WorldWideScience

Sample records for modelling quantum dots

  1. Hybrid quantum-classical modeling of quantum dot devices

    Science.gov (United States)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  2. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  3. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  4. Modelling exciton–phonon interactions in optically driven quantum dots

    DEFF Research Database (Denmark)

    Nazir, Ahsan; McCutcheon, Dara

    2016-01-01

    We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...

  5. Computational models for the berry phase in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca [M2NeT Lab, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5 (Canada); Sebetci, A. [Department of Mechanical Engineering, Mevlana University, 42003, Konya (Turkey)

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  6. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  7. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  8. Extended orbital modeling of spin qubits in double quantum dots

    Science.gov (United States)

    White, Zack; Ramon, Guy

    2018-01-01

    Orbital modeling of two electron spins confined in a double quantum dot is revisited. We develop an extended Hund-Mulliken approach that includes excited orbitals, allowing for a triplet configuration with both electrons residing in a single dot. This model improves the reliability and applicability of the standard Hund-Mulliken approximation, while remaining largely analytical, thus it enables us to identify the mechanisms behind the exchange coupling dynamics that we find. In particular, our calculations are in close agreement with exchange values that were recently measured at a high interdot bias regime, where the double occupancy triplet configuration is energetically accessible, demonstrating reduced sensitivity to bias fluctuations, while maintaining the large exchange needed for fast gating.

  9. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  10. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  11. Modeling of phonon- and Coulomb-mediated capture processes in quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg

    2003-01-01

    This thesis describes modeling of carrier relaxation processes in self-assembled quantum-dot-structures, with particular emphasis on carrier capture processes in quantum dots. Relaxation by emission of lontitudinal optical (LO) phonons is very efficient in bulk semiconductors and nanostructures...... of a charge in the quantum-dot state to which the capture takes place. In general, capture rates are of the same order as capture rates into an empty dot state, but in some cases the dot-size interval for which the capture process is energetically allowed, is considerably reduced.The above calculations...

  12. Modeling and simulation of InGaN/GaN quantum dots solar cell

    International Nuclear Information System (INIS)

    Aissat, A.; Benyettou, F.; Vilcot, J. P.

    2016-01-01

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In 0.25 Ga 0.75 N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In 0.25 Ga 0.75 N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  13. Modeling and simulation of InGaN/GaN quantum dots solar cell

    Science.gov (United States)

    Aissat, A.; Benyettou, F.; Vilcot, J. P.

    2016-07-01

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In0.25Ga0.75N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In0.25Ga0.75N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  14. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  15. Modeling high-efficiency quantum dot sensitized solar cells.

    Science.gov (United States)

    González-Pedro, Victoria; Xu, Xueqing; Mora-Seró, Iván; Bisquert, Juan

    2010-10-26

    With energy conversion efficiencies in continuous growth, quantum dot sensitized solar cells (QDSCs) are currently under an increasing interest, but there is an absence of a complete model for these devices. Here, we compile the latest developments in this kind of cells in order to attain high efficiency QDSCs, modeling the performance. CdSe QDs have been grown directly on a TiO(2) surface by successive ionic layer adsorption and reaction to ensure high QD loading. ZnS coating and previous growth of CdS were analyzed. Polysulfide electrolyte and Cu(2)S counterelectrodes were used to provide higher photocurrents and fill factors, FF. Incident photon-to-current efficiency peaks as high as 82%, under full 1 sun illumination, were obtained, which practically overcomes the photocurrent limitation commonly observed in QDSCs. High power conversion efficiency of up to 3.84% under full 1 sun illumination (V(oc) = 0.538 V, j(sc) = 13.9 mA/cm(2), FF = 0.51) and the characterization and modeling carried out indicate that recombination has to be overcome for further improvement of QDSC.

  16. Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2014-04-16

    Optoelectronic applications of colloidal quantum dots demand a high emission efficiency, stability in time, and narrow spectral bandwidth. Electronic trap states interfere with the above properties but understanding of their origin remains lacking, inhibiting the development of robust passivation techniques. Here we show that surface vacancies improve the fluorescence yield compared to vacancy-free surfaces, while dynamic vacancy aggregation can temporarily turn fluorescence off. We find that infilling with foreign cations can stabilize the vacancies, inhibiting intermittency and improving quantum yield, providing an explanation of recent experimental observations. © 2014 American Physical Society.

  17. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  18. Ultrasmall silicon quantum dots

    NARCIS (Netherlands)

    Zwanenburg, F.A.; Van Loon, A.A.; Steele, G.A.; Rijmenam, C.E.W.M.; Balder, T.; Fang, Y.; Lieber, C.M.; Kouwenhoven, L.P.

    2009-01-01

    We report the realization of extremely small single quantum dots in p-type silicon nanowires, defined by Schottky tunnel barriers with Ni and NiSi contacts. Despite their ultrasmall size the NiSi–Si–NiSi nanowire quantum dots readily allow spectroscopy of at least ten consecutive holes, and

  19. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  20. Transport in quantum dots

    International Nuclear Information System (INIS)

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  1. Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl

    Science.gov (United States)

    Noori, Keian; Hübener, Hannes; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.

  2. Modelling graphene quantum dot functionalization via ethylene-dinitrobenzoyl

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Keian; Giustino, Feliciano [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hübener, Hannes [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, Av. Tolosa 72, 20018 San Sebastián (Spain); Kymakis, Emmanuel [Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, Heraklion, 71004 Crete (Greece)

    2016-03-21

    Ethylene-dinitrobenzoyl (EDNB) linked to graphene oxide has been shown to improve the performance of graphene/polymer organic photovoltaics. Its binding conformation on graphene, however, is not yet clear, nor have its effects on work function and optical absorption been explored more generally for graphene quantum dots. In this report, we clarify the linkage of EDNB to GQDs from first principles and show that the binding of the molecule increases the work function of graphene, while simultaneously modifying its absorption in the ultraviolet region.

  3. Modeling bidirectional transport of quantum dot nanoparticles in membrane nanotubes.

    Science.gov (United States)

    Kuznetsov, A V

    2011-08-01

    This paper develops a model of transport of quantum dot (QD) nanoparticles in membrane nanotubes (MNTs). It is assumed that QDs are transported inside intracellular organelles (called here nanoparticle-loaded vesicles, NLVs) that are propelled by either kinesin or dynein molecular motors while moving on microtubules (MTs). A vesicle may have both types of motors attached to it, but the motors are assumed to work in a cooperative fashion, meaning that at a given time the vesicle is moved by either kinesin or dynein motors. The motors are assumed not to work against each other, when one type of motors is pulling the vesicle, the other type is inactive. From time to time the motors may switch their roles: passive motors can become active motors and vice versa, resulting in the change of the vesicle's direction of motion. It is further assumed that QDs can escape NLVs and become free QDs, which are then transported by diffusion. Free QDs can be internalized by NLVs. The effects of two possible types of MT orientation in MNTs are investigated: when all MTs have a uniform polarity orientation, with their plus-ends directed toward one of the cells connected by an MNT, and when MTs have a mixed polarity orientation, with half of MTs having their plus-ends directed toward one of the cells and the other half having their plus-ends directed toward the other cell. Computational results are presented for three cases. The first case is when organelles are as likely to be transported by kinesin motors as by dynein motors. The second case is when organelles are more likely to be transported by kinesin motors than by dynein motors, and the third case is when NLVs do not associate with dynein motors at all. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  5. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  6. A valence force field-Monte Carlo algorithm for quantum dot growth modeling

    DEFF Research Database (Denmark)

    Barettin, Daniele; Kadkhodazadeh, Shima; Pecchia, Alessandro

    2017-01-01

    We present a novel kinetic Monte Carlo version for the atomistic valence force fields algorithm in order to model a self-assembled quantum dot growth process. We show our atomistic model is both computationally favorable and capture more details compared to traditional kinetic Monte Carlo models...

  7. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  8. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  9. Modeling and simulation of InGaN/GaN quantum dots solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Aissat, A., E-mail: sakre23@yahoo.fr [LATSI Laboratory, Faculty of Technology, University of Blida 1 (Algeria); LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Benyettou, F. [LASICOMLaboratory, Faculty of Sciences, University of Blida 1 (Algeria); Vilcot, J. P. [Institute of Electronics, Micro-Electronics and Nanotechnologies,UMR CNRS 8520, Université des Sciences et Technologies de Lille1, Avenue Poincaré, CS 60069, 59652 Villeneuve d’Ascq (France)

    2016-07-25

    Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In{sub 0.25}Ga{sub 0.75}N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In{sub 0.25}Ga{sub 0.75}N/GaN quantum dots with pin solar cell. The conversion efficiency begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.

  10. Generic Hubbard model description of semiconductor quantum-dot spin qubits

    Science.gov (United States)

    Yang, Shuo; Wang, Xin; Das Sarma, S.

    2011-04-01

    We introduce a Hubbard model as the simple quantum generalization of the classical capacitance circuit model to study semiconductor quantum-dot spin qubits. We prove theoretically that our model is equivalent to the usual capacitance circuit model in the absence of quantum fluctuations. However, our model naturally includes quantum effects such as hopping and spin exchange. The parameters of the generalized Hubbard model can either be directly read off from the experimental plot of the stability diagram or be calculated from the microscopic theory, establishing a quantitative connection between the two. We show that, while the main topology of the charge stability diagram is determined by the ratio between intersite and on-site Coulomb repulsion, fine details of the stability diagram reveal information about quantum effects. Extracting quantum information from experiments using our Hubbard model approach is simple, but would require the measurement resolution to increase by an order of magnitude.

  11. Non-parabolic model for InAs/GaAs quantum dot capacitance spectroscopy

    Science.gov (United States)

    Filikhin, I.; Deyneka, E.; Vlahovic, B.

    2006-12-01

    InAs/GaAs quantum dot electron spectra obtained from the capacitance-voltage measurements by B.T. Miller et al. [B.T. Miller, W. Hansen, S. Manus, R.J. Luyken, A. Lorke, J.P. Kotthaus, S. Huant, G. Medeiros-Ribeiro, P.M. Petroff, Phys. Rev. B 56 (1997) 6764] are quantitatively interpreted by applying a three-dimensional model of a semiconductor quantum dot with energy-dependent electron effective mass and finite confinement potential. The Coulomb interaction between tunnelled electrons is taken into account by perturbation theory. The observed significant increase in the electron effective mass of the quantum dot in respect to its bulk value is explained by the non-parabolic effect.

  12. Quantum Dot Spectrometer (GSFC IRAD)

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing an ultra-compact, low mass, low-cost, yet high resolution, multispectral imager based on an innovative quantum dot array concept. The quantum dot...

  13. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  14. First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells

    NARCIS (Netherlands)

    Azpiroz, Jon Mikel; Infante, Ivan; De Angelis, Filippo

    2015-01-01

    We report on the density functional theory (DFT) modeling of core/shell quantum dot (QD) sensitized solar cells (QDSSCs), a device architecture that holds great potential in photovoltaics but has not been fully exploited so far. To understand the working mechanisms of this kind of solar cells, we

  15. Quantum Dot Devices for Optical Signal Processing

    DEFF Research Database (Denmark)

    Chen, Yaohui

    This thesis describes the physics and applications of quantum dot semiconductor optical ampliers through numerical simulations. As nano-structured materials with zero-dimensional quantum connement, semiconductor quantum dot material provides a number of unique physical properties compared...... with other semiconductor materials. The understanding of such properties is important in order to improve the performance of existing devices and to trigger the development of new semiconductor devices for dierent optical signal processing functionalities in the future. We present a detailed quantum dot...... semiconductor optical amplier model incorporating a carrier dynamics rate equation model for quantum dots with inhomogeneous broadening as well as equations describing propagation. A phenomenological description has been used to model the intradot electron scattering between discrete quantum dot states...

  16. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  17. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small

  18. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  19. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  20. PREFACE: Quantum Dot 2010

    Science.gov (United States)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  1. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  2. Magnon-driven quantum dot refrigerators

    International Nuclear Information System (INIS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-01-01

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  3. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  4. Quantum Dots in Liquid Scintillator

    Science.gov (United States)

    Gooding, Diana

    2017-09-01

    Quantum dots are semiconducting crystals with dimensions on the order of nanometers. Due to quantum confinement, their size gives rise to optical properties that resemble those of single atoms, rather than bulk material. One of these is their absorption of light shorter than a characteristic wavelength and reemission in a narrow peak around that wavelength. This unique photoluminescence makes quantum dots ideal wavelength shifters. Moreover, their chemistry provides a straight-forward method to suspend heavy elements in organic scintillators. The NuDot collaboration has been pursuing a variety of new quantum dots, and a review of the current results will be presented.

  5. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-01

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on \\text{I}{{\\text{n}}_{0.48}}\\text{G}{{\\text{a}}_{0.52}}\\text{P} buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, \\vec{k}\\;\\cdot \\;\\vec{p} bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband \\vec{k}\\;\\cdot \\;\\vec{p} approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further

  6. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-16

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  7. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  8. Electron Transport in Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Antoniadis, D

    1998-01-01

    In the course of the investigation funded by this proposal we fabricated, modeled, and measured a variety of quantum dot structures in order to better understand how such nanostructures might be used for computation...

  9. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  10. On solutions of boundary value problems for model of axially symmetric quantum dots

    International Nuclear Information System (INIS)

    Gusev, A.A.; Chvluunbaatar, O.; Vinitsky, S.I.; Dvoyan, K.G.; Kazaryan, E.M.; Sarkisyan, H.A.

    2010-01-01

    Full text: (author)In the framework of effective mass approximation we have considered solutions of boundary value problems with separated and nonseparated variables for models of quantum dots with axial-symmetric potentials of harmonic oscillators and confinement potentials with infinite and finite walls. For considered problems we have made comparisons of levels with low energy of discrete spectra and eigenfunctions nodes by using exact and adiabatic classification of states. Critical values of the spheroidal aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed

  11. Finite element modelling of semi and nonpolar GaN/AlN quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jurczak, Grzegorz, E-mail: gjurcz@ippt.pan.pl [Department of Computational Science, Institute of Fundamental Technological Research Polish Academy of Sciences, ul. Pawinskiego 5b, 02-106 Warsaw (Poland); Young, Toby D. [Department of Computational Science, Institute of Fundamental Technological Research Polish Academy of Sciences, ul. Pawinskiego 5b, 02-106 Warsaw (Poland)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer (112{sup Macron }2) and (112{sup Macron }0) GaN/AlN quantum dots as a candidate for light emitting devices. Black-Right-Pointing-Pointer Elastic relaxation scheme shows similarity regardless the type of growth. Black-Right-Pointing-Pointer Spontaneous polarisation follows polar [0 0 0 1] orientation and localisation phenomena is observed. Black-Right-Pointing-Pointer Semipolar-to-nonpolar orientations of a buried QD results in reduction of the electrostatic potential value, peak-to-peak potential drop, and electric field. - Abstract: This paper describes results of a finite element analysis of the elastic and electric field distribution in a semipolar and a nonpolar isolated quantum dot based on previously obtained measurements from transmission electron microscopy. The two quantum dot orientations are each investigated and compared in terms of the resultant piezoelectric fields and their redistribution due to growth orientation and quantum dot geometry/surface effects. Alongside that, a standard polar quantum dot is investigated as a reference-state system. It is found that the geometry of quantum dots grown in alternative orientations affect the elastic strain and, along with orientation dependent spontaneous polarisation, modify the electrostatic potential and the built-in electric fields. A theoretical verification of a reduction in the quantum confined Stark effect by determining the band edge splitting energies for electron and hole states is given.

  12. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  13. Theoretical modelling of quaternary GaInAsSb/GaAs self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, J M; Taboada, A G; Ripalda, J M; Alonso-Alvarez, D; Alen, B; Martin-Sanchez, J; Garcia, J M; Gonzalez, Y [IMM-Instituto de Microelectronica de Madrid, (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Sanchez, A M [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Beltran, A M; Galindo, P L; Molina, S I, E-mail: jose.llorens@imm.cnm.csic.e [Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain)

    2010-09-01

    InAs/GaAs quantum dots exposed to Sb after growth exhibit spectral changes. We study in the present paper an idealized nanostructure consisting of a homogeneous distribution of the quaternary GaInAsSb surrounded by a barrier of GaAs. We find that the valence band offset is a critical parameter in modelling its electronic structure. Depending on this value, we predict a transition from type-I to type-II band alignment at a different Sb concentration. The addition of Sb to reduce the transition energy while keeping a type-I alignment is only of benefit at low Sb concentration.

  14. Towards Ideal Quantum Dots

    Directory of Open Access Journals (Sweden)

    Vyacheslav A. Elyukhin

    2013-01-01

    Full Text Available Arrays of single photon emitters with the same energy of luminescence are necessary for the development of quantum imformation technology. The studied epitaxial quantum dots have an undresired inhomogeneity of luminescence. Here, AxB1-xCyD1-y alloys of AC, AD, BC and BD compounds are presented as semiconductors in which non-random distribution of cations and anions may result in self-assembling of identical tetrahedral clusters. It can be due to the preference of AC and BD bonding over AD and BC one, a decrease of the strain energy or both of them. The self-assembling conditions of 1P4Ga clusters in AlN-rich AlxGa1-xPyN1-y alloys with Ga and phosphorus contents in the dilute and ultra dilute limits, correspondingly, are represented. All phosphorus atoms should be in 1P4Ga clusters at ~1000 oC if the Ga content reaches several percents. AlN-rich AlxGa1-xPyN1-y alloys with 1P4Ga clusters are promising semiconductors for fabrication of arrays of identical single photon emitters with the same energy of luminescence

  15. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  16. Quantum dots in photonic crystals for integrated quantum photonics

    Science.gov (United States)

    Kim, Je-Hyung; Richardson, Christopher J. K.; Leavitt, Richard P.; Waks, Edo

    2017-08-01

    Integrated quantum photonic technologies hold a great promise for application in quantum information processing. A major challenge is to integrate multiple single photon sources on a chip. Quantum dots are bright sources of high purity single photons, and photonic crystals can provide efficient photonic platforms for generating and manipulating single photons from integrated quantum dots. However, integrating multiple quantum dots with photonic crystal devices still remains as a challenging task due to the spectral randomness of the emitters. Here, we present the integration of multiple quantum dots with individual photonic crystal cavities and report quantum interference from chip-integrated multiple quantum dots. To solve the problem of spectral randomness, we introduce local engineering techniques for tuning multiple quantum dots and cavities. From integrated quantum dot devices we observe indistinguishable nature of single photons from individual quantum dots on the same chip. Therefore, our approach paves the way for large-scale quantum photonics with integrated quantum emitters.

  17. Synthesis, Characterization, and Biodistribution of Quantum Dot-Celecoxib Conjugate in Mouse Paw Edema Model

    Directory of Open Access Journals (Sweden)

    Suresh K. Kalangi

    2018-01-01

    Full Text Available Increased risk of cardiovascular side effects has been reported with many of the drugs in the market, including nonsteroidal anti-inflammatory drugs (NSAIDs. Hence, it is critical to thoroughly evaluate the biodistribution and pharmacokinetic properties of the drugs. Presently nanotechnology in combination with noninvasive imaging techniques such as magnetic resonance imaging (MRI, computed axial tomography (CAT, and positron emission tomography (PET provides a better estimate of the spatio-temporal distribution of therapeutic molecules. Optical imaging using quantum dot- (QD- tagged biological macromolecules is emerging as a fast, economical, sensitive, and safer alternative for theranostic purposes. In the present study, we report the nanoconjugates of mercaptopropionic acid- (MPA- capped CdTe quantum dots (QDs and Celecoxib for bio-imaging in carrageenan-induced mouse paw edema model of inflammation. QD-Celecoxib conjugates were characterized by fluorescence, FT-IR, NMR, and zeta-potential studies. In vivo imaging of QD-Celecoxib conjugates showed clear localization in the inflamed tissue of mouse paw within 3 h, with a gradual increase reaching a maximum and a later decline. This decrease of fluorescence in the paw region is followed by an increase in urinary bladder region, suggesting the possible excretion of QD-drug conjugates from mice within 24 h.

  18. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  19. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  20. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  1. Quantum Dot Systems: a versatile platform for quantum simulations

    International Nuclear Information System (INIS)

    Barthelemy, Pierre; Vandersypen, Lieven M.K.

    2013-01-01

    Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  3. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  4. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  5. Quantum-dot based photonic quantum networks

    Science.gov (United States)

    Lodahl, Peter

    2018-01-01

    Quantum dots (QDs) embedded in photonic nanostructures have in recent years proven to be a very powerful solid-state platform for quantum optics experiments. The combination of near-unity radiative coupling of a single QD to a photonic mode and the ability to eliminate decoherence processes imply that an unprecedent light-matter interface can be obtained. As a result, high-cooperativity photon-emitter quantum interfaces can be constructed opening a path-way to deterministic photonic quantum gates for quantum-information processing applications. In the present manuscript, I review current state-of-the-art on QD devices and their applications for quantum technology. The overarching long-term goal of the research field is to construct photonic quantum networks where remote entanglement can be distributed over long distances by photons.

  6. Efficient Modeling of Coulomb Interaction Effect on Exciton in Crystal-Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Taherkhani, Masoomeh; Gregersen, Niels; Mørk, Jesper

    2016-01-01

    The binding energy and oscillation strength of the ground-state exciton in type-II quantum dot (QD) is calculated by using a post Hartree-Fock method known as the configuration interaction (CI) method which is significantly more efficient than conventional methods like ab initio method. We show...

  7. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  8. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  9. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  10. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis,

  11. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Liu, Rongrong; Vancso, Gyula J.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of

  12. Effect of temperature on quantum dots

    Indian Academy of Sciences (India)

    MAHDI AHMADI BORJI

    2017-07-12

    Jul 12, 2017 ... Quantum dot semiconductor lasers, due to the discrete density of states, low threshold current and ... energy states, strain, and other physical features, and their change by varying some factors such as ... tion 2 explains the model and method of the numerical simulation. Our results and discussions on the ...

  13. Competing interactions in semiconductor quantum dots

    NARCIS (Netherlands)

    van den Berg, R.; Brandino, G.P.; El Araby, O.; Konik, R.M.; Gritsev, V.; Caux, J.S.

    2014-01-01

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free-induction decay and spin-echo simulations

  14. Numerical simulation of optical feedback on a quantum dot lasers

    International Nuclear Information System (INIS)

    Al-Khursan, Amin H.; Ghalib, Basim Abdullattif; Al-Obaidi, Sabri J.

