WorldWideScience

Sample records for modelling fluid mechanics

  1. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  2. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  3. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  4. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  5. A fluid mechanical model for current-generating-feeding jellyfish

    Science.gov (United States)

    Peng, Jifeng; Dabiri, John

    2008-11-01

    Many jellyfish species, e.g. moon jellyfish Aurelia aurita, use body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. In this study, a model was developed to understand the fluid mechanics for this current-generating-feeding mode of jellyfish. The flow generated by free-swimming Aurelia aurita was measured using digital particle image velocimetry. The dynamics of prey (e.g., brine shrimp Artemia) in the flow field were described by a modified Maxey-Riley equation which takes into consideration the inertia of prey and the escape forces, which prey exert in the presence of predator. A Lagrangian analysis was used to identify the region of the flow in which prey can be captured by the jellyfish and the clearance rate was quantified. The study provides a new methodology to study biological current-generating-feeding and the transport and mixing of particles in fluid flow in general.

  6. Fluid coupling in a discrete model of cochlear mechanics.

    Science.gov (United States)

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea.

  7. Modeling Chemical Mechanical Polishing with Couple Stress Fluids

    Institute of Scientific and Technical Information of China (English)

    张朝辉; 雒建斌; 温诗铸

    2004-01-01

    Chemical mechanical polishing (CMP) is a manufacturing process used to achieve high levels of global and local planarity.Currently, the slurries used in CMP usually contain nanoscale particles to accelerate the removal ratio and to optimize the planarity, whose rheological properties can no longer be accurately modeled with Newtonian fluids.The Reynolds equation, including the couple stress effects, was derived in this paper.The equation describes the mechanism to solve the CMP lubrication equation with the couple stress effects.The effects on load and moments resulting from the various parameters, such as pivot height, roll angle, and pitch angle, were subsequently simulated.The results show that the couple stress can provide higher load and angular moments.This study sheds some lights into the mechanism of the CMP process.

  8. Links between fluid mechanics and quantum mechanics: a model for information in economics?

    Science.gov (United States)

    Haven, Emmanuel

    2016-05-28

    This paper tallies the links between fluid mechanics and quantum mechanics, and attempts to show whether those links can aid in beginning to build a formal template which is usable in economics models where time is (a)symmetric and memory is absent or present. An objective of this paper is to contemplate whether those formalisms can allow us to model information in economics in a novel way.

  9. A fluid-mechanical model of elastocapillary coalescence

    KAUST Repository

    Singh, Kiran

    2014-03-25

    © 2014 Cambridge University Press. We present a fluid-mechanical model of the coalescence of a number of elastic objects due to surface tension. We consider an array of spring-block elements separated by thin liquid films, whose dynamics are modelled using lubrication theory. With this simplified model of elastocapillary coalescence, we present the results of numerical simulations for a large number of elements, N = O(104). A linear stability analysis shows that pairwise coalescence is always the most unstable mode of deformation. However, the numerical simulations show that the cluster sizes actually produced by coalescence from a small white-noise perturbation have a distribution that depends on the relative strength of surface tension and elasticity, as measured by an elastocapillary number K. Both the maximum cluster size and the mean cluster size scale like K-1/2 for small K. An analytical solution for the response of the system to a localized perturbation shows that such perturbations generate propagating disturbance fronts, which leave behind \\'frozen-in\\' clusters of a predictable size that also depends on K. A good quantitative comparison between the cluster-size statistics from noisy perturbations and this \\'frozen-in\\' cluster size suggests that propagating fronts may play a crucial role in the dynamics of coalescence.

  10. A fluid-mechanical model of elastocapillary coalescence

    CERN Document Server

    Singh, Kiran; Vella, Dominic

    2013-01-01

    We present a fluid-mechanical model of the coalescence of a number of elastic objects due to surface tension. We consider an array of spring-block elements separated by thin liquid films, whose dynamics are modelled using lubrication theory. With this simplified model of elastocapillary coalescence, we present the results of numerical simulations for a large number of elements, $N=O(10^4)$. A linear stability analysis shows that pairwise coalescence is always the most unstable mode of deformation. However, the numerical simulations show that the cluster sizes actually produced by coalescence from a small white-noise perturbation have a distribution that depends on the relative strength of surface tension and elasticity, as measured by an elastocapillary number $K$. Both the maximum cluster size and the mean cluster size scale like $K^{-1/2}$ for small $K$. An analytical solution for the response of the system to a localized perturbation shows that such perturbations generate propagating disturbance fronts, wh...

  11. A mathematical model of post-instability in fluid mechanics

    Science.gov (United States)

    Zak, M. A.

    1982-01-01

    Postinstability of fluids is eliminated in numerical models by introducing multivalued velocity fields after discarding the principle of impenetrability. Smooth functions are shown to be incapable of keeping the derivatives from going towards infinity when iterating solutions for the governing equations such as those defined by Navier-Stokes. Enlarging the class of functions is shown to be necessary to eliminate the appearance of imaginary characteristic roots in the systems of arbitrary partial differential equations, a condition which leads to physically impossible motions. The enlarging is demonstrated to be achievable by allowing several individual particles with different velocities to appear at the same point of space, and the subsequent multivaluedness of the solutions is purely a mathematical concern, rather than one of actual physical existence. Applications are provided for an inviscid fluid and for turbulence.

  12. Experiments and Modeling of G-Jitter Fluid Mechanics

    Science.gov (United States)

    Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)

    2002-01-01

    While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.

  13. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  15. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  16. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  17. Thermal Fluid-Solid Interaction Model and Experimental Validation for Hydrostatic Mechanical Face Seals

    Institute of Scientific and Technical Information of China (English)

    HUANG Weifeng; LIAO Chuanjun; LIU Xiangfeng; SUO Shuangfu; LIU Ying; WANG Yuming

    2014-01-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  18. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T

    2010-01-01

    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  19. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  20. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms.

    Science.gov (United States)

    Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y

    2014-11-15

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport.

  2. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  3. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  4. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  5. Does amniotic fluid volume affect fetofetal transfusion in monochorionic twin pregnancies? Modelling two possible mechanisms

    Science.gov (United States)

    Umur, Asli; van Gemert, Martin J. C.; Ross, Michael G.

    2002-06-01

    Clinical evidence suggests that increased amniotic fluid volume due to polyhydramnios increases placental vascular resistance. We have sought to model the possible effects of an increased amniotic fluid volume on the net fetofetal transfusion in monochorionic twin pregnancies. We wanted to compare these effects with the results of previous simulations, which aimed to explain why the twin-twin transfusion syndrome (TTTS) placentas more often include bidirectional arteriovenous (AV) rather than AV plus arterioarterial (AA) anastomoses. We extended our mathematical model of TTTS by simulating two different mechanisms that increase the placental vascular resistance as a consequence of polyhydramnios. First, there is an increase in the placental capillary resistance and hence in deep AV and opposite AV (denoted as VA) resistances due to polyhydramnios. Second, there is an increase in the resistance of chorionic veins due to polyhydramnios, assuming that these veins act as Starling resistors. We then simulated the effects of polyhydramnios on different placental anastomotic patterns. The results were as follows. In the first mechanism (polyhydramnios affects AV-VA resistances), an increased amniotic fluid volume hardly affected bidirectional AV, but slightly decreased fetofetal transfusion in AV plus AA anastomoses. However, for these effects to change the natural development of the pregnancy, polyhydramnios needed to persist for approximately 4 weeks, and by comparing the effects of polyhydramnios with the effects of amnioreduction, amnioreduction was more beneficial for normalizing the donor amniotic fluid volume. Therefore, these beneficial effects due to polyhydramnios have no practical clinical significance. In the second mechanism (Starling resistor for chorionic veins), polyhydramnios slightly increased fetofetal transfusion and hence slightly increased TTTS severity in bidirectional AV and AV plus VV, but did not affect AV plus AA anastomoses. In conclusion, we

  6. Effects of walking in deep venous thrombosis: a new integrated solid and fluid mechanics model.

    Science.gov (United States)

    López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc; Garcia-Bennett, Josep

    2016-08-09

    Deep venous thrombosis (DVT) is a common disease. Large thrombi in venous vessels cause bad blood circulation and pain; and when a blood clot detaches from a vein wall, it causes an embolism whose consequences range from mild to fatal. Walking is recommended to DVT patients as a therapeutical complement. In this study the mechanical effects of walking on a specific patient of DVT were simulated by means of an unprecedented integration of 3 elements: a real geometry, a biomechanical model of body tissues, and a computational fluid dynamics study. A set of computed tomography images of a patient's leg with a thrombus in the popliteal vein was employed to reconstruct a geometry model. Then a biomechanical model was used to compute the new deformed geometry of the vein as a function of the fiber stretch level of the semimembranosus muscle. Finally, a computational fluid dynamics study was performed to compute the blood flow and the wall shear stress (WSS) at the vein and thrombus walls. Calculations showed that either a lengthening or shortening of the semimembranosus muscle led to a decrease of WSS levels up to 10%. Notwithstanding, changes in blood viscosity properties or blood flow rate may easily have a greater impact in WSS.

  7. Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development

    CERN Document Server

    Montenegro-Johnson, Thomas D; Smith, David J; Loghin, Daniel; Blake, John R

    2013-01-01

    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We ...

  8. Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model

    Science.gov (United States)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-11-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.

  9. Respiratory fluid mechanics.

    Science.gov (United States)

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  10. Modelling the fluid mechanics of cilia and flagella in reproduction and development.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R

    2012-10-01

    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

  11. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  12. Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Groenenboom P. H. L.

    2009-06-01

    Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.

  13. An oral exam model for teaching advanced "Batchelor-level" fluid mechanics in the US

    Science.gov (United States)

    Freund, Jonathan

    2016-11-01

    A teaching model is developed to meet the challenge of teaching fluid mechanics at what might be considered a high level, at least by the current norms in the US. The initial goal was to avoid loss of concepts amidst the challenge of particular mathematical manipulations on particular assignments. However, it evolved toward fostering facile working knowledge of challenging material, such as in the books by Batchelor (e.g. streaming flow), Whitham (e.g. ship waves), and van Dyke (e.g. second-order boundary layer). To this end, the course model forgoes traditional assigned problems to focus on completion, augmentation, and in-depth understanding of the lecture material. The lectures are relatively traditional in structure, albeit with somewhat more interactive examples. The main unusual feature-again, by modern US standards-was assessment via multiple half-hour oral exams. This model has now been successful over 8 semesters for 3 different graduate courses in 2 departments. For all, students were assume to have already completed a full course at a "Navier-Stokes level". The presentation will include specifics of the course and exam structure, impressions of positive outcomes from the instructor, and a summary of the overwhelmingly positive student feedback.

  14. Finite element computational fluid mechanics

    Science.gov (United States)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  15. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  16. Galilean relativistic fluid mechanics

    OpenAIRE

    Ván, Péter

    2015-01-01

    Single component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third order mass-momentum-energy ...

  17. Galilean relativistic fluid mechanics

    Science.gov (United States)

    Ván, P.

    2017-01-01

    Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.

  18. Fluid Mechanics Can Be Fun.

    Science.gov (United States)

    Blanks, Robert F.

    1979-01-01

    A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)

  19. Fluid Mechanics Can Be Fun.

    Science.gov (United States)

    Blanks, Robert F.

    1979-01-01

    A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)

  20. Respiratory Fluid Mechanics

    Science.gov (United States)

    Grotberg, James

    2005-11-01

    This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.

  1. PREFACE: XXI Fluid Mechanics Conference

    Science.gov (United States)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68

  2. Applied fluid mechanics; Mecanique des fluides appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, P.L.; Chabard, J.P.; Esposito, P.; Laurence, D. [Ecole Nationale des Ponts et Chaussees (ENPC), 75 - Paris (France)]|[Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    2002-07-01

    Computational hydraulics, computational fluid dynamics, and hydro-informatics have invaded virtually all domains of research and application in hydro-science and fluids engineering. To the extent that this invasion has led to improved understanding of complex fluid phenomena and provided a frame of reference for testing and verifying designs and operational schemes, we have all benefited from it. But to the extent that it has shifted attention away from fundamental descriptions and understanding of fluid phenomena, and toward computational and numerical issues, this invasion has left avoid in the scientific and technical literature. This void exists somewhere between student exposure to first principles of solid and fluid mechanics on the one hand, and advanced-student and researcher/practitioner exposure to computational techniques and applications on the other. This new text naturally and refreshingly steps in to fill this void, and as such is a most welcome addition to the literature and to personal and institutional libraries. The text is refreshing in its innovative and careful attention to setting the historical framework of general and specific topics. This is most notable in the first chapter, which very gracefully and efficiently leads the reader through historical developments to contemporary mathematical statements of basic fluid phenomena. Once the authors have established this foundation of fundamental principles, they tie each succeeding chapter back into the introduction with appropriate and supportive historical contexts. Although the text does not shy away from rigorous analytical descriptions of fluid phenomena, it is unique in providing this delightful historical context for each topic. The authors have also made a special effort to tie the chapters together into a unified whole, with ample references forward and back; this is indeed rare, and much appreciated, in a text of multiple authorship. The topics treated and chapter structures reflect

  3. CIME school Topics in Mathematical Fluid Mechanics

    CERN Document Server

    Constantin, Peter; Galdi, Giovanni P; Růžička, Michael; Seregin, Gregory

    2013-01-01

    This volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity.

  4. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.

    Science.gov (United States)

    Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin

    2010-03-01

    Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.

  5. Computational fluid mechanics

    Science.gov (United States)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  6. Bioengineering fluid mechanics

    CERN Document Server

    Hung, Tin-kan

    2013-01-01

    This book highlights the basic concepts and equations for bioengineering flow processes. Physical concepts and meanings are emphasized while rigorous derivations are simplified, making it easier for self learning on some biological and medical flow processes. The well known Bernoulli equation in hydraulics is extended for pulsating flows, peristaltic flows and cardiac pumping. The dimensional analysis, model law and dimensionless equations can be related to computational models and experimental observations. The velocity vector imaging stored in echocardiograms can be used to analyze the pumping characteristics of the ventricular contraction. New topics included oxygen transport in membrane oxygenator and micro mixing of blood flow in capillary channels.

  7. A fluid mechanical model for mixing in a plankton predator-prey system

    Science.gov (United States)

    Peng, J.; Dabiri, J. O.

    2009-04-01

    A Lagrangian method is developed to study mixing of small particles in open flows. Particle Lagrangian Coherent Structures (pLCS) are identified as transport barriers in the dynamical systems of particles. We apply this method to a planktonic predator-prey system in which moon jellyfish Aurelia aurita uses its body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. With the flow generated by the jellyfish experimentally measured and the dynamics of prey particles in the flow described by a modified Maxey-Riley equation, we use pLCS to identify the capture region in which prey can be captured. The properties of the capture region enable analysis of the effects of several physiological and mechanical parameters on the predator-prey interaction, such as prey size, escape force, predator perception, etc. The method provides a new methodology to study dynamics and mixing of small organisms in general.

  8. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  9. Fluid Mechanics in Sommerfeld's School

    Science.gov (United States)

    Eckert, Michael

    2015-01-01

    Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.

  10. Analogy between fluid cavitation and fracture mechanics

    Science.gov (United States)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  11. Reduced combustion mechanism for C1-C4 hydrocarbons and its application in computational fluid dynamics flare modeling.

    Science.gov (United States)

    Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang

    2017-05-01

    Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO2) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C4 hydrocarbons and soot precursor species (C2H2, C2H4, C6H6). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C1-C4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.

  12. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    Science.gov (United States)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  13. Mechanics of coupled granular/fluid flows

    Science.gov (United States)

    Vinningland, J.; Toussaint, R.; Johnsen, O.; Flekkoy, E. G.; Maloy, K. J.

    2006-12-01

    We introduce a hybrid numerical model for coupled flow of solid grains and intersticial fluid, which renders for complex hydrodynamic interactions between mobile grains. This model treats the solid phase as discrete particles, interacting mechanically with the other particles and with the intersticial flowing fluid. The fluid is described by continuum equations rendering for its advection by the local grains, superposed to a pressure diffusion ruled by a Darcy flow with a permeability depending on the local solid fraction. This model is aimed at describing accurately such coupled flow. This model is tested for two model situations, where it is compared to experimental results: 1/ Injection of a localized overpressure in a grain/fluid filled cell lying horizontally, where gravity is unimportant. 2/ Sedimentation of heavy grains falling into an initially grain-free fluid region. The development of pattern-forming instabilities is obtained in these two situations, corresponding to granular/fluid equivalents of the two-fluids Saffman-Taylor and Rayleigh-Taylor instabilities. Numerical and experimental results are shown to be consistent with each other.

  14. Fluid Mechanics of Blood Clot Formation.

    Science.gov (United States)

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  15. Numerical modeling of the source mechanism for microseismic events induced during fluid injection

    Science.gov (United States)

    Zhao, X.; Reyes-Montes, J.; Young, R.

    2013-12-01

    Passive microseismic (MS) monitoring is now common practice for imaging and real-time feedback of geological reservoir stimulation operations in a number of energy sectors. MS locations provide first-hand information of the fracture network geometry and propagation; however a full understanding of the fundamental processes of induced fracturing requires the use of additional information contained in the recorded waveforms. One of the current challenges is robustly solving the focal mechanism of recorded MS events from a sparse array, such as single borehole linear arrays. In this study, a synthetic rock mass model (SRM), a distinct element method, was developed to model typical source fracturing modes associated with reservoir stimulation, including shear dislocation (strike-slip and dip-slip), dilation (tensile), and explosion. The body forces directly exerted by source particles were monitored using linear sets of particle arrays simulating the sensors in field operations. The disturbance at each receiver (particle in the model) was recorded in three orthogonal directions to get 3-component waveforms. The model was validated analysing source mechanisms using a moment tensor inversion of P-wave time-domain amplitudes. The fault plane solution was also calculated from the distribution of P-wave first-break polarities. The moment tensor was then decomposed into eigenvalues and eigenvectors representing the principal axes (pressure, null and tension) of the source. Percentage isotropic, double-couple and compensated linear vector dipole components were calculated, along with orientations of the fault plane solution. The inverted moment and fault plane solutions show the similar failure modes to the source motion applied to the fault plane. This shows that the modelling approach can be used to combine different basic source modes to build a database that provides a tool to directly compare modelled and field data in order to probabilistically estimate a feasible focal

  16. An introduction to the mechanics of fluids

    CERN Document Server

    Truesdell, C

    2000-01-01

    The authors have backgrounds which are ideally suited for writing this book. The late C. Truesdell is well known for his monumental treatises on continuum thermomechanics. K.R. Rajagopal has made many important contributions to the mechanics of continua in general, and to nonlinear fluids in particular. They have produced a compact, moderately general book which encompasses many fluid models of current interest…The book is written very clearly and contains a large number of exercises and their solutions. The level of mathematics is that commonly taught to undergraduates in mathematics departments. This is an excellent book which is highly recommended to students and researchers in fluid mechanics. —Mathematical Reviews The writing style is quintessential Truesdellania: purely mathematical, breathtaking, irrepressible, irreverent, uncompromising, taking no prisoners...The book is filled with historical nuggets…Its pure, exact mathematics will baptize, enlighten and exhilarate. —Applied Mechanics Review...

  17. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    Science.gov (United States)

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Fluid and electrolyte homeostasis in space - A primate model to look at mechanisms

    Science.gov (United States)

    Moore-Ede, M. C.; Churchill, S. E.; Leach, C. S.; Sulzman, F. M.; Fuller, C. A.; Kass, D.

    1982-01-01

    To elucidate the physiological mechanisms involved in the cardiovascular and renal responses to spaceflight, a ground-based primate model has been developed which uses lower body positive pressure (LBPP) to simulate the chronic central vascular expansion associated with weightlessnes. Four male squirrel monkeys with chronically implanted arterial and venous catheters and the capacity for continuous urine collection were subjected to LBPP for 4 days. Onset of LBPP resulted in an immediate diuresis, natriuresis and kaliuresis and a significant fall in plasma aldosterone and potassium levels. By day 2 the level of natriuresis had decreased by half, while potassium excretion and plasma aldosterone values had returned to control levels despite the persistence of a significantly reduced plasma potassium concentration. It is concluded that the low plasma potassium level appears not to stimulate a compensatory fall in plasma aldosterone because of the simultaneous presence of body volume contraction acting to raise aldosterone levels.

  19. Selected topics of fluid mechanics

    Science.gov (United States)

    Kindsvater, Carl E.

    1958-01-01

    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as

  20. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  1. Fundamental fluid mechanics and magnetohydrodynamics

    CERN Document Server

    Hosking, Roger J

    2016-01-01

    This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.

  2. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  3. Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.

    Science.gov (United States)

    Pedrizzetti, Gianni; Domenichini, Federico

    2015-01-01

    The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.

  4. Falsification of dark energy by fluid mechanics

    OpenAIRE

    Carl H. Gibson

    2012-01-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gr...

  5. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  6. Falsification of dark energy by fluid mechanics

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies ...

  7. Statistical mechanical theory of fluid mixtures

    Science.gov (United States)

    Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei

    2014-01-01

    A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.

  8. CEE3500 - Fluid Mechanics, Spring 2006

    OpenAIRE

    Urroz, Gilberto E.

    2006-01-01

    Explores fluid properties, hydrostatics, fluid dynamics, similitude, energy and momentum principles, closed conduit flow, open channel flow, and flow measurement. Includes laboratory exercises in flow measurement, open channel flow, pipe friction, physical modeling, and data collection.

  9. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.

    Science.gov (United States)

    Mithraratne, K; Ho, H; Hunter, P J; Fernandez, J W

    2012-10-01

    A coupled computational model of the foot consisting of a three-dimensional soft tissue continuum and a one-dimensional (1D) transient blood flow network is presented in this article. The primary aim of the model is to investigate the blood flow in major arteries of the pathologic foot where the soft tissue stiffening occurs. It has been reported in the literature that there could be up to about five-fold increase in the mechanical stiffness of the plantar soft tissues in pathologic (e.g. diabetic) feet compared with healthy ones. The increased stiffness results in higher tissue hydrostatic pressure within the plantar area of the foot when loaded. The hydrostatic pressure acts on the external surface of blood vessels and tend to reduce the flow cross-section area and hence the blood supply. The soft tissue continuum model of the foot was modelled as a tricubic Hermite finite element mesh representing all the muscles, skin and fat of the foot and treated as incompressible with transversely isotropic properties. The details of the mechanical model of soft tissue are presented in the companion paper, Part 1. The deformed state of the soft tissue continuum because of the applied ground reaction force at three foot positions (heel-strike, midstance and toe-off) was obtained by solving the Cauchy equations based on the theory of finite elasticity using the Galerkin finite element method. The geometry of the main arterial network in the foot was represented using a 1D Hermite cubic finite element mesh. The flow model consists of 1D Navier-Stokes equations and a nonlinear constitutive equation to describe vessel radius-transmural pressure relation. The latter was defined as the difference between the fluid and soft tissue hydrostatic pressure. Transient flow governing equations were numerically solved using the two-step Lax-Wendroff finite difference method. The geometry of both the soft tissue continuum and arterial network is anatomically-based and was developed using

  10. Applied Fluid Mechanics. Lecture Notes.

    Science.gov (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  11. Applied Fluid Mechanics. Lecture Notes.

    Science.gov (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  12. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  13. Complex fluids modeling and algorithms

    CERN Document Server

    Saramito, Pierre

    2016-01-01

    This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.

  14. Fluid mechanics in the perivascular space.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-04-07

    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS.

  15. Gray's paradox: A fluid mechanical perspective

    Science.gov (United States)

    Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patel, Namrata; Patankar, Neelesh A.

    2014-01-01

    Nearly eighty years ago, Gray reported that the drag power experienced by a dolphin was larger than the estimated muscle power – this is termed as Gray's paradox. We provide a fluid mechanical perspective of this paradox. The viewpoint that swimmers necessarily spend muscle energy to overcome drag in the direction of swimming needs revision. For example, in undulatory swimming most of the muscle energy is directly expended to generate lateral undulations of the body, and the drag power is balanced not by the muscle power but by the thrust power. Depending on drag model utilized, the drag power may be greater than muscle power without being paradoxical. PMID:25082341

  16. Magnetoviscous model fluids

    CERN Document Server

    Kröger, M; Hess, S

    2003-01-01

    We review, apply and compare diverse approaches to the theoretical understanding of the dynamical and rheological behaviour of ferrofluids and magnetorheological (MR) fluids subject to external magnetic and flow fields. Simple models are introduced which are directly solvable by nonequilibrium Brownian or molecular dynamics computer simulation. In particular, the numerical results for ferrofluids quantify the domain of validity of uniaxial alignment of magnetic moments (in and) out of equilibrium. A Fokker-Planck equation for the dynamics of the magnetic moments - corresponding to the Brownian dynamics approach - and its implications are analysed under this approximation. The basic approach considers the effect of external fields on the dynamics of ellipsoid shaped permanent ferromagnetic domains (aggregates), whose size should depend on the strength of flow and magnetic field, the magnetic interaction parameter and concentration (or packing fraction). Results from analytic calculations and from simulation ar...

  17. Application of the principle of similarity fluid mechanics

    Science.gov (United States)

    Hendricks, R. C.; Sengers, J. V.

    1979-01-01

    Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle.

  18. Fluid Mechanics of Spinning Rockets.

    Science.gov (United States)

    1987-01-01

    internal energy dissipation is present. A classic case was the instability exhibited by the first American earth satellite, the Explorer I, which...measure the pressure fluctuations. Water was used as the working fluid. This is acceptable in these simulations, since compressibility is not a...nozzle are responsible for the the apparition of the instability late in the motor bum. In conclusion, it has been shown that an unsteady internal gas

  19. Fluid Mechanics An Introduction to the Theory of Fluid Flows

    CERN Document Server

    Durst, Franz

    2008-01-01

    Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.

  20. A Course in Fluid Mechanics of Suspensions.

    Science.gov (United States)

    Davis, Robert H.

    1989-01-01

    Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)

  1. A Course in Fluid Mechanics of Suspensions.

    Science.gov (United States)

    Davis, Robert H.

    1989-01-01

    Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)

  2. Mechanics of couple-stress fluid coatings

    Science.gov (United States)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  3. On the fluid mechanics of fires

    Energy Technology Data Exchange (ETDEWEB)

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  4. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    Science.gov (United States)

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering.

  5. Conformal higher-order viscoelastic fluid mechanics

    CERN Document Server

    Fukuma, Masafumi

    2012-01-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  6. Conformal higher-order viscoelastic fluid mechanics

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2012-06-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  7. Isogeometric shape optimization in fluid mechanics

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens

    2013-01-01

    , the steady-state, incompressible Navier-Stokes equations, governing a laminar flow in the domain, must be solved. Based on isogeometric analysis, we use B-splines as the basis for both the design optimization and the flow analysis, thereby unifying the models for geometry and analysis, and, at the same time......The subject of this work is numerical shape optimization in fluid mechanics, based on isogeometric analysis. The generic goal is to design the shape of a 2-dimensional flow domain to minimize some prescribed objective while satisfying given geometric constraints. As part of the design problem......, facilitating a compact representation of complex geometries and smooth approximations of the flow fields. To drive the shape optimization, we use a gradient-based approach, and to avoid inappropriate parametrizations during optimization, we regularize the optimization problem by adding to the objective...

  8. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  9. Indicators of Student Engagement in Fluid Mechanics

    Science.gov (United States)

    Hertzberg, Jean; Goodman, Katherine

    2015-11-01

    Many engineering programs require a fluids course. Standards such as ABET ensure that it is technically accurate. To keep students engaged, however, we need to ask: does this course present our discipline in its most salient and meaningful form? As part of an ongoing investigation of a technical elective called Flow Visualization, we compare student surveys from both Flow Vis and a required Fluid Mechanics course. Surveys going back to 2008-2012 found that Fluid Mechanics students in Mechanical Engineering at the University of Colorado Boulder tended to have a negative shift in affect. That is, they were less likely to believe studying fluids was important to them as engineers and to society in general by the end of the course. More recent surveys find that this has become neutral among our students: from the beginning to the end of the course, they do not report any change in the importance of fluids. The recent survey also reveals that they are now noticing fluids in everyday life significantly more often. This expanded perception is a hallmark of the Deweyan transformative experience, a framework to evaluate the motivational and affective aspects of a course. Suggestions of why these changes have taken place are drawn from open-response survey items and student interviews. This material is based upon work supported by the National Science Foundation under Grant No. EC-1240294.

