resolution models are the most sensitive to vertical accuracy, but the impact diminishes at coarser resolutions because of spatial averaging. The results provide guidance to engineers and scientists when defining the observation scales of future altimetry missions such as the   Surface Water and Ocean Topography (SWOT mission from the perspective of numerical modeling requirements for large floodplains of O[103] km2 and greater.

  20. Revealing topographic lineaments through IHS enhancement of DEM data. [Digital Elevation Model

    Science.gov (United States)

    Murdock, Gary

    1990-01-01

    Intensity-hue-saturation (IHS) processing of slope (dip), aspect (dip direction), and elevation to reveal subtle topographic lineaments which may not be obvious in the unprocessed data are used to enhance digital elevation model (DEM) data from northwestern Nevada. This IHS method of lineament identification was applied to a mosiac of 12 square degrees using a Cray Y-MP8/864. Square arrays from 3 x 3 to 31 x 31 points were tested as well as several different slope enhancements. When relatively few points are used to fit the plane, lineaments of various lengths are observed and a mechanism for lineament classification is described. An area encompassing the gold deposits of the Carlin trend and including the Rain in the southeast to Midas in the northwest is investigated in greater detail. The orientation and density of lineaments may be determined on the gently sloping pediment surface as well as in the more steeply sloping ranges.

  1. Digital Elevation Model (DEM), Our DEM was created by using the LiDAR data from our recent acquisition. The layer was created with the help of contour data, mass points & breaklines., Published in 2012, Not Applicable scale, Chippewa County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2012. Our DEM was created by using the LiDAR data from our recent acquisition. The layer was created with the...

  2. Validation of DEM modeling of sintering using an in situ X-ray microtomography analysis of the sintering of NaCl powder

    Science.gov (United States)

    Martin, Sylvain; Navarro, Sebastián; Palancher, Hervé; Bonnin, Anne; Léchelle, Jacques; Guessasma, Mohamed; Fortin, Jérôme; Saleh, Khashayar

    2016-11-01

    This paper aims to validate the discrete element method (DEM) model of sintering. In situ X-ray microtomography experiments have been carried out at the ESRF to follow the sintering of NaCl powder, the properties of which are close to the DEM model assumptions. DEM simulations are then run using an improved implicit method. The comparison between experiment and simulation shows the capability of DEM to predict the behavior of the sample on both particle and packing scale. The main advantages and limits of this approach are finally discussed based on these results and those of previous studies.

  3. Digital Elevation Model (DEM), 1.7 meter DEM in Urban Areas, 5 Meter DEM in National Forest, flown as part of the LAR-IAC project, Published in 2006, 1:600 (1in=50ft) scale, County of Los Angeles.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as...

  4. Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling

    Directory of Open Access Journals (Sweden)

    Ruopu Li

    2013-12-01

    Full Text Available With extraordinary resolution and accuracy, Light Detection and Ranging (LiDAR-derived digital elevation models (DEMs have been increasingly used for watershed analyses and modeling by hydrologists, planners and engineers. Such high-accuracy DEMs have demonstrated their effectiveness in delineating watershed and drainage patterns at fine scales in low-relief terrains. However, these high-resolution datasets are usually only available as topographic DEMs rather than hydrologic DEMs, presenting greater land roughness that can affect natural flow accumulation. Specifically, locations of drainage structures such as road culverts and bridges were simulated as barriers to the passage of drainage. This paper proposed a geospatial method for producing LiDAR-derived hydrologic DEMs, which incorporates data collection of drainage structures (i.e., culverts and bridges, data preprocessing and burning of the drainage structures into DEMs. A case study of GIS-based watershed modeling in South Central Nebraska showed improved simulated surface water derivatives after the drainage structures were burned into the LiDAR-derived topographic DEMs. The paper culminates in a proposal and discussion of establishing a national or statewide drainage structure dataset.

  5. New trends in flood risk analysis: working with 2D flow models, laser DEM and a GIS environment

    OpenAIRE

    Archambeau, Pierre; Dewals, Benjamin; Erpicum, Sébastien; Detrembleur, Sylvain; Pirotton, Michel

    2004-01-01

    This paper outlines the integration of new and accurate laser DEM into the determination of floodplains. Global and robust GIS environment is absolutely necessary to manage this very large amounts of topographic data. The development and interaction of 2D flow models, simplified or not, ensures to offer more accurate and flexible physically based tools to the decision-makers. Peer reviewed

  6. Digital Elevation Model (DEM), Lanai Digital Elevation Model, Published in 2005, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2005. It is...

  7. Digital Elevation Model (DEM), Oahu Digital Elevation Model, Published in 2003, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2003. It is...

  8. Digital Elevation Model (DEM), 2005 Digtial Elevation Model, Published in 2009, 1:2400 (1in=200ft) scale, Dane County Land Information Office.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Other information as of 2009. It is described as...

  9. Digital Elevation Model (DEM), Hawaii (Big Island) Digital Elevation Model, Published in 2004, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2004. It is...

  10. How to bridge the gap between "unresolved" model and "resolved" model in CFD-DEM coupled method for sediment transport?

    Science.gov (United States)

    Liu, D.; Fu, X.; Liu, X.

    2016-12-01

    In nature, granular materials exist widely in water bodies. Understanding the fundamentals of solid-liquid two-phase flow, such as turbulent sediment-laden flow, is of importance for a wide range of applications. A coupling method combining computational fluid dynamics (CFD) and discrete element method (DEM) is now widely used for modeling such flows. In this method, when particles are significantly larger than the CFD cells, the fluid field around each particle should be fully resolved. On the other hand, the "unresolved" model is designed for the situation where particles are significantly smaller than the mesh cells. Using "unresolved" model, large amount of particles can be simulated simultaneously. However, there is a gap between these two situations when the size of DEM particles and CFD cell is in the same order of magnitude. In this work, the most commonly used void fraction models are tested with numerical sedimentation experiments. The range of applicability for each model is presented. Based on this, a new void fraction model, i.e., a modified version of "tri-linear" model, is proposed. Particular attention is paid to the smooth function of void fraction in order to avoid numerical instability. The results show good agreement with the experimental data and analytical solution for both single-particle motion and also group-particle motion, indicating great potential of the new void fraction model.

  11. Linear and nonlinear approach for DEM smoothening

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available One of the biggest problems faced while analyzing digital elevation models (DEMs, particularly DEMs that are produced using photogrammetry, is to avoid pits and peaks in DEMs. Peaks and pits, which are errors, are generated during the surface generation process. DEM smoothening is an important preprocessing step meant for removing these errors. This paper discusses two linear DEM smoothening methods, Gaussian blurring and mean smoothening, and two nonlinear DEM smoothening methods, morphological smoothening and morphological smoothening by reconstruction. The four methods are implemented on a photogrammetrically generated DEM. The drainage network of the resultant DEM is obtained using skeletonization by morphological thinning, and the fractal dimension of the extracted network is computed using the box dimension method. The fractal dimensions are then compared to study the effects of the four smoothening methods. The advantages of nonlinear DEM smoothening over linear DEM smoothening are discussed. This study is useful in landscape descriptions.

  12. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia

    Science.gov (United States)

    Neelmeijer, Julia; Motagh, Mahdi; Bookhagen, Bodo

    2017-08-01

    This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long-wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor.

  13. Composite wedge failure using photogrammetric measurements and DFN-DEM modelling

    Directory of Open Access Journals (Sweden)

    Viviana Bonilla-Sierra

    2017-02-01

    Full Text Available Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional (3D image analysis combined with the discrete fracture network (DFN approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method (DEM. Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.

  14. Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012...

  15. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Searchspace Minimization (SETSM) algorithm from RPCs-based Imagery

    Science.gov (United States)

    Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.

    2016-12-01

    The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM

  16. DEM error retrieval by analyzing time series of differential interferograms

    OpenAIRE

    Bombrun, Lionel; Gay, Michel; Trouvé, Emmanuel; Vasile, Gabriel; Mars, Jerome,

    2009-01-01

    International audience; 2-pass Differential Synthetic Aperture Radar Interferometry (D-InSAR) processing have been successfully used by the scientific community to derive velocity fields. Nevertheless, a precise Digital Elevation Model (DEM) is necessary to remove the topographic component from the interferograms. This letter presents a novel method to detect and retrieve DEM errors by analyzing time series of differential interferograms. The principle of the method is based on the comparison...

  17. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Stefan Erasmi

    2014-10-01

    Full Text Available Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM that were processed from two different imaging modes (Stripmap/High Resolution Spotlight using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE standards from the National System for Geospatial Intelligence (NSG at the HRE20 level.

  18. ElevationDEM_DEMHF2M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Bennington County 2012 2.0m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  19. A simulation of wide area surveillance (WAS) systems and algorithm for digital elevation model (DEM) extraction

    Science.gov (United States)

    Cheng, Beato T.

    2010-04-01

    With the advances in focal plane, electronics and memory storage technologies, wide area and persistence surveillance capabilities have become a reality in airborne ISR. A WAS system offers many benefits in comparison with the traditional airborne image capturing systems that provide little data overlap, both in terms of space and time. Unlike a fix-mount surveillance camera, a persistence WAS system can be deployed anywhere as desired, although the platform typically has to be in motion, say circling above an area of interest. Therefore, WAS is a perfect choice for surveillance that can provide near real time capabilities such as change detection and target tracking. However, the performance of a WAS system is still limited by the available technologies: the optics that control the field-of-view, the electronics and mechanical subsystems that control the scanning, the focal plane data throughput, and the dynamics of the platform all play key roles in the success of the system. It is therefore beneficial to develop a simulated version that can capture the essence of the system, in order to help provide insights into the design of an optimized system. We describe an approach to the simulation of a generic WAS system that allows focal plane layouts, scanning patterns, flight paths and platform dynamics to be defined by a user. The system generates simulated image data of the area ground coverage from reference databases (e.g. aerial imagery, and elevation data), based on the sensor model. The simulated data provides a basis for further algorithm development, such as image stitching/mosaic, registration, and geolocation. We also discuss an algorithm to extract the terrain elevation from the simulated data, and to compare that with the original DEM data.

  20. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data.

    Science.gov (United States)

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Motagh, Mahdi; Waske, Bjoern

    2016-11-15

    Water scarcity in the dry season is a vital problem in dryland regions such as northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of various sizes. However, inventory data for these reservoirs is often limited due to the expense and time required for their acquisition via field surveys, particularly in remote areas. Remote sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys for water resource management. In this study single pass TanDEM-X data acquired in bistatic mode were used to generate digital elevation models (DEMs) in the Madalena catchment, northeastern Brazil. Validation with differential global positioning system (DGPS) data from field measurements indicated an absolute elevation accuracy of approximately 1m for the TanDEM-X derived DEMs (TDX DEMs). The DEMs derived from TanDEM-X data acquired at low water levels show significant advantages over bathymetric maps derived from field survey, particularly with regard to coverage, evenly distributed measurements and replication of reservoir shape. Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free of emergent and submerged macrophytes, independent of water depth (e.g. >10m), water quality and even weather conditions. Thus, the method is superior to other existing bathymetric mapping approaches, particularly for inland water bodies. The proposed approach relies on (nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that show considerable water levels variations. However, comparisons between TDX DEM and the bathymetric map derived from field surveys show that the amount of water retained during the dry phase has only marginal impact on the total water volume derivation from TDX DEM. Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods constitute a useful and efficient data source for deriving reservoir bathymetry and show

  1. Uncertainty Analysis of LROC NAC Derived Elevation Models

    Science.gov (United States)

    Burns, K.; Yates, D. G.; Speyerer, E.; Robinson, M. S.

    2012-12-01

    between LOLA profiles and NAC DEMs are used to quantify the absolute accuracy. Small lateral movements in the LOLA points coupled with large changes in topography contribute to sizeable offsets between the datasets. The steep topography of Lichtenberg Crater provides an example of the offsets in the LOLA data. Ten tracks that cross the region of interest were used to calculate the offset with a root mean square (RMS) error of 9.67 m, an average error of 7.02 m, and a standard deviation of 9.61m. Large areas (>375 km sq) covered by a mosaic of NAC DEMs were compared to the Wide Angel Camera (WAC) derived Global Lunar DTM 100 m topographic model (GLD100) [4]. The GLD100 has a pixel scale of 100 m; therefore, the NAC DEMs were reduced to calculate the offsets between two datasets. When comparing NAC DEMs to WAC DEMs, it was determined that the vertical offsets were as follows [Site name (average offset in meters, standard deviation in meters)]: Lichtenberg Crater (-7.74, 20.49), Giordano Bruno (-5.31, 28.80), Hortensius Domes (-3.52, 16.00), and Reiner Gamma (-0.99,14.11). Resources: [1] Robinson et al. (2010) Space Sci. Rev. [2] Smith et al. (2010) Space Sci. Rev. [3]Speyerer et al. (2012) European Lunar Symp. [4] Scholten et al. (2012) JGR-Planets.

  2. Digital Elevation Model (DEM), Lidar data with break lines, Published in 2007, 1:2400 (1in=200ft) scale, Randolph County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as...

  3. Digital Elevation Model (DEM), Published in 2002, 1:2400 (1in=200ft) scale, Columbia County Wisconsin Land Information Department.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 2002. Data by this...

  4. Digital Elevation Model (DEM), NED Elevation Sets for the counties we serve from USGS, Published in 1999, Prairie Land Electric COOP, Inc..

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from Not Provided information as of 1999. It is described as 'NED Elevation Sets for the...

  5. Quantifying river response to landsliding: experiments in DEM differencing using wide-area, structure-from-motion terrain models.

    Science.gov (United States)

    James, Joe; Brasington, James; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia

    2017-04-01

    Sediment delivery to alpine rivers is characterized by large but infrequent pulses of material sourced from landslides and debris flows. In extreme cases, when the rate of sediment supply exceeds the transport capacity of channels, a landslide dam forms; impounding river flows and creating an inline lake. These rare events play a crucial but weakly understood role in the evolution of catchment drainage, channel morphology and sediment flux from mountain catchments to their sedimentary sinks. Until recently, insights into the response of river systems to such sediment overloading have been based on either localized ground surveys or expensive airborne lidar campaigns. The recent development of structure-from-motion photogrammetric methods offers the potential to bridge this scale-cost barrier, but has yet to be applied over wide-area (101-2 km2) extents which push the boundaries of traditional SfM workflows based on dense ground-control and low-altitude or terrestrial imagery. Here, we present preliminary insights into the response of the braided Dart River, Otago as it adjusts to a major pulse of sediment supplied by landsliding at Slip Stream (44.59 S 168.34 E) in January 2014. DEM differencing (DoD) is used to develop a sediment budget for this extreme slope-channel coupling, using wide-area (>80 km2) terrain models derived from SfM photogrammetry based on aerial helicopter surveys in May 2014 and 2015. Contrasting camera networks, image density and camera models were used in the two surveys providing an opportunity to evaluate the sensitivity of the resulting terrain model to data acquisition strategy. In both cases, georeferencing was based on a network of ground-control distributed along the 40 km valley floor which was also used to provide cross-validation tests on horizontal and vertical model reliability. Both models were subject to inherent systematic bias associated with compensation between the inferred interior and exterior model geometry. The use of a

  6. ASTER DEM performance

    Science.gov (United States)

    Fujisada, H.; Bailey, G.B.; Kelly, Glen G.; Hara, S.; Abrams, M.J.

    2005-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the National Aeronautics and Space Administration's Terra spacecraft has an along-track stereoscopic capability using its a near-infrared spectral band to acquire the stereo data. ASTER has two telescopes, one for nadir-viewing and another for backward-viewing, with a base-to-height ratio of 0.6. The spatial resolution is 15 m in the horizontal plane. Parameters such as the line-of-sight vectors and the pointing axis were adjusted during the initial operation period to generate Level-1 data products with a high-quality stereo system performance. The evaluation of the digital elevation model (DEM) data was carried out both by Japanese and U.S. science teams separately using different DEM generation software and reference databases. The vertical accuracy of the DEM data generated from the Level-1A data is 20 m with 95% confidence without ground control point (GCP) correction for individual scenes. Geolocation accuracy that is important for the DEM datasets is better than 50 m. This appears to be limited by the spacecraft position accuracy. In addition, a slight increase in accuracy is observed by using GCPs to generate the stereo data. ?? 2005 IEEE.

  7. Forecasting Rainfall Induced Landslide using High Resolution DEM and Simple Water Budget Model

    Science.gov (United States)

    Luzon, P. K. D.; Lagmay, A. M. F. A.

    2014-12-01

    Philippines is hit by an average of 20 typhoons per year bringing large amount of rainfall. Monsoon carrying rain coming from the southwest of the country also contributes to the annual total rainfall that causes different hazards. Such is shallow landslide mainly triggered by high saturation of soil due to continuous downpour which could take up from hours to days. Recent event like this happened in Zambales province September of 2013 where torrential rain occurred for 24 hours amounting to half a month of rain. Rainfall intensity measured by the nearest weather station averaged to 21 mm/hr from 10 pm of 22 until 10 am the following day. The monsoon rains was intensified by the presence of Typhoon Usagi positioned north and heading northwest of the country. A number of landslides due to this happened in 3 different municipalities; Subic, San Marcelino and Castillejos. The disaster have taken 30 lives from the province. Monitoring these areas for the entire country is but a big challenge in all aspect of disaster preparedness and management. The approach of this paper is utilizing the available forecast of rainfall amount to monitor highly hazardous area during the rainy seasons and forecasting possible landslide that could happen. A simple water budget model following the equation Perct=Pt-R/Ot-∆STt-AETt (where as the terms are Percolation, Runoff, Change in Storage, and Actual Evapotraspiration) was implemented in quantifying all the water budget component. Computations are in Python scripted grid system utilizing the widely used GIS forms for easy transfer of data and faster calculation. Results of successive runs will let percolation and change in water storage as indicators of possible landslide.. This approach needs three primary sets of data; weather data, topographic data, and soil parameters. This research uses 5 m resolution DEM (IfSAR) to define the topography. Soil parameters are from fieldworks conducted. Weather data are from the Philippine

  8. ElevationDEM_DEM0p7M2014

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments":...

  9. NOAA Tsunami Inundation DEM Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. 高速铁路CPⅢ高程控制网测量方法研究%Methods to derive lunar DEM from Chang'E-1 laser altimeter data

    Institute of Scientific and Technical Information of China (English)

    李书亮; 刘成龙; 倪先桃; 徐小左

    2011-01-01

    本文分析高速铁路CPⅢ高程控制网建网时普遍采用的德国测量方法,指出其存在的不足,在此基础上提出了技术上更为合理又适合我国国情的矩形法测量方法.通过对矩形法相邻点高差相对中误差和最弱点高程中误差的估算以及实验验证,认为矩形法可以用于CPⅢ高程网的建网测量.研究结果对于目前高速铁路工程测量相关规范的制订和在建高速铁路CPⅢ高程网的测量具有重要的参照价值.%High-resolution digital elevation models (DEMs) based on data from Laser Altimeter (LAM) of Chinese Chang'E-1 mission provide geospatial characterizations of lunar topography. The primary LAM elevation data are two-dimensional topographic profiles. Developing three-dimensional DEMs from these profile data requires the elimination of gross errors and the interpolation of a confinuous surface. To detect and remove the error ( pseudo elevation) data from LAM observations the paper suggested an improved linear filter based on empirical formula which adapts the lunar surface feature. And the key parameters for this filter were discussed. In the second part, it tested eight different techniques of spatial interpolation with the filtered data. After comparing and analyzing these interpolation methods by their accuracies, shaded-relief visualizations and topographic profiles, it found the Kriging method worked better than other seven methods in deriving DEM grid. At last, an effective procedure for processing CE-1 elevation data was outlined, and the corresponding parameters were suggested.

  11. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    Science.gov (United States)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  12. Error analysis in the digital elevation model of Kuwait desert derived from repeat pass synthetic aperture radar interferometry

    Science.gov (United States)

    Rao, Kota S.; Al Jassar, Hala K.

    2010-09-01

    The aim of this paper is to analyze the errors in the Digital Elevation Models (DEMs) derived through repeat pass SAR interferometry (InSAR). Out of 29 ASAR images available to us, 8 are selected for this study which has unique data set forming 7 InSAR pairs with single master image. The perpendicular component of baseline (B highmod) varies between 200 to 400 m to generate good quality DEMs. The Temporal baseline (T) varies from 35 days to 525 days to see the effect of temporal decorrelation. It is expected that all the DEMs be similar to each other spatially with in the noise limits. However, they differ very much with one another. The 7 DEMs are compared with the DEM of SRTM for the estimation of errors. The spatial and temporal distribution of errors in the DEM is analyzed by considering several case studies. Spatial and temporal variability of precipitable water vapour is analysed. Precipitable water vapour (PWV) corrections to the DEMs are implemented and found to have no significant effect. The reasons are explained. Temporal decorrelation of phases and soil moisture variations seem to have influence on the accuracy of the derived DEM. It is suggested that installing a number of corner reflectors (CRs) and the use of Permanent Scatter approach may improve the accuracy of the results in desert test sites.

  13. Digital Elevation Model (DEM), Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to host this data but local copies are recommended for complex processing and analysis as this data is very large.Contact the ESRGC to obtain a copy, Published in 2004, 1:1200 (1in=100ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2004. Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to...

  14. Investigating mixing and segregation using discrete element modelling (DEM) in the Freeman FT4 rheometer.

    Science.gov (United States)

    Yan, Zilin; Wilkinson, Sam K; Stitt, Edmund H; Marigo, Michele

    2016-11-20

    Mixing and segregation in a Freeman FT4 powder rheometer, using binary mixtures with varied particle size ratio and volume fraction, were studied using the Discrete Element Method (DEM). As the blade moves within the particle bed, size induced segregations can occur via a sifting mechanism. A larger particle size ratio and/or a larger volume fraction of large particles lead to a quicker segregation process. A higher particle velocity magnitude can promote the segregation process and the rate for the segregation index increases in the radial direction: from the centre towards the outer layer. In the current DEM simulations, it is shown that the change in flow energy associated with segregation and mixing depends on the choice of frictional input parameters. FT4 is proposed as a potential tool to compare and rank the segregation tendency for particulate materials with distinct differences in flow energy of each component. This is achieved by measuring the flow energy gradient after a number of test cycles for mixing powders with different flow properties. Employing the FT4 dynamic powder characterisation can be advantageous to establish blending performances in an industrial context.

  15. Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model

    Directory of Open Access Journals (Sweden)

    Hanchen Zhang

    2016-01-01

    Full Text Available Physically based distributed hydrological models were used to describe small-scale hydrological information in detail. However, the sensitivity of the model to spatially varied parameters and inputs limits the accuracy for application. In this paper, relevant influence factors and sensitive parameters were analyzed to solve this problem. First, a set of digital elevation model (DEM resolutions and channel thresholds were generated to extract the hydrological influence factors. Second, a numerical relationship between sensitive parameters and influence factors was established to define parameters reasonably. Next, the topographic index (TI was computed to study the similarity. At last, simulation results were analyzed in two different ways: (1 to observe the change regularity of influence factors and sensitive parameters through the variation of DEM resolutions and channel thresholds and (2 to compare the simulation accuracy of the nested catchment, particularly in the subcatchments and interior grids. Increasing the grid size from 250 m to 1000 m, the TI increased from 9.08 to 11.16 and the Nash-Sutcliffe efficiency (NSE decreased from 0.77 to 0.75. Utilizing the parameters calculated by the established relationship, the simulation results show the same NSE in the outlet and a better NSE in the simple subcatchment than the calculated interior grids.

  16. First Results of the Performance of the Global Forest/Non-Forest Map derived from TanDEM-X Interferometric Data

    Science.gov (United States)

    Gonzalez, Carolina; Rizzoli, Paola; Martone, Michele; Wecklich, Christopher; Bueso Bello, Jose Luis; Krieger, Gerhard; Zink, Manfred

    2017-04-01

    The globally acquired interferometric synthetic aperture radar (SAR) data set, used for the recently completed primary goal of the TanDEM-X mission, enables a big opportunity for scientific geo-applications. Of great importance for land characterization, classification, and monitoring is that the data set is globally acquired without gaps and includes multiple acquisitions of every region, with comparable parameters. One of the most valuable maps that can be derived from interferometric SAR data for land classification describes the presence/absence of vegetation. In particular, here we report about the deployment of the Global Forest/Non-Forest Map, derived from TanDEM-X interferometric SAR quick-look data, at a ground resolution of 50 m by 50 m. Presence of structures and in particular vegetation produces multiple scattering known as volume decorrelation. Its contribution can be directly estimated from the assessment of coherence loss in the interferometric bistatic pair, by compensating for all other decorrelation sources, such as poor signal-to-noise ratio or quantization noise. Three different forest types have been characterized based on the estimated volume decorrelation: tropical, temperate, and boreal forest. This characterization was then used in a fuzzy clustering approach for the discrimination of vegetated areas on a global scale. Water and cities are filtered out from the generated maps in order to distinguish volume decorrelation from other decorrelation sources. The validation and performance comparison of the delivered product is also presented, and represents a fundamental tool for optimizing the whole algorithm at all different stages. Furtheremore, as the time interval of the acquisitions is almost 4 years, change detection can be performed as well and examples of deforestation are also going to be included in the final paper.

  17. Modeling overland flow-driven erosion across a watershed DEM using the Landlab modeling framework.

    Science.gov (United States)

    Adams, J. M.; Gasparini, N. M.; Tucker, G. E.; Hobley, D. E. J.; Hutton, E. W. H.; Nudurupati, S. S.; Istanbulluoglu, E.

    2015-12-01

    Many traditional landscape evolution models assume steady-state hydrology when computing discharge, and generally route flow in a single direction, along the path of steepest descent. Previous work has demonstrated that, for larger watersheds or short-duration storms, hydrologic steady-state may not be achieved. In semiarid regions, often dominated by convective summertime storms, landscapes are likely heavily influenced by these short-duration but high-intensity periods of rainfall. To capture these geomorphically significant bursts of rain, a new overland flow method has been implemented in the Landlab modeling framework. This overland flow method routes a hydrograph across a landscape, and allows flow to travel in multiple directions out of a given grid node. This study compares traditional steady-state flow routing and incision methods to the new, hydrograph-driven overland flow and erosion model in Landlab. We propose that for short-duration, high-intensity precipitation events, steady-state, single-direction flow routing models will significantly overestimate discharge and erosion when compared with non-steady, multiple flow direction model solutions. To test this hypothesis, discharge and erosion are modeled using both steady-state and hydrograph methods. A stochastic storm generator is used to generate short-duration, high-intensity precipitation intervals, which drive modeled discharge and erosion across a watershed imported from a digital elevation model, highlighting Landlab's robust raster-gridding library and watershed modeling capabilities. For each storm event in this analysis, peak discharge at the outlet, incision rate at the outlet, as well as total discharge and erosion depth are compared between methods. Additionally, these results are organized by storm duration and intensity to understand how erosion rates scale with precipitation between both flow routing methods. Results show that in many cases traditional steady-state methods overestimate

  18. A web-based platform for simulating seismic wave propagation in 3D shallow Earth models with DEM surface topography

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.

  19. Rapid delineation of alluvial fans using IfSAR-derived DEM for selected provinces in the Philippines

    Science.gov (United States)

    Ortiz, Iris Jill; Aquino, Dakila; Norini, Gianluca; Narod Eco, Rodrigo; Mahar Lagmay, Alfredo

    2015-04-01

    Alluvial fans are fan-shaped geomorphic features formed when sediments from a watershed are transported and deposited downstream via tributaries flowing out from the sudden break of a slope. Hazards usually associated with alluvial fans are flooding and debris flows. In this study, we used an Interferometric Synthetic Aperture Radar-derived digital elevation model of Pangasinan and Nueva Ecija Provinces in the Philippines to identify and delineate alluvial fans. Primary parameters considered include the geomorphic characteristics of the catchment area, stream network and slopes ranging from 0.11 to 8 degrees. Using this method, 12 alluvial fans were identified in Pangasinan and 16 in Nueva Ecija with areas ranging from 0.35 to 80 sq. km. The largest fan identified is the Mangatarem-Aguilar fan in Pangaisnan with a total area of 80.87 sq km while the Gabaldon fan in Nueva Ecija with total area of 48.11 sq km. We observed from the results that some alluvial fans have multiple feeder streams, and others have overlapping lateral extents with adjacent fans. These overlapping fans are called bajadas. In addition, the general location of fans and their apices in the two provinces appear to coincide with segments of the Philippines Fault System. There are about people 1.4 million living within these alluvial fans. Mapping and characterizing and identifying their associated hazards is crucial in the disaster preparedness efforts of the exposed population.

  20. Digital Elevation Model (DEM), A 10 meter digital elevation model (DEM) is a digital file consisting of terrain elevations for ground positions at regularly spaced horizontal intervals, Published in 2005, 1:24000 (1in=2000ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2005. It is...

  1. Digital Elevation Model (DEM), A 30 meter digital elevation model (DEM) is a digital file consisting of terrain elevations for ground positions at regularly spaced horizontal intervals, Published in 2000, 1:100000 (1in=8333ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Orthoimagery information as of 2000. It is...

  2. Erosion Relevant Topographical Parameters Derived from Different DEMs—A Comparative Study from the Indian Lesser Himalayas

    Directory of Open Access Journals (Sweden)

    Pawanjeet S. Datta

    2010-08-01

    Full Text Available Topography is a crucial surface characteristic in soil erosion modeling. Soil erosion studies use a digital elevation model (DEM to derive the topographical characteristics of a study area. Majority of the times, a DEM is incorporated into erosion models as a given parameter and it is not tested as extensively as are the parameters related to soil, land-use and climate. This study compares erosion relevant topographical parameters—elevation, slope, aspect, LS factor—derived from 3 DEMs at original and 20 m interpolated resolution with field measurements for a 13 km2 watershed located in the Indian Lesser Himalaya. The DEMs are: a TOPO DEM generated from digitized contour lines on a 1:50,000 topographical map; a Shuttle Radar Topography Mission (SRTM DEM at 90-m resolution; and an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEM at 15-m resolution. Significant differences across the DEMs were observed for all the parameters. The highest resolution ASTER DEM was found to be the poorest of all the tested DEMs as the topographical parameters derived from it differed significantly from those derived from other DEMs and field measurements. TOPO DEM, which is, theoretically more detailed, produced similar results to the coarser SRTM DEM, but failed to produce an improved representation of the watershed topography. Comparison with field measurements and mixed regression modeling proved SRTM DEM to be the most reliable among the tested DEMs for the studied watershed.

  3. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs in Tunisia and Algeria

    Directory of Open Access Journals (Sweden)

    Djamel Athmania

    2014-05-01

    Full Text Available Digital Elevation Models (DEMs including Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available for nearly the entire earth’s surface. DEMs that are usually subject to errors need to be evaluated using reference elevation data of higher accuracy. This work was performed to assess the vertical accuracy of the ASTER GDEM version 2, (ASTER GDEM2, the Consultative Group on International Agriculture Research-Consortium for Spatial Information (CGIAR-CSI SRTM version 4.1 (SRTM v4.1 and the systematic subsample GMTED2010, at their original spatial resolution, using Global Navigation Satellite Systems (GNSS validation points. Two test sites, the Anaguid Saharan platform in southern Tunisia and the Tebessa basin in north eastern Algeria, were chosen for accuracy assessment of the above mentioned DEMs, based on geostatistical and statistical measurements. Within the geostatistical approach, empirical variograms of each DEM were compared with those of the GPS validation points. Statistical measures were computed from the elevation differences between the DEM pixel value and the corresponding GPS point. For each DEM, a Root Mean Square Error (RMSE was determined for model validation. In addition, statistical tools such as frequency histograms and Q-Q plots were used to evaluate error distributions in each DEM. The results indicate that the vertical accuracy of SRTM model is much higher than ASTER GDEM2 and GMTED2010 for both sites. In Anaguid test site, the vertical accuracy of SRTM is estimated 3.6 m (in terms of RMSE 5.3 m and 4.5 m for the ASTERGDEM2 and GMTED2010 DEMs, respectively. In Tebessa test site, the overall vertical accuracy shows a RMSE of 9.8 m, 8.3 m and 9.6 m for ASTER GDEM 2, SRTM and GMTED2010 DEM, respectively. This work is the first study to report the

  4. The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibère Watershed, Central Pyrenees)

    Science.gov (United States)

    Rodriguez, Felipe; Maire, Eric; Courjault-Radé, Pierre; Darrozes, José

    2002-03-01

    The Top Hat Transform function is a grey-level image analysis tool that allows extracting peaks and valleys in a non-uniform background. This function can be applied onto a grey-level Digital Elevation Model (DEM). It is herein applied to quantify the volume of recent incised material in a mountainous Pyrenean watershed. Grey-level Closing operation applied to the Present-Day DEM gives a new image called ``paleo'' DEM. The Black Top Hat function consists in the subtraction of the ``paleo'' DEM with the Present-Day DEM. It gives a new DEM representing all valleys whose sizes range between the size of the structuring element and the null value as no threshold is used. The calculation of the incised volume is directly derived from the subtraction between the two DEM's. The geological significance of the quantitative results is discussed.

  5. Local validation of EU-DEM using Least Squares Collocation

    Science.gov (United States)

    Ampatzidis, Dimitrios; Mouratidis, Antonios; Gruber, Christian; Kampouris, Vassilios

    2016-04-01

    In the present study we are dealing with the evaluation of the European Digital Elevation Model (EU-DEM) in a limited area, covering few kilometers. We compare EU-DEM derived vertical information against orthometric heights obtained by classical trigonometric leveling for an area located in Northern Greece. We apply several statistical tests and we initially fit a surface model, in order to quantify the existing biases and outliers. Finally, we implement a methodology for orthometric heights prognosis, using the Least Squares Collocation for the remaining residuals of the first step (after the fitted surface application). Our results, taking into account cross validation points, reveal a local consistency between EU-DEM and official heights, which is better than 1.4 meters.

  6. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    Science.gov (United States)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ∼0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ∼2 m with direct geolocation accuracy of computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  7. DEM/CFD modelling of the deposition of dilute granular systems in a vertical container

    Institute of Scientific and Technical Information of China (English)

    YU Shen; GUO Yu; WU ChuanYu

    2009-01-01

    Deposition of granular materials into a container is a general industrial packing process. In this study, the deposition behaviour of dilute granular mixtures consisting of two types of particles that were of the same particle size but different particle densities in the presence of air was numerically analyzed using a coupled discrete element method (DEM) and computational fluid dynamics (CFD). Bilayer gra-nular mixtures with light particles at bottom and heavy particles at top were first simulated. It was found that the presence of air significantly affected the flow behaviour of the bilayer mixtures. For the system with a relatively low initial void fraction, the air entrapped inside the container escaped through the dilated zones induced due to the friction between the powder bed and wall surfaces. The escaping air streams entrained light particles that were originally located at the bottom of the granular system. Consequently, these light particles were migrated to the top of the granular bed at the end of deposition process. More light particles were migrated when the deposition distance was increased. For the sys-tem with a high initial void fraction, some light particles penetrated into the top layer of heavy particles and created a mixing zone. Deposition of random mixtures with different initial void fractions was also investigated and the influence of initial void fraction on the segregation behaviour was explored as well. It was found that the increase of void fraction promoted segregation during the deposition in air. It was demonstrated that, for granular mixtures consisting of particles of different air sensitivities, the pres-ence of air had a significant impact on the mixing and segregation behaviour during the deposition.

  8. ICESAT VALIDATION OF TANDEM-X I-DEMS OVER THE UK

    Directory of Open Access Journals (Sweden)

    L. Feng

    2016-06-01

    Full Text Available From the latest TanDEM-X mission (bistatic X-Band interferometric SAR, globally consistent Digital Elevation Model (DEM will be available from 2017, but their accuracy has not yet been fully characterised. This paper presents the methods and implementation of statistical procedures for the validation of the vertical accuracy of TanDEM-X iDEMs at grid-spacing of approximately 12.5 m, 30 m and 90 m based on processed ICESat data over the UK in order to assess their potential extrapolation across the globe. The accuracy of the TanDEM-X iDEM in UK was obtained as follows: against ICESat GLA14 elevation data, TanDEM-X iDEM has −0.028±3.654 m over England and Wales and 0.316 ± 5.286 m over Scotland for 12 m, −0.073 ± 6.575 m for 30 m, and 0.0225 ± 9.251 m at 90 m. Moreover, 90 % of all results at the three resolutions of TanDEM-X iDEM data (with a linear error at 90 % confidence level are below 16.2 m. These validation results also indicate that derivative topographic parameters (slope, aspect and relief have a strong effect on the vertical accuracy of the TanDEM-X iDEMs. In high-relief and large slope terrain, large errors and data voids are frequent, and their location is strongly influenced by topography, whilst in the low- to medium-relief and low slope sites, errors are smaller. ICESat derived elevations are heavily influenced by surface slope within the 70 m footprint as well as there being slope dependent errors in the TanDEM-X iDEMs.