    2012-01-01

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  15. Dynamic localization in quantum dots: Analytical theory

    International Nuclear Information System (INIS)

    Basko, D.M.; Skvortsov, M.A.; Kravtsov, V.E.

    2003-02-01

    We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation φ(t). Assuming the dot to be described by random matrix theory for GOE we find the quantum correction to the energy absorption rate as a function of the dephasing time t φ . If φ(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that to the conductivity δσ d (t φ ) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation the leading quantum correction is absent as in the systems of the unitary symmetry class, unless φ(-t+τ)=φ(t+τ) for some τ, which falls into the quasi-1d orthogonal universality class. (author)

  16. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected......In this thesis, sub-gap states in bottom-gated InAs N–dot–S, N–double dot–S, and N–dot–S–dot–N devices are investigated, and several different theories are developed to model these states. Experimental results include tracking single levels of the dot in an N–dot–S device as the tunnel couplings...... with floating gates. A numerical technique is developed, which predicts the position of Yu-Shiba-Rusinov sub-gap states in the proximitized Anderson model as well as properties of these states. This theory is valid for all occupations of the dot and for weak to intermediate coupling. We compare...

  17. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  18. On-chip quantum optics with quantum dots and superconducting resonators

    Science.gov (United States)

    Deng, Guang-Wei; Guo, Guo-Ping; Guo, Guang-Can

    2016-11-01

    Benefit from the recent nanotechnology process, people can integrate different nanostructures on a single chip. Particularly, quantum dots (QD), which behave as artificial atoms, have been shown to couple with a superconducting resonator, indicating that quantum-dot based quantum chip has a highly scalable possibility. Here we show a quantum chip architecture by combining graphene quantum dots and superconducting resonators together. A double quantum dot (DQD) and a microwave hybrid system can be described by the Jaynes-Cummings model, while a multi-quantum-dots system is conformed to the Tavis-Cummings model. These simple quantum optics models are experimentally realized in our device, providing a compelling platform for both graphene study and potential applications.

  19. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light......-matter interaction in the micropiller caivty is so strong that we measure non-Markovian dynamics of the quantum dot, and we compare to the Jaynes-Cummings model with all parameters independently determined. We find an excellent agreement when comparing the dynamics, but the emission spectra show significant...... deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  20. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  1. Dynamics of Energy Transfer in Quantum Dot Arrays

    Science.gov (United States)

    Al-Ahmadi, A. N.; Ulloa, S. E.

    2004-04-01

    Förster-type coupling is one of the most important mechanisms that influence the energy transport properties in a quantum dot array. We explore this mechanism by calculating the coupling strength V_F, and by studying the dynamics of the exciton state created in an array of quantum dots using the time evolution of the density matrix approach. We first estimate the coupling strength VF of Förster interaction based on microscopic descriptions of the exciton levels in the quantum dot. We study this parameter for different materials (CdS, CdSe,InP, and GaAs) as function of the dot size. The results show that the maximum value of VF depends on the specific sizes and that each material has optimal coupling for different pairs of quantum dot radii. Other key parameters that govern energy transport are determined for various materials and sizes of quantum dots. Second, we consider a model of coupled quantum dots with two exciton levels in each dot, one optically passive and another active. Analysis of the population of each level when the Förster channel is opened shows this is responsible for interesting physical behavior in different coupling regimes. Realistic parameters used to study the dynamics of the exciton state for dimer and trimer quantum dot clusters, allow us direct comparison with recent experiments by Klimov et al. Supported by US DOE, and Indiana 21^st Century Fund Research and Technology.

  2. Ultrasmall colloidal PbS quantum dots

    International Nuclear Information System (INIS)

    Reilly, Nick; Wehrung, Michael; O'Dell, Ryan Andrew; Sun, Liangfeng

    2014-01-01

    Ultrasmall colloidal lead sulfide quantum dots can increase the open circuit voltages of quantum-dot-based solar cells because of their large energy gap. Their small size and visible or near infrared light-emitting property make them attractive to the applications of biological fluorescence labeling. Through a modified organometallic route, we can synthesize lead sulfide quantum dots as small as 1.6 nm in diameter. The low reaction temperature and the addition of a chloroalkane cosolvent decrease the reaction rate, making it possible to obtain the ultrasmall quantum dots. - Highlights: • Ultrasmall colloidal PbS quantum dots as small as 1.6 nm in diameter are synthesized. • The quantum dots emit red light with photoluminescence peak at 760 nm. • The growth temperature is as low as 50 °C. • Addition of cosolvent 1,2-dichloroethane in the reaction decreases the reaction rate

  3. Quantum Logic Using Excitonic Quantum Dots in External Optical Microcavities

    National Research Council Canada - National Science Library

    Raymer, Michael

    2003-01-01

    An experimental project was undertaken to develop means to achieve quantum optical strong coupling between a single GaAs quantum dot and the optical mode of a microcavity for the purpose of quantum...

  4. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  5. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  6. Millimeter Wave Modulators Using Quantum Dots

    National Research Council Canada - National Science Library

    Prather, Dennis W

    2008-01-01

    In this effort electro-optic modulators for millimeter wave sensing and imaging were developed and demonstrated via design, fabrication, and experimental characterization of multi layer quantum dot...

  7. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  8. Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics

    KAUST Repository

    Buin, Andrei

    2015-06-18

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper bound of the Bohr radius of 45 Å that agrees well with literature values. When the quantum dots are stoichiometric, they are trap-free and have nearly symmetric contributions to confinement from the valence and conduction bands. We further show that surface-associated conduction bandedge states in perovskite nanocrystals lie below the bulk states, which could explain the difference in Urbach tails between mesoporous and planar perovskite films. In addition to conventional molecular dynamics (MD), we implement an enhanced phase-space sampling algorithm, replica exchange molecular dynamics (REMD). We find that in simulation of methylammonium orientation and global minima, REMD outperforms conventional MD. To the best of our knowledge, this is the first REMD implementation for realistic-sized systems in the realm of DFT calculations.

  9. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  10. Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles

    Science.gov (United States)

    Cartar, William K.

    Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common

  11. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two...... on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N = 7, and a reduction in the nominal cavity mode volume for increasing amounts of disorder....

  12. Colloidal quantum dot photodetectors

    KAUST Repository

    Konstantatos, Gerasimos

    2011-05-01

    We review recent progress in light sensors based on solution-processed materials. Spin-coated semiconductors can readily be integrated with many substrates including as a post-process atop CMOS silicon and flexible electronics. We focus in particular on visible-, near-infrared, and short-wavelength infrared photodetectors based on size-effect-tuned semiconductor nanoparticles made using quantum-confined PbS, PbSe, Bi 2S3, and In2S3. These devices have in recent years achieved room-temperature D values above 1013 Jones, while fully-depleted photodiodes based on these same materials have achieved MHz response combined with 1012 Jones sensitivities. We discuss the nanoparticle synthesis, the materials processing, integrability, temperature stability, physical operation, and applied performance of this class of devices. © 2010 Elsevier Ltd. All rights reserved.

  13. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  14. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  15. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 1. Many electron effects in ... Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as 'artificial atoms' by some, ... Our calculations have been performed in a three-dimensional quantum dot. We have carried out a study of ...

  16. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  17. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  18. Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots

    Science.gov (United States)

    Vaughan, M. P.; Rorison, J. M.

    2018-01-01

    Model expressions for the spin-orbit interaction in a quantum dot are obtained. The resulting form does not neglect cubic terms and allows for a generalized structural inversion asymmetry. We also obtain analytical expressions for the coupling between states for the electron-phonon interaction and use these to derive spin-relaxation rates, which are found to be qualitatively similar to those derived elsewhere in the literature. We find that, due to the inclusion of cubic terms, the Dresselhaus contribution to the ground state spin relaxation disappears for spherical dots. A comparison with previous theory and existing experimental results shows good agreement thereby presenting a clear analytical formalism for future developments. Comparative calculations for potential materials are presented.

  19. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    -low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record...

  20. Coherent optoelectronics with single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zrenner, A; Ester, P; Michaelis de Vasconcellos, S; Huebner, M C; Lackmann, L; Stufler, S [Universitaet Paderborn, Department Physik, Warburger Strasse 100, D-33098 Paderborn (Germany); Bichler, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)], E-mail: zrenner@mail.upb.de

    2008-11-12

    The optical properties of semiconductor quantum dots are in many respects similar to those of atoms. Since quantum dots can be defined by state-of-the-art semiconductor technologies, they exhibit long-term stability and allow for well-controlled and efficient interactions with both optical and electrical fields. Resonant ps excitation of single quantum dot photodiodes leads to new classes of coherent optoelectronic functions and devices, which exhibit precise state preparation, phase-sensitive optical manipulations and the control of quantum states by electrical fields.

  1. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  2. Quantum dots: lasers and amplifiers

    CERN Document Server

    Bimberg, D

    2003-01-01

    Continuous wave room-temperature output power of approx 3 W for edge emitters and of 1.2 mW for vertical-cavity surface-emitting lasers is realized for GaAs-based devices using InAs quantum dots (QDs) operating at 1.3 mu m. Characteristic temperatures up to 170 K below 330 K are realized. Simultaneously, differential efficiency exceeds 80% for these devices. Lasers emitting up to 12 W at 1140-1160 nm are useful as pump sources for Tm sup 3 sup + -doped fibres for frequency up-conversion to 470 nm. Both types of lasers show transparency current densities of 6 A cm sup - sup 2 per dot layer, eta sub i sub n sub t = 98% and alpha sub i around 1.5 cm sup - sup 1. Long operation lifetimes (above 3000 h at 50 deg C heatsink temperature at 1.5 W CW) and improved radiation hardness as compared to quantum well (QW) devices are manifested. Cut-off frequencies of about 10 GHz at 1100 nm and 6 GHz at 1300 nm and low alpha factors resulting in reduced filamentation and improved M sup 2 values in single-mode operation are ...

  3. Electron Energy Level Statistics in Graphene Quantum Dots

    NARCIS (Netherlands)

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the

  4. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  5. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  6. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    International Nuclear Information System (INIS)

    Hernandez-Maldonado, D.; Herrera, M.; Sales, D.L.; Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L.; Pizarro, J.; Galindo, P.L.; Molina, S.I.

    2010-01-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  7. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  8. Quantum walks in an array of quantum dots

    International Nuclear Information System (INIS)

    Manouchehri, K; Wang, J B

    2008-01-01

    Quantum random walks are shown to have non-intuitive dynamics, which makes them an attractive area of study for devising quantum algorithms for well-known classical problems as well as those arising in the field of quantum computing. In this work, we propose a novel scheme for the physical implementation of a discrete-time quantum random walk using laser excitations of the electronic states of an array of quantum dots. These dots represent the discrete nodes of the walk, while transitions between the energy levels inside each dot correspond to the required coin operation and stimulated Raman adiabatic passage (STIRAP) processes are employed to induce the steps of the walk. The quantum dot design is tailored in such a way as to enable selective coupling of the energy levels. Our simulation results show a close agreement with the ideal quantum walk distribution as well as modest robustness toward noise disturbance

  9. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    Directory of Open Access Journals (Sweden)

    Stephan Michael

    2016-05-01

    Full Text Available In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. Here, we study the influence of two important quantum-dot material parameters, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. However, by minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

  10. Electromagnetically induced transparency in quantum dot systems

    International Nuclear Information System (INIS)

    Jiang Yiwen; Zhu Kadi; Wu Zhuojie; Yuan Xiaozhong; Yao Ming

    2006-01-01

    Electromagnetically induced transparency (EIT) in quantum dot exciton systems in which the exciton behaves as a two-level system is investigated theoretically. It is shown that due to strong exciton-phonon coupling EIT can occur in such a quantum dot system and ultraslow light can propagate. The nonlinear optical absorption and Kerr coefficient based on EIT are also calculated. The numerical results show that giant nonlinear optical effects can be obtained while the frequency of the signal field differs only by an amount of LO phonon frequency from the exciton frequency in quantum dot systems

  11. Quantum Dots in Vertical Nanowire Devices

    NARCIS (Netherlands)

    Van Weert, M.

    2010-01-01

    The research described in this thesis is aimed at constructing a quantum interface between a single electron spin and a photon, using a nanowire quantum dot. Such a quantum interface enables information transfer from a local electron spin to the polarization of a photon for long distance readout.

  12. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  13. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  14. Atomic models for anionic ligand passivation of cation-rich surfaces of IV-VI, II-VI, and III-V colloidal quantum dots.

    Science.gov (United States)

    Ko, Jae-Hyeon; Yoo, Dongsuk; Kim, Yong-Hyun

    2016-12-22

    We formulated atomic models of cation-rich surfaces passivated with anionic ligands for IV-VI, II-VI, and III-V colloidal quantum dots, employing electron counting models and quantum mechanical calculations. We found that the fractional dangling bonds of cation-rich (100) and (111) surfaces could be greatly stabilized by dimerization-anion passivation and amine-anion co-passivation.

  15. Universal parametric correlations of conductance peaks in quantum dots

    International Nuclear Information System (INIS)

    Alhassid, Y.; Attias, H.

    1996-01-01

    We compute the parametric correlation function of the conductance peaks in chaotic and weakly disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an appropriate scaling of the parameter. For a symmetric dot we show that this correlation function is affected by breaking time-reversal symmetry but is independent of the details of the channels in the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be extracted directly from the conductance peak heights. Our results are in excellent agreement with model simulations of a disordered quantum dot. copyright 1996 The American Physical Society

  16. Optical Fiber Sensing Using Quantum Dots

    Directory of Open Access Journals (Sweden)

    Faramarz Farahi

    2007-12-01

    Full Text Available Recent advances in the application of semiconductor nanocrystals, or quantumdots, as biochemical sensors are reviewed. Quantum dots have unique optical properties thatmake them promising alternatives to traditional dyes in many luminescence basedbioanalytical techniques. An overview of the more relevant progresses in the application ofquantum dots as biochemical probes is addressed. Special focus will be given toconfigurations where the sensing dots are incorporated in solid membranes and immobilizedin optical fibers or planar waveguide platforms.

  17. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  18. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  19. Optical Studies of Single Quantum Dots

    National Research Council Canada - National Science Library

    Gammon, Daniel; Steel, Duncan G

    2002-01-01

    ...: the atomlike entities known as quantum dots (QDs). Measuring 1-100 nm across, QDs are semiconductor structures in which the electron wavefunction is confined in all three dimensions by the potential energy barriers that form the QD's boundaries...

  20. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  1. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  3. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  4. Electron Spin Dynamics in Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-01-01

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  5. Positioning of quantum dots on metallic nanostructures

    Science.gov (United States)

    Kramer, R. K.; Pholchai, N.; Sorger, V. J.; Yim, T. J.; Oulton, R.; Zhang, X.

    2010-04-01

    The capability to position individual emitters, such as quantum dots, near metallic nanostructures is highly desirable for constructing active optical devices that can manipulate light at the single photon level. The emergence of the field of plasmonics as a means to confine light now introduces a need for high precision and reliability in positioning any source of emission, which has thus far been elusive. Placing an emission source within the influence of plasmonic structures now requires accuracy approaching molecular length scales. In this paper we report the ability to reliably position nanoscale functional objects, specifically quantum dots, with sub-100-nm accuracy, which is several times smaller than the diffraction limit of a quantum dot's emission light. Electron beam lithography-defined masks on metallic surfaces and a series of surface chemical functionalization processes allow the programmed assembly of DNA-linked colloidal quantum dots. The quantum dots are successfully functionalized to areas as small as (100 nm)2 using the specific binding of thiolated DNA to Au/Ag, and exploiting the streptavidin-biotin interaction. An analysis of the reproducibility of the process for various pattern sizes shows that this technique is potentially scalable to the single quantum dot level with 50 nm accuracy accompanied by a moderate reduction in yield.

  6. Positioning of quantum dots on metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R K; Pholchai, N; Sorger, V J; Yim, T J; Oulton, R; Zhang, X, E-mail: xiang@berkeley.edu [NSF Nanoscale Science and Engineering Center, University of California, Berkeley, CA (United States)

    2010-04-09

    The capability to position individual emitters, such as quantum dots, near metallic nanostructures is highly desirable for constructing active optical devices that can manipulate light at the single photon level. The emergence of the field of plasmonics as a means to confine light now introduces a need for high precision and reliability in positioning any source of emission, which has thus far been elusive. Placing an emission source within the influence of plasmonic structures now requires accuracy approaching molecular length scales. In this paper we report the ability to reliably position nanoscale functional objects, specifically quantum dots, with sub-100-nm accuracy, which is several times smaller than the diffraction limit of a quantum dot's emission light. Electron beam lithography-defined masks on metallic surfaces and a series of surface chemical functionalization processes allow the programmed assembly of DNA-linked colloidal quantum dots. The quantum dots are successfully functionalized to areas as small as (100 nm){sup 2} using the specific binding of thiolated DNA to Au/Ag, and exploiting the streptavidin-biotin interaction. An analysis of the reproducibility of the process for various pattern sizes shows that this technique is potentially scalable to the single quantum dot level with 50 nm accuracy accompanied by a moderate reduction in yield.

  7. Evidence for possible quantum dot interdiffusion induced by cap layer growth

    International Nuclear Information System (INIS)

    Jasinski, J.; Czeczott, M.; Gladysz, A.; Babinski, A.; Kozubowski, J.

    1999-01-01

    Self-organised InGaAs quantum dots were grown on (001) GaAs substrates and covered with two different types of cap layers grown at significantly different temperatures. In order to determine quantum dot emission energy and dot size distribution, photoluminescence and transmission electron microscopy studies were carried out on such samples. Simple theoretical model neglecting effect of interdiffusion allowed for correlation between quantum dot size and photoluminescence emission energy only in the case of dots covered by cap layers grown at the lower temperature. For dots covered by layers grown at the higher temperature such correlation was possible only when strong interdiffusion was assumed. (author)

  8. Universal quantum computing with nanowire double quantum dots

    International Nuclear Information System (INIS)

    Xue Peng

    2011-01-01

    We present a method for implementing universal quantum computing using a singlet and triplets of nanowire double quantum dots coupled to a one-dimensional transmission line resonator. This method is suitable and of interest for both quantum computing and quantum control with inhibition of spontaneous emission, enhanced spin qubit lifetime, strong coupling and quantum nondemolition measurements of spin qubits. We analyze the performance and stability of all the required operations and emphasize that all techniques are feasible with current experimental technology.

  9. Spectroscopy characterization and quantum yield determination of quantum dots

    International Nuclear Information System (INIS)

    Ortiz, S N Contreras; Ospino, E Mejía; Cabanzo, R

    2016-01-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum. (paper)

  10. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  11. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  12. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  13. Fluidity evaluation of cell membrane model formed on graphene oxide with single particle tracking using quantum dot

    Science.gov (United States)

    Okamoto, Yoshiaki; Motegi, Toshinori; Iwasa, Seiji; Sandhu, Adarsh; Tero, Ryugo

    2015-04-01

    The lipid bilayer is the fundamental structure of plasma membranes, and artificial lipid bilayer membranes are used as model systems of cell membranes. Recently we reported the formation of a supported lipid bilayer (SLB) on graphene oxide (GO) by the vesicle fusion method. In this study, we conjugated a quantum dot (Qdot) on the SLB surface as a fluorescence probe brighter than dye-labeled lipid molecules, to qualitatively evaluate the fluidity of the SLB on GO by the single particle tracking method. We obtained the diffusion coefficient of the Qdot-conjugated lipids in the SLB on GO. We also performed the Qdot conjugation on the SLB containing a lipid conjugated with polyethylene glycol, to prevent the nonspecific adsorption of Qdots. The difference in the diffusion coefficients between the SLBs on the GO and the bare SiO2 regions was evaluated from the trajectory of single Qdot-conjugated lipid diffusing between the two regions.

  14. Photoconductivity of Si/Ge multilayer structures with Ge quantum dots pseudomorphic to the Si matrix

    International Nuclear Information System (INIS)

    Talochkin, A. B.; Chistokhin, I. B.

    2011-01-01

    Longitudinal photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots grown pseudomorphically to the Si matrix are studied. Lines of optical transitions between hole levels of quantum dots and Si electronic states are observed. This allowed us to construct a detailed energy-level diagram of electron-hole levels of the structure. It is shown that hole levels of pseudomorphic Ge quantum dots are well described by the simplest “quantum box” model using actual sizes of Ge islands. The possibility of controlling the position of the long-wavelength photosensitivity edge by varying the growth parameters of Si/Ge structures with Ge quantum dots is determined.

  15. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  16. Rabi oscillations a quantum dot exposed to quantum light

    International Nuclear Information System (INIS)

    Magyarov, A.; Slepyan, G.Ya.; Maksimenko, S.A.; Hoffmann, A.

    2007-01-01

    The influence of the local field on the excitonic Rabi oscillations in an isolated quantum dot driven by the coherent state of light has been theoretically investigated. Local field is predicted to entail the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime Rabi oscillations are periodic and do not reveal collapse-revivals phenomenon, while in the second one collapse and revivals appear, showing significant difference as compared to those predicted by the standard Jaynes-Cummings model

  17. Quantum computation with two-dimensional graphene quantum dots

    International Nuclear Information System (INIS)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission into the...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate.......This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...

  19. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Porras, A., E-mail: aramirez@fisica.ucr.ac.cr [Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); García, O. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Vargas, C. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Corrales, A. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Solís, J.D. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica)

    2015-08-30

    Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models.

  20. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretations of exponantial decay models

    NARCIS (Netherlands)

    van Driel, A.F.; Nikolaev, I.; Vergeer, P.; Lodahl, P.; Vanmaekelbergh, D.; Vos, Willem L.

    2007-01-01

    We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters and the

  1. Quantum-Dot Semiconductor Optical Amplifiers: State Space Model versus Rate Equation Model

    Directory of Open Access Journals (Sweden)

    Hussein Taleb

    2013-01-01

    Full Text Available A simple and accurate dynamic model for QD-SOAs is proposed. The proposed model is based on the state space theory, where by eliminating the distance dependence of the rate equation model of the QD-SOA; we derive a state space model for the device. A comparison is made between the rate equation model and the state space model under both steady state and transient regimes. Simulation results demonstrate that the derived state space model not only is much simpler and faster than the rate equation model, but also it is as accurate as the rate equation model.

  2. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  3. Imaging electrostatically confined Dirac fermions in graphene quantum dots

    Science.gov (United States)

    Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.

    2016-11-01

    Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.