  10. Diffuse-Interface Methods in Fluid Mechanics

    Science.gov (United States)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  11. Fluid mechanics aspects of magnetic drug targeting.

    Science.gov (United States)

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  12. Fiber bundle model under fluid pressure

    Science.gov (United States)

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.

  13. Hybrid models for complex fluids

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...

  14. Introductory fluid mechanics for physicists and mathematicians

    CERN Document Server

    Pert, Geoffrey J

    2013-01-01

    This textbook presents essential methodology for physicists of the theory and applications of fluid mechanics within a single volume.  Building steadily through a syllabus, it will be relevant to almost all undergraduate physics degrees which include an option on hydrodynamics, or a course in which hydrodynamics figures prominently.

  15. Topological fluid mechanics of Axisymmetric Flow

    DEFF Research Database (Denmark)

    Brøns, Morten

    1998-01-01

    to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...

  16. Isogeometric shape optimization in fluid mechanics

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens

    2013-01-01

    The subject of this work is numerical shape optimization in fluid mechanics, based on isogeometric analysis. The generic goal is to design the shape of a 2-dimensional flow domain to minimize some prescribed objective while satisfying given geometric constraints. As part of the design problem...

  17. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  18. Modelling Cochlear Mechanics

    Directory of Open Access Journals (Sweden)

    Guangjian Ni

    2014-01-01

    Full Text Available The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM. Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.

  19. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    Science.gov (United States)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  20. Entropic Lattice Boltzmann Methods for Fluid Mechanics

    Science.gov (United States)

    Chikatamarla, Shyam; Boesch, Fabian; Sichau, David; Karlin, Ilya

    2013-11-01

    With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Our major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. We review here recent advances in ELBM as a practical, modeling-free tool for simulation of turbulent flows in complex geometries. We shall present recent simulations including turbulent channel flow, flow past a circular cylinder, knotted vortex tubes, and flow past a surface mounted cube. ELBM listed all admissible lattices supporting a discrete entropy function and has classified them in hierarchically increasing order of accuracy. Applications of these higher-order lattices to simulations of turbulence and thermal flows shall also be presented. This work was supported CSCS grant s437.

  1. Collective fluid mechanics of honeybee nest ventilation

    Science.gov (United States)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  2. Falsification of Dark Energy by Fluid Mechanics

    Science.gov (United States)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  3. Shearfree Spherically Symmetric Fluid Models

    CERN Document Server

    Sharif, M

    2013-01-01

    We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.

  4. New Directions in Mathematical Fluid Mechanics

    CERN Document Server

    Fursikov, Andrei V

    2010-01-01

    The scientific interests of Professor A.V. Kazhikhov were fundamentally devoted to Mathematical Fluid Mechanics, where he achieved outstanding results that had, and still have, a significant influence on this field. This volume, dedicated to the memory of A.V. Kazhikhov, presents the latest contributions from renowned world specialists in a number of new important directions of Mathematical Physics, mostly of Mathematical Fluid Mechanics, and, more generally, in the field of nonlinear partial differential equations. These results are mostly related to boundary value problems and to control problems for the Navier-Stokes equations, and for equations of heat convection. Other important topics include non-equilibrium processes, Poisson-Boltzmann equations, dynamics of elastic body, and related problems of function theory and nonlinear analysis.

  5. Topology optimization of fluid mechanics problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan

    While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization...... with respect to minimizing the energy loss, characteristic properties of the velocity field or mixing properties. To reduce the computational complexity of the topology optimization problems the primary focus is put on the Stokes equation in 2D and in 3D. However, the the talk also contains examples with the 2......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...

  6. Attracting Students to Fluid Mechanics with Coffee

    Science.gov (United States)

    Ristenpart, William

    2016-11-01

    We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.

  7. Joseph Boussinesq's legacy in fluid mechanics

    Science.gov (United States)

    Darrigol, Olivier

    2017-07-01

    Joseph Boussinesq was the most prolific of all French contributors to nineteenth-century fluid mechanics. His scientific production included a novel theory of solitary waves, the KdV equation for finite deformations of the water surface in an open channel, a systematic study of open channel and pipe flow based on the concept of effective viscosity, pioneering derivations of boundary layers and entrance effects, new exact solutions of the Navier-Stokes equation under geometrically simple boundary conditions, and the 'Boussinesq approximation' for heat convection in a moving fluid under gravity. Although his extraordinary skills were quickly recognized and rewarded, other experts in the field were often unaware even of his most important results and they ended up rediscovering some of them. Boussinesq's unusual background and the resulting peculiarities of his style explain this problematic diffusion. They also account for the richness of his legacy.

  8. Grain-scale numerical modeling of granular mechanics and fluid dynamics and application in a glacial context

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    rheology, which limit our ability to predict ice sheet dynamics in a changing climate. In this talk I will present the soft-body Discrete Element Method which is a Lagrangian method I use in order to simulate the unique and diverse nature of granular dynamics in the subglacial environment. However......, the method imposes intense computational requirements on the computational time step. The majority of steps in the granular dynamics algorithm are massively parallel, which makes the DEM an obvious candidate for exploiting the capabilities of modern GPUs. The granular computations are coupled to a fluid...

  9. Recent developments of mathematical fluid mechanics

    CERN Document Server

    Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao

    2016-01-01

    The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered:   1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics.   For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations.      There are 24...

  10. Fluid mechanics mechanisms in the stall process of airfoils for helicopters

    Science.gov (United States)

    Young, W. H., Jr.

    1981-01-01

    Phenomena that control the flow during the stall portion of a dynamic stall cycle are analyzed, and their effect on blade motion is outlined. Four mechanisms by which dynamic stall may be initiated are identified: (1) bursting of the separation bubble, (2) flow reversal in the turbulent boundary layer on the airfoil upper surface, (3) shock wave-boundary layer interaction behind the airfoil crest, and (4) acoustic wave propagation below the airfoil. The fluid mechanics that contribute to the identified flow phenomena are summarized, and the usefulness of a model that incorporates the required fluid mechanics mechanisms is discussed.

  11. Micro-mechanisms of residual oil mobilization by viscoelastic fluids

    Institute of Scientific and Technical Information of China (English)

    Zhang Lijuan; Yue Xiang'an; Guo Fenqiao

    2008-01-01

    Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats,oil at pore comers and oil film adhered to pore walls, were studied. According to main pore structure characteristics and the fundamental morphological features of residual oil, four displacement models for residual oil were proposed, in which pore-scale flow behavior of viscoelastic fluid was analyzed by a numerical method and micro-mechanisms for mobilization of residual oil were discussed. Calculated results indicate that the viscoelastic effect enhances micro displacement efficiency and increases swept volume. For residual oil trapped in dead ends, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil by the displacing fluid, and consequently increasing swept volume. In addition, intense viscoelastic vortex has great stress, under which residual oil becomes small oil ganglia, and finally be carried into main channels. For residual oil at pore throats, its displacement mechanisms are similar to the oil trapped in dead ends. Vortices are developed in the depths of the throats and oil ganglia become smaller. Besides, viscoelastic fluid causes higher pressure drop on oil ganglia, as a driving force, which can overcome capillary force, consequently, flow direction can be changed and the displacing fluid enter smaller throats. For oil at pore comers, viscoelastic fluid can enhance displacement efficiency as a result of greater velocity and stress near the comers. For residual oil adhered to pore wall,viscoelastic fluid can provide a greater displacing force on the interface between viscoelastic fluid and oil,thus, making it easier to exceed the minimum interfacial tension for mobilizing the oil film.

  12. Statistical mechanics and the physics of fluids

    CERN Document Server

    Tosi, Mario

    This volume collects the lecture notes of a course on statistical mechanics, held at Scuola Normale Superiore di Pisa for third-to-fifth year students in physics and chemistry. Three main themes are covered in the book. The first part gives a compact presentation of the foundations of statistical mechanics and their connections with thermodynamics. Applications to ideal gases of material particles and of excitation quanta are followed by a brief introduction to a real classical gas and to a weakly coupled classical plasma, and by a broad overview on the three states of matter.The second part is devoted to fluctuations around equilibrium and their correlations. Coverage of liquid structure and critical phenomena is followed by a discussion of irreversible processes as exemplified by diffusive motions and by the dynamics of density and heat fluctuations. Finally, the third part is an introduction to some advanced themes: supercooling and the glassy state, non-Newtonian fluids including polymers and liquid cryst...

  13. Art & Science duality in Fluid Mechanics

    Science.gov (United States)

    Chomaz, Jean-Marc

    2014-11-01

    The connections between Art & Science is analysed through examples of my research both in Fluid Mechanics and in Art & Science. Working as a member of the artist group Labofactory and collaborating with more than twenty different artists, I have been exploring for more than twenty-four years a path between art and science that mixes both scientific and artistic imaginations. Formulating questions in science is pure imagination and intuition that does not involve only the sensible side of the brain but the sensitive side, which is able to be non incremental, to understand faster and anticipate. Instead of showing scientific proof or technique, it is possible with Art & Science to directly attempt to share this sensitive side. I will show ten recent installations that involve vortex rings, tornado generators, music propagated in shallow layers, wave tanks used as silent soft drums, boundary layer on a rotating sphere to question climate change, plum ever evolving over a nuclear plan in an water tank, a bubbly fountain in microfluidic... Two installations on the thermohaline circulation staged in a stratified tank and on the generation of earthquake are part of the exhibit ``LOST IN FATHOMS'' with the artist Anaïs Tondeur from 17 October until 29 November 2014 at the GV Art gallery, London. These pieces are like writing poems using fluid mechanics and by doing so re-interrogating our scientific practice and the societal role of science. They symmetrize the relation with the public that involve not only ``outreach'' but ``inreach'' or sharing.

  14. Application of computational fluid mechanics to atmospheric pollution problems

    Science.gov (United States)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  15. CISM course on stochastic methods in fluid mechanics

    CERN Document Server

    Chibbaro, Sergio

    2013-01-01

    Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechan

  16. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  17. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  18. Fluid mechanics of artificial heart valves.

    Science.gov (United States)

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-02-01

    1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird's-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10-15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.

  19. Fluid mechanics of mathematics testing in Texas

    Science.gov (United States)

    Marder, Michael

    2010-03-01

    The performance of Texas high school students on mathematics exams is tightly connected to the level of poverty in the school. I will employ the coarse-graining techniques that lead from molecular motions to fluid mechanics in order to find how student scores evolve over time. I will show that the points of divergence between well-off and low-income kids are particularly clear when viewed as streamlines of a flow in the space of grade-level and score. The results can also be cast in the form of a Fokker-Planck equation, which highlights the separate roles of convection and diffusion. I will use the results the assess the plausibility of using charter schools, highly qualified teachers, and accountability systems as primary agents of school reform.

  20. Teaching Technical Competencies for Fluid Mechanics Research

    Science.gov (United States)

    Tagg, Randall

    2014-11-01

    We are developing an ``on demand'' framework for students to learn techniques used in fluid mechanics research. The site for this work is a university-grade laboratory situated next to Gateway High School in Aurora, Colorado. Undergraduate university students work with K-12 students on research and technical innovation projects. Both groups need customized training as their projects proceed. A modular approach allows particular competencies such as pump selection, construction of flow piping and channels, flow visualization, and specific flow measurement methods to be acquired through focused lessons. These lessons can be learned in either a stand-alone fashion or assembled into units for formal courses. A research example was a student project on diffusion of infectious material in micro-gravity in the event of an intestinal puncture wound. A curriculum example is a 9-week quarter of high-school instruction on instrumentation that uses small-scale water treatment systems as a case study.

  1. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  2. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  3. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  4. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  5. An introduction to theoretical fluid mechanics

    CERN Document Server

    Childress, Stephen

    2009-01-01

    This book gives an overview of classical topics in fluid dynamics, focusing on the kinematics and dynamics of incompressible inviscid and Newtonian viscous fluids, but also including some material on compressible flow. The topics are chosen to illustrate the mathematical methods of classical fluid dynamics. The book is intended to prepare the reader for more advanced topics of current research interest.

  6. A Study on the Fluid Mechanics Performance of Aquatics Equipment

    Directory of Open Access Journals (Sweden)

    Jiao Jian

    2015-01-01

    Based on the theoretical foundation of fluid mechanics performance, this paper carries out an analysis on mechanical characteristics of aquatic sports. First, basic features of windsurfing are studied in this paper. Performance of windsurfing changes with its parameters, requiring a lot for windsurfers. It can be known from variance analysis that the best performance of NP plate and a relatively small resistance should be the direction of sail-board design. Meanwhile, by building up a mathematical model with fuzzy comprehensive evaluation and correlation analysis, it can be also found that the fluid resistance characteristic is a key factor that influences the performance of windsurfers. Besides, this paper also takes into account external factors, including the influences of regional difference on aquatic events. Different regions with various geographical conditions have different influences on aquatic events.

  7. The Status of Fluid Mechanics in Bioengineering Curricula.

    Science.gov (United States)

    Miller, Gerald E.; Hyman, William A.

    1981-01-01

    Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…

  8. The Status of Fluid Mechanics in Bioengineering Curricula.

    Science.gov (United States)

    Miller, Gerald E.; Hyman, William A.

    1981-01-01

    Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…

  9. Multifield Problems in Solid and Fluid Mechanics

    CERN Document Server

    Helmig, Rainer; Wohlmuth, Barbara I

    2006-01-01

    Many phenomena cannot be described by concentrating on them in isolation - therefore multifield models and concepts are needed. This book summarizes the scientific results of the Collaborative Research Center on Multifield Problems in Continuum Mechanics funded by the German Research Foundation (DFG) from 1995-2006.

  10. Fluid Mechanics of Cricket and Tennis Balls

    Science.gov (United States)

    Mehta, Rabindra D.

    2009-11-01

    Aerodynamics plays a prominent role in defining the flight of a ball that is struck or thrown through the air in almost all ball sports. The main interest is in the fact that the ball can often deviate from its initial straight path, resulting in a curved, or sometimes an unpredictable, flight path. It is particularly fascinating that that not all the parameters that affect the flight of a ball are always under human influence. Lateral deflection in flight, commonly known as swing, swerve or curve, is well recognized in cricket and tennis. In tennis, the lateral deflection is produced by spinning the ball about an axis perpendicular to the line of flight, which gives rise to what is commonly known as the Magnus effect. It is now well recognized that the aerodynamics of sports balls are strongly dependent on the detailed development and behavior of the boundary layer on the ball's surface. A side force, which makes a ball curve through the air, can also be generated in the absence of the Magnus effect. In one of the cricket deliveries, the ball is released with the seam angled, which trips the laminar boundary layer into a turbulent state on that side. The turbulent boundary layer separates relatively late compared to the laminar layer on the other side, thereby creating a pressure difference and hence side force. The fluid mechanics of a cricket ball become very interesting at the higher Reynolds numbers and this will be discussed in detail. Of all the round sports balls, a tennis ball has the highest drag coefficient. This will be explained in terms of the contribution of the ``fuzz" drag and how that changes with Reynolds number and ball surface wear. It is particularly fascinating that, purely through historical accidents, small disturbances on the ball surface, such as the stitching on cricket balls and the felt cover on tennis balls are all about the right size to affect boundary layer transition and development in the Reynolds numbers of interest. The fluid

  11. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    Science.gov (United States)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  12. The fluid mechanics of the inner-ear disorder BPPV

    Science.gov (United States)

    Weidman, Michael; Squires, Todd; Stone, Howard

    2001-11-01

    The inner ear of mammals contains fluid-filled semi-circular canals with a flexible sensory membrane (called a cupula) which detects rotational acceleration. Benign Paroxysmal Positional Vertigo (BPPV) is one of the most common disorders of this system diagnosed today, and is characterized by symptoms of dizziness and nausea brought on by sudden changes in head orientation. BPPV is believed to have a mechanical (rather than nervous) origin, in which dense particles called otoconia settle into the canals and trigger false sensations of rotational acceleration. Several qualitative mechanisms have been proposed by the medical community, which we examine from a fluid mechanical standpoint. Traditionally, the semicircular canal and the cupula are modeled as an over-damped torsional pendulum with a driving force provided by rotational acceleration. We extend this model to include the time-dependent mechanical response owing to sedimentation of the otoconia. We make qualitative and quantitative predictions associated with the proposed mechanisms, with an eye towards differentiating between them and perhaps towards more effective diagnostic and therapeutic methods.

  13. Lymphatic fluid: exchange mechanisms and regulation

    Science.gov (United States)

    Huxley, Virginia H; Scallan, Joshua

    2011-01-01

    Abstract Regulation of fluid and material movement between the vascular space of microvessels penetrating functioning organs and the cells therein has been studied extensively. Unanswered questions as to the regulatory mechanisms and routes remain. Significantly less is known about the lymphatic vascular system given the difficulties in seeing, no less isolating, these vessels lying deeper in these same tissues. It has become evident that the exchange microvasculature is not simply a passive biophysical barrier separating the vascular and interstitial compartments but a dynamic, multicellular structure subject to acute regulation and chronic adaptation to stimuli including inflammation, sepsis, diabetes, injury, hypoxia and exercise. Similarly lymphatic vessels range, in their simplest form, from lymphatic endothelium attached to the interstitial matrix, to endothelia and phasic lymphatic smooth muscle that act as Starling resistors. Recent work has demonstrated that among the microvascular lymphatic elements, the collecting lymphatics have barrier properties similar to venules, and thus participate in exchange. As with venules, vasoactive agents can alter both the permeability and contractile properties thereby setting up previously unanticipated gradients in the tissue space and providing potential targets for the pharmacological prevention and/or resolution of oedema. PMID:21521763

  14. Erosion of a model geophysical fluid

    Science.gov (United States)

    Luu, Li-Hua; Philippe, Pierre; Chambon, Guillaume

    2014-05-01

    A specificity of natural flows such as debris flows, landslides or snow avalanches is that, mostly, the material forming the static bed has mechanical properties similar to those of the flowing material (mud/mud, snow/snow). To explore the bed erosion phenomenon induced by such geophysical flows, we consider the geomaterial as a continuum by performing experiments in laboratory on a model fluid that can behaves as a solid or as a liquid, depending on the conditions. Indeed, we propose an experimental study where a yield-stress fluid is implemented to model both the eroding flow and the eroded bed. Our approach is to capture the process of erosion in terms of solid-liquid transition. The studied hydrodynamics consists of a pipe-flow disturbed by the presence of an obstacle. We use a polymer micro-gel Carbopol that exhibits a Hershel-Bulkley (HB) rheology. By taking advantage of the fluid transparency, the flow is monitoring by Particle Image Velocimetry (PIV) internal visualization technique. Upstream of the obstacle, a solid-liquid-like interface between a flow zone and a dead zone appears in the fluid. In this study, we aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid (using a rheometer), with the observation of the morphological evolution of the system substratum / flow and the local measurement of related hydrodynamic parameters. Our first result shows that the flow above the dead zone behaves as a classical plug flow, whose velocity profile can successfully be described by a Hagen-Poiseuille equation including a HB rheology, but except in a thin zone (compared to the whole flow zone) at the close vicinity of the solid-liquid interface. Thanks to a high PIV measurement resolution, we then properly examine the typical feature lying at the tail of the velocity profile. The numerical derivation of the profile shows that the shear rate in this

  15. Fluid Mechanics of Liquid-Liquid Systems.

    Science.gov (United States)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  16. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    Science.gov (United States)

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity.

  17. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-03-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures.

  18. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    unites the power to solve complex engineering problems from finite element analysis (FEA) with the ability to effectively represent complex shapes from computer aided design (CAD). The methodology is appealing for flow modeling purposes also due to the inherent high regularity of velocity and pressure......This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... is given of how isogeometric analysis is applied to flow problems. We present several new discretizations of the velocity and pressure spaces, we investigate these in terms of stability and error convergence properties, and a benchmark flow problem is analyzed. As the second contribution, we show how...

  19. Gelled Complex Fluids: Combining Unique Structures with Mechanical Stability.

    Science.gov (United States)

    Stubenrauch, Cosima; Gießelmann, Frank

    2016-03-01

    Gelled complex fluids are soft materials in which the microstructure of the complex fluid is combined with the mechanical stability of a gel. To obtain a gelled complex fluid one either adds a gelator to a complex fluid or replaces the solvent in a gel by a complex fluid. The most prominent example of a "natural" gelled complex fluid is the cell. There are various strategies by which one can form a gelled complex fluid; one such strategy is orthogonal self-assembly, that is, the independent but simultaneous formation of two coexisting self-assembled structures within one system. The aim of this Review is to describe the structure and potential applications of various man-made gelled complex fluids and to clarify whether or not the respective system is formed by orthogonal self-assembly.

  20. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Science.gov (United States)

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  1. Quantitative image processing in fluid mechanics

    Science.gov (United States)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  2. Evaluation of regional work from ECG-gated SPECT images through solution of equations of continuity for fluids-mechanical cardiac work calculated using thin wall model.

    Science.gov (United States)

    Maeda, Hisatoshi

    2012-03-01

    Regional contraction work (RCW) of left ventricle (LV) was evaluated from cardiac perfusion images of ECG-gated single photon emission computed tomography (ECG-SPECT). The mechanical work was computed as a product of force and displaced distance. Force was determined from Laplace's law under a rectangle pressure. Deformation of wireframe representing LV was calculated from equations of continuity for two-dimensional fluids. Experiments were performed with homemade life-sized cardiac models. Total contraction work (TCW) and stroke work (SW) were 524.0 ± 166.1 mJ/beat and 709.8 ± 169.5 mJ/beat, respectively, in normal subjects (n = 23). Moderate correlation was seen between TCW and SW (y = -43.4 + 0.779 x, r = 0.815). The regional contraction amplitude (RCA), synchronous contraction index and RCW were 35.4 ± 3.5%, 95.4 ± 3.1% and 5.58 ± 0.97 mJ cm(-2)/beat in normal subjects, whereas those in patients with decreased ejection raction (EF) ≤ 30% (n = 6) were 19.6 ± 7.7%, 64.4 ± 32.2% and 2.58 ± 0.82 mJ cm(-2)/beat (p < 0.0001, Student's t-test). There was a poor correlation between RCW and RCA (y = 1.648 ± 0.116 x, r = 0.501) in normal subjects, suggesting that it might not be suitable to use RCA as an alternative to evaluate RCW.

  3. Geophysical Aspects of Non-Newtonian Fluid Mechanics

    Science.gov (United States)

    Balmforth, N. J.; Craster, R. V.

    Non-Newtonian fluid mechanics is a vast subject that has several journals partly, or primarily, dedicated to its investigation (Journal of Non-Newtonian Fluid Mechanics, Rheologica Acta, Journal of Fluid Mechanics, Journal of Rheology, amongst others). It is an area of active research, both for industrial fluid problems and for applications elsewhere, notably geophysically motivated issues such as the flow of lava and ice, mud slides, snow avalanches and debris flows. The main motivati on for this research activity is that, apart from some annoyingly common fluids such as air and water, virtually no fluid is actually Newtonian (that is, having a simple linear relation between stress and strain-rate characterized by a constant viscosity). Several textbooks are useful sources of information; for example, [1-3] are standard texts giving mathematical and engineering perspectives upon the subject. In these lecture notes, Ancey's chapter on rheology (Chap. 3) gives further introduction.

  4. Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid

    OpenAIRE

    Dufty, James W.

    2007-01-01

    Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant differences observed i...

  5. Yielding to stress: Recent developments in viscoplastic fluid mechanics

    OpenAIRE

    Balmforth, Neil; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize e...

  6. IMPROVEMENT OF FLUID PIPE LUMPED PARAMETER MODEL

    Institute of Scientific and Technical Information of China (English)

    Kong Xiaowu; Wei Jianhua; Qiu Minxiu; Wu Genmao

    2004-01-01

    The traditional lumped parameter model of fluid pipe is introduced and its drawbacks are pointed out.Furthermore, two suggestions are put forward to remove these drawbacks.Firstly, the structure of equivalent circuit is modified, and then the evaluation of equivalent fluid resistance is change to take the frequency-dependent friction into account.Both simulation and experiment prove that this model is precise to characterize the dynamic behaviors of fluid in pipe.

  7. The Fluid Mechanics of Cancer and Its Therapy

    Science.gov (United States)

    Koumoutsakos, Petros; Pivkin, Igor; Milde, Florian

    2013-01-01

    Fluid mechanics is involved in the growth, progression, metastasis, and therapy of cancer. Blood vessels transport oxygen and nutrients to cancerous tissues, provide a route for metastasizing cancer cells to distant organs, and deliver drugs to tumors. The irregular and leaky tumor vasculature is responsible for increased interstitial pressure in the tumor microenvironment, whereas multiscale flow-structure interaction processes control tumor growth, metastasis, and nanoparticle-mediated drug delivery. We outline these flow-mediated processes, along with related experimental and computational methods for the diagnosis, predictive modeling, and therapy of cancer.

  8. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

  9. Electrorheological fluids modeling and mathematical theory

    CERN Document Server

    Růžička, Michael

    2000-01-01

    This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.

  10. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  11. The Role of CFD in Undergraduate Fluid Mechanics Education

    Science.gov (United States)

    Cimbala, John

    2006-11-01

    Instruction of undergraduate fluid mechanics is greatly enhanced through integration of computational fluid dynamics (CFD) into fluid mechanics courses and labs. Specifically, students are able to visualize fluid flows with CFD and are better able to understand those flows by performing parametric studies. At Penn State, CFD has been carefully integrated into our introductory junior-level fluid mechanics course, yet displaces only about one class period. The key is to show demonstrations and assign homework that use CFD as a tool that helps students learn the basic concepts of fluid mechanics. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. This is done through use of short, pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice. More templates are being developed that emphasize the first objective. The flow of fluid between two concentric rotating cylinders is a good example of a problem that is solved approximately, analytically, and with CFD, and the results are compared to enhance learning.

  12. Bernoulli and Newton in Fluid Mechanics

    Science.gov (United States)

    Smith, Norman F.

    1972-01-01

    Bernoulli's theorem can be better understood with the aid of Newton's laws and the law of conservation of energy. Application of this theorem should involve only cases dealing with an interchange of velocity and pressure within a fluid under isentropic conditions. (DF)

  13. Bernoulli and Newton in Fluid Mechanics

    Science.gov (United States)

    Smith, Norman F.

    1972-01-01

    Bernoulli's theorem can be better understood with the aid of Newton's laws and the law of conservation of energy. Application of this theorem should involve only cases dealing with an interchange of velocity and pressure within a fluid under isentropic conditions. (DF)

  14. Fluid catalytic cracking : feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  15. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts.

    Science.gov (United States)

    Roos, M W; Wadbro, E; Berggren, M

    2013-02-01

    Intimal hyperplasia at the distal anastomosis is considered to be an important determinant for arterial and arteriovenous graft failure. The connection between unhealthy hemodynamics and intimal hyperplasia motivates the use of computational fluid dynamics modeling to search for improved graft design. However, studies on the fluid mechanical impact on intimal hyperplasia at the suture line intrusion have previously been scanty. In the present work, we focus on intimal hyperplasia at the suture line and illustrate potential benefits from the introduction of a fluid deflector to shield the suture line from unhealthily high wall shear stress.

  16. Modelling anisotropic fluid spheres in general relativity

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  17. Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer

    Science.gov (United States)

    Ju, Feng; Ling, Shih-Fu

    2013-05-01

    This paper presents a new technique for fluid viscosity and density sensing through measuring the mechanical impedance of the fluid load applied on a sphere. A piezoelectric whisker transducer (WT) is proposed which acts simultaneously as both the actuator to excite the sphere tip to oscillate in the fluid and the sensor to measure the force, velocity and mechanical impedance. The relationship between mechanical impedance of the fluid load and electrical impedance of the WT is derived based on a transduction matrix model which characterizes the electro-mechanical transduction process of the WT in both directions. The mechanical impedance is further related to the fluid viscosity and density using a theoretical model. The establishment of this fluid-mechanical-electrical relationship allows the WT to extract the fluid viscosity and density conveniently and accurately just from its electrical impedance. Experimental studies are carried out to calibrate the WT and test its performance using glycerol-water mixtures. It is concluded that the WT is capable of providing results comparable to those of standard viscometers within a wide measurement range due to its low working frequency and large vibration amplitude. Its unique self-actuation-and-sensing feature makes it a suitable solution for online fluid sensing.

  18. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  19. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    Science.gov (United States)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  20. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    Science.gov (United States)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  1. Development of an analytical model for organic-fluid fouling

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B.; Watkinson, A.P.