  9. Icesat Validation of Tandem-X I-Dems Over the UK

    Science.gov (United States)

    Feng, L.; Muller, J.-P.

    2016-06-01

    From the latest TanDEM-X mission (bistatic X-Band interferometric SAR), globally consistent Digital Elevation Model (DEM) will be available from 2017, but their accuracy has not yet been fully characterised. This paper presents the methods and implementation of statistical procedures for the validation of the vertical accuracy of TanDEM-X iDEMs at grid-spacing of approximately 12.5 m, 30 m and 90 m based on processed ICESat data over the UK in order to assess their potential extrapolation across the globe. The accuracy of the TanDEM-X iDEM in UK was obtained as follows: against ICESat GLA14 elevation data, TanDEM-X iDEM has -0.028±3.654 m over England and Wales and 0.316 ± 5.286 m over Scotland for 12 m, -0.073 ± 6.575 m for 30 m, and 0.0225 ± 9.251 m at 90 m. Moreover, 90 % of all results at the three resolutions of TanDEM-X iDEM data (with a linear error at 90 % confidence level) are below 16.2 m. These validation results also indicate that derivative topographic parameters (slope, aspect and relief) have a strong effect on the vertical accuracy of the TanDEM-X iDEMs. In high-relief and large slope terrain, large errors and data voids are frequent, and their location is strongly influenced by topography, whilst in the low- to medium-relief and low slope sites, errors are smaller. ICESat derived elevations are heavily influenced by surface slope within the 70 m footprint as well as there being slope dependent errors in the TanDEM-X iDEMs.

  10. A Case Study of Using External DEM in InSAR DEM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chunxia; GE Linlin; E Dongchen; CHANG Hsingchung

    2005-01-01

    Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.

  11. DEM ASSESSMENT DERIVED FROM CLOSE RANGE PHOTOGRAMMETRY: A CASE STUDY FROM KADAVUR AREA, KARUR DISTRICT, TAMIL NADU, INDIA

    OpenAIRE

    Anbarasan, S.; R. Sakthivel

    2012-01-01

    Close-Range Photogrammetry is an accurate, cost effective technique of collecting measurements of real world objects and conditions, directly from photographs. Photogrammetry utilizes digital images to obtain accurate measurements and geometric data of the object or area of interest, in order to provide spatial information for Engineering design, spatial surveys or 3D modeling. The benefits of close-range Photogrammetry over other field procedures are purported to be: Increased accur...

  12. 不同分辨率DEM提取地面坡度的不确定性模拟:以在黄土高原的试验为例%Simulation on slope uncertainty derived from DEMs at different resolution levels:a case study in the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    汤国安; 赵牡丹; 李天文

    2003-01-01

    Slope is one of the crucial terrain variables in spatial analysis and land use planning,especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas,but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.

  13. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing

    Indian Academy of Sciences (India)

    Samadrita Mukherjee; Sandip Mukherjee; R D Garg; A Bhardwaj; P L N Raju

    2013-06-01

    Topographic index is an important attribute of digital elevation model (DEM) which indicates soil saturation. It is used for estimation of run-off, soil moisture, depth of ground water and hydrological simulation. Topographic index is derived from DEMs; hence the accuracy of DEM influences its computation. Commonly the raster based grid DEM is widely used to simulate hydrological model parameter, and accuracy varies with respect to DEM grid size and morphological characteristics of terrain. In this study topographic index is evaluated in terms of DEM grid size and terrain roughness. The study was carried out on four small watersheds, having different roughness characteristics, located over the Himalayan terrain. Topographic index surface is derived for each watershed from different grid spacing DEM (10–150 m), analysed and validated. It is found that DEM grid spacing affects the topographic index. The surface representation is smooth in the coarse grid spacing and the pattern of topographic index changes with grid spacing. The spatial autocorrelation of topographic index surface reduces when calculated from larger spacing DEM. The mean of the topographic index surface increases and standard deviation decreases with the increase of grid spacing and the effect is more pronounced in the rough terrain. Accuracy of the topographic index is also evaluated with respect to grid spacing and terrain roughness by comparing the topographic index surface with respect to reference data (10 m grid spacing topographic index surface). The RMSE and mean error of topographic index surface increases in larger grid spacing and the effect is more in rugged terrain.

  14. An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations

    Science.gov (United States)

    Watson, Cameron S.; Carrivick, Jonathan; Quincey, Duncan

    2015-10-01

    Modelling glacial lake outburst floods (GLOFs) or 'jökulhlaups', necessarily involves the propagation of large and often stochastic uncertainties throughout the source to impact process chain. Since flood routing is primarily a function of underlying topography, communication of digital elevation model (DEM) uncertainty should accompany such modelling efforts. Here, a new stochastic first-pass assessment technique was evaluated against an existing GIS-based model and an existing 1D hydrodynamic model, using three DEMs with different spatial resolution. The analysis revealed the effect of DEM uncertainty and model choice on several flood parameters and on the prediction of socio-economic impacts. Our new model, which we call MC-LCP (Monte Carlo Least Cost Path) and which is distributed in the supplementary information, demonstrated enhanced 'stability' when compared to the two existing methods, and this 'stability' was independent of DEM choice. The MC-LCP model outputs an uncertainty continuum within its extent, from which relative socio-economic risk can be evaluated. In a comparison of all DEM and model combinations, the Shuttle Radar Topography Mission (SRTM) DEM exhibited fewer artefacts compared to those with the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), and were comparable to those with a finer resolution Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) derived DEM. Overall, we contend that the variability we find between flood routing model results suggests that consideration of DEM uncertainty and pre-processing methods is important when assessing flow routing and when evaluating potential socio-economic implications of a GLOF event. Incorporation of a stochastic variable provides an illustration of uncertainty that is important when modelling and communicating assessments of an inherently complex process.

  15. The AviaDem forecasting model: illustration of a forecasting case at Amsterdam Schiphol Airport

    NARCIS (Netherlands)

    Veldhuis, J.; Lieshout, R.

    2010-01-01

    The paper describes an aviation market forecasting model which focuses on market forecasts for airports. Most forecasting models in use today assess aviation trends resulting from macroeconomic trends. The model described in this paper has this feature built in, but the added value of this model is

  16. Methods to derive lunar DEM from Chang'E-1 laser altimeter data%利用嫦娥一号激光高度计数据制作月球DEM的方法研究

    Institute of Scientific and Technical Information of China (English)

    邹小端; 刘建军; 任鑫; 王文睿; 牟伶俐; 李春来

    2011-01-01

    High-resolution digital elevation models (DEMs) based on data from Laser Altimeter (LAM) of Chinese Chang'E-1 mission provide geospatial characterizations of lunar topography. The primary LAM elevation data are two-dimensional topographic profiles. Developing three-dimensional DEMs from these profile data requires the elimination of gross errors and the interpolation of a continuous surface. To detect and remove the error ( pseudo elevation) data from LAM observations the paper suggested an improved linear filter based on empirical formula which adapts the lunar surface feature. And the key parameters for this filter were discussed. In the second part, it tested eight different techniques of spatial interpolation with the filtered data. After comparing and analyzing these interpolation methods by their accuracies, shaded-relief visualizations and topographic profiles, it found the Kriging method worked better than other seven methods in deriving DEM grid. At last, an effective procedure for processing CE-1 elevation data was outlined, and the corresponding parameters were suggested.%本文结合嫦娥一号卫星(CE-1)激光高度计产品数据,研究卫星激光测距数据处理和数字高程模型(DEM)制作的方法.通过滤波实验分析,构造了符合月球地形特征的经验滤波器,并确定了适合LAM数据的滤波窗口大小和地形滤波参数.结合实验结果改进了滤波流程,并对实验区滤波.利用滤波后的数据对八种基本的插值方法进行实验,通过计算插值精度、比较地形晕渲图以及地形剖面细节,评价和比较各方法的插值结果,由此得到结论,克里金插值方法较其他七种方法更适用于月球地形规则格网的生成.最后结合月海和高地两个典型区数据,验证了该套DEM提取方案对不同地形特征区域的适用性.从而,为利用CE-1激光高度计数据开展月球科学研究的科研人员.提供一套行之有效的地形数据处理参考方案.

  17. ElevationDEM_DEMHF0p7M2013

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area: Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  18. ElevationDEM_DEMHF1p6M2010

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  19. ElevationDEM_DEMHF1p6M2012

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Addison County 2012 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  20. ElevationDEM_DEMHF1p6M2008

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and Digital Elevation Model (DEM) datasets of various "hydro-treatments": DEM,...

  1. Carbonate reservoir characterization with pore type inversion using differential effective medium (DEM) model at "X" field, East Java

    Science.gov (United States)

    Rosid, M. S.; Wahyuni, S. D.; Haidar, M. W.

    2017-07-01

    Pore system in the carbonate reservoirs is very complex than in clastic rocks. There are three types of classification of pore types in carbonate rocks: interparticle, stiff, and crack. The complexity of the pore types can cause changes in P-wave velocity by 40 %, as well as create a carbonate reservoir characterization becomes difficult when the S wave estimation is done only with the type of dominant pore (interparticle). Therefore, modeling the elastic moduli of rocks become essential to solve the problem of complexity of pore types in carbonate rocks. Differential Effective Medium (DEM) is a method of modeling the elastic moduli of rocks that takes into account the heterogeneity of types of pores in carbonate rocks by adding pore-type inclusions little by little into the parent material (host material) until the proportion of the material is reached. In addition, to the elastic moduli which have taken into account the heterogeneity of pore type. The inversion result shows that carbonate reservoir at "X" field is dominated by crack pore type and the relation between S wave and P wave is expressed by VS=-0.05 VP2+VP-1.1 and not in linear correlation.

  2. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  3. Towards a Discrete Element Method (DEM) for modeling anisotropic, nano- and colloidal scale particles in Molecular Dynamics (MD)

    Science.gov (United States)

    Marson, Ryan; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon

    2014-03-01

    Faceted shapes, such as polyhedra, are commonly created in experimental systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystalline nucleation and growth, vacancy motion, and glassy dynamics, are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We report the first implementation of DEM MD intended for thermodynamic nanoscale simulation. Our method is implemented in parallel on the GPU within the HOOMD-Blue framework. By decomposing the force calculation into its components, this implementation can take advantage of massive data parallelism, enabling optimal use of the GPU for even relatively small systems while achieving a speedup of 60 times over a single CPU core. This method is a natural extension of classical molecular dynamics into the realm of faceted particles, and allows simulation of disparate size scales ranging from the nanoscale to granular particulates, all within the same framework.

  4. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Pete; Bergstresser, Sarah

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  5. Elevation validation and geomorphic metric comparison with focus on ASTER GDEM2, SRTM- C, ALOS World 3D, and TanDEM-X

    Science.gov (United States)

    Purinton, Benjamin; Bookhagen, Bodo

    2017-04-01

    Geomorphologists use digital elevation models (DEMs) to quantify changes in topography - often without rigorous accuracy assessments. In this study we validate and compare elevation accuracy and derived geomorphic metrics from the current generation of satellite-derived DEMs on the southern Central Andean Plateau. The average elevation of 3.7 km, diverse topography and relief, lack of vegetation, and clear skies create ideal conditions for remote sensing in this study area. DEMs at resolutions of 5-30 m are sourced from open-access, research agreement, and commercial outlets, with a focus on the 30 m SRTM-C, 30 m ASTER GDEM2, 12 m TanDEM-X, and 5 m ALOS World 3D data. In addition to these edited products, manually generated DEMs included 10 m single-CoSSC TerraSAR-X / TanDEM-X DEMs and a 30 m stacked ASTER L1A stereopair DEM. We assessed vertical accuracy by comparing standard deviations (SD) of the DEM elevation versus 307,509 differential GPS (dGPS) measurements with employed a Fourier analysis to identify DEM frequencies and their spectral power. The optical 5 m ALOS World 3D DEM shows high-frequency noise in 2-8 pixel steps, with no corresponding landscape features in this highly diffusive, vegetation-free environment. Finally, we explore the geomorphometric potential of the higher-quality 12 m TanDEM-X DEM through a hillslope length and surface roughness assessment across steep environmental, climatic and topographic gradients in the Quebrada del Toro catchment, west of Salta, Argentina.

  6. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    Science.gov (United States)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped

  7. A coupled DEM and LBM model for simulation of outbursts of coal and gas

    Institute of Scientific and Technical Information of China (English)

    Sheng Xue; Liang Yuan; Junfeng Wang; Yucang Wang; Jun Xie

    2015-01-01

    An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical–mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid–fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.

  8. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    Science.gov (United States)

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and

  9. Digital Elevation Model (DEM) to Investigate the Results of Cutting%数字高程模型(DEM)成果裁切探讨

    Institute of Scientific and Technical Information of China (English)

    徐丽丽; 杨春全

    2015-01-01

    随着计算机技术及测绘产品的不断发展,数字高程模型( DEM)已成为地理信息空间系统和“数字地球”的重要组成部分。在测绘技术蓬勃发展的今天,数字高程模型( DEM)的生产已成为各生产部门较关注的问题之一,特别是近年来数字龙江地理空间框架建设一期工程对数字高程模型( DEM)产品成果的要求有很大提高,数字高程模型( DEM)成果的裁切也显得尤为重要,本文从工作中遇到的DEM成果裁切问题入手,结合笔者多年的测绘生产经验,研讨DEM成果裁切问题。%With the continuous development of computer technology and mapping products , digital elevation model ( DEM) has be-come more and more important part of spatial geographic information system and the “digital earth”.In the vigorous development of Surveying and mapping technology today , digital elevation model (DEM ) production has become one of the production department , especially in recent years , the construction of digital geo spatial framework of the Longjiang one phase of the project of digital elevation model ( DEM) product requirements are very high, the digital elevation model ( DEM) results of cutting is also very important , start-ing with the DEM results from the cutting problems encountered in the work , and combining the years of Surveying and mapping pro-duction experience ,research results of DEM cutting problem .

  10. Convolutional Neural Network Based dem Super Resolution

    Science.gov (United States)

    Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang

    2016-06-01

    DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.

  11. Evaluation of Multiresolution Digital Elevation Model (DEM from Real-Time Kinematic GPS and Ancillary Data for Reservoir Storage Capacity Estimation

    Directory of Open Access Journals (Sweden)

    Yashon O. Ouma

    2016-04-01

    Full Text Available This study presents the estimation of reservoir storage capacity using multiresolution Real-Time Kinematic Global Positioning System (RTK-GPS DEM, in comparison with ASTER and contour-derived DEM. Through RMSE comparisons of the elevation point uncertainty and error analysis, the results shows that the RTK-GPS DEM gave the best results for the reservoir capacity-area power curve estimation, defined by a convex slope with an exponential deterministic relationship given by V = 0.09 × A 1.435 . The results further show the existence an empirical relationship between the reservoir volume certainty and the GPS point density d i as V e = c × d i ρ . This relationship is dependent on the reservoir terrain, slope and surface area. Validation of the results with in situ data showed the differences between the simulated and observed storage volumes was less than +10%, and using the Nash-Sutcliffe coefficient of efficiency on the storage volumes, an average efficiency of +0.7 on the monthly observed and simulated reservoir storage volume was observed.

  12. Forest decline model development with LANDSAT TM, SPOT, and DEM DATA

    Science.gov (United States)

    Brockhaus, John A.; Campbell, Michael V.; Khorram, Siamak; Bruck, Robert I.; Stallings, Casson

    1991-09-01

    The relationships between percent defoliation and digital near-infrared reflectance data detected by the Landsat thematic mapper and SPOT sensors were investigated. These data were both found to be negatively correlated with defoliation data collected within the boreal montane spruce-fir ecosystem of the Black Mountains, North Carolina. Correlation coefficients were significant at the 0.05 level. Linear regression analysis demonstrated that neither source of satellite-based remotely-sensed data is an accurate predictor of defoliation. The addition of digital elevation data, however, as an independent variable to the regression equations significantly improved the predictive reliability of the models.

  13. Further model experiments with the oil skimming catamaran. Weitere Modellversuche mit dem Oelabschoepfkatamaran

    Energy Technology Data Exchange (ETDEWEB)

    Binek, H.

    1985-07-01

    Model experiments were performed with an oil removing device ([lambda]=10) in a small deep tank of the VDB (inland-ship-building research centre) measuring 1.95 m corresponds to19.5 m in height and containing oil-covered water which was once left unperturbed and one agitated for regular wave generation. The water surface of the small deep tank of 3.0 m width was covered with a red-coloured oil film of d[approx]1.4 mm corresponds to14 mm thickness along a length of 72.0 m. Oil viscosity was 40 cSt at 20 C and a volume weight of [gamma]=0.865 g/cm[sup 3]. After the predefined working section had been skimmed the amount of oil removed in the process was determined in the individual tanks. Oil levels were determined both for smooth water and for regular waves in the front and rear collecting tanks of the oil removing device. At a ship speed of v corresponds to3.0 km in smooth water mean oil film thickness in the front collecting tank was determined as 52 mm corresponds to0.52 m. Despite the evidently inoperative zones along the inner sides of the catamaran, oil flow rate over the weir, i.e. uptake rate of the oil collecting tanks can be rated as good. The lowest test speed of v corresponds to2.0 kn yielded the thickest oil film, 70 mm corresponds to0.7 m, whereas maximum skimming speed, v corresponds to4.0 kn, yielded 50 mm corresponds to0.5 m. High speeds caused strong perturbations in the inner section of the oil collecting trough. It was not clear whether this obstructed the oil flow. Runs without anti-whirl devices led to very strong eddies in the area between the halls. This had a strong influence on oil uptake rate. (orig./HS)

  14. Precise baseline determination for the TanDEM-X mission

    Science.gov (United States)

    Koenig, Rolf; Moon, Yongjin; Neumayer, Hans; Wermuth, Martin; Montenbruck, Oliver; Jäggi, Adrian

    The TanDEM-X mission will strive for generating a global precise Digital Elevation Model (DEM) by way of bi-static SAR in a close formation of the TerraSAR-X satellite, already launched on June 15, 2007, and the TanDEM-X satellite to be launched in May 2010. Both satellites carry the Tracking, Occultation and Ranging (TOR) payload supplied by the GFZ German Research Centre for Geosciences. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), and a Laser retro-reflector (LRR) for precise orbit determination (POD) and atmospheric sounding. The IGOR is of vital importance for the TanDEM-X mission objectives as the millimeter level determination of the baseline or distance between the two spacecrafts is needed to derive meter level accurate DEMs. Within the TanDEM-X ground segment GFZ is responsible for the operational provision of precise baselines. For this GFZ uses two software chains, first its Earth Parameter and Orbit System (EPOS) software and second the BERNESE software, for backup purposes and quality control. In a concerted effort also the German Aerospace Center (DLR) generates precise baselines independently with a dedicated Kalman filter approach realized in its FRNS software. By the example of GRACE the generation of baselines with millimeter accuracy from on-board GPS data can be validated directly by way of comparing them to the intersatellite K-band range measurements. The K-band ranges are accurate down to the micrometer-level and therefore may be considered as truth. Both TanDEM-X baseline providers are able to generate GRACE baselines with sub-millimeter accuracy. By merging the independent baselines by GFZ and DLR, the accuracy can even be increased. The K-band validation however covers solely the along-track component as the K-band data measure just the distance between the two GRACE satellites. In addition they inhibit an un-known bias which must be modelled in the comparison, so the

  15. VT Lidar DEM (1 meter) - 2005 - Essex

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various...

  16. VT Lidar DEM (1 meter) - 2009 - Washington

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Essex County 2005 1m and Digital Elevation Model (DEM) datasets of various...

  17. Potential of Multitemporal Tandem-X Derived Crop Surface Models for Maize Growth Monitoring

    Science.gov (United States)

    Hütt, C.; Tilly, N.; Schiedung, H.; Bareth, G.

    2016-06-01

    In this study, first results of retrieving plant heights of maize fields from multitemporal TanDEM-X images are shown. Three TanDEM-X dual polarization spotlight acquisitions were taken over a rural area in Germany in the growing season 2014. By interferometric processing, digital terrain models (DTM) were derived for each date with 5m resolution. From the data of the first acquisition (June 1st) taken before planting, a DTM of the bare ground is generated. The data of the following acquisition dates (July 15th, July 26th) are used to establish crop surface models (CSM). A CSM represents the crop surface of a whole field in a high resolution. By subtracting the DTM of the ground from each CSM, the actual plant height is calculated. Within these data sets 30 maize fields in the area of interest could be detected and verified by external land use data. Besides the spaceborne measurements, one of the maize fields was intensively investigated using terrestrial laser scanning (TLS), which was carried out at the same dates as the predicted TanDEM-X acquisitions. Visual inspection of the derived plant heights, and accordance of the individually processed polarisations over the maize fields, demonstrate the feasibility of the proposed method. Unfortunately, the infield variability of the intensively monitored field could not be successfully captured in the TanDEM-X derived plant heights and merely the general trend is visible. Nevertheless, the study shows the potential of the TanDEM-X constellation for maize height monitoring on field level.

  18. Processing, validating, and comparing DEMs for geomorphic application on the Puna de Atacama Plateau, northwest Argentina

    Science.gov (United States)

    Purinton, Benjamin; Bookhagen, Bodo

    2016-04-01

    This study analyzes multiple topographic datasets derived from various remote-sensing methods from the Pocitos Basin of the central Puna Plateau in northwest Argentina at the border to Chile. Here, the arid climate and clear atmospheric conditions and lack of vegetation provide ideal conditions for remote sensing and Digital Elevation Model (DEM) comparison. We compare the following freely available DEMs: SRTM-X (spatial resolution of ~30 m), SRTM-C v4.1 (90 m), and ASTER GDEM2 (30 m). Additional DEMs for comparison are generated from optical and radar datasets acquired freely (ASTER Level 1B stereo pairs and Sentinal-1A radar), through research agreements (RapidEye Level 1B scenes, ALOS radar, and ENVISAT radar), and through commercial sources (TerraSAR-X / TanDEM-X radar). DEMs from ASTER (spatial resolution of 15 m) and RapidEye (~5-10 m) optical datasets are produced by standard photogrammetric techniques and have been post-processed for validation and alignment purposes. Because RapidEye scenes are captured at a low incidence angle (validated against over 400,000 differential GPS (dGPS) measurements gathered during four field campaigns in 2012 and 2014 to 2016. Of these points, more than 250,000 lie within the Pocitos Basin with average vertical and horizontal accuracies of 0.95 m and 0.69 m, respectively. Dataset accuracy is judged by the lowest standard deviations of elevation compared with the dGPS data and with the SRTM-X control DEM. Of particular interest in the field of quantitative geomorphology are topometrics (e.g., relief, channel steepness, and hillslope concavity) derived from the DEMs. The accuracy of these metrics is partly dependent on the overall DEM accuracy, but also on the accuracy of the depiction of the river network (a small areal fraction of the DEM). In addition, several topometrics depend on the first and second derivative of elevation (slope and curvature), which are affected by DEM accuracy and noise. In light of these issues

  19. Digital Elevation Model (DEM), Included in the USGS National Elevation Dataset at seamless.usgs.gov, Published in 2005, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2005. It is...

  20. Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India

    Science.gov (United States)

    Dikpal, Ramesh L.; Renuka Prasad, T. J.; Satish, K.

    2017-07-01

    The quantitative analysis of drainage system is an important aspect of characterization of watersheds. Using watershed as a basin unit in morphometric analysis is the most logical choice because all hydrological and geomorphic processes occur within the watershed. The Budigere Amanikere watershed a tributary of Dakshina Pinakini River has been selected for case illustration. Geoinformatics module consisting of ArcGIS 10.3v and Cartosat-1 Digital Elevation Model (DEM) version 1 of resolution 1 arc Sec ( 32 m) data obtained from Bhuvan is effectively used. Sheet and gully erosion are identified in parts of the study area. Slope in the watershed indicating moderate to least runoff and negligible soil loss condition. Third and fourth-order sub-watershed analysis is carried out. Mean bifurcation ratio (R b) 3.6 specify there is no dominant influence of geology and structures, low drainage density (D d) 1.12 and low stream frequency (F s) 1.17 implies highly infiltration subsoil material and low runoff, infiltration number (I f)1.3 implies higher infiltration capacity, coarse drainage texture (T) 3.40 shows high permeable subsoil, length of overland flow (L g) 0.45 indicates under very less structural disturbances, less runoff conditions, constant of channel maintenance (C) 0.9 indicates higher permeability of subsoil, elongation ratio (R e) 0.58, circularity ratio (R c) 0.75 and form factor (R f) 0.26 signifies sub-circular to more elongated basin with high infiltration with low runoff. It was observed from the hypsometric curves and hypsometric integral values of the watershed along with their sub basins that the drainage system is attaining a mature stage of geomorphic development. Additionally, Hypsometric curve and hypsometric integral value proves that the infiltration capacity is high as well as runoff is low in the watershed. Thus, these mormometric analyses can be used as an estimator of erosion status of watersheds leading to prioritization for taking up soil

  1. BLAZE-DEM: A GPU based Polyhedral DEM particle transport code

    CSIR Research Space (South Africa)

    Govender, Nicolin

    2013-05-01

    Full Text Available materials for a variety of different geometries. The use of computational modeling tools is essential in evaluation of various designs and processes as computational power increases. However current DEM simulations are only able model a few hundred...

  2. Development and Applications of Dome A-DEM in Antarctic Ice Sheet

    Institute of Scientific and Technical Information of China (English)

    LIU Jiying; WEN Jiahong; WANG Yafeng; WANG Weili; Beata M CATHSO; Kenneth C JEZEK

    2007-01-01

    Dome A, the highest dome of East Antarctic Ice Sheet, is being an area focused by international Antarctic community after Chinese Antarctic Expedition finally reached there in 2005, and with the ongoing International Polar Year (IPY) during August 2007. In this paper two data processing methods are used together to generate two 100-m cell size digital elevation models (DEMs) of the Dome A region (Dome A-DEM) by using Cokriging method to interpolate the ICESat GLAS data, with Ihde-DEM as a constraint. It provides fundamental data to glaciological and geophysical investigation in this area. The Dome A-DEM was applied to determining the ice-sheet surface elevations and coordinates of the south and north summits, defining boundaries of basins and ice flowlines, deducing subglacial topography, and mapping surface slope and aspect in Dome A region. The DEM shows there are two (north and south) summits in Dome A region. The coordinate and the surface elevation of the highest point (the north summit) are 80°21'29.86"S, 77°21'50.29"E and 4092.71±1.43m, respectively. The ice thickness and sub-ice bedrock elevation at north summit are 2420m and 1672m, respectively. Dome A region contains four drainage basins that meet together near the south summit. Ice flowlines, slope and aspect in detail are also derived using the DEM.

  3. Data derived NARMAX Dst model

    OpenAIRE

    Boynton, R J; M. A. Balikhin; S. A. Billings; Sharma, A.S.; Amariutei, O.A

    2011-01-01

    The NARMAX OLS-ERR methodology is applied to identify a mathematical model for the dynamics of the Dst index. The NARMAX OLS-ERR algorithm, which is widely used in the field of system identification, is able to identify a mathematical model for a wide class of nonlinear systems using input and output data. Solar wind-magnetosphere coupling functions, derived from analytical or data based methods, are employed as the inputs to such models and the outputs are geomagnetic indices. The newly dedu...

  4. Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing

    Science.gov (United States)

    Blais, Bruno; Lassaigne, Manon; Goniva, Christoph; Fradette, Louis; Bertrand, François

    2016-08-01

    Although viscous solid-liquid mixing plays a key role in the industry, the vast majority of the literature on the mixing of suspensions is centered around the turbulent regime of operation. However, the laminar and transitional regimes face considerable challenges. In particular, it is important to know the minimum impeller speed (Njs) that guarantees the suspension of all particles. In addition, local information on the flow patterns is necessary to evaluate the quality of mixing and identify the presence of dead zones. Multiphase computational fluid dynamics (CFD) is a powerful tool that can be used to gain insight into local and macroscopic properties of mixing processes. Among the variety of numerical models available in the literature, which are reviewed in this work, unresolved CFD-DEM, which combines CFD for the fluid phase with the discrete element method (DEM) for the solid particles, is an interesting approach due to its accurate prediction of the granular dynamics and its capability to simulate large amounts of particles. In this work, the unresolved CFD-DEM method is extended to viscous solid-liquid flows. Different solid-liquid momentum coupling strategies, along with their stability criteria, are investigated and their accuracies are compared. Furthermore, it is shown that an additional sub-grid viscosity model is necessary to ensure the correct rheology of the suspensions. The proposed model is used to study solid-liquid mixing in a stirred tank equipped with a pitched blade turbine. It is validated qualitatively by comparing the particle distribution against experimental observations, and quantitatively by compairing the fraction of suspended solids with results obtained via the pressure gauge technique.

  5. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  6. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    Science.gov (United States)

    Mali, V. K.; Kuiry, S. N.

    2015-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical

  7. A methodology to generate high-resolution digital elevation model (DEM) and surface water profile for a physical model using close range photogrammetric (CRP) technique

    Science.gov (United States)

    Méndez Incera, F. J.; Erikson, L. H.; Ruggiero, P.; Barnard, P.; Camus, P.; Rueda Zamora, A. C.

    2014-12-01

    Comprehensive understanding of the river flow dynamics with varying topography in a real field is very intricate and difficult. Conventional experimental methods based on manual data collection are time consuming and prone to many errors. Recently, remotely sensed satellite imageries are at the best to provide necessary information for large area provided the high resolution but which are very expensive and untimely, consequently, attaining accurate river bathymetry from relatively course resolution and untimely imageries are inaccurate and impractical. Despite of that, these data are often being used to calibrate the river flow models, though these models require highly accurate morpho-dynamic data in order to predict the flow field precisely. Under this circumstance, these data could be supplemented through experimental observations in a physical model with modern techniques. This paper proposes a methodology to generate highly accurate river bathymetry and water surface (WS) profile for a physical model of river network system using CRP technique. For the task accomplishment, a number of DSLR Nikon D5300 cameras (mounted at 3.5 m above the river bed) were used to capture the images of the physical model and the flooding scenarios during the experiments. During experiment, non-specular materials were introduced at the inlet and images were taken simultaneously from different orientations and altitudes with significant overlap of 80%. Ground control points were surveyed using two ultrasonic sensors with ±0.5 mm vertical accuracy. The captured images are, then processed in PhotoScan software to generate the DEM and WS profile. The generated data were then passed through statistical analysis to identify errors. Accuracy of WS profile was limited by extent and density of non-specular powder and stereo-matching discrepancies. Furthermore, several factors of camera including orientation, illumination and altitude of camera. The CRP technique for a large scale physical

  8. Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications

    Directory of Open Access Journals (Sweden)

    Antonio Luis Montealegre

    2015-07-01

    Full Text Available Airborne Laser Scanning (ALS is capable of estimating a variety of forest parameters using different metrics extracted from the normalized heights of the point cloud using a Digital Elevation Model (DEM. In this study, six interpolation routines were tested over a range of land cover and terrain roughness in order to generate a collection of DEMs with spatial resolution of 1 and 2 m. The accuracy of the DEMs was assessed twice, first using a test sample extracted from the ALS point cloud, second using a set of 55 ground control points collected with a high precision Global Positioning System (GPS. The effects of terrain slope, land cover, ground point density and pulse penetration on the interpolation error were examined stratifying the study area with these variables. In addition, a Classification and Regression Tree (CART analysis allowed the development of a prediction uncertainty map to identify in which areas DEMs and Airborne Light Detection and Ranging (LiDAR derived products may be of low quality. The Triangulated Irregular Network (TIN to raster interpolation method produced the best result in the validation process with the training data set while the Inverse Distance Weighted (IDW routine was the best in the validation with GPS (RMSE of 2.68 cm and RMSE of 37.10 cm, respectively.

  9. A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

    Directory of Open Access Journals (Sweden)

    Geir Moholdt

    2012-05-01

    Full Text Available We present a new digital elevation model (DEM of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2 in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS and airborne laser altimetry, yielding root mean square (RMS errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

  10. Digital Elevation Model (DEM), Countywide DEMs were created from the 2004 Maryland Statewide Lidar data.A map service has been created to host this data but local copies are recommended for complex processing and analysis as this data is very large.Contact the ESRGC to obtain a copy, Published in 2004, 1:1200 (1in=100ft) scale, Eastern Shore Regional GIS Cooperative.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2004. It is described as...

  11. ALGORITHM FOR GENERATING DEM BASED ON CONE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Digital elevation model (DEM) has a variety of applications in GIS and CAD.It is the basic model for generating three-dimensional terrain feature.Generally speaking,there are two methods for building DEM.One is based upon the digital terrain model of discrete points,and is characterized by fast speed and low precision.The other is based upon triangular digital terrain model,and slow speed and high precision are the features of the method.Combining the advantages of the two methods,an algorithm for generating DEM with discrete points is presented in this paper.When interpolating elevation,this method can create a triangle which includes interpolating point and the elevation of the interpolating point can be obtained from the triangle.The method has the advantage of fast speed,high precision and less memory.

  12. Correction of Interferometric and Vegetation Biases in the SRTMGL1 Spaceborne DEM with Hydrological Conditioning towards Improved Hydrodynamics Modeling in the Amazon Basin

    Directory of Open Access Journals (Sweden)

    Sebastien Pinel

    2015-12-01

    Full Text Available In the Amazon basin, the recently released SRTM Global 1 arc-second (SRTMGL1 remains the best topographic information for hydrological and hydrodynamic modeling purposes. However, its accuracy is hindered by errors, partly due to vegetation, leading to erroneous simulations. Previous efforts to remove the vegetation signal either did not account for its spatial variability or relied on a single assumed percentage of penetration of the SRTM signal. Here, we propose a systematic approach over an Amazonian floodplain to remove the vegetation signal, addressing its heterogeneity by combining estimates of vegetation height and a land cover map. We improve this approach by interpolating the first results with drainage network, field and altimetry data to obtain a hydrological conditioned DEM. The averaged interferometric and vegetation biases over the forest zone were found to be −2.0 m and 7.4 m, respectively. Comparing the original and corrected DEM, vertical validation against Ground Control Points shows a RMSE reduction of 64%. Flood extent accuracy, controlled against Landsat and JERS-1 images, stresses improvements in low and high water periods (+24% and +18%, respectively. This study also highlights that a ground truth drainage network, as a unique input during the interpolation, achieves reasonable results in terms of flood extent and hydrological characteristics.

  13. First Bistatic Spaceborne SAR Experiments with TanDEM-X

    OpenAIRE

    Rodriguez-Cassola, Marc; Prats, Pau; Schulze, Daniel; Tous-Ramon, Nuria; Steinbrecher, Ulrich; Marotti, Luca; Nanninni, Matteo; Younis, Marwan; Lopez-Dekker, Paco; Zink, Manfred; Reigber, Andreas; Krieger, Gerhard; Moreira, Alberto

    2011-01-01

    TanDEM-X is a high-resolution interferometric mission with the main goal of providing a global and unprecedentedly accurate digital elevation model (DEM) of the Earth surface by means of single-pass X-band SAR interferometry. Despite its usual quasi-monostatic configuration, TanDEM-X is the first genuinely bistatic SAR system in space. During its monostatic commissioning phase, the system has been mainly operated in pursuit monostatic mode. However, some pioneering bistat...

  14. 基于嫦娥一号卫星获取的DEM研究月球车通信的可达性%The Communication Accessibility of the Lunar Rover Based on DEM Derived from Chang' E-1

    Institute of Scientific and Technical Information of China (English)

    郝卫峰; 叶茂; 李斐; 鄢建国; 邵先远

    2012-01-01

    The communication accessibility of the lunar rover from the Earth to the Moon can provide a basis for the choice of ideal landing sites. In this paper, a mathematical model is established to study the communication accessibility affected by topography, by combining lunar digital elevation models ( DEM) with known parameters related to lunar and earth' s orbit. The laser altimeter data obtained by ' Chang' E-1 ' can provide high accuracy DEM and can be as the data basis for this study. The research region is Sinus Iridum region (the preferred landing area of Chinese lunar exploration) and the lunar polar regions. The calculation period is from Oct. 1 , 2013 to Oct. 30, 2013. The results show that (1) in the Sinus Iridum region, the communication condition between tracking stations ( Beijing, Kunming, Shanghai and Urumchi) and the lunar rover is expedite, which is consistent with the region' s flat terrain; (2) in the polar regions, the influence of topography on the communication condition is great because of the topography complexity.%月球车通信可达性分析为研究月球车着陆点选择提供了依据.主要通过建立数学模型,将由测高数据获取的数字高程模型(DEM)和地-月轨道参数相结合,来研究我国月球探测首选着陆区虹湾地区和月球极区的通信条件受地形条件的影响.利用“嫦娥一号”探月卫星获取的激光测高数据,得到了全月面高精度的DEM,为本研究的进行提供了精确的数据基础.本研究选取的计算时间为2013年10月1日到2013年10月30日止.计算结果表明:(1)在虹湾地区,测控上海站、昆明站、北京站和乌鲁木齐站与月球车之间的通信条件不受月面地形的影响,通信畅通,这与该地区平坦的地势是一致的;(2)月球极区由于地形的复杂性,通信条件受地形的影响很大.