  4. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  5. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  6. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  7. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  8. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  9. Carbon quantum dots and a method of making the same

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  10. Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

    Directory of Open Access Journals (Sweden)

    W. W. Wang

    2015-01-01

    Full Text Available We simulated and analyzed a resonant-cavity-enhancedd InGaAs/GaAs quantum dot n-i-n photodiode using Crosslight Apsys package. The resonant cavity has a distributed Bragg reflector (DBR at one side. Comparing with the conventional photodetectors, the resonant-cavity-enhanced photodiode (RCE-PD showed higher detection efficiency, faster response speed, and better wavelength selectivity and spatial orientation selectivity. Our simulation results also showed that when an AlAs layer is inserted into the device structure as a blocking layer, ultralow dark current can be achieved, with dark current densities 0.0034 A/cm at 0 V and 0.026 A/cm at a reverse bias of 2 V. We discussed the mechanism producing the photocurrent at various reverse bias. A high quantum efficiency of 87.9% was achieved at resonant wavelength of 1030 nm with a FWHM of about 3 nm. We also simulated InAs QD RCE-PD to compare with InGaAs QD. At last, the photocapacitance characteristic of the model has been discussed under different frequencies.

  11. Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion

    International Nuclear Information System (INIS)

    Djie, H. S.; Wang, D.-N.; Ooi, B. S.; Hwang, J. C. M.; Gunawan, O.

    2006-01-01

    The impact of group-III vacancy diffusion, generated during dielectric cap induced intermixing, on the energy state transition and the inhomogeneity reduction in the InGaAs/GaAs quantum-dot structure is investigated. We use a three-dimensional quantum-dot diffusion model and photoluminescence data to determine the thermal and the interdiffusion properties of the quantum dot. The band gap energy variation related to the dot uniformity is found to be dominantly affected by the height fluctuation. A group-III vacancies migration energy H m for InGaAs quantum dots of 1.7 eV was deduced. This result is similar to the value obtained from the bulk and GaAs/AlGaAs quantum-well materials confirming the role of SiO 2 capping enhanced group-III vacancy induced interdiffusion in the InGaAs quantum dots

  12. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  13. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...... methods for use with commercially available quantum dots and discuss common difficulties....

  14. Complex dynamics in planar two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, Sebastian Josef Arthur

    2013-06-25

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two

  15. Complex dynamics in planar two-electron quantum dots

    International Nuclear Information System (INIS)

    Schroeter, Sebastian Josef Arthur

    2013-01-01

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an

  16. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  17. THz quantum-confined Stark effect in semiconductor quantum dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.

    2012-01-01

    We demonstrate an instantaneous all-optical manipulation of optical absorption at the ground state of InGaAs/GaAs quantum dots (QDs) via a quantum-confined Stark effect (QCSE) induced by the electric field of incident THz pulses with peak electric fields reaching 200 kV/cm in the free space...

  18. Some aspects of quantum dot toxicity.

    Science.gov (United States)

    Bottrill, Melanie; Green, Mark

    2011-07-07

    Quantum dot toxicity has become a hot topic in recent years due to the emergence of semiconductor nanoparticles as highly efficient biological imaging agents. The use of quantum dots in biology is arguably the most successful application of pure nanotechnology in recent times, although unfortunately, the most useful semiconductor particles contain elements that are often thought to be detrimental to health and the environment. In this article, we explore some key reports on this issue. This journal is © The Royal Society of Chemistry 2011

  19. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  20. QCAD simulation and optimization of semiconductor double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  1. Gain recovery dynamics and limitations in quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg

    2001-01-01

    Summary form only given. While ultra-low threshold current densities have been achieved in quantum dot (QD) lasers, the predicted potential for high-speed modulation has not yet been realized despite the high differential gain. Furthermore, recent single pulse experiments demonstrated very fast...... gain recovery in a quantum dot amplifier, and it is thus not yet clear what the limiting processes for the device response are. We present the results of a comprehensive theoretical model, which agrees well with the experimental results, and indicates the importance of slow recovery of higher energy...

  2. Magnetic control of dipolaritons in quantum dots

    International Nuclear Information System (INIS)

    Rojas-Arias, J S; Vinck-Posada, H; Rodríguez, B A

    2016-01-01

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure. (paper)

  3. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    International Nuclear Information System (INIS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd 2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd 2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd 2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd 2+ ions and complexity of tracking of individual atoms of Cd at the same time

  4. Shape, strain, and ordering of lateral InAs quantum dot molecules

    International Nuclear Information System (INIS)

    Krause, B.; Metzger, T.H.; Rastelli, A.; Songmuang, R.; Kiravittaya, S.; Schmidt, O. G.

    2005-01-01

    The results of an x-ray study on freestanding, self-assembled InAs/GaAs quantum dots grown by molecular beam epitaxy are presented. The studied samples cover the range from statistically distributed single quantum dots to quantum dot bimolecules, and finally to quantum dot quadmolecules. The x-ray diffraction data of the single quantum dots and the bimolecules, obtained in grazing incidence geometry, have been analyzed using the isostrain model. An extended version of the isostrain model has been developed, including the lateral arrangement of the quantum dots within a quantum dot molecule and the superposition of the scattering from different parts of the dots. This model has been applied to the scattering maps of all three samples. Quantitative information about the positions of the dots, the shape, and the lattice parameter distribution of their crystalline core has been obtained. For the single dot and the bimolecule, a strong similarity of the shape and lattice parameter distribution has been found, in agreement with the similarity of their photoluminescence spectra

  5. Biosensing with Luminescent Semiconductor Quantum Dots

    OpenAIRE

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapti...

  6. Design strategy for terahertz quantum dot cascade lasers.

    Science.gov (United States)

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  7. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  8. Charge transfer modeling in monolayer circular graphene quantum dots-ZnO nanowires system for application in photovoltaic devices

    Science.gov (United States)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-01-01

    We investigate electron transport between circular graphene quantum dots (CGQDs) and ZnO nanowires (ZnO NWs). This structure can be used as donor and acceptor in hybrid solar cells. We consider circular quantum dots (QDs) and use analytical calculation in order to estimate wavefunctions of GQD and ZnO NWs. After calculating the wavefunctions overlap, we use Marcus relation in order to calculate electron transfer rate. Also, we calculate this transfer rate for CdSe QDs-ZnO NWs system. Results from analytical calculation show that the transfer rate is limited to 1013 s-1. This result is in agreement with experimental results which are reported earlier. Such systems could be suitable for solar cells.

  9. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  10. New small quantum dots for neuroscience

    Science.gov (United States)

    Selvin, Paul

    2014-03-01

    In "New Small Quantum Dots for Neuroscience," Paul Selvin (University of Illinois, Urbana-Champaign) notes how the details of synapsis activity in the brain involves chemical receptors that facilitate the creation of the electrical connection between two nerves. In order to understand the details of this neuroscience phenomenon you need to be able to "see" what is happening at the scale of these receptors, which is around 10 nanometers. This is smaller than the diffraction limit of normal microscopy and it takes place on a 3 dimensional structure. Selvin describes the development of small quantum dots (on the order of 6-9 microns) that are surface-sensitized to interact with the receptors. This allows the application of photo-activated localized microscopy (PALM), a superresolution microscopy that can be scanned through focus to develop a 3D map on a scale that is the same size as the emitter, which in this case are the small quantum dots. The quantum dots are stable in time and provide access to the receptors which allows the imaging of the interactions taking place at the synoptic level.

  11. Quantum Dot Detectors with Plasmonic Structures

    Science.gov (United States)

    2015-05-15

    high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97(6), 061105 (2010). 18. J. D. Jackson, Classical ... Electrodynamics (Wiley, New York, 3rd Edition, 1999). Approved for Public Release; Distribution is Unlimited. 10 19. J. O. Kim, S. Sengupta, A. V. Barve, Y. D

  12. Photoluminescence of hybrid quantum dot systems

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 347-349 ISSN 2164-6627 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : quantum dots * energy transfer * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single...

  14. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as 'artificial atoms' by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the ...

  15. Magnetic quantum dots for multimodal imaging

    NARCIS (Netherlands)

    Koole, Rolf; Mulder, Willem J. M.; van Schooneveld, Matti M.; Strijkers, Gustav J.; Meijerink, Andries; Nicolay, Klaas

    2009-01-01

    Multimodal contrast agents based on highly luminescent quantum dots (QDs) combined with magnetic nanoparticles (MNPs) or ions form an exciting class of new materials for bioimaging. With two functionalities integrated in a single nanoparticle, a sensitive contrast agent for two very powerful and

  16. Effect of temperature on quantum dots

    Indian Academy of Sciences (India)

    MAHDI AHMADI BORJI

    2017-07-12

    Jul 12, 2017 ... Abstract. In this paper, the strain, band-edge, and energy levels of pyramidal InxGa1−xAs/GaAs quantum dots are investigated by 1-band effective mass approach. It is shown that while temperature has no remarkable effect on the strain tensor, the band gap lowers and the radiation wavelength elongates ...

  17. Current noise in a vibrating quantum dot array

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomas; Jauho, Antti-Pekka

    2004-01-01

    We develop methods for calculating the zero-frequency noise for quantum shuttles, i.e., nanoelectromechanical devices where the mechanical motion is quantized. As a model system we consider a three-dot array, where the internal electronic coherence both complicates and enriches the physics. Two...

  18. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.

    Science.gov (United States)

    Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G

    2018-04-23

    Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

  19. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    Science.gov (United States)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  20. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  1. Lateral photoconductivity of multilayer Ge/Si structures with Ge quantum dots

    International Nuclear Information System (INIS)

    Talochkin, A. B.; Chistokhin, I. B.; Markov, V. A.

    2009-01-01

    Spectra of lateral photoconductivity of multilayer Ge/Si structures with Ge quantum dots, fabricated by molecular-beam epitaxy are studied. The photoresponse caused by optical transitions between hole levels of quantum dots and Si electronic states was observed in the energy range of 1.1-0.3 eV at T = 78 K. It was shown that the electronic states localized in the region of Si band bending near the Ge/Si interface mainly contribute to lateral photoconductivity. The use of the quantum box model for describing hole levels of quantum dots made it possible to understand the origin of peaks observed in the photoconductivity spectra. A detailed energy-level diagram of hole levels of quantum dots and optical transitions in Ge/Si structures with strained Ge quantum dots was constructed.

  2. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  3. Vertical quantum dot with a vertically coupled charge detector

    International Nuclear Information System (INIS)

    Zaitsu, Koichiro; Kitamura, Yosuke; Ono, Keiji; Tarucha, Seigo

    2008-01-01

    We fabricated a vertical quantum dot equipped with a charge detector. The dot current flows vertically between the top and bottom contacts. The charge detector is formed at the bottom contact layer with a current channel constricted to the region just under the dot. This channel current is reduced by addition of an extra electron onto the dot due to the electrostatic coupling to the dot. The charge state of the vertical dot was detected, starting from zero electrons. The sensitivity of the charge detector was comparable to that previously reported for lateral dots with nearby quantum point contacts

  4. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    developed in the study of single quantum dots, characterized by sharp atomic-like transition lines revealing their zero-dimensional density of states. Substantial information about the fundamental properties of individual quantum dots, as well as their interactions with other dots and the host lattice, can...

  5. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  6. Single quantum dots fundamentals, applications, and new concepts

    CERN Document Server

    2003-01-01

    This book reviews recent advances in the exciting and rapid growing field of semiconductor quantum dots by contributions from some of the most prominent researchers in the field. Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons. Single Quantum Dots also addresses various growth techniques as well as potential device applications such as quantum dot lasers, and new concepts like a single-photon source, and a single quantum dot laser.

  7. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    Science.gov (United States)

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  8. Semiconductor nanocrystals or quantum dots

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 8. Various Quantum Mechanical Concepts for Confinements in Semiconductor Nanocrystals. Jayakrishna Khatei Karuna Kar Nanda. Classroom Volume 18 Issue 8 August 2013 pp 771-776 ...

  9. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    Energy Technology Data Exchange (ETDEWEB)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tagliaferri, M. L. V. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Universit di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Vinet, M. [CEA/LETI-MINATEC, CEA-Grenoble, 17 rue des martyrs, F-38054 Grenoble (France); Sanquer, M. [SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, 38054 Grenoble (France); Ferguson, A. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  10. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    International Nuclear Information System (INIS)

    Betz, A. C.; Broström, M.; Gonzalez-Zalba, M. F.; Tagliaferri, M. L. V.; Vinet, M.; Sanquer, M.; Ferguson, A. J.

    2016-01-01

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  11. InP quantum dots embedded in GaP: Optical properties and carrier dynamics

    International Nuclear Information System (INIS)

    Hatami, F.; Masselink, W.T.; Schrottke, L.; Tomm, J.W.; Talalaev, V.; Kristukat, C.; Goni, A.R.

    2003-01-01

    The optical emission and dynamics of carriers in Stranski-Krastanow self-organized InP quantum dots embedded in a GaP matrix are studied. InP deposited on GaP (001) using gas-source molecular-beam epitaxy forms quantum dots for InP coverage greater than 1.8 monolayers. Strong photoluminescence from the quantum dots is observed up to room temperature at about 2 eV; photoluminescence from the two-dimensional InP wetting layer is measured at about 2.2 eV. Modeling based on the 'model-solid theory' indicates that the band alignment for the InP quantum dots is direct and type I. Furthermore, low-temperature time-resolved photoluminescence measurements indicate that the carrier lifetime in the quantum dots is about 2 ns, typical for type-I quantum dots. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP quantum dots at normal pressure with the GaP X states lying about 30 meV higher than the Γ states in the InP quantum dots, but indicate that they become type II under hydrostatic pressures of about 1.2 GPa

  12. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  13. Quantum optics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean

    2016-01-01

    We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...

  14. Conductance of a quantum dot in the Kondo regime connected to dirty wires

    Science.gov (United States)

    Camjayi, Alberto; Arrachea, Liliana

    2012-12-01

    We study the transport behavior induced by a small bias voltage through a quantum dot connected to one-channel disordered wires by means of a quantum Monte Carlo method. We model the quantum dot by the Hubbard-Anderson impurity and the wires by the one-dimensional Anderson model with diagonal disorder within a length. We present a complete description of the probability distribution function of the conductance within the Kondo regime.

  15. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models

    DEFF Research Database (Denmark)

    Van Driel, A.F.; Nikolaev, I.S.; Vergeer, P.

    2007-01-01

    We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters and the in......We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters...... decay component is multiplied by its radiative decay rate. A central result of our paper is the derivation of the emission decay curve when both radiative and nonradiative decays are independently distributed. In this case, the well-known emission quantum efficiency can no longer be expressed...... by a single number, but is also distributed. We derive a practical description of non-single-exponential emission decay curves in terms of a single distribution of decay rates; the resulting distribution is identified as the distribution of total decay rates weighted with the radiative rates. We apply our...

  16. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  17. Facile labeling of lipoglycans with quantum dots

    International Nuclear Information System (INIS)

    Morales Betanzos, Carlos; Gonzalez-Moa, Maria; Johnston, Stephen Albert; Svarovsky, Sergei A.

    2009-01-01

    Bacterial endotoxins or lipopolysaccharides (LPS) are among the most potent activators of the innate immune system, yet mechanisms of their action and in particular the role of glycans remain elusive. Efficient non-invasive labeling strategies are necessary for studying interactions of LPS glycans with biological systems. Here we report a new method for labeling LPS and other lipoglycans with luminescent quantum dots. The labeling is achieved by partitioning of hydrophobic quantum dots into the core of various LPS aggregates without disturbing the native LPS structure. The biofunctionality of the LPS-Qdot conjugates is demonstrated by the labeling of mouse monocytes. This simple method should find broad applicability in studies concerned with visualization of LPS biodistribution and identification of LPS binding agents.

  18. Quantum Dot Molecular Beacons for DNA Detection

    Science.gov (United States)

    Cady, Nathaniel C.

    Molecular beacons have become an important fluorescent probe for sequence-specific DNA detection. To improve the sensitivity and robustness of molecular beacon assays, fluorescent semiconductor quantum dots (QDs) are now being used as the fluorescent moiety for molecular beacon synthesis. Multiple linkage strategies can be used for attaching molecular beacon DNA to QDs, and multiple quenchers, including gold particles, can be used for fluorescence quenching. Covalent attachment of QDs to DNA can be achieved through amide linkage, and affinity-based attachment can be achieved with streptavidin-biotin linkage. We have shown that these linkage strategies can be used to successfully create quantum dot molecular beacons that can be used in DNA detection assays with high specificity.

  19. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  20. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  1. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows:...... experiments held together with the prospects in localization microscopy and single molecule manipulation experiments gave QDs a promising future in single molecule research....

  2. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.

    Science.gov (United States)

    le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J

    2018-02-14

    To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.

  5. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  6. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  7. Using of Quantum Dots in Biology and Medicine.

    Science.gov (United States)

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  8. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  9. Theory of single quantum dot lasers: Pauli-blocking-enhanced anti-bunching

    International Nuclear Information System (INIS)

    Su, Yumian; Bimberg, Dieter; Carmele, Alexander; Richter, Marten; Knorr, Andreas; Lüdge, Kathy; Schöll, Eckehard

    2011-01-01

    We present a theoretical model to describe the dynamics of a single semiconductor quantum dot interacting with a microcavity system. The confined quantum dot levels are pumped electrically via a carrier reservoir. The investigated dynamics includes semiconductor-specific, reservoir-induced Pauli-blocking terms in the equations of the photon probability functions. This enables a direct study of the photon statistics of the quantum light emission in dependence on the different pumping rates

  10. Silicon quantum dots: fine-tuning to maturity.

    Science.gov (United States)

    Morello, Andrea

    2015-12-18

    Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotechnology the fabrication of a novel Si/SiGe double quantum dot device, which combines an ultra-low disorder Si/SiGe accumulation-mode heterostructure with a stack of overlapping control gates, ensuring tight confining potentials and exquisite tunability. This work signals the technological maturity of silicon quantum dots, and their readiness to be applied to challenging projects in quantum information science.

  11. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    International Nuclear Information System (INIS)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-01-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  12. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  13. Single-charge tunneling in ambipolar silicon quantum dots

    NARCIS (Netherlands)

    Müller, Filipp

    2015-01-01

    Spin qubits in coupled quantum dots (QDs) are promising for future quantum information processing (QIP). A quantum bit (qubit) is the quantum mechanical analogon of a classical bit. In general, each quantum mechanical two-level system can represent a qubit. For the spin of a single charge carrier

  14. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    2010-01-01

    treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced......We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian...

  15. Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bresco, Jordi; Munoz-Matutano, Guillermo; Martinez-Pastor, Juan [Institut de Ciencies dels Materials de la Universitat de Valencia, Universitat de Valencia, Valencia (Spain); Alen, Benito [IMM, Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Seravalli, Luca; Frigeri, Paola; Trevisi, Giovanna; Franchi, Secondo, E-mail: jrdi.gomis@icn.cat [CNR-IMEM Institute, Parco delle Scienze 37a, I-43100 Parma (Italy)

    2011-02-15

    We model the time-resolved and time-integrated photoluminescence of a single InAs/GaAs quantum dot (QD) using a random population description. We reproduce the joint power dependence of the single QD exciton complexes (neutral exciton, neutral biexciton and charged trions). We use the model to investigate the selective optical pumping phenomenon, a predominance of the negative trion observed when the optical excitation is resonant to a non-intentional impurity level. Our experiments and simulations determine that the negative charge confined in the QD after exciting resonance to the impurity level escapes in 10 ns.

  16. Quantum dot mediated imaging of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Jayagopal, Ashwath; Haselton, Frederick R [Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Su Yanru; Blakemore, John L; Linton, MacRae F; Fazio, Sergio [Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)], E-mail: rick.haselton@vanderbilt.edu

    2009-04-22

    The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE{sup -/-} mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.

  17. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  18. Quantum size effect and thermal stability of carbon-nanotube-based quantum dot

    International Nuclear Information System (INIS)

    Huang, N.Y.; Peng, J.; Liang, S.D.; Li, Z.B.; Xu, N.S.

    2004-01-01

    Full text: Based on semi-experience quantum chemical calculation, we have investigated the quantum size effect and thermal stability of open-end carbon nanotube (5, 5) quantum dots of 20 to 400 atoms. It was found that there is a gap in the energy band of all carbon nanotube (5, 5) quantum dots although a (5, 5) carbon nanotube is metallic. The energy gap of quantum dots is much dependent of the number of atoms in a dot, as a result of the quantization rules imposed by the finite scales in both radial and axial directions of a carbon nanotube quantum dot. Also, the heat of formation of carbon nanotube quantum dots is dependent of the size of a quantum dot. (author)

  19. Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots

    Science.gov (United States)

    Zhang, Lei; Hill, Tyler A.; Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng; Deng, Hui

    2014-12-01

    We report on the carrier dynamics in InGaN/GaN dot-in-nanowire quantum dots, revealed by a systematic mapping between the optical properties and structural parameters of the quantum dots. Such a study is made possible by using quantum dots with precisely controlled locations and sizes. We show that the carrier dynamics is governed by two competing mechanisms: (1) Excitons are protected from surface recombination by a potential barrier formed due to strain relaxation at the sidewall surface. (2) Excitons can overcome the potential barrier by tunneling and thermal activation. This carrier dynamics model successfully explains the following surprising experimental findings on individual quantum dots. First, there exist strong statistical correlations among multiple optical properties of many individual quantum dots, despite variations of these properties resulting from inevitable structural variations among the quantum dots. Second, the antibunching property of the quantum dot emission exhibits an abnormal ladle-shaped dependence on the decay time and temperature. Our results can guide the way toward nitride-based high-temperature single-photon emitters and nanophotonic devices.

  20. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    Science.gov (United States)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  1. Amphoteric CdSe nanocrystalline quantum dots.

    Science.gov (United States)

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  2. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  3. Classical and quantum mechanical behaviour in the low-field magneto-resistance in open quantum dots

    International Nuclear Information System (INIS)

    Brunner, R.