    1994-10-01

    The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

  2. Vectors, tensors and the basic equations of fluid mechanics

    CERN Document Server

    Aris, Rutherford

    1962-01-01

    Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.

  3. Mechanics of undulatory swimming in a frictional fluid

    National Research Council Canada - National Science Library

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    .... In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT...

  4. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  5. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  6. Inflation in a viscous fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Odintsov, Sergei D. [Campus UAB, Carrer de Can Magrans, Institut de Ciencies de lEspai (IEEC-CSIC), Barcelona (Spain); Passeig Lluis Companys, Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2016-01-15

    We explore a fluid description of the inflationary universe. In particular, we investigate a fluid model in which the equation of state (EoS) for a fluid includes bulk viscosity. We find that the three observables of inflationary cosmology, i.e., the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be consistent with the recent Planck results. We also reconstruct the explicit EoS for a fluid from the spectral index of the curvature perturbations compatible with the Planck analysis. In the reconstructed models of a fluid, the tensor-to-scalar ratio of the density perturbations can satisfy the constraints obtained from the Planck satellite. The running of the spectral index can explain the Planck data. In addition, it is demonstrated that in the reconstructed models of a fluid, the graceful exit from inflation can be realized. Moreover, we show that the singular inflation can occur in a fluid model. Furthermore, we show that a fluid description of inflation can be equivalent to the description of inflation in terms of scalar field theories. (orig.)

  7. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  8. Zero-G fluid mechanics in animal and man

    Science.gov (United States)

    Sandler, H.

    1986-01-01

    Significant cardiovascular change occurs with spaceflight. Loss of normal hydrostatic pressure gradients (head-to-foot), present while upright on earth, results in significant headward fluid shift of vascular and interstitial fluids. The resultant fluid change also shifts the hydrostatic indifference point for the circulation. The persistent distention of neck veins and change in upper body tissue compliance initiates steps to adapt to and compensate for the sensed excess fluid. These result in a loss of intravascular volume through neuro-humoral mechanisms and the presence of a smaller heart size, leading to a state where the subject has a reduced adaptive capacity to stress, particularly to fluid shifts to the lower body as occurs when once again returning to earth. This article reviews what is known about the weightlessness-induced headward fluid shift and its effects on cardiovascular function.

  9. Statistical mechanics of homogeneous partly pinned fluid systems.

    Science.gov (United States)

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  10. Hidden Symmetry of a Fluid Dynamical Model

    CERN Document Server

    Neves, C

    2001-01-01

    A connection between solutions of the relativistic d-brane system in (d+1) dimensions with the solutions of a Galileo invariant fluid in d-dimensions is by now well established. However, the physical nature of the light-cone gauge description of a relativistic membrane changes after the reduction to the fluid dynamical model since the gauge symmetry is lost. In this work we argue that the original gauge symmetry present in a relativistic d-brane system can be recovered after the reduction process to a d-dimensional fluid model. To this end we propose, without introducing Wess-Zumino fields, a gauge invariant theory of isentropic fluid dynamics and show that this symmetry corresponds to the invariance under local translation of the velocity potential in the fluid dynamics picture. We show that different but equivalent choices of the sympletic sector lead to distinct representations of the embedded gauge algebra.

  11. Attack or attacked: The sensory and fluid mechanical constraints of copepods’ predator–prey interactions

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2013-01-01

    , and mechanisms for mobility of the parties involved. Here, I describe the mechanisms of sensing, escaping predators, and capturing prey in marine pelagic copepods. I demonstrate that feeding tradeoffs vary with feeding mode, and I describe simple fluid mechanical models that are used to quantify these tradeoffs...

  12. Attack or attacked: The sensory and fluid mechanical constraints of copepods’ predator–prey interactions

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2013-01-01

    , and mechanisms for mobility of the parties involved. Here, I describe the mechanisms of sensing, escaping predators, and capturing prey in marine pelagic copepods. I demonstrate that feeding tradeoffs vary with feeding mode, and I describe simple fluid mechanical models that are used to quantify these tradeoffs...

  13. Micro-macro models for viscoelastic fluids:modelling,mathematics and numerics

    Institute of Scientific and Technical Information of China (English)

    LE; BRIS; Claude; LELIVRE; Tony

    2012-01-01

    This paper is an introduction to the modelling of viscoelastic fluids,with an emphasis on micromacro(or multiscale) models.Some elements of mathematical and numerical analysis are provided.These notes closely follow the lectures delivered by the second author at the Chinese Academy of Science during the Workshop "Stress Tensor E?ects on Fluid Mechanics" in January 2010.

  14. Computational fluid dynamics modeling in yarn engineering

    CSIR Research Space (South Africa)

    Patanaik, A

    2011-07-01

    Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...

  15. A mesoscopic model for binary fluids

    CERN Document Server

    Echeverria, C; Alvarez-Llamoza, O; Orozco-Guillén, E E; Morales, M; Cosenza, M G

    2016-01-01

    We propose a model to study symmetric binary fluids, based in the mesoscopic molecular simulation technique known as multiparticle collision, where space and state variables are continuous while time is discrete. We include a repulsion rule to simulate segregation processes that does not require the calculation of the interaction forces between particles, thus allowing the description of binary fluids at a mesoscopic scale. The model is conceptually simple, computationally efficient, maintains Galilean invariance, and conserves the mass and the energy in the system at micro and macro scales; while momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as density profile, width of the interface, phase separation and phase growth. We also apply the model to study binary fluids in crowded environments with consistent results.

  16. The Contact Angle in Inviscid Fluid Mechanics

    Indian Academy of Sciences (India)

    P N Shankar; R Kidambi

    2005-05-01

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived;however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions’ in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions’;they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  17. Problems in Microgravity Fluid Mechanics: G-Jitter Convection

    Science.gov (United States)

    Homsy, G. M.

    2005-01-01

    This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.

  18. An entrainment model for fluid mud

    NARCIS (Netherlands)

    Kranenburg, C.

    1993-01-01

    An entrainment model for fluid mud is derived by integrating the equation for turbulent kinetic energy across the mixed layer and introducing some modelling assumptions. The resulting entrainment model is similar to models of mixed-layer deepening in lakes and reservoirs, but in addition accounts fo

  19. An entrainment model for fluid mud

    NARCIS (Netherlands)

    Kranenburg, C.

    1993-01-01

    An entrainment model for fluid mud is derived by integrating the equation for turbulent kinetic energy across the mixed layer and introducing some modelling assumptions. The resulting entrainment model is similar to models of mixed-layer deepening in lakes and reservoirs, but in addition accounts fo

  20. The Influence of Fluid Overload on the Length of Mechanical Ventilation in Pediatric Congenital Heart Surgery.

    Science.gov (United States)

    Sampaio, Tatiana Z A L; O'Hearn, Katie; Reddy, Deepti; Menon, Kusum

    2015-12-01

    Fluid overload and prolonged mechanical ventilation lead to worse outcomes in critically ill children. However, the association between these variables in children following congenital heart surgery is unknown. The objectives of this study were to describe the association between fluid overload and duration of mechanical ventilation, oxygen requirement and radiologic findings of pulmonary and chest wall edema. This study is a retrospective chart review of patients who underwent congenital heart surgery between June 2010 and December 2013. Univariate and multivariate associations between maximum cumulative fluid balance and length of mechanical ventilation and OI were tested using the Spearman correlation test and multiple linear regression models, respectively. There were 85 eligible patients. Maximum cumulative fluid balance was associated with duration of mechanical ventilation (adjusted analysis beta coefficient = 0.53, CI 0.38-0.66, P Fluid overload is associated with prolonged duration of mechanical ventilation and PICU length of stay after congenital heart surgery. Fluid overload was also associated with physiological markers of respiratory restriction. A randomized controlled trial of a restrictive versus liberal fluid replacement strategy is necessary in this patient population, but in the meantime, accumulating observational evidence suggests that cautious use of fluid in the postoperative care may be warranted.

  1. Contact mechanics for poroelastic, fluid-filled media, with application to cartilage.

    Science.gov (United States)

    Persson, B N J

    2016-12-21

    I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.

  2. Contact mechanics for poroelastic, fluid-filled media, with application to cartilage

    Science.gov (United States)

    Persson, B. N. J.

    2016-12-01

    I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.

  3. Application of ICT supported learning in fluid mechanics

    DEFF Research Database (Denmark)

    Brohus, Henrik; Svidt, Kjeld

    2004-01-01

    This paper focuses on the application of ICT, Information & Communication Technology, supported learning in the area of fluid mechanics education. Taking a starting point in a course in Ventilation Technology, including room air flow and contaminant distribution, it explains how ICT may be used...... actively in the learning environment to increase efficiency in the learning process. The paper comprises past experiences and lessons learnt as well as prospect for future development in the area. A model is presented that describes a high efficiency learning environment where ICT plays an important role....... Traditionally, education in Ventilation Technology has been a combination of teacher performance at the blackboard combined with student exercises by paper and pencils. Sometimes a visit to a building has been included to see how things look like in the real world. In order to increase learning efficiency...

  4. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    Science.gov (United States)

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  5. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    Science.gov (United States)

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  6. Introduction to the internal fluid mechanics research session

    Science.gov (United States)

    Miller, Brent A.; Povinelli, Louis A.

    1990-01-01

    Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.

  7. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  8. Some connections between fluid mechanics and the solving of industrial and environmental fluid-flow problems

    Science.gov (United States)

    Hunt, J. C. R.

    1981-05-01

    The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.

  9. Statistical mechanical description of supercritical fluid extraction and retrograde condensation

    Science.gov (United States)

    Park, S. J.; Kwak, T. Y.; Mansoori, G. A.

    1987-07-01

    The phenomena of supercritical fluid extraction (SFE) and its reverse effect, which is known as retrograde condensation (RC), have found new and important applications in industrial separation of chemical compounds and recovery and processing of natural products and fossil fuels. Full-scale industrial utilization of SFE/RC processes requires knowledge about thermodynamic and transport characteristics of the asymmetric mixtures involved and the development of predictive modeling and correlation techniques for performance of the SFE/RC system under consideration. In this report, through the application of statistical mechanical techniques, the reasons for the lack of accuracy of existing predictive approaches are described and they are improved. It is demonstrated that these techniques also allow us to study the effect of mixed supercritical solvents on the solubility of heavy solutes (solids) at different compositions of the solvents, pressures, and temperatures. Fluid phase equilibrium algorithms based on the conformal solution van der Waals mixing rules and different equations of state are presented for the prediction of solubilities of heavy liquid in supercritical gases. It is shown that the Peng-Robinson equation of state based on conformal solution theory can predict solubilites of heavy liquid in supercritical gases more accurately than the van der Waals and Redlich-Kwong equations of state.

  10. Fluid Mechanics of Biological Surfaces and their Technological Application

    Science.gov (United States)

    Bechert, D. W.; Bruse, M.; Hage, W.; Meyer, R.

    A survey is given on fluid-dynamic effects caused by the structure and properties of biological surfaces. It is demonstrated that the results of investigations aiming at technological applications can also provide insights into biophysical phenomena. Techniques are described both for reducing wall shear stresses and for controlling boundary-layer separation. (a) Wall shear stress reduction was investigated experimentally for various riblet surfaces including a shark skin replica. The latter consists of 800 plastic model scales with compliant anchoring. Hairy surfaces are also considered, and surfaces in which the no-slip condition is modified. Self-cleaning surfaces such as that of lotus leaves represent an interesting option to avoid fluid-dynamic deterioration by the agglomeration of dirt. An example of technological implementation is discussed for riblets in long-range commercial aircraft. (b) Separation control is also an important issue in biology. After a few brief comments on vortex generators, the mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (=artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils by about 20%. This is achieved without perceivable deleterious effects under cruise conditions. Finally, flight experiments on an aircraft with laminar wing and movable flaps are presented.

  11. Numerical modelling of structural controls on fluid flow and mineralization

    Directory of Open Access Journals (Sweden)

    Yanhua Zhang

    2011-07-01

    Full Text Available This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia. Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu-veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling on the Hodgkinson Province generated a number of potential gold mineralization targets.

  12. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  13. Validation of full cavitation model in cryogenic fluids

    Institute of Scientific and Technical Information of China (English)

    CAO XiaoLi; ZHANG XiaoBin; QIU LiMin; GAN ZhiHua

    2009-01-01

    Numerical simulation of cavitation in cryogenic fluids is important in improving the stable operation of he propulsion system in liquid-fuel rocket. It also represents a broader class of problems where the fluid is operating close to its critical point and the thermal effects of cavitation are pronounced. The present article focuses on simulating cryogenic cavitation by implementing the "full cavitation model", coupled with energy equation, in conjunction with iteraUve update of the real fluid properties at local temperatures. Steady state computations are then conducted on hydrofoil and ogive in liquid nitrogen and hydrogen respectively, based on which we explore the mechanism of cavitation with thermal ef-fects. Comprehensive comparisons between the simulation results and experimental data as well as previous computations by other researchers validate the full cavitation model in cryogenic fluids. The sensitivity of cavity length to cavitation number is also examined.

  14. A computational model for doctoring fluid films in gravure printing

    Science.gov (United States)

    Hariprasad, Daniel S.; Grau, Gerd; Schunk, P. Randall; Tjiptowidjojo, Kristianto

    2016-04-01

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  15. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics.

    Science.gov (United States)

    Dahl, Kris Noel; Kalinowski, Agnieszka; Pekkan, Kerem

    2010-04-01

    Endothelial cells are stimulated by shear stress throughout the vasculature and respond with changes in gene expression and by morphological reorganization. Mechanical sensors of the cell are varied and include cell surface sensors that activate intracellular chemical signaling pathways. Here, possible mechanical sensors of the cell including reorganization of the cytoskeleton and the nucleus are discussed in relation to shear flow. A mutation in the nuclear structural protein lamin A, related to Hutchinson-Gilford progeria syndrome, is reviewed specifically as the mutation results in altered nuclear structure and stiffer nuclei; animal models also suggest significantly altered vascular structure. Nuclear and cellular deformation of endothelial cells in response to shear stress provides partial understanding of possible mechanical regulation in the microcirculation. Increasing sophistication of fluid flow simulations inside the vessel is also an emerging area relevant to the microcirculation as visualization in situ is difficult. This integrated approach to study--including medicine, molecular and cell biology, biophysics and engineering--provides a unique understanding of multi-scale interactions in the microcirculation.

  16. Ludwig Prandtl and the growth of fluid mechanics in Germany

    Science.gov (United States)

    Eckert, Michael

    2017-07-01

    Ludwig Prandtl (1875-1953) has been called the father of modern aerodynamics. His name is associated most famously with the boundary layer concept, but also with several other topics in 20th-century fluid mechanics, particularly turbulence (Prandtl's mixing length). Among his disciples are pioneers of modern fluid mechanics like Heinrich Blasius, Theodore von Kármán, and Walter Tollmien. Furthermore, Prandtl founded the Aerodynamische Versuchsanstalt (AVA) and the Kaiser-Wilhelm-Institut für Strömungsforschung in Göttingen, nuclei for the growth of fluid mechanics in Germany. In this article I trace this development on the basis of my recent biography of Prandtl.

  17. Using an Interactive Lattice Boltzmann Solver in Fluid Mechanics Instruction

    Directory of Open Access Journals (Sweden)

    Mirjam S. Glessmer

    2017-07-01

    Full Text Available This article gives an overview of the diverse range of teaching applications that can be realized using an interactive lattice Boltzmann simulation tool in fluid mechanics instruction and outreach. In an inquiry-based learning framework, examples are given of learning scenarios that address instruction on scientific results, scientific methods or the scientific process at varying levels of student activity, from consuming to applying to researching. Interactive live demonstrations on portable hardware enable new and innovative teaching concepts for fluid mechanics, also for large audiences and in the early stages of the university education. Moreover, selected examples successfully demonstrate that the integration of high-fidelity CFD methods into fluid mechanics teaching facilitates high-quality student research work within reach of the current state of the art in the respective field of research.

  18. A new model for shallow elastic fluids

    CERN Document Server

    Bouchut, François

    2013-01-01

    We propose a new reduced model for gravity-driven free-surface flows of shallow elastic fluids. It is obtained by an asymptotic expansion of the upper-convected Maxwell model for elastic fluids. The viscosity is assumed small (of order epsilon, the aspect ratio of the thin layer of fluid), but the relaxation time is kept finite. Additionally to the classical layer depth and velocity in shallow models, our system describes also the evolution of two scalar stresses. It has an intrinsic energy equation. The mathematical properties of the model are established, an important feature being the non-convexity of the physically relevant energy with respect to conservative variables, but the convexity with respect to the physically relevant pseudo-conservative variables. Numerical illustrations are given, based on a suitable well-balanced finite-volume discretization involving an approximate Riemann solver.

  19. Respiratory fluid mechanics and transport processes.

    Science.gov (United States)

    Grotberg, J B

    2001-01-01

    The field of respiratory flow and transport has experienced significant research activity over the past several years. Important contributions to the knowledge base come from pulmonary and critical care medicine, surgery, physiology, environmental health sciences, biophysics, and engineering. Several disciplines within engineering have strong and historical ties to respiration including mechanical, chemical, civil/environmental, aerospace and, of course, biomedical engineering. This review draws from a wide variety of scientific literature that reflects the diverse constituency and audience that respiratory science has developed. The subject areas covered include nasal flow and transport, airway gas flow, alternative modes of ventilation, nonrespiratory gas transport, aerosol transport, airway stability, mucus transport, pulmonary acoustics, surfactant dynamics and delivery, and pleural liquid flow. Within each area are a number of subtopics whose exploration can provide the opportunity of both depth and breadth for the interested reader.

  20. An Introduction to Computational Fluid Mechanics by Example

    CERN Document Server

    Biringen, Sedat

    2011-01-01

    This new book builds on the original classic textbook entitled: An Introduction to Computational Fluid Mechanics by C. Y. Chow which was originally published in 1979. In the decades that have passed since this book was published the field of computational fluid dynamics has seen a number of changes in both the sophistication of the algorithms used but also advances in the computer hardware and software available. This new book incorporates the latest algorithms in the solution techniques and supports this by using numerous examples of applications to a broad range of industries from mechanical

  1. Multimedia Fluid Mechanics - Multilingual Version CD-ROM

    Science.gov (United States)

    Homsy, G. M.; Aref, H.; Breuer, K. S.; Hochgreb, S.; Koseff, J. R.; Munson, B. R.; Powell, K. G.; Robertson, C. R.; Thoroddsen, S. T.

    2004-07-01

    This CD-ROM offers an interactive tool for teaching undergraduate fluid mechanics. It features experiments that demonstrate fluid mechanical phenomena, animations of important principles and concepts, virtual laboratories in which students acquire data from the images, interactive computational exercises in which parameters can be varied, and other descriptive and illuminating material on applications. The material may be accessed randomly through a hyperlinked text, a search engine, a video library, and a glossary of terms. The new edition has been thoroughly updated and includes versions in English, Spanish and French.

  2. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  3. Mechanics and mathematics of fluids of the differential type

    CERN Document Server

    Cioranescu, D; Rajagopal, K R

    2016-01-01

    This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. Each part of the book can be considered as being self-contained. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3. The second part of the book is dedicated to the development of rigorous mathematical results concerning the equations governing the motion of a family of fluids of the differential type. Finally, the proofs of a number of useful results are collected in an appendix.

  4. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  5. The fluid mechanics of continuous flow electrophoresis

    Science.gov (United States)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  6. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    Science.gov (United States)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  7. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  8. Computational modeling of glow discharge-induced fluid dynamics

    Science.gov (United States)

    Jayaraman, Balaji

    Glow discharge at atmospheric pressure using a dielectric barrier discharge can induce fluid flow and operate as an actuator for flow control. The largely isothermal surface plasma generation realized above can modify the near-wall flow structure by means of Lorentzian collisions between the ionized fluid and the neutral fluid. Such an actuator has advantages of no moving parts, performance at atmospheric conditions and devising complex control strategies through the applied voltage. However, the mechanism of the momentum coupling between the plasma and the fluid flow is not yet adequately understood. In the present work, a modeling framework is presented to simulate athermal, non-equilibrium plasma discharges in conjunction with low Mach number fluid dynamics at atmospheric pressure. The plasma and fluid species are treated as a two-fluid system exhibiting a few decades of length and time scales. The effect of the plasma dynamics on the fluid dynamics is devised via a body force treatment in the Navier-Stokes equations. Two different approaches of different degrees of fidelity are presented for modeling the plasma dynamics. The first approach, a phenomenological model, is based on a linearized force distribution approximating the discharge structure, and utilizing experimental guidance to deduce the empirical constants. A high fidelity approach is to model the plasma dynamics in a self-consistent manner using a first principle-based hydrodynamic plasma model. The atmospheric pressure regime of interest here enables us to employ local equilibrium assumptions, signifying efficient collisional energy exchange as against thermal heating from inelastic collision processes. The time scale ratios between convection, diffusion, and reaction/ionization mechanisms are O(107), making the system computationally stiff. To handle the stiffness, a sequential finite-volume operator-splitting algorithm capable of conserving space charge is developed; the approach can handle time

  9. A Blended Learning Approach to Teach Fluid Mechanics in Engineering

    Science.gov (United States)

    Rahman, Ataur

    2017-01-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…

  10. Instructor's Guide for Fluid Mechanics: A Modular Approach.

    Science.gov (United States)

    Cox, John S.

    This guide is designed to assist engineering teachers in developing an understanding of fluid mechanics in their students. The course is designed around a set of nine self-paced learning modules, each of which contains a discussion of the subject matter; incremental objectives; problem index, set and answers; resource materials; and a quiz with…

  11. Fluid Mechanics of Wing Adaptation for Separation Control

    Science.gov (United States)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  12. Leonhard Euler and his contributions to fluid mechanics

    Science.gov (United States)

    Salas, M. D.

    1988-01-01

    The career of Leonhard Euler, one of the world's most gifted scientists, is reviewed. The paper focuses on Euler's contributions to fluid mechanics and gives a perspective of how this science was born. A bibliography is included to provide the history enthusiast with a starting point for further study.

  13. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...

  14. Flippin' Fluid Mechanics--Comparison Using Two Groups

    Science.gov (United States)

    Webster, Donald R.; Majerich, David M.; Madden, Amanda G.

    2016-01-01

    A flipped classroom approach was implemented in an undergraduate fluid mechanics course. Students watched short, online video lectures before class, participated in active in-class problem solving sessions (in pairs), and completed individualized online quizzes weekly. In-class activities were designed to develop problem-solving skills and teach…

  15. Instructor's Guide for Fluid Mechanics: A Modular Approach.

    Science.gov (United States)

    Cox, John S.

    This guide is designed to assist engineering teachers in developing an understanding of fluid mechanics in their students. The course is designed around a set of nine self-paced learning modules, each of which contains a discussion of the subject matter; incremental objectives; problem index, set and answers; resource materials; and a quiz with…

  16. A Mathematical Model for Swallowing of Concentrated Fluids in Oesophagus

    Directory of Open Access Journals (Sweden)

    S. K. Pandey

    2011-01-01

    Full Text Available This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis Newtonian fluid is investigated analytically and numerically too. The result is physically interpreted as that the oesophagus makes more efforts to swallow fluids with higher concentration. It is observed that the pressure is uniformly distributed when an integral number of waves is there in the oesophagus; but it is non-uniform when a non-integral number of waves is present therein. It is further observed that as the plug flow region widens, the pressure difference increases, which indicates that the averaged flow rate will reduce for a Casson fluid. It is also concluded that Casson fluids are more prone to reflux.

  17. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.

  18. Investigating models for associating fluids using spectroscopy

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Michelsen, Michael Locht; Passos, Claudia Pereira;

    2005-01-01

    Two equations of state (PC-SAFT and CPA) are used to predict the monomer fraction of pure associating fluids. The models each require five pure-component parameters usually obtained by fitting to experimental liquid density and vapor pressure data. Here we also incorporate monomer fractions...

  19. Modeling Microgravity Induced Fluid Redistribution Autoregulatory and Hydrostatic Enhancements

    Science.gov (United States)

    Myers, J. G.; Werner, C.; Nelson, E. S.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2017-01-01

    Space flight induces a marked cephalad (headward) redistribution of blood and interstitial fluid potentially resulting in a loss of venous tone and reduction in heart muscle efficiency upon introduction into the microgravity environment. Using various types of computational models, we are investigating how this fluid redistribution may induce intracranial pressure changes, relevant to reported reductions in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Methods: We utilize a lumped parameter cardiovascular system (CVS) model, augmented by compartments comprising the cerebral spinal fluid (CSF) space, as the primary tool to describe how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. Models of ocular fluid pressures and biomechanics then accept the output of the above model as boundary condition input to allow more detailed, local analysis (see IWS Abstract by Ethier et al.). Recently, we enhanced the capabilities our previously reported CVS model through the implementation of robust autoregulatory mechanisms and a more fundamental approach to the implementation of hydrostatic mechanisms. Modifying the approach of Blanco et al., we implemented auto-regulation in a quasi-static manner, as an averaged effect across the span of one heartbeat. This approach reduced the higher frequency perturbations from the regulatory mechanism and was intended to allow longer simulation times (days) than models that implement within-beat regulatory mechanisms (minutes). A more fundamental approach to hydrostatics was implemented by a quasi-1D approach, in which compartment descriptions include compartment length, orientation and relative position, allowed for modeling of body orientation, relative body positioning and, in the future, alternative gravity environments. At this time the inclusion of hydrostatic mechanisms supplies additional capabilities to train and validate the CVS model

  20. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    Science.gov (United States)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 dew pressures decrease with increasing H2S content, while the mass density increases at low pressures and decreases at high pressures. Furthermore, the EoS can be incorporated into reservoir simulators so that the dynamic development of mixed fluid plumes in the reservoir can be simulated. Accurate modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account of reaction coupling is able to reduce the gap between the field and lab rates by about two orders of magnitude at elevated temperatures of 200-300 oC. Currently, we are using Si isotopes as a new tool to unravel the coupled reactions in ambient temperature laboratory experiments. These new experimental data, together with coupled reactive mass transport modeling

  1. Molecular Modeling of Solid Fluid Phase Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Monson

    2007-12-20

    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  2. Fluid mechanics mechanisms in the stall process of helicopters

    Science.gov (United States)

    Young, W. H., Jr.

    1981-01-01

    Recent experimental results from airfoils in the Mach number, Reynolds number, or reduced frequency ranges typical of helicopter rotor blades have identified the most influential flow mechanisms in the dynamic stall process. The importance of secondary shed vortices, downstream wake action, and the flow in the separated region is generally acknowledged but poorly understood. By means of surface pressure cross-correlations and flow field measurements in static stall, several new hypotheses have been generated. It is proposed that vortex shedding may be caused by acoustic disturbances propagating forward in the lower (pressure) surface boundary layer, that wake closure is a misnomer, and that the shed vortex leaves a trail of vorticity that forms a turbulent free shear layer. The known dynamic stall flow mechanisms are reviewed and the potential importance of recently proposed and hypothetical flow phenomena with respect to helicopter blade aeroelastic response are assessed.

  3. Mechanics of undulatory swimming in a frictional fluid.

    Directory of Open Access Journals (Sweden)

    Yang Ding

    Full Text Available The sandfish lizard (Scincus scincus swims within granular media (sand using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  4. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  5. The fluid mechanics of scleral buckling surgery for the repair of retinal detachment.

    Science.gov (United States)

    Foster, William Joseph; Dowla, Nadia; Joshi, Saurabh Y; Nikolaou, Michael

    2010-01-01

    Scleral buckling is a common surgical technique used to treat retinal detachments that involves suturing a radial or circumferential silicone element on the sclera. Although this procedure has been performed since the 1960s, and there is a reasonable experimental model of retinal detachment, there is still debate as to how this surgery facilitates the re-attachment of the retina. Finite element calculations using the COMSOL Multiphysics system are utilized to explain the influence of the scleral buckle on the flow of sub-retinal fluid in a physical model of retinal detachment. We found that, by coupling fluid mechanics with structural mechanics, laminar fluid flow and the Bernoulli effect are necessary for a physically consistent explanation of retinal reattachment. Improved fluid outflow and retinal reattachment are found with low fluid viscosity and rapid eye movements. A simulation of saccadic eye movements was more effective in removing sub-retinal fluid than slower, reading speed, eye movements in removing subretinal fluid. The results of our simulations allow us to explain the physical principles behind scleral buckling surgery and provide insight that can be utilized clinically. In particular, we find that rapid eye movements facilitate more rapid retinal reattachment. This is contradictory to the conventional wisdom of attempting to minimize eye movements.