  15. Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients

    Directory of Open Access Journals (Sweden)

    S. Lin

    2010-07-01

    Full Text Available Digital Elevation Models (DEMs have been successfully used in a large range of environmental issues. Several methods such as digital contour interpolation and remote sensing have allowed the generation of DEMs, some of which are now freely available for almost the entire globe. The Soil and Water Assessment Tool (SWAT is a widely used semi-distributed model operating at the watershed level and has previously been shown to be very sensitive to the quality of the input topographic information. The objective of this study was to evaluate the impact of DEMs generated from different data sources, respectively DLG5m (local Digital Line Graph, 5 m interval, ASTER30m (1 arc-s ASTER Global DEM Version 1, approximately 30 m resolution, and SRTM90m (3 arc-s SRTM Version 4, approximately 90 m resolution, on SWAT predictions for runoff, sediment, total phosphor (TP and total nitrogen (TN. Eleven resolutions, from 5 m to 140 m, were considered in this study. Results indicate that the predictions of TPs and TNs decreased substantially with coarser resampled resolution. Slightly decreased trends could be found in the predicted sediments when DEMs were resampled to coarser resolutions. Predicted runoffs were not sensitive to resampled resolutions. The predicted outputs based on DLG5m were more sensitive to resampled resolutions than those based on ASTER30m and SRTM90m. At original resolutions, the predicted outputs based on ASTER30m and SRTM90m were similar, but the predicted TNs and TPs based on ASTER30m and SRTM90m were much lower than the one based on DLG5m. For the predicted TNs and TPs, which were substantially sensitive to DEM resolutions, the output accuracies of SWAT derived from ASTER30m and SRTM90m could be improved by down-scaled resampling, but they could not improve on finer DEM (DLG5m at the same resolution. This study helps GIS environmental model users to understand the sensitivities of SWAT to DEM resolution, and choose feasible DEM data for

  16. GPS radio occultation with TerraSAR-X and TanDEM-X: sensitivity of lower troposphere sounding to the Open-Loop Doppler model

    Directory of Open Access Journals (Sweden)

    F. Zus

    2014-12-01

    Full Text Available The Global Positioning System (GPS radio occultation (RO technique provides valuable input for numerical weather prediction and is considered as a data source for climate related research. Numerous studies outline the high precision and accuracy of RO atmospheric soundings in the upper troposphere and lower stratosphere. In this altitude region (8–25 km RO atmospheric soundings are considered to be free of any systematic error. In the tropical (30° S–30° N Lower (<8 km Troposphere (LT, this is not the case; systematic differences with respect to independent data sources exist and are still not completely understood. To date only little attention has been paid to the Open Loop (OL Doppler model. Here we report on a RO experiment carried out on-board of the twin satellite configuration TerraSAR-X and TanDEM-X which possibly explains to some extent biases in the tropical LT. In two sessions we altered the OL Doppler model aboard TanDEM-X by not more than ±5 Hz with respect to TerraSAR-X and compare collocated atmospheric refractivity profiles. We find a systematic difference in the retrieved refractivity. The bias mainly stems from the tropical LT; there the bias reaches up to ±1%. Hence, we conclude that the negative bias (several Hz of the OL Doppler model aboard TerraSAR-X introduces a negative bias (in addition to the negative bias which is primarily caused by critical refraction in our retrieved refractivity in the tropical LT.

  17. ElevationDEM_DEM10m

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset is derived from the multi-resolution National Elevation Dataset (NED), at resolutions of both 1/3 arc-second (approx. 10 meters) and in limited areas,...

  18. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  19. The Oracle of DEM

    Science.gov (United States)

    Gayley, Kenneth

    2013-06-01

    The predictions of the famous Greek oracle of Delphi were just ambiguous enough to seem to convey information, yet the user was only seeing their own thoughts. Are there ways in which X-ray spectral analysis is like that oracle? It is shown using heuristic, generic response functions to mimic actual spectral inversion that the widely known ill conditioning, which makes formal inversion impossible in the presence of random noise, also makes a wide variety of different source distributions (DEMs) produce quite similar X-ray continua and resonance-line fluxes. Indeed, the sole robustly inferable attribute for a thermal, optically thin resonance-line spectrum with normal abundances in CIE is its average temperature. The shape of the DEM distribution, on the other hand, is not well constrained, and may actually depend more on the analysis method, no matter how sophisticated, than on the source plasma. The case is made that X-ray spectra can tell us average temperature, and metallicity, and absorbing column, but the main thing it cannot tell us is the main thing it is most often used to infer: the differential emission measure distribution.

  20. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  1. A real-time flood forecasting and simulation system based on GIS and DEM: Analysis of sensitivity to scale factors

    Science.gov (United States)

    Garcia, Sandra G.

    The hydrometeorological telemetric networks in real time interrelated with weather forecasting and rainfall information obtained from remote sensing, constitute real forecasting and protection instruments in the event of flash flooding, so typical of semiarid environments. In this Thesis, spatial analysis approached with functions embedded in a Geographical Information System (GIS) are proposed. The aims are: (a) To combine efficiently information from different sources (telemetric networks and radar-satellite technology). (b) To develop methodology of application of spatially distributed and hybrid hydrologic models, which are topographically based and event-oriented. (c) To extract automatically from Digital Elevation Models (DEM) the relevant parameters of the hydrologic models used. When extracting the drainage networks from a DEM, various questions arise: what is the most suitable drainage density for the hydrographic network? What degree of affection does the selection of DEM cell size have on the hydrologic results, or are they not sensitive to it? Can any invariable property by defined with the scale which characterizes indexes or parameters based on the drainage network hierarchy? A clear inter-relationship can be seen between the geomorphological and hydrologic parameters and the DEM resolution. The morphometric parameters are also affected by threshold area variation. It is proposed a methodology to identify a priori the range of DEM resolutions and threshold areas for in which the parameters present a certain stability for modelling based on drainage networks topology. When working with spatially distributed models, several questions crop up: Are the distributed parameters derived from DEM and the complete hydrologic results affected by cell size? Is it feasible to identify invariable properties with the scale which characterizes the spatial distributions of the parameters? The terrain slope and the flow path length are affected by the DEM cell

  2. Arc ASCII and GeoTiff DEMs of the North-Central California Coast (DEM_#_ASCII and DEM_#_GeoTIFF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, 2 meter resolution digital elevation model (DEM) was constructed for the open-coast region of the San Francisco Bay Area (outside of the Golden Gate...

  3. Arc ASCII and GeoTiff DEMs of the North-Central California Coast (DEM_#_ASCII and DEM_#_GeoTIFF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, 2 meter resolution digital elevation model (DEM) was constructed for the open-coast region of the San Francisco Bay Area (outside of the Golden Gate...

  4. A framework for global terrain classification using 250-m DEMs to predict geohazards

    Science.gov (United States)

    Iwahashi, J.; Matsuoka, M.; Yong, A.

    2016-12-01

    Geomorphology is key for identifying factors that control geohazards induced by landslides, liquefaction, and ground shaking. To systematically identify landforms that affect these hazards, Iwahashi and Pike (2007; IP07) introduced an automated terrain classification scheme using 1-km-scale Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs). The IP07 classes describe 16 categories of terrain types and were used as a proxy for predicting ground motion amplification (Yong et al., 2012; Seyhan et al., 2014; Stewart et al., 2014; Yong, 2016). These classes, however, were not sufficiently resolved because coarse-scaled SRTM DEMs were the basis for the categories (Yong, 2016). Thus, we develop a new framework consisting of more detailed polygonal global terrain classes to improve estimations of soil-type and material stiffness. We first prepare high resolution 250-m DEMs derived from the 2010 Global Multi-resolution Terrain Elevation Data (GMTED2010). As in IP07, we calculate three geometric signatures (slope, local convexity and surface texture) from the DEMs. We create additional polygons by using the same signatures and multi-resolution segmentation techniques on the GMTED2010. We consider two types of surface texture thresholds in different window sizes (3x3 and 13x13 pixels), in addition to slope and local convexity, to classify pixels within the DEM. Finally, we apply the k-means clustering and thresholding methods to the 250-m DEM and produce more detailed polygonal terrain classes. We compare the new terrain classification maps of Japan and California with geologic, aerial photography, and landslide distribution maps, and visually find good correspondence of key features. To predict ground motion amplification, we apply the Yong (2016) method for estimating VS30. The systematic classification of geomorphology has the potential to provide a better understanding of the susceptibility to geohazards, which is especially vital in populated areas.

  5. Terrain Extraction in Built-Up Areas from Satellite Stereo-Imagery-Derived Surface Models: A Stratified Object-Based Approach

    Directory of Open Access Journals (Sweden)

    Fritjof Luethje

    2017-01-01

    Full Text Available Very high spatial resolution (VHSR stereo-imagery-derived digital surface models (DSM can be used to generate digital elevation models (DEM. Filtering algorithms and triangular irregular network (TIN densification are the most common approaches. Most filter-based techniques focus on image-smoothing. We propose a new approach which makes use of integrated object-based image analysis (OBIA techniques. An initial land cover classification is followed by stratified land cover ground point sample detection, using object-specific features to enhance the sampling quality. The detected ground point samples serve as the basis for the interpolation of the DEM. A regional uncertainty index (RUI is calculated to express the quality of the generated DEM in regard to the DSM, based on the number of samples per land cover object. The results of our approach are compared to a high resolution Light Detection and Ranging (LiDAR-DEM, and a high level of agreement is observed—especially for non-vegetated and scarcely-vegetated areas. Results show that the accuracy of the DEM is highly dependent on the quality of the initial DSM and—in accordance with the RUI—differs between the different land cover classes.

  6. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  7. Influence of dem in Watershed Management as Flood Zonation Mapping

    Science.gov (United States)

    Alrajhi, Muhamad; Khan, Mudasir; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS), geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis) which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs) of different resolution (30m, 20m,10m and 5m) have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  8. Monitoring lava dome changes by means of differential DEMs from TanDEM-X interferometry: Examples from Merapi, Indonesia and Volcán de Colima, Mexico

    Science.gov (United States)

    Kubanek, J.; Westerhaus, M.; Heck, B.

    2013-12-01

    Estimating the amount of erupted material during a volcanic crisis is one of the major challenges in volcano research. One way to do this and to discriminate between juvenile and non-juvenile fraction is to assess topographic changes before and after an eruption while using area-wide 3D data. LiDAR or other airborne systems may be a good source, but the recording fails when clouds due to volcanic activity obstruct the sight. In addition, costs as well as logistics are high for local observatories. When dealing with dome-building volcanoes, acquiring the data gets further complicated. As the volcano dome can change rapidly in active phases, it is nearly impossible to collect data at the right time. However, when dealing with gross volume change estimates, at least two data sets - taken directly before and after the eruption - are essential. The innovative German Earth observation mission TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is of great importance to overcome some of these problems. The two almost identical radar satellites TerraSAR-X and TanDEM-X fly in a close formation, thus recording images of the same place on the Earth surface at the same time (bistatic mode). As the radar signal penetrates clouds, digital elevation models (DEMs) of the area of investigation can be generated without problems even with cloud cover. A time series analysis of the differential DEMs therefore opens the possibility to assess volume changes at active lava domes. We choose Merapi in Indonesia and Volcán de Colima in Mexico as test sites. Both volcanoes reside in a state of long term effusive eruption, interrupted every few years by phases of dome destruction, generation of pyroclastic flows and deposition of volcanic material. The availability of extensive ground truth data for both test sites further enables to validate the spaceborne data and results. Here, we analyze lava dome changes due to the hazardous Merapi 2010 eruption. We show a series of DEMs

  9. AMMI模型的DEM内插方法不确定性研究%Uncertainty Analysis of Different DEM Interpolation Methods Based on AMMI Model

    Institute of Scientific and Technical Information of China (English)

    赵明伟; 汤国安; 田剑

    2012-01-01

    Analysis of evaluation of interpolation models is a hot topic in the DEM interpolation studies. Most studies focused on the interpolation model in the last decades, while ignored the influencing factors between the interpolation models and environments. That is to say, on the one side, different interpolation models influence the accuracy of the analysis result; on the other side, difference environments also influence the accuracy of a certain interpolation model. In order to analysis the applicability of different interpolation methods in different environments, this paper selected test areas under different geomorphic types, and used the AMMI model to analyse the accuracy of the different interpolation models and the applicability of the studied models to different geomorphic types. The experiment results showed that the AMMI model could test the influencing factors between the interpolation models and the environments. Taking the test of this paper as an example, in the Northern Shaanxi region, the ordinary Kriging model is the best choice in the DEM construction. Finally, by analyzing the correlation coefficient between the environment coefficient and several landform parameters, it can be found that the slope gradient could represent the first environment coefficient.%内插模型的精度评价问题一直是DEM内插研究中的热点问题.以往较多的研究关注插值模型本身的精度评价,却忽略了插值模型与应用环境之间的交互作用,例如,普通克里金方法作DEM内插一般精度较差,但是当插值区域平坦时,该方法的插值精度却很高,这表明该方法对平坦地形的插值问题具有较好的适应性.为了分析不同插值模型在不同地形环境下的适用性,本文选取陕北黄土高原地区不同地貌类型的实验样区,应用AMMI模型对不同内插模型的精度,以及对不同地貌类型的适用性进行评价,该模型最大的特点是很好地结合了方差分析与回归分析

  10. Karst Depression Detection Using ASTER, ALOS/PRISM and SRTM-Derived Digital Elevation Models in the Bambuí Group, Brazil

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho

    2013-12-01

    Full Text Available Remote sensing has been used in karst studies to identify limestone terrain, describe exokarst features, analyze karst depressions, and detect geological structures important to karst development. The aim of this work is to investigate the use of ASTER-, SRTM- and ALOS/PRISM-derived digital elevation models (DEMs to detect and quantify natural karst depressions along the São Francisco River near Barreiras city, northeast Brazil. The study area is a karst landscape characterized by karst depressions (dolines, closed depressions in limestone, many of which contain standing water connected with the ground-water table. The base of dolines is typically sealed with an impermeable clay layer covered by standing water or herbaceous vegetation. We identify dolines by combining the extraction of sink depth from DEMs, morphometric analysis using GIS, and visual interpretation. Our methodology is a semi-automatic approach involving several steps: (a DEM acquisition; (b sink-depth calculation using the difference between the raw DEM and the corresponding DEM with sinks filled; and (c elimination of falsely identified karst depressions using morphometric attributes. The advantages and limitations of the applied methodology using different DEMs are examined by comparison with a sinkhole map generated from traditional geomorphological investigations based on visual interpretation of the high-resolution remote sensing images and field surveys. The threshold values of the depth, area size and circularity index appropriate for distinguishing dolines were identified from the maximum overall accuracy obtained by comparison with a true doline map. Our results indicate that the best performance of the proposed methodology for meso-scale karst feature detection was using ALOS/PRISM data with a threshold depth > 2 m; areas > 13,125 m2 and circularity indexes > 0.3 (overall accuracy of 0.53. The overall correct identification of around half of the true dolines suggests

  11. Two Preliminary SRTM DEMs Within the Amazon Basin

    Science.gov (United States)

    Alsdorf, D.; Hess, L.; Melack, J.; Dunne, T.; Mertes, L.; Ballantine, A.; Biggs, T.; Holmes, K.; Sheng, Y.; Hendricks, G.

    2002-12-01

    Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from NASA JPL in August 2002. The "PI Processor" produced these initial DEM segments and we are using them to assess the initial accuracy of the interferometrically derived heights and for hydrologic research. The preliminary SRTM derived absolute elevations across the Amazon floodplain in the Cabaliana region generally range from 5 to 15 m with reported errors of 1 to 3 m. This region also includes some preliminary elevations that are erroneously negative. However, topographic contours on 1:100,000 scale quadrangles of 1978 to 1980 vintage indicate elevations of 20 to 30 m. Because double-bounce travel paths are possible over the sparsely vegetated and very-flat 2400 sq-km water surface of the Balbina reservoir near Manaus, it serves to identify the relative accuracy of the SRTM heights. Here, cell-to-cell height changes are generally 0 to 1 m and changes across a ~100 km transect rarely exceed 3 m. Reported errors throughout the transect range from 1 to 2 m with some errors up to 5 m. Deforestation in Rondonia is remarkably clear in the C-band DEM where elevations are recorded from the canopy rather than bare earth. Here, elevation changes are ~30 m (with reported 1 to 2 m errors) across clear-cut areas. Field derived canopy heights are in agreement with this change. Presently, we are deriving stream networks in the Amazon floodplain for comparison with our previous network extraction from JERS-1 SAR mosaics and for hydrologic modeling.

  12. VT Lidar DEM (3.2 meter) - 2004 - Chittenden

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Chittenden County 2004 3.2m and Digital Elevation Model (DEM) datasets of various...

  13. VT Lidar Hydro-flattened DEM (2 meter) - 2012 - Bennington

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Bennington County 2012 2.0m and Digital Elevation Model (DEM) datasets of various...

  14. ElevationDEM_DEMHF0p7M2014

    Data.gov (United States)

    Vermont Center for Geographic Information — This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following "hydro-treatment": *DEMHF....

  15. Derivation of radioecological parameters from the long-term emission of iodine-129. Final report; Ableitung von radiooekologischen Parametern aus dem langfristigen Eintrag von Iod-129. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Michel, R.; Klipsch, K.; Ernst, T.; Gorny, M.; Jakob, D.; Vahlbruch, J. [Zentrum fuer Strahlenschutz und Radiooekologie (ZSR), Universitaet Hannover (Germany); Synal, H.A. [Paul Scherrer Inst., ETH Hoenggerberg, Zuerich (Switzerland); Schnabel, C. [Institut fuer Teilchenphysik, ETH Hoenggerberg, Zuerich (Switzerland)

    2004-07-01

    In this project, the distribution and behaviour of {sup 129}I and {sup 127}I in the environment and its pathways through the environment to man were comprehensively investigated in order to provide a basis for estimating the radiation exposure to man due to releases of {sup 129}I. To this end, the actual situation in Lower Saxony, Germany, was studied for exemplary regions near to and far from the coast of the North Sea. Accelerator mass spectrometry, radiochemical neutron activation analysis, ion chromatography, and ICP-MS were applied to measure the iodine isotopes, {sup 129}I and P{sup 127}I, in sea-water, air, precipitation, surface and ground waters, soils, plants, animals, foodstuffs, total diet, and human and animal thyroid glands. For air-borne iodine, the speciation as well as the particle size distribution of aerosols was determined. Soil depth profiles were investigated down to depths of 2.5 m in order to study the iodine migration as well as individual surface soil samples to allow for the determination of transfer factors of the iodine isotopes into plants. From the analytical results radioecological parameters for the long-term behaviour of {sup 129}I in the pedo- and biosphere were derived. The iodine isotopes are in severe disequilibrium in the different environmental compartments. The pre-nuclear equilibrium {sup 129}I/{sup 127}I ratio in the biosphere was determined to be 2.0 x 10{sup -13} with a geometric standard deviation of 1.39. Today, the environmental isotopic ratios in Northern Germany range from 10{sup -6} to 10{sup -10}. The highest ratios are found in North Sea water, the lowest in deep soil samples and ground water. The North Sea appears as the dominant source of air-borne iodine in Northern Germany due to the emissions of European reprocessing plants. The results are discussed with respect to their radiological relevance and in view of the general protection of the environment, i.e. air, water, soil and the biosphere. (orig.)

  16. Digital elevation modelling using ASTER stereo imagery.

    Science.gov (United States)

    Forkuo, Eric Kwabena

    2010-04-01

    Digital elevation model (DEM) in recent times has become an integral part of national spatial data infrastructure of many countries world-wide due to its invaluable importance. Although DEMs are mostly generated from contours maps, stereo aerial photographs and air-borne and terrestrial laser scanning, the stereo interpretation and auto-correlation from satellite image stereo-pairs such as with SPOT, IRS, and relatively new ASTER imagery is also an effective means of producing DEM data. In this study, terrain elevation data were derived by applying photogrammetric process to ASTER stereo imagery. Also, the quality ofDEMs produced from ASTER stereo imagery was analysed by comparing it with DEM produced from topographic map at a scale of 1:50,000. While analyzing the vertical accuracy of the generated ASTER DEM, fifty ground control points were extracted from the map and overlaid on the DEM. Results indicate that a root-mean-square error in elevation of +/- 14 m was achieved with ASTER stereo image data of good quality. The horizontal accuracy obtained from the ground control points was 14.77, which is within the acceptable range of +/- 7m to +/- 25 m. The generated (15 m) DEM was compared with a 20m, 25m, and a 30 m pixel DEM to the original map. In all, the results proved that, the 15 m DEM conform to the original map DEM than the others. Overall, this analysis proves that, the generated digital terrain model, DEM is acceptable.

  17. Incorporating DEM uncertainty in coastal inundation mapping.

    Directory of Open Access Journals (Sweden)

    Javier X Leon

    Full Text Available Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM. However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps

  18. Input Data Boundary Outlines for DEMs of the North-Central California Coast (DEM_source_data.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A GIS polygon shapefile outlining the boundaries of the native input datasets used to construct a seamless, 2-meter resolution digital elevation model (DEM) was...

  19. A Global Corrected SRTM DEM Product Over Vegetated Areas Using LiDAR Data

    Science.gov (United States)

    Zhao, X.; Guo, Q.; Su, Y.; Hu, T.

    2016-12-01

    The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is one of the most complete and frequently used global-scale DEM products in various applications. However, previous studies have shown that the SRTM DEM is systematically higher than the actual land surface in vegetated mountain areas. The objective of this study is to propose a procedure to calibrate the SRTM DEM over global vegetated mountain areas. To address this, we firstly collected airborne LiDAR data over 200,000 km2 globally used as ground truth data to analyze the uncertainty of the SRTM DEM. The Geoscience Laser Altimeter System (GLAS)/ICESat (Ice, Cloud, and land Elevation Satellite) data were used as complementary data in areas lack of airborne LiDAR data. Secondly, we modelled the SRTM DEM error for each vegetation type using regression methods. Tree height, canopy cover, and terrain slope were used as dependent variables to model the SRTM DEM error. Finally, these regression models were used to estimate the SRTM DEM error in vegetated mountain areas without LiDAR data coverage, and therefore correct the SRTM DEM. Our results show that the new corrected SRTM DEM can significantly reduce the systematic bias of the SRTM DEM in vegetated mountain areas.

  20. Digital terrain modeling with the Chebyshev polynomials

    CERN Document Server

    Florinsky, I V

    2015-01-01

    Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and algorithm based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejer summation. The method and algorithm are intended for DEM analytical treatment, such as, DEM global approximation, denoising, and generalization as well as computation of morphometric variables by analytical calculation of partial derivatives. To test the method and algorithm, we used a DEM of the Northern Andes including 230,880 points (the elevation matrix 480 $\\times$ 481). DEMs were reconstructed with 480, 240, 120, 60, and 30 expansion coefficients. The first and second partial derivatives ...

  1. Digital Elevation Model (DEM), LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos & 2' contours. The Lidar LAS data has been classified to bare-earth as well as first-return points., Published in 2009, 1:1200 (1in=100ft) scale, Maryland National Capital Park and Planning Commission.

    Data.gov (United States)

    NSGIC Non-Profit | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2009. LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos...

  2. Digital Elevation Model (DEM), These data are a research product and not intended for use in management, regulation, litigation, or related activities. Data are in a gridded (TIFF) format with a horizontal resolution of 10 feet and a vertical resolution of 1 foot., Published in 2007, University of Connecticut.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, was produced all or in part from LIDAR information as of 2007. It is described as 'These data are a research product and...

  3. Demência de alzheimer

    OpenAIRE

    Galvão, Ana Maria

    2011-01-01

    A doença de Alzheimer é considerada a demência mais comum no ser humano, sendo caraterizada como um distúrbio degenerativo do cérebro que leva à perda de memória (Alzheimer's Association, 2010). A notícia de um diagnóstico de demência causa um intenso impacto na vida de pacientes e familiares. Os principais motivos referem-se à impossibilidade de cura e à progressão por vezes rápida dos sintomas. São comumente evidenciadas reações emocionais negativas envolvendo impotência, medo e...

  4. Deriving Framework Usages Based on Behavioral Models

    Science.gov (United States)

    Zenmyo, Teruyoshi; Kobayashi, Takashi; Saeki, Motoshi

    One of the critical issue in framework-based software development is a huge introduction cost caused by technical gap between developers and users of frameworks. This paper proposes a technique for deriving framework usages to implement a given requirements specification. By using the derived usages, the users can use the frameworks without understanding the framework in detail. Requirements specifications which describe definite behavioral requirements cannot be related to frameworks in as-is since the frameworks do not have definite control structure so that the users can customize them to suit given requirements specifications. To cope with this issue, a new technique based on satisfiability problems (SAT) is employed to derive the control structures of the framework model. In the proposed technique, requirements specifications and frameworks are modeled based on Labeled Transition Systems (LTSs) with branch conditions represented by predicates. Truth assignments of the branch conditions in the framework models are not given initially for representing the customizable control structure. The derivation of truth assignments of the branch conditions is regarded as the SAT by assuming relations between termination states of the requirements specification model and ones of the framework model. This derivation technique is incorporated into a technique we have proposed previously for relating actions of requirements specifications to ones of frameworks. Furthermore, this paper discuss a case study of typical use cases in e-commerce systems.

  5. LiDAR Derived Bare Earth Digital Elevation Model: Camas National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This dataset represents the Camas National Wildlife Refuge survey area in Jefferson and Clark County, ID. This bare earth digital elevation model (DEM) represent...

  6. LiDAR Derived Bare Earth Digital Elevation Model: Camas National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This dataset represents the Camas National Wildlife Refuge survey area in Jefferson and Clark County, ID. This bare earth digital elevation model (DEM) represent the...

  7. Comparison Between Topographic Expression of RADARSAT and DEM in Simpang Pulai to Pos Selim, Malaysia

    Directory of Open Access Journals (Sweden)

    M.F.Ramli

    2010-01-01

    Full Text Available Radar and digital elevation model had been utilised in many structural studies. The main objective of this study is to compare the RADARSAT and digital elevation model for lineament interpretation which probably represent the main joints or faults along the Simpang Pulai to Pos Selim highway, Malaysia. These joints and faults may influence the instability along the highway. Manual comparison in terms of topographical aspect was undertaken between RADARSAT with 25 m spatial resolution and digital elevation model derived from 20 m contour interval of the topographical map. The previously interpreted lineaments of more than 2 km in the study area was draped over the RADARSAT and digital elevation model to compared whether the lineament concurred with the topographical representation. The interpreted lineaments were derived from Landsat TM of 1990 and 2002, where the DEM had been utilised in the negative lineament determination. It is concluded that the application RADARSAT is not very useful in terms of topographical expression in the structural geological interpretation for the study area compared to DEM derived from contour data. Further work is suggested before any conclusion can be confidently derived.

  8. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  9. Precision estimation and geomorphological analysis based on the DEM generated by InSAR: Taking Damxung-Yangbajain area as an example

    Institute of Scientific and Technical Information of China (English)

    Yaqiong Dai; Jinwei Ren; Xuhui Shen; Jingfa Zhang; Shunying Hong

    2009-01-01

    Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, using a pair of Europe remote-sensing satellite (ERS)-l/2 tandem SAR images acquired on 6 and 7 April 1996. A portion of the In-SAR-derived DEM is selected and compared with the 1:50 000 DEM to determine the precision of the InSAR-derived DEM. The comparison indicates that the root mean squared errors (RMSE), which are used to evaluate error, are about 35, 60, 10, and 15 m in the studied area, mountainous area, basin area and near-fault area, respectively, suggesting that obvious errors are mainly in mountainous area. Besides, the limitation of InSAR technology to generate DEM is analyzed. Our investigation shows that InSAR is an effective tool in geodesy and an important complement to field surveying in some dangerous areas.

  10. Reheating in nonminimal derivative coupling model

    CERN Document Server

    Sadjadi, H Mohseni

    2012-01-01

    We consider a model with nonminimal derivative coupling of inflaton to gravity. The reheating process during rapid oscillation of the inflaton is studied and the reheating temperature is obtained. Behaviors of the inflaton and produced radiation in this era are discussed.

  11. A NEW HIGH-RESOLUTION ELEVATION MODEL OF GREENLAND DERIVED FROM TANDEM-X

    Directory of Open Access Journals (Sweden)

    B. Wessel

    2016-06-01

    Full Text Available In this paper we present for the first time the new digital elevation model (DEM for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite elevations as ground control points (GCPs are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  12. Design flood of ungauged basins based on DEM

    Institute of Scientific and Technical Information of China (English)

    Zhang Ting; Feng Ping

    2012-01-01

    In this paper, the northern mountainous area of Fuzhou City which is an ungauged basin has been taken for example to discuss the method of design flood calculation by means of combining the DEM (digital elevation model) and the Xin' anjiang Model ( three components ). The problem of estimating the parameters of the runoff model has been solved by using the parameters of the reference station. In the conflux calculation, the isochrones are obtained by DEM which helps to avoid the cumbersome work of drawing them on the map. With the establishment of the digital elevation model throughout the country, it is practically significant to use it in the hydrological estimation.

  13. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT

    Directory of Open Access Journals (Sweden)

    Waranyu Buakhao

    2016-01-01

    Full Text Available A digital elevation model (DEM is an important spatial input for automatic extraction of topographic parameters for the soil and water assessment tool (SWAT. The objective of this study was to investigate the impact of DEM resolution (from 5 to 90 m on the delineation process of a SWAT model with two types of watershed characteristics (flat area and mountain area and three sizes of watershed area (about 20,000, 200,000, and 1,500,000 hectares. The results showed that the total lengths of the streamline, main channel slope, watershed area, and area slope were significantly different when using the DEM datasets to delineate. Delineation using the SRTM DEM (90 m, ASTER DEM (30 m, and LDD DEM (5 m for all watershed characteristics showed that the watershed sizes and shapes obtained were only slightly different, whereas the area slopes obtained were significantly different. The total lengths of the generated streams increased when the resolution of the DEM used was higher. The stream slopes obtained using the small area sizes were insignificant, whereas the slopes obtained using the large area sizes were significantly different. This suggests that water resource model users should use the ASTER DEM as opposed to a finer resolution DEM for model input to save time for the model calibration and validation.

  14. Effects of lidar point density on bare earth extraction and DEM creation

    Science.gov (United States)

    Puetz, Angela M.; Olsen, R. Chris; Anderson, Brian

    2009-05-01

    Data density has a crucial impact on the accuracy of Digital Elevation Models (DEMs). In this study, DEMs were created from a high point-density LIDAR dataset using the bare earth extraction module in Quick Terrain Modeler. Lower point-density LIDAR collects were simulated by randomly selecting points from the original dataset at a series of decreasing percentages. The DEMs created from the lower resolution datasets are compared to the original DEM. Results show a decrease in DEM accuracy as the resolution of the LIDAR dataset is reduced. Some analysis is made of the types of errors encountered in the lower resolution DEMs. It is also noted that the percentage of points classified as bare earth decreases as the resolution of the LIDAR dataset is reduced.

  15. Portfolio Selection Model with Derivative Securities

    Institute of Scientific and Technical Information of China (English)

    王春峰; 杨建林; 蒋祥林

    2003-01-01

    Traditional portfolio theory assumes that the return rate of portfolio follows normality. However, this assumption is not true when derivative assets are incorporated. In this paper a portfolio selection model is developed based on utility function which can capture asymmetries in random variable distributions. Other realistic conditions are also considered, such as liabilities and integer decision variables. Since the resulting model is a complex mixed-integer nonlinear programming problem, simulated annealing algorithm is applied for its solution. A numerical example is given and sensitivity analysis is conducted for the model.

  16. Wavelet based analysis of TanDEM-X and LiDAR DEMs across a tropical vegetation heterogeneity gradient driven by fire disturbance in Indonesia

    NARCIS (Netherlands)

    Grandi, De Elsa Carla; Mitchard, Edward; Hoekman, Dirk

    2016-01-01

    Three-dimensional information provided by TanDEM-X interferometric phase and airborne Light Detection and Ranging (LiDAR) Digital ElevationModels (DEMs) were used to detect differences in vegetation heterogeneity through a disturbance gradient in Indonesia. The range of vegetation types developed

  17. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    Science.gov (United States)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  18. DEM - distribution energy management

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Kekkonen, V.; Koreneff, G. [VTT Energy, Espoo (Finland)] [and others

    1998-08-01

    The electricity market was de-regulated in Finland at the end of 1995 and the customers can now freely choose their power suppliers. The national grid and local distribution network operators are now separated from the energy business. The network operators transmit the electric power to the customers on equal terms regardless from whom the power is purchased. The Finnish national grid is owned by one company Finnish Power Grid PLC (Fingrid). The major shareholders of Fingrid are the state of Finland, two major power companies and institutional investors. In addition there are about 100 local distribution utilities operating the local 110 kV, 20 kV and 0.4 kV networks. The distribution utilities are mostly owned by the municipalities and towns. In each network one energy supplier is always responsible for the hourly energy balance in the network (a `host`) and it also has the obligation to provide public energy prices accessible to any customer in the network`s area. The Finnish regulating authorities nominate such a supplier who has a dominant market share in the network`s area as the supplier responsible for the network`s energy balance. A regulating authority, called the Electricity Market Centre, ensures that the market is operating properly. The transmission prices and public energy prices are under the Electricity Market Centre`s control. For domestic and other small customers the cost of hourly metering (ca. 1000 US$) would be prohibitive and therefore the use of conventional energy metering and load models is under consideration by the authorities. Small customer trade with the load models (instead of the hourly energy recording) is scheduled to start in the first half of 1998. In this presentation, the problems of energy management from the standpoint of the energy trading and distributing companies in the new situation are first discussed. The topics covered are: the hourly load data management, the forecasting and estimation of hourly energy demands

  19. A comparative analysis of different DEM interpolation methods

    Directory of Open Access Journals (Sweden)

    P.V. Arun

    2013-12-01

    Full Text Available Visualization of geospatial entities generally entails Digital Elevation Models (DEMs that are interpolated to establish three dimensional co-ordinates for the entire terrain. The accuracy of generated terrain model depends on the interpolation mechanism adopted and hence it is needed to investigate the comparative performance of different approaches in this context. General interpolation techniques namely Inverse Distance Weighted, kriging, ANUDEM, Nearest Neighbor, and Spline approaches have been compared. Differential ground field survey has been conducted to generate reference DEM as well as specific set of test points for comparative evaluation. We have also investigated the suitability of Shuttle Radar Topographic Mapper Digital Elevation Mapper for Indian terrain by comparing it with the Survey of India (SOI Digital Elevation Model (DEM. Contours were generated at different intervals for comparative analysis and found SRTM as more suitable. The terrain sensitivity of various methods has also been analyzed with reference to the study area.

  20. Which DEM is the best for glaciology? -Evaluation of global-scale DEM products-

    Science.gov (United States)

    Nagai, Hiroto; Tadono, Takeo

    2017-04-01

    Digital elevation models (DEMs) are fundamental geospatial data to study glacier distribution, changes, dynamics, mass balance and various geomorphological conditions. This study evaluates latest global-scale free DEMs in order to clarify their superiority and inferiority in glaciological uses. Three DEMs are now available; the 1-arcsec. product obtained from the Shuttle Radar Topographic Mission (SRTM1), the second version of Global Digital Elevation Model of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM2), and the first resampled dataset acquired by the Advanced Land observing Satellite, namely ALOS World 3D-30m (AW3D30). These DEMs have common specifications of global coverage (B>C). In the Tone river basin, SRTM1 has equivalent accuracy to AW3D30. High resolution (2.5 m) of the original stereo-pair images for AW3D30 (i.e. ALOS PRISM imagery) contributes for the best absolute accuracy. Glaciers on rather flat terrains are usually distributed in higher latitude (e.g. Antarctica and Greenland), where SRTM1 is unable. Glaciers at mid-to-low latitudes glaciers are usually distributed in high and steep mountains, where SRTM1 has lower accuracy than AW3D30. AW3D30 would contributes as a preferable option for glaciology in a global scale. At the tops of high mountains in the Nepal Himalaya, however, AW3D30 has a large area of data missing due to snow cover. This inferiority should be improved by filling with other datasets in the next version. ASTER GDEM2 has less area of data missing in the Nepal Himalaya, which would contribute for coarse uses such as generation of river basin, brief drawing of a topographic map, etc.