    2005-09-01

    Electronic transport through open dots has received much attention in recent years. An interesting aspect of this research focuses on the use of such low-dimensional systems to probe the connection between semi-classical physics and quantum mechanics. The purpose of this thesis is to understand the transport properties in a ballistic open quantum dot and dot arrays and to find clear evidence that, although the system is open, still discrete energy states are present. This is achieved by using a classical model calculation and performing DC and microwave experiments in the single open quantum dot and 3-dot array. By comparing the magneto-resistance obtained from the experiment with the calculated magneto-resistance the confining potential of the open quantum dot is found to be a soft parabolic potential. Peaks in the low-field magneto-resistance are attributed to backscattering events in the open dot. At certain magnetic fields classically calculated trajectories are obtained which are backscattered. As a consequence the magneto-resistance is raised. As a consequence of a stability analysis by calculating the Poincare section and estimating the Lyapunov exponent, the single open quantum dot is identified as an integrable system. In the case of an open quantum dot array the symmetry of the single dot is broken. Depending on the magnetic field, the open quantum dot array is characterized as an integrable system or a nonintegrable system with mixed phase space. The mixed phase space exists of chaotic and quasi-periodic trajectories. The quasi-periodic trajectories are attributed to Kolmogorov-Arnol'd-Moser (KAM) islands. These islands are completely decoupled from the surrounding and therefore classically inaccessible. We argue that the closed orbits which generate a series of delta functions in the density of states might be associated with discrete energy states in the open quantum dot. To search for discrete energy states in the open quantum dot microwave

  4. Silicon Quantum Dots with Counted Antimony Donor Implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenakshi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Pacheco, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Perry, Daniel Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Garratt, E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Ten Eyck, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Wendt, Joel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Luhman, Dwight [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Bielejec, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Lilly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  5. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  6. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  7. Studies on silicon quantum dots prepared at different working pressure

    Directory of Open Access Journals (Sweden)

    Faisal A. Al-Agel

    Full Text Available This research work describes the synthesis and characterization of Si quantum dots of thickness 20 nm prepared on glass/quartz substrate by Physical Vapour Condensation Technique at the working pressure of 5 and 10 Torr with fixed substrate temperature 77 K using liquid nitrogen. The synthesized quantum dots were studied by FESEM, HRTEM, X-ray diffraction, UV–visible spectroscopy, photoluminescence and FTIR spectroscopy. The X-ray diffraction pattern of synthesized quantum dots shows the amorphous nature. FESEM images of synthesized quantum dots suggest that the size of quantum dots varies from 4–6 nm which is further confirmed by HRTEM. On the basis of optical absorbance by UV–visible spectroscopy, a direct band gap has been detected. FTIR spectra suggest that the as-grown Si quantum dots are partially oxidized which is due exposure of samples to air after taking out the samples from the chamber. PL spectra show a broad peak at 444 nm, which may be attributed to the configuration of amorphous Si quantum dots. A slight shift in the peak position has been observed with increase in working pressure from 5 Torr to 10 Torr. The dc conductivity with temperature of Si quantum dots has also been studied from 303 to 454 K. It is evident that the dc conductivity (σdc enhances linearly with temperature, showing that conduction in Si quantum dots is due to an activated action which further verify the semiconductor deportment of these quantum dots. Keywords: Si quantum dots, Thin films, XRD, Optical properties, Electrical properties

  8. Nonlinear laser dynamics from quantum dots to cryptography

    CERN Document Server

    Lüdge, Kathy

    2012-01-01

    A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.By presenting both experimental and theoretical results, the distinguished authors consider solitary lase

  9. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  10. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  11. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling...

  12. Quantum error prevention and leakage elimination for quantum dots

    Science.gov (United States)

    Pegahan, Saeed; Byrd, Mark S.; Reddy Chinni, Karthik

    2015-03-01

    Decoherence-free, or noiseless subsystems, are used to encode spin qubits in quantum dots in order to achieve universal quantum computing using only the exchange interaction. We investigate the use of dynamical decoupling controls for the purposes of eliminating leakage for a logical qubit encoded using three physical qubits. These leakage elimination operators (LEOs) can be used to eliminate all leakage errors using exchange interactions between the physical spin qubits. Depending on the encoding and the decoupling control, different types of errors can be eliminated. We show several different possible controls and the consequential noise reduction for different encodings as well as our general method for determining the effectiveness of these pulses.

  13. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  14. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  15. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offe...

  16. Fractional decay of quantum dots in photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  17. Single-photon superradiance from a quantum dot

    DEFF Research Database (Denmark)

    Tighineanu, Petru; Daveau, Raphaël Sura; Lehmann, Tau Bernstorff

    2016-01-01

    We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and t...

  18. Electronic properties of assemblies of zno quantum dots

    NARCIS (Netherlands)

    Roest, Aarnoud Laurens

    2003-01-01

    Electron transport in an assembly of ZnO quantum dots has been studied using an electrochemically gated transistor. The electron mobility shows a step-wise increase as a function of the electron occupation per quantum dot. When the occupation number is below two, transport occurs by tunnelling

  19. Stark effect and polarizability of graphene quantum dots

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...

  20. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  1. Quantum dots for multimodal molecular imaging of angiogenesis

    NARCIS (Netherlands)

    Mulder, Willem J. M.; Strijkers, Gustav J.; Nicolay, Klaas; Griffioen, Arjan W.

    2010-01-01

    Quantum dots exhibit unique optical properties for bioimaging purposes. We have previously developed quantum dots with a paramagnetic and functionalized coating and have shown their potential for molecular imaging purposes. In the current mini-review we summarize the synthesis procedure, the in

  2. Fabrication of a graphene quantum dot device

    Science.gov (United States)

    Lee, Jeong Il; Kim, Eunseong

    2014-03-01

    Graphene, which exhibits a massless Dirac-like spectrum for its electrons, has shown impressive properties for nano-electronics applications including a high mobility and a width dependent bandgap. We will report the preliminary report on the transport property of the suspended graphene nano-ribbon(GNR) quantum dot device down to dilution refrigerator temperature. This GNR QD device was fabricated to realize an ideal probe to investigate Kondo physics--a characteristic phenomenon in the physics of strongly correlated electrons. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  3. Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2012-01-01

    We demonstrate theoretically how photon-assisted dephasing by the electron-phonon interaction in a coupled cavity-quantum dot system can be significantly reduced for specific QD-cavity detunings. Our starting point is a recently published theory,1 which considers longitudinal acoustic phonons......, described by a non-Markovian model, interacting with a coupled quantum dot-cavity system. The reduction of phonon-induced dephasing is obtained by placing the cavity-quantum dot system inside an infinite slab, assuming spherical electronic wavefunctions. Based on our calculations, we expect this to have...

  4. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  5. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    International Nuclear Information System (INIS)

    Uddandarao, Priyanka; B, Raj Mohan

    2016-01-01

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  6. Quantum dot blueing and blinking enables fluorescence nanoscopy.

    Science.gov (United States)

    Hoyer, Patrick; Staudt, Thorsten; Engelhardt, Johann; Hell, Stefan W

    2011-01-12

    We demonstrate superresolution fluorescence imaging of cells using bioconjugated CdSe/ZnS quantum dot markers. Fluorescence blueing of quantum dot cores facilitates separation of blinking markers residing closer than the diffraction barrier. The high number of successively emitted photons enables ground state depletion microscopy followed by individual marker return with a resolving power of the size of a single dot (∼12 nm). Nanoscale imaging is feasible with a simple webcam.

  7. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...... observe that second-harmonic images of the quantum-dot surface structure show wavelength-dependent spatial variations. Imaging at different wavelength is used to demonstrate second-harmonic generation from the semiconductor quantum dots. (C) 2000 American Institute of Physics....

  8. Interaction of porphyrins with CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  9. 3D super-resolution imaging with blinking quantum dots

    Science.gov (United States)

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.

    2013-01-01

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439

  10. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  11. Biosensing with Luminescent Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hedi Mattoussi

    2006-08-01

    Full Text Available Luminescent semiconductor nanocrystals or quantum dots (QDs are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent emissions and exceptional resistance to both photobleaching andchemical degradation. In this review, we examine the progress in adapting QDs for severalpredominantly in vitro biosensing applications including use in immunoassays, asgeneralized probes, in nucleic acid detection and fluorescence resonance energy transfer(FRET - based sensing. We also describe several important considerations when workingwith QDs mainly centered on the choice of material(s and appropriate strategies forattaching biomolecules to the QDs.

  12. Detection Systems and Algorithms for Multiplexed Quantum Dots

    Science.gov (United States)

    Goss, Kelly Christine

    Quantum Dots (QDs) are semiconductor nanocrystals that absorb light and re-emit at a wavelength dependent on its size and shape. A group of quantum dots can be designed to have a unique spectral emission by varying the size of the quantum dots (wavelength) and number of quantum dots (optical power) [1]. This technology is refered to as Multiplexed Quantum Dots (MxQD) and when it was first proposed, MxQD tags were created with 6 optical power levels and one QD colour or 3 QD colours and 2 optical power levels. It was hypothesized that a realistic limit to the number of tags would be a system of 6 optical power levels and 6 QD colours resulting in 46655 unique tags. In recent work, the fabrication and detection of 9 unique tags [2] was demonstrated which is still far from the predicted capability of the technology. The limitations affecting the large number of unique tags are both the fabrication methods and the data detection algorithms used to read the spectral emissions. This thesis makes contributions toward improving the data detection algorithms for MxQD tags. To accomplish this, a communications system model is developed that includes the inteference between QD colours, Inter-Symbol Interference (ISI), and additive noise. The model is developed for the two optical detectors, namely a Charge-Coupled Device (CCD) spectrometer and photodiode detectors. The model also includes an analytical expression for the Signal-to-Noise Ratio (SNR) of the detectors. For the CCD spectrometer, this model is verified with an experimental prototype. With the models in place, communications systems tools are applied that overcome both ISI and noise. This is an improvement over previous work in the field that only considered algorithms to overcome the ISI or noise separately. Specifically, this thesis outlines the proposal of a matched filter to improve SNR, a Minimum Mean Square Error (MMSE) equalizer that mitigates ISI in the presence of noise and a Maximum Likelihood Sequence

  13. Readout of a single electron spin in a double quantum dot using a quantum point contact

    International Nuclear Information System (INIS)

    Zhang Jianping; Ouyang Shihua; You, J Q; Lam, C.-H.

    2008-01-01

    We study the dynamics of a single electron spin in a double quantum dot (DQD) and its readout via a quantum point contact (QPC). We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD. Two cases with one and two electrons in the DQD are studied. In the one-electron case, with different Zeeman splittings in the two dots, the electron spin states are distinctly characterized by a constant and an oscillatory current through the QPC. In the two-electron case, the readout of the spin state of the electron in one of the dots called the qubit dot is essentially similar after considering hyperfine interactions between the electrons and the nuclear spins of the host materials and a uniform magnetic field applied to the DQD. Moreover, to ensure that an electron is properly injected into the qubit dot, we propose to determine the success of the electron injection from the variations of the QPC current after applying an oscillating magnetic field to the qubit dot

  14. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  15. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual...... processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  16. Anisotropic morphology of nonpolar a-plane GaN quantum dots and quantum wells

    International Nuclear Information System (INIS)

    Founta, S.; Bougerol, C.; Mariette, H.; Daudin, B.; Vennegues, P.

    2007-01-01

    The growth of (11-20) or a-plane quantum dots and quantum wells by plasma-assisted molecular-beam epitaxy has been studied. It is shown that Ga-rich conditions lead to the formation of quantum dots, whereas quantum wells are obtained in N-rich conditions. Combining various experimental techniques, it is furthermore demonstrated that quantum dot nucleation along [1-100] and quantum well morphology in the (1-100) plane are influenced by anisotropic growth of AlN buffer layer. Moreover, it is established that peculiar morphological features of quantum dots and quantum wells, in particular the asymmetric shape of quantum dots, are related to the polar character of the [0001] direction in wurtzite nitride material

  17. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  18. Using quantum dot photoluminescence for load detection

    Directory of Open Access Journals (Sweden)

    M. Moebius

    2016-08-01

    Full Text Available We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N′,N′-Tetrakis(3-methylphenyl-3,3′-dimethylbenzidine (HMTPD and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  19. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    Science.gov (United States)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  20. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  1. Atomically precise, coupled quantum dots fabricated by cleaved edge overgrowth

    Science.gov (United States)

    Wegscheider, W.; Schedelbeck, G.; Bichler, M.; Abstreiter, G.

    Recent progress in the fabrication of quantum dots by molecular beam epitaxy along three directions in space is reviewed. The optical properties of different sample structures consisting of individual quantum dots, pairs of coupled dots as well as of linear arrays of dots are studied by microscopic photoluminescence spectroscopy. The high degree of control over shape, composition and position of the 7×7×7 nm3 size GaAs quantum dots, which form at the intesection of three orthogonal quantum wells, allows a detailed investigation of the influence of coupling between almost identical zero-dimensional objects. In contrast to the inhomogeneously broadened quantum well and quantum wire signals originating from the complex twofold cleaved edge overgrowth structure, the photoluminescence spetrum of an individual quantum dot exhibits a single sharp line (full width at half maximum denomination "artificial atoms" for the quantum dots. It is further demonstrated that an "artifical molecule", characterized by the existence of bonding and antibonding states can be assembled from two of such "artificial atoms". The coupling strength between the "artificial atoms" is adjusted by the "interatomic" distance and is reflected in the energetic separation of the bonding and antibonding levels and the linewidths of the corresponding interband transitions.

  2. Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence

    International Nuclear Information System (INIS)

    Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.

    2003-01-01

    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity

  3. Gate-defined quantum dots in intrinsic silicon.

    Science.gov (United States)

    Angus, Susan J; Ferguson, Andrew J; Dzurak, Andrew S; Clark, Robert G

    2007-07-01

    We report the fabrication and measurement of silicon quantum dots with tunable tunnel barriers in a narrow-channel field-effect transistor. Low-temperature transport spectroscopy is performed in both the many-electron ( approximately 100 electrons) regime and the few-electron ( approximately 10 electrons) regime. Excited states in the bias spectroscopy provide evidence of quantum confinement. These results demonstrate that depletion gates are an effective technique for defining quantum dots in silicon.

  4. Pulse train amplification and regeneration based on semiconductor quantum dots waveguide

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides.......We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides....

  5. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  6. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter [Univ. of Utah, Salt Lake City, UT (United States); Bartl, Michael [Univ. of Utah, Salt Lake City, UT (United States); Reimus, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mella, Mike [Univ. of Utah, Salt Lake City, UT (United States)

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  7. Quantum efficiency and oscillator strength of site-controlled InAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Stobbe, Søren; Schneider, C.

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled InAs quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  8. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  9. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  10. Property analysis of colloidal quantum dot in semiconductor nanostructure

    Science.gov (United States)

    Mary, Nusrat Irin Chowdhury; Islam, Md. Ariful

    2017-12-01

    Colloidal Quantum Dots (Semiconductor self-assembled QD), as a result of their fully quantized electronic states and high radiative efficiencies, which enable major advances in fundamental physics studies of electrons in zero-dimensionality semiconductor systems and in a variety of novel device applications. This paper reviews the analysis, covering the simulation reading of conical quantum dot with both-single QD and multi-layer QD structure as well as the analytical model for exploration of conical QD waveshape of the quantum-confined systems with different light polarized absorption and sweep parameters. The corresponding temperature of the electron Fermi level with different boundary conditions with the X, Y, and Z - dimensional of the QD conical structure is a responsible for unlike eigen-energy states. The paper shows a comprehensive understanding of the quantum confined 0D electronic structure with its conduction and valence energy band and with varying eigen-energy states, this dynamic process underpins the various device applications.

  11. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    Science.gov (United States)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  12. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    International Nuclear Information System (INIS)

    Kosolapova, K; Al-Alwani, A; Gorbachev, I; Glukhovskoy, E

    2015-01-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time. (paper)

  13. A triple quantum dot based nano-electromechanical memory device

    International Nuclear Information System (INIS)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-01-01

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM

  14. Analytic Characterization of the Dynamic Regimes of Quantum-Dot Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Lingnau

    2015-04-01

    Full Text Available We present analytic treatment of the three different dynamic regimes found in quantum-dot laser turn-on and modulation dynamics. A dynamic coupling, and thus density-dependent scattering lifetimes between dots and reservoir, are identified to be crucial for a realistic modeling. We derive a minimal model for the quantum-dot laser dynamics that can be seeded with experimentally accessible parameters, and give explicit analytic equations that are able to predict relaxation-oscillation frequency and damping rate.

  15. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ian D. Tomlinson

    2007-01-01

    Full Text Available We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

  16. Study of a Quantum Dot in an Excited State

    Science.gov (United States)

    Slamet, Marlina; Sahni, Viraht

    We have studied the first excited singlet state of a quantum dot via quantal density functional theory (QDFT). The quantum dot is represented by a 2D Hooke's atom in an external magnetostatic field. The QDFT mapping is from an excited singlet state of this interacting system to one of noninteracting fermions in a singlet ground state. The results of the study will be compared to (a) the corresponding mapping from a ground state of the quantum dot and (b) to the similar mapping from an excited singlet state of the 3D Hooke's atom.

  17. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  18. PREFACE: Quantum dots as probes in biology

    Science.gov (United States)

    Cieplak, Marek

    2013-05-01

    The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated

  19. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics

    KAUST Repository

    Kemp, K. W.

    2013-01-01

    The efficiency of photocurrent extraction was studied directly inside operating Colloidal Quantum Dot (CQD) photovoltaic devices. A model was derived from first principles for a thin film p-n junction with a linearly spatially dependent electric field. Using this model, we were able to clarify the origins of recent improvement in CQD solar cell performance. From current-voltage diode characteristics under 1 sun conditions, we extracted transport lengths ranging from 39 nm to 86 nm for these materials. Characterization of the intensity dependence of photocurrent extraction revealed that the dominant loss mechanism limiting the transport length is trap-mediated recombination. © 2013 AIP Publishing LLC.

  20. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  1. Characterization of graphene quantum dot hybrid structures

    Science.gov (United States)

    Chung, Ting-Fung; Hu, Jiuning; Jauregui, Luis A.; Chen, Liangliang; Zhao, Qing; Ruan, Xiulin; Chen, Yong P.

    2012-02-01

    We report electrical transport, photo-electric response and Raman spectroscopy measurements in macroscopic samples of graphene decorated with inorganic quantum dots (CdSe QDs). QDs are deposited on chemical vapor deposition (CVD) graphene by spin-coating. Raman measurements of graphene decorated with QDs on Si wafer show very similar spectra with clear G and 2D peaks that reveal no degradation of graphene during the QDs deposition process. Furthermore, two types of device architectures (QDs-graphene and graphene-QDs-graphene) are fabricated with graphene as a transparent electrode and QD as a light absorbent for electrical photoresponse characterization. Upon application of either a broadband light source or a 532-nm monochromatic laser source, graphene-QDs-graphene devices demonstrate photoconducting response, but not in the case of QDs-graphene devices.

  2. Tellurium quantum dots: Preparation and optical properties

    Science.gov (United States)

    Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping

    2017-08-01

    Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.

  3. Quantum dots: synthesis, bioapplications, and toxicity

    Science.gov (United States)

    Valizadeh, Alireza; Mikaeili, Haleh; Samiei, Mohammad; Farkhani, Samad Mussa; Zarghami, Nosratalah; kouhi, Mohammad; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2012-08-01

    This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.

  4. Recent advances in quantum dot surface chemistry.

    Science.gov (United States)

    Hines, Douglas A; Kamat, Prashant V

    2014-03-12

    Quantum dot (QD) surface chemistry is an emerging field in semiconductor nanocrystal related research. Along with size manipulation, the careful control of QD surface chemistry allows modulation of the optical properties of a QD suspension. Even a single molecule bound to the surface can introduce new functionalities. Herein, we summarize the recent advances in QD surface chemistry and the resulting effects on optical and electronic properties. Specifically, this review addresses three main issues: (i) how surface chemistry affects the optical properties of QDs, (ii) how it influences the excited state dynamics, and (iii) how one can manipulate surface chemistry to control the interactions between QDs and metal oxides, metal nanoparticles, and in self-assembled QD monolayers.

  5. Electronic levels of cubic quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Aristone, Flavio [Federal De Mato Grosso Do Sul Univ., Campo Grande (Brazil); Sanchez-Dehesa, Jose [Autonoma De Madrid Univ., Madrid (Spain); Marques, Gilmar E. [Federal De Sao Carlos Univ., Sao Carlos (Brazil)

    2003-09-01

    We introduce an efficient variational method to solve the three-dimensional Schroedinger equation for any arbitrary potential V(x,y,z). The method uses a basis set of localized functions which are build up as products of one-dimensional cubic {beta}-splines. We calculated the energy levels of GaAs/AlGaAs cubic quantum dots and make a comparison with the results from two well-known simplification schemes based on a decomposition of the full potential problem into three separate one-dimensional problems. We show that the scheme making a sequential decomposition gives eigenvalues in better agreement with the ones obtained variationally, but an exact solution is necessary when looking for highly precise values.

  6. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  7. Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots

    DEFF Research Database (Denmark)

    Markussen, Troels; Kristensen, Philip Trøst; Tromborg, Bjarne

    2006-01-01

    Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave functions. In this work we numerically solve the one-band effective mass Schrodinger equation to calculate the capture times of phonon-mediated carrier capture into self-assembled quantum dots...

  8. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots

    International Nuclear Information System (INIS)

    Wang, Chen; Cao, Jianshu; Ren, Jie

    2014-01-01

    We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optimal inter-dot tunneling that significantly enhances the photovoltaic current. Maximal output power will also be obtained around the optimal inter-dot tunneling. Moreover, the open circuit voltage behaves approximately as the product of the eigen-level gap and the Carnot efficiency. These results suggest a great potential for double quantum dots as efficient photovoltaic devices

  9. Application of Quantum Dots in Biological Imaging

    Directory of Open Access Journals (Sweden)

    Shan Jin

    2011-01-01

    Full Text Available Quantum dots (QDs are a group of semiconducting nanomaterials with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and so forth. Currently, the major type of QDs is the heavy metal-containing II-IV, IV-VI, or III-V QDs. Silicon QDs and conjugated polymer dots have also been developed in order to lower the potential toxicity of the fluorescent probes for biological applications. Aqueous solubility is the common problem for all types of QDs when they are employed in the biological researches, such as in vitro and in vivo imaging. To circumvent this problem, ligand exchange and polymer coating are proven to be effective, besides synthesizing QDs in aqueous solutions directly. However, toxicity is another big concern especially for in vivo studies. Ligand protection and core/shell structure can partly solve this problem. With the rapid development of QDs research, new elements and new morphologies have been introduced to this area to fabricate more safe and efficient QDs for biological applications.