  6. Thick brane world model from perfect fluid

    CERN Document Server

    Ivashchuk, V D

    2001-01-01

    A (1 + d)-dimensional thick "brane world" model with varying Lambda-term is considered. The model is generalized to the case of a chain of Ricci-flat internal spaces when the matter source is an anisotropic perfect fluid. The "horizontal" part of potential is obtained in the Newtonian approximation. In the multitemporal case (with a Lambda-term) a set of equations for potentials is presented.

  7. Hydromechanical Modeling of Fluid Flow in the Lower Crust

    Science.gov (United States)

    Connolly, J.

    2011-12-01

    The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it

  8. Fundamental Studies of Fluid Mechanics: Stability in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    George M. Homsy

    2005-04-28

    This work has been concerned with theoretical, computational and experimental studies of a variety of flow and transport problems that are of generic interest and applicability in energy-related and energy-intensive processes. These include the following. (1) Problems associated with oil recovery: the global economy continues to be dependent on the stable and predictable supply of oil and fossil fuels. This will remain the case for the near term, as current estimates are that world production of oil will peak between 2025 and 2100, depending on assumptions regarding growth. Most of these resources reside in porous rocks and other naturally occurring media. Studies of flow-induced instabilities are relevant to the areas of secondary and enhanced oil recovery. (2) Small scale and Stokes flows: flows in microgeometries and involving interfaces and surfactants are of interest in a myriad of energy-related contexts. These include: pore-level modeling of the fundamental processes by which oil held in porous materials is mobilized and produced; heating and cooling energy cycles involving significant expenditure of energy in conditioning of human environments, heat pipes, and compact heat exchangers; and energy efficiency in large scale separation processes such as distillation and absorption-processes that underlie the chemical process industries. (3) Coating flows: these are of interest in information technologies, including the manufacture of integrated circuits and data storage and retrieval devices. It is estimated that 50-70% of the starting raw materials and intermediate devices in information technology processes must be discarded as a result of imperfections and failure to meet specifications. These in turn are often the result of the inability to control fluid-mechanical processes and flow instabilities. Our work over the grant period is primarily fundamental in nature. We are interested in establishing general principles and behaviors that relate to a variety of

  9. Separation mechanisms and fluid flow in oil/water separation

    Energy Technology Data Exchange (ETDEWEB)

    Celius, H.K.; Knudsen, B. [IKU Petroleumsforskning A/S, Trondheim (Norway); Hafskjold, B.; Hansen, E.W. [Selskapet for Industriell og Teknisk Forskning, Trondheim (Norway)

    1996-12-31

    This paper describes work aimed at physical and numerical modeling of separation rates of oil/water systems in order to establish better tools for design and operation of offshore operators. This work aims to integrate the chemical and physical phenomena behind coalescence and settling with those of fluid flow in the system, in order to develop tools for design and operational analysis of separation equipment. The work includes the development of a high pressure, bench-scale test rig to perform separation tests on live oil and water samples, and a rationale in the form of a computer code that can be used to interpret the test results and transform them to a form siutable for operational purposes. This involves a formulation of a mathematical description of the chemical and physical mechanisms behind the emulsification and separation process, and to establish a link to the hydrdynamic properties of the separator vessel. The Emucol computer program is used in the analysis. 12 refs., 5 figs.

  10. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    Science.gov (United States)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  11. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia.

    Science.gov (United States)

    Clarke, Elizabeth C; Fletcher, David F; Stoodley, Marcus A; Bilston, Lynne E

    2013-07-26

    The pathogenesis of syringomyelia in association with Chiari malformation (CM) is unclear. Studies of patients with CM have shown alterations in the CSF velocity profile and these could contribute to syrinx development or enlargement. Few studies have considered the fluid mechanics of CM patients with and without syringomyelia separately. Three subject-specific CFD models were developed for a normal participant, a CM patient with syringomyelia and a CM patient without syringomyelia. Model geometries, CSF flow rate data and CSF velocity validation data were collected from MRI scans of the 3 subjects. The predicted peak CSF pressure was compared for the 3 models. An extension of the study performed geometry and flow substitution to investigate the relative effects of anatomy and CSF flow profile on resulting spinal CSF pressure. Based on 50 monitoring locations for each of the models, the CM models had significantly higher magnitude (psyringomyelia mechanisms and relative effects of CSF velocity profile and spinal geometry on CSF pressure.

  12. Progress in modeling of fluid flows in crystal growth processes

    Institute of Scientific and Technical Information of China (English)

    Qisheng Chen; Yanni Jiang; Junyi Yan; Ming Qin

    2008-01-01

    Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics.Most crystal growth processes involve fluid flows,such as flows in the melt,solution or vapor.Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices.The application of devices requires large diameter crystals with a high degree of crystallographic perfection,low defect density and uniform dopant distribution.In this article,the flow models developed in modeling of the crystal growth processes such as Czochralski,ammono-thermal and physical vapor transport methods are reviewed.In the Czochralski growth modeling,the flow models for thermocapillary flow,turbulent flow and MHD flow have been developed.In the ammonothermal growth modeling,the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems.In the physical vapor transport growth modeling,the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth.In addition,perspectives for future studies on crystal growth modeling are proposed.

  13. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  14. Theoretical models for fluid thermodynamics based on the quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Amadei, Andrea

    1998-01-01

    Summary The theoretical modeling of fluid thermodynamics is one of the most challenging fields in physical chemistry. In fact the fluid behavior, except at very low density conditions, is still extremely difficult to be modeled from a statistical mechanical point of view, as for any realistic model

  15. Verification strategies for fluid-based plasma simulation models

    Science.gov (United States)

    Mahadevan, Shankar

    2012-10-01

    Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.

  16. A revised model of fluid transport optimization in Physarum polycephalum.

    Science.gov (United States)

    Bonifaci, Vincenzo

    2017-02-01

    Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalum's tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flow's pressure gradient along the tube. We carry out the stability analysis of such a revised mathematical model for a parallel-edge network, proving that the revised model supports the global flow-optimizing behavior of the slime mold for a substantially wider class of response functions compared to previous models. Simulations also suggest that the same conclusion may be valid for arbitrary network topologies.

  17. Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.

    Science.gov (United States)

    Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P

    2016-12-01

    Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.

  18. Polymeric liquids in extension: fluid mechanics or rheometry?

    DEFF Research Database (Denmark)

    Hassager, Ole; Marin, Jose Martin Roman; Yu, Kaijia

    2010-01-01

    We use a transient 3D free surface finite element method to simulate flow of entangled polymer fluids in the dual cylinder wind-up extensional rheometer. The constitutive equations are K-BKZ integral representations of the Doi-Edwards models with and without the independent alignment approximatio...

  19. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California.

    Science.gov (United States)

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny

    2010-03-01

    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.

  20. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L

    2003-01-01

    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  1. Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.

    2008-01-01

    A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.

  2. A cyber-physical approach to experimental fluid mechanics

    Science.gov (United States)

    Mackowski, Andrew Williams

    This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate

  3. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  4. Immunosensor with Fluid Control Mechanism for Salivary Cortisol Analysis

    OpenAIRE

    Yamaguchi, Masaki; Matsuda, Yohei; Sasaki, Shohei; Sasaki, Makoto; Kadoma, Yoshihiro; Imai, Yoshikatsu; Niwa, Daisuke; Shetty, Vivek

    2012-01-01

    The purpose of this research is to demonstrate a new design for a cortisol immunosensor for the noninvasive and quantitative analysis of salivary cortisol. We propose a cortisol immunosensor with a fluid control mechanism which has both a vertical flow and a lateral flow. The detected current resulting from a competitive reaction between the sample cortisol and a glucose oxidase (GOD)-labeled cortisol conjugate was found to be inversely related to the concentration of cortisol in the sample s...

  5. A statistical mechanics approach to mixing in stratified fluids

    Science.gov (United States)

    Venaille, A.; Gostiaux, L.; Sommeria, J.

    2017-01-01

    Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a longstanding problem in stratified turbulence. The huge number of degrees of freedom involved in those processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding prediction for a cumulative, global mixing efficiency as a function of a global Richardson number and the background buoyancy profile.

  6. Fluid mechanics and solidification investigations in low-gravity environments

    Science.gov (United States)

    Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.

    1980-01-01

    Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.

  7. Aeropropulsion 1987. Session 3: Internal Fluid Mechanics Research

    Science.gov (United States)

    1987-01-01

    Internal fluid mechanics research at Lewis is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The presentations in this session summarize ongoing work and indicated future emphasis in three major research thrusts: namely, inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows.

  8. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2007-01-01

    All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion. In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was expressed in terms of mathematics by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool; on the other hand, we must observe that mechanics also influenced the introduction and the development of many mathematical notions. In this respect, the guideline of the present book is precisely the mathematical model of mechanics. A special accent is put on the solving methodology as well as on the mathematical tools used; vectors, ...

  9. Advances in cardiovascular fluid mechanics: bench to bedside.

    Science.gov (United States)

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  10. Phase-separation models for swimming enhancement in complex fluids

    CERN Document Server

    Man, Yi

    2015-01-01

    Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex fluid. It is based on the fact that micro-structured fluids will generically phase-separate near surfaces, leading to the presence of low-viscosity layers which promote slip and decrease viscous friction near the surface of the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer. Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a two-dimensional sheet and that of a three-dimensiona...

  11. Transient thermohydraulic modeling of two-phase fluid systems

    Science.gov (United States)

    Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.

    2012-11-01

    This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.

  12. Fluid mechanics of eating, swallowing and digestion - overview and perspectives.

    Science.gov (United States)

    Engmann, Jan; Burbidge, Adam S

    2013-02-26

    From a very simplistic viewpoint, the human digestive system can be regarded as a long tube (with dramatic variations in diameter, cross-section, wall properties, pumping mechanisms, regulating valves and in-line sensors). We single out a few fluid mechanical phenomena along the trajectory of a food bolus from the mouth to the small intestine and discuss how they influence sensorial perception, safe transport, and nutrient absorption from a bolus. The focus is on lubrication flows between the tongue and palate, the oropharyngeal stage of swallowing and effects of flow on absorption in the small intestine. Specific challenges and opportunities in this research area are highlighted.

  13. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics.

    Science.gov (United States)

    Archer, A J

    2009-01-07

    In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.

  14. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  15. Historical Review of the Fluid Percussion TBI Model

    Directory of Open Access Journals (Sweden)

    Bruce G Lyeth

    2016-12-01

    Full Text Available Abstract:Traumatic brain injury (TBI is a major health concern worldwide. Laboratory studies utilizing animal models of TBI are essential for addressing pathological mechanisms of brain injury and development of innovative treatments. Over the past 75 years, pioneering head injury researchers have devised and tested a number of fluid percussive methods to reproduce in animals the concussive clinical syndrome. The fluid percussion brain injury technique has evolved from early investigations that applied a generalized loading of the brain to more recent computer controlled systems. Of the many pre-clinical TBI models, the fluid percussion technique is one of the most extensively characterized and widely used models. Some of the most important advances involved the development of the Stalhammer device to produce concussion in cats and the later characterization of this device for application in rodents. The goal of this historical review is to provide readers with an appreciation for the time and effort expended by the pioneering researchers that have led to today’s state of the art fluid percussion animal models of TBI.

  16. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  17. Interpreting Students’ Perceptions in Fluid Mechanics Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Filomena SOARES

    2015-11-01

    Full Text Available The objective of this study is to analyse the impact of introducing a practical work in the learning process of the Fluid Transport Systems course in Chemical Engineering degree. The students, in groups of two or three elements, were free to choose the application case in order to develop the practical work proposed by the responsible teachers. The students selected a centrifugal pump to supply water to houses or buildings and designed the piping system. The practical work was evaluated through the written report. The students’ perceptions were analysed through a questionnaire. The learning outcomes were also considered in order to understand how the fluid mechanics concepts were acquired. In the teachers’ point of view the teamwork should enable the development of students’ soft skills and competencies, promoting the ability to integrate and work in teams. The students changed their learning processing and perception becoming more reflective and less accommodative, forcing them to think critically and share opinions. Regarding the Fluid Mechanics assessment, the practical work increased, in average, the final grade at least one value.

  18. Mechanical design problems associated with turbopump fluid film bearings

    Science.gov (United States)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  19. Otto Laporte Award Talk - In light of Fluid Mechanics

    Science.gov (United States)

    Gharib, Morteza

    2015-11-01

    Fluid mechanics, in its inherent non-linear beauty, has been its own laboratory, testing our perseverance and dedication to a branch of science that, despite its perceived maturity, still has many surprises to offer. For many of us, the study of fluid flow has been our path to understanding the complexity of nature. My journey has taken me through many interesting projects including the development of new visualization tools, scrutinizing the rhythms of the human heart, observing flow vortices and studying the dynamics of soap films. But this lecture is mainly devoted to a new example of my research activities where light and flow physics interweave to display another intriguing multi-physics beauty of nature.

  20. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  1. On the Use of Computers for Teaching Fluid Mechanics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.

  2. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    Science.gov (United States)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  3. Mathematical Modelling of Fluid Flow in Cone and Cavitation Formation

    Directory of Open Access Journals (Sweden)

    Milada KOZUBKOVÁ

    2011-06-01

    Full Text Available Problem of cavitation is the undesirable phenomena occuring in the fluid flow in many hydraulic application (pumps, turbines, valves, etc.. Therefore this is in the focus of interest using experimental and mathematical methods. Based on cavitation modelling in Laval nozzle results and experience [1], [2], [4], following problem described as the water flow at the outlet from turbine blade wheel was solved. Primarily the problem is simplified into modelling of water flow in cone. Profiles of axial, radial and tangential velocity are defined on inlet zone. The value of pressure is defined on the outlet. Boundary conditions were defined by main investigator of the grant project – Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. The value of air volume was insignificant. Cavitation was solved by Singhal model of cavitation.

  4. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  5. A Two-Fluid, MHD Coronal Model

    Science.gov (United States)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  6. Null fluid collapse in brane world models

    Science.gov (United States)

    Harko, Tiberiu; Lake, Matthew J.

    2014-03-01

    The brane world description of our Universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high-density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black holes over naked singularities, we find that, for the types of fluid considered, this is not the case. However, the black hole solutions differ substantially from their general-relativistic counterparts and brane world corrections often play a role analogous to charge in general relativity. As an astrophysical application of this work, the possibility that energy emission from a Hagedorn fluid collapsing to form a naked singularity may be a source of GRBs in the brane world is also considered.

  7. New quantum mechanical model

    Institute of Scientific and Technical Information of China (English)

    吴宁; 阮图南

    1996-01-01

    A quantum mechanical model with one bosonic degree of freedom is discussed in detail. Conventionally, when a quantum mechanical model is constructed, one must know the corresponding classical model. And by applying the correspondence between the classical Poisson brackets and the canonical commutator, the canonical quantization condition can be obtained. In the quantum model, study of the corresponding classical model is needed first. In this model, the Lagrangian is an operator gauge invariant. After localization, in order to keep gauge invariance, the operator gauge potential must be introduced. The Eular-Lagrange equation of motion of the dynamical argument gives the usual operator equation of motion. And the operator gauge potential just gjves a constraint. This constraint is just the usual canonical quantization condition.

  8. Crust-Mantle Structures and Gold Enrichment Mechanism of Mantle Fluid System

    Institute of Scientific and Technical Information of China (English)

    邓军; 孙忠实; 王庆飞; 韦延光

    2003-01-01

    Gold enrichment mechanism of ore-forming fluid is the essence of gold metallization.This paper summarizes the distinguishing symbols of mantle fluid and effect of crust-mantlestructure on fluid movement. Fluid moving processes include osmosis, surge, gas-liquid alterna-tion and mutation of fluid speed. During fluid movement, gold will be enriched gradually. Final-ly, a layered circulatory system is illustrated in this paper.

  9. Mechanics of materials model

    Science.gov (United States)

    Meister, Jeffrey P.

    1987-01-01

    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  10. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  11. Review of coaxial flow gas core nuclear rocket fluid mechanics

    Science.gov (United States)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  12. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  13. Multi-physics modeling of large ring motor for mining industry - Combining electromagnetism, fluid mechanics, mass and heat transfer in engineering design

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Santos, Ilmar F.; Fuerst, Axel

    2015-01-01

    electromagnet, thermal and structural interactions. This multi-physics model will later on be used for simulating and parameter optimization of a gearless mill drive. What has been proposed is a multi-physics model where the core losses are determined through a series of static finite element magnetic...

  14. Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics

    Science.gov (United States)

    Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David

    2016-01-01

    Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.

  15. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    Science.gov (United States)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex

  16. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    Science.gov (United States)

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances.

  17. Introducing CFD in Introductory Undergraduate Fluid Mechanics Courses

    Science.gov (United States)

    Cimbala, John M.

    2005-11-01

    Many instructors want to introduce CFD into their introductory junior-level fluid mechanics course, but cannot because it requires several hours of class time at the cost of displacement of other basic material. A simple but effective method is now available that has been used successfully at Penn State since Spring 2005. It requires minimal instructor preparation time and only about one class period. Namely, immediately after solving the Navier-Stokes equation analytically for simple flows such as Couette and Poiseuille flow, CFD is introduced as a modern tool for solving the same equations numerically. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. Homework problems are then assigned using pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The templates and exercises are designed to support and emphasize the theory and concepts taught in class and in the textbook. For example, the new textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice.

  18. Respiratory mechanics and fluid dynamics after lung resection surgery.

    Science.gov (United States)

    Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria

    2010-08-01

    Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur.

  19. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  20. Imperfect fluid cosmological model in modified gravity

    CERN Document Server

    Samanta, G C

    2016-01-01

    In this article, we considered the bulk viscous fluid in the formalism of modified gravity in which the general form of a gravitational action is $f(R, T)$ function, where $R$ is the curvature scalar and $T$ is the trace of the energy momentum tensor within the frame of flat FRW space time. The cosmological model dominated by bulk viscous matter with total bulk viscous coefficient expressed as a linear combination of the velocity and acceleration of the expansion of the universe in such a way that $\\xi=\\xi_0+\\xi_1\\frac{\\dot{a}}{a}+\\xi_2\\frac{\\ddot{a}}{\\dot{a}}$, where $\\xi_0$, $\\xi_1$ and $\\xi_2$ are constants. We take $p=(\\gamma-1)\\rho$, where $0\\le\\gamma\\le2$ as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are obtained by assuming a particular model of the form of $f(R, T)=R+2f(T)$, where $f(T)=\\lambda T$, $\\lambda$ is constant. We studied the four possible scenarios for different values of $\\gamma$, such as $\\gamma=0$, $\\gamma=\\frac{2}{3}$, $\\gamma=1$ and...

  1. 100 volumes of 'notes on numerical fluid mechanics' 40 years of numerical fluid mechanics and aerodynamics in retrospect

    CERN Document Server

    Hirschel, Ernst Heinrich; Fujii, Kozo

    2009-01-01

    This volume contains 37 invited contributions, collected to celebrate one hundred volumes of the ""NNFM Series"". After a general introduction, overviews are given in five parts of the developments in numerical fluid mechanics and related fields. In the first part information about the series is given, its origins are discussed, as well as its environment and the German and European high-performance computer scene. In Part II the co-editors of the series give short surveys over developments in their countries. Current applications, mainly in the aerospace sector, but also in the automotive sec

  2. Baroclinic Channel Model in Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Kharatti Lal

    2016-02-01

    Full Text Available A complex flow structure is studied using a 2-dimentional baroclinic channel model Unsteady Navier - stokes equation coupled with equation of thermal energy ,salinity and the equation of state are implemented .System closure is achieved through a modified Prandtl, s mixing length formulation of turbulence dissipation The model is applied in a region where the fluid flow is effected by various forcing equation .In this case ,flow is estuarine region affected by diurnal tide and the fresh water inflow in to the estuary and a submerged structure is considered giving possible insight in to stress effects on submerged structure .the result show that in the time evolution of the vertical velocity along downstream edge changes sign from negative to positive .as the dike length increases the primary cell splits and flow becomes turbulent du e to the non-linear effect caused by the dike .these are found to agree favourably with result published in the open literature.

  3. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    Science.gov (United States)

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  4. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  5. Mechanical models of physical fields and particles

    CERN Document Server

    Dmitriyev, V P

    1999-01-01

    Earlier obtained results on mechanical analogies of physical fields and particles are reviewed. The approach rests on the concept of the substratum - a mechanical medium, which occupies all the space and serves as a seat to support the light and to transmit interactions. A turbulent ideal fluid was chosen for the substratum. The turbulence is supposed to be homogeneous and isotropic in its ground state. Perturbations of the turbulence model physical fields. Particles originate from the voids in the fluid. Symmetrical pairs of particle-antiparticle find analogies in mechanical pairs of cyclone-anticyclone. A quantum particle is modeled by the dispersion of a point discontinuity (defect) in the stochastic medium. Gravitation relates to emitting by defects the continual flow of the transient point dilatation. The shock wave mechanism of the re-collection a discontinuity in the incompressible medium governs such phenomena as the "wave function collapse" and instantaneous quantum correlations. Microscopically, the...

  6. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    Science.gov (United States)

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  7. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    Science.gov (United States)

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  8. Green Algae as Model Organisms for Biological Fluid Dynamics.

    Science.gov (United States)

    Goldstein, Raymond E

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  9. Fluid and solid mechanics in a poroelastic network induced by ultrasound.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-01-04

    We made a theoretical analysis on the fluid and solid mechanics in a poroelastic medium induced by low-power ultrasound. Using a perturbative approach, we were able to linearize the governing equations and obtain analytical solutions. We found that ultrasound could propagate in the medium as a mechanical wave, but would dissipate due to frictional forces between the fluid and the solid phase. The amplitude of the wave depends on the ultrasonic power input. We applied this model to the problem of drug delivery to soft biological tissues by low-power ultrasound and proposed a mechanism for enhanced drug penetration. We have also found the coexistence of two acoustic waves under certain circumstances and pointed out the importance of very accurate experimental determination of the high-frequency properties of brain tissue.

  10. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    OpenAIRE

    Song Haiyan; Wang Fang; Zhang Jianguo; Zhang Yinong; Yang Shugang

    2017-01-01

    It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element ca...

  11. Viscoelastic Model Analogy of the Dark Cosmic Fluid

    CERN Document Server

    Brevik, Iver

    2015-01-01

    A one-component dark energy fluid model of the late universe is considered ($w \\zeta$. This is just as one would expect physically. The corresponding entropy production is also considered. A special point emphasized in the paper is the analogy that exists between the cosmic fluid and a so-called Maxwell fluid in viscoelasticity.

  12. Fluid-structure interactions models, analysis and finite elements

    CERN Document Server

    Richter, Thomas

    2017-01-01

    This book starts by introducing the fundamental concepts of mathematical continuum mechanics for fluids and solids and their coupling. Special attention is given to the derivation of variational formulations for the subproblems describing fluid- and solid-mechanics as well as the coupled fluid-structure interaction problem. Two monolithic formulations for fluid-structure interactions are described in detail: the well-established ALE formulation and the modern Fully Eulerian formulation, which can effectively deal with problems featuring large deformation and contact. Further, the book provides details on state-of-the-art discretization schemes for fluid- and solid-mechanics and considers the special needs of coupled problems with interface-tracking and interface-capturing techniques. Lastly, advanced topics like goal-oriented error estimation, multigrid solution and gradient-based optimization schemes are discussed in the context of fluid-structure interaction problems.

  13. Null fluid collapse in brane world models

    CERN Document Server

    Harko, Tiberiu

    2013-01-01

    The brane world description of our universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically-symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically-symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black ho...

  14. Mechanical Role of Fluids in Earthquakes and Faulting

    Science.gov (United States)

    Rice, J. R.

    2005-12-01

    permeability. That allows slow solitary waves of pore pressure increase which propagate upwards against gravity in fault zones that are reasonably sealed from their surroundings, following initiation by, e.g., breaching of a pressurized seal at depth. (6) Aseismic slip transients in subduction zones occur in an environment of active compaction and metamorphic fluid release, and fluids seem responsible for associated tremor as well. Recent modeling [see Liu and Rice, this meeting] links elevation of fluid pressure to the speed of along-strike propagation of slip transients. (7) Poroelastic responses to stress transfer have been detected for some earthquakes, and associated transient stress changes may play a role in aftershock sequences, although probably secondary in general. (8) Another type of fluid saturated ``fault zone'', in granulated sediments between dissimilar materials, is the bed of a mobile ice sheet. Some of the concepts in topics 1 to 4 above may have application to surges, ice streams, and glacial earthquakes. These various cases 1 to 8 involve many contributors in the geophysical community, and include collaborative current or recent studies of the author with Massimo Cocco (2), Yajing Liu (4, 6), Alan Rempel (2), John Rudnicki (1,3), Paul Segall (4), and Victor Tsai (1,8).

  15. STUDY ON FLUID MECHANICS OF HYPERVELOCITY LIQUID JETS

    Institute of Scientific and Technical Information of China (English)

    Shi Hong-hui; Tetsu Sakakura

    2003-01-01

    The fluid mechanics in the generation of hypervelocity water jets, light oil jets and glycerin jets was studied. Framing high-speed photography and single-shot photography were used to observe the jets directly. The purposes of this study is to investigate the disintegration and atomization processes at the velocity of 2km/s-3km/s as well as the auto-ignition and self-combustion of the light oil jets. Therefore, in the jet velocity measurement in addition to the high-speed photography, the results by other methods such as the laser beams cutting method and the shock wave detection using pressure transducers were also given. In the observation of the jets events, the illumination phenomenon was found, which may be regarded as the result of the auto-ignition and combustion of the light oil jets. Finally, the Munroe jet was studied.

  16. Fluid-Structure Interaction Mechanisms for Close-In Explosions

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw Jr.

    2000-01-01

    Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.

  17. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    Science.gov (United States)

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.

  18. An explicit example of Hopf bifurcation in fluid mechanics

    Science.gov (United States)

    Kloeden, P.; Wells, R.

    1983-01-01

    It is observed that a complete and explicit example of Hopf bifurcation appears not to be known in fluid mechanics. Such an example is presented for the rotating Benard problem with free boundary conditions on the upper and lower faces, and horizontally periodic solutions. Normal modes are found for the linearization, and the Veronis computation of the wave numbers is modified to take into account the imposed horizontal periodicity. An invariant subspace of the phase space is found in which the hypotheses of the Joseph-Sattinger theorem are verified, thus demonstrating the Hopf bifurcation. The criticality calculations are carried through to demonstrate rigorously, that the bifurcation is subcritical for certain cases, and to demonstrate numerically that it is subcritical for all the cases in the paper.

  19. An intelligent data acquisition system for fluid mechanics research

    Science.gov (United States)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  20. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pmagnetic particle translation in a clinical setting to evaluate synovial fluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tribodynamic Modeling of Digital Fluid Power Motors

    DEFF Research Database (Denmark)

    Johansen, Per

    In fluid power engineering, efficiency and reliability optimization have become a major objective. The interest in using fluid power transmission in wind and wave energy applications are producing requirements concerning efficiency and reliability in order to compete with other transmission systems...... of digital fluid power displacement units has been able to address this problem. The main idea of the digital fluid power displacement technology is to disable individual chambers, by use of electrical actuated valves. A displacement chamber is disabled by keeping the valve, between the chamber and the low...... design methods and tools are important to the development of digital fluid power machines. The work presented in this dissertation is part of a research program focusing on the development of digital fluid power MW-motors for use in hydraulic drive train in wind turbines. As part of this development...

  2. A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2013-01-01

    The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss...... to be coupled with multibody dynamics models. The focus of the current paper is an approach where the transient pressure field in hydrodynamic lubricated joint clearances are modelled by a set of control volumes and coupled with the fluid power machinery mechanics....... mechanisms is necessary in order to accommodate this demand. At present fully coupled thermo-elastic models for various tribological interfaces has been presented. However, in order to analyse the interaction between tribological interfaces in fluid power pumps and motors, these interface models needs...