  1. DEM analysis for AIA/SDO EUV channels using a probabilistic approach to the spectral inverse problem

    Science.gov (United States)

    Goryaev, Farid; Parenti, Susanna; Hochedez, Jean-François; Urnov, Alexander

    The Atmospheric Imaging Assembly (AIA) for the Solar Dynamics Observatory (SDO) mis-sion is designed to observe the Sun from the photosphere to the flaring corona. These data have to improve our understanding of processes in the solar atmosphere. The differential emis-sion measure (DEM) analysis is one of the main methods to derive information about coronal optically thin plasma characteristics from EUV and SXR emission. In this work we analyze AIA/SDO EUV channels to estimate their ability to reconstruct DEM(T) distributions. We use an iterative method (called Bayesian iterative method, BIM) within the framework of a probabilistic approach to the spectral inverse problem for determining the thermal structures of the emitting plasma sources (Goryaev et al., submitted to AA). The BIM is an iterative procedure based on Bayes' theorem and used for the reconstruction of DEM profiles. Using the BIM algorithm we performed various numerical tests and model simulations demonstrating abilities of our inversion approach for DEM analysis with AIA/SDO EUV channels.

  2. Derivation of a poroelastic flexural shell model

    CERN Document Server

    Mikelic, Andro

    2015-01-01

    In this paper we investigate the limit behavior of the solution to quasi-static Biot's equations in thin poroelastic flexural shells as the thickness of the shell tends to zero and extend the results obtained for the poroelastic plate by Marciniak-Czochra and Mikeli\\'c. We choose Terzaghi's time corresponding to the shell thickness and obtain the strong convergence of the three-dimensional solid displacement, fluid pressure and total poroelastic stress to the solution of the new class of shell equations. The derived bending equation is coupled with the pressure equation and it contains the bending moment due to the variation in pore pressure across the shell thickness. The effective pressure equation is parabolic only in the normal direction. As additional terms it contains the time derivative of the middle-surface flexural strain. Derivation of the model presents an extension of the results on the derivation of classical linear elastic shells by Ciarlet and collaborators to the poroelastic shells case. The n...

  3. The scaling method of specific catchment area from DEMs

    Institute of Scientific and Technical Information of China (English)

    YANG Xin; TANG Guoan; XlAO Chenchao; GAO Yiping; ZHU Shijie

    2011-01-01

    Specific Catchment Area (SCA) is defined as the upstream catchment area of a unit contour.As one of the key terrain parameters,it is widely used in the modeling of hydrology,soil erosion and ecological environment.However,SCA value changes significantly at different DEM resolutions,which inevitably affect terrain analysis results.SCA can be described as the ratio of Catchment Area (CA) and DEM grid length.In this paper,the scale effect of CA is firstly investigated.With Jiuyuangou Gully,a watershed about 70 km2 in northern Shaanxi Province of China,as the test area,it is found that the impacts of DEM scale on CA are different in spatial distribution.CA value in upslope location becomes bigger with the decrease of the DEM resolution.When the location is close to downstream areas the impact of DEM scale on CA is gradually weakening.The scale effect of CA can be concluded as a mathematic trend of exponential decline.Then,a downscaling model of SCA is put forward by introducing the scale factor and the location factor.The scaling model can realize the conversion of SCA value from a coarse DEM resolution to a finer one at pixel level.Experiment results show that the downscaled SCA was well revised,and consistent with SCA at the target resolution with respect to the statistical indexes,histogram and spatial distribution.With the advantages of no empirical parameters,the scaling model could be considered as a simple and objective model for SCA scaling in a rugged drainage area.

  4. Generation of a new Greenland Ice Sheet Digital Elevation Model

    Science.gov (United States)

    Nagarajan, S.; Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; Scambos, T. A.; Haran, T. M.; Kjaer, K. H.; Korsgaard, N. J.

    2011-12-01

    Currently available Digital Elevation Models(DEMs) of the Greenland Ice Sheet (GrIS) were originally derived from radar altimetry data, e.g. Bamber (Bamber et al., 2001) and later improved by photoclinometry to fill the regions between orbits (Scambos and Haran, 2002). The elevation error of these DEMs is a few meters in the higher part (above 2000 m) of the ice sheet, but it can be as much as 50-100 meters in marginal regions. The relatively low resolution and accuracy poses a problem, especially for ice sheet modeling. Although accurate elevation data have been collected by airborne and spaceborne laser altimetry (airborne: Airborne Topographic Mapper (ATM) (1993-present), Laser Vegetation Imaging Sensor(LVIS) (2007,2009 and 2011); spaceborne: Ice, Cloud, and land Elevation Satellite (ICESat) (2003-2009)) and DEMs have been derived from stereo satellite imagery (e.g., SPOT (40 m), ASTER (15 m)), a high resolution, consistent DEM of GrIS is not yet available. This is due to various problems, such as different error sources in the data and different dates of data acquisition. In order to overcome these difficulties, we generated a multi-resolution DEM of GrIS, reflecting June 2008 conditions, by fusing a photoclinometry DEM, SPOT and ASTER DEMs as well as elevations from ICESat, ATM and LVIS laser altimetry. The new multi-resolution DEM has a resolution of 40 m x 40 m in the marginal ice sheet regions and 250 m elsewhere. The ice sheet margin is mapped from SPOT and Landsat imagery and SPOT DEMs are used to cover the complex topography of ice sheet marginal regions. The accuracy of SPOT DEMs is approximately ± 6 m except in the areas covered by clouds regions, where the SPOT elevations were replaced by ASTER DEMs. The ASTER DEMs were checked and improved by the DEM derived from aerial photography from the 1980s. A new photoclinometry DEM, derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery

  5. Generating DEM from LIDAR data - comparison of available software tools

    Science.gov (United States)

    Korzeniowska, K.; Lacka, M.

    2011-12-01

    In recent years many software tools and applications have appeared that offer procedures, scripts and algorithms to process and visualize ALS data. This variety of software tools and of "point cloud" processing methods contributed to the aim of this study: to assess algorithms available in various software tools that are used to classify LIDAR "point cloud" data, through a careful examination of Digital Elevation Models (DEMs) generated from LIDAR data on a base of these algorithms. The works focused on the most important available software tools: both commercial and open source ones. Two sites in a mountain area were selected for the study. The area of each site is 0.645 sq km. DEMs generated with analysed software tools ware compared with a reference dataset, generated using manual methods to eliminate non ground points. Surfaces were analysed using raster analysis. Minimum, maximum and mean differences between reference DEM and DEMs generated with analysed software tools were calculated, together with Root Mean Square Error. Differences between DEMs were also examined visually using transects along the grid axes in the test sites.

  6. Synthetic Aperture Radar Interferometry for Digital Elevation Model of Kuwait Desert - Analysis of Errors

    Science.gov (United States)

    Jassar, H. K. Al; Rao, K. S.

    2012-07-01

    Using different combinations of 29 Advanced Synthetic Aperture Radar (ASAR) images, 43 Digital Elevations Models (DEM) were generated adopting SAR Interferometry (InSAR) technique. Due to sand movement in desert terrain, there is a poor phase correlation between different SAR images. Therefore, suitable methodology for generating DEMs of Kuwait desert terrain using InSAR technique were worked out. Time series analysis was adopted to derive the best DEM out of 43 DEMs. The problems related to phase de-correlation over desert terrain are discussed. Various errors associated with the DEM generation are discussed which include atmospheric effects, penetration into soil medium, sand movement. The DEM of Shuttle Radar Topography Mission (SRTM) is used as a reference. The noise levels of DEM of SRTM are presented.

  7. Extract relevant features from DEM for groundwater potential mapping

    Science.gov (United States)

    Liu, T.; Yan, H.; Zhai, L.

    2015-06-01

    Multi-criteria evaluation (MCE) method has been applied much in groundwater potential mapping researches. But when to data scarce areas, it will encounter lots of problems due to limited data. Digital Elevation Model (DEM) is the digital representations of the topography, and has many applications in various fields. Former researches had been approved that much information concerned to groundwater potential mapping (such as geological features, terrain features, hydrology features, etc.) can be extracted from DEM data. This made using DEM data for groundwater potential mapping is feasible. In this research, one of the most widely used and also easy to access data in GIS, DEM data was used to extract information for groundwater potential mapping in batter river basin in Alberta, Canada. First five determining factors for potential ground water mapping were put forward based on previous studies (lineaments and lineament density, drainage networks and its density, topographic wetness index (TWI), relief and convergence Index (CI)). Extraction methods of the five determining factors from DEM were put forward and thematic maps were produced accordingly. Cumulative effects matrix was used for weight assignment, a multi-criteria evaluation process was carried out by ArcGIS software to delineate the potential groundwater map. The final groundwater potential map was divided into five categories, viz., non-potential, poor, moderate, good, and excellent zones. Eventually, the success rate curve was drawn and the area under curve (AUC) was figured out for validation. Validation result showed that the success rate of the model was 79% and approved the method's feasibility. The method afforded a new way for researches on groundwater management in areas suffers from data scarcity, and also broaden the application area of DEM data.

  8. Exotic leptoquarks from superstring derived models

    Energy Technology Data Exchange (ETDEWEB)

    Elwood, J.K.; Faraggi, A.E.

    1997-03-01

    The H1 and ZEUS collaborations have recently reported a significant excess of e{sup +}p {r_arrow} e{sup +} jet events at high Q{sup 2}. While there exists insufficient data to conclusively determine the origin of this excess, one possibility is that it is due to a new leptoquark at mass scale around 200 GeV. We examine the type of leptoquark states that exist in superstring derived standard-like models, and show that, while these models may contain the standard leptoquark states which exist in Grand Unified Theories, they also generically contain new and exotic leptoquark states with fractional lepton number, {+-}1/2. In contrast to the traditional GUT-type leptoquark states, the couplings of the exotic leptoquarks to the Standard Model states are generated after the breaking of U(1){sub B-L}. This important feature of the exotic leptoquark states may result in local discrete symmetries which forbid some of the undesired leptoquark couplings. We examine these couplings in several models and study the phenomenological implications. The flavor symmetries of the superstring models are found to naturally suppress leptoquark flavor changing processes.

  9. An efficient method for applying a differential equation to deriving the spatial distribution of specific catchment area from gridded digital elevation models

    Science.gov (United States)

    Qin, Cheng-Zhi; Ai, Bei-Bei; Zhu, A.-Xing; Liu, Jun-Zhi

    2017-03-01

    Deriving the spatial distribution of specific catchment area (SCA) from a gridded digital elevation model (DEM) is one of the most important issues in digital terrain analysis. Conventional methods usually estimate SCA for each cell using a flow direction algorithm, but the results obtained are often unsatisfactory. Recently, Gallant and Hutchinson (2011, Water Resources Research, 47(5), W05535) proposed a differential equation which quantifies the change of SCA along a slope line, and thus the numerical solution of SCA at any point on a surface can be calculated accurately by integrating the differential equation. However, obtaining the numerical SCA solution based on this differential equation is so computationally intensive that it is too time-consuming to use it to derive the overall SCA spatial distribution from a gridded DEM. In this study, we developed a parallel algorithm based on OpenMP to make the numerical SCA solution based on Gallant and Hutchinson (2011)'s differential equation practical to derive the spatial distribution of SCA from a gridded DEM. Experiments based on two artificial surfaces with theoretical SCA and a more complex real terrain surface demonstrated that the proposed parallel algorithm obtained satisfactory acceleration performance and a much lower error than the MFD-md algorithm, which is a representative of conventional grid-based flow direction algorithms. Due to the speedup effects of the proposed parallel algorithm, we analyzed the effects of the DEM grid size and integration step length on the numerical SCA solution in detailed experiments. The experimental results suggested that the proposed algorithm performed best normally at the resolution of 5 m. A step ratio of 0.5 is suitable in applications of the proposed parallel algorithm.

  10. German model. Challenge on the way to the 21st century. Das Deutschland-Modell. Herausforderungen auf dem Weg ins 21. Jahrhundert

    Energy Technology Data Exchange (ETDEWEB)

    Pestel, E.; Bauerschmidt, R.; Gottwaldt, M.; Huebl, L.; Moeller, K.P.; Oest, W.; Stroebele, W.

    1980-06-01

    The German model is a consequent continuation of the work which has already lead to the Mesarovic-Pestel world-model and the 2nd report to the Club of Rome: The authors, members of the Institut fuer angewandte Systemforschung und Prognose (ISP) at Hanover, founded in 1975 by Professor Pestel, show the problems and challenges on the way to the 21st century on the basis of numerous model calculations. The German model consists of a number of coupled sub-models investigating the developments in the fields of population, education, economics, energy and labour market. Germany's role in the international network and its contribution to the North-South dialogue is taken into consideration. In the much-discussed energy sector, the calculations show that future requirements will probably be much lower than expected. Until the turn of the century, there will be no serious problems in energy and raw materials supply and consequently no structural changes.

  11. DETERMINING MINIMUM HIKING TIME USING DEM

    Directory of Open Access Journals (Sweden)

    ZSOLT MAGYARI-SÁSKA

    2012-11-01

    Full Text Available Determining minimum hiking time using DEM. Minimum hiking time calculus can be used to assess the maximum area where a lost person can be. Such area delimitation can help rescue teams to efficiently organize their missions. The two well known walking time rules was used to determine, compare and correlate the obtained result in a test area. The calculated times has a high correlation coefficient which makes possible a precise conversion between Naismith and Tobler walking times. For delimiting the rescue area a graph based modeling from a raster layer was implemented using R environment. The main challenge in such a modeling is the efficient memory management as the use of Dijkstra algorithm on directional costgraph requires high memory resources.

  12. Coverage Polygons for DEMs of the North-Central California Coast (DEM_coverage_areas.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A GIS polygon shapefile outlining the extent of the 14 individual DEM sections that crompise the seamless, 2-meter resolution DEM for the open-coast region of the...

  13. Coverage Polygons for DEMs of the North-Central California Coast (DEM_coverage_areas.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A GIS polygon shapefile outlining the extent of the 14 individual DEM sections that crompise the seamless, 2-meter resolution DEM for the open-coast region of the...

  14. Packing of non-spherical aggregate particles by DEM

    NARCIS (Netherlands)

    Stroeven, P.; He, H.

    2013-01-01

    Loose random and dense random mono-size paclmodelling (DEM) for eight types of polyhedral grains, for ellipses with different aspect ratio, for cubes and for spheres. Focus was on density, sphericity of the grains and average value and frequency

  15. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT

    Indian Academy of Sciences (India)

    A Sivasena Reddy; M Janga Reddy

    2015-10-01

    Digital elevation model (DEM) of a watershed forms key basis for hydrologic modelling and its resolution plays a key role in accurate prediction of various hydrological processes. This study appraises the effect of different DEMs with varied spatial resolutions (namely TOPO 20 m, CARTO 30 m, ASTER 30 m, SRTM 90 m, GEO-AUS 500 m and USGS 1000 m) on hydrological response of watershed using Soil and Water Assessment Tool (SWAT) and applied for a case study of Kaddam watershed in India for estimating runoff and sediment yield. From the results of case study, it was observed that reach lengths, reach slopes, minimum and maximum elevations, sub-watershed areas, land use mapping areas within the sub-watershed and number of HRUs varied substantially due to DEM resolutions, and consequently resulted in a considerable variability in estimated daily runoff and sediment yields. It was also observed that, daily runoff values have increased (decreased) on low (high) rainy days respectively with coarser resolution of DEM. The daily sediment yield values from each sub-watershed decreased with coarser resolution of the DEM. The study found that the performance of SWAT model prediction was not influenced much for finer resolution DEMs up to 90 m for estimation of runoff, but it certainly influenced the estimation of sediment yields. The DEMs of TOPO 20 m and CARTO 30 m provided better estimates of sub-watershed areas, runoff and sediment yield values over other DEMs.

  16. Experience gained with the use of models and simulation for the utilisation plan of power plants of PreussenElektra; Erfahrungen mit dem Einsatz von Modellbildung und Simulation in der Kraftwerkseinsatzplanung der PreussenElektra

    Energy Technology Data Exchange (ETDEWEB)

    Bredow, M. [PreussenElektra Netz GmbH und Co. KG, Lehrte (Germany). Hauptschaltleitung und Lastverteilung

    1999-07-01

    The method to project the supply of wind power, that is currently applied by the PreussenElektra network and that takes into account the model of the German meteorological service provides valuable support for decisions regarding the planned utilisation of energy. However, this method is not satisfactory yet with respect to an optimal economic and ecological utilisation of energy and to an electric power market model based upon a firm time schedule. (orig.) [German] Das zur Zeit von der PreussenElektra Netz eingesetzte Verfahren zur Prognostizierung der Windeinspeisung unter Nutzung des Deutschlandmodells des Deutschen Wetterdienstes liefert wertvolle Entscheidungshilfen bei der Energieeinsatzplanung. Im Interesse eines optimalen wirtschaftlichen und oekologischen Energieeinsatzes und unter dem Blickwinkel eines fahrplanbasierten Strommarktmodells kann man damit jedoch nicht zufrieden sein. (orig.)

  17. Effect of Uncertainty of Grid DEM on TOPMODEL: Evaluation and Analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Peifa; DU Jinkang; FENG Xuezhi; KANG Guoding

    2006-01-01

    TOPMODEL, a semi-distributed hydrological model, has been widely used. In the process of simulation of the model, Digital Elevation Model (DEM) is used to provide the input data, such as topographic index and distance to the drainage outlet; thus DEM plays an important role in TOPMODEL. This study aims at examining the impacts of DEM uncertainty on the simulation results of TOPMODEL. In this paper, the effects were evaluated mainly from quantitative and qualitative aspects. Firstly, DEM uncertainty was simulated by using the Monte Carlo method, and for every DEM realization, the topographic index and distance to the drainage outlet were extracted. Secondly, the obtained topographic index and the distance to the drainage outlet were input to the TOPMODEL to simulate seven rainstorm-flood events, and four evaluation indices, such as Nash and Sutcliffe efficiency criterion (EFF), sum of squared residuals over all time steps (SSE), sum of squared log residuals over all time steps (SLE) and sum of absolute errors over all time steps (SAE) were recorded. Thirdly, these four evaluation indices were analyzed in statistical manner (minimum, maximum, range, standard deviation and mean value), and effect of DEM uncertainty on TOPMODEL was quantitatively analyzed. Finally, the simulated hydrographs from TOPMODEL using the original DEM and realizations of DEM were qualitatively evaluated under each flood cases. Results show that the effect of DEM uncertainty on TOPMODEL is inconsiderable and could be ignored in the model's application. This can be explained by: 1)TOPMODEL is not sensitive to the distribution of topographic index and distance to the drainage outlet; 2) the distribution of topographic index and distance to the drainage outlet are slightly affected by DEM uncertainty.

  18. Trends in international trade in steam coal. Lessons from the COALMOD-World model; Entwicklungen des internationalen Handels mit Kesselkohle. Lehren aus dem COALMOD-World-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Haftendorn, Clemens; Holz, Franziska; Winke, Tim; Hirschhausen, Christian von [Deutsches Institut fuer Wirtschaftsforschung, Berlin (Germany). Abt. Energie, Verkehr und Umwelt

    2011-12-15

    The global steam coal market has changed dramatically in the last ten years as a result of increasing demand, more flexible terms of trade and intensified exchange transactions. To analyse future market trends the equilibrium model COALMOD-World, which simulates the national and global steam coal market over several periods, is described in this article. Both international maritime trade and the relevant domestic markets are represented for this purpose. The market equilibria determined annually permit regional predictions of the coal quantities traded and the prices up to the year 2030. It is shown in different scenarios that the trend on the steam coal market is heavily dependent on the readiness of the suppliers to invest and the international climate policy. In all scenarios the Asian region will play the most important role in the global steam coal market. China and India in particular will increase their imports on the steam coal market in the next few years, because indigenous deposits are required for the domestic energy market and, in the case of India, diminishing deposits of high-quality coal give rise to an increase in production costs. (orig.)

  19. Global Maps from Interferometeric TanDEM-X Data: Applications and Potentials

    Science.gov (United States)

    Rizzoli, Paola; Martone, Michele; Brautigam, Benjamin; Zink, Manfred

    2015-05-01

    TanDEM-X is a spaceborne Synthetic Aperture Radar (SAR) mission, whose goal is the generation of a global Digital Elevation Model (DEM) with unprecedented accuracy, by using interferometric SAR (InSAR) techniques (InSAR). TanDEM-X offers a huge global data set of bistatic InSAR acquisitions, each of them supplemented by quick look images of different SAR quantities, such as amplitude, coherence, and DEM. Global quick look mosaics of the interferometric coherence and of the relative height error can be considered for mission performance monitoring and acquisition strategy optimization. The aim of this paper is to present the use of such mosaics within the TanDEM-X mission and to show their potentials for future scientific applications for example in the fields of glaciology and forestry.

  20. Simulation of the Surface Hydrology of Dalinghe Watershed Automatically Based on SRTM DEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to simulate the surface water flow of Dalinghe watershed based on SRTM DEM.[Method] By using ArcGIS ModelBuilder,and SRTM DEM data of Dalinghe watershed as input data,the model to simulate the water flow of Dalinghe watershed was set up.[Result] The model realized automatic division of Dalinghe watershed area and extraction of stream network.In the meantime,it also made the choice of threshold during filling DEM and extracting stream network much easier.The division of the Dalinghe w...

  1. ANALYSIS OF INFLUENCE OF TERRAIN RELIEF ROUGHNESS ON DEM ACCURACY GENERATED FROM LIDAR IN THE CZECH REPUBLIC TERRITORY

    Directory of Open Access Journals (Sweden)

    M. Hubacek

    2016-06-01

    Full Text Available Digital elevation models are today a common part of geographic information systems and derived applications. The way of their creation is varied. It depends on the extent of area, required accuracy, delivery time, financial resources and technologies available. The first model covering the whole territory of the Czech Republic was created already in the early 1980's. Currently, the 5th DEM generation is being finished. Data collection for this model was realized using the airborne laser scanning which allowed creating the DEM of a new generation having the precision up to a decimetre. Model of such a precision expands the possibilities of employing the DEM and it also offers new opportunities for the use of elevation data especially in a domain of modelling the phenomena dependent on highly accurate data. The examples are precise modelling of hydrological phenomena, studying micro-relief objects, modelling the vehicle movement, detecting and describing historical changes of a landscape, designing constructions etc. Due to a nature of the technology used for collecting data and generating DEM, it is assumed that the resulting model achieves lower accuracy in areas covered by vegetation and in built-up areas. Therefore the verification of model accuracy was carried out in five selected areas in Moravia. The network of check points was established using a total station in each area. To determine the reference heights of check points, the known geodetic points whose heights were defined using levelling were used. Up to several thousands of points were surveyed in each area. Individual points were selected according to a different configuration of relief, different surface types, and different vegetation coverage. The sets of deviations were obtained by comparing the DEM 5G heights with reference heights which was followed by verification of tested elevation model. Results of the analysis showed that the model reaches generally higher precision than

  2. Analysis of Influence of Terrain Relief Roughness on dem Accuracy Generated from LIDAR in the Czech Republic Territory

    Science.gov (United States)

    Hubacek, M.; Kovarik, V.; Kratochvil, V.

    2016-06-01

    Digital elevation models are today a common part of geographic information systems and derived applications. The way of their creation is varied. It depends on the extent of area, required accuracy, delivery time, financial resources and technologies available. The first model covering the whole territory of the Czech Republic was created already in the early 1980's. Currently, the 5th DEM generation is being finished. Data collection for this model was realized using the airborne laser scanning which allowed creating the DEM of a new generation having the precision up to a decimetre. Model of such a precision expands the possibilities of employing the DEM and it also offers new opportunities for the use of elevation data especially in a domain of modelling the phenomena dependent on highly accurate data. The examples are precise modelling of hydrological phenomena, studying micro-relief objects, modelling the vehicle movement, detecting and describing historical changes of a landscape, designing constructions etc. Due to a nature of the technology used for collecting data and generating DEM, it is assumed that the resulting model achieves lower accuracy in areas covered by vegetation and in built-up areas. Therefore the verification of model accuracy was carried out in five selected areas in Moravia. The network of check points was established using a total station in each area. To determine the reference heights of check points, the known geodetic points whose heights were defined using levelling were used. Up to several thousands of points were surveyed in each area. Individual points were selected according to a different configuration of relief, different surface types, and different vegetation coverage. The sets of deviations were obtained by comparing the DEM 5G heights with reference heights which was followed by verification of tested elevation model. Results of the analysis showed that the model reaches generally higher precision than the declared one in

  3. Accuracy Assessment of Digital Elevation Models Using GPS

    Science.gov (United States)

    Farah, Ashraf; Talaat, Ashraf; Farrag, Farrag A.

    2008-01-01

    A Digital Elevation Model (DEM) is a digital representation of ground surface topography or terrain with different accuracies for different application fields. DEM have been applied to a wide range of civil engineering and military planning tasks. DEM is obtained using a number of techniques such as photogrammetry, digitizing, laser scanning, radar interferometry, classical survey and GPS techniques. This paper presents an assessment study of DEM using GPS (Stop&Go) and kinematic techniques comparing with classical survey. The results show that a DEM generated from (Stop&Go) GPS technique has the highest accuracy with a RMS error of 9.70 cm. The RMS error of DEM derived by kinematic GPS is 12.00 cm.

  4. Pricing Model of Multiattribute Derivatives Based on Mixed Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By Analyzing the behavior and character of derivative security, the authorsestablished a pricing model of multiattribute derivative security whose underlying asset pricingprocess is a mixed process, and obtained a new model for option pricing of multiattribute derivatives based on mixed process, and improved some original results.

  5. 无人机遥感技术制作 DEM 新方法%The New Method of UAV Remote Sensing Producing DEM

    Institute of Scientific and Technical Information of China (English)

    柏飞

    2015-01-01

    UAV remote sensing technology to rapidly produce surface model DSM ,due to the existence of the survey area was surface features ,surface model can not substitute DEM ,this paper using a laser point cloud processing software terrasolid software ,through the elevation point cloud classification algorithm for data classification ,by people mutual fast machine to extract ground points make DEM.%无人机遥感技术能够快速制作地表模型DSM ,由于测区地物的存在,地表模型不能替代DEM ,本文提出利用激光点云处理软件 Terrasolid软件,通过高程分类算法对点云数据进行分类,通过人机互助快速提取出地面点制作DEM

  6. Spatial Characterization of Landscapes through Multifractal Analysis of DEM

    Directory of Open Access Journals (Sweden)

    P. L. Aguado

    2014-01-01

    Full Text Available Landscape evolution is driven by abiotic, biotic, and anthropic factors. The interactions among these factors and their influence at different scales create a complex dynamic. Landscapes have been shown to exhibit numerous scaling laws, from Horton’s laws to more sophisticated scaling of heights in topography and river network topology. This scaling and multiscaling analysis has the potential to characterise the landscape in terms of the statistical signature of the measure selected. The study zone is a matrix obtained from a digital elevation model (DEM (map 10 × 10 m, and height 1 m that corresponds to homogeneous region with respect to soil characteristics and climatology known as “Monte El Pardo” although the water level of a reservoir and the topography play a main role on its organization and evolution. We have investigated whether the multifractal analysis of a DEM shows common features that can be used to reveal the underlying patterns and information associated with the landscape of the DEM mapping and studied the influence of the water level of the reservoir on the applied analysis. The results show that the use of the multifractal approach with mean absolute gradient data is a useful tool for analysing the topography represented by the DEM.

  7. High Resolution Airborne InSAR DEM of Bagley Ice Valley, South-central Alaska: Geodetic Validation with Airborne Laser Altimeter Data

    Science.gov (United States)

    Muskett, R. R.; Lingle, C. S.; Echelmeyer, K. A.; Valentine, V. B.; Elsberg, D.

    2001-12-01

    Bagley Ice Valley, in the St. Elias and Chugach Mountains of south-central Alaska, is an integral part of the largest connected glacierized terrain on the North American continent. From the flow divide between Mt. Logan and Mt. St. Elias, Bagley Ice Valley flows west-northwest for some 90 km down a slope of less than 1o, at widths up to 15 km, to a saddle-gap where it turns south-west to become Bering Glacier. During 4-13 September 2000, an airborne survey of Bagley Ice Valley was performed by Intermap Technologies, Inc., using their Star-3i X-band SAR interferometer. The resulting digital elevation model (DEM) covers an area of 3243 km2. The DEM elevations are orthometric heights, in meters above the EGM96 geoid. The horizontal locations of the 10-m postings are with respect to the WGS84 ellipsoid. On 26 August 2000, 9 to 18 days prior to the Intermap Star-3i survey, a small-aircraft laser altimeter profile was acquired along the central flow line for validation. The laser altimeter data consists of elevations above the WGS84 ellipsoid and orthometric heights above GEOID99-Alaska. Assessment of the accuracy of the Intermap Star-3i DEM was made by comparison of both the DEM orthometric heights and elevations above the WGS84 ellipsoid with the laser altimeter data. Comparison of the orthometric heights showed an average difference of 5.4 +/- 1.0 m (DEM surface higher). Comparison of elevations above the WGS84 ellipsoid showed an average difference of -0.77 +/- 0.93 m (DEM surface lower). This indicates that the X-band Star-3i interferometer was penetrating the glacier surface by an expected small amount. The WGS84 comparison is well within the 3 m RMS accuracy quoted for GT-3 DEM products. Snow accumulation may have occurred, however, on Bagley Ice Valley between 26 August and 4-13 September 2000. This will be estimated using a mass balance model and used to correct the altimeter-derived surface heights. The new DEM of Bagley Ice Valley will provide a reference

  8. Application of CryoSat-2 data product for DEM generation in Dome-A summit area, Antarctica

    Science.gov (United States)

    fang, W.; Cheng, X.; Hui, F.

    2012-12-01

    Currently available Digital Elevation Models (DEMs) of Dome A were originally derived from radar altimetry data (ERS-1/2, GLAS/ICESat), and later improved by GPS measurements. The relatively low resolution and coverage poses a problem, especially for the regional research. CryoSat-2 with SIRAL (SAR/Interferometric Altimeter) was launched on 8 April 2010, providing an alternative for high-density and high-accuracy acquisition of terrain point data. The inclination of the satellite's orbit is 92°, and the orbit can approach latitude of 88°. The repeat period of 369 days provides a high orbit crossover density (10 crossovers km-2 year-1 at 87°) with a 30-day sub-cycle. In this study, we collected ten months (March to December 2011) of successive CryoSat-2 Low Rate Mode level 2 (LRM L2) datasets. Two types of filters were applied to remove additional elevation outliers. These filtering procedures excluded 5.95% of the original data. According to the distribution of the point data, terrain modeling of grid DEM, interpolation method of Kriging (ordinary Kriging), and a grid resolution of 200m is chosen for DEM generation in this study. Finally, we used the satellite's monthly revisits with non-repeated coverage and present a novel DEM of 900 km2 in the Dome A region centered at Kunlun Station (80°25‧01″S, 77°06‧58″E). It shows that the topography of the Dome A region is saddle-shaped, with a northern peak and a southern peak. We used a subtraction method to compare the novel DEM with the previous DEM of GPS measurements. The elevation differences exhibit a positive average elevation bias. It may be due to the penetration of the Ku-band radar wave into the soft snow. As a first approximation based on the statistics of the height differences, we estimate that the average penetration depth of the CryoSat-2 Ku-band wave in this area is 1 m. Map of surface topography over the Dome A region generated from CryoSat-2 data. Contours are smoothed. The contour interval

  9. Creating High Quality DEMs of Large Scale Fluvial Environments Using Structure-from-Motion

    Science.gov (United States)

    Javernick, L. A.; Brasington, J.; Caruso, B. S.; Hicks, M.; Davies, T. R.

    2012-12-01

    During the past decade, advances in survey and sensor technology have generated new opportunities to investigate the structure and dynamics of fluvial systems. Key geomatic technologies include the Global Positioning System (GPS), digital photogrammetry, LiDAR, and terrestrial laser scanning (TLS). The application of such has resulted in a profound increase in the dimensionality of topographic surveys - from cross-sections to distributed 3d point clouds and digital elevation models (DEMs). Each of these technologies have been used successfully to derive high quality DEMs of fluvial environments; however, they often require specialized and expensive equipment, such as a TLS or large format camera, bespoke platforms such as survey aircraft, and consequently make data acquisition prohibitively expensive or highly labour intensive, thus restricting the extent and frequency of surveys. Recently, advances in computer vision and image analysis have led to development of a novel photogrammetric approach that is fully automated and suitable for use with simple compact (non-metric) cameras. In this paper, we evaluate a new photogrammetric method, Structure-from-Motion (SfM), and demonstrate how this can be used to generate DEMs of comparable quality to airborne LiDAR, using consumer grade cameras at low costs. Using the SfM software PhotoScan (version 0.8.5), high quality DEMs were produced for a 1.6 km reach and a 3.3 km reach of the braided Ahuriri River, New Zealand. Photographs used for DEM creation were acquired from a helicopter flying at 600 m and 800 m above ground level using a consumer grade 10.1mega-pixel, non-metric digital camera, resulting in object space resolution imagery of 0.12 m and 0.16 m respectively. Point clouds for the two study reaches were generated using 147 and 224 photographs respectively, and were extracted automatically in an arbitrary coordinate system; RTK-GPS located ground control points (GCPs) were used to define a 3d non

  10. On the potential of very high-resolution repeat DEMs in glacial and periglacial environments

    Directory of Open Access Journals (Sweden)

    J. Abermann

    2010-01-01

    Full Text Available The potential of high-resolution repeat DEMs was investigated for glaciological applications including periglacial features (e.g. rock glaciers. It was shown that glacier boundaries can be delineated using airborne LIDAR-DEMs as a primary data source and that information on debris cover extent could be extracted using multi-temporal DEMs. Problems and limitations are discussed, and accuracies quantified. Absolute deviations of airborne laser scanning (ALS derived glacier boundaries from ground-truthed ones were below 4 m for 80% of the ground-truthed values. Overall, we estimated an accuracy of +/−1.5% of the glacier area for glaciers larger than 1 km2. The errors in the case of smaller glaciers did not exceed +/−5% of the glacier area. The use of repeat DEMs in order to obtain information on the extent, characteristics and activity of rock glaciers was investigated and discussed based on examples.

  11. Elektromagnetische Strahlung. Informationen aus dem Weltall.

    Science.gov (United States)

    Schäfer, H.

    Contents: Informationen aus dem Weltall. Neue und zukünftige Geräte. Wichtiges und Interessantes aus der Positionsastronomie. Die Helligkeit der Sterne und anderer astronomischer Objekte. Spektroskopie und Spektralanalyse. Beobachtungen außerhalb des optischen Bereiches.

  12. VT Lidar Hydro-flattened DEM (1.6 meter) - 2008 - West Franklin

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Lower 2008 1.6m and Digital Elevation Model (DEM) datasets of various...

  13. VT Lidar Hydro-flattened DEM (1.6 meter) - 2010 - East Franklin/West Orleans

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Missisquoi Upper 2010 1.6m and Digital Elevation Model (DEM) datasets of various...

  14. VT Lidar Hydro-flattened DEM (0.7 meter) - 2014 - Chittenden, Lamoille, Orleans, & Washington Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following...

  15. VT Lidar Hydro-flattened DEM (0.7 meter) - 2015 - Windham County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Windham County 2015 0.7m and Digital Elevation Model (DEM) dataset of the following...

  16. VT Lidar Hydro-flattened DEM (1.6 meter) - 2012 - Addison

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Addison County 2012 1.6m and Digital Elevation Model (DEM) datasets of various...

  17. DEM FROM SAR:PRINCIPLE AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    LiDeren; YangJie

    2003-01-01

    The paper gives an overview of the principle and application of generating DEM from SAR, including the principle and processing flow of generating DEM from single SAR and SAR interferometry. Afterwards, the application fields of InSAR for terrain surveying, volcanic terrain surveying and D—InSAR for monitoring ground subsiding are listed and described as well. The problem and prospect of application are also pointed out in the last part of this paper.