  10. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  11. Symmetry and optical selection rules in graphene quantum dots

    Science.gov (United States)

    Pohle, Rico; Kavousanaki, Eleftheria G.; Dani, Keshav M.; Shannon, Nic

    2018-03-01

    Graphene quantum dots (GQD's) have optical properties which are very different from those of an extended graphene sheet. In this paper, we explore how the size, shape, and edge structure of a GQD affect its optical conductivity. Using representation theory, we derive optical selection rules for regular-shaped dots, starting from the symmetry properties of the current operator. We find that, where the x and y components of the current operator transform with the same irreducible representation (irrep) of the point group (for example in triangular or hexagonal GQD's), the optical conductivity is independent of the polarization of the light. On the other hand, where these components transform with different irreps (for example in rectangular GQD's), the optical conductivity depends on the polarization of light. We carry out explicit calculations of the optical conductivity of GQD's described by a simple tight-binding model and, for dots of intermediate size, find an absorption peak in the low-frequency range of the spectrum which allows us to distinguish between dots with zigzag and armchair edges. We also clarify the one-dimensional nature of states at the Van Hove singularity in graphene, providing a possible explanation for very high exciton-binding energies. Finally, we discuss the role of atomic vacancies and shape asymmetry.

  12. Magic angle for barrier-controlled double quantum dots

    Science.gov (United States)

    Yang, Xu-Chen; Wang, Xin

    2018-01-01

    We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.

  13. Collective Rabi dynamics of electromagnetically coupled quantum-dot ensembles

    Science.gov (United States)

    Glosser, Connor; Shanker, B.; Piermarocchi, Carlo

    2017-09-01

    Rabi oscillations typify the inherent nonlinearity of optical excitations in quantum dots. Using an integral kernel formulation to solve the three-dimensional Maxwell-Bloch equations in ensembles of up to 104 quantum dots, we observe features in Rabi oscillations due to the interplay of nonlinearity, nonequilibrium excitation, and electromagnetic coupling between the dots. This approach allows us to observe the dynamics of each dot in the ensemble without resorting to spatial averages. Our simulations predict synchronized multiplets of dots that exchange energy, dots that dynamically couple to screen the effect of incident external radiation, localization of the polarization due to randomness and interactions, as well as wavelength-scale regions of enhanced and suppressed polarization.

  14. Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids

    KAUST Repository

    Zhitomirsky, David

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells. © 2013 American Chemical Society.

  15. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  16. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  17. Formation of self assembled PbTe quantum dots in CdTe on Si(111)

    Science.gov (United States)

    Felder, F.; Fognini, A.; Rahim, M.; Fill, M.; Müller, E.; Zogg, H.

    2010-01-01

    We describe the growth and formation of self assembled PbTe quantum dots in a CdTe host on a silicon (111) substrate. Annealing yields different photoluminescence spectra depending on initial PbTe layer thickness, thickness of the CdTe cap layer and annealing temperature. Generally two distinct emission peaks at ˜0.3 eV and ˜0.45 eV are visible. Model calculations explaining their temperature dependence are performed. The dot size corresponds well with the estimated sizes from electron microscopy images. The quantum dots may be used as absorber within a mid-infrared detector.

  18. Nodal ground states and orbital textures in semiconductor quantum dots

    Czech Academy of Sciences Publication Activity Database

    Lee, J.; Výborný, Karel; Han, J.E.; Žutič, I.

    2014-01-01

    Roč. 89, č. 4 (2014), "045315-1"-"045315-17" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : quantum dots * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  19. Nonequilibrium electron transport through quantum dots in the Kondo regime

    DEFF Research Database (Denmark)

    Wölfle, Peter; Paaske, Jens; Rosch, Achim

    2005-01-01

    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...

  20. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  1. A fabrication guide for planar silicon quantum dot heterostructures

    Science.gov (United States)

    Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2018-04-01

    We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.

  2. Coal as an abundant source of graphene quantum dots

    Science.gov (United States)

    Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P.; Samuel, Errol L. G.; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O.; Martí, Angel A.; Tour, James M.

    2013-12-01

    Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

  3. Ge Quantum Dot Infrared Imaging Camera, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  4. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  5. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  6. The impact of doped silicon quantum dots on human osteoblasts

    Czech Academy of Sciences Publication Activity Database

    Ostrovská, L.; Brož, Antonín; Fučíková, A.; Bělinová, T.; Sugimoto, H.; Kanno, T.; Fujii, M.; Valenta, J.; Kalbáčová, M.H.

    2016-01-01

    Roč. 6, č. 68 (2016), s. 63403-63413 ISSN 2046-2069 Institutional support: RVO:67985823 Keywords : silicon quantum dots * osteoblasts * cytotoxicity * photoluminiscence bioimaging Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.108, year: 2016

  7. CdS/CdSSe quantum dots in glass matrix

    Indian Academy of Sciences (India)

    Wintec

    –5 nm are uniformly distributed into the glass matrix. Keywords. CdS; CdSSe; nanocrystals; glasses; optical filters. 1. Introduction. Today nanostructured materials and quantum dots have immense importance in the field of optoelectronics and.

  8. Quantum Dots in the Therapy: Current Trends and Perspectives.

    Science.gov (United States)

    Pohanka, Miroslav

    2017-01-01

    Quantum dots are an emerging nanomaterial with broad use in technical disciplines; however, their application in the field of biomedicine becomes also relevant and significant possibilities have appeared since the discovery in 1980s. The current review is focused on the therapeutic applications of quantum dots which become an emerging use of the particles. They are introduced as potent carriers of drugs and as a material well suited for the diagnosis of disparate pathologies like visualization of cancer cells or pathogenic microorganisms. Quantum dots toxicity and modifications for the toxicity reduction are discussed here as well. Survey of actual papers and patents in the field of quantum dots use in the biomedicine is provided. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Multiple Wavelength Quantum Dot Lasers (MW-QDL)

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method to achieve optical gain over a wide spectral range using new laser materials is being investigated.  Multiple wavelength quantum dot lasers...

  10. Ultrafast gain and index dynamics in quantum dot amplifiers

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    The ultrafast dynamics of gain and refractive index in an InAs/GaAs quantum dot amplifier are investigated at room temperature. The gain is observed to recover with a 90 fs time constant, ruling out problems of slow carrier capture into the dots, and making this component promising for high...

  11. On dephasing and spin decay in open quantum dots

    NARCIS (Netherlands)

    Michaelis, Björn Dieter

    2006-01-01

    The thesis contains three topics on transport in nanostructres. Chpt. 2 explains the loss of entanglement in electronic pairs that enter chaotic quantum dots. The quantitiy that is affected are timedependent and spaceresolving current measurements. Looking at statisticcs dots, it is discovered

  12. Quantum computation: algorithms and implementation in quantum dot devices

    Science.gov (United States)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  13. Controlling the quantum dot nucleation site

    International Nuclear Information System (INIS)

    Motta, Nunzio; Sgarlata, Anna; Rosei, Federico; Szkutnik, P.D.; Nufris, S.; Scarselli, M.; Balzarotti, A.

    2003-01-01

    Quantum dots (QDs) are actually easily produced by self-assembling during heteroepitaxial growth of semiconductors. In order to exploit the unique electronic properties of semiconductor QDs in novel quantum effect devices, the lateral dimensions of these structures have to be reduced to the order of tens of nanometers, which is the range of the De Broglie wavelength of electrons inside these materials. Moreover, millions of QDs must be arranged in dense ordered arrays to achieve the necessary active volume for optoelectronic applications. Nowadays it is possible to control size and shape of the nanocrystals, but it is still difficult to decide their nucleation site. Many approaches have been undertaken to overcome this problem, like using regular dislocation networks, lithographically and Atomic Force Microscopy (AFM) patterned substrates, naturally patterned surfaces. We present results obtained by some of these methods, visualized by Scanning Tunnelling Microscopy (STM) or AFM microscopy. STM measurements at high temperature during the epitaxial growth are of great help in these studies. Images and movies of the growth of Ge on Si help to identify the real nucleation sites of the islands and to follow their evolution. The influence of the 'step bunching' on the self-organization of Ge islands on Si(111) surfaces will be analysed, as an example of growth on self-nanostructured surfaces

  14. Bismides: 2D structures and quantum dots

    Science.gov (United States)

    Pačebutas, Vaidas; Butkutė, Renata; Čechavičius, Bronislovas; Stanionytė, Sandra; Pozingytė, Evelina; Skapas, Martynas; Selskis, Algirdas; Geižutis, Andrejus; Krotkus, Arūnas

    2017-09-01

    The growth and characterization of ternary GaAsBi and quaternary GaInAsBi compound quantum wells (QWs) on GaAs substrates is presented in this study. The influence of technological parameters, such as different growth modes, substrate temperatures, beam equivalent pressure ratios and thermal treating on structural and luminescent properties of QWs is discussed. The complex structural investigations using x-ray diffraction, atomic force microscopy and high-resolution transmission electron microscopy revealed high crystal structure, smooth surfaces and abrupt interfaces of both GaAsBi and GaInAsBi QWs. The temperature dependent photoluminescence measurements demonstrated emission wavelengths up to 1.43 µm in room temperature PL spectra measured for GaAsBi/GaAs QWs containing 12% Bi, whereas GaInAsBi QWs with 4.2% of bismuth inserted between GaAs barriers has reached 1.25 µm. Moreover, the annealing at high temperatures of GaAsBi/AlAs QWs stimulated agglomeration of bismuth to quantum dots in the well layers, emitting at 1.5 µm. The achieved wavelengths are the longest ones declared for the GaAsBi and GaInAsBi QW structures grown on the GaAs substrate, therefore bismide-based QWs are the promising structures for applications in infrared devices.

  15. Cyto-molecular Tuning of Quantum Dots

    Science.gov (United States)

    Lee, Bong; Suresh, Sindhuja; Ekpenyong, Andrew

    Quantum dots (QDs) are semiconductor nanoparticles composed of groups II-VI or III-V elements, with physical dimensions smaller than the exciton Bohr radius, and between 1-10 nm. Their applications and promising myriad applications in photovoltaic cells, biomedical imaging, targeted drug delivery, quantum computing, etc, have led to much research on their interactions with other systems. For biological systems, research has focused on biocompatibility and cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems might be used to tune QDs. Here, we hypothesize that the photo-electronic properties of QDs can be tuned by biological macromolecules following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, we perform spectroscopic analysis of optically excited colloidal QDs with and without promyelocytic HL60 cells. Preliminary results show shifts in the emission spectra of the colloidal dispersions with and without cells. We will present results for activated HL60-derived cells where specific macromolecules produced by these cells perturb the electric dipole moments of the excited QDs and the associated electric fields, in ways that constitute what we describe as cyto-molecular tuning. Startup funds from the College of Arts and Sciences, Creighton University (to AEE).

  16. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... quantum dot amplifiers are found to be able to operate with high efficiency and at high bitrates. Strong spectral hole-burning arising from a relatively slow carrier capture time, is shown to play a dominant role is this context. The results obtained numerically are compared to the properties of bulk...

  17. Interaction of solitons with a string of coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Swami, O. P., E-mail: omg1789@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com [Department of Physics, Govt. Dungar College, Bikaner, Rajasthan 334001 (India); Taneja, S., E-mail: sachintaneja9@gmail.com [Department of Radiotherapy, CHAF Bangalore, Karnataka 560007 (India)

    2016-05-06

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  18. Spin and edge channel dependent transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, T; Rogge, M C; Haug, R J [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)], E-mail: ridder@nano.uni-hannover.de

    2008-11-12

    We investigate the influence of spin polarized currents and non-equilibrated edge channels on the transport properties of a single quantum dot. Polarized currents are realized by the manual depletion of edge channels in high magnetic fields via a metallic top gate covering the source contact in the system. We observe a suppression and enhancement in the conductance of the quantum dot dependent on the edge channel configuration in the leads.

  19. Spin-orbit-enhanced Wigner localization in quantum dots

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Malet, F.; Cremon, J. C.

    2011-01-01

    We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum...... dots. Recurring shapes in the pair distribution functions of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported....

  20. Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2011-06-03

    Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  2. On-chip generation and guiding of quantum light from a site-controlled quantum dot

    International Nuclear Information System (INIS)

    Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.; Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J.; Schwagmann, Andre; Brody, Yarden

    2014-01-01

    We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12% ± 5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits

  3. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method

    International Nuclear Information System (INIS)

    Jeong, Sang Hoon; Kim, Jae Hwan; Yi, Sang Min; Lee, Jung Pyo; Kim, Jin Ho; Sohn, Kyung Hee; Park, Kui Lea; Kim, Meyoung-Kon; Son, Sang Wook

    2010-01-01

    Quantum dots (QDs) are rapidly emerging as an important class of nanoparticles (NPs) with potential applications in medicine. However, little is known about penetration of QDs through human skin. This study investigated skin penetration of QDs in both in vivo and in vitro human skin. Using the tape stripping method, this study demonstrates for the first time that QDs can actually penetrate through the stratum corneum (SC) of human skin. Transmission electron microscope (TEM) and energy diverse X-ray (EDX) analysis showed accumulation of QDs in the SC of a human skin equivalent model (HSEM) after dermal exposure to QDs. These findings suggest possible transdermal absorption of QDs after dermal exposure over a relatively long period of time.

  4. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  5. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    Science.gov (United States)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  6. Si quantum dot structures and their applications

    Science.gov (United States)

    Shcherbyna, L.; Torchynska, T.

    2013-06-01

    This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented. The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

  7. Enhanced thermoelectric properties in boron nitride quantum-dot

    Science.gov (United States)

    Pan, Changning; Long, Mengqiu; He, Jun

    We have investigated the ballistic thermoelectric properties in boron nitride quantum dots by using the nonequilibrium Green's function approach and the Landauer transport theory. The result shows that the phonon transport is substantially suppressed by the interface in the quantum dots. The resonant tunneling effect of electron leads to the fluctuations of the electronic conductance. It enhances significantly the Seebeck coefficient. Combined with the low thermal conductance of phonon, the high thermoelectric figure of merit ZT ∼0.78 can be obtained at room temperature T = 300 K and ZT ∼0.95 at low temperature T = 100 K. It is much higher than that of graphene quantum dots with the same geometry parameters, which is ZT ∼0.29 at room temperature T = 300 K and ZT ∼0.48 at low temperature T = 100 K. The underlying mechanism is that the boron nitride quantum dots possess higher thermopower and lower phonon thermal conductance than the graphene quantum dots. Thus the results indicate that the thermoelectric properties of boron nitride can be significantly enhanced by the quantum dot and are better than those of graphene.

  8. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Heparin conjugated quantum dots for in vitro imaging applications.

    Science.gov (United States)

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri

    2014-11-01

    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Design of quaternary logic circuit using quantum dot gate-quantum dot channel FET (QDG-QDCFET)

    Science.gov (United States)

    Karmakar, Supriya

    2014-10-01

    This paper presents the implementation of quaternary logic circuits based on quantum dot gate-quantum dot channel field effect transistor (QDG-QDCFET). The super lattice structure in the quantum dot channel region of QDG-QDCFET and the electron tunnelling from inversion channel to the quantum dot layer in the gate region of a QDG-QDCFET change the threshold voltage of this device which produces two intermediate states between its ON and OFF states. This property of QDG-QDCFET is used to implement multi-valued logic for future multi-valued logic circuit. This paper presents the design of basic quaternary logic operation such as inverter, AND and OR operation based on QDG-QDCFET.

  11. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  13. Electronic transient processes and optical spectra in quantum dots for quantum computing

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Zdeněk, Petr; Khás, Zdeněk

    2004-01-01

    Roč. 3, č. 1 (2004), s. 17-25 ISSN 1536-125X R&D Projects: GA AV ČR IAA1010113 Institutional research plan: CEZ:AV0Z1010914 Keywords : depopulation * electronic relaxation * optical spectra * quantum dots * self-assembled quantum dots * upconversion Subject RIV: BE - Theoretical Physics Impact factor: 3.176, year: 2004

  14. Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Lodahl, Peter

    2013-01-01

    -resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multi...

  15. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    International Nuclear Information System (INIS)

    Wu, Yuchang; Asryan, Levon V.

    2016-01-01

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  16. Mesoscopic features in the transport properties of a Kondo-correlated quantum dot in a magnetic field.

    Science.gov (United States)

    Camjayi, Alberto; Arrachea, Liliana

    2014-01-22

    We study the transport behavior induced by a small bias voltage through a quantum dot connected to one-channel finite-size wires. We describe the quantum dot using the Hubbard-Anderson impurity model and we obtain solutions by means of a quantum Monte Carlo method. We investigate the effect of a magnetic field applied at the quantum dot in the Kondo regime. We identify mesoscopic oscillations in the conductance, which are introduced by the magnetic field. This behavior is analogous to that observed as a function of the temperature.

  17. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  18. Annealing-induced change in quantum dot chain formation mechanism

    Directory of Open Access Journals (Sweden)

    Tyler D. Park

    2014-12-01

    Full Text Available Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.

  19. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  20. A theoretical study of exciton energy levels in laterally coupled quantum dots

    International Nuclear Information System (INIS)

    Barticevic, Z; Pacheco, M; Duque, C A; Oliveira, L E

    2009-01-01

    A theoretical study of the electronic and optical properties of laterally coupled quantum dots, under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton energy levels of such laterally coupled quantum-dot systems, together with the corresponding wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an extended variational approach in which the magnetoexciton states are simultaneously obtained. One achieves the expected limits of one single quantum dot, when the distance between the dots is zero, and of two uncoupled quantum dots, when the distance between the dots is large enough. Moreover, present calculations-with appropriate structural dimensions of the two-dot system-are shown to be in agreement with measurements in self-assembled laterally aligned GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in GaAs/GaAlAs quantum wells.

  1. Quantum description of nuclear spin cooling in a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Giedke, Geza; Christ, H.; Cirac, I. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2007-07-01

    We study theoretically the cooling of an ensemble of nuclear spins coupled to the spin of a localized electron in a quantum dot. We obtain a master equation for the state of the nuclear spins interacting with a sequence of polarized electrons that allows to study quantitatively the cooling process including the effect of nuclear spin coherences, which can lead to 'dark states' of the nuclear system in which further cooling is inhibited. We show that the inhomogeneous Knight field mitigates this effect strongly and that the remaining dark state limitations can be overcome by very few shifts of the electron wave function, allowing for cooling far beyond the dark state limit. Numerical integration of the master equation indicates that polarizations larger than 90% can be achieved within a millisecond timescale.

  2. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  3. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  4. Suppression of LO phonon scattering in Landau quantized quantum dots

    NARCIS (Netherlands)

    Murdin, B. N.; Hollingworth, A. R.; Kamal-Saadi, M.; Kotitschke, R. T.; Ciesla, C. M.; Pidgeon, C. R.; Findlay, P. C.; Pellemans, H. P. M.; Langerak, Cjgm; Rowe, A. C.; Stradling, R. A.; Gornik, E.

    1999-01-01

    Picosecond time-resolved far-infrared measurements are presented of the scattering between conduction-band states in a doped quasi quantum dot. These states are created by the application of a magnetic field along the growth direction of an InAs/AlSb quantum well. A clear suppression of the cooling

  5. Counted Sb donors in Si quantum dots

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  6. Selective targeting of microglia by quantum dots

    Directory of Open Access Journals (Sweden)

    Minami S Sakura

    2012-01-01

    Full Text Available Abstract Background Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases. Methods Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies. Results In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity. Conclusions These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.

  7. Exciton coherence in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Sasaki, Masahide; Kujiraoka, Mamiko; Ema, Kazuhiro

    2009-01-01

    The coherent dynamics of excitons in InAs quantum dots (QDs) was investigated in the telecommunication wavelength range using a transient four-wave mixing technique. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to fabricate a 150-layer stacked QD structure for obtaining a high S/N in the four-wave mixing measurements, although no high-sensitive heterodyne detection was carried out. The dephasing time and transition dipole moment were precisely estimated from the polarization dependence of signals, taking into account their anisotropic properties. The population lifetimes of the excitons were also measured by using a polarization-dependent pumpprobe technique. A quantitative comparison of these anisotropies demonstrates that in our QDs, non-radiative population relaxation, polarization relaxation and pure dephasing are considerably smaller than the radiative relaxation. A comparison of the results of the four-wave mixing and pump-probe measurements revealed that the pure dephasing could be directly estimated with an accuracy of greater than 0.1 meV by comparing the results of four-wave mixing and pump-probe measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Microwave mediated synthesis of semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Afrasiabi, Roodabeh; Sugunan, Abhilash; Shahid, Robina; Toprak, Muhammet S.; Muhammed, Mamoun [Division of Functional Materials, Royal Institute of Technology (KTH), Stockholm (Sweden)

    2012-07-15

    Colloidal quantum dots (QD) have tuneable optoelectronic properties and can be easily handled by simple solution processing techniques, making them very attractive for a wide range of applications. Over the past decade synthesis of morphology controlled high quality (crystalline, monodisperse) colloidal QDs by thermal decomposition of organometallic precursors has matured and is well studied. Recently, synthesis of colloidal QDs by microwave irradiation as heating source is being studied due to the inherently different mechanisms of heat transfer, when compared to solvent convection based heating. Under microwave irradiation, polar precursor molecules directly absorb the microwave energy and heat up more efficiently. Here we report synthesis of colloidal II-VI semiconductor QDs (CdS, CdSe, CdTe) by microwave irradiation and compare it with conventional synthesis based on convection heating. Our findings show that QD synthesis by microwave heating is more efficient and the chalcogenide precursor strongly absorbs the microwave radiation shortening the reaction time and giving a high reaction yield (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Quantum dot lasers: From promise to high-performance devices

    Science.gov (United States)

    Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.

    2009-03-01

    Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.

  10. Folded-light-path colloidal quantum dot solar cells.

    KAUST Repository

    Koleilat, Ghada I

    2013-01-01

    Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency.

  11. Simulating electron spin entanglement in a double quantum dot

    Science.gov (United States)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  12. Bound state properties of ABC -stacked trilayer graphene quantum dots

    International Nuclear Information System (INIS)

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-01-01

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett . 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs. (paper)

  13. Carbon quantum dots and applications in photocatalytic energy conversion.

    Science.gov (United States)

    Fernando, K A Shiral; Sahu, Sushant; Liu, Yamin; Lewis, William K; Guliants, Elena A; Jafariyan, Amirhossein; Wang, Ping; Bunker, Christopher E; Sun, Ya-Ping

    2015-04-29

    Quantum dots (QDs) generally refer to nanoscale particles of conventional semiconductors that are subject to the quantum-confinement effect, though other nanomaterials of similar optical and redox properties are also named as QDs even in the absence of strictly defined quantum confinement. Among such nanomaterials that have attracted tremendous recent interest are carbon dots, which are small carbon nanoparticles with some form of surface passivation, and graphene quantum dots in various configurations. In this article, we highlight these carbon-based QDs by focusing on their syntheses, on their photoexcited state properties and redox processes, and on their applications as photocatalysts in visible-light carbon dioxide reduction and in water-splitting, as well as on their mechanistic similarities and differences.