  3. Fluid mechanical proximity effects in high-resolution gravure printing for printed electronics

    Science.gov (United States)

    Grau, Gerd; Scheideler, William J.; Subramanian, Vivek

    2016-11-01

    Gravure printing is a very promising method for printed electronics because it combines high throughput with high resolution. Recently, printed lines with 2 micrometer resolution have been demonstrated at printing speeds on the order of 1m/s. In order to build realistic circuits, the fluid dynamics of complex pattern formation needs to be studied. Recently, we showed that highly-scaled lines printed in close succession exhibit proximity effects that can either improve or deteriorate print quality depending on a number of parameters. It was found that this effect occurs if cells are connected by a thin fluid film. Here, we present further experimental and modeling results explaining the mechanism by which this thin fluid film affects pattern formation. During the transfer of ink from the roll to the substrate, ink can flow in between connected cells. Asymmetry in the fluid distribution created by the preceding doctor blade wiping process results in net fluid flow from cells that transfer first to cells that transfer subsequently. The proximity of these cells thus affects the final ink distribution on the substrate, which is critically important to understand and design optimally when printing highly-scaled patterns of electronic materials. This work is based upon work supported in part by the National Science Foundation under Cooperative Agreement No. EEC-1160494.

  4. Fluid load support and contact mechanics of hemiarthroplasty in the natural hip joint.

    Science.gov (United States)

    Pawaskar, Sainath Shrikant; Ingham, Eileen; Fisher, John; Jin, Zhongmin

    2011-01-01

    The articular cartilage covering the ends of the bones of diarthrodial synovial joints is thought to have evolved so that the loads are transferred under different and complex conditions, with a very high degree of efficiency and without compromising the structural integrity of the tissue for the life of an individual. These loading conditions stem from different activities such as walking, and standing. The integrity of cartilage may however become compromised due to congenital disease, arthritis or trauma. Hemiarthroplasty is a potentially conservative treatment when only the femoral cartilage is affected as in case of femoral neck fractures. In hemiarthroplasty, a metallic femoral prosthesis is used to articulate against the natural acetabular cartilage. It has also been hypothesized that biphasic lubrication is the predominant mechanism protecting the cartilage through a very high fluid load support which lowers friction. This may be altered due to hemiarthroplasty and have a direct effect on the frictional shear stresses and potentially cartilage degradation and wear. This study modelled nine activities of daily living and investigated the contact mechanics of a hip joint with a hemiarthroplasty, focussing particularly on the role of the fluid phase. It was shown that in most of the activities studied the peak contact stresses and peak fluid pressures were in the superior dome or lateral roof of the acetabulum. Total fluid load support was very high (~90%) in most of the activities which would shield the solid phase from being subjected to very high contact stresses. This was dependent not only on the load magnitude but also the direction and hence on the location of the contact area with respect to the cartilage coverage. Lower fluid load support was found when the contact area was nearer the edges where the fluid drained easily.

  5. Modeling fluid interactions with the rigid mush in alloy solidification

    Science.gov (United States)

    Plotkowski, Alexander J.

    Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of challenges. Among these is the appropriate treatment of the interface between the bulk fluid and the rigid mushy zone. In this region, the non-linear and coupled behavior of heat transfer, fluid mechanics, solute transport, and alloy thermodynamics has a dramatic effect on macrosegregation predictions. This work investigates the impact of numerical approximations at this interface in the context of a mixture model for alloy solidification. First, the numerical prediction of freckles in columnar solidification is investigated, and the predictive ability of the model is evaluated. The model is then extended to equiaxed solidification, in which the analogous interface is the transition of free-floating solid particles to a rigid dendritic network. Various models for grain attachment are investigated, and found to produce significant artifacts caused by the discrete nature of their implementation on the numerical grid. To reduce the impact of these artifacts, a new continuum grain attachment model is proposed and evaluated. The differences between these models are compared using uncertainty quantification, and recommendations for future research are presented.

  6. Prediction of fluid forces acting on a hand model in unsteady flow conditions.

    Science.gov (United States)

    Kudo, Shigetada; Yanai, Toshimasa; Wilson, Barry; Takagi, Hideki; Vennell, Ross

    2008-01-01

    The aim of this study was to develop a method to predict fluid forces acting on the human hand in unsteady flow swimming conditions. A mechanical system consisting of a pulley and chain mechanism and load cell was constructed to rotate a hand model in fluid flows. To measure the angular displacement of the hand model a potentiometer was attached to the axis of the rotation. The hand model was then fixed at various angles about the longitudinal axis of the hand model and rotated at different flow velocities in a swimming flume for 258 different trials to approximate a swimmer's stroke in unsteady flow conditions. Pressures were taken from 12 transducers embedded in the hand model at a sampling frequency of 200Hz. The resultant fluid force acting on the hand model was then determined on the basis of the kinetic and kinematic data taken from the mechanical system at the frequency of 200Hz. A stepwise regression analysis was applied to acquire higher order polynomial equations that predict the fluid force acting on the accelerating hand model from the 12 pressure values. The root mean square (RMS) difference between the resultant fluid force measured and that predicted from the single best-fit polynomial equation across all trials was 5N. The method developed in the present study accurately predicted the fluid forces acting on the hand model.

  7. Multiscale modelling of fluid-immersed granular media

    OpenAIRE

    Clément, Christian Paul André René

    2010-01-01

    In this thesis we present numerical simulation studies of fluid-immersed granular systems using models of varying scales and complexities. These techniques are used to examine the effects of an interstitial fluid on the dynamics of dense granular beds within a number of vibrated systems. After an introduction to the field of granular materials, we present the techniques used to model both the granular dynamics and the fluid flow. We introduce various multiscale techniques to couple the mo...

  8. Computational modeling of fluid structural interaction in arterial stenosis

    Science.gov (United States)

    Bali, Leila; Boukedjane, Mouloud; Bahi, Lakhdar

    2013-12-01

    Atherosclerosis affects the arterial blood vessels causing stenosis because of which the artery hardens resulting in loss of elasticity in the affected region. In this paper, we present: an approach to model the fluid-structure interaction through such an atherosclerosis affected region of the artery, The blood is assumed as an incompressible Newtonian viscous fluid, and the vessel wall was treated as a thick-walled, incompressible and isotropic material with uniform mechanical properties. The numerical simulation has been studied in the context of The Navier-Stokes equations for an interaction with an elastic solid. The study of fluid flow and wall motion was initially carried out separately, Discretized forms of the transformed wall and flow equations, which are coupled through the boundary conditions at their interface, are obtained by control volume method and simultaneously to study the effects of wall deformability, solutions are obtained for both rigid and elastic walls. The results indicate that deformability of the wall causes an increase in the time average of pressure drop, but a decrease in the maximum wall shear stress. Displacement and stress distributions in the wall are presented.

  9. Combustion research in the Internal Fluid Mechanics Division

    Science.gov (United States)

    Mularz, Edward J.

    1986-01-01

    The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.

  10. Remote monitoring of the mechanical instability induced by fluid substitution and water weakening in the laboratory

    Science.gov (United States)

    Dautriat, Jeremie; Sarout, Joel; David, Christian; Bertauld, Delphine; Macault, Romaric

    2016-12-01

    We studied the effect of fluid injection on the mechanical behaviour of the poorly consolidated and layered Sherwood sandstone under varying stresses, with micro-seismic (MS) monitoring. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties, derive the ultrasonic signature of the saturation front for each fluid, and the potential development of damage. To this end, the specimens were instrumented with 16 ultrasonic P-wave transducers used for both passive and active monitoring during loading and fluid injection. A first set of injection tests in hydrostatic conditions, using either water or inert oil, has been performed on samples subjected to low confining pressure. Water invasion in the pore space induces a significant decrease of the P-wave velocity, whereas oil invasion shows a velocity increase. The velocity decrease associated with water injection is analysed in terms of attenuation mechanisms and corresponding critical frequencies. A second series of injection tests with the same fluids has been performed during creep tests on critically-loaded samples. The development of mechanical instability inducing micro-seismic activity is observed only when water is injected into the sample. The recorded micro-seismic events are spatially and temporally located thanks to the dedicated velocity models accounting for the initially homogeneous sample anisotropy and for the heterogeneous velocity field associated with fluid migration within the sample. The consistency between the relocated clusters of events and the final damage pattern is verified thanks to X-ray computed tomography images of the samples taken post-mortem.

  11. Fluid versus global model approach for the modeling of active species production by streamer discharge

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2017-03-01

    In this paper, we seek to validate the zero-dimensional (global) model approach for the modeling of the plasma composition in high pressure reactive streamer discharges. We focus on streamers typical of dielectric barrier discharge that are widely used, for instance, for plasma-assisted reforming of greenhouse gases. However, our conclusions can be extended to the streamers used in plasma-assisted ignition/combustion and other related systems. First, we perform two-dimensional fluid simulations for streamers with positive and negative trigger voltages and analyze the difference between the breakdown mechanisms of these two modes. Second, we use the time evolution of the electron heating term obtained from the fluid simulations as the input parameter of the global model and compare the plasma component content predicted by this model with the results of the fluid model. We obtain a very good agreement between fluid and global models for all species generated in plasma. However, we conclude that streamers initiated by the positive and negative trigger voltage cannot be considered as symmetrical which is usually done in global models of barrier discharge reactors.

  12. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  13. Immunosensor with fluid control mechanism for salivary cortisol analysis.

    Science.gov (United States)

    Yamaguchi, Masaki; Matsuda, Yohei; Sasaki, Shohei; Sasaki, Makoto; Kadoma, Yoshihiro; Imai, Yoshikatsu; Niwa, Daisuke; Shetty, Vivek

    2013-03-15

    The purpose of this research is to demonstrate a new design for a cortisol immunosensor for the noninvasive and quantitative analysis of salivary cortisol. We propose a cortisol immunosensor with a fluid control mechanism which has both a vertical flow and a lateral flow. The detected current resulting from a competitive reaction between the sample cortisol and a glucose oxidase (GOD)-labeled cortisol conjugate was found to be inversely related to the concentration of cortisol in the sample solution. A calibration curve using the relative detected current showed a R(2)=0.98 and CV=14% for a range of standard cortisol solutions corresponding to the concentrations of native salivary cortisol (0.1-10 ng/ml). The measurement could be accomplished within 35 min and the cortisol immunosensor could be reused. These results show promise for realizing an on-site and easy-to-use biosensor for cortisol. Used for evaluation of human salivary cortisol levels, the cortisol immunosensor measurement corresponded closely with commercially available ELISA method (R(2)=0.92). Our results indicate the promise of the new cortisol immunosensor for noninvasive, point of care measurement of human salivary cortisol levels.

  14. Dynamics of fluid and light intensity in mechanically stirred photobioreactor.

    Science.gov (United States)

    Zhang, T

    2013-10-10

    Turbulent flows in a single-stage and a two-stage impeller-stirred photobioreactor with a simple geometric configuration were analyzed using computational fluid dynamics. The trajectories of the microorganisms entrained in the flow field were traced by the particle tracking method. By projecting these trajectories onto a radial-axial (r-z) plane with a given azimuth angle, we were able to observe four different dynamics zones: circulation, pure rotation, trap, and slow-motion. Within the pure rotation zone, turbulence can be observed near the edges of the impeller. The light intensity and the light/dark cycles subjected by the microorganisms differ significantly in these zones. These differences can be further changed by providing different incident light illuminations on the reactor surface. The dynamics zones can be altered by modifying the geometric configuration of the reactor and the impeller stirring mechanism. In combination with the utilization of different incident light illuminations, the light intensity dynamics and the light/dark cycles subjected by the microorganisms can be controlled such that an optimal photobioreactor design with a high efficiency of light utilization and a high formation rate of the biochemical products can be realized.

  15. Left ventricular muscle and fluid mechanics in acute myocardial infarction.

    Science.gov (United States)

    Nucifora, Gaetano; Delgado, Victoria; Bertini, Matteo; Marsan, Nina Ajmone; Van de Veire, Nico R; Ng, Arnold C T; Siebelink, Hans-Marc J; Schalij, Martin J; Holman, Eduard R; Sengupta, Partho P; Bax, Jeroen J

    2010-11-15

    Left ventricular (LV) diastolic filling is characterized by the formation of intraventricular rotational bodies of fluid (termed "vortex rings") that optimize the efficiency of LV ejection. The aim of the present study was to evaluate the morphology and dynamics of LV diastolic vortex ring formation early after acute myocardial infarction (AMI), in relation to LV diastolic function and infarct size. A total of 94 patients with a first ST-segment elevation AMI (59 ± 11 years; 78% men) were included. All patients underwent primary percutaneous coronary intervention. After 48 hours, the following examinations were performed: 2-dimensional echocardiography with speckle-tracking analysis to assess the LV systolic and diastolic function, the vortex formation time (VFT, a dimensionless index for characterizing vortex formation), and the LV untwisting rate; contrast echocardiography to assess LV vortex morphology; and myocardial contrast echocardiography to identify the infarct size. Patients with a large infarct size (≥ 3 LV segments) had a significantly lower VFT (p mechanical sequence of diastolic restoration play key roles in modulating the morphology and dynamics of early diastolic vortex ring formation.

  16. Cold Dark Matter Cosmology Conflicts with Fluid Mechanics and Observations

    Directory of Open Access Journals (Sweden)

    Carl H. Gibson

    2008-01-01

    Full Text Available Cold dark matter (CDM cosmology based on the Jeans 1902 criterion for gravitational instability gives predictions about the early universe contrary to fluid mechanics and observations. Jeans neglected viscosity, diffusivity, and turbulence: factors that determine gravitational structure formation and contradict small structures (CDM halos forming from non-baryonic dark matter particle candidates. From hydro-gravitational-dynamics (HGD cosmology, viscous-gravitational fragmentation produced supercluster (10^46 kg, cluster, and galaxy-mass (10^42 kg clouds in the primordial plasma with the large fossil density turbulence (3 ×10 ^ -17 kg m ^ -3 of the first fragmentation at 10^12 s, and a protogalaxy linear morphology reflecting maximum stretching on vortex lines of the plasma turbulence at plasma-gas transition at 10^13 s. Gas protogalaxies fragmented into proto-globular-star-cluster mass (10 ^36 kg clumps of protoplanet gas clouds that are now frozen as earth-mass (10^ 24-25 kg Jovian planets of the baryonic dark matter, about 30,000,000 rogue planets per star. Observations contradict the prediction of CDM hierarchical clustering cosmology that massive Population III first stars at 10^16 s existed but support the HGD prediction of gentle formation of small first stars in globular-star-clusters soon after 10^13 s.

  17. Spiral Phyllotaxis Pattern in an Animal Cell: A Fluid- Driven Mechanism for Red Cell Echinocytosis and Programmed Cell Death

    OpenAIRE

    Lofthouse, J. T.

    2004-01-01

    This paper demonstrates that the pattern of lipid spiculesthat emerge on the surface of red blood cells in the classic 'Discocyte to Echinocyte' shape change is a generative spiral, and presents a qualitative, fluid- driven mechanism for their production, compatible with the work of Douady and Couder. Implications for the dynamics of cell growth, plant cell phyllotaxy, programmed cell death and gravity sensitivity are explained in terms of a new qualitative model of cellular fluid dynamics.

  18. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    Science.gov (United States)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  19. Lattice Boltzmann Models for Multicomponent Fluids

    Science.gov (United States)

    2007-11-02

    between multiphase fluids. Two specific physical problems investigated: the shape of a sessile drop on a horizontal surface subjected to a gravitational field, and the effect of surface tension on contact angle .

  20. Fluid Model of Waveguide Transverse Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, optical fluid is firstly defined. By using the movement law of hydrodynamics, the transverse coupling of waveguides is discussed. The result fully coincides with the electromagnetic solution.

  1. Fluid Shearing for Accelerated Chemical Reactions - Fluid Mechanics in the VFD

    Science.gov (United States)

    Leivadarou, Evgenia; Dalziel, Stuart; G. K. Batchelor Laboratory, Department of Applied Mathematics; Theoretical Physics Team

    2016-11-01

    The Vortex Fluidic Device (VFD) is a rapidly rotating tube that can operate under continuous flow with a jet feeding liquid reactants to the tube's hemispherical base. It is a new 'green' approach to the organic synthesis with many industrial applications in cosmetics, protein folding and pharmaceutical production. The rate of reaction in the VFD is enhanced when the collision rate is increased. The aim of the project is to explain the fluid mechanics and optimize the performance of the device. One contribution to the increased yield is believed to be the high levels of shear stress. We attempt to enhance the shear stress by achieving high velocity gradients in the boundary layers. Another factor is the uncontrolled vibrations due to imperfections in the bearings and therefore it is important to assess their influence in the initial spreading. The surface area of the film should be maximized with respect to the rotation rate, geometry and orientation of the tube, flow rate, wettability and contact line dynamics. Experiments are presented for a flat disk and a curved bowl, establishing the optimum height of release, rotation rate and tube orientation. Vibrations were imposed to investigate the changes in the film formation. We discuss the implications of our results in the VFD.

  2. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    Science.gov (United States)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2017-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  3. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    Science.gov (United States)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2016-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  4. Multibody Dynamics of a Fluid Power Radial Piston Motor Including Transient Hydrodynamic Pressure Models of Lubricating Gaps

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2014-01-01

    is a multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure......The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...

  5. Fluid mechanics a concise introduction to the theory

    CERN Document Server

    Yih, Chia-Shun

    1969-01-01

    Fundamentals ; the basic equations ; general theorems for the flow of an inviscid fluid ; irrotational flows of an inviscid fluid of constant density ; waves in an incompressible ; effects of viscosity ; heat transfer and boundary layers of a gas ; hydrodynamic stability ; turbulence ; basic thermodynamics ; curvilinear coordinates.

  6. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  7. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokio, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 816-8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2001-03-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is placed on understanding of effects on turbulence characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  8. Surface tension driven flow in glass melts and model fluids

    Science.gov (United States)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  9. Climate dynamics and fluid mechanics: Natural variability and related uncertainties

    CERN Document Server

    Ghil, Michael; Simonnet, Eric; 10.1016/j.physd.2008.03.036

    2010-01-01

    The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural ...

  10. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  11. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    Science.gov (United States)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge

  12. Take-Home Experiments in Undergraduate Fluid Mechanics Education

    Science.gov (United States)

    Cimbala, John

    2007-11-01

    Hands-on take-home experiments, assigned as homework, are useful as supplements to traditional in-class demonstrations and laboratories. Students borrow the equipment from the department's equipment room, and perform the experiment either at home or in the student lounge or student shop work area. Advantages include: (1) easy implementation, especially for large classes, (2) low cost and easy duplication of multiple units, (3) no loss of lecture time since the take-home experiment is self-contained with all necessary instructions, and (4) negligible increase in student or teaching assistant work load since the experiment is assigned as a homework problem in place of a traditional pen and paper problem. As an example, a pump flow take-home experiment was developed, implemented, and assessed in our introductory junior-level fluid mechanics course at Penn State. The experimental apparatus consists of a bucket, tape measure, submersible aquarium pump, tubing, measuring cup, and extension cord. We put together twenty sets at a total cost of less than 20 dollars per set. Students connect the tube to the pump outlet, submerge the pump in water, and measure the volume flow rate produced at various outflow elevations. They record and plot volume flow rate as a function of outlet elevation, and compare with predictions based on the manufacturer's pump performance curve (head versus volume flow rate) and flow losses. The homework assignment includes an online pre-test and post-test to assess the change in students' understanding of the principles of pump performance. The results of the assessment support a significant learning gain following the completion of the take-home experiment.

  13. The early years of the Journal of Fluid Mechanics. Style and international impact

    Science.gov (United States)

    Moffatt, H. Keith

    2017-07-01

    The origins of the Journal of Fluid Mechanics, of which the first volume was published in 1956, are discussed, with reference to editorial correspondence during the early years of the Journal. This paper is based on a lecture given at the colloquium: A Century of Fluid Mechanics, 1870-1970, IMFT, Toulouse, France, 19-21 October 2016.

  14. Teaching Fluid Mechanics to the Beginning Graduate Student--An Objective-Oriented Approach.

    Science.gov (United States)

    Liu, Henry

    A premature embarkation in specialized areas of fluid mechanics by the beginning graduate student, without having first thoroughly learned the basics, leads to learning difficulties and destroys zeal for learning. To avoid these problems, many schools in the U.S. offer beginning graduate courses in fluid mechanics (BGCFM). Because the success or…

  15. Modeling Tools Predict Flow in Fluid Dynamics

    Science.gov (United States)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  16. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;

    2015-01-01

    force, but these models are computationally expensive and are not suitable for evaluating large numbers of different operation conditions or even design optimization. In the present paper, an effort is done to describe these fluid forces and their origin. An example of the total opposing fluid force...

  17. CHARACTERISTCS OF FLUID FILM IN OPTIMIZED SPIRAL GROOVE MECHANICAL SEAL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relationship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.

  18. Versatile and Robust Software for Multi-Fluid Plasma Modeling

    Science.gov (United States)

    2013-01-21

    models ,   MHD ,   Hall   MHD ,  two...described  by  two-­‐fluid  or  Hall   MHD  initially  evolves  to   something  where  only  kinetic   model  is  strictly...AFRL-OSR-VA-TR-2013-0153 "Versatile and Robust Software forMulti‐Fluid Plasma Modeling ” John Loverich and Uri Shumlak

  19. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    Science.gov (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  20. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  1. A two-fluid model for avalanche and debris flows.

    Science.gov (United States)

    Pitman, E Bruce; Le, Long

    2005-07-15

    Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.

  2. Mathematical Modeling in Continuum Mechanics

    Science.gov (United States)

    Temam, Roger; Miranville, Alain

    2005-06-01

    Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

  3. An Approximate Solution for Boundary Value Problems in Structural Engineering and Fluid Mechanics

    Directory of Open Access Journals (Sweden)

    A. Barari

    2008-01-01

    Full Text Available Variational iteration method (VIM is applied to solve linear and nonlinear boundary value problems with particular significance in structural engineering and fluid mechanics. These problems are used as mathematical models in viscoelastic and inelastic flows, deformation of beams, and plate deflection theory. Comparison is made between the exact solutions and the results of the variational iteration method (VIM. The results reveal that this method is very effective and simple, and that it yields the exact solutions. It was shown that this method can be used effectively for solving linear and nonlinear boundary value problems.

  4. On The Analysis of Labyrinth Seal Flow Induced Vibration by Oscillating Fluid Mechanics Method

    Institute of Scientific and Technical Information of China (English)

    ChenZuoyi; JingYouhao; 等

    1994-01-01

    A numerical model and a solution method to analyze the labyrinth seal flow induced vibration by Oscillating Fluid Mechanics Method(OFMM) are presented in this paper,including the basic equations and solution procedure to determine the oscillating velocity,pressure and the dynamic characteristic coefficients of Labyrinth seal such as the stiffness coefficients and damping coefficients.The results show that this method has the advantages of both less time consuming and high accuracy.In addition it can be applied to the field diagnosis of the vibration of the axis of turbomachinery system.

  5. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    Science.gov (United States)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  6. A Warm Fluid Model of Intense Laser-Plasma Interactions

    Science.gov (United States)

    Tarkenton, G. M.; Shadwick, B. A.; Esarey, E. H.; Leemans, W. P.

    2001-10-01

    Following up on our previous work on modeling intense laser-plasma interactions with cold fluids,(B.A.Shadwick, G. M. Tarkenton, E.H. Esarey, and W.P. Leemans, ``Fluid Modeling of Intense Laser-Plasma Interactions'', in Advanced Accelerator Concepts), P. Colestock and S. Kelley editors, AIP Conf. Proc. 569 (AIP, NY 2001), pg. 154. we are exploring warm fluid models. These models represent the next level in a hierarchy of complexity beyond the cold fluid approximation. With only a modest increase in computation effort, warm fluids incorporate effects that are relevant to a variety of technologically interesting cases. We present a derivation of the warm fluid from a kinetic (i.e. Vlasov) perspective and make a connection with the usual relativistic thermodynamic approach.(S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic Theory: Principles and Applications), North-Holland (1980). We will provide examples where the warm fluids yield physics results not contained in the cold model and discuss experimental parameters where these effects are believed to be important.

  7. In Vitro Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation.

    Science.gov (United States)

    Wittkowske, Claudia; Reilly, Gwendolen C; Lacroix, Damien; Perrault, Cecile M

    2016-01-01

    This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodeling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g., due to extended periods of bed rest or microgravity in space are associated with altered bone remodeling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signaling factors, such as nitric oxide, and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signaling, collagen deposition, and matrix mineralization. Particular attention is given to in vitro set-ups, which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibers, which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models.

  8. In vitro bone cell models: Impact of fluid shear stress on bone formation

    Directory of Open Access Journals (Sweden)

    Claudia Wittkowske

    2016-11-01

    Full Text Available This review describes the role of bone cells and their surrounding matrix in maintaining bone strength through the process of bone remodelling. Subsequently, this work focusses on how bone formation is guided by mechanical forces and fluid shear stress in particular. It has been demonstrated that mechanical stimulation is an important regulator of bone metabolism. Shear stress generated by interstitial fluid flow in the lacunar-canalicular network influences maintenance and healing of bone tissue. Fluid flow is primarily caused by compressive loading of bone as a result of physical activity. Changes in loading, e.g. due to extended periods of bed rest or microgravity in space are associated with altered bone remodelling and formation in vivo. In vitro, it has been reported that bone cells respond to fluid shear stress by releasing osteogenic signalling factors such as nitric oxide and prostaglandins. This work focusses on the application of in vitro models to study the effects of fluid flow on bone cell signalling, collagen deposition and matrix mineralization. Particular attention is given to in vitro set-ups which allow long-term cell culture and the application of low fluid shear stress. In addition, this review explores what mechanisms influence the orientation of collagen fibres which determine the anisotropic properties of bone. A better understanding of these mechanisms could facilitate the design of improved tissue-engineered bone implants or more effective bone disease models.

  9. Implementation and validation of a 1D fluid model for collapsible channels.

    Science.gov (United States)

    Anderson, Peter; Fels, Sidney; Green, Sheldon

    2013-11-01

    A 1D fluid model is implemented for the purpose of fluid-structure interaction (FSI) simulations in complex and completely collapsible geometries, particularly targeting the case of obstructive sleep apnea (OSA). The fluid mechanics are solved separately from any solid mechanics, making possible the use of a highly complex and/or black-box solver for the solid mechanics. The fluid model is temporally discretized with a second-order scheme and spatially discretized with an asymmetrical fourth-order scheme that is robust in highly uneven geometries. A completely collapsing and reopening geometry is handled smoothly using a modified area function. The numerical implementation is tested with two driven-geometry cases: (1) an inviscid analytical solution and (2) a completely closing geometry with viscous flow. Three-dimensional fluid simulations in static geometries are performed to examine the assumptions of the 1D model, and with a well-defined pressure-recovery constant the 1D model agrees well with 3D models. The model is very fast computationally, is robust, and is recommended for OSA simulations where the bulk flow pressure is primarily of interest.

  10. Teaching Fluid Mechanics for Undergraduate Students in Applied Industrial Biology: from Theory to Atypical Experiments

    CERN Document Server

    Absi, Rafik; Dufour, Florence; Huet, Denis; Bennacer, Rachid; Absi, Tahar

    2011-01-01

    EBI is a further education establishment which provides education in applied industrial biology at level of MSc engineering degree. Fluid mechanics at EBI was considered by students as difficult who seemed somewhat unmotivated. In order to motivate them, we applied a new play-based pedagogy. Students were asked to draw inspiration from everyday life situations to find applications of fluid mechanics and to do experiments to verify and validate some theoretical results obtained in course. In this paper, we present an innovative teaching/learning pedagogy which includes the concept of learning through play and its implications in fluid mechanics for engineering. Examples of atypical experiments in fluid mechanics made by students are presented. Based on teaching evaluation by students, it is possible to know how students feel the course. The effectiveness of this approach to motivate students is presented through an analysis of students' teaching assessment. Learning through play proved a great success in fluid...

  11. Multiphase fluid hammer: modeling, experiments and simulations

    OpenAIRE

    Lema Rodríguez, Marcos

    2013-01-01

    This thesis deals with the experimental and numerical analysis of the water hammer phenomenon generated by the discharge of a pressurized liquid into a pipeline kept under vacuum conditions. This flow configuration induces several multiphase phenomena such as cavitation and gas desorption that cannot be ignored in the water hammer behavior.The motivation of this research work comes from the liquid propulsion systems used in spacecrafts, which can undergo fluid hammer effects threatening the s...