  18. DEM FROM SAR:PRINCIPLE AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Li Deren; Yang Jie

    2003-01-01

    The paper gives an overview of the principle and application of generating DEM from SAR, including the principle and processing flow of generating DEM from single SAR and SAR interferometry. Afterwards, the application fields of InSAR for terrain surveying, volcanic terrain surveying and D-InSAR for monitoring ground subsiding are listed and described as well.The problem and prospect of application are also pointed out in the last part of this paper.

  19. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping

    Science.gov (United States)

    Saksena, Siddharth; Merwade, Venkatesh

    2015-11-01

    Topography plays a major role in determining the accuracy of flood inundation areas. However, many areas in the United States and around the world do not have access to high quality topographic data in the form of Digital Elevation Models (DEM). For such areas, an improved understanding of the effects of DEM properties such as horizontal resolution and vertical accuracy on flood inundation maps may eventually lead to improved flood inundation modeling and mapping. This study attempts to relate the errors arising from DEM properties such as spatial resolution and vertical accuracy to flood inundation maps, and then use this relationship to create improved flood inundation maps from coarser resolution DEMs with low accuracy. The results from the five stream reaches used in this study show that water surface elevations (WSE) along the stream and the flood inundation area have a linear relationship with both DEM resolution and accuracy. This linear relationship is then used to extrapolate the water surface elevations from coarser resolution DEMs to get water surface elevations corresponding to a finer resolution DEM. Application of this approach show that improved results can be obtained from flood modeling by using coarser and less accurate DEMs, including public domain datasets such as the National Elevation Dataset and Shuttle Radar Topography Mission (SRTM) DEMs. The improvement in the WSE and its application to obtain better flood inundation maps is dependent on the study reach characteristics such as land use, valley shape, reach length and width. Application of the approach presented in this study on more reaches may lead to development of guidelines for flood inundation mapping using coarser resolution and less accurate topographic datasets.

  20. Effective simulation of flexible lateral boundaries in two-and three-dimensional DEM simulations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Discrete element method (DEM) models to simulate laboratory element tests play an important role in advancing our understanding of the mechanics of granular material response, including bonded or cemented, particulate materials.Comparisons of the macro-scale response observed in a real physical test and a "virtual" DEM-simulated test can calibrate or validate DEM models.The detailed, particle scale information provided in the DEM simulation can then be used to develop our understanding of the material behaviour.It is important to accurately model the physical test boundary conditions in these DEM simulations.This paper specifically considers triaxial tests as these tests are commonly used in soil mechanics.In a triaxial test,the test specimen of granular material is enclosed within a flexible latex membrane that allows the material to deform freely during testing, while maintaining a specified stress condition. Triaxial tests can only be realistically simulated in 3D DEM codes, however analogue,2D, biaxial DEM simulations are also often considered as it is easier to visualize particle interactions in two dimensions. This paper describes algorithms to simulate the lateral boundary conditions imposed by the latex membrane used in physical triaxial tests in both 2D and 3D DEM simulations.The importance of carefully considering the lateral boundary conditions in DEM simulations is illustrated by considering a 2D biaxial test on a specimen of frictional unbonded disks and a 3D triaxial test on a bonded (cemented) specimen of spheres. The comparisons indicate that the lateral boundary conditions have a more significant influence on the local,particle-scale response in comparison with the overall macro-scale observations.

  1. Performance Evaluation of Four DEM-Based Fluvial Terrace Mapping Methods Across Variable Geomorphic Settings: Application to the Sheepscot River Watershed, Maine

    Science.gov (United States)

    Hopkins, A. J.; Snyder, N. P.

    2014-12-01

    Fluvial terraces are utilized in geomorphic studies as recorders of land-use, climate, and tectonic history. Advances in digital topographic data, such as high-resolution digital elevation models (DEMs) derived from airborne lidar surveys, has promoted the development of several methods used to extract terraces from DEMs based on their characteristic morphology. The post-glacial landscape of the Sheepscot River watershed, Maine, where strath and fill terraces are present and record Pleistocene deglaciation, Holocene eustatic forcing, and Anthropocene land-use change, was selected to implement a comparison between terrace mapping methodologies. At four study sites within the watershed, terraces were manually mapped to facilitate the comparison between fully and semi-automated DEM-based mapping procedures, including: (1) edge detection functions in Matlab, (2) feature classification algorithms developed by Wood (1996), (3) spatial relationships between interpreted terraces and surrounding topography (Walter et al., 2007), and (4) the TerEx terrace mapping toolbox developed by Stout and Belmont (2014). Each method was evaluated based on its accuracy and ease of implementation. The four study sites have varying longitudinal slope (0.1% - 5%), channel width (lidar DEMs.

  2. Deriving minimal models for resource utilization

    NARCIS (Netherlands)

    te Brinke, Steven; Bockisch, Christoph; Bergmans, Lodewijk; Malakuti Khah Olun Abadi, Somayeh; Aksit, Mehmet; Katz, Shmuel

    2013-01-01

    We show how compact Resource Utilization Models (RUMs) can be extracted from concrete overly-detailed models of systems or sub-systems in order to model energy-aware software. Using the Counterexample-Guided Abstraction Refinement (CEGAR) approach, along with model-checking tools, abstract models

  3. DEM analysis of FOXSI-2 microflare using AIA observations

    Science.gov (United States)

    Athiray Panchapakesan, Subramania; Glesener, Lindsay; Vievering, Juliana; Camilo Buitrago-Casas, Juan; Christe, Steven; Inglis, Andrew; Krucker, Sam; Musset, Sophie

    2017-08-01

    The second flight of Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment was successfully completed on 11 December 2014. FOXSI makes direct imaging and spectral observation of the Sun in hard X-rays using grazing incidence optics modules which focus X-rays onto seven focal plane detectors kept at a 2m distance, in the energy range 4 to 20 keV, to study particle acceleration and coronal heating. Significant HXR emissions were observed by FOXSI during microflare events with A0.5 and A2.5 class, as classified by GOES, that occurred during FOXSI-2 flight.Spectral analysis of FOXSI data for these events indicate presence of plasma at higher temperatures (>10MK). We attempt to study the plasma content in the corona at different temperatures, characterized by the differential emission measure (DEM), over the FOXSI-2 observed flare regions using the Atmospheric Imaging Assembly (SDO/AIA) data. We utilize AIA observations in different EUV filters that are sensitive to ionized iron lines, to determine the DEM by using a regularized inversion method. This poster will show the properties of hot plasma as derived from FOXSI-2 HXR spectra with supporting DEM analysis using AIA observations.

  4. Analysis of the seasonal and interannual evolution of Jakobshavn Isbrae from 2010-2013 using high spatial/temporal resolution DEM and velocity data

    Science.gov (United States)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Moratto, Z. M.; Alexandrov, O.; Floricioiu, D.; Morin, P. J.; Porter, C. C.; Beyer, R. A.; Fong, T.

    2013-12-01

    Greenland's large marine-terminating outlet glaciers have displayed marked retreat, speedup, and thinning in recent decades. Jakobshavn Isbrae, one of Greenland's largest outlet glaciers, has retreated ~15 km, accelerated ~150%, and thinned ~200 m since the early 1990s. Here, we present the first comprehensive analysis of high spatial (~2-5 m/px) and temporal (daily-monthly) resolution elevation and velocity data for Jakobshavn from 7/2010 to 7/2013. We have developed an automated processing pipeline using open-source software (Ames Stereo Pipeline, GDAL/OGR, NumPy/SciPy, etc.) to produce orthoimage, digital elevation model (DEM), and surface velocity products from DigitalGlobe WorldView-1/2 stereo imagery (~0.5 m/px, ~17 km swath width). Our timeseries consists of 35 WV DEMs (~2-4 m/px) covering the lower trunks of the main+north branches and fjord, but also extending >110 km inland. We supplement this record with 7 TanDEM-X DEMs (~5 m/px, ~35 km swath width) between 6/2011-9/2012. Elevation data from IceBridge ATM/LVIS, ICESat GLAS, and GPS campaigns provide absolute control data over fixed surfaces (i.e., exposed bedrock). Observed WV DEM offsets are consistent with DigitalGlobe's published value of 5.0 m CE90/LE90 horizontal/vertical accuracy. After DEM co-registration, we observe sub-meter horizontal and vertical absolute accuracy. Velocity data are derived from TerraSAR-X data with 11 day repeat interval. Supplemental velocity data are derived through correlation of high-resolution WV DEM/image data. The contemporaneous DEM and velocity data provide full 3D displacement vectors for each time interval, allowing for the analysis of both Eulerian and Lagrangian elevation change. The lower trunk of Jakobshavn displays significant seasonal velocity variations, with recent rates of ~8 km/yr during winter to >17 km/yr during summer. DEM data show corresponding elevation changes of -30 to -45 m in summer and +15 to +20 m in winter, corresponding to integrated volumes

  5. Generation of Statewide DEMs and Orthoimages – Guidelines and Methodology

    Directory of Open Access Journals (Sweden)

    Giribabu Dandabathula

    2015-06-01

    Full Text Available Cartosat-1 is a global, high resolution stereographic imaging mission to support enhanced applications in several areas of terrain mapping, natural resources management, disaster management, infrastructure and development planning. A collaborative project of generating statewide Digital Elevation Model (DEMs and mosaic of Ortho-image for all the states and union territories in India has completed under the project namely Space based Information Support for Decentralized Planning (SIS-DP using Photogrammetric techniques with Cartosat-1 stereo data.  Approximately 11000 stereo pairs of Cartosat-1 data were used in this process. Photogrammetric blocks for each state were processed using existing reference tiles and accordingly ortho-images were generated. The paper outlines the methodology for generating state-wide Digital Elevation Models (DEMs and ortho-images. The guidelines that govern the quality of the output were discussed. Dissemination mechanism via public accessible web platform was described.

  6. Applying the Artificial Neural Network to Predict the Soil Responses in the DEM Simulation

    Science.gov (United States)

    Li, Z.; Chow, J. K.; Wang, Y. H.

    2017-06-01

    This paper aims to bridge the soil properties and the soil response in the discrete element method (DEM) simulation using the artificial neural network (ANN). The network was designed to output the stress-strain-volumetric response from inputting the soil properties. 31 biaxial shearing tests with varying soil parameters were generated using the DEM simulations. Based on these 31 training samples, a three-layer neural network was established. 2 extra samples were generated to examine the validity of the network, and the predicted curves using the ANN were well matched with those from the DEM simulations. Overall, the ANN was found promising in effectively modelling the soil behaviour.

  7. Computer vision: automating DEM generation of active lava flows and domes from photos

    Science.gov (United States)

    James, M. R.; Varley, N. R.; Tuffen, H.

    2012-12-01

    Accurate digital elevation models (DEMs) form fundamental data for assessing many volcanic processes. We present a photo-based approach developed within the computer vision community to produce DEMs from a consumer-grade digital camera and freely available software. Two case studies, based on the Volcán de Colima lava dome and the Puyehue Cordón-Caulle obsidian flow, highlight the advantages of the technique in terms of the minimal expertise required, the speed of data acquisition and the automated processing involved. The reconstruction procedure combines structure-from-motion and multi-view stereo algorithms (SfM-MVS) and can generate dense 3D point clouds (millions of points) from multiple photographs of a scene taken from different positions. Processing is carried out by automated software (e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/). SfM-MVS reconstructions are initally un-scaled and un-oriented so additional geo-referencing software has been developed. Although this step requires the presence of some control points, the SfM-MVS approach has significantly easier image acquisition and control requirements than traditional photogrammetry, facilitating its use in a broad range of difficult environments. At Colima, the lava dome surface was reconstructed from recent and archive images taken from light aircraft over flights (2007-2011). Scaling and geo-referencing was carried out using features identified in web-sourced ortho-imagery obtained as a basemap layer in ArcMap - no ground-based measurements were required. Average surface measurement densities are typically 10-40 points per m2. Over mean viewing distances of ~500-2500 m (for different surveys), RMS error on the control features is ~1.5 m. The derived DEMs (with 1-m grid resolution) are sufficient to quantify volumetric change, as well as to highlight the structural evolution of the upper surface of the dome following an explosion in June 2011. At Puyehue Cord

  8. Stochastic Downscaling of Digital Elevation Models

    Science.gov (United States)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution

  9. Comparing Two Photo-Reconstruction Methods to Produce High Density Point Clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain

    Directory of Open Access Journals (Sweden)

    Álvaro Gómez-Gutiérrez

    2014-06-01

    Full Text Available In this paper, two methods based on computer vision are presented in order to produce dense point clouds and high resolution DEMs (digital elevation models of the Corral del Veleta rock glacier in Sierra Nevada (Spain. The first one is a semi-automatic 3D photo-reconstruction method (SA-3D-PR based on the Scale-Invariant Feature Transform algorithm and the epipolar geometry theory that uses oblique photographs and camera calibration parameters as input. The second method is fully automatic (FA-3D-PR and is based on the recently released software 123D-Catch that uses the Structure from Motion and MultiView Stereo algorithms and needs as input oblique photographs and some measurements in order to scale and geo-reference the resulting model. The accuracy of the models was tested using as benchmark a 3D model registered by means of a Terrestrial Laser Scanner (TLS. The results indicate that both methods can be applied to micro-scale study of rock glacier morphologies and processes with average distances to the TLS point cloud of 0.28 m and 0.21 m, for the SA-3D-PR and the FA-3D-PR methods, respectively. The performance of the models was also tested by means of the dimensionless relative precision ratio parameter resulting in figures of 1:1071 and 1:1429 for the SA-3D-PR and the FA-3D-PR methods, respectively. Finally, Digital Elevation Models (DEMs of the study area were produced and compared with the TLS-derived DEM. The results showed average absolute differences with the TLS-derived DEM of 0.52 m and 0.51 m for the SA-3D-PR and the FA-3D-PR methods, respectively.

  10. Improving Cartosat-1 DEM accuracy using synthetic stereo pair and triplet

    Science.gov (United States)

    Giribabu, D.; Srinivasa Rao, S.; Krishna Murthy, Y. V. N.

    2013-03-01

    Cartosat-1 is the first Indian Remote Sensing Satellite capable of providing along-track stereo images. Cartosat-1 provides forward stereo images with look angles +26° and -5° with respect to nadir for generating Digital Elevation Models (DEMs), Orthoimages and value added products for various applications. A pitch bias of -21° to the satellite resulted in giving reverse tilt mode stereo pair with look angles of +5° and -26° with respect to nadir. This paper compares DEMs generated using forward, reverse and other possible synthetic stereo pairs for two different types of topographies. Stereo triplet was used to generate DEM for Himalayan mountain topography to overcome the problem of occlusions. For flat to undulating topography it was shown that using Cartosat-1 synthetic stereo pair with look angles of -26° and +26° will produce improved version of DEM. Planimetric and height accuracy (Root Mean Square Error (RMSE)) of less than 2.5 m and 2.95 m respectively were obtained and qualitative analysis shows finer details in comparison with other DEMs. For rugged terrain and steep slopes of Himalayan mountain topography simple stereo pairs may not provide reliable accuracies in DEMs due to occlusions and shadows. Stereo triplet from Cartosat-1 was used to generate DEM for mountainous topography. This DEM shows better reconstruction of elevation model even at occluded region when compared with simple stereo pair based DEM. Planimetric and height accuracy (RMSE) of nearly 3 m were obtained and qualitative analysis shows reduction of outliers at occluded region.

  11. Mapping debris-flow hazard in Honolulu using a DEM

    Science.gov (United States)

    Ellen, Stephen D.; Mark, Robert K.; ,

    1993-01-01

    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  12. Estimating the rate and elevation dependence of net accretion in a freshwater tidal marsh using DEM-registered surveys

    Science.gov (United States)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Sanders, G.

    2012-12-01

    Tidal freshwater marshes contribute to estuary health by filtering excess sediment and nutrients delivered from the watershed, but their extent and persistence is threatened by rising sea level. To maintain a semi-emergent position, the marsh surface must gain elevation by accreting mineral and/or organic material at a rate comparable to sea level rise. Historic records of sea level rise (SLR) are available from tide gages, but records of historic elevation change at the necessary precision are rare. Additionally, sedimentation, compaction, erosion, and the resultant net elevation gain are spatially heterogeneous across a marsh, varying with elevation, among other factors. We solve this issue at our study site by taking advantage of a 1992 total station survey of the marsh and RTK GPS surveys from 2005 and 2012, and registering them all against an airborne LiDAR derived DEM. Thus, although no points are directly reoccupied, survey vs. DEM trends can be found for each survey, and an average rate of elevation change can be calculated as a function of DEM elevation. We found rates of net elevation gain ranging spatially from 3-5 mm/yr between the years 1992-2012, similar to the historic rate of SLR at a nearby Washington, DC tide gage of 4 mm/yr over the past 28 years. Net elevation change varied as DEM elevation increased, with several local minima and maxima potentially related to variations and transitions in vegetation community. Assuming IPCC predicted sea level rise and a fixed relationship between elevation and net accretion, we then forecast marsh elevation relative to sea level and associated vegetative community changes through the 21st century using an inundation model that considers net accretion and a constant relationship between vegetation community type and elevation.

  13. Cosmological Models with Fractional Derivatives and Fractional Action Functional

    Institute of Scientific and Technical Information of China (English)

    V.K. Shchigolev

    2011-01-01

    Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.

  14. Multi-temporal airborne LIDAR-DEMs for glacier and permafrost mapping and monitoring

    Directory of Open Access Journals (Sweden)

    J. Abermann

    2009-07-01

    Full Text Available The proposed method presents a simple and robust way to derive glacier extent by using multi-temporal high-resolution DEMs (digital elevation models as a main data source. For glaciers that are not debris covered, we perform the glacier boundary delineation by analysing roughness differences between ice and its surroundings. A promising way to distinguish dead ice, debris-covered ice or permafrost from its rocky surroundings is shown by taking elevation changes from DEMs of different dates into consideration. In case data has a high spatial and temporal resolution a good representation of the extent of debris cover and thus the overall ice covered area can be given. We use examples to show how potentially ambiguous areas can be treated decisively by the additional qualitative analysis of aerial photographs. Problems and limitations are discussed in comparison with selected other remote sensing techniques and accuracies are quantified. For glaciers larger than 1 km2 an accuracy of ±1% of the glacier area could be assessed. The errors of smaller glaciers do not exceed ±5% of the glacier area.

  15. Soil properties and environmental tracers: A DEM based assessment in an Australian Mediterranean environment

    Science.gov (United States)

    Hancock, G. R.; Murphy, D. V.; Li, Y.

    2013-02-01

    Terrain properties vary at the hillslope and catchment scale and play a significant role in the distribution of water and sediment. Of particular interest in recent years has been the role of hillslope and catchment properties in the spatial and temporal distribution of soil organic carbon (SOC) and the ability to predict SOC from DEM terrain analysis. SOC plays a significant role in soil health and productivity as well as providing a significant store of terrestrial carbon. This study examined SOC concentration along representative pasture transects in a catchment located in southern Western Australia with a Mediterranean climate. Results demonstrate that the majority of SOC (%) is located in the near-surface (300 mm) and is concentrated in the top 0.2 m. There was no relationship found between SOC (or microbial biomass) and topography or topographic derivatives such as wetness and terrain indices from DEMs. Significant relationships were however found between SOC and environmental tracers (137Cs and 210Pbex) down the soil profile. Weak, yet significant, relationships were found between SOC and the environmental tracers along the hillslope transects, suggesting that organic carbon moves along the same pathways as clay particles in soil. An erosion assessment using 137Cs and also a numerical soil erosion and landscape evolution model found low and comparable erosion rates at the site. The results demonstrate that SOC concentration is relatively uniform across the study site and that a transect scale assessment can provide a measure of hillslope and catchment scale SOC in this environment.

  16. Ohio-drainage digital elevation model for use with Water Resources Investigations Report 03-4164

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage was derived from U.S. Geological Survey National Elevation Dataset (NED) Digital Elevation Models (DEMs) for all of Ohio and portions of Indiana,...

  17. Global Topographic 30 Arc-Second Digital Elevation Model: Released 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — GTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several...

  18. Global Topographic 30 Arc-Second Digital Elevation Model: Released 1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — GTOPO30 is a global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer). GTOPO30 was derived from several...

  19. Hydraulic fracturing - an attempt of DEM simulation

    Science.gov (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  20. Local discrete symmetries from superstring derived models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  1. Local discrete symmetries from superstring derived models

    Science.gov (United States)

    Faraggi, Alon E.

    1997-02-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  2. Local discrete symmetries from superstring derived models

    CERN Document Server

    Faraggi, A E

    1996-01-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non--Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  3. Quality Test Various Existing dem in Indonesia Toward 10 Meter National dem

    Science.gov (United States)

    Amhar, Fahmi

    2016-06-01

    Indonesia has various DEM from many sources and various acquisition date spreaded in the past two decades. There are DEM from spaceborne system (Radarsat, TerraSAR-X, ALOS, ASTER-GDEM, SRTM), airborne system (IFSAR, Lidar, aerial photos) and also terrestrial one. The research objective is the quality test and how to extract best DEM in particular area. The method is using differential GPS levelling using geodetic GPS equipment on places which is ensured not changed during past 20 years. The result has shown that DEM from TerraSAR-X and SRTM30 have the best quality (rmse 3.1 m and 3.5 m respectively). Based on this research, it was inferred that these parameters are still positively correlated with the basic concept, namely that the lower and the higher the spatial resolution of a DEM data, the more imprecise the resulting vertical height.

  4. Identification of Fluvial Knickpoints and Analysis of Its Scale Effect Based on DEMs%不同尺度DEM的河流裂点提取及其效应分析

    Institute of Scientific and Technical Information of China (English)

    王婷婷; 杨昕; 叶娟娟; 王琛智

    2014-01-01

    以不同尺度DEM数据提取裂点及其效应存在较大差异。本文以1:1万DEM为基础数据,通过小波分析生成多尺度DEM数据。以庐山地区16条河流为例,实现了多尺度DEM数据的河流裂点提取,探讨了河流裂点的变化规律,并构建了裂点个数的尺度预测模型。实验结果表明:(1)采用河道纵剖面与点坡降相结合的方法可快速准确地判断裂点;(2)在庐山地区,1:1万DEM数据可准确判断高差不小于5 m的裂点,对于高差小于5 m的裂点由于DEM表达精度和数据误差,而无法准确判定;(3)DEM尺度对裂点提取影响显著,裂点个数随着DEM分辨率降低逐渐减少,符合幂函数递减规律;(4)通过与ASTER GDEM和SRTM DEM对比验证,本文所构建的裂点个数与DEM尺度的拟合模型具有一定的预测精度。%Knickpoints are fundamental for understanding local erosion basis and the evolution of fluvial land-forms. To extract the knickpoints, Digital Elevation Model (DEM) is widely adopted as the basic data in litera-tures. However, the accuracy of the extraction is greatly influenced by the DEM resolution. In this paper, to ex-plore the influence of DEM resolution on the extraction of knickpoints, we analyzed the gradient of the fluvial longitudinal profiles to extract the knickpoints in Mount Lu area based on DEM and Digital Line Graphic (DLG). Firstly, the longitudinal profiles of the 16 streams with elevations are derived from 5 m DEM, from which the potential knickpoints are extracted from an empirical gradient domain. Secondly, to find a suitable gra-dient domain, a field investigation of four typical rivers, including Three-Step Spring and Crane Ravine, is car-ried out to collect the spatial positions of 30 knickpoints with GPS. Thirdly, multiple resolutions of DEM data are generated by wavelet transformation based on the 5 m DEM. The knickpoints in each scale are extracted in the same way from

  5. Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico

    OpenAIRE

    2008-01-01

    Lahars are among themost serious and far-reaching volcanic hazards. In regions with potential interactions of lahars with populated areas and human structures the assessment of the related hazards is crucial for undertaking appropriate mitigating actions and reduce the associated risks. Modeling of lahars has become an important tool in such assessments, in particular where the geologic record of past events is insufficient. Mass-flow modeling strongly relies on digital terrain data. Availabi...

  6. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  7. Geospatial approach in mapping soil erodibility using CartoDEM - A case study in hilly watershed of Lower Himalayan Range

    Science.gov (United States)

    Kumar, Suresh; Gupta, Surya

    2016-10-01

    Soil erodibility is one of the most important factors used in spatial soil erosion risk assessment. Soil information derived from soil map is used to generate soil erodibility factor map. Soil maps are not available at appropriate scale. In general, soil maps at small scale are used in deriving soil erodibility map that largely generalized spatial variability and it largely ignores the spatial variability since soil map units are discrete polygons. The present study was attempted to generate soil erodibilty map using terrain indices derived from DTM and surface soil sample data. Soil variability in the hilly landscape is largely controlled by topography represented by DTM. The CartoDEM (30 m) was used to derive terrain indices such as terrain wetness index (TWI), stream power index (SPI), sediment transport index (STI) and slope parameters. A total of 95 surface soil samples were collected to compute soil erodibility factor ( K) values. The K values ranged from 0.23 to 0.81 t ha-1R-1 in the watershed. Correlation analysis among K-factor and terrain parameters showed highest correlation of soil erodibilty with TWI ( r 2= 0.561) followed by slope ( r 2= 0.33). A multiple linear regression model was developed to derive soil erodibilty using terrain parameters. A set of 20 soil sample points were used to assess the accuracy of the model. The coefficient of determination ( r 2) and RMSE were computed to be 0.76 and 0.07 t ha-1R-1 respectively. The proposed methodology is quite useful in generating soil erodibilty factor map using digital elevation model (DEM) for any hilly terrain areas. The equation/model need to be established for the particular hilly terrain under the study. The developed model was used to generate spatial soil erodibility factor ( K) map of the watershed in the lower Himalayan range.

  8. Kinetic derivation of a Hamilton-Jacobi traffic flow model

    CERN Document Server

    Borsche, Raul; Kimathi, Mark

    2012-01-01

    Kinetic models for vehicular traffic are reviewed and considered from the point of view of deriving macroscopic equations. A derivation of the associated macroscopic traffic flow equations leads to different types of equations: in certain situations modified Aw-Rascle equations are obtained. On the other hand, for several choices of kinetic parameters new Hamilton-Jacobi type traffic equations are found. Associated microscopic models are discussed and numerical experiments are presented discussing several situations for highway traffic and comparing the different models.

  9. Dual equivalence in models with higher-order derivatives

    CERN Document Server

    Bazeia, D; Nascimento, J R S; Ribeiro, R F; Wotzasek, C

    2003-01-01

    We introduce a class of higher-order derivative models in (2,1) space-time dimensions. The models are described by a vector field, and contain a Proca-like mass term which prevents gauge invariance. We use the gauge embedding procedure to generate another class of higher-order derivative models, gauge-invariant and dual to the former class. We also show that the gauge embedding approach works appropriately when the vector field couples with fermionic matter.

  10. Cabibbo Mixing in Superstring Derived Standard--like Models

    CERN Document Server

    Faraggi, A E; Faraggi, Alon E.; Halyo, Edi

    1993-01-01

    We examine the problem of generation mixing in realistic superstring derived standard--like models, constructed in the free fermionic formulation. We study the possible sources of family mixing in these models . In a specific model we estimate the Cabibbo angle. We argue that a Cabibbo angle of the correct order of magnitude can be obtained in these models.

  11. Seasonal variabilty of surface velocities and ice discharge of Columbia Glacier, Alaska using high-resolution TanDEM-X satellite time series and NASA IceBridge data

    Science.gov (United States)

    Vijay, Saurabh; Braun, Matthias

    2014-05-01

    developed basal drainage system speeds are at their minimum. We also analyze the variation in conjunction with the prevailing meteorological conditions as well as changes in calving front position in order to exclude other potential influencing factors. In a second step, we also exploit TanDEM-X data to generate various digital elevation models (DEMs) at different time steps. The multi-temporal DEMs are used to estimate the difference in surface elevation and respective ice thickness changes. All TanDEM-X DEMs are well tied with a SPOT reference DEM. Errors are estimated over ice free moraines and rocky areas. The quality of the TanDEM-X DEMs on snow and ice covered areas are further assessed by a comparison to laser scanning data from NASA Icebridge campaigns. The time wise closest TanDEM-X DEMs were compared to the Icebridge tracks from winter and summer surveys in order to judge errors resulting from the radar penetration of the x/band radar signal into snow, ice and firn. The average differences between laser scanning and TanDEM-X in August, 2011 and March, 2012 are observed to be 8.48 m and 14.35 m respectively. Retreat rates of the glacier front are derived manually by digitizing the terminus position. By combining the data sets of ice velocity, ice thickness and the retreat rates at different time steps, we estimate the seasonal variability of the ice discharge of Columbia Glacier.

  12. A Vector-based Method for the Extraction of Catchment from Grid DEMs

    Institute of Scientific and Technical Information of China (English)

    ZHU Qing; TIAN Yixiang

    2005-01-01

    The methodology of catchment extraction especially from regular grid digital elevation models (DEMs) is briefly reviewed.Then an efficient algorithm, which combines vector process and traditional neighbourhood raster process, is designed for extracting the catchments and subcatchments from depressionless DEMs.The catchment area of each river in the grid DEM data is identified and delineated, then is divided into subcatchments as required.Compared to traditional processes, this method for identifying catchments focuses on the boundaries instead of the area inside the catchments and avoids the boundary intersection phenomena.Last, the algorithm is tested with a set of DEMs of different sizes, and the result proves that the computation efficiency and accuracy are better than existent methods.

  13. A simplified DEM numerical simulation of vibroflotation without backfill

    Science.gov (United States)

    Jiang, M. J.; Liu, W. W.; He, J.; Sun, Y.

    2015-09-01

    Vibroflotation is one of the deep vibratory compaction techniques for ground reinforcement. This method densities the soil and improves its mechanical properties, thus helps to protect people's lives and property from geological disasters. The macro reinforcement mechanisms of vibroflotation method have been investigated by numerical simulations, laboratory and in-situ experiments. However, little attention has been paid on its micro - mechanism, which is essential to fully understand the principle of the ground reinforcement. Discrete element method (DEM), based on discrete mechanics, is more powerful to solve large deformation and failure problems. This paper investigated the macro-micro mechanism of vibroflotation without backfill under two conditions, i.e., whether or not the ground water was considered, by incorporating inter-particle rolling resistance model in the DEM simulations. Conclusions obtained are as follows: The DEM simulations incorporating rolling resistance well replicate the mechanical response of the soil assemblages and are in line with practical observations. The void ratio of the granular soil fluctuates up and down in the process of vibroflotation, and finally reduces to a lower value. It is more efficient to densify the ground without water compared to the ground with water.

  14. Validation of DEM prediction for granular avalanches on irregular terrain

    Science.gov (United States)

    Mead, Stuart R.; Cleary, Paul W.

    2015-09-01

    Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.

  15. Glacier Volume Change Estimation Using Time Series of Improved Aster Dems

    Science.gov (United States)

    Girod, Luc; Nuth, Christopher; Kääb, Andreas

    2016-06-01

    Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be

  16. Silicon Carbide Derived Carbons: Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  17. HELI-DEM portal for geo-processing services

    Science.gov (United States)

    Cannata, Massimiliano; Antonovic, Milan; Molinari, Monia

    2014-05-01

    HELI-DEM (Helvetia-Italy Digital Elevation Model) is a project developed in the framework of Italy/Switzerland Operational Programme for Trans-frontier Cooperation 2007-2013 whose major aim is to create a unified digital terrain model that includes the alpine and sub-alpine areas between Italy and Switzerland. The partners of the project are: Lombardy Region, Piedmont Region, Polytechnic of Milan, Polytechnic of Turin and Fondazione Politecnico from Italy; Institute of Earth Sciences (SUPSI) from Switzerland. The digital terrain model has been produced by integrating and validating the different elevation data available for the areas of interest, characterized by different reference frame, resolutions and accuracies: DHM at 25 m resolution from Swisstopo, DTM at 20 m resolution from Lombardy Region, DTM at 5 m resolution from Piedmont Region and DTM LiDAR PST-A at about 1 m resolution, that covers the main river bed areas and is produced by the Italian Ministry of the Environment. Further results of the project are: the generation of a unique Italian Swiss geoid with an accuracy of few centimeters (Gilardoni et al. 2012); the establishment of a GNSS permanent network, prototype of a transnational positioning service; the development of a geo-portal, entirely based on open source technologies and open standards, which provides the cross-border DTM and offers some capabilities of analysis and processing through the Internet. With this talk, the authors want to present the main steps of the project with a focus on the HELI-DEM geo-portal development carried out by the Institute of Earth Sciences, which is the access point to the DTM outputted from the project. The portal, accessible at http://geoservice.ist.supsi.ch/helidem, is a demonstration of open source technologies combined for providing access to geospatial functionalities to wide non GIS expert public. In fact, the system is entirely developed using only Open Standards and Free and Open Source Software (FOSS

  18. 基于DEM的分布式融雪汇流模型关键算法和实现%Key algorithm and its realization about distributed Snowmelt concentrating-flow model based on DEM

    Institute of Scientific and Technical Information of China (English)

    刘永强; 戴维; 刘志辉

    2011-01-01

    The difficulty of Distributed Snowmelt Runoff Model (DSRM) is to simulate the concentrating process of snowmelt, which plays an important role in discharging of watershed outlet, especially upon its peak value. On researching DSIM, a time-spatial featured and DEM-based Distributed Snowmelt Concentrating-flow Model (DSCFM) according to the characteristics of high-resolution DEM data of small watershed is constructed after obtaining the corresponding traits information including slope degree, slope direction, water flow direction and average flow speed etc. and building up concentrating net of watersheds. This model has features as follows: ( 1 ) a new concept “Unit - Time period” is put forward. It is set to be an adjustable parameter to give facilities for the practical application of DSCFM, which enable the model to calculate out the runoff concentrating quantity of any grid during different period and visualize the dynamic simulation of snowrnelt concentrating quantity through combining GIS technique. (2) The key algorithm and detailed process of implementing method as well as its source code in Java for time length of concentrating-flow to its outlet and concentrating-flow volume are provided. The recursion programming are adopted for the key algorithm, the calculation velocity is thus fast. (3) The concentrating-flow simulation calculation and validation of flooding process during spring-snowmelt-flood period at representative researching area indicate that the simulating result of DSCFM is better. The model and the corresponding algorithm are, therefore, much more practically meaningful for prediction of snowmelt volume and springtime snowmelt flood.%根据小流域和高分辨率DEM数据的特点,在获得栅格单元的坡度、坡向、水流流向、平均流速等相关特征信息并且建立流域的汇流网络之后,建立了一种具有时空特征的基于DEM的分布式融雪汇流模型.在模型中提出了"单元时段"的概念,将其设

  19. TanDEM-X the Earth surface observation project from space level - basis and mission status

    Directory of Open Access Journals (Sweden)

    Jerzy Wiśniowski

    2015-03-01

    Full Text Available TanDEM-X is DLR (Deutsches Zentrum für Luft- und Raumfahrt the Earth surface observation project using high-resolution SAR interferometry. It opens a new era in space borne radar remote sensing. The system is based on two satellites: TerraSAR-X (TSX and TanDEM-X (TDX flying on the very close, strictly controlled orbits. This paper gives an overview of the radar technology and overview of the TanDEM-X mission concept which is based on several innovative technologies. The primary objective of the mission is to deliver a global digital elevation model (DEM with an unprecedented accuracy, which is equal to or surpass the HRTI-3 specifications (12 m posting, relative height accuracy ±2 m for slope < 20% and ±4 m for slope > 20% [8]. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications.[b]Keywords[/b]: remote sensing, Bistatic SAR, digital elevation model (DEM, Helix formation, SAR interferomery, HRTI-3, synchronization

  20. Direct regional quasi-geoid determination using EGM2008 and DEM: A case study for Mainland China and its vicinity areas

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-11-01

    Full Text Available Earth's gravity model (EGM helps people better determine the figure of Earth, which is generally represented by a global geoid. For a considerable amount of practical applications, people use quasi-geoid to approximate the geoid, thus the quasi-geoid is also treated as an important height datum. In this study we revisit the method to directly determine regional quasi-geoid using EGM and digital elevation model (DEM, on the basis of Molodensky theory. According to the method we obtain a 5′ × 5′ quasi-geoid for Mainland China and its vicinity areas, based on the EGM2008 gravitational potential model and the Shuttle Radar Topography Mission (SRTM DEM model. By comparing height anomalies derived from EGM2008 with observations at 70 GPS/leveling points in areas including northwest, mid-west, mid-east and southeast of China, we find that the 5′ × 5′ EGM2008 quasi-geoid well fits the GPS/leveling results, with average deviations less than 10 cm for the selected areas in east China (with mainly plain topography and ∼20 cm for the selected areas in west China (highland or mountainous areas. We also discuss a few technical issues for directly determining height anomalies based on EGM and DEM, under the frame of Molodensky theory.