  14. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes.

    Science.gov (United States)

    Wang, Wenran; Jiang, Guocan; Yu, Juan; Wang, Wei; Pan, Zhenxiao; Nakazawa, Naoki; Shen, Qing; Zhong, Xinhua

    2017-07-12

    Unambiguously direct adsorption (DA) of initial oil-soluble quantum dots (QDs) on TiO 2 film electrode is a convenient and simple approach in the construction of quantum dot sensitized solar cells (QDSCs). Regrettably, low QD loading amount and poor reproducibility shadow the advantages of DA route and constrain its practical application. Herein, the influence of experimental variables in DA process on QD loading amount as well as on the photovoltaic performance of the resultant QDSCs was investigated and optimized systematically, including the choice of solvent, purification of QDs, and sensitization time, as well as QD concentration. Experimental results demonstrated that it is essential to choose appropriate solvent as well as control purification cycles of original QD suspensions so as to realize satisfactory QD loading amount and ensure the high reproducibility. In addition, DA mode renders efficient electron injection from QD to TiO 2 , yet low QD loading amount and adverse QD agglomeration in comparison with the well-developed capping ligand induced self-assembly (CLIS) deposition approach. Mg 2+ treatment on TiO 2 photoanodes can promote the QD loading amount in DA mode. The optimized QDSCs based on DA mode exhibited efficiencies of 6.90% and 9.02% for CdSe and Zn-Cu-In-Se QDSCs, respectively, which were comparable to the best results based on CLIS mode (6.88% and 9.56%, respectively).

  15. Engineering drag currents in Coulomb coupled quantum dots

    Science.gov (United States)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  16. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Bastian, E-mail: BHerzog@physik.tu-berlin.de; Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  17. Ultrafast optical control of individual quantum dot spin qubits

    International Nuclear Information System (INIS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-01-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin–spin entanglement can be generated if each spin can emit a photon that is

  18. Magnetoexcitons in type-II semiconductor quantum dots

    Science.gov (United States)

    Fuster, Gonzalo; Barticevic, Zdenka; Pacheco, Monica; Oliveira, Luiz E.

    2004-03-01

    We present a theoretical investigation of excitons in type-II semiconductor quantum dots (QD). In these systems the confinement of electrons inside the QD and the hole outside the QD produces a ring-like structure [1-2]. Recently, Ribeiro et al [3], in a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, observed Aharonov-Bohm-type oscillations characteristic of the ring topology for neutral excitons. Using a simple model they have derived the groundstate hole energy as a function of the magnetic field, and obtained values for the ring parameters which are in good agreement with the measured values. However, some of the features observed experimentally, in the photoluminescence intensity, can not be well explained under that approach. In this work we present a more realistic model which considers the finite width of the ring and the electron-hole interaction included via a perturbative approach. The calculations are performed within the oneparticle formalism using the effective mass approximation. The confinement potential for electrons is modelled as the superposition of a quantum well potential along the axial direction, and a parabolic lateral confinement potential. The energies for the hole in the ring plane are calculated using the method of reference [4]. Theoretical calculations are in good agreement with the experimental results of reference [3] provided that excitonic effects are properly taken into account. References 1. A.O. Govorov et al., Physica E 13 , 297 (2002). 2. K. L. Janssens et al. Phys. Rev B64, 155324 (2001), and Phys. Rev. B66, 075314 (2002). 3. E. Ribeiro, G. Medeiros-Ribeiro, and W.Carvalho Jr., and A.O. Govorov, condmat/0304092 (2003). 4. Z. Barticevic, G. Fuster, and M. Pacheco,Phys. Rev. B 65, 193307 (2002).

  19. Tuning Single Quantum Dot Emission with a Micromirror.

    Science.gov (United States)

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  20. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  1. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    Science.gov (United States)

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  2. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  3. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Takaaki Yamaguchi

    2016-10-01

    Full Text Available CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The results suggested that the amount of superoxide dismutase (SOD decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se4+ to Se2− and inhibit the aggregation of CdSe to make nanoparticles.

  4. Electroluminescence of colloidal ZnSe quantum dots

    International Nuclear Information System (INIS)

    Dey, S.C.; Nath, S.S.

    2011-01-01

    The article reports a green chemical synthesis of colloidal ZnSe quantum dots at a moderate temperature. The prepared colloid sample is characterised by UV-vis absorption spectroscopy and transmission electron microscopy. UV-vis spectroscopy reveals as-expected blue-shift with strong absorption edge at 400 nm and micrographs show a non-uniform size distribution of ZnSe quantum dots in the range 1-4 nm. Further, photoluminescence and electroluminescence spectroscopies are carried out to study optical emission. Each of the spectroscopies reveals two emission peaks, indicating band-to-band transition and defect related transition. From the luminescence studies, it can be inferred that the recombination of electrons and holes resulting from interband transition causes violet emission and the recombination of a photon generated hole with a charged state of Zn-vacancy gives blue emission. Meanwhile electroluminescence study suggests the application of ZnSe quantum dots as an efficient light emitting device with the advantage of colour tuning (violet-blue-violet). - Highlights: → Synthesis of ZnSe quantum dots by a green chemical route. → Characterisation: UV-vis absorption spectroscopy and transmission electron microscopy. → Analysis of UV-vis absorption spectrum and transmission electron micrographs. → Study of electro-optical properties by photoluminescence and electroluminescence. → Conclusion: ZnSe quantum dots can be used as LED with dual colour emission.

  5. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    International Nuclear Information System (INIS)

    Schwager, Heike

    2012-01-01

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  6. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, Heike

    2012-07-04

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  7. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  8. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    Science.gov (United States)

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  9. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  10. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots

    NARCIS (Netherlands)

    de Weerd, C.; Shin, Y.; Marino, E.; Kim, J.; Lee, H.; Saeed, S.; Gregorkiewicz, T.

    2017-01-01

    Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other

  11. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  12. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  13. Biosensing with Quantum Dots: A Microfluidic Approach

    Science.gov (United States)

    Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.

    2011-01-01

    Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723

  14. Progress and prospect of quantum dot lasers

    Science.gov (United States)

    Arakawa, Yasuhiko

    2001-10-01

    Optical properties and growth of self-assembled quantum dots (SAQDs) for optoelectronic device applications are discussed. After briefly reviewing the history of research on QD lasers, we discuss growth of InAs SQDs including the light emission at the wavelength of 1.52)mum with a narrow linewidth (22 meV) and the area-controlled growth which demonstrates formation of SAQDs in selected local areas on a growth plane using a SiO)-2) mask with MOCVD growth. Then properties of the InGaAs AQDs are investigated by the near- field photoluminescence excitation spectroscopy which reveals gradually increasing continuum absorption connected with the two-dimensional-like (2D-like) wetting layer, resulting in faster relaxation of electrons due to a crossover between OD and 2D character in the density of states. Moreover, we have investigated InGaN self-assembled QDs on a GaN layer achieving the average diameter as small as 8.4nm and a strong light at room temperature. A laser structure with the stacked InGAN QDs embedded in the active layer was fabricated and room temperature operation of blue InGaN QD lasers was achieved under optical excitation. Carrier confinement in QDs was examined using near-field $DAL- photoluminescence measurement: A very sharp spectral line emitted from excitons in individual InGaN QDs was observed. Establishing AlGaN/GaN DBR of high quality, we succeeded in lasing action in InGaN blue light emitting VCSELs. Enhancement of spontaneous emission is demonstrated. Finally, perspective of QD lasers.

  15. Capture dynamics of hot electrons on quantum dots in RTDs studied by noise measurement

    International Nuclear Information System (INIS)

    Hees, S S; Kardynal, B E; Shields, A J; Farrer, I; Ritchie, D A

    2008-01-01

    We investigate the noise in quantum dot resonant tunnelling diodes (QDRTDs), where the quantum dots (QDs) placed in the collector experience electric fields that vary in a wide range. The trapping/detrapping of electrons on the QDs dominated the measured electrical noise. The model that we derived for the noise explains the experimental data well. The QD capture cross-section is one to two orders of magnitude smaller than the physical size of the QDs due to the reduced probability of capturing a hot electron on the QD. The model is a powerful tool to design the noise characteristics of QDRTD single photon-detectors

  16. A quantum walk in phase space with resonator-assisted double quantum dots

    International Nuclear Information System (INIS)

    Bian Zhi-Hao; Qin Hao; Zhan Xiang; Li Jian; Xue Peng

    2016-01-01

    We implement a quantum walk in phase space with a new mechanism based on the superconducting resonator-assisted double quantum dots. By analyzing the hybrid system, we obtain the necessary factors implementing a quantum walk in phase space: the walker, coin, coin flipping and conditional phase shift. The coin flipping is implemented by adding a driving field to the resonator. The interaction between the quantum dots and resonator is used to implement conditional phase shift. Furthermore, we show that with different driving fields the quantum walk in phase space exhibits a ballistic behavior over 25 steps and numerically analyze the factors influencing the spreading of the walker in phase space. (paper)

  17. Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots

    Science.gov (United States)

    Pach, Gregory F.

    Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which

  18. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    Science.gov (United States)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  19. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

    KAUST Repository

    Mora-Sero, Ivan

    2013-08-12

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.

  20. Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices

    International Nuclear Information System (INIS)

    Peleshchak, R. M.; Guba, S. K.; Kuzyk, O. V.; Kurilo, I. V.; Dankiv, O. O.

    2013-01-01

    The distribution of hydrostatic strains in Bi 3+ -doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi → As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.

  1. Multiple Exciton Generation in Quantum Dot Solar Cells

    Science.gov (United States)

    Semonin, O. E.

    Photovoltaics are limited in their power conversion efficiency (PCE) by very rapid relaxation of energetic carriers to the band edge. Therefore, photons from the visible and ultraviolet parts of the spectrum typically are not efficiently converted into electrical energy. One approach that can address this is multiple exciton generation (MEG), where a single photon of sufficient energy can generate multiple excited electron-hole pairs. This process has been shown to be more efficient in quantum dots than bulk semiconductors, but it has never been demonstrated in the photocurrent of a solar cell. In order to demonstrate that multiple exciton generation can address fundamental limits for conventional photovoltaics, I have developed prototype devices from colloidal PbS and PbSe quantum dot inks. I have characterized both the colloidal suspensions and films of quantum dots with the goal of understanding what properties determine the efficiency of the solar cell and of the MEG process. I have found surface chemistry effects on solar cells, photoluminescence, and MEG, and I have found some chemical treatments that lead to solar cells showing MEG. These devices show external quantum efficiency (EQE) greater than 100% for certain parts of the solar spectrum, and I extract internal quantum efficiency (IQE) consistent with previous measurements of colloidal suspensions of quantum dots. These findings are a small first step toward breaking the single junction Shockley-Queisser limit of present-day first and second generation solar cells, thus moving photovoltaic cells toward a new regime of efficiency.

  2. Dynamically broken symmetry in periodically gated quantum dots: charge accumulation and DC-current

    International Nuclear Information System (INIS)

    Kwapinski, T.; Kohler, S.; Hanggi, P.

    2010-01-01

    Time-dependent electron transport through a quantum dot and double quantum dot systems in the presence of polychromatic external periodic quantum dot energy-level modulations is studied within the time evolution operator method for a tight-binding Hamiltonian. Analytical relations for the dc-current flowing through the system and the charge accumulated on a quantum dot are obtained for the zero-temperature limit.

  3. Modeling and characterization of pulse shape and pulse train dynamics in two-section passively mode-locked quantum dot lasers

    Science.gov (United States)

    Raghunathan, R.; Mee, J. K.; Crowley, M. T.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2013-03-01

    A nonlinear delay differential equation model for passive mode-locking in semiconductor lasers, seeded with parameters extracted from the gain and loss spectra of a quantum dot laser, is employed to simulate and study the dynamical regimes of mode-locked operation of the device. The model parameter ranges corresponding to these regimes are then mapped to externally-controllable parameters such as gain current and absorber bias voltage. Using this approach, a map indicating the approximate regions corresponding to fundamental and harmonically mode locked operation is constructed as a function of gain current and absorber bias voltage. This is shown to be a highly useful method of getting a sense of the highest repetition rates achievable in principle with a simple, two-section device, and provides a guideline toward achieving higher repetition rates by simply adjusting external biasing conditions instantaneously while the device is in operation, as opposed to re-engineering the device with additional passive or saturable absorber sections. The general approach could potentially aid the development of numerical modeling techniques aimed at providing a systematic guideline geared toward developing microwave and RF photonic sources for THz applications.

  4. Double Rashba Quantum Dots Ring as a Spin Filter

    Directory of Open Access Journals (Sweden)

    Chi Feng

    2008-01-01

    Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.

  5. Charge pumping in strongly coupled molecular quantum dots

    Science.gov (United States)

    Haughian, Patrick; Yap, Han Hoe; Gong, Jiangbin; Schmidt, Thomas L.

    2017-11-01

    The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck-Condon blockade. Here, we investigate this effect in a quantum dot driven by time-periodic gate voltages and tunneling amplitudes using nonequilibrium Green's functions and a Floquet expansion. Building on previous results showing that driving can lift the Franck-Condon blockade, we investigate driving protocols which can be used to pump charge across the quantum dot. In particular, we show that due to the strongly coupled nature of the system, the pump current at resonance is an exponential function of the drive strength.

  6. Electro-optical properties of phosphorene quantum dots

    Science.gov (United States)

    Saroka, V. A.; Lukyanchuk, I.; Portnoi, M. E.; Abdelsalam, H.

    2017-08-01

    We study the electronic and optical properties of single-layer phosphorene quantum dots with various shapes, sizes, and edge types (including disordered edges) subjected to an external electric field normal to the structure plane. Compared to graphene quantum dots, in phosphorene clusters of similar shape and size there is a set of edge states with energies dispersed at around the Fermi level. These states make the majority of phosphorene quantum dots metallic and enrich the phosphorene absorption gap with low-energy absorption peaks tunable by the electric field. The presence of the edge states dispersed around the Fermi level is a characteristic feature that is independent of the edge morphology and roughness.

  7. A tunable colloidal quantum dot photo field-effect transistor

    KAUST Repository

    Ghosh, Subir

    2011-01-01

    We fabricate and investigate field-effect transistors in which a light-absorbing photogate modulates the flow of current along the channel. The photogate consists of colloidal quantum dots that efficiently transfer photoelectrons to the channel across a charge-separating (type-II) heterointerface, producing a primary and sustained secondary flow that is terminated via electron back-recombination across the interface. We explore colloidal quantum dot sizes corresponding to bandgaps ranging from 730 to 1475 nm and also investigate various stoichiometries of aluminum-doped ZnO (AZO) channel materials. We investigate the role of trap state energies in both the colloidal quantum dot energy film and the AZO channel. © 2011 American Institute of Physics.

  8. Broadband room temperature strong coupling between quantum dots and metamaterials.

    Science.gov (United States)

    Indukuri, Chaitanya; Yadav, Ravindra Kumar; Basu, J K

    2017-08-17

    Herein, we report the first demonstration of room temperature enhanced light-matter coupling in the visible regime for metamaterials using cooperative coupled quasi two dimensional quantum dot assemblies located at precise distances from the hyperbolic metamaterial (HMM) templates. The non-monotonic variation of the magnitude of strong coupling, manifested in terms of strong splitting of the photoluminescence of quantum dots, can be explained in terms of enhanced LDOS near the surface of such metamaterials as well as the plasmon mediated super-radiance of closely spaced quantum dots (QDs). Our methodology of enhancing broadband, room temperature, light-matter coupling in the visible regime for metamaterials opens up new possibilities of utilising these materials for a wide range of applications including QD based thresholdless nanolasers and novel metamaterial based integrated photonic devices.

  9. Valley-orbit hybrid states in Si quantum dots

    Science.gov (United States)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  10. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  11. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps, demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....

  12. Realization of electrically tunable single quantum dot nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix Florian Georg

    2009-03-15

    We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot

  13. Long coherence times in self-assembled semiconductor quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, K.; Hvam, Jørn Märcher

    2002-01-01

    We report measurements of ultra-long coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mueV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....

  14. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Room-temperature dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. Semiconductor quantum dots (QDs) are receiving increasing attention for fundamental studies on zero-dimensional confinement and for device applications. Quantum-dot lasers are expected to show superior performances, like high material gain, low and temperature...... stacked layers of InAs-InGaAs-GaAs quantum dots....

  16. Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods.

    Science.gov (United States)

    Chen, Jing; Li, Chu; Eda, Goki; Zhang, Yan; Lei, Wei; Chhowalla, Manish; Milne, William I; Deng, Wei-Qiao

    2011-06-07

    We demonstrate a novel architecture of solar cell by incorporating graphene thin film in a quantum dot sensitized solar cell. Quantum dot sensitized nanorods with a graphene layer exhibited a 54.7% improvement comparing a quantum dot sensitized ZnO nanorods without graphene layer. A fill factor as high as ∼62% was also obtained.

  17. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...

  18. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Pedersen, Liselotte Jauffred; Kyrsting, Anders Højbo; Christensen, Eva Arnspang

    2014-01-01

    to blueshift. A quantum dot is much smaller than a diffraction limited laser focus and by mapping out the intensity of the focal volume and overlaying this with the positions visited by a quantum dot, a quantum dot is shown often to explore regions of the focal volume where the intensity is too low to render...

  19. Self-organized formation of quantum dots of a material on a substrate

    Science.gov (United States)

    Zhang, Zhenyu; Wendelken, John F.; Chang, Ming-Che; Pai, Woei Wu

    2001-01-01

    Systems and methods are described for fabricating arrays of quantum dots. A method for making a quantum dot device, includes: forming clusters of atoms on a substrate; and charging the clusters of atoms such that the clusters of atoms repel one another. The systems and methods provide advantages because the quantum dots can be ordered with regard to spacing and/or size.

  20. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    NARCIS (Netherlands)

    Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2016-01-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the

  1. From structure to spectra. Tight-binding theory of InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Elias

    2014-07-23

    Self-assembled semiconductor quantum dots have raised considerable interest in the last decades due to a multitude of possible applications ranging from carrier storage to light emitters, lasers and future quantum communication devices. Quantum dots offer unique electronic and photonic properties due to the three-dimensional confinement of charge carriers and the coupling to a quasi-continuum of wetting layer and barrier states. In this work we investigate the electronic structure of In{sub x}Ga{sub 1-x}As quantum dots embedded in GaAs, considering realistic quantum dot geometries and Indium concentrations. We utilize a next-neighbour sp{sup 3}s{sup *} tight-binding model for the calculation of electronic single-particle energies and wave functions bound in the nanostructure and account for strain arising from lattice mismatch of the constituent materials atomistically. With the calculated single-particle wave functions we derive Coulomb matrix elements and include them into a configuration interaction treatment, yielding many-particle states and energies of the interacting many-carrier system. Also from the tight-binding single-particle wave functions we derive dipole transition strengths to obtain optical quantum dot emission and absorption spectra with Fermi's golden rule. Excitonic fine-structure splittings are obtained, which play an important role for future quantum cryptography and quantum communication devices for entanglement swapping or quantum repeating. For light emission suited for long-range quantum-crypted fiber communication InAs quantum dots are embedded in an In{sub x}Ga{sub 1-x}As strain-reducing layer, shifting the emission wavelength into telecom low-absorption windows. We investigate the influence of the strain-reducing layer Indium concentration on the excitonic finestructure splitting. The fine-structure splitting is found to saturate and, in some cases, even reduce with strain-reducing layer Indium concentration, a result being

  2. From structure to spectra. Tight-binding theory of InGaAs quantum dots

    International Nuclear Information System (INIS)

    Goldmann, Elias

    2014-01-01

    Self-assembled semiconductor quantum dots have raised considerable interest in the last decades due to a multitude of possible applications ranging from carrier storage to light emitters, lasers and future quantum communication devices. Quantum dots offer unique electronic and photonic properties due to the three-dimensional confinement of charge carriers and the coupling to a quasi-continuum of wetting layer and barrier states. In this work we investigate the electronic structure of In x Ga 1-x As quantum dots embedded in GaAs, considering realistic quantum dot geometries and Indium concentrations. We utilize a next-neighbour sp 3 s * tight-binding model for the calculation of electronic single-particle energies and wave functions bound in the nanostructure and account for strain arising from lattice mismatch of the constituent materials atomistically. With the calculated single-particle wave functions we derive Coulomb matrix elements and include them into a configuration interaction treatment, yielding many-particle states and energies of the interacting many-carrier system. Also from the tight-binding single-particle wave functions we derive dipole transition strengths to obtain optical quantum dot emission and absorption spectra with Fermi's golden rule. Excitonic fine-structure splittings are obtained, which play an important role for future quantum cryptography and quantum communication devices for entanglement swapping or quantum repeating. For light emission suited for long-range quantum-crypted fiber communication InAs quantum dots are embedded in an In x Ga 1-x As strain-reducing layer, shifting the emission wavelength into telecom low-absorption windows. We investigate the influence of the strain-reducing layer Indium concentration on the excitonic finestructure splitting. The fine-structure splitting is found to saturate and, in some cases, even reduce with strain-reducing layer Indium concentration, a result being counterintuitively. Our result

  3. Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots

    Science.gov (United States)

    Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan

    2016-04-01

    We present a theoretical study on the pure dephasing process of colloidal semiconductor quantum dots induced by lattice vibrations using continuum model calculations. By solving the time dependent Liouville-von Neumann equation, we present the ultrafast Rabi oscillations between excitonic state and virtual state via exciton-phonon interaction and obtain the pure dephasing time from the fast decayed envelope of the Rabi oscillations. The interaction between exciton and longitudinal optical phonon vibration is found to dominate the pure dephasing process and the dephasing time increases nonlinearly with the reduction of exciton-phonon coupling strength. We further find that the pure dephasing time of large quantum dots is more sensitive to temperature than small quantum dots.