  12. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer

    Science.gov (United States)

    Li, Zhe; Wang, Yingxi; Foo, Choon Chiang; Godaba, Hareesh; Zhu, Jian; Yap, Choon Hwai

    2017-08-01

    Giant deformation of dielectric elastomers (DEs) via electromechanical instability (or the "snap-through" phenomenon) is a promising mechanism for large-volume fluid pumping. Snap-through of a DE membrane coupled with compressible air has been previously investigated. However, the physics behind reversible snap-through of a DE diaphragm coupled with incompressible fluid for the purpose of fluid pumping has not been well investigated, and the conditions required for reversible snap-through in a hydraulic system are unknown. In this study, we have proposed a concept for large-volume fluid pumping by harnessing reversible snap-through of the dielectric elastomer. The occurrence of snap-through was theoretically modeled and experimentally verified. Both the theoretical and experimental pressure-volume curves of the DE membrane under different actuation voltages were used to design the work loop of the pump, and the theoretical work loop agreed with the experimental work loop. Furthermore, the feasibility of reversible snap-through was experimentally verified, and specific conditions were found necessary for this to occur, such as a minimum actuation voltage, an optimal range of hydraulic pressure exerted on the DE membrane and a suitable actuation frequency. Under optimal working conditions, we demonstrated a pumping volume of up to 110 ml per cycle, which was significantly larger than that without snap-through. Furthermore, we have achieved fluid pumping from a region of low pressure to another region of high pressure. Findings of this study would be useful for real world applications such as the blood pump.

  13. Multiscale Turbulence Models Based on Convected Fluid Microstructure

    CERN Document Server

    Holm, Darryl D

    2012-01-01

    The Euler-Poincar\\'e approach to complex fluids is used to derive multiscale equations for computationally modelling Euler flows as a basis for modelling turbulence. The model is based on a \\emph{kinematic sweeping ansatz} (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest 2-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modelling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  14. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  15. Small data global existence for a fluid-structure model

    Science.gov (United States)

    Ignatova, Mihaela; Kukavica, Igor; Lasiecka, Irena; Tuffaha, Amjad

    2017-02-01

    We address the system of partial differential equations modeling motion of an elastic body inside an incompressible fluid. The fluid is modeled by the incompressible Navier-Stokes equations while the structure is represented by the damped wave equation with interior damping. The additional boundary stabilization γ, considered in our previous paper, is no longer necessary. We prove the global existence and exponential decay of solutions for small initial data in a suitable Sobolev space.

  16. A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing

    CERN Document Server

    Turner, Daniel Z

    2012-01-01

    Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...

  17. Localization of Shear in Saturated Granular Media: Insights from a Multi-Scaled Granular-Fluid Model

    CERN Document Server

    Aharonov, Einat; Sparks, David; Toussaint, Renaud

    2013-01-01

    The coupled mechanics of fluid-filled granular media controls the behavior of many natural systems such as saturated soils, fault gouge, and landslides. The grain motion and the fluid pressure influence each other: It is well established that when the fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and as a result catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these systems increases. Despite the great importance of the coupled mechanics of grains-fluid systems, the basic physics that controls this coupling is far from understood. We developed a new multi-scaled model based on the discrete element method, coupled with a continuum model of fluid pressure, to explore this dynamical system. The model was shown recently to capture essential feedbacks between porosity changes arising from rearrangement of grains, and local pressure variations due to ...

  18. A mechanical model for phase-separation in debris flow

    CERN Document Server

    Pudasaini, Shiva P

    2016-01-01

    Understanding the physics of phase-separation between solid and fluid phases as a mixture mass moves down slope is a long-standing challenge. Here, we propose an extension of the two phase mass flow model (Pudasaini, 2012) by including a new mechanism, called separation-flux, that leads to strong phase-separation in avalanche and debris flows while balancing the enhanced solid flux with the reduced fluid flux. The separation flux mechanism is capable of describing the dynamically evolving phase-separation and levee formation in a multi-phase, geometrically three-dimensional debris flow. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects such as pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, topographic ...

  19. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-01-01

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making. PMID:24198613

  20. Fluid mechanics of directional solidification at reduced gravity

    Science.gov (United States)

    Chen, C. F.

    1992-01-01

    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  1. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  2. Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids

    NARCIS (Netherlands)

    Bonn, D.; Rodts, S.; Groenink, M.; Rafaï, S.; Shahidzadeh-Bonn, N.; Coussot, P.

    2008-01-01

    The review deals with applications of magnetic resonance imaging (MRI) techniques to study flow. We first briefly discuss the principles of flow measurement by MRI and give examples of some applications, such as multiphase flows, the MRI rheology of complex fluid flows, and blood flows in the human

  3. Fluid Mechanics of Capillary-Elastic Instabilities in Microgravity Environment

    Science.gov (United States)

    Grotberg, James B.

    2002-01-01

    The aim of this project is to investigate the closure and reopening of lung airways due to surface tension forces, coupled with airway elasticity. Airways are liquid-lined, flexible tubes and closure of airways can occur by a Rayleigh instability of the liquid lining, or an instability of the elastic support for the airway as the surface tension of the air-liquid interface pulls the tube shut, or both. Regardless of the mechanism, the airway is closed because the liquid lining has created a plug that prevents axial gas exchange. In the microgravity environment, surface tension forces dominate lung mechanics and would lead to more prevalent, and more uniformly distributed air-way closure, thereby creating a potential for respiratory problems for astronauts. Once closed the primary option for reopening an airway is by deep inspiration. This maneuver will pull the flexible airways open and force the liquid plug to flow distally by the incoming air stream. Airway reopening depends to a large extent on this plug flow and how it may lead to plug rupture to regain the continuity of gas between the environment and the alveoli. In addition to mathematical modeling of plug flows in liquid-lined, flexible tubes, this work has involved benchtop studies of propagating liquid plugs down tube networks that mimic the human airway tree. We have extended the work to involve animal models of liquid plug propagation in rat lungs. The liquid is radio-opaque and x-ray video imaging is used to ascertain the movement and distribution of the liquid plugs so that comparisons to theory may be made. This research has other uses, such as the delivery of liquids or drugs into the lung that may be used for surfactant replacement therapy or for liquid ventilation.

  4. Viscoelastic Modelling of Solid Rocket Propellants using Maxwell Fluid Model

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar

    2010-07-01

    Full Text Available Maxwell fluid model consisting of a spring and a dashpot in series is applied for viscoelastic characterisation of solid rocket propellants. Suitable values of spring constant and damping coefficient wereemployed by least square variation of errors for generation of complete stress-strain curve in uniaxial tensile mode for case-bonded solid propellant formulations. Propellants from the same lot were tested at different strain rates. It was observed that change in spring constant, representing elastic part was very small with strain rate but damping constant varies significantly with variation in strain rate. For a typical propellant formulation, when strain rate was raised from 0.00037/s to 0.185/s, spring constant K changed from 5.5 MPato 7.9 MPa, but damping coefficient D was reduced from 1400 MPa-s to 4 MPa-s. For all strain rates, stress-strain curve was generated using Maxwell model and close matching with actual test curve was observed.This indicates validity of Maxwell fluid model for uniaxial tensile testing curves of case-bonded solid propellant formulations. It was established that at higher strain rate, damping coefficient becomes negligible as compared to spring constant. It was also observed that variation of spring constant is logarithmic with strain rate and that of damping coefficient follows power law. The correlation coefficients were introduced to ascertain spring constants and damping coefficients at any strain rate from that at a reference strain rate. Correlationfor spring constant needs a coefficient H, which is function of propellant formulation alone and not of test conditions and the equation developeds K2 = K1 + H ´ ln{(de2/dt/(de1/dt}. Similarly for damping coefficient D also another constant S is introduced and prediction formula is given by D2 = D1 ´ {(de2/dt/(de1/dt}S.Evaluating constants H and S at different strain rates validate this mathematical formulation for differentpropellant formulations

  5. Mechanical and chemical behavior of intergranular fluids in nonhydrostatically stressed rocks at low temperature

    Institute of Scientific and Technical Information of China (English)

    刘亮明; 彭省临

    2001-01-01

    Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double-layer repulsive force or osmotic pressure due to double-layer, the fluid films can transmit nonhydrostatic stress. The solid minerals-intergranular fluids interaction and mass transfer by intergranular fluids is stress-related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.

  6. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.

    Science.gov (United States)

    Tiwari, Abhishek Kumar; Prasad, Jitendra

    2017-04-01

    Bone loss is a serious health problem. In vivo studies have found that mechanical stimulation may inhibit bone loss as elevated strain in bone induces osteogenesis, i.e. new bone formation. However, the exact relationship between mechanical environment and osteogenesis is less clear. Normal strain is considered as a prime stimulus of osteogenic activity; however, there are some instances in the literature where osteogenesis is observed in the vicinity of minimal normal strain, specifically near the neutral axis of bending in long bones. It suggests that osteogenesis may also be induced by other or secondary components of mechanical environment such as shear strain or canalicular fluid flow. As it is evident from the literature, shear strain and fluid flow can be potent stimuli of osteogenesis. This study presents a computational model to investigate the roles of these stimuli in bone adaptation. The model assumes that bone formation rate is roughly proportional to the normal, shear and fluid shear strain energy density above their osteogenic thresholds. In vivo osteogenesis due to cyclic cantilever bending of a murine tibia has been simulated. The model predicts results close to experimental findings when normal strain, and shear strain or fluid shear were combined. This study also gives a new perspective on the relation between osteogenic potential of micro-level fluid shear and that of macro-level bending shear. Attempts to establish such relations among the components of mechanical environment and corresponding osteogenesis may ultimately aid in the development of effective approaches to mitigating bone loss.

  7. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji

    2014-08-01

    Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.

  8. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    Science.gov (United States)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  9. Wave Propagation in Fluids Models and Numerical Techniques

    CERN Document Server

    Guinot, Vincent

    2007-01-01

    This book presents the physical principles of wave propagation in fluid mechanics and hydraulics. The mathematical techniques that allow the behavior of the waves to be analyzed are presented, along with existing numerical methods for the simulation of wave propagation. Particular attention is paid to discontinuous flows, such as steep fronts and shock waves, and their mathematical treatment. A number of practical examples are taken from various areas fluid mechanics and hydraulics, such as contaminant transport, the motion of immiscible hydrocarbons in aquifers, river flow, pipe transients an

  10. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    Science.gov (United States)

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

  11. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  12. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  13. Mechanics of magnetic fluid column in strong magnetic fields

    Science.gov (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  14. Siquieros accidental painting technique: a fluid mechanics point of view

    CERN Document Server

    Zetina, Sandra

    2012-01-01

    This is an entry for the Gallery of Fluid Motion of the 65th Annual Meeting of the APS-DFD (fluid dynamics video). This video shows an analysis of the 'accidental painting' technique developed by D.A. Siqueiros, a famous Mexican muralist. We reproduced the technique that he used: pouring layers of paint of different colors on top of each other. We found that the layers mix, creating aesthetically pleasing patterns, as a result of a Rayleigh-Taylor instability. Due to the pigments used to give paints their color, they can have different densities. When poured on top of each other, if the top layer is denser than the lower one, the viscous gravity current undergoes unstable as it spread radially. We photograph the process and produced slowed-down video to visualize the process.

  15. Coupled fluid and solid mechanics study for improved permeability estimation of fines' invaded porous materials

    Science.gov (United States)

    Mirabolghasemi, M.; Prodanovic, M.

    2012-12-01

    The problem of fine particle infiltration is seen in fields from subsurface transport, to drug delivery to industrial slurry flows. Sediment filtration and pathogen retention are well-known subsurface engineering problems that have been extensively studied through different macroscopic, microscopic and experimental modeling techniques Due to heterogeneity, standard constitutive relationships and models yield poor predictions for flow (e.g. permeability) and rock properties (e.g. elastic moduli) of the invaded (damaged) porous media. This severely reduces our ability to, for instance, predict retention, pressure build-up, newly formed flow pathways or porous medium mechanical behavior. We chose a coupled computational fluid dynamics (CFD) - discrete element modeling (DEM) approach to simulate the particulate flow through porous media represented by sphere packings. In order to minimize the uncertainty involved in estimating the flow properties of porous media on Darcy scale and address the dynamic nature of filtration process, this microscopic approach is adapted as a robust method that can incorporate particle interaction physics as well as the heterogeneity of the porous medium.. The coupled simulation was done in open-source packages which has both CFD (openFOAM) and DEM components (LIGGGHTS). We ran several sensitivity analyses over different parameters such as particle/grain size ratio, fluid viscosity, flow rate and sphere packing porosity in order to investigate their effects on the depth of invasion and damaged porous medium permeability. The response of the system to the variation of different parameters is reflected through different clogging mechanism; for instance, bridging is the dominant mechanism of pore-throat clogging when larger particles penetrate into the packing, whereas, in case of fine particles which are much smaller than porous medium grains (1/20 in diameter), this mechanism is not very effective due to the frequent formation and

  16. A dynamic neutral fluid model for the PIC scheme

    Science.gov (United States)

    Wu, Alan; Lieberman, Michael; Verboncoeur, John

    2010-11-01

    Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.

  17. Interpreting Students’ Perceptions in Fluid Mechanics Learning Outcomes

    OpenAIRE

    Soares, Filomena; Leão, Celina; Guedes, Anabela; Isabel PEREIRA; Morais, Cristina; Esteves, Teresa

    2015-01-01

    The objective of this study is to analyse the impact of introducing a practical work in the learning process of the Fluid Transport Systems course in Chemical Engineering degree. The students, in groups of two or three elements, were free to choose the application case in order to develop the practical work proposed by the responsible teachers. The students selected a centrifugal pump to supply water to houses or buildings and designed the piping system. The practical work was evaluated throu...

  18. Mechanisms of Fluid-Mud Interactions Under Waves

    Science.gov (United States)

    2011-01-01

    surface a corrugated appearance (Figure 12). Through careful analysis of these tests, it has been concluded that the waves are the result of a resonant...square meter per month. Analysis of X-radiographs from this field program has contributed to development of new theory relating hydrodynamics of...Shear near the base of the mobile fluid mud layer mixes coarser underlying rippled sediment with overlying finer sediment, producing laminations

  19. Fluid intelligence and neural mechanisms of conflict adaptation

    DEFF Research Database (Denmark)

    Liu, Tongran; Jiannong, Shi; Xiao, Tong

    2016-01-01

    The current study investigated whether adolescents with different intellectual levels have different conflict adaptation processes. Adolescents with high and average IQ abilities were enrolled, and their behavioral responses and event-related potentials (ERPs) were recorded during a modified Erik...... adaptation control processing with smaller SP amplitude-CAE values. In conclusion, the present study revealed the essential association between fluid intelligence and conflict adaptation processes....

  20. Fluid mechanics for mechanical engineering. Technology and examples; Stroemungslehre fuer den Maschinenbau. Technik und Beispiele

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, H.E. [Technische Univ. Berlin (Germany). Hermann-Foettinger-Institut fuer Stroemungsmechanik

    2001-07-01

    The book complements the established fluid mechanics textbook. It discusses the same subjects but goes into more detail and contains many practical examples. It addresses students of engineering, physics and practically oriented mathematics and can be used for independent studying or for a deeper understanding of subject matter treated in university lectures. [German] Der Band stellt als Ergaenzung zum eingefuehrten Grundlagenbuch Stroemungslehre eine tiefergehende Behandlung des Vorlesungsstoffes dar. Die Einteilung der Kapitel entspricht im wesentlichen der im Band Grundlagen: Hydrostatik, Kinematik, Impulssatz, NAVIER-Stokes-Bewegungsgleichung, Potential-, Wirbel- und Grenzschichtstroemung sowie turbulente Stroemung. Das Buch schliesst mit Darstellungen ueber Rohrstroemungen, Umstroemungen von Koerpern, Aehnlichkeitsgesetzen und numerische Stroemungsberechnung. Es enthaelt zahlreiche Praxisbeispiele. Geeignet fuer Studenten der Ingenieurwissenschaften, Physiker und praxisorientierte Mathematiker zum Selbststudium sowie zur Vorlesungsbegleitung. (orig.)

  1. Hybrid fluid/kinetic model for parallel heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J.D.; Hegna, C.C.; Held, E.D. [Univ. of Wisconsin, Madison, WI (United States)

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  2. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... is given using an analytically solvable example, showing the explicit form of the force terms and highlighting the significance of the added mass and history term in certain fast switching valve applications. A general approximate model for arbitrary valve geometries is then proposed with offset...

  3. Fluid flow modeling in complex areas*, **

    Directory of Open Access Journals (Sweden)

    Poullet Pascal

    2012-04-01

    Full Text Available We show first results of 3D simulation of sea currents in a realistic context. We use the full Navier–Stokes equations for incompressible viscous fluid. The problem is solved using a second order incremental projection method associated with the finite volume of the staggered (MAC scheme for the spatial discretization. After validation on classical cases, it is used in a numerical simulation of the Pointe à Pitre harbour area. The use of the fictious domain method permits us to take into account the complexity of bathymetric data and allows us to work with regular meshes and thus preserves the efficiency essential for a 3D code. Dans cette étude, nous présentons les premiers résultats de simulation d’un écoulement d’un fluide incompressible visqueux dans un contexte environnemental réel. L’approche utilisée utilise une méthode de domaines fictifs pour une prise en compte d’un domaine physique tridimensionnel très irrégulier. Le schéma numérique combine un schéma de projection incrémentale et des volumes finis utilisant des volumes de contrôle adaptés à un maillage décalé. Les tests de validation sont menés pour les cas tests de la cavité double entraînée ainsi que l’écoulement dans un canal avec un obstacle placé de manière asymmétrique.

  4. Five decades of tackling models for stiff fluid dynamics problems a scientific autobiography

    CERN Document Server

    Zeytounian, Radyadour Kh

    2014-01-01

    Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of the...

  5. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  6. A Fluid Mud Transport Model in Multi-Dimensions

    Science.gov (United States)

    2007-01-01

    A Fluid Mud Transport Model in Multi-dimensions Tian-Jian Hsu Civil and Coastal Engineering, University of Florida, Gainesville, FL 32608 phone...NAME(S) AND ADDRESS(ES) University of Florida, Civil and Coastal Engineering,Gainesville,FL,32608 8. PERFORMING ORGANIZATION REPORT NUMBER 9...sediment transport processes are carried out in several directions: Extend to 2D and incorporate Bingham rheology : The previous 1DV fluid mud

  7. Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System

    Science.gov (United States)

    Majumdar, Alok; Flachbart, Robin

    2003-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow

  8. MECHANISMS OF FLUID SHEAR-INDUCED INHIBITION OF POPULATION GROWTH IN A RED-TIDE DINOFLAGELLATE

    Science.gov (United States)

    Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various ...

  9. Methodology for Developing Teaching Activities and Materials for Use in Fluid Mechanics Courses in Undergraduate Engineering Programs

    Science.gov (United States)

    Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert

    2015-01-01

    "Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…

  10. Modeling of Phase Equilibria Containing Associating Fluids

    DEFF Research Database (Denmark)

    Derawi, Samer; Kontogeorgis, Georgios

    glycol + heptane, methylcyclohexane, hexane, propylene glycol + heptane, diethylene glycol + heptane, triethylene glycol + heptane, and tetraethylene glycol + heptane. The data obtained were correlated with the NRTL model and two different versions of the UNIQUAC equation. The NRTL model and one...

  11. Microfluidic flow switching design using volume of fluid model.

    Science.gov (United States)

    Chein, Reiyu; Tsai, S H

    2004-03-01

    In this study, a volume of fluid (VOF) model was employed for microfluidic switch design. The VOF model validity in predicting the interface between fluid streams with different viscosities co-flowing in a microchannel was first verified by experimental observation. It was then extended to microfluidic flow switch design. Two specific flow switches, one with a guided fluid to one of five desired outlet ports, and another with a guided fluid flows into one, two, or three outlet ports equally distributed along the outlet channel of a Y-shaped channel. The flow switching was achieved by controlling the flow rate ratios between tested and buffer fluids. The numerical results showed that the VOF model could successfully predict the flow switching phenomena in these flow switches. The numerical results also showed that the flow rate ratio required for flow switching depends on the viscosity ratio between the tested and buffer fluids. The numerical simulation was verified by experimental study and the agreement was good.

  12. A new paradigm for variable-fidelity stochastic simulation and information fusion in fluid mechanics

    Science.gov (United States)

    Venturi, Daniele; Parussini, Lucia; Perdikaris, Paris; Karniadakis, George

    2015-11-01

    Predicting the statistical properties of fluid systems based on stochastic simulations and experimental data is a problem of major interest across many disciplines. Even with recent theoretical and computational advancements, no broadly applicable techniques exist that could deal effectively with uncertainty propagation and model inadequacy in high-dimensions. To address these problems, we propose a new paradigm for variable-fidelity stochastic modeling, simulation and information fusion in fluid mechanics. The key idea relies in employing recursive Bayesian networks and multi-fidelity information sources (e.g., stochastic simulations at different resolution) to construct optimal predictors for quantities of interest, e.g., the random temperature field in stochastic Rayleigh-Bénard convection. The object of inference is the quantity of interest at the highest possible level of fidelity, for which we can usually afford only few simulations. To compute the optimal predictors, we developed a multivariate recursive co-kriging approach that simultaneously takes into account variable fidelity in the space of models (e.g., DNS vs. potential flow solvers), as well as variable-fidelity in probability space. Numerical applications are presented and discussed. This research was supported by AFOSR and DARPA.

  13. Evolution of pore fluid pressures in a stimulated geothermal reservoir inferred from earthquake focal mechanisms

    Science.gov (United States)

    Terakawa, T.; Deichmann, N.

    2014-12-01

    We developed an inversion method to estimate the evolution of pore fluid pressure fields from earthquake focal mechanism solutions based on the Bayesian statistical inference and Akaike's Bayesian information criterion (ABIC). This method's application to induced seismicity in the Basel enhanced geothermal system in Switzerland shows the evolution of pore fluid pressures in response to fluid injection experiments. For a few days following the initiation of the fluid injection, overpressurized fluids are concentrated around the borehole and then anisotropically propagate within the reservoir until the bleed-off time. Then, the pore fluid pressure in the vicinity of the borehole drastically decreases, and overpressurized fluids become isolated in a few major fluid pockets. The pore fluid pressure in these pockets gradually decreases with time. The pore fluid pressure in the reservoir is less than the minimum principal stress at each depth, indicating that the hydraulic fracturing did not occur during stimulation. This suggests that seismic events may play an important role to promote the development of permeable channels, particularly southeast of the borehole where the largest seismic event (ML 3.4) occurred. This is not directly related to a drastic decrease in fault strength at the hypocenter, but rather the positive feedback between permeability enhancement and poro-elastic and stress transfer loading from slipping interfaces. These processes likely contribute to this event's nucleation.

  14. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    Science.gov (United States)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  15. Crystal Growth and Fluid Mechanics Problems in Directional Solidification

    Science.gov (United States)

    Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.

    2001-01-01

    Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.

  16. A fully dynamic magneto-rheological fluid damper model

    Science.gov (United States)

    Jiang, Z.; Christenson, R. E.

    2012-06-01

    Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.

  17. Microchannel Emulsification: From Computational Fluid Dynamics to Predictive Analytical Model

    NARCIS (Netherlands)

    Dijke, van K.C.; Schroën, C.G.P.H.; Boom, R.M.

    2008-01-01

    Emulsion droplet formation was investigated in terrace-based microchannel systems that generate droplets through spontaneous Laplace pressure driven snap-off. The droplet formation mechanism was investigated through high-speed imaging and computational fluid dynamics (CFD) simulation, and we found g

  18. Experience revising an advanced-undergraduate/beginning-graduate fluid mechanics textbook

    Science.gov (United States)

    Dowling, David

    2012-11-01

    In the fall of 2009, Elsevier Inc. approached me about taking over as the lead author of the fluid mechanics textbook by P. K. Kundu and I. M. Cohen. I subsequently agreed and this presentation provides the story of the process and the approach taken to revising this fluid mechanics textbook which has been in print for approximately 15 years. The goal of the revision was to produce an excellent textbook for second courses in fluid mechanics taken by advanced undergraduate and beginning graduate students while maintaining the book's appeal to instructors who used prior editions. Thus, I sought to maintain or expand the text's fluid mechanics content, while adjusting the text's tone so that this content might be more readily reached by students who may have had only one prior course in fluid mechanics, or who may not specialize in fluid mechanics but do possess appropriate mathematical skills. The entire revision process involved seven steps: (i) formulating a revision plan that was independently reviewed, (ii) agreeing to a formal contract with deadlines, (iii) revising the text, figures, and front matter, (iv) proof reading and correcting copy-edited text, (v) correcting page proofs, (vi) generating the solutions manual, and (vii) tabulating errata. Formulating and executing the

  19. Mechanism of diapirism and episodic fluid injections in the Yinggehai Basin

    Institute of Scientific and Technical Information of China (English)

    HAO; Fang

    2002-01-01

    [1]Jackson, M. P. A., Vendeville, B. C., Regional extension as a geologic trigger for diapirism, Geological Society of Ameri-ca Bulletin, 1994, 106(1): 57-73.[2]Pérez-Belzuz, F., Alonso, B., Ercilla, G., History of mud diapirism and trigger mechanisms in the Western Alboran Sea, Tectonophysics, 1996, 282(2): 399-422.[3]Hunt, J. M., Petroleum Geology and Geochemistry, 2nd ed., San Francisco: Freeman and Company, 1996, 743.[4]Gong Zaisheng, Li Sitian, Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South Chi-na Sea (in Chinese), Beijing: Science Press, 1997, 510.[5]Price, L. C., Basin richness and source rock disruption: A fundamental relationship? Journal of Petroleum Geology, 1994, 17(1): 5-38.[6]Roberts, S. J., Nunn, J. A., Episodic fluid expulsion from geopressured sediments, Marine and Petroleum Geology, 1995, 12(2): 195-204.[7]Dewers, T., Ortoleva, P., Nonlinear dynamical aspects of deep basin hydrology: Fluid compartment formation and episodic fluid release, American Journal of Science, 1994, 294(5): 713-755.[8]Dai, J. X., Song, Y., Dai, C. S. et al., Geochemistry and accumulation of carbon dioxide gases in China, AAPG Bulletin, 1996, 80(9): 1615-1626.[9]Hao Fang, Li Sitian, Sun Yongchuan et al., Organic maturation and petroleum generation model in the Yinggehai and Qiongdongnan Basins, Science in China, 1996, 39(6): 650-658.[10]Hao Fang, Li Sitian, Dong Weiliang et al., Abnormal organic matter maturation in the Yinggehai Basin, offshore South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems, Journal of Petroleum Geology, 1998, 21(4): 427-444.[11]Pollastro, R. M., Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age, Clays and Clay Minerals, 1993, 41(2): 119-133.[12]Ko, J., Hesse, R., Illite/smectite diagenesis in the Beaufort-Mackenzie Basin, Arctic Canada

  20. Thermophysical property data - Who needs them. [similarity principle applications in fluid mechanics and heat transfer

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    Specific examples are cited herein to illustrate the universal needs and demands for thermophysical property data. Applications of the principle of similarity in fluid mechanics and heat transfer and extensions of the principle to fluid mixtures are discussed. It becomes quite clear that no matter how eloquent theories or experiments in fluid mechanics or heat transfer are, the results of their application can be no more accurate than the thermophysical properties required to transform these theories into practice, or in the case of an experiment, to reduce the data. Present-day projects take place on such a scale that the need for international standards and mutual cooperation is evident.

  1. The mechanical response in a fluid of synthetic antiferromagnetic and ferrimagnetic microdiscs with perpendicular magnetic anisotropy

    Science.gov (United States)

    Vemulkar, T.; Welbourne, E. N.; Petit, D. C. M. C.; Cowburn, R. P.

    2017-01-01

    In this article, we demonstrate the magneto-mechanic behavior in a fluid environment of perpendicularly magnetized microdiscs with antiferromagnetic interlayer coupling. When suspended in a fluid and under the influence of a simple uniaxial applied magnetic field sequence, the microdiscs mechanically rotate to access the magnetic saturation processes that are either that of the easy axis, hard axis, or in-between the two, in order to lower their energy. Further, these transitions enable the magnetic particles to form reconfigurable magnetic chains, and transduce torque from uniaxial applied fields. These microdiscs offer an attractive platform for the fabrication of fluid based micro- and nanodevices, and dynamically self assembled complex architectures. PMID:28190886

  2. The mechanical response in a fluid of synthetic antiferromagnetic and ferrimagnetic microdiscs with perpendicular magnetic anisotropy

    Science.gov (United States)

    Vemulkar, T.; Welbourne, E. N.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.