  1. Effect of Xanthone Derivatives on Animal Models of Depression

    Directory of Open Access Journals (Sweden)

    Xu Zhao, MD

    2014-12-01

    Conclusions: Within certain dose ranges, xanthone derivatives 1101 and 1105 have similar effects to venlafaxine hydrochloride in the treatment of depression as suggested by behavioral despair animal models using rats and mice.

  2. EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Wittke

    2017-05-01

    Full Text Available This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1 Digital Elevation Model (DEM and 2 land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP.

  3. Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2012-01-01

    Full Text Available Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.

  4. In need of combined topography and bathymetry DEM

    Science.gov (United States)

    Kisimoto, K.; Hilde, T.

    2003-04-01

    In many geoscience applications, digital elevation models (DEMs) are now more commonly used at different scales and greater resolution due to the great advancement in computer technology. Increasing the accuracy/resolution of the model and the coverage of the terrain (global model) has been the goal of users as mapping technology has improved and computers get faster and cheaper. The ETOPO5 (5 arc minutes spatial resolution land and seafloor model), initially developed in 1988 by Margo Edwards, then at Washington University, St. Louis, MO, has been the only global terrain model for a long time, and it is now being replaced by three new topographic and bathymetric DEMs, i.e.; the ETOPO2 (2 arc minutes spatial resolution land and seafloor model), the GTOPO30 land model with a spatial resolution of 30 arc seconds (c.a. 1km at equator) and the 'GEBCO 1-MINUTE GLOBAL BATHYMETRIC GRID' ocean floor model with a spatial resolution of 1 arc minute (c.a. 2 km at equator). These DEMs are products of projects through which compilation and reprocessing of existing and/or new datasets were made to meet user's new requirements. These ongoing efforts are valuable and support should be continued to refine and update these DEMs. On the other hand, a different approach to create a global bathymetric (seafloor) database exists. A method to estimate the seafloor topography from satellite altimetry combined with existing ships' conventional sounding data was devised and a beautiful global seafloor database created and made public by W.H. Smith and D.T. Sandwell in 1997. The big advantage of this database is the uniformity of coverage, i.e. there is no large area where depths are missing. It has a spatial resolution of 2 arc minute. Another important effort is found in making regional, not global, seafloor databases with much finer resolutions in many countries. The Japan Hydrographic Department has compiled and released a 500m-grid topography database around Japan, J-EGG500, in 1999

  5. ArcGeomorphometry: A toolbox for geomorphometric characterisation of DEMs in the ArcGIS environment

    Science.gov (United States)

    Rigol-Sanchez, Juan P.; Stuart, Neil; Pulido-Bosch, Antonio

    2015-12-01

    A software tool is described for the extraction of geomorphometric land surface variables and features from Digital Elevation Models (DEMs). The ArcGeomorphometry Toolbox consists of a series of Python/Numpy processing functions, presented through an easy-to-use graphical menu for the widely used ArcGIS package. Although many GIS provide some operations for analysing DEMs, the methods are often only partially implemented and can be difficult to find and used effectively. Since the results of automated characterisation of landscapes from DEMs are influenced by the extent being considered, the resolution of the source DEM and the size of the kernel (analysis window) used for processing, we have developed a tool to allow GIS users to flexibly apply several multi-scale analysis methods to parameterise and classify a DEM into discrete land surface units. Users can control the threshold values for land surface classifications. The size of the processing kernel can be used to identify land surface features across a range of landscape scales. The pattern of land surface units from each attempt at classification is displayed immediately and can then be processed in the GIS alongside additional data that can assist with a visual assessment and comparison of a series of results. The functionality of the ArcGeomorphometry toolbox is described using an example DEM.

  6. COMPARISON AND CO-REGISTRATION OF DEMS GENERATED FROM HiRISE AND CTX IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2016-06-01

    Full Text Available Images from two sensors, the High-Resolution Imaging Science Experiment (HiRISE and the Context Camera (CTX, both on-board the Mars Reconnaissance Orbiter (MRO, were used to generate high-quality DEMs (Digital Elevation Models of the Martian surface. However, there were discrepancies between the DEMs generated from the images acquired by these two sensors due to various reasons, such as variations in boresight alignment between the two sensors during the flight in the complex environment. This paper presents a systematic investigation of the discrepancies between the DEMs generated from the HiRISE and CTX images. A combined adjustment algorithm is presented for the co-registration of HiRISE and CTX DEMs. Experimental analysis was carried out using the HiRISE and CTX images collected at the Mars Rover landing site and several other typical regions. The results indicated that there were systematic offsets between the HiRISE and CTX DEMs in the longitude and latitude directions. However, the offset in the altitude was less obvious. After combined adjustment, the offsets were eliminated and the HiRISE and CTX DEMs were co-registered to each other. The presented research is of significance for the synergistic use of HiRISE and CTX images for precision Mars topographic mapping.

  7. Soft Sensor Model Derived from Wiener Model Structure:Modeling and Identification

    Institute of Scientific and Technical Information of China (English)

    曹鹏飞; 罗雄麟

    2014-01-01

    The processes of building dynamic and static relationships between secondary and primary variables are usually integrated in most of nonlinear dynamic soft sensor models. However, such integration limits the estimation accuracy of soft sensor models. Wiener model effectively describes dynamic and static characteristics of a system with the structure of dynamic and static submodels in cascade. We propose a soft sensor model derived from Wiener model structure, which is an extension of Wiener model. Dynamic and static relationships between secondary and primary variables are built respectively to describe the dynamic and static characteristics of system. The feasibility of this model is verified. Then the expression of discrete model is derived for soft sensor system. Conjugate gradi-ent algorithm is applied to identify the dynamic and static model parameters alternately. Corresponding update method for soft sensor system is also given. Case studies confirm the effectiveness of the proposed model, alternate identification algorithm, and update method.

  8. Generation of a new Greenland Ice Sheet Digital Elevation Model

    DEFF Research Database (Denmark)

    Nagarajan, Sudhagar; Csatho, Beata M; Schenk, Anton F

    Currently available Digital Elevation Models(DEMs) of the Greenland Ice Sheet (GrIS) were originally derived from radar altimetry data, e.g. Bamber (Bamber et al., 2001) and later improved by photoclinometry to fill the regions between orbits (Scambos and Haran, 2002). The elevation error...... m)), a high resolution, consistent DEM of GrIS is not yet available. This is due to various problems, such as different error sources in the data and different dates of data acquisition. In order to overcome these difficulties, we generated a multi-resolution DEM of GrIS, reflecting June 2008...... in an updated DEM. Finally, all elevations were corrected using elevation changes determined by SERAC (Surface Elevation Reconstruction And Change detection), to achieve a common reference date. Airborne laser altimetry elevations are used to evaluate the accuracy of the new GrIS DEM....

  9. State-Space Modelling of Loudspeakers using Fractional Derivatives

    DEFF Research Database (Denmark)

    King, Alexander Weider; Agerkvist, Finn T.

    2015-01-01

    This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response....... It is shown that the identified parameters can be used in a linear fractional order state-space model to simulate the loudspeakers’ time domain response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...

  10. Model of Break-Bone Fever via Beta-Derivatives

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available Using the new derivative called beta-derivative, we modelled the well-known infectious disease called break-bone fever or the dengue fever. We presented the endemic equilibrium points under certain conditions of the physical parameters included in the model. We made use of an iteration method to solve the extended model. To show the efficiency of the method used, we have presented in detail the stability and the convergence of the method for solving the system (2. We presented the uniqueness of the special solution of system (2 and finally the numerical simulations were presented for various values of beta.

  11. Model of Break-Bone Fever via Beta-Derivatives

    Science.gov (United States)

    Atangana, Abdon; Oukouomi Noutchie, Suares Clovis

    2014-01-01

    Using the new derivative called beta-derivative, we modelled the well-known infectious disease called break-bone fever or the dengue fever. We presented the endemic equilibrium points under certain conditions of the physical parameters included in the model. We made use of an iteration method to solve the extended model. To show the efficiency of the method used, we have presented in detail the stability and the convergence of the method for solving the system (2). We presented the uniqueness of the special solution of system (2) and finally the numerical simulations were presented for various values of beta. PMID:25295263

  12. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  13. Deriving the Dividend Discount Model in the Intermediate Microeconomics Class

    Science.gov (United States)

    Norman, Stephen; Schlaudraff, Jonathan; White, Karianne; Wills, Douglas

    2013-01-01

    In this article, the authors show that the dividend discount model can be derived using the basic intertemporal consumption model that is introduced in a typical intermediate microeconomics course. This result will be of use to instructors who teach microeconomics to finance students in that it demonstrates the value of utility maximization in…

  14. The topographic grain concept in DEM-based geomorphometric mapping

    Science.gov (United States)

    Józsa, Edina

    2016-04-01

    A common drawback of geomorphological analyses based on digital elevation datasets is the definition of search window size for the derivation of morphometric variables. The fixed-size neighbourhood determines the scale of the analysis and mapping, which can lead to the generalization of smaller surface details or the elimination of larger landform elements. The methods of DEM-based geomorphometric mapping are constantly developing into the direction of multi-scale landform delineation, but the optimal threshold for search window size is still a limiting factor. A possible way to determine the suitable value for the parameter is to consider the topographic grain principle (Wood, W. F. - Snell, J. B. 1960, Pike, R. J. et al. 1989). The calculation is implemented as a bash shell script for GRASS GIS to determine the optimal threshold for the r.geomorphon module. The approach relies on the potential of the topographic grain to detect the characteristic local ridgeline-to-channel spacing. By calculating the relative relief values with nested neighbourhood matrices it is possible to define a break-point where the increase rate of local relief encountered by the sample is significantly reducing. The geomorphons approach (Jasiewicz, J. - Stepinski, T. F. 2013) is a cell-based DEM classification method for the identification of landform elements at a broad range of scales by using line-of-sight technique. The landforms larger than the maximum lookup distance are broken down to smaller elements therefore the threshold needs to be set for a relatively large value. On the contrary, the computational requirements and the size of the study sites determine the upper limit for the value. Therefore the aim was to create a tool that would help to determine the optimal parameter for r.geomorphon tool. As a result it would be possible to produce more objective and consistent maps with achieving the full efficiency of this mapping technique. For the thorough analysis on the

  15. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  16. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis

    Science.gov (United States)

    James, L. Allan; Hodgson, Michael E.; Ghoshal, Subhajit; Latiolais, Mary Megison

    2012-01-01

    The ability to develop spatially distributed models of topographic change is presenting new capabilities in geomorphic research. High resolution maps of elevation change indicate locations, processes, and rates of geomorphic change, and provide a means of calibrating temporal simulation models. Methods of geomorphic change detection (GCD), based on gridded models, may be applied to a wide range of time periods by utilizing cartometric, remote sensing, or ground-based topographic survey data to measure volumetric change. Advantages and limitations of historical DEM reconstruction methods are reviewed with a focus on coupling them with subsequent DEMs to construct DEMs of difference (DoD), which can be created by subtracting one elevation model from another, to map erosion, deposition, and volumetric change. The period of DoD analysis can be extended to several decades if accurate historical DEMs can be generated by extracting topographic data from historical data and selecting areas where geomorphic change has been substantial. The challenge is to recognize and minimize uncertainties in data that are particularly elusive with early topographic data. This paper reviews potential sources of error in digitized topographic maps and DEMs. Although the paper is primarily a review of methods, three brief examples are presented at the end to demonstrate GCD using DoDs constructed from data extending over periods ranging from 70 to 90 years.

  17. DEM simulation of heat transfer in granular materials

    Science.gov (United States)

    Gui, Nan; Xu, Wenkai; Ge, Liang

    2013-07-01

    This study investigates the heat conduction of low conductivity granular particles in a two-dimensional modeling of a rotary drum using discrete element method (DEM) method. The Shannon entropy and Lagrangian mean temperature difference are used for comparative study. The results obtained by these two methods are in accordance with each other. It shows the evolution of heat conduction in rotary drums can be divided into a dynamically dominated stage and a thermodynamically dominated stage. The former is determined mainly by particle mixing and the latter is by particle-particle contact duration. The mechanisms for these two stages are explained and the heat transfer characteristics in these two stages are explored.

  18. Lidar DEM error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada

    Science.gov (United States)

    Li, Sheng; MacMillan, R. A.; Lobb, David A.; McConkey, Brian G.; Moulin, Alan; Fraser, Walter R.

    2011-06-01

    Topographic depressions are abundant in topographically complex landscapes. A common practice with earlier, low resolution Digital Elevation Models (DEMs) was to remove all depressions to ensure that water flowed continuously to the edge of the DEM domain. The assumption was that most depressions were created due to errors in the DEMs. This practice is no longer justified with the increasing availability of high accuracy DEMs. However, very few studies have addressed how DEM processing options such as smoothing and coarsening and setting area and depth thresholds can affect depression identification. In this study, a site located in the Prairie Region of Canada was examined. The site is a hummocky glaciated landscape with many in-field wetlands. Lidar topographic data were collected and were used to generate a 1 m by 1 m square-grid DEM. Detailed error analyses of the lidar DEM were conducted. A set of DEMs were generated after different degrees of smoothing and coarsening. FlowMapR, an established terrain analysis tool, was used to identify depressions in each DEM with various user-defined area and depth thresholds. The results were validated against a field wetland survey. We determined that the problems associated with depression identification using a lidar DEM are two-fold. On one hand, artefactual depressions created due to DEM errors need to be eliminated, for which the raw lidar DEM need to be smoothed. On the other hand, it is also desirable to remove those topographic depressions that do not function as closed basins at the spatial or temporal scale of the processes of interest. Setting area and depth thresholds appeared to be the preferred choice for this. We suggested using the un-autocorrelated lidar DEM error as the criterion for DEM smoothing and considering depression connections in the selection of area and depth thresholds. Using lidar data on a hummocky landscape with loamy soils in the Prairie Region of Canada, 10 to 20 times smoothing

  19. Estuarine Bathymetric Digital Elevation Models (30 meter and 3 arc second resolution) Derived From Source Hydrographic Survey Soundings Collected by NOAA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Bathymetric Digital Elevation Models (DEM) were generated from original point soundings collected during hydrographic surveys conducted by the National Ocean...

  20. Determining the optimum cell size of digital elevation model for hydrologic application

    Indian Academy of Sciences (India)

    Arabinda Sharma; K N Tiwari; P B S Bhadoria

    2011-08-01

    Scale is one of the most important but unsolved issues in various scientific disciplines that deal with spatial data. The arbitrary choice of grid cell size for contour interpolated digital elevation models (DEM) is one of the major sources of uncertainty in the hydrologic modelling process. In this paper, an attempt was made to identify methods for determining an optimum cell size for a contour interpolated DEM in prior to hydrologic modelling. Twenty-meter interval contour lines were used to generate DEMs of five different resolutions, viz., 30, 45, 60, 75, and 90 m using TOPOGRID algorithm. The obtained DEMs were explored for their intrinsic quality using four different methods, i.e., sink analysis, fractal dimension of derived stream network, entropy measurement and semivariogram modelling. These methods were applied to determine the level artifacts (interpolation error) in DEM surface as well as derived stream network, spatial information content and spatial variability respectively. The results indicated that a 90 m cell size is sufficient to capture the terrain variability for subsequent hydrologic modelling in the study area. The significance of this research work is that it provides methods which DEM users can apply to select an appropriate DEM cell size in prior to detailed hydrologic modelling.

  1. Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai‘i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011-2013

    Science.gov (United States)

    Poland, Michael P.

    2014-01-01

    Differencing digital elevation models (DEMs) derived from TerraSAR add-on for Digital Elevation Measurements (TanDEM-X) synthetic aperture radar imagery provides a measurement of elevation change over time. On the East Rift Zone (EZR) of Kīlauea Volcano, Hawai‘i, the effusion of lava causes changes in topography. When these elevation changes are summed over the area of an active lava flow, it is possible to quantify the volume of lava emplaced at the surface during the time spanned by the TanDEM-X data—a parameter that can be difficult to measure across the entirety of an ~100 km2 lava flow field using ground-based techniques or optical remote sensing data. Based on the differences between multiple TanDEM-X-derived DEMs collected days to weeks apart, the mean dense-rock equivalent time-averaged discharge rate of lava at Kīlauea between mid-2011 and mid-2013 was approximately 2 m3/s, which is about half the long-term average rate over the course of Kīlauea's 1983–present ERZ eruption. This result implies that there was an increase in the proportion of lava stored versus erupted, a decrease in the rate of magma supply to the volcano, or some combination of both during this time period. In addition to constraining the time-averaged discharge rate of lava and the rates of magma supply and storage, topographic change maps derived from space-based TanDEM-X data provide insights into the four-dimensional evolution of Kīlauea's ERZ lava flow field. TanDEM-X data are a valuable complement to other space-, air-, and ground-based observations of eruptive activity at Kīlauea and offer great promise at locations around the world for aiding with monitoring not just volcanic eruptions but any hazardous activity that results in surface change, including landslides, floods, earthquakes, and other natural and anthropogenic processes.

  2. The role of DEM at CERN

    CERN Document Server

    Van der Bij, E

    2005-01-01

    The DEM group in the Technical Support department provides services for the fabrication of special printed circuits that are invaluable for the whole particle physics community. The capability is based around a core technology that is developed by using skills to etch and process materials that are not commonly used in industry, combined with production methods used in PCB manufacturing. The role of the prototyping facilities is to assist engineers and physicists and to offer them easy access to competencies often not available from industry. At the same time, with the expertise and production capacity available, it makes that CERN is always geared up to handle emergency situations. The design office and the assembly workshop that are also part of DEM have similar roles that lower the cost and improve the quality and maintainability of electronics developed at CERN.

  3. A Higher-Derivative Lee-Wick Standard Model

    CERN Document Server

    Carone, Christopher D

    2009-01-01

    The Lee-Wick Standard Model assumes a minimal set of higher-derivative quadratic terms that produce a negative-norm partner for each Standard Model particle. Here we introduce additional terms of one higher order in the derivative expansion that give each Standard Model particle two Lee-Wick partners: one with negative and one with positive norm. These states collectively cancel unwanted quadratic divergences and resolve the hierarchy problem as in the minimal theory. We show how this next-to-minimal higher-derivative theory may be reformulated via an auxiliary field approach and written as a Lagrangian with interactions of dimension four or less. This mapping provides a convenient framework for studies of the formal and phenomenological properties of the theory.

  4. Auf der Suche nach dem Unendlichen.

    Science.gov (United States)

    Fraser, G.; Lillestøl, E.; Sellevåg, I.

    This book is a German translation by C. Ascheron and J. Urbahn, of "The search for infinity: solving the mysteries of the universe", published in 1994. Diese Buch beschreibt anschaulich die Meilensteine, die der Mensch seit der Antike auf der Suche nach dem Unendlichen erreicht und hinter sich gelassen hat. Es enthält Kurzbiographien der wichtigsten Forscher, verständlich geschriebene Texte sowie Erläuterungen der entscheidenen Fachtermini.

  5. 基于数字高程模型DEM的溃坝生命损失风险分析%The risk analysis of dam failure caused loss of life based on digital elevation model(DEM)

    Institute of Scientific and Technical Information of China (English)

    董建良

    2014-01-01

    Digital Elevation Model(DEM) as a basis for spatial data in many fields have a wide range of appli-cations.In this paper,under lack of data of Youluokou dam downstream,on actual terrain situations,the com-putational domain downstream with topographic data and ArcGIS software platform to get the required informa-tion such as ground elevation,based on the application software and River2D BREACH hydrodynamic model simulations Reservoir dam downstream flood evolution ,estimated the loss of life downstream dam reservoir us-ing the Graham method,when the preliminary draw Youluokou dam suffered 5000 year return period flood,the auxiliary dam outburst resulted in loss of life and damage to the occurrence of piping risk is intolerable.It can also make reservoir management decision-makers of the consequences of dam failure which cause flooding to be aware and do the daily flood control scheduling and preparation of contingency plans ,the maximum level of protection of the safety of the people downstream of the reservoir ,to prevent the occurrence of disasters.%数字高程模型DEM作为基础空间数据,在众多领域有着广泛的应用。本文在油罗口水库大坝缺乏下游实测地形数据资料的情形下,以地形图数据和ArcGIS软件平台获取的计算域下游所需地面高程等信息为基础,应用BREACH软件及River2D水动力学模型模拟了水库下游溃坝洪水演进,采用Graham法估算了水库下游溃坝生命损失,初步得出油罗口水库大坝遭受重现期为5000a一遇洪水时,副坝发生管涌破坏溃决导致的生命损失风险是不可容忍的。由此也可以让水库管理决策人员对水库溃坝洪水可能造成的后果做到心中有数,做好日常的防洪调度及应急预案编制工作,最大程度保障水库下游人民群众生命安全,防止灾害的发生。

  6. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

    Directory of Open Access Journals (Sweden)

    Nguyen Trung Kien

    2017-01-01

    Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

  7. Granular dynamics, contact mechanics and particle system simulations a DEM study

    CERN Document Server

    Thornton, Colin

    2015-01-01

    This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...

  8. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  9. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  10. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  11. Meridional Winds derived from ionosonde measurements: comparison of different models

    Science.gov (United States)

    Katamzi, Zama; Bosco Habarulema, John; Aruliah, Anasuya

    2016-07-01

    Thermospheric meridional winds are derived from ionospheric F2 region peak parameters (i.e. F2 maximum density, NmF2, and F2 peak height, hmF2) obtained using South African ionosonde for solar maximum (2001 and 2014) and solar minimum (2009). The study uses several different techniques and models to investigate the climatology behaviour of the winds in order to understand wind variability over South Africa. Detailed solar cycle, seasonal and diurnal trends will help establish how the winds influence ionospheric behaviour at this latitude. Comparisons of ionosonde derived neutral winds with empirical and numerical models such as the Coupled Middle Atmosphere Thermosphere Model (CMAT2) and Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are important to understand the validity of theoretical and empirical models.

  12. Quantitative magnetospheric models derived from spacecraft magnetometer data

    Science.gov (United States)

    Mead, G. D.; Fairfield, D. H.

    1973-01-01

    Quantitative models of the external magnetospheric field were derived by making least-squares fits to magnetic field measurements from four IMP satellites. The data were fit to a power series expansion in the solar magnetic coordinates and the solar wind-dipole tilt angle, and thus the models contain the effects of seasonal north-south asymmetries. The expansions are divergence-free, but unlike the usual scalar potential expansions, the models contain a nonzero curl representing currents distributed within the magnetosphere. Characteristics of four models are presented, representing different degrees of magnetic disturbance as determined by the range of Kp values. The latitude at the earth separating open polar cap field lines from field lines closing on the dayside is about 5 deg lower than that determined by previous theoretically-derived models. At times of high Kp, additional high latitude field lines are drawn back into the tail.

  13. VT Lidar Hydro-flattened DEM (0.7 meter) - 2013 - Rutland/West Washington/Grand Isle

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area: Rutland/GI Counties 2013 0.7m and Digital Elevation Model (DEM) datasets of various...

  14. A Multi-Scale Hybrid CFD-DEM-PBM Description of a Fluid-Bed Granulation Process

    National Research Council Canada - National Science Library

    Maitraye Sen; Dana Barrasso; Ravendra Singh; Rohit Ramachandran

    2014-01-01

    .... The fluid flow field has been solved implementing CFD principles and the behavior of the solid particles has been modeled using DEM techniques whereas the change in particle size has been quantified...

  15. CFD-DEM simulations of current-induced dune formation and morphological evolution

    Science.gov (United States)

    Sun, Rui; Xiao, Heng

    2016-06-01

    Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', 'small dune', 'vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver developed by the authors. This is a general-purpose solver for particle-laden flows tailed for particle transport problems. Validation tests are performed to demonstrate the capability of CFD-DEM in the full range of sediment transport regimes. Comparison of simulation results with experimental and numerical benchmark data demonstrates the merits of CFD-DEM approach. In addition, the improvements of the present simulations over existing studies using CFD-DEM are presented. The present solver gives more accurate prediction of sediment transport rate by properly accounting for the influence of particle volume fraction on the fluid flow. In summary, this work demonstrates that CFD-DEM is a promising particle-resolving approach for probing the physics of current-induced sediment transport.

  16. Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data.

    Science.gov (United States)

    Van Niel, Kimberly P; Austin, Mike P

    2007-01-01

    The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.

  17. Comparison of mesh-based and particle-based CFD coupling with DEM

    CERN Document Server

    Markauskas, D; Sivanesapillai, R; Steeb, H

    2016-01-01

    A comparative study on mesh-based and particle-based computational fluid dynamics (CFD) coupling with a discrete element method (DEM) is presented. As the mesh-based CFD method a finite volume method (FVM) is used. A smoothed particle hydrodynamics (SPH) method represents particle-based CFD. An unresolved fluid model with locally averaged Navier-Stokes equations for the fluid is used. A newly developed model of boundary conditions for the SPH is described and the validation tests are performed. With the help of the performed comparative tests, the similarities and differences of particle movements in both DEM-FVM and DEM-SPH methods are discussed. Three test cases, namely a single particle sedimentation test, flow through a porous block and sedimentation of a porous block, are performed using DEM-FVM and DEM-SPH methods. The drag force acting onto the solid particles highly depends on the fluid fraction. To be able to compare both methods, the size of the cell in FVM is chosen to give the same fluid fraction ...

  18. Extraction of Terraces on the Loess Plateau from High-Resolution DEMs and Imagery Utilizing Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Hanqing Zhao

    2017-05-01

    Full Text Available Abstract: Terraces are typical artificial landforms on the Loess Plateau, with ecological functions in water and soil conservation, agricultural production, and biodiversity. Recording the spatial distribution of terraces is the basis of monitoring their extent and understanding their ecological effects. The current terrace extraction method mainly relies on high-resolution imagery, but its accuracy is limited due to vegetation coverage distorting the features of terraces in imagery. High-resolution topographic data reflecting the morphology of true terrace surfaces are needed. Terraces extraction on the Loess Plateau is challenging because of the complex terrain and diverse vegetation after the implementation of “vegetation recovery”. This study presents an automatic method of extracting terraces based on 1 m resolution digital elevation models (DEMs and 0.3 m resolution Worldview-3 imagery as auxiliary information used for object-based image analysis (OBIA. A multi-resolution segmentation method was used where slope, positive and negative terrain index (PN, accumulative curvature slope (AC, and slope of slope (SOS were determined as input layers for image segmentation by correlation analysis and Sheffield entropy method. The main classification features based on DEMs were chosen from the terrain features derived from terrain factors and texture features by gray-level co-occurrence matrix (GLCM analysis; subsequently, these features were determined by the importance analysis on classification and regression tree (CART analysis. Extraction rules based on DEMs were generated from the classification features with a total classification accuracy of 89.96%. The red band and near-infrared band of images were used to exclude construction land, which is easily confused with small-size terraces. As a result, the total classification accuracy was increased to 94%. The proposed method ensures comprehensive consideration of terrain, texture, shape, and

  19. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  20. Automatic generation of matrix element derivatives for tight binding models

    Science.gov (United States)

    Elena, Alin M.; Meister, Matthias

    2005-10-01

    Tight binding (TB) models are one approach to the quantum mechanical many-particle problem. An important role in TB models is played by hopping and overlap matrix elements between the orbitals on two atoms, which of course depend on the relative positions of the atoms involved. This dependence can be expressed with the help of Slater-Koster parameters, which are usually taken from tables. Recently, a way to generate these tables automatically was published. If TB approaches are applied to simulations of the dynamics of a system, also derivatives of matrix elements can appear. In this work we give general expressions for first and second derivatives of such matrix elements. Implemented in a tight binding computer program, like, for instance, DINAMO, they obviate the need to type all the required derivatives of all occurring matrix elements by hand.

  1. Vulnerable Derivatives and Good Deal Bounds: A Structural Model

    DEFF Research Database (Denmark)

    Murgoci, Agatha

    2013-01-01

    can be obtained. We provide a link between the objective probability measure and the range of potential risk-neutral measures, which has an intuitive economic meaning. We also provide tight pricing bounds for European calls and show how to extend the call formula to pricing other financial products......We price vulnerable derivatives -- i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modeled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...... a new restriction in the arbitrage free model by setting upper bounds on the Sharpe ratios (SRs) of the assets. The potential prices that are eliminated represent unreasonably good deals. The constraint on the SR translates into a constraint on the stochastic discount factor. Thus, tight pricing bounds...

  2. Close range photogrammetry in soil erosion monitoring: Mass loss comparison between runoff plots and high resolution DEMs

    Science.gov (United States)

    Ahner, Mario; Seitz, Steffen; Scholten, Thomas; Song, Zhengshan; Schmidt, Karsten

    2017-04-01

    Soil erosion is a major environmental problem and can lead to severe negative impacts on terrestrial ecosystems. When raindrops hit a bare soil surface, the applied kinetic energy successively detaches soil particles. This rainsplash effect marks the initial stage of soil erosion, which can result in serious sediment losses with beginning surface runoff. Mini-runoff plots are often used to monitor soil erosion rates in comparative field experiments. However, this method is time-consuming, the sampling of detached soil is difficult and the accuracy heavily depends on thorough maintenance and control of the measurement setup. To optimize the acquisition of soil erosion data from splash and interrill processes, a digital method using close range photogrammetry was tested in 2015. Therefore, a photogrammetric workflow was applied to process high resolution digital elevation models (DEMs) from overlapping stereo-images. By calculating the differences between multi-temporal DEMs with a sub-millimetre resolution, the volume of detached sediment was assessed. We performed rainfall simulations with a single nozzle rainfall simulator and a light weight tent. Micro-scale runoff plots (ROPs, 0.4 m x 0.4 m) were used with two different treatments, namely a Hortic Anthrosol and sand (grain size 0.10-0.45 mm). Five repetitions of rainfall-exposure with an intensity of 60 mm h-1 were performed and each repetition divided into three intervals (0-15 min, 15-30 min and 30-60 min). Before the first and every following interval, a block of 25 stereo-images was acquired with a single lens reflex camera system and processed in Agisoft PhotoScan for DEM-generation. After every interval, the discharged sediment was dried and weighed in order to derive the ground-truth validation data for comparison. Results show that ROPs with the sand treatment generally showed a larger volume of detached sediment than the garden soil treatment. As sediment discharge increased, the modelled and measured

  3. Modeling anisotropic Maxwell-Jüttner distributions: derivation and properties

    Science.gov (United States)

    Livadiotis, George

    2016-12-01

    In this paper we develop a model for the anisotropic Maxwell-Jüttner distribution and examine its properties. First, we provide the characteristic conditions that the modeling of consistent and well-defined anisotropic Maxwell-Jüttner distributions needs to fulfill. Then, we examine several models, showing their possible advantages and/or failures in accordance to these conditions. We derive a consistent model, and examine its properties and its connection with thermodynamics. We show that the temperature equals the average of the directional temperature-like components, as it holds for the classical, anisotropic Maxwell distribution. We also derive the internal energy and Boltzmann-Gibbs entropy, where we show that both are maximized for zero anisotropy, that is, the isotropic Maxwell-Jüttner distribution.

  4. Simulation of triaxial response of granular materials by modified DEM

    Science.gov (United States)

    Wang, XiaoLiang; Li, JiaChun

    2014-12-01

    A modified discrete element method (DEM) with rolling effect taken into consideration is developed to examine macroscopic behavior of granular materials in this study. Dimensional analysis is firstly performed to establish the relationship between macroscopic mechanical behavior, mesoscale contact parameters at particle level and external loading rate. It is found that only four dimensionless parameters may govern the macroscopic mechanical behavior in bulk. The numerical triaxial apparatus was used to study their influence on the mechanical behavior of granular materials. The parametric study indicates that Poisson's ratio only varies with stiffness ratio, while Young's modulus is proportional to contact modulus and grows with stiffness ratio, both of which agree with the micromechanical model. The peak friction angle is dependent on both inter-particle friction angle and rolling resistance. The dilatancy angle relies on inter-particle friction angle if rolling stiffness coefficient is sufficiently large. Finally, we have recommended a calibration procedure for cohesionless soil, which was at once applied to the simulation of Chende sand using a series of triaxial compression tests. The responses of DEM model are shown in quantitative agreement with experiments. In addition, stress-strain response of triaxial extension was also obtained by numerical triaxial extension tests.

  5. SHAPE AND ALBEDO FROM SHADING (SAfS FOR PIXEL-LEVEL DEM GENERATION FROM MONOCULAR IMAGES CONSTRAINED BY LOW-RESOLUTION DEM

    Directory of Open Access Journals (Sweden)

    B. Wu

    2016-06-01

    Full Text Available Lunar topographic information, e.g., lunar DEM (Digital Elevation Model, is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading, extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance

  6. Shape and Albedo from Shading (SAfS) for Pixel-Level dem Generation from Monocular Images Constrained by Low-Resolution dem

    Science.gov (United States)

    Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian

    2016-06-01

    Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO

  7. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...

  8. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...

  9. Super-acceleration in non-minimal derivative coupling model

    CERN Document Server

    Sadjadi, H Mohseni

    2010-01-01

    A scalar field model with non-minimal derivative coupling to gravity is considered. It is shown that although in the absence of matter and potential the phantom divide line crossing is forbidden, but for the power law potential and in the presence of matter this crossing is, in principle, possible.

  10. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across......We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...

  11. Impacts of Stochastic Modeling on GPS-derived ZTD Estimations

    CERN Document Server

    Jin, Shuanggen

    2010-01-01

    GPS-derived ZTD (Zenith Tropospheric Delay) plays a key role in near real-time weather forecasting, especially in improving the precision of Numerical Weather Prediction (NWP) models. The ZTD is usually estimated using the first-order Gauss-Markov process with a fairly large correlation, and under the assumption that all the GPS measurements, carrier phases or pseudo-ranges, have the same accuracy. However, these assumptions are unrealistic. This paper aims to investigate the impact of several stochastic modeling methods on GPS-derived ZTD estimations using Australian IGS data. The results show that the accuracy of GPS-derived ZTD can be improved using a suitable stochastic model for the GPS measurements. The stochastic model using satellite elevation angle-based cosine function is better than other investigated stochastic models. It is noted that, when different stochastic modeling strategies are used, the variations in estimated ZTD can reach as much as 1cm. This improvement of ZTD estimation is certainly c...

  12. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?

    Science.gov (United States)

    Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C. L.; Lejeune, P.; Colinet, G.; Degré, A.

    2017-03-01

    Erosion and deposition modelling should rely on field data. Currently these data are seldom available at large spatial scales and/or at high spatial resolution. In addition, conventional erosion monitoring approaches are labour intensive and costly. This calls for the development of new approaches for field erosion data acquisition. As a result of rapid technological developments and low cost, unmanned aerial vehicles (UAV) have recently become an attractive means of generating high resolution digital elevation models (DEMs). The use of UAV to observe and quantify gully erosion is now widely established. However, in some agro-pedological contexts, soil erosion results from multiple processes, including sheet and rill erosion, tillage erosion and erosion due to harvest of root crops. These diffuse erosion processes often represent a particular challenge because of the limited elevation changes they induce. In this study, we propose to assess the reliability and development perspectives of UAV to locate and quantify erosion and deposition in a context of an agricultural watershed with silt loam soils and a smooth relief. Erosion and deposition rates derived from high resolution DEM time series are compared to field measurements. The UAV technique demonstrates a high level of flexibility and can be used, for instance, after a major erosive event. It delivers a very high resolution DEM (pixel size: 6 cm) which allows us to compute high resolution runoff pathways. This could enable us to precisely locate runoff management practices such as fascines. Furthermore, the DEMs can be used diachronically to extract elevation differences before and after a strongly erosive rainfall and be validated by field measurements. While the analysis for this study was carried out over 2 years, we observed a tendency along the slope from erosion to deposition. Erosion and deposition patterns detected at the watershed scale are also promising. Nevertheless, further development in the

  13. Empirically derived neighbourhood rules for urban land-use modelling

    DEFF Research Database (Denmark)

    Hansen, Henning Sten

    2012-01-01

    interaction between neighbouring land uses is an important component in urban cellular automata. Nevertheless, this component is often calibrated through trial-and-error estimation. The aim of this project has been to develop an empirically derived landscape metric supporting cellular-automata-based land......-use modelling. Through access to very detailed urban land-use data it has been possible to derive neighbourhood rules empirically, and test their sensitivity to the land-use classification applied, the regional variability of the rules, and their time variance. The developed methodology can be implemented...