  4. Extracellular Synthesis of Luminescent CdS Quantum Dots Using Plant Cell Culture.

    Science.gov (United States)

    Borovaya, Mariya N; Burlaka, Olga M; Naumenko, Antonina P; Blume, Yaroslav B; Yemets, Alla I

    2016-12-01

    The present study describes a novel method for preparation of water-soluble CdS quantum dots, using bright yellow-2 (BY-2) cell suspension culture. Acting as a stabilizing and capping agent, the suspension cell culture mediates the formation of CdS nanoparticles. These semiconductor nanoparticles were determined by means of an UV-visible spectrophotometer, photoluminescence, high-resolution transmission electron microscopy (HRTEM), and XRD. Followed by the electron diffraction analysis of a selected area, transmission electron microscopy indicated the formation of spherical, crystalline CdS ranging in diameter from 3 to 7 nm and showed wurtzite CdS quantum dots. In the present work, the toxic effect of synthesized CdS quantum dots on Nicotiana tabacum protoplasts as a very sensitive model was under study. The results of this research revealed that biologically synthesized CdS nanoparticles in low concentrations did not induce any toxic effects.

  5. Temperature-Dependent Coercive Field Measured by a Quantum Dot Strain Gauge.

    Science.gov (United States)

    Chen, Yan; Zhang, Yang; Keil, Robert; Zopf, Michael; Ding, Fei; Schmidt, Oliver G

    2017-12-13

    Coercive fields of piezoelectric materials can be strongly influenced by environmental temperature. We investigate this influence using a heterostructure consisting of a single crystal piezoelectric film and a quantum dots containing membrane. Applying electric field leads to a physical deformation of the piezoelectric film, thereby inducing strain in the quantum dots and thus modifying their optical properties. The wavelength of the quantum dot emission shows butterfly-like loops, from which the coercive fields are directly derived. The results suggest that coercive fields at cryogenic temperatures are strongly increased, yielding values several tens of times larger than those at room temperature. We adapt a theoretical model to fit the measured data with very high agreement. Our work provides an efficient framework for predicting the properties of ferroelectric materials and advocating their practical applications, especially at low temperatures.

  6. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET, and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)

    2011-10-26

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. (paper)

  7. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer

    International Nuclear Information System (INIS)

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H

    2011-01-01

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. (paper)

  8. Probing long-lived dark excitons in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Julsgaard, Brian; Stobbe, Søren

    2010-01-01

    Long-lived dark exciton states are formed in self-assembled quantum dots due to the combination of the angular momentum of electrons and holes. The lifetime of dark excitons are determined by spin-flip processes that transfer dark excitons into radiative bright excitons. We employ time......-resolved spontaneous emission measurements in a modified local density of optical states to unambiguously record the spin-flip rate. Pronounced variations in the spin-flip rate with the quantum dot emission energy are observed demonstrating that the exciton storage time can be extended by controlling the quantum dot...... size. The energy dependence is compared to a recent model from the literature, in which the spin flip is due to the combined action of short-range exchange interaction and acoustic phonons. We furthermore observe a pronounced enhancement of the spin-flip rate close to semiconductor-air interfaces...

  9. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    Directory of Open Access Journals (Sweden)

    Aaron Clapp

    2011-11-01

    Full Text Available Luminescent colloidal quantum dots (QDs possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

  10. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction......-diusion during the growth process. The small size of excitons leads to a small oscillator strength of about 10. These ndings are crosschecked by an analysis of the phonon-broadened spectra revealing a small exciton wavefunction. We conclude that engineering large excitons with giant oscillator strength remains...

  11. Landauer current and mutual information in a bosonic quantum dot

    Science.gov (United States)

    Shashikant Sable, Hrushikesh; Singh Bhakuni, Devendra; Sharma, Auditya

    2018-02-01

    We study the quantum transport of bosons through a quantum dot coupled to two macroscopic heat baths L and R, held at fixed temperatures TL and TR respectively. We manage to cast the particle as well as the heat current into the Landauer form. Following the correlation matrix approach, we compute the time-dependent mutual information of the dot with the baths. We find that mutual information goes logarithmically as the number of bosons, and at low temperatures, it is possible to set up the parameters in such a way that in steady-state, the mutual information goes quadratically as a function of current.

  12. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    Science.gov (United States)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  13. Tunable Hybrid Qubit in a Triple Quantum Dot

    Science.gov (United States)

    Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Hu, Xuedong; Jiang, Hong-Wen; Guo, Guo-Ping

    2017-12-01

    We experimentally demonstrate quantum-coherent dynamics of a triple-dot-based multielectron hybrid qubit. Pulsed experiments show that this system can be conveniently initialized, controlled, measured electrically, and has a good ratio Q ˜29 between the coherence time and gate time. Furthermore, the current multielectron hybrid qubit has an operation frequency that is tunable in a wide range, from 2 to about 15 GHz. We also provide a qualitative understanding of the experimental observations by mapping them onto a three-electron system. The demonstration of the high tunability in a triple dot system could be potentially useful for future quantum control.

  14. Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions

    Science.gov (United States)

    Goodman, Samuel Martin

    The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the

  15. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher

    2004-01-01

    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...

  16. Clocked quantum-dot cellular automata shift register

    Science.gov (United States)

    Orlov, Alexei O.; Kummamuru, Ravi; Ramasubramaniam, R.; Lent, Craig S.; Bernstein, Gary H.; Snider, Gregory L.

    2003-06-01

    The quantum-dot cellular automata (QCA) computational paradigm provides a means to achieve ultimately low limits of power dissipation by replacing binary coding in currents and voltages with single-electron switching within arrays of quantum dots ("cells"). Clocked control over the cells allows the realization of power gain, memory and pipelining in QCA circuits. We present an experimental demonstration of a clocked QCA two-stage shift register (SR) and use it to mimic the operation of a multi-stage SR. Error-bit rates for binary switching operations in a metal tunnel junction device are experimentally investigated, and discussed for future molecular QCAs.

  17. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  18. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    Science.gov (United States)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of

  19. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Science.gov (United States)

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  20. Hybrid structures based on quantum dots and graphene nanobelts

    Science.gov (United States)

    Reznik, I. A.; Gromova, Yu. A.; Zlatov, A. S.; Baranov, M. A.; Orlova, A. O.; Moshkalev, S. A.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    Luminescence and photoelectric properties of hybrid structures based on CdSe/ZnS quantum dots (QDs) and multilayer graphene have been investigated. A correlation between the luminescence quantum yield of QDs and their photoelectric properties in hybrid structures is established. It is shown that a decrease in the QD luminescence quantum yield due to adsorption of 1-(2-pyridylazo)-2-naphtol azo dye molecules onto the QD surface and a photoinduced increase in the QD luminescence quantum yield are accompanied by a symbate change in the hybrid structure photoconductivity.

  1. Perspective: The future of quantum dot photonic integrated circuits

    Directory of Open Access Journals (Sweden)

    Justin C. Norman

    2018-03-01

    Full Text Available Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS foundries.

  2. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  3. Perspective: The future of quantum dot photonic integrated circuits

    Science.gov (United States)

    Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.

    2018-03-01

    Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.

  4. Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)

    2016-04-13

    The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.

  5. A spin-density-functional study of quantum dots and rings

    CERN Document Server

    Lin, J C

    2002-01-01

    We present a spin-density-functional theoretical (SDFT) study of the electronic states in GaAs quantum dots embedded in AlGaAs substrates. The SDFT allows for a systematic study of the joint effects of confinement, Coulomb interactions and spin for realistic systems. We model the system as electrons confined in a finite cylindrical dot. The screening due to the gate electrodes is also taken into account. The method predicts the electron addition energy spectra that are in agreement with experiments. We also apply the SDFT to GaAs quantum rings and find that they too show shell structures in the additional energy spectra.

  6. Si quantum dots for nano electronics: From materials to applications

    International Nuclear Information System (INIS)

    Lombardo, S.; Spinella, C.; Rimini, E.

    2005-01-01

    This paper reviews the subject of Si quantum dots embedded in dielectric and its application to the realization of non volatile semiconductor memories. In the first part of the paper various approaches for the analysis of the materials through transmission electron microscopy (TEM) are critically discussed. The advantages coming from an innovative application of energy filtered TEM are put in clear evidence. The paper then focuses on the synthesis of the materials: two different methodologies for the realization of the dots, both based on chemical vapor deposition are described in detail, and physical models providing some understanding of the observed phenomenology are reported. We then discuss the application of this nano technology to the realization of the storage nodes in non volatile semiconductor memories. The following sections describe the electrical characteristics found in the test devices and some key aspects are described in terms of quantitative models. The test devices show several performance advantages, indicating that the approach is an excellent candidate for the realization of Flash memories of the nano electronic era

  7. Improving the optical efficiency and concentration of a single-plate quantum dot solar concentrator using near infra-red emitting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, M.; McCormack, S.J.; Doran, J.; Norton, B. [Dublin Energy Lab., Dublin Institute of Technology, Focas Institute, DIT - Kevin Street, Dublin 8, Dublin (Ireland)

    2009-07-15

    Low luminescent quantum yields and large overlap between quantum dot (QD) emission and absorption spectra of present commercially-available visible-emitting QDs have led to low optical efficiencies for single-plate quantum dot solar concentrators (QDSCs). It is shown that using near infra-red (NIR) emitting QDs, re-absorption of QD emitted photons can be reduced greatly, thereby diminishing escape cone losses thus improving optical efficiencies and concentration ratios. Using Monte-Carlo ray-trace modelling, escape cone losses are quantified for different types of QD. A minimum 25% escape cone loss would be expected for a plate with refractive index of 1.5 containing QDs with no spectral overlap. It is shown that escape cone losses account for {proportional_to}57% of incident photons absorbed in QDSCs containing commercially-available visible-emitting QDs. (author)

  8. Quantum cosmological metroland model

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Edward [DAMTP, Cambridge (United Kingdom); Franzen, Anne, E-mail: ea212@cam.ac.u, E-mail: a.t.franzen@uu.n [Spinoza Institute, Utrecht (Netherlands)

    2010-02-21

    Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale of four particles on a line, so that the only physically significant quantities are ratios of relative separations between the constituents' physical objects. Many of our ideas and workings extend to the N-particle case. As such models' configurations resemble depictions of metro lines in public transport maps, we term them 'N-stop metrolands'. This 4-stop model's configuration space is a 2-sphere, from which our metroland mechanics interpretation is via the 'cubic' tessellation. This model yields conserved quantities which are mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit interpretations as relative sizes and the 'homogeneity of the model universe's contents', and also objects of significance for the problem of time in quantum gravity (e.g. in the naive Schroedinger and records theory timeless approaches).

  9. Effect of the shape on the spin state and exchange in quantum dots. Feynman path integral analysis

    International Nuclear Information System (INIS)

    Shevkunov, S. V.

    2015-01-01

    The ab initio computer simulation of the mixed quantum states of 1–5-nm model ellipsoid quantum dots with “soft” walls containing two and three quantum-indistinguishable nonrelativistic electrons has been performed by the path integral method. The calculation has been carried out beyond the single-electron and mean-field approximations with the fundamentally exact inclusion of Coulomb and exchange correlations of all orders and the spin variable. Distributions over the eigenfunctions of the spin-squared operator, as well as the equilibrium spin numbers, have been obtained depending on the shape of a quantum dot and the temperature. The complete set of basis functions symmetrized in permutations according to the spin of the system has been obtained by application of the Young symmetry operators. The dependence of the energy on the shape of the quantum dot corresponds to the negative sign of the surface tension at its boundary. The calculation indicates that the spin magnetic susceptibility in the system of two electrons decreases strongly for spherical quantum dots (“pairing” of spins) and the temperature dependences have a pronounced maximum whose position depends on the shape of the quantum dot. For three electrons in an oblate quantum dot, the inversion of the energy levels of spin states is observed and affects the spin magnetic susceptibility. The results indicate a strong dependence of the energy of collective spin states of electrons on the detailed inclusion of exchange and Coulomb spatial correlations

  10. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  11. Nonequilibrium Transport through a Spinful Quantum Dot with Superconducting Leads

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Flensberg, Karsten; Koerting, Verena

    2011-01-01

    We study the nonlinear cotunneling current through a spinful quantum dot contacted by two superconducting leads. Applying a general nonequilibrium Green function formalism to an effective Kondo model, we study the rich variation in the IV characteristics with varying asymmetry in the tunnel...... coupling to source and drain electrodes. The current is found to be carried, respectively, by multiple Andreev reflections in the symmetric limit, and by spin-induced Yu-Shiba-Rusinov bound states in the strongly asymmetric limit. The interplay between these two mechanisms leads to qualitatively different...... IV characteristics in the crossover regime of intermediate symmetry, consistent with recent experimental observations of negative differential conductance and repositioned conductance peaks in subgap cotunneling spectroscopy....

  12. Soliton nanoantennas in two-dimensional arrays of quantum dots

    Science.gov (United States)

    Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.

    2015-06-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  13. Incorporation of lanthanide (Eu(3+)) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study.

    Science.gov (United States)

    Wang, Yongbo; Liang, Xuhua; Liu, Enzhou; Hu, Xiaoyun; Fan, Jun

    2015-09-18

    Doping quantum dots (QDs) with lanthanide (Ln) ions is promising to modify the optical properties of QDs, but incorporating Ln(3+) ions into QD hosts remains a challenge. In this work, we adopt the trapped-dopant model for fabricating Eu-doped ZnS QDs via direct wet chemical synthesis. Sharp Eu dopant photoluminescence (PL) was observed in the PL spectra of the as-prepared Eu-doped ZnS QDs and the bands at ~590, ~618 and ~695 nm were assigned to transitions from (5)D0 to (7)F1, (7)F2 and (7)F4, respectively. Quenching of the ZnS bandgap PL and enhancement of the Eu dopant PL were observed with increasing Eu(3+) doping concentration, and also, the excitation spectra for Eu emission (618 nm) were similar to the typical excitonic features of the ZnS host. These spectroscopic results, as well as the XRD and EDS data, demonstrated that Eu(3+) ions were incorporated in the ZnS host rather than just on the surface, and the Eu dopant PL was derived from energy transfer from the QD host to Eu(3+) rather than direct excitation of Eu(3+). By surface passivation, the sharp Eu emission was well-separated from the ZnS bandgap emission, which led to a good signal-to-noise ratio for more sensitive detection.

  14. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

    Science.gov (United States)

    Galdiero, Emilia; Falanga, Annarita; Siciliano, Antonietta; Maselli, Valeria; Guida, Marco; Carotenuto, Rosa; Tussellino, Margherita; Lombardi, Lucia; Benvenuto, Giovanna; Galdiero, Stefania

    2017-01-01

    The use of quantum dots (QDs) for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies. PMID:28435254

  15. Carrier dynamics in InAs/AlAs quantum dots: lack in carrier transfer from wetting layer to quantum dots.

    Science.gov (United States)

    Shamirzaev, T S; Abramkin, D S; Nenashev, A V; Zhuravlev, K S; Trojánek, F; Dzurnák, B; Malý, P

    2010-04-16

    Structures with self-assembled InAs quantum dots (QDs) embedded in an AlAs matrix have been studied by steady-state and transient photoluminescence. It has been shown that in contrast to InAs/GaAs QD systems carriers are mainly captured by quantum dots directly from the AlAs matrix, while transfer of carriers captured by the wetting layer far away from QDs to the QDs is suppressed. At low temperatures the carriers captured by the wetting layer are localized by potential fluctuations at the wetting layer interface, while at high temperatures the carriers are delocalized but captured by nonradiative centers located in the wetting layer.

  16. The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices

    International Nuclear Information System (INIS)

    Sakly, A.; Safta, N.; Mejri, H.; Lamine, A. Ben

    2011-01-01

    Research highlights: → This paper is dedicated to structures based on Cd 1-x Zn x S. - Abstract: The present work reports on a theoretical investigation of superlattices based on Cd 1-x Zn x S quantum dots embedded in an insulating material. The system to model is assumed to be a series of flattened cylindrical quantum dots with a finite barrier at the boundary and is studied using a sinusoidal potential. The electronic states of both Γ 1 - (ground) and Γ 2 - (first excited) minibands have been computed as a function of inter-quantum dot separation and Zn composition. An analysis of the results shows that the widths of Γ 1 - and Γ 2 - minibands decrease as the superlattice period and Zn content increase separately. Moreover, the sinusoidal shape of the confining potential accounts for the coupling between quantum dots quantitatively less than the Kronig-Penney potential model.

  17. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  18. Thermoelectric and Themorectification properties of quantum dot junctions

    Science.gov (United States)

    Kuo, David M.-T.; Chang, Yia-Chung

    2010-03-01

    The electrical conductance, thermal conductance, thermal power and figure of merit (ZT) of semiconductor quantum dots (QDs) embedded in an insulator matrix connected with metallic electrodes are theoretically investigated in the Coulomb blockade regime. The multilevel Anderson model is used to simulate the multiple QDs junction system. The charge and heat currents in the sequence tunneling process are calculated by the Keldysh Green function technique. In the linear response regime the ZT values are still very impressive in the small tunneling rates case, although the effect of electron Coulomb interaction on ZT is significant. Considering the inelastic scattering effect arising from size fluctuations, defects and electron-phonon interactions, the reduction of ZT values is serious. In the nonlinear response regime, the nonlinear heat flow with respect to temperature is observed. When the coupling between the QDs and the electrodes is asymmetrical, we observed a thermal rectification behavior, which is also influenced by the electron Coulomb interactions and energy level differences between the two dots.

  19. Quantum Dot Chain Assembly Mediated by Nematic Liquid Crystals

    Science.gov (United States)

    Brereton, Peter; Basu, Rajratan; Finkenstadt, Daniel

    2015-03-01

    A small quantity of CdSe quantum dots (QDs) were dispersed in a nematic liquid crystal (LC) media and the QDs were found to exhibit self-assembled asymmetric structures, most likely QD-chains. In the nematic phase the ensemble LC +QD photoluminescence (PL) exhibits an anisotropic spectral line shape, as compared to the emission of QDs doped in the isotropic phase. This indicates a nematic mediated arrangement of the QDs. A simple model is proposed to explain the asymmetric behavior of the PL band as an effective chain of radiatively coupled emitters. The effect of the liquid crystals is to provide an entropic force that attracts dots to minimize the excluded volume. The dielectric reorientation dynamics immediately following the removal of an applied field appears as a one-step exponential decay for the LC and a two-step exponential decay with a slower process for the LC +QD system. The results suggest that anisotropic chain-like QD-assemblies are formed in the nematic platform. A related study has examined PL of ferroelectric LC doped with graphene QD [Kumar, Veeresh, et al., Liquid Crystals (2014)

  20. Unidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide.

    Science.gov (United States)

    Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak

    2018-02-19

    Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

  1. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    Science.gov (United States)

    2015-12-15

    SECURITY CLASSIFICATION OF: This program conducted experimental and theoretical research aimed at developing an optically driven quantum dot quantum ...computer, where, the qubit is the spin of the electron trapped in a self-assembled quantum dot in InAs. Optical manipulation using the trion state...reports. In this reporting period, we discovered the nuclear spin quieting first discovered in 2008 is present in vertically coupled quantum dots but

  2. Palladium gates for reproducible quantum dots in silicon.

    Science.gov (United States)

    Brauns, Matthias; Amitonov, Sergey V; Spruijtenburg, Paul-Christiaan; Zwanenburg, Floris A

    2018-04-09

    We replace the established aluminium gates for the formation of quantum dots in silicon with gates made from palladium. We study the morphology of both aluminium and palladium gates with transmission electron microscopy. The native aluminium oxide is found to be formed all around the aluminium gates, which could lead to the formation of unintentional dots. Therefore, we report on a novel fabrication route that replaces aluminium and its native oxide by palladium with atomic-layer-deposition-grown aluminium oxide. Using this approach, we show the formation of low-disorder gate-defined quantum dots, which are reproducibly fabricated. Furthermore, palladium enables us to further shrink the gate design, allowing us to perform electron transport measurements in the few-electron regime in devices comprising only two gate layers, a major technological advancement. It remains to be seen, whether the introduction of palladium gates can improve the excellent results on electron and nuclear spin qubits defined with an aluminium gate stack.

  3. One- and two-phonon capture processes in quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, Alexander; Bischoff, Svend

    2002-01-01

    Multiphonon capture processes are investigated theoretically and found to contribute efficiently to the carrier injection into quantum dots. It is shown that two-phonon capture contributes where single-phonon capture is energetically inhibited and can lead to electron capture times of a few...

  4. Semiconductor quantum dot amplifiers for optical signal processing

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Uskov, A. V.; Bischoff, Svend

    2001-01-01

    The dynamics of quantum dot semiconductor amplifiers are investigated theoretically with respect to the potential for ultrafast signal processing. The high-speed signal processing capacity of these devices is found to be limited by the wetting layer dynamics in case of electrical pumping, while...... optical pumping partly removes this limitation. Also, the possibility of using spectral hole burning for signal processing is discussed....

  5. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  6. Electronic Structure of Helium Atom in a Quantum Dot

    Science.gov (United States)

    Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.

    2016-03-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India

  7. Quantum Dots for Live Cell and In Vivo Imaging

    Directory of Open Access Journals (Sweden)

    Jason R. E. Shepard

    2009-02-01

    Full Text Available In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications.

  8. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  9. Fractional decay of quantum dots in real photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  10. Peptide-mediated intracellular delivery of quantum dots

    DEFF Research Database (Denmark)

    Lagerholm, B Christoffer

    2007-01-01

    Quantum dots (QDs) have received a great amount of interest for use as fluorescent labels in biological applications. QDs are brightly fluorescent and very photostable, satisfying even imaging applications that require single molecule detection at high repetition rates over long periods of time...

  11. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution

    DEFF Research Database (Denmark)

    Carbonell-Sanroma, Eduard; Brandimarte, Pedro; Balog, Richard

    2017-01-01

    Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron...

  12. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...

  13. Thermoelectric effects in molecular quantum dots with contacts

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Loos, Jan; Fehske, H.

    2014-01-01

    Roč. 89, č. 15 (2014), "155133-1"-"155133-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : theory of electronic transport * scattering mechanisms * polarons and electron-phonon interactions * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  14. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  15. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Mørk, Jesper

    1999-01-01

    The room-temperature dephasing in InAs/GaAs self-assembled quantum dots is measured using two independent methods: spectal-hole burning and four-wave mixing. Dephasing times weakly dependent on the excitation density are found, with a low density value of 290+/-80 fs from spectal-hole burning...