    2017-01-01

    In this article, we demonstrate the magneto-mechanic behavior in a fluid environment of perpendicularly magnetized microdiscs with antiferromagnetic interlayer coupling. When suspended in a fluid and under the influence of a simple uniaxial applied magnetic field sequence, the microdiscs mechanically rotate to access the magnetic saturation processes that are either that of the easy axis, hard axis, or in-between the two, in order to lower their energy. Further, these transitions enable the magnetic particles to form reconfigurable magnetic chains, and transduce torque from uniaxial applied fields. These microdiscs offer an attractive platform for the fabrication of fluid based micro- and nanodevices, and dynamically self assembled complex architectures.

  3. A review of interaction mechanisms in fluid-solid flows

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.; Rajagopal, K.R. (Pittsburgh Univ., PA (USA). Dept. of Mechanical Engineering); Massoudi, M. (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-09-01

    Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.

  4. The instanton method and its numerical implementation in fluid mechanics

    Science.gov (United States)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  5. A numerical investigation of the fluid mechanical sewing machine

    CERN Document Server

    Brun, Pierre-Thomas; Audoly, Basile

    2012-01-01

    A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties. Here we simulate this experiment numerically using the Discrete Viscous Threads method that can predict the non-steady dynamics of thin viscous filaments, capturing the combined effects of inertia, stretching, bending and twisting. Our simulations successfully reproduce nine out of ten different patterns previously seen in the laboratory, and agree closely with the experimental phase diagram of Morris et al.\\ (2008). We propose a new classification of the patterns based on the Fourier spectra of the longitudinal and transverse motion of the point of contact of the thread with the belt. These frequencies appear to be locked in most cases to simple ratios of the frequency $\\Omega_c$ of steady coiling obtained in the limit of zero belt speed. In particular the intriguing `alternating loops' pattern is produced by combining the first five m...

  6. Mechanics of granular-frictional-visco-plastic fluids in civil and mining engineering

    Science.gov (United States)

    Alehossein, H.; Qin, Z.

    2013-10-01

    The shear stress generated in mine backfill slurries and fresh concrete contains both velocity gradient dependent and frictional terms, categorised as frictional viscous plastic fluids. This paper discusses application of the developed analytical solution for flow rate as a function of pressure and pressure gradient in discs, pipes and cones for such frictional Bingham-Herschel-Bulkley fluids. This paper discusses application of this continuum fluid model to industrial materials like mine and mineral slurries, backfills and fresh concrete tests.

  7. Multivariate models of mixed assortment: phenotypic assortment and social homogamy for education and fluid ability.

    Science.gov (United States)

    Reynolds, C A; Baker, L A; Pedersen, N L

    2000-11-01

    Phenotypic assortment is assumed to be the principal mechanism of spouse similarity in most biometrical studies. Other assortment mechanisms, such as social homogamy, may be plausible. Two models are presented that consider phenotypic assortment and social homogamy simultaneously (i.e., mixed assortment), where selective associations between social background factors (Model I) versus selective associations between total environments (Model II) distinguish the models. A series of illustrative analyses was undertaken for education and fluid ability available on a sample of 116 Swedish twin pairs and their spouses. On the basis of several fit criteria Model I was preferred over Model II. Both social homogamy and phenotypic assortment may contribute to spouse similarity for educational attainment and fluid ability. Furthermore, spouse similarity for fluid ability may arise indirectly from social homogamy and phenotypic assortment for educational attainment. Power analyses indicated greater observed power for Model I than Model II. Additional power analyses indicated that considerably more twin-spouse sets would be needed for Model II than Model I, to resolve social homogamy and phenotypic assortment. Effects of misspecification of mechanisms of spouse similarity are also briefly discussed.

  8. Axially Symmetric Cosmological Mesonic Stiff Fluid Models in Lyra's Geometry

    CERN Document Server

    Gad, Ragab M

    2009-01-01

    In this paper, we obtained a new class of axially symmetric cosmological mesonic stiff fluid models in the context of Lyra's geometry. Expressions for the energy, pressure and the massless scalar field are derived by considering the time dependent displacement field. We found that the mesonic scalar field depends on only $t$ coordinate. Some physical properties of the obtained models are discussed.

  9. A 2-Dimensional Fluid Model for an Argon Rf Discharge

    NARCIS (Netherlands)

    Passchier, J. D. P.; W. J. Goedheer,

    1993-01-01

    A fluid model for an argon rf discharge in a cylindrical discharge chamber is presented. The model contains the particle balances for electrons and ions and the electron energy balance. A nonzero autobias voltage is obtained by imposing the condition that the time-averaged current toward the powered

  10. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  11. A review on solar wind modeling: kinetic and fluid aspects

    CERN Document Server

    Echim, Marius; Lie-Svendsen, Oystein

    2013-01-01

    We review the main advantages and limitations of the kinetic exospheric and fluid models of the solar wind (SW). We discuss the hydrostatic model imagined by Chapman, the first supersonic hydrodynamic models published by Parker and the first generation subsonic kinetic model proposed by Chamberlain. It is shown that a correct estimation of the electric field as in the second generation kinetic exospheric models developed by Lemaire and Scherer, provides a supersonic expansion of the corona, reconciling the hydrodynamic and the kinetic approach. The third generation kinetic exospheric models considers kappa velocity distribution function (VDF) instead of a Maxwellian at the exobase and in addition they treat a non-monotonic variation of the electric potential with the radial distance; the fourth generation exospheric models include Coulomb collisions based on the Fokker--Planck collision term. Multi-fluid models of the solar wind provide a coarse grained description and reproduce with success the spatio-tempor...

  12. Dynamic Modeling of ThermoFluid Systems

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch

    2003-01-01

    formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...

  13. Modelling vaporous cavitation on fluid transients

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A comprehensive study of the problem of modelling vaporous cavitation in transmission lines is presented. The two-phase homogeneous equilibrium vaporous cavitation model which has been developed is compared with the conventional column separation model. The latter predicts unrealistically high pressure spikes because of a conflict arising from the prediction of negative cavity sizes if the pressure is not permitted to fall below the vapour pressure, or the prediction of negative absolute pressures if the cavity size remains positive. This is verified by a comparison of predictions with previously published experimental results on upstream, midstream and downstream cavitation. The new model has been extended to include frequency-dependent friction. The characteristics predicted by the frequency-dependent friction model show close correspondence with experimental data.

  14. DYNAMIC MODELING OF METAMORPHIC MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The concept of metamorphic mechanism is put forward according to the change of configurations from one state to another. Different configurations of metamorphic mechanism are described through the method of Huston lower body arrays. Kinematics analyses for metamorphic mechanism with generalized topological structure, including the velocity, angular velocity, acceleration and angular acceleration, are given. Dynamic equations for an arbitrary configuration, including close-loop constraints, are formed by using Kane's equations. For an arbitrary metamorphic mechanism, the transformation matrix of generalized speeds between configuration (*)and(*)+1 is obtained for the first time. Furthermore, configuration-complete dynamic modeling of metamorphic mechanism including all configurations is completely established.

  15. Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport

    Science.gov (United States)

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  16. 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, volume 2

    Science.gov (United States)

    1994-07-01

    The proceedings volumes 1 and 2 comprise the papers that were accepted for presentation at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14, 1994. The prime objective of this Seventh Symposium is to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and reveal significant results to fluid mechanics. The applications of laser techniques to scientific and engineering fluid flow research is emphasized, but contributions to the theory and practice of laser methods are also considered where they facilitate new improved fluid mechanic research. Attention is focused on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars such as particle image velocimetry and laser induced fluorescence.

  17. 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, volume 1

    Science.gov (United States)

    1994-07-01

    The proceedings volumes 1 and 2 comprise the papers that were accepted for presentation at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14, 1994. The prime objective of this Seventh Symposium is to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and reveal significant results to fluid mechanics. The applications of laser techniques to scientific and engineering fluid flow research is emphasized, but contributions to the theory and practice of laser methods are also considered where they facilitate new improved fluid mechanics research. Attention is focused on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars such as particle image velocimetry and laser induced fluorescence.

  18. Fluid-percussion–induced traumatic brain injury model in rats

    OpenAIRE

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in ...

  19. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain.

    Science.gov (United States)

    Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian

    2011-03-23

    Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.

  20. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    Science.gov (United States)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  1. Reduced order modeling of some fluid flows of industrial interest

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, D; Terragni, F; Velazquez, A; Vega, J M, E-mail: josemanuel.vega@upm.es [E.T.S.I. Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2012-06-01

    Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor. (review)

  2. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  3. Computational fluid dynamics investigation of turbulence models for non-newtonian fluid flow in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2010-12-01

    In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.

  4. Schaum’s outline of fluid mechanics and hydraulics

    CERN Document Server

    Giles, Ranald V; Liu, Cheng

    2014-01-01

    Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: 622 fully solved problems; extra practice on topics such as buoyancy and flotation, complex pipeline systems, fluid machinery, flow in open channels, and more; and support for all the major textbooks for fluidmechanics and hydraulics courses. Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time - and get your best test scores! Schaum's Outlines - Problem Solved.

  5. The instanton method and its numerical implementation in fluid mechanics

    CERN Document Server

    Grafke, Tobias; Schäfer, Tobias

    2015-01-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to...

  6. Personal Computer (PC) based image processing applied to fluid mechanics

    Science.gov (United States)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  7. The NASA Lewis Research Center Internal Fluid Mechanics Facility

    Science.gov (United States)

    Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

    1991-01-01

    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

  8. Frictional heat transfer regularity of the fluid film in mechanical seals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The frictional heat transfer regularity in the mechanical seal system consisting of the rotating ring, the stationary ring, the fluid film in the end faces and the sealed medium was investigated. The primary factors affecting the frictional heat transfer regularity, such as the heat transfer coefficients from the rings to the sealed medium, the frictional heat flux, the frictional heat distribution ratio and so on, were discussed. The equations for calculating the temperature field both in the sealing members and in the fluid film were derived. The coupling analysis of the frictional heat of the fluid film and the thermal deformation of the two end faces of the rings was carried out to obtain the separation angle of the two deformed end faces in consideration of the viscosity change of the fluid film. The results indicate that the frictional heat of the fluid film heavily affects its characteristic and the sealing performance of mechanical seals. The frictional heat changes not only the shape of the gap between the end faces but also the viscosity of the fluid film, and thereupon leads to the increase of the leakage rate. The maximum temperature of the system is at the inner radius of the fluid film, and most of the frictional heat is conducted by the rotating ring. Based on the heat transfer analysis method put forward in this paper, the parameterized design of mechanical seals can be realized to determine the best geometrical parameters and to select the appropriate material of the sealing members.

  9. Seismicity and fluid injections: numerical modelling of fault activation

    Science.gov (United States)

    Murphy, S.; O'Brien, G.; Bean, C.; McCloskey, J.; Nalbant, S.

    2012-04-01

    Injection of fluid into the subsurface is a common technique and is used to optimise returns from hydrocarbon plays (e.g. enhanced oil recovery, hydrofacturing of shales) and geothermal sites as well as for the sequestering carbon dioxide. While it is well understood that stress perturbations caused by fluid injections can induce/trigger earthquakes; the modelling of such hazard is still in its infancy. By combining fluid flow and seismicity simulations we have created a numerical model for investigating induced seismicity over large time periods so that we might examine the role of operational and geological factors in seismogenesis around a sub-surface fluid injection. In our model, fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. We can accommodate complicated geological structures in our simulations. Seismicity is modelled using a quasi-dynamic relationship between stress and slip coupled with a rate-and state friction law. By spatially varying the frictional parameters, the model can reproduce both seismic and aseismic slip. Static stress perturbations (due to either to fault cells slipping or fluid injection) are calculated using analytical solutions for slip dislocations/pressure changes in an elastic half space. An adaptive time step is used in order to increase computational efficiency and thus allow us to model hundreds of years of seismicity. As a case study, we investigate the role that relative fault - injection location plays in seismic activity. To do this we created three synthetic catalogues with only the relative location of the fault from the point of injection varying between the models. In our control model there is no injection meaning it contains only tectonically triggered events. In the other two catalogues, the injection site is placed below and adjacent to the fault respectively. The injection itself is into a permeable thin planar layer

  10. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  11. Numerical simulation of fluid bed drying based on two-fluid model and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Assari, M.R. [Jundi-shapur University, Dezful (Iran); Basirat Tabrizi, H.; Saffar-Avval, M. [Amirkabir University of Technology, Department of Mechanical Engineering, Tehran (Iran)

    2007-02-15

    A mathematical model for batch drying based on the Eulerian 'two-fluid models' was developed. The two-dimensional, axis-symmetrical cylindrical equations for both phases were solved numerically. The governing equations were discretized using a finite volume method with local grid refinement near the wall and inlet port. The effects of parameters such as inlet gas velocity and inlet gas temperature on the moisture content, temperature of solid and gas at the outlet are shown. This data from the model was compared with that obtained from experiments with a fluidized bed and found to be in reasonably good agreement. (author)

  12. Coupled discrete element modeling of fluid injection into dense granular media

    Science.gov (United States)

    Zhang, Fengshou; Damjanac, Branko; Huang, Haiying

    2013-06-01

    The coupled displacement process of fluid injection into a dense granular medium is investigated numerically using a discrete element method (DEM) code PFC2D® coupled with a pore network fluid flow scheme. How a dense granular medium behaves in response to fluid injection is a subject of fundamental and applied research interests to better understand subsurface processes such as fluid or gas migration and formation of intrusive features as well as engineering applications such as hydraulic fracturing and geological storage in unconsolidated formations. The numerical analysis is performed with DEM executing the mechanical calculation and the network model solving the Hagen-Poiseuille equation between the pore spaces enclosed by chains of particles and contacts. Hydromechanical coupling is realized by data exchanging at predetermined time steps. The numerical results show that increase in the injection rate and the invading fluid viscosity and decrease in the modulus and permeability of the medium result in fluid flow behaviors displaying a transition from infiltration-governed to infiltration-limited and the granular medium responses evolving from that of a rigid porous medium to localized failure leading to the development of preferential paths. The transition in the fluid flow and granular medium behaviors is governed by the ratio between the characteristic times associated with fluid injection and hydromechanical coupling. The peak pressures at large injection rates when fluid leakoff is limited compare well with those from the injection experiments in triaxial cells in the literature. The numerical analysis also reveals intriguing tip kinematics field for the growth of a fluid channel, which may shed light on the occurrence of the apical inverted-conical features in sandstone and magma intrusion in unconsolidated formations.

  13. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  14. On acoustics of cavitating flows and wave mechanics of two-phase fluids; Zur Akustik kavitierender Stroemungen und Wellenmechanik zweiphasiger Fluide

    Energy Technology Data Exchange (ETDEWEB)

    Ricoeur, A.

    2000-07-01

    The subject under consideration is the development and propagation of sound in two-phase flows. The investigations are focused on fluids, which are composed of liquid and gas. The gaseous phase may consist of both noncondensable gas and of vapour, originating from phase transitions of the liquid. Fields of application are, among others, flow noise, sonochemistry, the acoustical surveillance of industrial flow processes or ocean acoustics. A stochastic model, which describes spectral properties of noise sources, conditioned by imploding vapour bubbles, is connected to transfer functions. The latter are based on constitutive equations, accounting for the wave mechanics of the two-phase fluids. In combination with a numerical algorithm they permit for the calculation of noise spectra at any distance from the noise sources. The field problem is solved by implementing the constitutive equations into a hybrid boundary element method, which combines low discretization effort with fast evaluation of domain variables. The constitutive equations are based on models for the dynamics of gas- and vapour bubbles. Therefore, the nonlinear and linear bubble dynamics are extensively investigated. Furthermore, fundamental knowledge concerning wave dispersion in two-phase fluids is presented. The constitutive equation for pseudocavitation is experimentally verified by means of an acoustical wave guide. Additionally the experimental set-up serves for investigating fluid-structure-interaction. (orig.) [German] Die Arbeit befasst sich mit der Entstehung und Ausbreitung von Schall in Zweiphasenstroemungen. Betrachtet werden Fluide aus Fluessigkeit und Gas, deren Gasphase sowohl als nichtkondensierendes Gas, als auch in Gestalt des Dampfes der Fluessigkeit vorliegt. Anwendungen liegen beispielsweise in der Stroemungsakustik, der Sonochemie, der akustischen Ueberwachung verfahrenstechnischer Prozesse oder der Meeresakustik. Ein stochastisches Modell zur spektralen Beschreibung von

  15. Mechanical testing of hydraulic fluids II; Mechanische Pruefung von Hydraulikfluessigkeiten II

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, M.; Feldmann, D.G.; Laukart, V.

    2001-09-01

    Since May 1996 the Institute for Mechanical Engineering Design 1 of Technical University of Hamburg-Harburg is working on the topic of ''Mechanical Testing of Hydraulic fluids''. The first project lasting 2 1/2 years was completed in 1999, the results are published as the DGMK report 514. Within these project a testing principle for the ''mechanical testing'' of hydraulic fluids has been derived, a prototype of a test rig was designed and set in operation at the authors' institute. This DGMK-report 514-1 describes the results of the second project, which investigates the operating behaviour of the test-rig more in detail. Several test-runs with a total number of 11 different hydraulic fluids show the dependence of the different lubricating behaviour of the tested fluids and their friction and wear behaviour during the tests in a reproducible way. The aim of the project was to derive a testing principle including the design of a suitable test-rig for the mechanical testing of hydraulic fluids. Based on the described results it can be stated that with the developed test it is possible to test the lubricity of hydraulic fluids reproducible and in correlation to field experiences within a relatively short time, so the target was reached. (orig.)

  16. A fluid model for Helicobacter pylori

    Science.gov (United States)

    Reigh, Shang-Yik; Lauga, Eric

    2015-11-01

    Swimming microorganisms and self-propelled nanomotors are often found in confined environments. The bacterium Helicobacter pylori survives in the acidic environment of the human stomach and is able to penetrate gel-like mucus layers and cause infections by locally changing the rheological properties of the mucus from gel-like to solution-like. In this talk we propose an analytical model for the locomotion of Helicobacter pylori as a confined spherical squirmer which generates its own confinement. We solve analytically the flow field around the swimmer, and derive the swimming speed and energetics. The role of the boundary condition in the outer wall is discussed. An extension of our model is also proposed for other biological and chemical swimmers. Newton Trust.

  17. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  18. Dark radiation from a unified dark fluid model

    CERN Document Server

    Geng, Chao-Qiang; Zhang, Xin

    2014-01-01

    We present a unified dark fluid model to describe the possible evolutionary behavior of $\\Delta N_\\mathrm{eff}$ in dark radiation. This model can be viewed as an interacting model for the dark sectors, in which dark matter interacts with dark radiation. We show that the evolution of $\\Delta N_\\mathrm{eff}$ can be nicely explained without some drawbacks, such as the blowup of $\\Delta N_\\mathrm{eff}$ at the late time and the interaction term at the early time.

  19. Reduced order modeling of fluid/structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  20. Modeling and comparative study of fluid velocities in heterogeneous rocks

    Science.gov (United States)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed

  1. The fluid mechanics of a sac-type ventricular assist device.

    Science.gov (United States)

    Clark, C; Jin, W; Glaser, A

    1990-12-01

    Flow visualisation and velocity measurement studies have been carried out on the liquid side of a sac-type VAD. The objectives have been to identify both good (e.g. short residence times) and bad (e.g. high turbulence levels) flow characteristics. The flow was visualised using polystyrene micro-spheres illuminated with white light on selected transverse planes across the pumping chamber and its inlet and outlet connections. These results then served as a guide for velocity measurements using laser-Doppler anemometry. Flow tests were run using water or a water/glycerol mixture. Operating conditions were determined from the appropriate fluid mechanics modelling laws to ensure dynamical similarity. Initially, steady flow behaviour was investigated including the effects of removal and insertion of the tilting-disc inlet and outlet valves. In subsequent full pumping tests, using a pneumatic driver, regions of high shear, separation, and high turbulence intensity have been identified.

  2. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.

    Science.gov (United States)

    Sturla, Francesco; Votta, Emiliano; Stevanella, Marco; Conti, Carlo A; Redaelli, Alberto

    2013-12-01

    Numerical modeling can provide detailed and quantitative information on aortic root (AR) biomechanics, improving the understanding of AR complex pathophysiology and supporting the development of more effective clinical treatments. From this standpoint, fluid-structure interaction (FSI) models are currently the most exhaustive and potentially realistic computational tools. However, AR FSI modeling is extremely challenging and computationally expensive, due to the explicit simulation of coupled AR fluid dynamics and structural response, while accounting for complex morphological and mechanical features. We developed a novel FSI model of the physiological AR simulating its function throughout the entire cardiac cycle. The model includes an asymmetric MRI-based geometry, the description of aortic valve (AV) non-linear and anisotropic mechanical properties, and time-dependent blood pressures. By comparison to an equivalent finite element structural model, we quantified the balance between the extra information and the extra computational cost associated with the FSI approach. Tissue strains and stresses computed through the two approaches did not differ significantly. The FSI approach better captured the fast AV opening and closure, and its interplay with blood fluid dynamics within the Valsalva sinuses. It also reproduced the main features of in vivo AR fluid dynamics. However, the FSI simulation was ten times more computationally demanding than its structural counterpart. Hence, the FSI approach may be worth the extra computational cost when the tackled scenarios are strongly dependent on AV transient dynamics, Valsalva sinuses fluid dynamics in relation to coronary perfusion (e.g. sparing techniques), or AR fluid dynamic alterations (e.g. bicuspid AV).

  3. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  4. Fluid-solid interaction model for hydraulic reciprocating O-ring seals

    Science.gov (United States)

    Liao, Chuanjun; Huang, Weifeng; Wang, Yuming; Suo, Shuangfu; Liu, Ying

    2013-01-01

    Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.

  5. Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion

    Science.gov (United States)

    Ferrua, MJ; Singh, RP

    2010-01-01

    During gastric digestion, food is disintegrated by a complex interaction of chemical and mechanical effects. Although the mechanisms of chemical digestion are usually characterized by using in vitro analysis, the difficulty in reproducing the stomach geometry and motility has prevented a good understanding of the local fluid dynamics of gastric contents. The goal of this study was to use computational fluid dynamics (CFD) to develop a 3-D model of the shape and motility pattern of the stomach wall during digestion, and use it to characterize the fluid dynamics of gastric contents of different viscosities. A geometrical model of an averaged-sized human stomach was created, and its motility was characterized by a series of antral-contraction waves of up to 80% relative occlusion. The flow field within the model (predicted using the software Fluent™) strongly depended on the viscosity of gastric contents. By increasing the viscosity, the formation of the 2 flow patterns commonly regarded as the main mechanisms driving digestion (i.e., the retropulsive jet-like motion and eddy structures) was significantly diminished, while a significant increase of the pressure field was predicted. These results were in good agreement with experimental data previously reported in the literature, and suggest that, contrary to the traditional idea of a rapid and complete homogenization of the meal, gastric contents associated with high viscous meals are poorly mixed. This study illustrates the capability of CFD to provide a unique insight into the fluid dynamics of the gastric contents, and points out its potential to develop a fundamental understanding and modeling of the mechanisms involved in the digestion process. Practical Application This study illustrates the capability of computational fluid dynamic techniques to provide a unique insight into the dynamics of the gastric contents, pointing out its potential to develop a fundamental understanding and modeling of the human

  6. Modeling anisotropic elasticity of fluid membranes

    CERN Document Server

    Ramakrishnan, N; Ipsen, John H; 10.1002/mats.201100002

    2011-01-01

    The biological membrane, which compartmentalizes the cell and its organelles, exhibit wide variety of macroscopic shapes of varying morphology and topology. A systematic understanding of the relation of membrane shapes to composition, external field, environmental conditions etc. have important biological relevance. Here we review the triangulated surface model, used in the macroscopic simulation of membranes and the associated Monte Carlo (DTMC) methods. New techniques to calculate surface quantifiers, that will facilitate the study of additional in-plane orientational degrees of freedom, has been introduced. The mere presence of a polar and nematic fields in the ordered phase drives the ground state conformations of the membrane to a cylinder and tetrahedron respectively.

  7. The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon

    Science.gov (United States)

    Kumar, Arkadeep; Melkote, Shreyes N.

    2017-07-01

    The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.

  8. Mechanical behavior of a fluid-sensitive material during liquid diffusion

    Science.gov (United States)

    Widiastuti, Indah; Sbarski, Igor; Masood, S. H.

    2014-05-01

    This paper described the analytical study that we performed in an attempt to understand the combined effect of liquid diffusion and temperature on the mechanical response of viscoelastic liquid-sensitive material. A constitutive equation for linear viscoelasticity, which includes the effect of liquid diffusion, is used to model the mechanical response of a fluid-sensitive polymer such as PLA-based bioplastic. The viscoelastic characteristics which represent material degradation due to liquid diffusion were expressed using a creep-based formulation represented by Burger's model. Creep experiment data were fitted to the Burgers model to provide a liquid content-dependent set of input data for subsequent time-dependent analysis. Further, analytical solutions for stresses and deformations were obtained from the corresponding elastic solution by applying the Correspondence Principle, using previously defined material characteristics. Spatial and time variations of stress and deformation were evaluated to give a precise description of the material behavior under hygroscopic conditions. We propose a stress concentration factor to take into account the liquid diffusion-induced stress that may result in a failure of an application. The results emphasize the importance of considering liquid diffusion and viscoelastic properties in the design of components using liquid-absorbable material.

  9. Mechanical instability induced by water weakening in laboratory fluid injection tests

    Science.gov (United States)

    David, C.; Dautriat, J.; Sarout, J.; Delle Piane, C.; Menéndez, B.; Macault, R.; Bertauld, D.

    2015-06-01

    To assess water-weakening effects in reservoir rocks, previous experimental studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks fully saturated either with water or with inert fluids. So far, little attention has been paid to the mechanical behavior during fluid injection under conditions similar to enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behavior of the weakly consolidated Sherwood sandstone in laboratory experiments. Our specimens were instrumented with 16 ultrasonic P wave transducers for both passive and active acoustic monitoring during loading and fluid injection to record the acoustic signature of fluid migration in the pore space and the development of damage. Calibration triaxial tests were conducted on three samples saturated with air, water, or oil. In a second series of experiments, water and inert oil were injected into samples critically loaded up to 80% or 70% of the dry or oil-saturated compressive strength, respectively, to assess the impact of fluid migration on mechanical strength and elastic properties. The fluids were injected with a low back pressure to minimize effective stress variations during injection. Our observations show that creep takes place with a much higher strain rate for water injection compared to oil injection. The most remarkable difference is that water injection in both dry and oil-saturated samples triggers mechanical instability (macroscopic failure) within half an hour whereas oil injection does not after several hours. The analysis of X-ray computed tomography images of postmortem samples revealed that the mechanical instability was probably linked to loss of cohesion in the water-invaded region.

  10. Multiscale modeling for fluid transport in nanosystems.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.

    2013-09-01

    Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.

  11. Fluid-Structure Interaction in Abdominal Aortic Aneurysm: Effect of Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Shengmao Lin

    2017-01-01

    Full Text Available In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA is systematically investigated. The fluid-structure interaction (FSI model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD or computational solid stress (CSS model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that the accuracy of CSS prediction depends on the applied pressure profile for the aneurysm sac. A large pressure drop across AAA usually led to the underestimation of wall stresses and thus the AAA rupture. Moreover, the assumed isotropic AAA wall properties, compared to the anisotropic one, will aggravate the difference between the simplified models with the FSI approach. The present work demonstrated the importance of modeling techniques on predicting the blood flow dynamics and wall mechanics of the AAA, which could guide the selection of appropriate modeling technique for significant clinical implications.

  12. Fluid-Structure Interaction in Abdominal Aortic Aneurysm: Effect of Modeling Techniques.

    Science.gov (United States)

    Lin, Shengmao; Han, Xinwei; Bi, Yonghua; Ju, Siyeong; Gu, Linxia

    2017-01-01

    In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that the accuracy of CSS prediction depends on the applied pressure profile for the aneurysm sac. A large pressure drop across AAA usually led to the underestimation of wall stresses and thus the AAA rupture. Moreover, the assumed isotropic AAA wall properties, compared to the anisotropic one, will aggravate the difference between the simplified models with the FSI approach. The present work demonstrated the importance of modeling techniques on predicting the blood flow dynamics and wall mechanics of the AAA, which could guide the selection of appropriate modeling technique for significant clinical implications.