  14. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    Science.gov (United States)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  15. An efficient method for DEM-based overland flow routing

    Science.gov (United States)

    Huang, Pin-Chun; Lee, Kwan Tun

    2013-05-01

    The digital elevation model (DEM) is frequently used to represent watershed topographic features based on a raster or a vector data format. It has been widely linked with flow routing equations for watershed runoff simulation. In this study, a recursive formulation was encoded into the conventional kinematic- and diffusion-wave routing algorithms to permit a larger time increment, despite the Courant-Friedrich-Lewy condition having been violated. To meet the requirement of recursive formulation, a novel routing sequence was developed to determine the cell-to-cell computational procedure for the DEM database. The routing sequence can be set either according to the grid elevation in descending order for the kinematic-wave routing or according to the water stage of the grid in descending order for the diffusion-wave routing. The recursive formulation for 1D runoff routing was first applied to a conceptual overland plane to demonstrate the precision of the formulation using an analytical solution for verification. The proposed novel routing sequence with the recursive formulation was then applied to two mountain watersheds for 2D runoff simulations. The results showed that the efficiency of the proposed method was significantly superior to that of the conventional algorithm, especially when applied to a steep watershed.

  16. TanDEM-X Bistatic SAR Processing

    OpenAIRE

    Balss, Ulrich; Niedermeier, Andreas; Breit, Helko

    2010-01-01

    In June, 2010 the German SAR satellite TanDEM-X (TerraSAR-X-Add-on for Digital Elevation Measurements) will be launched. Together with TerraSAR-X, launched June 15, 2007, it will form the first spaceborne bistatic SAR platform. Usually one of the satellite is transmitting (active satellite), while both are receiving. As both satellites fly in a helix orbit constellation, during a recording a satellite has to be passive, if the other one is close to the line of sight to the observation targ...

  17. Blütenvielfalt auf dem Acker

    OpenAIRE

    Petersen, B.M.

    2011-01-01

    Früher zierten zahlreiche Blüten die Äcker. Heute sind die Äcker weitgehend blütenarm. Damit fehlt den Blütenbesuchern die Nahrungsquelle und den Landwirten die Blütenbestäuber. Blütenvielfalt bietet darüber hinaus noch viele weitere Vorteile - auch für den Landwirt. Das Merkblatt will Mut machen, wieder mehr Blüten- und Artenvielfalt auf den Acker zu bringen. Es liefert dem Landwirt dazu viele Ideen und Entscheidungshilfen.

  18. Solving Volterra's Population Model Using New Second Derivative Multistep Methods

    Directory of Open Access Journals (Sweden)

    K. Parand

    2008-01-01

    Full Text Available In this study new second derivative multistep methods (denoted SDMM are used to solve Volterra's model for population growth of a species within a closed system. This model is a nonlinear integro-differential where the integral term represents the effect of toxin. This model is first converted to a nonlinear ordinary differential equation and then the new SDMM, which has good stability and accuracy properties, are applied to solve this equation. We compare this method with the others and show that new SDMM gives excellent results.

  19. CFD-DEM Simulations of Current-Induced Dune Formation and Morphological Evolution

    CERN Document Server

    Sun, Rui

    2015-01-01

    Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', `small dune', `vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver...

  20. Modeling ALS and FTD with iPSC-derived neurons.

    Science.gov (United States)

    Lee, Sebum; Huang, Eric J

    2017-02-01

    Recent advances in genetics and neuropathology support the idea that amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTD) are two ends of a disease spectrum. Although several animal models have been developed to investigate the pathogenesis and disease progression in ALS and FTD, there are significant limitations that hamper our ability to connect these models with the neurodegenerative processes in human diseases. With the technical breakthrough in reprogramming biology, it is now possible to generate patient-specific induced pluripotent stem cells (iPSCs) and disease-relevant neuron subtypes. This review provides a comprehensive summary of studies that use iPSC-derived neurons to model ALS and FTD. We discuss the unique capabilities of iPSC-derived neurons that capture some key features of ALS and FTD, and underscore their potential roles in drug discovery. There are, however, several critical caveats that require improvements before iPSC-derived neurons can become highly effective disease models. This article is part of a Special Issue entitled SI: Exploiting human neurons.

  1. Dense Fe-Rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?

    CERN Document Server

    Borkowski, K J; Reynolds, S P

    2006-01-01

    We present observations of two LMC supernova remnants (SNRs), DEM L238 and DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central emission, surrounded by a faint shell, is present in both remnants. The central emission has an entirely thermal spectrum dominated by strong Fe L-shell lines, with the deduced Fe abundance in excess of solar and not consistent with the LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and DEM L249 are remnants of thermonuclear (Type Ia) explosions. The shell emission originates in gas swept up and heated by the blast wave. A standard Sedov analysis implies about 50 solar masses in both swept-up shells, SNR ages between 10,000 and 15,000 yr, low (< 0.05 cm^-3) preshock densities, and subluminous explosions with energies of 3x10^50 ergs. The central Fe-rich supernova ejecta are close to collisional ionization equilibrium. Their presence is unexpected, because standard Type Ia SNR models predict faint ejecta emission with short ionizati...

  2. Gravity field models derived from Swarm GPS data

    Science.gov (United States)

    Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-07-01

    It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.

  3. Higher derivative massive spin-3 models in D =2 +1

    Science.gov (United States)

    Dalmazi, D.; Mendonça, E. L.

    2016-07-01

    We find new higher derivative models describing a parity doublet of massive spin-3 modes in D =2 +1 dimensions. One of them is of fourth order in derivatives while the other one is of sixth order. They are complete, in the sense that they contain the auxiliary scalar field required to remove spurious degrees of freedom. Both of them are obtained through the master action technique starting with the usual (second-order) spin-3 Singh-Hagen model, which guarantees that they are ghost free. The fourth- and sixth-order terms are both invariant under (transverse) Weyl transformations, quite similarly to the fourth-order K -term of the "new massive gravity." The sixth-order term slightly differs from the product of the Schouten by the Einstein tensor, both of third order in derivatives. It is also possible to write down the fourth-order term as a product of a Schouten-like by an Einstein-like tensor (both of second order in derivatives) in close analogy with the K -term.

  4. The accuracy of photo-based structure-from-motion DEMs

    Science.gov (United States)

    James, M. R.; Robson, S.

    2012-04-01

    Data for detailed digital elevation models (DEMs) are usually collected by expensive laser-based techniques, or by photogrammetric methods that require expertise and specialist software. However, recent advances in computer vision research now permit 3D models to be automatically derived from unordered collections of photographs, offering the potential for significantly cheaper and quicker DEM production. Here, we assess the accuracy of this approach for geomorphological applications using examples from a coastal cliff and a volcanic edifice. The reconstruction process is based on a combination of structure-from-motion and multi-view stereo algorithms (SfM-MVS). Using multiple photographs of a scene taken from different positions with a consumer-grade camera, dense point clouds (millions of points) can be derived. Processing is carried out by automated 'reconstruction pipeline' software downloadable from the internet, e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/. Unlike traditional photogrammetric approaches, the initial reconstruction process does not require the identification of any control points or initial camera calibration and is carried out with little or no operator intervention. However, such reconstructions are initally un-scaled and un-oriented so additional software (http://www.lancs.ac.uk/staff/jamesm/software/sfm_georef.htm) has been developed to permit georeferencing. Although this step requires the presence of some control points or features within the scene, it does not have the relatively strict image acquisition and control requirements of traditional photogrammetry. For accuracy, and to allow error analysis, georeferencing observations are made within the image set, rather than requiring feature matching within the point cloud. In our coastal example, 133 photos taken with a Canon EOS 450D and 28 mm prime lens, from viewing distances of ~20 m, were used to reconstruct a ~60 m long section of eroding cliff. The

  5. Dem Extraction from CHANG'E-1 Lam Data by Surface Skinning Technology

    Science.gov (United States)

    Zhang, X.-B.; Zhang, W.-M.

    2011-08-01

    DEM is a digital model or 3-D representation of a terrain's surface and it is created from terrain elevation data. The main models for DEM extraction based on Lidar data or Laser Altimeter data currently use the idea that point cloud is scattered, such as regular grid model, TIN model and contour model. Essentially, in these above methods, the discrete points are interpolated into regular grid data and irregular grid data. In fact, point cloud generated by Laser Altimeter is not totally scattered, but have some regularity. In this paper, to utilize this regularity, the proposed method adopts surface skinning technology to generate DEM from Chang'E-1 Laser Altimeter data. The surface skinning technology is widely used in the field of mechanical engineering. Surface skinning is the process of passing a smooth surface through a set of curves called sectional curves, which, in general, may not be compatible. In the process of generating section line, a need for attention is that it needs to use curvature method to get a set of characteristic points, and these feature points were used to subdivide segment; the next step is generating several curves on some key places. These curves describe the shape of the curved surface. The last step is to generate a curved surface that through these curves. The result shows that, this idea is feasible, useful and it provides a novel way to generate accurate DEM.

  6. Reheating temperature in non-minimal derivative coupling model

    CERN Document Server

    Sadjadi, H Mohseni

    2013-01-01

    We consider the inflaton as a scalar field described by a non-minimal derivative coupling model with a power law potential. We study the slow roll inflation, the rapid oscillation phase, the radiation dominated and the recombination eras respectively, and estimate e-folds numbers during these epochs. Using these results we determine the reheating temperature in terms of the spectral index and the amplitude of the power spectrum of scalar perturbations.

  7. Geospatial approach in mapping soil erodibility using CartoDEM – A case study in hilly watershed of Lower Himalayan Range

    Indian Academy of Sciences (India)

    Suresh Kumar; Surya Gupta

    2016-10-01

    Soil erodibility is one of the most important factors used in spatial soil erosion risk assessment. Soil information derived from soil map is used to generate soil erodibility factor map. Soil maps are not available at appropriate scale. In general, soil maps at small scale are used in deriving soil erodibility map that largely generalized spatial variability and it largely ignores the spatial variability since soilmap units are discrete polygons. The present study was attempted to generate soil erodibilty map using terrain indices derived from DTM and surface soil sample data. Soil variability in the hilly landscape is largely controlled by topography represented by DTM. The CartoDEM (30 m) was used to derive terrainindices such as terrain wetness index (TWI), stream power index (SPI), sediment transport index (STI) and slope parameters. A total of 95 surface soil samples were collected to compute soil erodibility factor (K) values. The K values ranged from 0.23 to 0.81 t ha$^{−1}$R$^{−1}$ in the watershed. Correlation analysis among K-factor and terrain parameters showed highest correlation of soil erodibilty with TWI (r$^2 $=0.561) followed by slope (r$^2$ = 0.33). A multiple linear regression model was developed to derive soil erodibilty using terrain parameters. A set of 20 soil sample points were used to assess the accuracy of the model. The coefficient of determination (r2) and RMSE were computed to be 0.76 and 0.07 t ha$^{−1}$R$^{−1}$ respectively. The proposed methodology is quite useful in generating soil erodibilty factor map using digital elevation model (DEM) for any hilly terrain areas. The equation/model need to be established for the particular hilly terrain under the study. The developed model was used to generate spatial soilerodibility factor (K) map of the watershed in the lower Himalayan range.

  8. Quality Assessment for the First Part of the Tandem-X Global Digital Elevation Model

    Science.gov (United States)

    Brautigam, B.; Martone, M.; Rizzoli, P.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bachmann, M.; Schulze, D.; Zink, M.

    2015-04-01

    TanDEM-X is an innovative synthetic aperture radar (SAR) mission with the main goal to generate a global and homogeneous digital elevation model (DEM) of the Earth's land masses. The final DEM product will reach a new dimension of detail with respect to resolution and quality. The absolute horizontal and vertical accuracy shall each be less than 10 m in a 90% confidence interval at a pixel spacing of 12 m. The relative vertical accuracy specification for the TanDEM-X mission foresees a 90% point-to-point error of 2 m (4 m) for areas with predominant terrain slopes smaller than 20% (greater than 20%) within a 1° longitude by 1° latitude cell. The global DEM is derived from interferometric SAR acquisitions performed by two radar satellites flying in close orbit formation. Interferometric performance parameters like the coherence between the two radar images have been monitored and evaluated throughout the mission. In a further step, over 500,000 single SAR scenes are interferometrically processed, calibrated, and mosaicked into a global DEM product which will be completely available in the second half of 2016. This paper presents an up-todate quality status of the single interferometric acquisitions as well as of 50% of the final DEM. The overall DEM quality of these first products promises accuracies well within the specification, especially in terms of absolute height accuracy.

  9. Extracting DEM from airborne X-band data based on PolInSAR

    Science.gov (United States)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  10. Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation

    NARCIS (Netherlands)

    Robinson, M.J.; Luding, S.; Ramaioli, Marco

    2013-01-01

    First, a meshless simulation method is presented for multiphase fluid–particle flows with a two-way coupled Smoothed Particle Hydrodynamics (SPH) for the fluid and the Discrete Element Method (DEM) for the solid phase. The unresolved fluid model, based on the locally averaged Navier Stokes equations

  11. QSAR MODELING OF ANTIBACTERIAL ACTIVITY OF SOME BENZIMIDAZOLE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    SANJA O. PODUNAVAC-KUZMANOVIĆ

    2011-03-01

    Full Text Available A quantitative structure-activity relationship (QSAR study has been carried out for a training set of 12 benzimidazole derivatives to correlate and predict the antibacterial activity of studied compounds against Gram-negative bacteria Pseudomonas aeruginosa. Multiple linear regression was used to select the descriptors and to generate the best prediction model that relates the structural features to inhibitory activity. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based on the following descriptors: parameter of lipophilicity (logP and hydration energy (HE. Good agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the generated QSAR model.

  12. Calculating fermion masses in superstring derived standard-like models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E.

    1996-04-01

    One of the intriguing achievements of the superstring derived standard-like models in the free fermionic formulation is the possible explanation of the top quark mass hierarchy and the successful prediction of the top quark mass. An important property of the superstring derived standard-like models, which enhances their predictive power, is the existence of three and only three generations in the massless spectrum. Up to some motivated assumptions with regard to the light Higgs spectrum, it is then possible to calculate the fermion masses in terms of string tree level amplitudes and some VEVs that parameterize the string vacuum. I discuss the calculation of the heavy generation masses in the superstring derived standard-like models. The top quark Yukawa coupling is obtained from a cubic level mass term while the bottom quark and tau lepton mass terms are obtained from nonrenormalizable terms. The calculation of the heavy fermion Yukawa couplings is outlined in detail in a specific toy model. The dependence of the effective bottom quark and tau lepton Yukawa couplings on the flat directions at the string scale is examined. The gauge and Yukawa couplings are extrapolated from the string unification scale to low energies. Agreement with {alpha}{sub strong}, sin{sup 2} {theta}{sub W} and {alpha}{sub em} at M{sub Z} is imposed, which necessitates the existence of intermediate matter thresholds. The needed intermediate matter thresholds exist in the specific toy model. The effect of the intermediate matter thresholds on the extrapolated Yukawa couplings is studied. It is observed that the intermediate matter thresholds help to maintain the correct b/{tau} mass relation. It is found that for a large portion of the parameter space, the LEP precision data for {alpha}{sub strong}, sin{sup 2} {theta}{sub W} and {alpha}{sub em}, as well as the top quark mass and the b/{tau} mass relation can all simultaneously be consistent with the superstring derived standard-like models.

  13. A quantitative magnetospheric model derived from spacecraft magnetometer data

    Science.gov (United States)

    Mead, G. D.; Fairfield, D. H.

    1975-01-01

    The model is derived by making least squares fits to magnetic field measurements from four Imp satellites. It includes four sets of coefficients, representing different degrees of magnetic disturbance as determined by the range of Kp values. The data are fit to a power series expansion in the solar magnetic coordinates and the solar wind-dipole tilt angle, and thus the effects of seasonal north-south asymmetries are contained. The expansion is divergence-free, but unlike the usual scalar potential expansion, the model contains a nonzero curl representing currents distributed within the magnetosphere. The latitude at the earth separating open polar cap field lines from field lines closing on the day side is about 5 deg lower than that determined by previous theoretically derived models. At times of high Kp, additional high-latitude field lines extend back into the tail. Near solstice, the separation latitude can be as low as 75 deg in the winter hemisphere. The average northward component of the external field is much smaller than that predicted by theoretical models; this finding indicates the important effects of distributed currents in the magnetosphere.

  14. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Science.gov (United States)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  15. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  16. A problem-oriented approach for DEM data management and manipulation

    Science.gov (United States)

    Huang, Fengru; Fang, Yu; Chen, Bin

    2009-10-01

    For the last decades, GIS software technologies have made tremendous development and applied to many special fields when their targets are relevant to geographical locations. But the basis of cartographic mapping of GIS is a restriction for more development in GIS data modelling, storage and manipulation. Recently, much attention is being paid on ORDBMS(Object Relational Database Management System) to represent and manage GIS Data. New approaches have earned acceptance in many research communities and several proposals have emerged in commercial software for solving the management and manipulation on GIS vector data. Though the storage and management of field-based model data(e.g. raster, DEM, TIN) have got less achievement and people still use files and procedural ways to manipulation field-based GIS data in common applications. In this paper a new structure model using ORDBMS technology for field-based data's storage and management was proposed on the basis of full discussion on several GIS data management technologies, then a problem-oriented approach for DEM data management and manipulation was designed and implemented through open source software systems PostgreSQL and Python language. Experimental examples of different DEM data souces were stored, managed and used by using the extended spatial database system. The experiments illustrated that this solution would be a useful supplement to spatial database and it provided an effective way to DEM data management and analysis, and support the interoperability between vector data and field data.

  17. Zusatz- und Weiterqualifikation nach dem Studium

    Science.gov (United States)

    Domnick, Ivonne

    Ist der Bachelor geschafft, stellt sich die Frage nach einer Weiterqualifizierung. Neben einem Einstieg ins Berufsleben kann auch ein Masterstudium eventuell weitere entscheidende Bonuspunkte für den Lebenslauf bringen. Mit Zusatzqualifikationen aus fachfremden Bereichen wie Betriebswirtschaft oder Marketing ist es für Naturwissenschaftler leichter, den Einstieg ins Berufsleben zu schaffen. Viele Arbeitgeber sehen gerade bei Naturwissenschaftlern eine Promotion gerne. Hier sollte genau abgewogen werden, ob sie innerhalb einer bestimmten Zeitspanne zu schaffen ist. Auch nach einem Einstieg in den Job lässt sich der Doktortitel unter Umständen noch nachholen. Ebenso ist eine Weiterbildung neben dem Beruf in Teilzeit oder in einem Fernkurs möglich. Zusätzlich gibt es viele mehrwöchige oder mehrmonatige Kurse privater Anbieter, in denen man BWL-Grundkenntnisse erwerben kann.

  18. The Derived Equivalent Circuit Model for Magnetized Anisotropic Graphene

    CERN Document Server

    Cao, Ying S; Ruehli, Albert E

    2015-01-01

    Due to the static magnetic field, the conductivity for graphene becomes a dispersive and anisotropic tensor, which complicates most modeling methodologies. In this paper, a novel equivalent circuit model is proposed for graphene with the magnetostatic bias based on the electric field integral equation (EFIE). To characterize the anisotropic property of the biased graphene, the resistive part of the unit circuit is replaced by a resistor in series with current control voltage sources (CCVSs). The CCVSs account for the off-diagonal parts of the surface conductivity tensor for the magnetized graphene. Furthermore, the definitions of the absorption cross section and the scattering cross section are revisited to make them feasible for derived circuit analysis. This proposed method is benchmarked with several numerical examples. This paper also provides a new equivalent circuit model to deal with dispersive and anisotropic materials.

  19. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  20. The Sensitivity of a Volcanic Flow Model to Digital Elevation Models From Diverse Sources: Digitized Map Contours and Airborne Interferometric Radar

    Science.gov (United States)

    Stevens, N. F.; Manville, V.; Heron, D. W.

    2001-12-01

    A growing trend in the field of volcanic hazard assessment is the use of computer models of a variety of flows to predict potential areas of devastation. The accuracy of these computer models depends on two factors, the nature and veracity of the flow model itself, and the accuracy of the topographic data set over which it is run. All digital elevation models (DEMs) contain innate errors. The nature of these depends on the accuracy of the original measurements of the terrain, and on the method used to build the DEM. We investigate the effect that these errors have on the performance of a simple volcanic flow model designed to delineate areas at risk from lahar inundation. The volcanic flow model was run over two DEMs of southern Ruapehu volcano derived from (1) digitized 1:50,000 topographic maps, and (2) airborne C-band synthetic aperture radar interferometry obtained using the NASA AIRSAR system. On steep slopes (exceeding 4 degrees), drainage channels are more likely to be incised deeply, and flow paths predicted by the model are generally in agreement for both DEMs despite the differing nature of the source data. Over shallow slopes (approx. 4 degrees and less), where channels are less deep and are more likely to meander, problems were encountered with flow path prediction in both DEMs due to interpolation errors and forestry. The predicted lateral and longitudinal extent of deposit inundation was also sensitive to the type of DEM used, most likely in response to the differing degrees of surface texture preserved in the DEMs. A technique to refine contour-derived DEMs and reduce the error in predicted flow paths was tested to improve the reliability of the modeled flow path predictions. The suitability of forthcoming topographic measurements acquired by a single-pass space-borne instrument, the NASA Shuttle Radar Topography Mission (SRTM) are also tested.

  1. Numerical modeling of the airflow around a forest edge using LiDAR-derived forest heigths

    DEFF Research Database (Denmark)

    Boudreault, Louis-Etienne; Dellwik, Ebba; Bechmann, Andreas

    to the numerical CFD model. A sensitivity analysis with regards to the resolution of the structured forest height grid obtained from the implemented digital elevation model (DEM) was carried out. CFD calculations were conducted with the forest height grid taken as input and the complete methodology results......NS) approach using the k−e turbulence model with a corresponding canopy model. The example site investigated is a forest edge located on the Falster island in Denmark, where a measurement campaign was conducted. The LiDAR scans are used in order to obtain the forest heights, which served as input...... are finally briefly compared to the wind measurements of the site with regards to the calculated wind field prediction accuracy....

  2. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    Science.gov (United States)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP#5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 gigahertz attenuation from the disdrometer and the 20 gigahertz time-series as well as to directly measure the 40 gigahertz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data. In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer-derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  3. Neutrino Masses in Superstring Derived Standard--like Models

    CERN Document Server

    Faraggi, A E; Faraggi, Alon E.; Halyo, Edi

    1993-01-01

    We propose a new scenario in a class of superstring derived standard--like models that explains the suppression of the left--handed neutrino masses. Due to nonrenormalizable terms and the breaking of the $U(1)_{Z^\\prime}$ symmetry a generalized see--saw mechanism takes place. Contrary to the traditional see--saw mechanism in GUTs, the see--saw scale and the right--handed neutrino mass scale are suppressed relative to the $U(1)_{Z^\\prime}$ breaking scale.

  4. Estimating Horizontal Displacement between DEMs by Means of Particle Image Velocimetry Techniques

    Directory of Open Access Journals (Sweden)

    Juan F. Reinoso

    2015-12-01

    Full Text Available To date, digital terrain model (DTM accuracy has been studied almost exclusively by computing its height variable. However, the largely ignored horizontal component bears a great influence on the positional accuracy of certain linear features, e.g., in hydrological features. In an effort to fill this gap, we propose a means of measurement different from the geomatic approach, involving fluid mechanics (water and air flows or aerodynamics. The particle image velocimetry (PIV algorithm is proposed as an estimator of horizontal differences between digital elevation models (DEM in grid format. After applying a scale factor to the displacement estimated by the PIV algorithm, the mean error predicted is around one-seventh of the cell size of the DEM with the greatest spatial resolution, and around one-nineteenth of the cell size of the DEM with the least spatial resolution. Our methodology allows all kinds of DTMs to be compared once they are transformed into DEM format, while also allowing comparison of data from diverse capture methods, i.e., LiDAR versus photogrammetric data sources.

  5. Experiments on DEM interpolation based on regular grid%基于规则格网的DEM插值实验

    Institute of Scientific and Technical Information of China (English)

    张一帆; 王青山

    2016-01-01

    Through terrain modeling ,this experiment turns six geomorphic membership functions into six terrain units grid DEM ,with seven grid densities :101 × 101 ,112 × 112 ,126 × 126 ,144 × 144 ,168 × 168 , 201 × 201 ,and 257 × 257 .Using IDW and other six interpolation algorithms ,it interpolates the first six densities of grid DEM into 257 × 257 grid DEM ;Then it selects some checkpoints from the original 257 × 257 DEM randomly ,calculating residuals and RMSE for further statistical analysis .With interpolation experiments in group ,the methods of controlling variable and variance analysis are used to analyze the effects of terrain morphology ,sampling density and interpolation algorithms on grid DEM accuracy .%通过地形建模 ,将6个地形隶属函数按照101 × 101 ,112 × 112 ,126 × 126 ,144 × 144 ,168 × 168 ,201 × 201 , 257 × 257 7种格网密度生成6种局部地形单元的规则格网DEM ;使用反距离加权(IDW)等7种插值算法 ,将前6种格网密度下的DEM插值成257 × 257规格 ;从原始257 × 257DEM 中随机抽取检查点计算残差 ,并对残差中误差进行分析.通过分组插值实验 ,运用控制变量法、方差分析等方法研究地貌类型、采样密度和插值算法对DEM 插值精度的影响.

  6. Influence of Lossy Compressed DEM on Radiometric Correction for Land Cover Classification of Remote Sensing Images

    Science.gov (United States)

    Moré, G.; Pesquer, L.; Blanes, I.; Serra-Sagristà, J.; Pons, X.

    2012-12-01

    World coverage Digital Elevation Models (DEM) have progressively increased their spatial resolution (e.g., ETOPO, SRTM, or Aster GDEM) and, consequently, their storage requirements. On the other hand, lossy data compression facilitates accessing, sharing and transmitting large spatial datasets in environments with limited storage. However, since lossy compression modifies the original information, rigorous studies are needed to understand its effects and consequences. The present work analyzes the influence of DEM quality -modified by lossy compression-, on the radiometric correction of remote sensing imagery, and the eventual propagation of the uncertainty in the resulting land cover classification. Radiometric correction is usually composed of two parts: atmospheric correction and topographical correction. For topographical correction, DEM provides the altimetry information that allows modeling the incidence radiation on terrain surface (cast shadows, self shadows, etc). To quantify the effects of the DEM lossy compression on the radiometric correction, we use radiometrically corrected images for classification purposes, and compare the accuracy of two standard coding techniques for a wide range of compression ratios. The DEM has been obtained by resampling the DEM v.2 of Catalonia (ICC), originally having 15 m resolution, to the Landsat TM resolution. The Aster DEM has been used to fill the gaps beyond the administrative limits of Catalonia. The DEM has been lossy compressed with two coding standards at compression ratios 5:1, 10:1, 20:1, 100:1 and 200:1. The employed coding standards have been JPEG2000 and CCSDS-IDC; the former is an international ISO/ITU-T standard for almost any type of images, while the latter is a recommendation of the CCSDS consortium for mono-component remote sensing images. Both techniques are wavelet-based followed by an entropy-coding stage. Also, for large compression ratios, both techniques need a post processing for correctly

  7. BlazeDEM3D-GPU A Large Scale DEM simulation code for GPUs

    Science.gov (United States)

    Govender, Nicolin; Wilke, Daniel; Pizette, Patrick; Khinast, Johannes

    2017-06-01

    Accurately predicting the dynamics of particulate materials is of importance to numerous scientific and industrial areas with applications ranging across particle scales from powder flow to ore crushing. Computational discrete element simulations is a viable option to aid in the understanding of particulate dynamics and design of devices such as mixers, silos and ball mills, as laboratory scale tests comes at a significant cost. However, the computational time required to simulate an industrial scale simulation which consists of tens of millions of particles can take months to complete on large CPU clusters, making the Discrete Element Method (DEM) unfeasible for industrial applications. Simulations are therefore typically restricted to tens of thousands of particles with highly detailed particle shapes or a few million of particles with often oversimplified particle shapes. However, a number of applications require accurate representation of the particle shape to capture the macroscopic behaviour of the particulate system. In this paper we give an overview of the recent extensions to the open source GPU based DEM code, BlazeDEM3D-GPU, that can simulate millions of polyhedra and tens of millions of spheres on a desktop computer with a single or multiple GPUs.

  8. Improved Large-Scale Slope Analysis on Mars Based on Correlation of Slopes Derived with Different Baselines

    Science.gov (United States)

    Wang, Y.; Wu, B.

    2017-07-01

    The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs) such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images) and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original slopes.

  9. Seasonal changes of surface velocity and elevation of Columbia Glacier, Alaska using time-series TerraSAR-X/TanDEM-X data

    Science.gov (United States)

    Vijay, Saurabh; Braun, Matthias

    2015-04-01

    Alaskan glaciers are a major contributor to global sea-level rise from glaciers and ice caps outside the polar ice sheets. Columbia Glacier is a large tidewater glacier located on the coast of south-central Alaska. The glacier has retreated ˜ 21 km and lost half of its volume during 1957-2007, more rapidly after 1980. It is now split into two branches, known as Main/East and West branch. In this study, we used time series of high-resolution TerraSAR-X/TanDEM-X stripmap satellite imagery during 2011-2014 to investigate the temporal development of glacier surface velocities, elevation and mass changes. The active SLC images of the bistatic TanDEM-X acquisitions, acquired over 11 or 22 days repeat intervals, are utilized to derive surface velocity fields using SAR intensity offset tracking. We observed a very strong seasonal variability in the surface velocities. Maximum values at the ice front reach up to 14.43 m/day in May and reduced to 2 m/day in October in the year 2012. However, at a distance of 17.5 km from the ice front, almost no seasonal variability can be observed. A significant influence in the distance to the terminus and elevation was detected. We attributed this temporal and spatial variability of surface velocity to changes in the basal hydrology and lubrification of the glacier bed. Similar fluctuations are observed in consecutive years. In a second step, we exploited TanDEM-X data by interferometrically generating time series of digital elevation models (DEMs) . For quantitative volume change estimates, we used DEMs of almost similar months of the observational years in order to minimize errors resulting from variable X-band radar penetration. The main branch gained a volume of 12.77± 2.89km^3in 2011-12, but lost -18.94± 3.21km^3in 2012-13 . A slight gain was observed with 1.05± .88km^3in 2013-14. However, the west branch gained volume only in 2011-12 and lost in the consecutive years. Moreover, the west branch retreated by ˜ 3km and lost its

  10. Lava emplacements at Shiveluch volcano (Kamchatka) from June 2011 to September 2014 observed by TanDEM-X SAR-Interferometry

    Science.gov (United States)

    Heck, Alexandra; Kubanek, Julia; Westerhaus, Malte; Gottschämmer, Ellen; Heck, Bernhard; Wenzel, Friedemann

    2016-04-01

    As part of the Ring of Fire, Shiveluch volcano is one of the largest and most active volcanoes on Kamchatka Peninsula. During the Holocene, only the southern part of the Shiveluch massive was active. Since the last Plinian eruption in 1964, the activity of Shiveluch is characterized by periods of dome growth and explosive eruptions. The recent active phase began in 1999 and continues until today. Due to the special conditions at active volcanoes, such as smoke development, danger of explosions or lava flows, as well as poor weather conditions and inaccessible area, it is difficult to observe the interaction between dome growth, dome destruction, and explosive eruptions in regular intervals. Consequently, a reconstruction of the eruption processes is hardly possible, though important for a better understanding of the eruption mechanism as well as for hazard forecast and risk assessment. A new approach is provided by the bistatic radar data acquired by the TanDEM-X satellite mission. This mission is composed of two nearly identical satellites, TerraSAR-X and TanDEM-X, flying in a close helix formation. On one hand, the radar signals penetrate clouds and partially vegetation and snow considering the average wavelength of about 3.1 cm. On the other hand, in comparison with conventional InSAR methods, the bistatic radar mode has the advantage that there are no difficulties due to temporal decorrelation. By interferometric evaluation of the simultaneously recorded SAR images, it is possible to calculate high-resolution digital elevation models (DEMs) of Shiveluch volcano and its surroundings. Furthermore, the short recurrence interval of 11 days allows to generate time series of DEMs, with which finally volumetric changes of the dome and of lava flows can be determined, as well as lava effusion rates. Here, this method is used at Shiveluch volcano based on data acquired between June 2011 and September 2014. Although Shiveluch has a fissured topography with steep slopes

  11. On some spectral properties of TanDEM-X interferograms over forested areas

    OpenAIRE

    De Zan, Francesco; Krieger, Gerhard; López-Dekker, Paco

    2013-01-01

    This letter reports about some obervations over rainforest (in Brazil and Indonesia), where the spectra of TanDEM-X interferograms show distinct features, almost a signature, which is explained and modelled in terms of the scattering properties. Supported by comparisons with simulations, the observations exclude any homogeneous, horizontally-layered forest; instead, they are compatible with a model with point scatterers clustered in clouds. Such a model, with high extinction and large gaps...

  12. Observations and discussions of TanDEM-X interferogram spectra over rain forest

    OpenAIRE

    De Zan, Francesco; Krieger, Gerhard; López-Dekker, Paco

    2012-01-01

    This paper reports about some obervations over rainforest (in Brazil and Indonesia), where the spectra of TanDEM-X interferograms show distinct features, almost a signature, which is explained and modelled in terms of the scattering properties. Thanks to the comparison with simulations, the observations exclude a homogeneous, horizontally-layered forest; instead, they are compatible with a model with point scatterers clustered in clouds. Such a model, with high extinction and large gaps th...

  13. Neural assembly models derived through nano-scale measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Branda, Catherine; Schiek, Richard Louis; Warrender, Christina E.; Forsythe, James Chris

    2009-09-01

    This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resulting data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.

  14. Leptophobic Z{prime} from superstring derived models

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Inst. for Fundamental Theory; Masip, M. [Granada Univ. (Spain). Dept. de Fisica

    1996-04-01

    It was recently suggested that the reported anomalies in R{sub b} and R{sub c} can be interpreted as the effect of a heavy vector boson that couples to quarks and is universally decoupled from leptons. We examine how an extra gauge boson with this property can arise from superstring derived models. In a specific three generation model we show that the U(1){sub B-L} symmetry combines with the horizontal flavor symmetries to form a universal leptophobic U(1) symmetry. In our model there is an enhancement of the color gauge group from twisted sectors. The enhancement occurs after the breaking of the unifying gauge symmetry by ``Wilson lines.`` The leptophobic U(1) symmetry then becomes a generator of the color SU(4) gauge group. We examine how similar symmetries may appear in other string models without the enhancement. We propose that if the current LEP anomalies persist it may be evidence for a certain class of un-unified superstring models. 15 refs., 4 tabs.

  15. A light Z′ heterotic-string derived model

    Directory of Open Access Journals (Sweden)

    Alon E. Faraggi

    2015-06-01

    Full Text Available The existence of an extra Z′ inspired from heterotic-string theory at accessible energy scales attracted considerable interest in the particle physics literature. Surprisingly, however, the construction of heterotic-string derived models that allow for an extra Z′ to remain unbroken down to low scales has proven to be very difficult. The main reason being that the U(1 symmetries that are typically discussed in the literature are either anomalous or have to be broken at a high scale to generate light neutrino masses. In this paper we use for that purpose the self-duality property under the spinor vector duality, which was discovered in free fermionic heterotic string models. The chiral massless states in the self-dual models fill complete 27 representations of E6. The anomaly free gauge symmetry in the effective low energy field theory of our string model is SU(4C×SU(2L×SU(2R×U(1ζ, where U(1ζ is the family universal U(1 symmetry that descends from E6, and is typically anomalous in other free fermionic heterotic-string models. Our model therefore allows for the existence of a low scale Z′, which is a combination of B−L, U(1ζ and T3R. The string model is free of exotic fractionally charged states in the massless spectrum. It contains exotic SO(10 singlet states that carry fractional, non-E6 charge, with respect to U(1ζ. These non-E6 string states arise in the model due to the breaking of the E6 symmetry by discrete Wilson lines. They represent a distinct signature of the string vacua. They may provide viable dark matter candidates.

  16. New land-based method for surveying sandy shores and extracting DEMs: the INSHORE system.

    Science.gov (United States)

    Baptista, Paulo; Cunha, Telmo R; Matias, Ana; Gama, Cristina; Bernardes, Cristina; Ferreira, Oscar

    2011-11-01

    The INSHORE system (INtegrated System for High Operational REsolution in shore monitoring) is a land-base survey system designed and developed for the specific task of monitoring the evolution in time of sandy shores. This system was developed with two main objectives: (1) to produce highly accurate 3D coordinates of surface points (in the order of 0.02 to 0.03 m); and (2) to be extremely efficient in surveying a beach stretch of several kilometres. Previous tests have demonstrated that INSHORE systems fulfil such objectives. Now, the usefulness of the INSHORE system as a survey tool for the production of Digital Elevation Models (DEMs) of sandy shores is demonstrated. For this purpose, the comparison of DEMs obtained with the INSHORE system and with other relevant survey techniques is presented. This comparison focuses on the final DEM accuracy and also on the survey efficiency and its impact on the costs associated with regular monitoring programmes. The field survey method of the INSHORE system, based on profile networks, has a productivity of about 30 to 40 ha/h, depending on the beach surface characteristics. The final DEM precision, after interpolation of the global positioning system profile network, is approximately 0.08 to 0.12 m (RMS), depending on the profile network's density. Thus, this is a useful method for 3D representation of sandy shore surfaces and can permit, after interpolation, reliable calculations of volume and other physical parameters.