  17. THz Electro-absorption Effect in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.

    2011-01-01

    In a THz pump - optical probe experiment we demonstrate an instantaneous electro-absorption effect in InGaAs/GaAs quantum dots, induced by the electric field of a single-cycle THz pulse with 3 THz bandwidth and with free-space peak electric field reaching 220 kV/cm. The transient modulation of QD...

  18. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear in th...

  19. Magnetic anisotropies of quantum dots doped with magnetic ions

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Han, J.E.; Oszwałdowski, R.; Žutić, I.; Petukhov, A.G.

    2012-01-01

    Roč. 85, č. 15 (2012), "155312-1"-"155312-8" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetocrystalline anisotropy * quantum dot s * dilute magnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  20. Ultrafast Terahertz Dynamics and Switching in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2012-01-01

    In this Chapter we describe the experimental studies of ultrafast carrier dynamics and all-optical switching in semiconductor quantum dots (QDs) using ultrafast terahertz (THz) techniques. In the first part of this chapter we describe the studies of carrier capture into the QDs, and thermionic...

  1. Quantum dots trace lymphatic drainage from the mouse eye

    Science.gov (United States)

    Tam, Alex L. C.; Gupta, Neeru; Zhang, Zhexue; Yücel, Yeni H.

    2011-10-01

    Glaucoma is a leading cause of blindness in the world, often associated with elevated eye pressure. Currently, all glaucoma treatments aim to lower eye pressure by improving fluid exit from the eye. We recently reported the presence of lymphatics in the human eye. The lymphatic circulation is known to drain fluid from organ tissues and, as such, lymphatics may also play a role in draining fluid from the eye. We investigated whether lymphatic drainage from the eye is present in mice by visualizing the trajectory of quantum dots once injected into the eye. Whole-body hyperspectral fluorescence imaging was performed in 17 live mice. In vivo imaging was conducted prior to injection, and 5, 20, 40 and 70 min, and 2, 6 and 24 h after injection. A quantum dot signal was observed in the left neck region at 6 h after tracer injection into the eye. Examination of immunofluorescence-labelled sections using confocal microscopy showed the presence of a quantum dot signal in the left submandibular lymph node. This is the first direct evidence of lymphatic drainage from the mouse eye. The use of quantum dots to image this lymphatic pathway in vivo is a novel tool to stimulate new treatments to reduce eye pressure and prevent blindness from glaucoma.

  2. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  3. Site-controlled quantum dots coupled to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Rigal, B.; de Lasson, Jakob Rosenkrantz; Jarlov, C.

    2016-01-01

    We demonstrate selective optical coupling of multiple, site controlled semiconductor quantum dots (QDs) to photonic crystal waveguide structures. The impact of the exact position and emission spectrum of the QDs on the coupling efficiency is elucidated. The influence of optical disorder and end...

  4. Exchange cotunneling through quantum dots with spin-orbit coupling

    DEFF Research Database (Denmark)

    Paaske, Jens; Andersen, Andreas; Flensberg, Karsten

    2010-01-01

    We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we...

  5. Efficient eco-friendly inverted quantum dot sensitized solar cells

    NARCIS (Netherlands)

    Park, Jinhyung; Sajjad, Muhammad T.; Jouneau, Pierre-Henri; Ruseckas, Arvydas; Faure-Vincent, Jérôme; Samuel, Ifor D. W.; Reiss, Peter; Aldakov, Dmitry

    2016-01-01

    Recent progress in quantum dot (QD) sensitized solar cells has demonstrated the possibility of low-cost and efficient photovoltaics. However, the standard device structure based on n-type materials often suffers from slow hole injection rate, which may lead to unbalanced charge transport. We have

  6. Transport through a vibrating quantum dot: Polaronic effects

    Czech Academy of Sciences Publication Activity Database

    Koch, T.; Loos, Jan; Alvermann, A.; Bishop, A. R.; Fehske, H.

    2010-01-01

    Roč. 220, č. 1 (2010), 012014/1-012014/9 ISSN 1742-6588 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dot, * polaronic effects * low-temperature transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Quantum dots trace lymphatic drainage from the mouse eye

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Alex L C; Gupta, Neeru; Zhang Zhexue; Yuecel, Yeni H, E-mail: yucely@smh.ca [Department of Ophthalmology and Vision Sciences, University of Toronto, M5T 2S8 (Canada)

    2011-10-21

    Glaucoma is a leading cause of blindness in the world, often associated with elevated eye pressure. Currently, all glaucoma treatments aim to lower eye pressure by improving fluid exit from the eye. We recently reported the presence of lymphatics in the human eye. The lymphatic circulation is known to drain fluid from organ tissues and, as such, lymphatics may also play a role in draining fluid from the eye. We investigated whether lymphatic drainage from the eye is present in mice by visualizing the trajectory of quantum dots once injected into the eye. Whole-body hyperspectral fluorescence imaging was performed in 17 live mice. In vivo imaging was conducted prior to injection, and 5, 20, 40 and 70 min, and 2, 6 and 24 h after injection. A quantum dot signal was observed in the left neck region at 6 h after tracer injection into the eye. Examination of immunofluorescence-labelled sections using confocal microscopy showed the presence of a quantum dot signal in the left submandibular lymph node. This is the first direct evidence of lymphatic drainage from the mouse eye. The use of quantum dots to image this lymphatic pathway in vivo is a novel tool to stimulate new treatments to reduce eye pressure and prevent blindness from glaucoma.

  8. Application of zinc oxide quantum dots in food safety

    Science.gov (United States)

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  9. Study of Streptavidin-Modified Quantum Dots by Capillary Electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Stanisavljevic, M.; Janů, L.; Šmerková, K.; Křížková, S.; Pizúrová, Naděžda; Ryvolová, M.; Adam, V.; Hubálek, J.; Kizek, R.

    2013-01-01

    Roč. 76, 7-8 (2013), s. 335-343 ISSN 0009-5893 Institutional support: RVO:68081723 Keywords : Capillary electrophoresis * Gel electrophoresis * Avidin-biotin technology * Oligonucleotide * Nanoparticle * quantum dots Subject RIV: CE - Biochemistry Impact factor: 1.370, year: 2013

  10. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  11. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  12. Ultrafast Gain Dynamics in Quantum Dot Amplifiers: Theoretical Analysis and Experimental Investigations

    DEFF Research Database (Denmark)

    Poel, Mike van der; Gehrig, Edeltraud; Hess, Ortwin

    2005-01-01

    Ultrafast gain dynamics in an optical amplifier with an active layer of self-organized quantum dots (QDs) emitting near 1.3$muhbox m$is characterized experimentally in a pump-probe experiment and modeled theoretically on the basis of QD Maxwell–Bloch equations. Experiment and theory are in good a...

  13. Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission

    DEFF Research Database (Denmark)

    Gregersen, Niels; Skovgård, Troels Suhr; Lorke, Michael

    2012-01-01

    We present a rate equation model for quantum-dot light-emitting devices that take into account Purcell enhancement of both spontaneous emission and stimulated emission as well as the spectral profile of the optical and electronic density-of-states. We find that below threshold the b-factor in a q...

  14. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  15. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    International Nuclear Information System (INIS)

    You, Jie; Li, Hai-Ou; Wang, Ke; Cao, Gang; Song, Xiang-Xiang; Xiao, Ming; Guo, Guo-Ping

    2015-01-01

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal of the 2DEG underneath the metallic gates, which provides an architecture for noise reduction

  16. Multi-dimensional photonic states from a quantum dot

    Science.gov (United States)

    Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2018-04-01

    Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.

  17. Excitons and trions in single and vertically coupled quantum dots under an electric field

    Science.gov (United States)

    Zhai, Li-Xue; Wang, Yan; An, Zhong

    2017-08-01

    We present a theoretical study of the exciton (X0), the positive and negative trions (X+ and X-) in single and vertically coupled configurations of self-assembled InGaAs quantum dots under an electric field. The quantum states of X0, X+ and X- have been investigated using a quasi-one-dimensional (Q1D) model within the effective-mass approximation. For the single quantum dots, the electric-field dependent energy levels and the average inter-particle distances for the exciton and trions have been calculated. For the coupled quantum dots, the ground and the excited states for X0, X+ and X- have also been calculated and discussed. It is found that either the hole or the electron can be tuned into resonance states by the electric field and that the transition energy spectra for both trions consequently show crossing and anticrossing patterns. The recombination probabilities of the exciton and trion optical transitions are also calculated. The theoretical results have been compared with previously reported photoluminescence data and qualitative agreement is obtained. The trion conditional wave functions are also plotted under different electric field intensities, and it is found that a molecular orbital can be formed at a critical electric field intensity. The evolution of the energy levels of the trions in coupled quantum dots can be explained by the interplay of particle transfer and the electric field.

  18. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  19. Coherently driven semiconductor quantum dot at a telecommunication wavelength.

    Science.gov (United States)

    Takagi, Hiroyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Arakawa, Yasuhiko

    2008-09-01

    We proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 microm through Rabi oscillation. The telecom-band exciton-qubit system incorporates standard optical fibers and fiber optic devices. The coherent manipulation of the two-level system compatible with flexible and stable fiber network paves the way toward practical optical implementation of quantum information processing devices.

  20. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    Directory of Open Access Journals (Sweden)

    Hamza Qayyum

    2016-05-01

    Full Text Available The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm−2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  1. Formation of uniform high-density and small-size Ge/Si quantum dots by scanning pulsed laser annealing of pre-deposited Ge/Si film

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, Hamza; Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan (China); Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Lu, Chieh-Hsun [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan (China); Chuang, Ying-Hung [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2016-05-15

    The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×10{sup 10} cm{sup −2} could be formed over an area larger than 4 mm{sup 2}. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.

  2. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  3. Autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots

    Science.gov (United States)

    Ptaszyński, Krzysztof

    2018-01-01

    I study an autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots attached to the spin-polarized leads. The principle of operation of the demon is based on the coherent oscillations between the spin states of the system which act as a quantum iSWAP gate. Due to the operation of the iSWAP gate, one of the dots acts as a feedback controller which blocks the transport with the bias in the other dot, thus inducing the electron pumping against the bias; this leads to the locally negative entropy production. Operation of the demon is associated with the information transfer between the dots, which is studied quantitatively by mapping the analyzed setup onto the thermodynamically equivalent auxiliary system. The calculated entropy production in a single subsystem and information flow between the subsystems are shown to obey a local form of the second law of thermodynamics, similar to the one previously derived for classical bipartite systems.

  4. Nanostructure assembly of indium sulphide quantum dots and their characterization.

    Science.gov (United States)

    Vigneashwari, B; Ravichandran, V; Parameswaran, P; Dash, S; Tyagi, A K

    2008-02-01

    Nanocrystals (approximately 5 nm) of the semiconducting wide band gap material beta-In2S3 obtained by chemical synthesis through a hydrothermal route were characterized for phase and compositional purity. These nanoparticles exhibited quantum confinement characteristics as revealed by a blue-shifted optical absorption. These quantum dots of beta-In2S3 were electrically driven from a monodisperse colloidal suspension on to conducting glass substrates by Electophoretic Deposition (EPD) technique and nanostructural thin films were obtained. The crystalline and morphological structures of these deposits were investigated by X-ray diffraction and nanoscopic techniques. We report here that certain interesting nanostructural morphologies were observed in the two-dimensional quantum dot assemblies of beta-In2S3. The effect of the controlling parameters on the cluster growth and deposit integrity was also systematically studied through a series of experiments and the results are reported here.

  5. Fluorescence and Bonding of Quantum Dots on DNA Origami Constructs

    Science.gov (United States)

    Kessinger, Matthew; Corrigan, Timothy; Neff, David; Norton, Michael; Concord University Collaboration; Marshall University Collaboration

    2015-03-01

    Semiconductor quantum dots (QDots) have historically been of interest to the scientific community since their creation for various applications ranging from solar energy to optical labeling. In this study, bioconjugated CdSe/ZnS core/shell QDots were synthesized and functionalized with 3-mercaptopropionic acid using both traditional ligand exchange as well as newly developed in situ functionalization techniques used to increase the quantum yield of the QDots. Their fluorescence and bonding to both gold as well as DNA origami were investigated for use in self assembled DNA constructs. It is believed that controlling the attachment and spacing of these nanoparticles on DNA origami could be used in a variety of optical labeling and sensing applications. Commercially available biotin and streptavidin functionalized quantum dots were also examined, and subject to the same experiments with gold nanoparticles as the MPA functionalized QDots.

  6. Open quantum dots: Physics of the non-Hermitian Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D.K.; Akis, R. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe AZ 85287-5706 (United States); Burke, A.M. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe AZ 85287-5706 (United States); School of Physics, The University of New South Wales, Sydney (Australia); Knezevic, I. [Department of Electrical Engineering, University of Wisconsin, Madison WI 53706 (United States); Brunner, R.; Meisels, R.; Kuchar, F. [Institut fuer Physik, Montanuniversitaet Leoben, 8700 Leoben (Austria); Bird, J.P.; Bird, J.P. [Department of Electrical Engineering, University at Buffalo, Buffalo, NY 14260 (United States)

    2013-02-15

    Quantum dots provide a natural system in which to study both classical and quantum features of transport, as they possess a very rich set of eigenstates.When coupled to the environment through a pair of quantum point contacts, these dots possess a mixed phase space which yields families of closed, regular orbits as well as an expansive sea of chaos. In this latter case, many of the eigenstates are decohered through interaction with the environment, but many survive and are referred to as the set of pointer states. These latter states are described by a projected, non-Hermitian Hamiltonian which describes their dissipation through many-body interactions with particles in the external environment. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Optical gain and laser properties of semiconductor quantum-dot systems

    Energy Technology Data Exchange (ETDEWEB)

    Lorke, Michael

    2008-12-17

    For practical applications of quantum dots in light emitters as well as for fundamental studies of their emission properties, the understanding of many-body processes plays a central role. We employ a microscopic theory to study the optical properties of semiconductor quantum dots. The excitation-induced polarization dephasing due to carrier-phonon and carrier-carrier Coulomb interaction as well as the corresponding lineshifts of the optical interband transitions are determined on the basis of a quantum-kinetic treatment of correlation processes. Our theoretical model includes non-Markovian effects as well as renormalized single-particle states. Thus we achieve an accurate description of the partial compensation between different dephasing contributions and are able to systematically study their temperature and density dependencies. Applications of this theoretical model include optical gain spectra for quantum-dot systems that reveal a novel effect, not present in other gain materials. For large carrier densities, the maximum gain can decrease with increasing carrier density. This behavior arises from a delicate balancing of state filling and dephasing, and implies the necessity of an accurate treatment of the carrier-density dependence of correlations. Measurements of the coherence properties of the light emitted from semiconductor quantum-dot lasers have raised considerable attention in recent years. We study the correlations between individual emission events on the basis of a microscopic semiconductor laser theory. This allows for a study of effects like Pauli blocking, modifications to the source term of spontaneous emission, and the absence of complete inversion, that strongly influence the emission characteristics of quantum dot based devices. A new and challenging material system for applications in the visible spectral range are nitride semiconductors. As crystal symmetry and bandmixing effects strongly influence the optical selection rules, the single

  8. A Complete Physical Germanium-on-Silicon Quantum Dot Self-Assembly Process

    OpenAIRE

    Alkhatib, Amro; Nayfeh, Ammar

    2013-01-01

    Achieving quantum dot self-assembly at precise pre-defined locations is of vital interest. In this work, a novel physical method for producing germanium quantum dots on silicon using nanoindentation to pre-define nucleation sites is described. Self-assembly of ordered ~10?nm height germanium quantum dot arrays on silicon substrates is achieved. Due to the inherent simplicity and elegance of the proposed method, the results describe an attractive technique to manufacture semiconductor quantum ...

  9. Injection of a single electron from static to moving quantum dots.

    Science.gov (United States)

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan

    2016-05-27

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

  10. Transport in quantum spin Hall edges in contact to a quantum dot

    Science.gov (United States)

    Rizzo, Bruno; Camjayi, Alberto; Arrachea, Liliana

    2016-09-01

    We study the transport mechanisms taking place in a quantum spin Hall bar with an embedded quantum dot, where electrons localize and experience Coulomb interaction U as well as spin-flip processes λ . We solve the problem with nonequilibrium Green functions. We focus on the linear-response regime and treat the many-body interactions with quantum Monte Carlo. The effects of U and λ are competitive and the induced transport takes place through different channels. The two mechanisms can be switched by changing the occupation of the dot with a gate voltage.

  11. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  12. Influences of a Side-Coupled Triple Quantum Dot on Kondo Transport Through a Quantum Dot

    International Nuclear Information System (INIS)

    Jiang Zhaotan; Yang Yannan; Qin Zhijie

    2010-01-01

    Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in the side-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.

  13. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    Science.gov (United States)

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  14. Visualisation of sentinel lymph node with indium-based near infrared emitting Quantum Dots in a murine metastatic breast cancer model.

    Directory of Open Access Journals (Sweden)

    Marion Helle

    Full Text Available Due to its non-invasiveness, high temporal resolution and lower cost, fluorescence imaging is an interesting alternative to the current method (blue dye and radiocolloid of sentinel lymph node (SLN mapping in breast cancer. Near-infrared (NIR emitting cadmium-based Quantum Dots (QDs could be used for this purpose; however, their wide application is limited because of the toxicity of heavy metals composing the core. Our recent work demonstrated that indium-based QDs exhibit a weak acute local toxicity in vivo compared to their cadmium-based counterparts. In the present study we confirmed the weak toxicity of CuInS(2/ZnS QDs in different in vitro models. Further in vivo studies in healthy mice showed that In-based QDs could be visualised in SLN in a few minutes after administration with a progressive increase in fluorescence until 8 h. The quantity of indium was assessed in selected organs and tissues by inductively coupled plasma - mass spectroscopy (ICP-MS as a function of post-injection time. QD levels decrease rapidly at the injection point in the first hours after administration with a parallel increase in the lymph nodes and to a lesser extent in the liver and spleen. In addition, we observed that 3.5% of the injected indium dose was excreted in faeces in the first 4 days, with only trace quantities in the urine. Metastatic spread to the lymph nodes may hamper its visualisation. Therefore, we further performed non-invasive fluorescence measurement of QDs in SLN in tumour-bearing mice. Metastatic status was assessed by immunohistology and molecular techniques and revealed the utmost metastatic invasion of 36% of SLN. Fluorescence signal was the same irrespective of SLN status. Thus, near-infrared emitting cadmium-free QDs could be an excellent SLN tracer.

  15. Visualisation of sentinel lymph node with indium-based near infrared emitting Quantum Dots in a murine metastatic breast cancer model.

    Science.gov (United States)

    Helle, Marion; Cassette, Elsa; Bezdetnaya, Lina; Pons, Thomas; Leroux, Agnès; Plénat, François; Guillemin, François; Dubertret, Benoît; Marchal, Frédéric

    2012-01-01

    Due to its non-invasiveness, high temporal resolution and lower cost, fluorescence imaging is an interesting alternative to the current method (blue dye and radiocolloid) of sentinel lymph node (SLN) mapping in breast cancer. Near-infrared (NIR) emitting cadmium-based Quantum Dots (QDs) could be used for this purpose; however, their wide application is limited because of the toxicity of heavy metals composing the core. Our recent work demonstrated that indium-based QDs exhibit a weak acute local toxicity in vivo compared to their cadmium-based counterparts. In the present study we confirmed the weak toxicity of CuInS(2)/ZnS QDs in different in vitro models. Further in vivo studies in healthy mice showed that In-based QDs could be visualised in SLN in a few minutes after administration with a progressive increase in fluorescence until 8 h. The quantity of indium was assessed in selected organs and tissues by inductively coupled plasma - mass spectroscopy (ICP-MS) as a function of post-injection time. QD levels decrease rapidly at the injection point in the first hours after administration with a parallel increase in the lymph nodes and to a lesser extent in the liver and spleen. In addition, we observed that 3.5% of the injected indium dose was excreted in faeces in the first 4 days, with only trace quantities in the urine. Metastatic spread to the lymph nodes may hamper its visualisation. Therefore, we further performed non-invasive fluorescence measurement of QDs in SLN in tumour-bearing mice. Metastatic status was assessed by immunohistology and molecular techniques and revealed the utmost metastatic invasion of 36% of SLN. Fluorescence signal was the same irrespective of SLN status. Thus, near-infrared emitting cadmium-free QDs could be an excellent SLN tracer.

  16. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2017-04-01

    Full Text Available Emilia Galdiero,1 Annarita Falanga,2 Antonietta Siciliano,1 Valeria Maselli,1 Marco Guida,1 Rosa Carotenuto,1 Margherita Tussellino,1 Lucia Lombardi,3 Giovanna Benvenuto,4 Stefania Galdiero2 1Department of Biology, 2Department of Pharmacy and CiRPEB, University of Naples Federico II, 3Department of Experimental Medicine, Second University of Naples, 4Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Abstract: The use of quantum dots (QDs for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies. Keywords: membranotropic peptide, delivery, blood–brain barrier, nanoparticles, genotoxicity

  17. Solar light driven enhanced photocatalytic degradation of brilliant green dye based on ZnS quantum dots

    Science.gov (United States)

    Kaur, Sharanjit; Sharma, Shelja; Umar, Ahmad; Singh, Surinder; Mehta, S. K.; Kansal, Sushil Kumar

    2017-03-01

    Herein, we report the successful synthesis, detailed characterization and solar-light driven photocatalytic degradation of zinc sulfide (ZnS) quantum dots. The ZnS quantum dots were synthesized in high yield by co-precipitation method using sodium dodecyl sulfate as a stabilizing agent. The as-synthesized ZnS quantum dots were characterized in detail in terms of their morphological, structural, compositional, thermal and optical properties. The detailed characterizations confirmed that the synthesized quantum dots are well-crystalline, possessing cubic phase of zinc blende structure, pure and exhibiting good optical properties. The synthesized quantum dots were further used as potential photocatalyst for the photocatalytic degradation of brilliant green dye under solar-light irradiation which exhibited 88% degradation. The process parameters, such as pH and catalyst dose, for the photocatalytic degradation of brilliant green dye was elaborately examined in order to evaluate the highest degradation rate of targeted dye. Further, the experimental data were fitted well in the pseudo-first order kinetic model. Finally, a possible mechanism for the photocatalytic degradation of brilliant green dye by ZnS quantum dots was also suggested.

  18. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  19. Tandem luminescent solar concentrators based on engineered quantum dots

    Science.gov (United States)

    Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.

    2018-02-01

    Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

  20. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)