  13. Fluid-Structure Interaction in Abdominal Aortic Aneurysm: Effect of Modeling Techniques

    Science.gov (United States)

    Lin, Shengmao; Han, Xinwei; Bi, Yonghua; Ju, Siyeong

    2017-01-01

    In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that the accuracy of CSS prediction depends on the applied pressure profile for the aneurysm sac. A large pressure drop across AAA usually led to the underestimation of wall stresses and thus the AAA rupture. Moreover, the assumed isotropic AAA wall properties, compared to the anisotropic one, will aggravate the difference between the simplified models with the FSI approach. The present work demonstrated the importance of modeling techniques on predicting the blood flow dynamics and wall mechanics of the AAA, which could guide the selection of appropriate modeling technique for significant clinical implications. PMID:28321413

  14. An improved model for reduced-order physiological fluid flows

    CERN Document Server

    San, Omer; 10.1142/S0219519411004666

    2012-01-01

    An improved one-dimensional mathematical model based on Pulsed Flow Equations (PFE) is derived by integrating the axial component of the momentum equation over the transient Womersley velocity profile, providing a dynamic momentum equation whose coefficients are smoothly varying functions of the spatial variable. The resulting momentum equation along with the continuity equation and pressure-area relation form our reduced-order model for physiological fluid flows in one dimension, and are aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. The consequent nonlinear coupled system of equations is solved by the Lax-Wendroff scheme and is then applied to an open model arterial network of the human vascular system containing the largest fifty-five arteries. The proposed model with functional coefficients is compared with current classical one-dimensional theories which assume steady state Hagen-Poiseuille velocity pro...

  15. Entropic Lattice Boltzmann Methods for Fluid Mechanics: Thermal, Multi-phase and Turbulence

    Science.gov (United States)

    Chikatamarla, Shyam; Boesch, F.; Frapolli, N.; Mazloomi, A.; Karlin, I.

    2014-11-01

    With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. In this talk, we shall review recent advances in ELBM as a practical, modeling-free tool for simulation of complex flow phenomenon. We shall present recent simulations of fluid turbulence including turbulent channel flow, flow past a circular cylinder, creation and dynamics of vortex tubes, and flow past a surface mounted cube. Apart from its achievements in turbulent flow simulations, ELBM has also presented us the opportunity to extend lattice Boltzmann method to higher order lattices which shall be employed for turbulent, multi-phase and thermal flow simulations. A new class of entropy functions are proposed to handle non-ideal equation of state and surface tension terms in multi-phase flows. It is shown the entropy principle brings unconditional stability and thermodynamic consistency to all the three flow regimes considered here. Acknowledgements: ERC Advanced Grant ``ELBM'' and CSCS grant s437 are deeply acknowledged. References:

  16. A Comparison of the Mechanisms of Cold- and Microgravity-Induced Fluid Loss.

    Science.gov (United States)

    1989-08-10

    endpoint of fluid and electrolyte loss through diuresis and natriuresis . Differences in the responses were also noted, although the data necessary to...SUBJECT TERMS (Continue on reverse if necessarynd..iien.nti., by c blo i("nunber ,. FIELD GROUP SUB-GROUP cold, diuresis , microgravity,-w•_ightlessness...rff’dentify by block number)cC The physiological mechanisms involved in the diuresis and overall fluid loss associated with exposure to cold or microgravity

  17. Modelling fluid flow in a reciprocating compressor

    Directory of Open Access Journals (Sweden)

    Tuhovcak Jan

    2015-01-01

    Full Text Available Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  18. Modelling fluid flow in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav

    2015-05-01

    Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  19. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    Science.gov (United States)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  20. Seismoelectric fluid/porous-medium interface response model and measurements

    NARCIS (Netherlands)

    Schakel, M.D.; Smeulders, D.M.J.; Slob, E.C.; Heller, H.K.J.

    2011-01-01

    Coupled seismic and electromagnetic (EM) wave effects in fluid-saturated porous media are measured since decades. However, direct comparisons between theoretical seismoelectric wavefields and measurements are scarce. A seismoelectric full-waveform numerical model is developed, which predicts both th

  1. High order fluid model for ionization fronts in streamer discharges

    NARCIS (Netherlands)

    Markosyan, A.; Dujko, S.; Ebert, U.; Almeida, P.G.C.; Alves, L.L.; Guerra, V.

    2012-01-01

    A high order fluid model for streamer dynamics is developed by closing the system after the 4th mo- ment of the Boltzmann equation in local mean energy approximation. This is done by approximating the high order pressure tensor in the heat flux equation through the previous moments. The electric fi

  2. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    OpenAIRE

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-01-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with interdroplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of in...

  3. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D

  4. Mathematical modelling of fluid transport and its regulation at multiple scales.

    Science.gov (United States)

    Chara, Osvaldo; Brusch, Lutz

    2015-04-01

    Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  6. A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis.

    Science.gov (United States)

    Bertram, C D; Heil, M

    2017-01-01

    An existing axisymmetric fluid/structure-interaction (FSI) model of the spinal cord, pia mater, subarachnoid space, and dura mater in the presence of syringomyelia and subarachnoid-space stenosis was modified to include porous solids. This allowed investigation of a hypothesis for syrinx fluid ingress from cerebrospinal fluid (CSF). Gross model deformation was unchanged by the addition of porosity, but pressure oscillated more in the syrinx and the subarachnoid space below the stenosis. The poroelastic model still exhibited elevated mean pressure in the subarachnoid space below the stenosis and in the syrinx. With realistic cord permeability, there was slight oscillatory shunt flow bypassing the stenosis via the porous tissue over the syrinx. Weak steady streaming flow occurred in a circuit involving craniocaudal flow through the stenosis and back via the syrinx. Mean syrinx volume was scarcely altered when the adjacent stenosis bisected the syrinx, but increased slightly when the syrinx was predominantly located caudal to the stenosis. The fluid content of the tissues over the syrinx oscillated, absorbing most of the radial flow seeping from the subarachnoid space so that it did not reach the syrinx. To a lesser extent, this cyclic swelling in a boundary layer of cord tissue just below the pia occurred all along the cord, representing a mechanism for exchange of interstitial fluid (ISF) and cerebrospinal fluid which could explain recent tracer findings without invoking perivascular conduits. The model demonstrates that syrinx volume increase is possible when there is subarachnoid-space stenosis and the cord and pia are permeable.

  7. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results

    Science.gov (United States)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen

    2013-04-01

    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  8. A gravitational test of wave reinforcement versus fluid density models

    Science.gov (United States)

    Johnson, Jacqueline Umstead

    1990-10-01

    Spermatozoa, protozoa, and algae form macroscopic patterns somewhat analogous to thermally driven convection cells. These bioconvective patterns have attracted interest in the fluid dynamics community, but whether in all cases these waves were gravity driven was unknown. There are two conflicting theories, one gravity dependent (fluid density model), the other gravity independent (wave reinforcement theory). The primary objectives of the summer faculty fellows were to: (1) assist in sample collection (spermatozoa) and preparation for the KC-135 research airplane experiment; and (2) to collaborate on ground testing of bioconvective variables such as motility, concentration, morphology, etc., in relation to their macroscopic patterns. Results are very briefly given.

  9. A Dynamical System Analysis of Three Fluid cosmological Model

    CERN Document Server

    Mahata, Nilanjana

    2015-01-01

    In Friedman-Robertson-Walker flat spacetime, we consider a three fluid cosmological model which contains dark matter, dark energy and baryonic matter in the form of perfect fluid with a barotropic equation of state. Dark matter is taken in form of dust and dark energy is described by a scalar field with a potential $V(\\phi)$. Einstein's field equations are reduced to an autonomous dynamical system by suitable redefinition of basic variables. Considering exponential potential for the scalar field, critical points are obtained for the autonomous system. Finally stability of the critical points and cosmological implications are analyzed.

  10. Wave propagation in fluids models and numerical techniques

    CERN Document Server

    Guinot, Vincent

    2012-01-01

    This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite

  11. The fluid mechanics of continuous flow electrophoresis in perspective

    Science.gov (United States)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  12. Two-fluid models of superfluid neutron star cores

    CERN Document Server

    Chamel, N

    2008-01-01

    Both relativistic and non-relativistic two-fluid models of neutron star cores are constructed, using the constrained variational formalism developed by Brandon Carter and co-workers. We consider a mixture of superfluid neutrons and superconducting protons at zero temperature, taking into account mutual entrainment effects. Leptons, which affect the interior composition of the neutron star and contribute to the pressure, are also included. We provide the analytic expression of the Lagrangian density of the system, the so-called master function, from which the dynamical equations can be obtained. All the microscopic parameters of the models are calculated consistently using the non-relativistic nuclear energy density functional theory. For comparison, we have also considered relativistic mean field models. The correspondence between relativistic and non-relativistic hydrodynamical models is discussed in the framework of the recently developed 4D covariant formalism of Newtonian multi-fluid hydrodynamics. We hav...

  13. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: Mechanisms for the pathogenesis of syringomyelia.

    Science.gov (United States)

    Carpenter, P W; Berkouk, K; Lucey, A D

    2003-12-01

    Our aim in this paper is to use a simple theoretical model of the intraspinal cerebrospinal-fluid system to investigate mechanisms proposed for the pathogenesis of syringomyelia. The model is based on an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. According to this model, the leading edge of a pressure pulse tends to steepen and form an elastic jump, as it propagates up the intraspinal cerebrospinal-fluid system. We show that when an elastic jump is incident on a stenosis of the spinal subarachnoid space, it reflects to form a transient, localized region of high pressure within the spinal cord that for a cough-induced pulse is estimated to be 50 to 70 mm Hg or more above the normal level in the spinal subarachnoid space. We propose this as a new mechanism whereby pressure pulses created by coughing or sneezing can generate syrinxes. We also use the same analysis to investigate Williams' suck mechanism. Our results do not support his concept, nor, in cases where the stenosis is severe, the differential-pressure-propagation mechanism recently proposed by Greitz et al. Our analysis does provide some support for the piston mechanism recently proposed by Oldfield et al. and Heiss et al. For instance, it shows clearly how the spinal cord is compressed by the formation of elastic jumps over part of the cardiac cycle. What appears to be absent for this piston mechanism is any means whereby the elastic jumps can be focused (e.g., by reflecting from a stenosis) to form a transient, localized region of high pressure within the spinal cord. Thus it would seem to offer a mechanism for syrinx progression, but not for its formation.

  14. Fluid particle diffusion in a semidilute suspension of model micro-organisms.

    Science.gov (United States)

    Ishikawa, Takuji; Locsei, J T; Pedley, T J

    2010-08-01

    We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.

  15. The Effects of Fluid Absorption on the Mechanical Properties of Joint Prostheses Components

    Science.gov (United States)

    Yarbrough, David; Viano, Ann

    2010-02-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is the material playing the role of cartilage in human prosthetic joints. Wear debris from UHMWPE is a common reason for joint arthroplasty failure, and the exact mechanism responsible for wear remains an area of investigation. In this study, the microstructure of UHMWPE was examined as a function of fluid absorption. Samples with varying exposure to e-beam radiation (as part of the manufacturing process) were soaked for forty days in saline or artificial synovial fluid, under zero or 100 lbs load. Samples were then tensile-tested according to ASTM D-3895. The post-stressed material was then examined by transmission electron microscopy to evaluate the molecular response to stress, which correlates with macroscopic mechanical properties. Three parameters of the crystalline lamellae were measured: thickness, stacking ratio, and alignment to stress direction. Results indicate that fluid absorption does affect the mechanical properties of UHMWPE at both the microscopic and microscopic levels. )

  16. Potential mechanisms of pore-fluid movement from continental lithospheric mantle into upper continental crust

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chong-bin; PENG Sheng-lin; LIU Liang-ming; B.E.HOBBS; A.ORD

    2008-01-01

    Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosphere were presented and discussed. The results show that the generation and propagation of porosity waves are important mechanisms to transport mass and heat fluxes from the continental lithospheric mantle into the lower continental crust; the generation and propagation of porosity waves, pore-fluid flow focusing through lower and middle crustal faults, aclvection of pore-fluids through the lower and middle crust, and whole-crustconvection in some particular cases are important mechanisms to transport mass and heat fluxes from the lower into the upper continental crust; heat and mass transport through convective pore-fluid flow is the most effective mechanism of ore body formation and mineralization in hydrothermal systems; due to heat and mass exchange at the interface between the earth surface, hydrosphere and atmosphere, it is very important to consider the hydro-geological effect of the deep earth pore-fluids such as H2O and CO2 on the global warming and climate change in future investigations.

  17. Semiclassical approach to model quantum fluids using the statistical associating fluid theory for systems with potentials of variable range.

    Science.gov (United States)

    Trejos, Víctor M; Gil-Villegas, Alejandro

    2012-05-14

    Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); and ibid. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.

  18. Semiclassical approach to model quantum fluids using the statistical associating fluid theory for systems with potentials of variable range

    Science.gov (United States)

    Trejos, Víctor M.; Gil-Villegas, Alejandro

    2012-05-01

    Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); Singh and Sinha J. Chem. Phys. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.

  19. An Efficient Multi-Scale Modelling Approach for ssDNA Motion in Fluid Flow

    Institute of Scientific and Technical Information of China (English)

    M.Benke; E.Shapiro; D.Drikakis

    2008-01-01

    The paper presents a multi-scale modelling approach for simulating macromolecules in fluid flows. Macromolecule transport at low number densities is frequently encountered in biomedical devices, such as separators, detection and analysis systems. Accurate modelling of this process is challenging due to the wide range of physical scales involved. The continuum approach is not valid for low solute concentrations, but the large timescales of the fluid flow make purely molecular simulations prohibitively expensive. A promising multi-scale modelling strategy is provided by the meta-modelling approach considered in this paper. Meta-models are based on the coupled solution of fluid flow equations and equations of motion for a simplified mechanical model of macromolecules. The approach enables simulation of individual macromolecules at macroscopic time scales. Meta-models often rely on particle-corrector algorithms, which impose length constraints on the mechanical model. Lack of robustness of the particle-corrector algorithm employed can lead to slow convergence and numerical instability. A new FAst Linear COrrector (FALCO) algorithm is introduced in this paper, which significantly improves computational efficiency in comparison with the widely used SHAKE algorithm. Validation of the new particle corrector against a simple analytic solution is performed and improved convergence is demonstrated for ssDNA motion in a lid-driven micro-cavity.

  20. Modeling the Fluid Withdraw and Injection Induced Earthquakes

    Science.gov (United States)

    Meng, C.

    2016-12-01

    We present an open source numerical code, Defmod, that allows one to model the induced seismicity in an efficient and standalone manner. The fluid withdraw and injection induced earthquake has been a great concern to the industries including oil/gas, wastewater disposal and CO2 sequestration. Being able to numerically model the induced seismicity is long desired. To do that, one has to consider at lease two processes, a steady process that describes the inducing and aseismic stages before and in between the seismic events, and an abrupt process that describes the dynamic fault rupture accompanied by seismic energy radiations during the events. The steady process can be adequately modeled by a quasi-static model, while the abrupt process has to be modeled by a dynamic model. In most of the published modeling works, only one of these processes is considered. The geomechanicists and reservoir engineers are focused more on the quasi-static modeling, whereas the geophysicists and seismologists are focused more on the dynamic modeling. The finite element code Defmod combines these two models into a hybrid model that uses the failure criterion and frictional laws to adaptively switch between the (quasi-)static and dynamic states. The code is capable of modeling episodic fault rupture driven by quasi-static loading, e.g. due to reservoir fluid withdraw and/or injection, and by dynamic loading, e.g. due to the foregoing earthquakes. We demonstrate a case study for the 2013 Azle earthquake.

  1. Fluid Mechanics of Heart Valves and Their Replacements

    Science.gov (United States)

    Sotiropoulos, Fotis; Le, Trung Bao; Gilmanov, Anvar

    2016-01-01

    As the pulsatile cardiac blood flow drives the heart valve leaflets to open and close, the flow in the vicinity of the valve resembles a pulsed jet through a nonaxisymmetric orifice with a dynamically changing area. As a result, three-dimensional vortex rings with intricate topology emerge that interact with the complex cardiac anatomy and give rise to shear layers, regions of recirculation, and flow instabilities that could ultimately lead to transition to turbulence. Such complex flow patterns, which are inherently valve- and patient-specific, lead to mechanical forces at scales that can cause blood cell damage and thrombosis, increasing the likelihood of stroke, and can trigger the pathogenesis of various life-threatening valvular heart diseases. We summarize the current understanding of flow phenomena induced by heart valves, discuss their linkage with disease pathways, and emphasize the research advances required to translate in-depth understanding of valvular hemodynamics into effective patient therapies.

  2. A novel coarsening mechanism of droplets in immiscible fluid mixtures.

    Science.gov (United States)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-16

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  3. An application of computational fluid mechanics to the air flow in an infant incubator.

    Science.gov (United States)

    Yamaguchi, T; Hanai, S; Horio, H; Hasegawa, T

    1992-01-01

    An application of the computational fluid mechanical method to the air flow in a two-dimensional model of an infant incubator was described. The air flow in a numerical model was simulated and the Navier-Stokes equations were directly solved using a finite-volume method incorporating a body-fitted coordinate system on a mini-supercomputer. The model was based on a real infant incubator, slightly simplified for the sake of computing speed, and included a model of a baby. The number of computation grids was 101 x 61 = 6161. The calculation was carried out under the condition of unsteady, starting airflow and the results were examined by the means of color graphics animation. There were several very large scale eddies in the incubator free space, and their global structure did not show strong changes once they were established. Although the global structure did not change, small scale eddies were shown to be produced around the air inlet and convected down through the free space of the incubator. From these results, we believe that assuming steady and uniform flow in the incubator may not always be relevant when considering heat loss of a baby in an incubator. The steady and uniform flow has been previously assumed either implicitly or explicitly by most of the authors.

  4. Mathematical embryology: the fluid mechanics of nodal cilia

    CERN Document Server

    Smith, David J; Blake, John R

    2010-01-01

    Left-right symmetry breaking is critical to vertebrate embryonic development; in many species this process begins with cilia-driven flow in a structure termed the `node'. Primary `whirling' cilia, tilted towards the posterior, transport morphogen-containing vesicles towards the left, initiating left-right asymmetric development. We review recent theoretical models based on the point-force stokeslet and point-torque rotlet singularities, explaining how rotation and surface-tilt produce directional flow. Analysis of image singularity systems enforcing the no-slip condition shows how tilted rotation produces a far-field `stresslet' directional flow, and how time-dependent point-force and time-independent point-torque models are in this respect equivalent. Associated slender body theory analysis is reviewed; this approach enables efficient and accurate simulation of three-dimensional time-dependent flow, time-dependence being essential in predicting features of the flow such as chaotic advection, which have subse...

  5. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    Science.gov (United States)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  6. Application of ICT supported learning in fluid mechanics

    DEFF Research Database (Denmark)

    Brohus, Henrik; Svidt, Kjeld

    2004-01-01

    it has been tried to make use of several tools for knowledge transfer ranging from the traditional blackboard over physical demonstrations of air flow in a full-scale laboratory mock-up to virtual reality demonstrations. Students have different ways of understanding a certain topic, using a broad range...... learning tools is presented. The model describes the teaching method and the pedagogical means. It explains how different learning domains ? physical as virtual ? may be combined to form a high efficiency learning environment (HELE)........ It is found that a combined application of various tools for knowledge transfer increases learning efficiency, for instance it is seen that a combination of physical experiments in laboratory and virtual experiments by computer simulation has a high level of synergy. A model for a combined use of several...

  7. Applied environmental fluid mechanics: what's the weather in your backyard?

    Science.gov (United States)

    Chow, F. K.

    2011-12-01

    The microclimates of the San Francisco Bay Area can lead to 30-40F differences in temperature from the coast to just 30 miles inland. The reasons for this include local topography which affects development of the atmospheric boundary layer. A Bay Area resident's experience of fog, air pollution, and weather events therefore differs greatly depending on exactly where they live. Such local weather phenomena provide a natural topic for introduction to boundary layer processes and are the basis of a new course developed at the University of California, Berkeley. This course complements the PI's research focus on numerical methods applied to atmospheric boundary layer flow over complex terrain. This new outreach and research-based course was created to teach students about the boundary layer and teach them how to use a community weather prediction model, WRF, to simulate conditions in the local area, while at the same time being actively involved in public outreach. The course was offered in the Civil and Environmental Engineering department with the collaboration and support of the Lawrence Hall of Science, Berkeley's public science museum. The students chose topics such as air quality, wind energy, climate change, and plume dispersion, all applied to the local San Francisco Bay Area. The students conducted independent research on their team projects, involving literature reviews, numerical model setup, and analysis of model results through comparison with field observations. The outreach component of the course included website design and culminated in demonstrations at the Lawrence Hall of Science. The seven student teams presented hands-on demos to 300-400 visitors, mostly kids 4-9 years old and their parents. Involving students directly in outreach efforts is hoped to encourage continued integration of research and education in their own careers. Early exposure to numerical modeling also improves student technical skills for future career experiences . Given

  8. A model for fluid-injection-induced seismicity at the KTB, Germany

    Science.gov (United States)

    Baisch, S.; Harjes, H.-P.

    2003-01-01

    The 9.1 km deep KTB (Kontinentale Tiefbohrung, Germany) drilling hole is one of the best investigated deep-drilling sites in the world. Among other parameters, in situ measurements revealed continuous profiles of principal stresses, pore fluid pressure and fracture geometry in the vicinity of the borehole. The present study combines these parameters with hydraulic and seismicity data obtained during fluid-injection experiments conducted at the KTB to derive a conceptual model for fluid-injection-induced seismicity at the KTB. This model rests on the well constrained assumptions that (1) the crust is highly fractured with a permeable fracture network between 9 km depth and the Earth's surface and (2) the crust is in near-failure equilibrium, whereby a large number of fracture planes are under near-critical condition. During the injection experiment, the elevated pore fluid pressure remained well below the least principal stress and thus was too small to cause hydraulic opening of existing fractures. Consequently, the geometry of the fracture network was assumed to have not changed during fluid injection with induced seismicity occurring solely as a result of lowering of the effective normal stress, consistent with observed source mechanisms. The key parameter in the present model is the fracture permeability, which exhibits large spatial and directional variations. These variations are proposed to primarily control fluid migration paths and associated propagation of elevated fluid pressure during fluid injection. In contrast with common models based on isotropic fluid diffusion or spatially averaged permeability, highly permeable branches of the fracture network strongly affect the propagation of fluid pressure and prohibit the concept of a smooth `pressure front'. We find evidence that major fluid flow exists at comparatively low fluid pressure (below the critical pressure required to cause seismic failure) without being detected seismically. This might also

  9. Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT.

    Science.gov (United States)

    Wang, Y Jason; Zhang, K Max

    2009-10-15

    It is well recognized that dilution is an important mechanism governing the near-road air pollutant concentrations. In this paper, we aim to advance our understanding of turbulent mixing mechanisms on and near roadways using computation fluid dynamics. Turbulent mixing mechanisms can be classified into three categories according to their origins: vehicle-induced turbulence (VIT), road-induced turbulence (RIT), and atmospheric boundary layer turbulence. RIT includes the turbulence generated by road embankment, road surface thermal effects, and roadside structures. Both VIT and RIT are affected by the roadway designs. We incorporate the detailed treatment of VIT and RIT into the CFD (namely CFD-VIT-RIT) and apply the model in simulating the spatial gradients of carbon monoxide near two major highways with different traffic mix and roadway configurations. The modeling results are compared to the field measurements and those from CALINE4 and CFD without considering VIT and RIT. We demonstrate that the incorporation of VIT and RIT considerably improves the modeling predictions, especially on vertical gradients and seasonal variations of carbon monoxide. Our study implies that roadway design can significantly influence the near-road air pollution. Thus we recommend that mitigating near-road air pollution through roadway designs be considered in the air quality and transportation management In addition, thanks to the rigorous representation of turbulent mixing mechanisms, CFD-VIT-RIT can become valuable tools in the roadway designs process.

  10. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  11. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.

    Science.gov (United States)

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T

    2015-12-01

    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  12. A new pressure-parametrization unified dark fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2017-04-15

    We propose a new pressure-parametrization model to explain the accelerated expansion of the late-time Universe by considering the baryon matter and dark contents (dark matter and dark energy) as a unified dark fluid. To realize this model more physically, we reconstruct it with the quintessence and phantom scalar fields, respectively. We use the recent cosmological data to constrain this model, distinguish it from the standard cosmological model and find that the value of the Hubble constant H{sub 0} = 68.34{sup +0.53}{sub -0.92} supports the global measurement by the Planck satellite at the 1σ confidence level. (orig.)

  13. Dynamic analysis of electro- and magneto-rheological fluid dampers using duct flow models

    Science.gov (United States)

    Esteki, Kambiz; Bagchi, Ashutosh; Sedaghati, Ramin

    2014-03-01

    Magneto-rheological (MR) and electro-rheological (ER) fluid dampers provide a semi-active control mechanism for suppressing vibration responses of a structure. MR and ER fluids change their viscosity under the influence of magnetic and electrical fields, respectively, which facilitates automatic control when these fluids are used in damping devices. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers, rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This paper presents a formulation for dynamic analysis of electro-rheological (ER) and magneto-rheological (MR) fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behavior of ER/MR fluid in general motion. The finite difference method has been used to solve the governing differential equations. Using the developed approach, the damping force of ER/MR dampers can be calculated under any type of excitation.

  14. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  15. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  16. SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows

    Science.gov (United States)

    Canelas, Ricardo B.; Crespo, Alejandro J. C.; Domínguez, Jose M.; Ferreira, Rui M. L.; Gómez-Gesteira, Moncho

    2016-05-01

    A unified discretization of rigid solids and fluids is introduced, allowing for resolved simulations of fluid-solid phases within a meshless framework. The numerical solution, attained by Smoothed Particle Hydrodynamics (SPH) and a variation of Discrete Element Method (DEM), the Distributed Contact Discrete Element Method (DCDEM) discretization, is achieved by directly considering solid-solid and solid-fluid interactions. The novelty of the work is centred on the generalization of the coupling of the DEM and SPH methodologies for resolved simulations, allowing for state-of-the-art contact mechanics theories to be used in arbitrary geometries, while fluid to solid and vice versa momentum transfers are accurately described. The methods are introduced, analysed and discussed. Initial validations on the DCDEM and the fluid coupling are presented, drawing from test cases in the literature. An experimental campaign serves as a validation point for complex, large scale solid-fluid flows, where a set of blocks in several configurations is subjected to a dam-break wave. Blocks are tracked and positions are then compared between experimental data and the numerical solutions. A Particle Image Velocimetry (PIV) technique allows for the quantification of the flow field and direct comparison with numerical data. The results show that the model is accurate and is capable of treating highly complex interactions, such as transport of debris or hydrodynamic actions on structures, if relevant scales are reproduced.

  17. The Fluid Mechanics of a Wavy-Wall Bioreactor

    Science.gov (United States)

    Sucosky, Philippe; Bilgen, Bahar; Aleem, Alexander; Neitzel, Paul; Barabino, Gilda

    2004-11-01

    Bioreactors are devices used for the production of mammalian tissue in vitro. Although mixing has been shown to stimulate the growth of cartilage constructs, high shear-stress levels can damage the cells. In order to enhance mixing while minimizing shear, a wavy-wall bioreactor (WWB) featuring a sinusoidal internal profile has been designed. The turbulent hydrodynamic environment produced in this device is investigated experimentally using particle-image velocimetry. A model bioreactor made of acrylic and filled with an index-matching solution of zinc iodide is used to compensate for the refraction of light at the walls. The flow observed in different planes is shown to be periodic, spatially dependent, and dominated by mean-shear rather than Reynolds stresses in the vicinity of constructs. Finally, a comparison between the mean-shear stresses obtained in the WWB and in a standard spinner flask reveals similar stress levels near the construct walls.

  18. Mechanical Parameters of the Squeeze Film Curvilinear Bearing Lubricated with a Prandtl Fluid

    Science.gov (United States)

    Walicka, A.; Walicki, E.

    2016-12-01

    Based upon a Prandtl fluid flow model, a curvilinear squeeze film bearing is considered. The equations of motion are given in a specific coordinate system. After general considerations on the Prandtl fluid flow these equations are used to derive the Reynolds equation. The solution of this equation is obtained by a method of successive approximation. As a result one obtains formulae expressing the pressure distribution and load-carrying capacity. The numerical examples of the Prandtl fluid flow in gaps of two simple bearings are presented.

  19. Aerodynamic and Mechanical System Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix

    This thesis deals with mechanical multibody-systems applied to the drivetrain of a 500 kW wind turbine. Particular focus has been on gearbox modelling of wind turbines. The main part of the present project involved programming multibody systems to investigate the connection between forces, moments...

  20. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    Science.gov (United States)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was