  17. Investigation of Drag Force on Fibres of Bonded Spherical Elements using a Coupled CFD-DEM Approach

    DEFF Research Database (Denmark)

    Jensen, Anna Lyhne; Sørensen, Henrik; Rosendahl, Lasse Aistrup;

    2016-01-01

    are quantified. The drag coefficient on the resolved cylinder is compared to a CFD-DEM simulation of a flexible fiber made by a chain of bonded spherical discrete elements, using a free steam drag formulation on each particle. Based on the results, a drag force model can distinguish between the outermost...... can be modelled as a multi-rigid-body system using bonded spherical DEM particles. However, the flexible objects are not resolved by the CFD mesh, and therefore modelling of fluid forces on the flexible object becomes a key issue. This study investigates the modelling of fluid forces on a rigid fiber...

  18. Deriving a model for influenza epidemics from historical data.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia

    2011-09-01

    In this report we describe how we create a model for influenza epidemics from historical data collected from both civilian and military societies. We derive the model when the population of the society is unknown but the size of the epidemic is known. Our interest lies in estimating a time-dependent infection rate to within a multiplicative constant. The model form fitted is chosen for its similarity to published models for HIV and plague, enabling application of Bayesian techniques to discriminate among infectious agents during an emerging epidemic. We have developed models for the progression of influenza in human populations. The model is framed as a integral, and predicts the number of people who exhibit symptoms and seek care over a given time-period. The start and end of the time period form the limits of integration. The disease progression model, in turn, contains parameterized models for the incubation period and a time-dependent infection rate. The incubation period model is obtained from literature, and the parameters of the infection rate are fitted from historical data including both military and civilian populations. The calibrated infection rate models display a marked difference in which the 1918 Spanish Influenza pandemic differed from the influenza seasons in the US between 2001-2008 and the progression of H1N1 in Catalunya, Spain. The data for the 1918 pandemic was obtained from military populations, while the rest are country-wide or province-wide data from the twenty-first century. We see that the initial growth of infection in all cases were about the same; however, military populations were able to control the epidemic much faster i.e., the decay of the infection-rate curve is much higher. It is not clear whether this was because of the much higher level of organization present in a military society or the seriousness with which the 1918 pandemic was addressed. Each outbreak to which the influenza model was fitted yields a separate set of

  19. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs

    Science.gov (United States)

    Zhang, Xiaojie; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa

    2016-01-01

    Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is a technique that can be used to generate DEMs. But the accuracy of InSAR is greatly limited by geometrical distortions, atmospheric effect, and decorrelations, particularly in mountainous areas, such as western China where no high quality DEM has so far been accomplished. Since each of InSAR DEMs generated using data of different frequencies and baselines has their own advantages and disadvantages, it is therefore very potential to overcome some of the limitations of InSAR by fusing Multi-baseline and Multi-frequency Interferometric Results (MMIRs). This paper proposed a fusion method based on Extended Kalman Filter (EKF), which takes the InSAR-derived DEMs as states in prediction step and the flattened interferograms as observations in control step to generate the final fused DEM. Before the fusion, detection of layover and shadow regions, low-coherence regions and regions with large height error is carried out because MMIRs in these regions are believed to be unreliable and thereafter are excluded. The whole processing flow is tested with TerraSAR-X and Envisat ASAR datasets. Finally, the fused DEM is validated with ASTER GDEM and national standard DEM of China. The results demonstrate that the proposed method is effective even in low coherence areas.

  20. Enhancements to TauDEM to support Rapid Watershed Delineation Services

    Science.gov (United States)

    Sazib, N. S.; Tarboton, D. G.

    2015-12-01

    Watersheds are widely recognized as the basic functional unit for water resources management studies and are important for a variety of problems in hydrology, ecology, and geomorphology. Nevertheless, delineating a watershed spread across a large region is still cumbersome due to the processing burden of working with large Digital Elevation Model. Terrain Analysis Using Digital Elevation Models (TauDEM) software supports the delineation of watersheds and stream networks from within desktop Geographic Information Systems. A rich set of watershed and stream network attributes are computed. However limitations of the TauDEM desktop tools are (1) it supports only one type of raster (tiff format) data (2) requires installation of software for parallel processing, and (3) data have to be in projected coordinate system. This paper presents enhancements to TauDEM that have been developed to extend its generality and support web based watershed delineation services. The enhancements of TauDEM include (1) reading and writing raster data with the open-source geospatial data abstraction library (GDAL) not limited to the tiff data format and (2) support for both geographic and projected coordinates. To support web services for rapid watershed delineation a procedure has been developed for sub setting the domain based on sub-catchments, with preprocessed data prepared for each catchment stored. This allows the watershed delineation to function locally, while extending to the full extent of watersheds using preprocessed information. Additional capabilities of this program includes computation of average watershed properties and geomorphic and channel network variables such as drainage density, shape factor, relief ratio and stream ordering. The updated version of TauDEM increases the practical applicability of it in terms of raster data type, size and coordinate system. The watershed delineation web service functionality is useful for web based software as service deployments

  1. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    Science.gov (United States)

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  2. Multi-Temporal Investigation of Greenland Ice Sheet Snow Facies Using TanDEM-X Mission Data

    Science.gov (United States)

    Rizzoli, Paola; Martone, Michele; Brautigam, Benjamin; Rott, Helmut; Moreira, Alberto

    2016-08-01

    This paper presents the first results of the developed approach for classifying Greenland ice sheet snow facies, based on the use of interferometric TanDEM-X SAR data. Large-scale mosaics of radar backscatter and volume decorrelation, derived from the interferometric coherence, are used as input data set for applying a classification algorithm based on the c-means fuzzy clustering. The unique data set provided by TanDEM-X is particularly suitable for this analysis due to the single-pass bistatic acquisition mode which does not suffer from temporal decorrelation. The obtained results have been verified with external snow melt data. Moreover, independent multi-temporal TanDEM-X backscatter data and interferometric time series have been analyzed as well.

  3. A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles

    Science.gov (United States)

    Casagrande, Marcus V. S.; Alves, José L. D.; Silva, Carlos E.; Alves, Fábio T.; Elias, Renato N.; Coutinho, Alvaro L. G. A.

    2017-04-01

    In this work we address a contribution to the study of particle laden fluid flows in scales smaller than TFM (two-fluid models). The hybrid model is based on a Lagrangian-Eulerian approach. A Lagrangian description is used for the particle system employing the discrete element method (DEM), while a fixed Eulerian mesh is used for the fluid phase modeled by the finite element method (FEM). The resulting coupled DEM-FEM model is integrated in time with a subcycling scheme. The aforementioned scheme is applied in the simulation of a seabed current to analyze which mechanisms lead to the emergence of bedload transport and sediment suspension, and also quantify the effective viscosity of the seabed in comparison with the ideal no-slip wall condition. A simulation of a salt plume falling in a fluid column is performed, comparing the main characteristics of the system with an experiment.

  4. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  5. Amery ice shelf DEM and its marine ice distribution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICESat altimetry and the AIS-DEM. The ice thickness distribution map is converted from the new DEM, assuming hydrostatic equilibrium. The Amery Ice Shelf marine ice, up to 230 m thick, is concentrated in the northwest of the ice shelf. The volume of the marine ice is 2.38×103 km3 and accounts for about 5.6% of the shelf volume.

  6. Acidente vascular cerebral e demência vascular no idoso

    OpenAIRE

    Ionel, Cristina

    2015-01-01

    Trabalho final de mestrado integrado em Medicina, apresentado à Faculdade de Medicina da Universidade de Coimbra. Em consequência de um fenómeno global de envelhecimento populacional, é expectável um aumento na prevalência de demência. A demência vascular é a segunda causa mais comum de demência, depois da doença de Alzheimer. Trata-se de uma entidade clínica bastante heterogénea, sendo o acidente vascular cerebral (AVC) um dos seus mecanismos subjacentes. No entanto, nem todos os doentes ...

  7. Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM

    OpenAIRE

    Robinson, Martin; Luding, Stefan; Ramaioli, Marco

    2013-01-01

    First, a meshless simulation method is presented for multiphase fluid-particle flows with a two-way coupled Smoothed Particle Hydrodynamics (SPH) for the fluid and the Discrete Element Method (DEM) for the solid phase. The unresolved fluid model, based on the locally averaged Navier Stokes equations, is expected to be considerably faster than fully resolved models. Furthermore, in contrast to similar mesh-based Discrete Particle Methods (DPMs), our purely particle-based method enjoys the flex...

  8. DEM sourcing guidelines for computing 1 Eö accurate terrain corrections for airborne gravity gradiometry

    Science.gov (United States)

    Annecchione, Maria; Hatch, David; Hefford, Shane W.

    2017-01-01

    In this paper we investigate digital elevation model (DEM) sourcing requirements to compute gravity gradiometry terrain corrections accurate to 1 Eötvös (Eö) at observation heights of 80 m or more above ground. Such survey heights are typical in fixed-wing airborne surveying for resource exploration where the maximum signal-to-noise ratio is sought. We consider the accuracy of terrain corrections relevant for recent commercial airborne gravity gradiometry systems operating at the 10 Eö noise level and for future systems with a target noise level of 1 Eö. We focus on the requirements for the vertical gradient of the vertical component of gravity (Gdd) because this element of the gradient tensor is most commonly interpreted qualitatively and quantitatively. Terrain correction accuracy depends on the bare-earth DEM accuracy and spatial resolution. The bare-earth DEM accuracy and spatial resolution depends on its source. Two possible sources are considered: airborne LiDAR and Shuttle Radar Topography Mission (SRTM). The accuracy of an SRTM DEM is affected by vegetation height. The SRTM footprint is also larger and the DEM resolution is thus lower. However, resolution requirements relax as relief decreases. Publicly available LiDAR data and 1 arc-second and 3 arc-second SRTM data were selected over four study areas representing end member cases of vegetation cover and relief. The four study areas are presented as reference material for processing airborne gravity gradiometry data at the 1 Eö noise level with 50 m spatial resolution. From this investigation we find that to achieve 1 Eö accuracy in the terrain correction at 80 m height airborne LiDAR data are required even when terrain relief is a few tens of meters and the vegetation is sparse. However, as satellite ranging technologies progress bare-earth DEMs of sufficient accuracy and resolution may be sourced at lesser cost. We found that a bare-earth DEM of 10 m resolution and 2 m accuracy are sufficient for

  9. Evidence of Oxidative Stress in Autism Derived from Animal Models

    Directory of Open Access Journals (Sweden)

    Xue Ming

    2008-01-01

    Full Text Available Autism is a pervasive neurodevelopmental disorder that leads to deficits in social interaction, communication and restricted, repetitive motor movements. Autism is a highly heritable disorder, however, there is mounting evidence to suggest that toxicant-induced oxidative stress may play a role. The focus of this article will be to review our animal model of autism and discuss our evidence that oxidative stress may be a common underlying mechanism of neurodevelopmental damage. We have shown that mice exposed to either methylmercury (MeHg or valproic acid (VPA in early postnatal life display aberrant social, cognitive and motor behavior. Interestingly, early exposure to both compounds has been clinically implicated in the development of autism. We recently found that Trolox, a water-soluble vitamin E derivative, is capable of attenuating a number of neurobehavioral alterations observed in mice postnatally exposed to MeHg. In addition, a number of other investigators have shown that oxidative stress plays a role in neural injury following MeHg exposure both in vitro and in vivo. New data presented here will show that VPA-induced neurobehavioral deficits are attenuated by vitamin E as well and that the level of glial fibrillary acidic protein (GFAP, a marker of astrocytic neural injury, is altered following VPA exposure. Collectively, these data indicate that vitamin E and its derivative are capable of protecting against neurobehavioral deficits induced by both MeHg and VPA. This antioxidant protection suggests that oxidative stress may be a common mechanism of injury leading to aberrant behavior in both our animal model as well as in the human disease state.

  10. Inter-agency comparison of TanDEM-X baseline solutions

    Science.gov (United States)

    Jäggi, A.; Montenbruck, O.; Moon, Y.; Wermuth, M.; König, R.; Michalak, G.; Bock, H.; Bodenmann, D.

    2012-07-01

    TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the first Synthetic Aperture Radar (SAR) mission using close formation flying for bistatic SAR interferometry. The primary goal of the mission is to generate a global digital elevation model (DEM) with 2 m height precision and 10 m ground resolution from the configurable SAR interferometer with space baselines of a few hundred meters. As a key mission requirement for the interferometric SAR processing, the relative position, or baseline vector, of the two satellites must be determined with an accuracy of 1 mm (1D RMS) from GPS measurements collected by the onboard receivers. The operational baseline products for the TanDEM-X mission are routinely generated by the German Research Center for Geosciences (GFZ) and the German Space Operations Center (DLR/GSOC) using different software packages (EPOS/BSW, GHOST) and analysis strategies. For a further independent performance assessment, TanDEM-X baseline solutions are generated at the Astronomical Institute of the University of Bern (AIUB) on a best effort basis using the Bernese Software (BSW). Dual-frequency baseline solutions are compared for a 1-month test period in January 2011. Differences of reduced-dynamic baseline solutions exhibit a representative standard deviation (STD) of 1 mm outside maneuver periods, while biases are below 1 mm in all directions. The achieved baseline determination performance is close to the mission specification, but independent SAR calibration data takes acquired over areas with a well known DEM from previous missions will be required to fully meet the 1 mm 1D RMS target. Besides the operational solutions, single-frequency baseline solutions are tested. They benefit from a more robust ambiguity fixing and show a slightly better agreement of below 1 mm STD, but are potentially affected by errors caused by an incomplete compensation of differential ionospheric path delays.

  11. GPS based checking survey and precise DEM development in Open mine

    Institute of Scientific and Technical Information of China (English)

    XU Ai-gong

    2008-01-01

    The checking survey in Open mine is one of the most frequent and important work. It plays the role of forming a connecting link between open mine planning and production. Traditional checking method has such disadvantages as long time consumption,heavy workload, complicated calculating process, and lower automation. Used GPS and GIS technologies to systematically study the core issues of checking survey in open mine.A detail GPS data acquisition coding scheme was presented. Based on the scheme an algorithm used for computer semiautomatic cartography was made. Three methods used for eliminating gross errors from raw data which were needed for creating DEM was discussed. Two algorithms were researched and realized which can be used to create open mine fine DEM model with constrained conditions and to dynamically update the model.The precision analysis and evaluation of the created model were carried out.

  12. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  13. Analysis of Topographic Feature with SRTM DEM and ASTER GDEM Data and Railway Alignment%基于SRTM DEM,ASTER GDEM 地貌特征分析与铁路选线

    Institute of Scientific and Technical Information of China (English)

    高山

    2012-01-01

    研究目的:SRTM DEM,ASTER GDEM 数据具有全球范围、免费获取、精度较高的优点,结合复杂山区铁路工程,评价其数据精度,研究线路地貌特征,辅助铁路选线.研究结论:SRTM DEM,ASTER GDEM 数据由于各自存在较大的系统误差,通过采用高程精度评价、DEM融合、高程基准偏移、DEM重采样方法提高数字高程精度,进而构建大范围、高精度、可视化的三维数字地貌模型,有助于分析构造地貌特征、岩溶水文地质条件、地质灾害发育规律,提高铁路选线质量和效率.%Research purposes: The SRTM DEM and ASTER GDEM data have the advantages of the global scope, free access and high precision. The data were appliied in building railways in mountain area with complex geological condition to evaluate the data accuracy and study the topographic feature for assisting the railway alignment. Research conclusions:As the SRTM DEM and ASTER GDEM data have its own system error, the measures, such as the digital elevation accuracy evaluation, DEM fusion, elevation datum offset and DEM re - sampling, should be taken for improving the DEM accuracy and building a large range, high accuracy and visual digital topographic feature model to assist the analysis of the structural topographic feature, the geological condition of karst hydrology and the development regulation of geological disaster in order to enhance the quality and efficiency of railway alignment.

  14. Clinical CVVH model removes endothelium-derived microparticles from circulation

    Directory of Open Access Journals (Sweden)

    Abdelhafeez H. Abdelhafeez

    2014-02-01

    Full Text Available Background: Endothelium-derived microparticles (EMPs are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods: EMPs were generated from plasminogen activation inhibitor-1 (PAI-1-stimulated human umbilical vein endothelial cells (HUVECs. Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results: A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion: These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.

  15. Characterization of active fault scarps from medium to high resolution DEM: case studies from Central and Southern Apennines (Italy)

    Science.gov (United States)

    Brunori, C.; Cinti, F. R.; Ventura, G.

    2013-12-01

    We identify geo-morphometric features of active fault scarps in Italy through a semiautomatic processing using GIS. Medium to high resolution DEM was used to characterize the geometry, structural, and erosive elements of two seismogenic normal faults in Central and Southern Apennines. The Pettino fault in L'Aquila area was detected using a 1 m pixel DEM derived from airborne LiDAR survey (Friuli Venezia Giulia Civil Protection). For the Castrovillari fault in northern Calabria region was used a 4 m pixel DEM (Regional Cartography Office of Regione Calabria). Scarp segments are region of planar discontinuities identified by selected values of DEM-derived Terrain Ruggedness Index (TRI) and Vector Ruggedness Measure (VRM). These planar discontinuities corresponds to landscape features such as, river terraces, roads scarps, and other natural or human features. The discrimination between these features have been accomplished overlaying extracted features on aerial photograph, geological and geomorphologic maps and in situ survey. After that, we perform the quantitative and statistical analysis of these areas identified as "fault scarps". The identification of elements relative to the scarps (e.g. base, crest, slope) is then obtained to derive the estimate of parameters describing the fault: altitude, height of the scarp, length, slope and aspect, Terrain Ruggedness Index (TRI) and Vector Ruggedness Measure (VRM). The spatial distribution of the extracted values was obtained through their statistical analysis. We analyze scarp parameters variations along the whole scarp extent, such as strike value from aspect variations, slope and profile curvature differences as indicators of tectonic and/or erosion activity. The combined analysis of the DEM-derived parameters allows us to (a) define aspects of three-dimensional scarp geometry, (b) decipher its geomorphological significance, and (c) estimate the long-term slip rate.

  16. Orthorectification of IKONOS and Impact of Different Resolution DEM

    Institute of Scientific and Technical Information of China (English)

    XU Junfeng; HUANG Jingfeng

    2006-01-01

    IKONOS image has been wildly used in city planning, precision agriculture and emergence response. However, the accuracy of IKONOS Geo product is limited due to distortion caused by terrain relief. Orthorectification was performed to remove the distortion and the impact of different DEM on orthorectification were evaluated. 38 ground control points (GCPs) and 25 independent check points (ICPs) were collected. DEMs were generated from 1∶10 000 and 1∶50 000 topographic maps. Results show that RMS error at the check points is 1.554 0 m using DEM generated from 1∶10 000 topographic map, which can meet the accuracy requirement of IKONOS Precision product (1.9 m RMSE). While RMS error is 2.572 4 m using DEM generated from 1∶50 000 topographic map.

  17. VT USGS NED Hydro-flattened DEM (30 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VTHYDRODEM was created to produce a "hydrologically correct" DEM, compliant with the Vermont Hydrography Dataset (VHD) in support of the "flow...

  18. Simulation of the interaction between room air flow and human body using the tanabe model in ANSYS CFX; Simulation der Mensch-Raumklima-Wechselwirkung mit dem Tanabe-Modell in ANSYS CFX

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, P.; Spille-Kohoff, A. [CFX Berlin Software GmbH, Berlin (Germany)

    2006-07-01

    The human body is a complex system which reacts upon the ambient conditions such as temperature, air speed, radiation intensity, etc. by sweating or shivering in order to control its heat balance. On the other hand, the ambient flow field is influenced by the heat and moisture released by the body. This document outlines a coupled approach where ANSYS CFX is used to calculate the ambient flow field and SINDA/G is used to model the heat fluxes, sources and temperature distribution inside the human body. Basis of the latter is the well-known model of Tanabe. (orig.)

  19. Gesund aufwachsen – Welche Bedeutung kommt dem sozialen Status zu?

    OpenAIRE

    Lampert, Thomas; Kuntz, Benjamin

    2015-01-01

    Deutschland gehört zu den reichsten Ländern der Welt und verfügt über ein gut ausgebautes Sozialversicherungssystem. Dennoch wachsen auch hierzulande nicht alle Kinder und Jugendlichen unter den gleichen Lebensbedingungen auf. Die Ausgabe 1/2015 der Reihe GBE kompakt geht der Frage nach, welche Bedeutung dem sozialen Status beim gesunden Aufwachsen zukommt. Die Autoren untersuchen, ob sich soziale Ungleichheit im Gesundheitszustand, dem Gesundheitsverhalten und der Gesundheitsversorgung von K...

  20. Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension

    Directory of Open Access Journals (Sweden)

    Claus Altmayer

    2015-03-01

    Full Text Available Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension (Teil 2 von Bernt Ahrenholz (Hrsg. (2009, Empirische Befunde zu DaZ-Erwerb und Sprachförderung. Beiträge aus dem 3. ‚Workshop Kinder mit Migrationshintergrund‘; Karen Schramm & Christoph Schröder (Hrsg. (2009, Empirische Zugänge zu Spracherwerb und Sprachförderung in Deutsch als Zweitsprache; Stefan Jeuk (2010, Deutsch als Zweitsprache in der Schule. Grundlagen - Diagnose – Förderung

  1. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  2. Amundsen Sea sector ice shelf thickness, melt rates, and inland response from annual high-resolution DEM mosaics

    Science.gov (United States)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Alexandrov, O.; Moratto, Z.; Porter, C. C.; Morin, P. J.

    2014-12-01

    Significant grounding line retreat, acceleration, and thinning have occurred along the Amundsen Sea sector of West Antarctica in recent decades. These changes are driven primarily by ice-ocean interaction beneath ice shelves, but existing observations of the spatial distribution, timing, and magnitude of ice shelf melt are limited. Using the NASA Ames Stereo Pipeline, we generated digital elevation models (DEMs) with ~2 m posting from all ~450 available WorldView-1/2 along-track stereopairs for the Amundsen Sea sector. A novel iterative closest point algorithm was used to coregister DEMs to filtered Operation IceBridge ATM/LVIS data and ICESat-1 GLAS data, offering optimal sub-meter horizontal/vertical accuracy. The corrected DEMs were used to produce annual mosaics for the entire ~500x700 km region with focused, sub-annual products for ice shelves and grounding zones. These mosaics provide spatially-continuous measurements of ice shelf topography with unprecedented detail. Using these data, we derive estimates of ice shelf thickness for regions in hydrostatic equilibrium and map networks of sub-shelf melt channels for the Pine Island (PIG), Thwaites, Crosson, and Dotson ice shelves. We also document the break-up of the Thwaites ice shelf and PIG rift evolution leading up to the 2013 calving event. Eulerian difference maps document 2010-2014 thinning over fast-flowing ice streams and adjacent grounded ice. These data reveal the greatest thinning rates over the Smith Glacier ice plain and slopes beyond the margins of the fast-flowing PIG trunk. Difference maps also highlight the filling of at least two subglacial lakes ~30 km upstream of the PIG grounding line in 2011. Lagrangian difference maps reveal the spatial distribution of ice shelf thinning, which can primarily be attributed to basal melt. Preliminary results show focused ice shelf thinning within troughs and large basal channels, especially along the western margin of the Dotson ice shelf. These new data

  3. RADAR INTERFEROMETRY APPLICATION FOR DIGITAL ELEVATION MODEL IN MOUNT BROMO, INDONESIA

    Directory of Open Access Journals (Sweden)

    Noorlaila Hayati

    2015-06-01

    Full Text Available This paper reviewed the result and processing of digital elevation model (DEM using L-Band ALOS PALSAR data and two-pass radar interferometry method in Bromo Mountain region. Synthetic Aperture Radar is an advanced technology that has been used to monitor deformation, land cover change, image detection and especially topographic information such as DEM.  We used two scenes of SAR imageries to generate DEM extraction which assumed there is no deformation effect between two acquisitions. We could derive topographic information using phase difference by combining two single looks complex (SLC images called focusing process. The next steps were doing interferogram generation, phase unwrapping and geocoding. DEM-InSAR was compared to SRTM 90m that there were significant elevation differences between two DEMs such as smoothing surface and detail topographic. Particularly for hilly areas, DEM-InSAR showed better quality than SRTM 90 m where the elevation could have 25.94 m maximum gap. Although the processing involved adaptive filter to amplify the phase signal, we concluded that InSAR DEM result still had error noise because of signal wavelength, incidence angle, SAR image relationship, and only using ascending orbit direction.

  4. Tropical forest heterogeneity from TanDEM-X InSAR and lidar observations in Indonesia

    Science.gov (United States)

    De Grandi, Elsa Carla; Mitchard, Edward

    2016-10-01

    Fires exacerbated during El Niño Southern Oscillation are a serious threat in Indonesia leading to the destruction and degradation of tropical forests and emissions of CO2 in the atmosphere. Forest structural changes which occurred due to the 1997-1998 El Niño Southern Oscillation in the Sungai Wain Protection Forest (East Kalimantan, Indonesia), a previously intact forest reserve have led to the development of a range of landcover from secondary forest to areas dominated by grassland. These structural differences can be appreciated over large areas by remote sensing instruments such as TanDEM-X and LiDAR that provide information that are sensitive to vegetation vertical and horizontal structure. One-point statistics of TanDEM-X coherence (mean and CV) and LiDAR CHM (mean, CV) and derived metrics such as vegetation volume and canopy cover were tested for the discrimination between 4 landcover classes. Jeffries-Matusita (JM) separability was high between forest classes (primary or secondary forest) and non-forest (grassland) while, primary and secondary forest were not separable. The study tests the potential and the importance of potential of TanDEM-X coherence and LiDAR observations to characterize structural heterogeneity based on one-point statistics in tropical forest but requires improved characterization using two-point statistical measures.

  5. Análisis DEM 3D de arcos en regiones activas solares

    Science.gov (United States)

    Nuevo, F. A.; Mandrini, C. H.; Vásquez, A. M.; López Fuentes, M.

    2016-08-01

    The solar corona is highly organized by the magnetic field. Because of their temperature and density, magnetic loops are directly observable in active regions (ARs) in the extreme ultraviolet (EUV) and soft X-ray images. The observational determination of the three-dimensional (3D) distribution of basic physical parameters (electronic density and temperature, and magnetic field) is a fundamental constraint of coronal heating models. In this work we develop a technique of differential emission measure (DEM) analysis and we apply it an EUV loop identified in the images of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The DEM is determined after background subtraction and the electronic density and temperature in the loop are estimated from its moments. The 3D structure of the magnetic field in the loop and its intensity are modeled using linear force free field extrapolations based on AR magnetograms. In this work we show preliminary results of this technique.

  6. Calculation of emissions into rivers in Germany using the MONERIS model. Nutrients, heavy metals and polycyclic aromatic hydrocarbons; Berechnung von Stoffeintraegen in die Fliessgewaesser Deutschlands mit dem Modell MONERIS. Naehrstoffe, Schwermetalle und Polyzyklische aromatische Kohlenwasserstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Stephan; Scherer, Ulrike; Wander, Ramona [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Wasser und Gewaesserentwicklung; Behrendt, Horst; Venohr, Markus; Optiz, Dieter [Leibniz-Institut fuer Gewaesseroekologie und Binnenfischerei im Forschungsverbund Berlin e.V., Berlin (Germany); Hillenbrand, Thomas; Marscheider-Weidemann, Frank; Goetz, Thomas [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (Germany)

    2010-09-15

    The aim of both projects was a methodological development of the MONERIS model to quantify emissions from point and diffuse sources into Germany's surface waters. Both projects are based on consistent sub-basins and the according basic data as well as homogenous calculation algorithms that are adapted to the specifications of each substance group. The research encompasses Germany's large river basins as well as their catchment areas outside Germany and in total covers an area of 650,000 km{sup 2}. This was divided into 3456 analytical units (2759 of those in Germany), the average catchment areas being 190 km{sup 2} (135 km{sup 2} in Germany). All input data was collected and preprocessed with the highest spatial and temporal resolution possible based on the detailed topology. The modelling was performed in individual annual steps for the period between 1983-2005. For the evaluation of the temporal trends the data was aggregated for the periods 1983-1987 (''1985''), 1993-1997 (''1995''), 1998-2002 (''2000'') and 2003-2005 (''2005'') to soften the impact of hydrological influences. The basic data and model results for all sub-basins, years and substance groups of both projects were merged into one database. Additionally, a web-based graphical user interface was developed to visualise the emissions for any area aggregation can be visualised. The completion of both projects delivered for the first time ever homogenous instruments that can identify the most important sources and contamination hotspots for different relevant substance groups in larger river basins which can then serve as a basis for further analyses to achieve efficient measures to reduce pollution. (orig.)

  7. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  8. Spatiotemporal receptive fields: a dynamical model derived from cortical architectonics.

    Science.gov (United States)

    Krone, G; Mallot, H; Palm, G; Schüz, A

    1986-01-22

    We assume that the mammalian neocortex is built up out of some six layers which differ in their morphology and their external connections. Intrinsic connectivity is largely excitatory, leading to a considerable amount of positive feedback. The majority of cortical neurons can be divided into two main classes: the pyramidal cells, which are said to be excitatory, and local cells (most notably the non-spiny stellate cells), which are said to be inhibitory. The form of the dendritic and axonal arborizations of both groups is discussed in detail. This results in a simplified model of the cortex as a stack of six layers with mutual connections determined by the principles of fibre anatomy. This stack can be treated as a multi-input-multi-output system by means of the linear systems theory of homogeneous layers. The detailed equations for the simulation are derived in the Appendix. The results of the simulations show that the temporal and spatial behaviour of an excitation distribution cannot be treated separately. Further, they indicate specific processing in the different layers and some independence from details of wiring. Finally, the simulation results are applied to the theory of visual receptive fields. This yields some insight into the mechanisms possibly underlying hypercomplexity, putative nonlinearities, lateral inhibition, oscillating cell responses, and velocity-dependent tuning curves.

  9. Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures.

    Science.gov (United States)

    Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam

    2017-09-01

    Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Seasonal effects on the estimation of height of boreal and deciduous forests from interferometric TanDEM-X coherence data

    Science.gov (United States)

    Olesk, Aire; Voormansik, Kaupo; Tamm, Tanel; Noorma, Mart; Praks, Jaan

    2015-10-01

    The aim of this study is to assess the performance of single-pass X-band bistatic SAR interferometric forest height estimation of boreal and temperate deciduous forests under variable seasonal conditions. For this, twelve acquisitions of single- and dual-polarized TanDEM-X coherence images over 118 forest stands were analyzed and compared against LiDAR forest height maps. Strong correlations were found between interferometric coherence magnitude and LiDAR derived forest stand height for pine forests (r2=0.94) and spruce forest (r2=0.87) as well as for deciduous trees (r2=0.94) during leaf-off conditions with temperatures below 0°C. It was found that coherence magnitude based forest height estimation is influenced by leaf-on and leaf-off conditions as well as daily temperature fluctuations, height of ambiguity and effective baseline. These factors alter the correlation and should be taken into account for accurate coherence-based height retrieval. Despite the influence of the mentioned factors, generally a strong relationship in regression analysis between X-band SAR coherence and LiDAR derived forest stand height can be found. Moreover, a simple semi empirical model, derived from Random Volume over Ground model, is presented. The model takes into account all imaging geometry dependent parameters and allows to derive tree height estimate without a priori knowledge. Our results show that X-band SAR interferometry can be used to estimate forest canopy height for boreal and deciduous forests in both summer and winter, but the conditions should be stable.

  11. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  12. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  13. Synergetic merging of Cartosat-1 and RAMP to generate improved digital elevation model of Schirmacher oasis, east Antarctica

    Science.gov (United States)

    Jawak, S. D.; Luis, A. J.

    2014-11-01

    Available digital elevation models (DEMs) of Antarctic region generated by using radar altimetry and the Antarctic digital database (ADD) indicate elevation variations of up to hundreds of meters, which necessitates the generation of local DEM and its validation by using ground reference. An enhanced digital elevation model (eDEM) of the Schirmacher oasis region, east Antarctica, is generated synergistically by using Cartosat-1 stereo pair-derived photogrammetric DEM (CartoDEM)-based point elevation dataset and multitemporal radarsat Antarctic mapping project version 2 (RAMPv2) DEM-based point elevation dataset. In this study, we analyzed suite of interpolation techniques for constructing a DEM from RAMPv2 and CartoDEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improves the elevation accuracy of DEM from synergistically fused RAMPv2 and CartoDEM point elevation datasets. RAMPv2 points and CartoDEM points were used as primary data for various interpolation techniques such as ordinary kriging (OK), simple kriging (SK), universal kriging (UK), disjunctive kriging (DK) techniques, inverse distance weighted (IDW), global polynomial (GP) with power 1 and 2, local polynomial (LP) and radial basis functions (RBF). Cokriging of 2 variables with second dataset was used for ordinary cokriging (OCoK), simple cokriging (SCoK), universal cokriging (UCoK) and disjunctive cokriging (DCoK). The IDW, GP, LP, RBF, and kriging methods were applied to one variable, while Cokriging experiments were employed on two variables. The experiment of dataset and its combination produced two types of point elevation map categorized as (1) one variable (RAMPv2 Point maps and CartoDEM Point maps) and (2) two variables (RAMPv2 Point maps + CartoDEM Point maps). Interpolated surfaces were evaluated with the help of differential global positioning system

  14. Currents, HF Radio-derived, Ano Nuevo, Normal Model, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements, with missing values filled in by a normal model....

  15. Currents, HF Radio-derived, SF Bay Outlet, Normal Model, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements, with missing values filled in by a normal model....

  16. Currents, HF Radio-derived, Monterey Bay, Normal Model, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements, with missing values filled in by a normal model....

  17. Investigating the global transport of trace species and the stratoshere-troposphere-exchange with the Lagrangian model ECHAM4/ATTILA; Untersuchungen zum globalen Spurenstofftransport und Stratosphaeren-Troposphaeren-Austausch mit dem Lagrangeschen Modell ECHAM4/ATTILA

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.

    2001-07-01

    Investigating the chemical composition of the atmosphere and its influence on the global climate involves a large number of trace species. Therefore, the Lagrangian transport scheme ATTILA has been developed in this thesis. ATTILA runs online in the general circulation model ECHAM4 and, thus, can be used efficiently for studies involving many tracers. The present study discusses the problems which arise when applying Lagrangian methods on long range and global scale, and describes in detail the solutions developed for ATTILA. Transport experiments with both short-lived and long-lived tracers clearly show that ATTILA is numerically much less diffusive than the operational semi-Lagrangian scheme of ECHAM. It could be shown that the enhanced meridional transport in the tropopause region and the overestimated downward flux through the tropopause in ECHAM are rather due to the numerical properties of the semi-Lagrangian scheme than due to an incorrect circulation. Furthermore, the stratospheric dynamics has been investigated in this study by analysing trajectories and by calculating age spectra and mass fluxes. (orig.)

  18. CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solids phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.

  19. VT USGS NED DEM (10 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is derived from the multi-resolution National Elevation Dataset (NED), at resolutions of both 1/3 arc-second (approx. 10 meters) and...

  20. Coupled DEM-CFD Investigation of Granular Transport in a Fluid Channel

    Science.gov (United States)

    Zhao, T.; Dai, F.; Xu, N. W.

    2015-09-01

    This paper presents three dimensional numerical investigations of granular transport in fluids, analysed by the Discrete Element Method (DEM) coupled with Computational Fluid Mechanics (CFD). By employing this model, the relevance of flow velocity and granular depositional morphology has been clarified. The larger the flow velocity is, the further distance the grains can be transported to. In this process, the segregation of solid grains has been clearly identified. This research reveals that coarse grains normally accumulate near the grain source region, while the fine grains can be transported to the flow front. Regardless of the different flow velocities used in these simulations, the intensity of grains segregation remains almost unchanged. The results obtained from the DEM-CFD coupled simulations can reasonably explain the grain transport process occurred in natural environments, such as river scouring, evolution of river/ocean floor, deserts and submarine landslides.