WorldWideScience

Sample records for modelling detection probabilities

  1. Review of Literature for Model Assisted Probability of Detection

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lareau, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    This is a draft technical letter report for NRC client documenting a literature review of model assisted probability of detection (MAPOD) for potential application to nuclear power plant components for improvement of field NDE performance estimations.

  2. An empirical probability model of detecting species at low densities.

    Science.gov (United States)

    Delaney, David G; Leung, Brian

    2010-06-01

    False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

  3. Probability Model for Data Redundancy Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2009-01-01

    Full Text Available Sensor networks are made of autonomous devices that are able to collect, store, process and share data with other devices. Large sensor networks are often redundant in the sense that the measurements of some nodes can be substituted by other nodes with a certain degree of confidence. This spatial correlation results in wastage of link bandwidth and energy. In this paper, a model for two associated Poisson processes, through which sensors are distributed in a plane, is derived. A probability condition is established for data redundancy among closely located sensor nodes. The model generates a spatial bivariate Poisson process whose parameters depend on the parameters of the two individual Poisson processes and on the distance between the associated points. The proposed model helps in building efficient algorithms for data dissemination in the sensor network. A numerical example is provided investigating the advantage of this model.

  4. Modelling detection probabilities to evaluate management and control tools for an invasive species

    Science.gov (United States)

    Christy, M.T.; Yackel Adams, A.A.; Rodda, G.H.; Savidge, J.A.; Tyrrell, C.L.

    2010-01-01

    For most ecologists, detection probability (p) is a nuisance variable that must be modelled to estimate the state variable of interest (i.e. survival, abundance, or occupancy). However, in the realm of invasive species control, the rate of detection and removal is the rate-limiting step for management of this pervasive environmental problem. For strategic planning of an eradication (removal of every individual), one must identify the least likely individual to be removed, and determine the probability of removing it. To evaluate visual searching as a control tool for populations of the invasive brown treesnake Boiga irregularis, we designed a mark-recapture study to evaluate detection probability as a function of time, gender, size, body condition, recent detection history, residency status, searcher team and environmental covariates. We evaluated these factors using 654 captures resulting from visual detections of 117 snakes residing in a 5-ha semi-forested enclosure on Guam, fenced to prevent immigration and emigration of snakes but not their prey. Visual detection probability was low overall (= 0??07 per occasion) but reached 0??18 under optimal circumstances. Our results supported sex-specific differences in detectability that were a quadratic function of size, with both small and large females having lower detection probabilities than males of those sizes. There was strong evidence for individual periodic changes in detectability of a few days duration, roughly doubling detection probability (comparing peak to non-elevated detections). Snakes in poor body condition had estimated mean detection probabilities greater than snakes with high body condition. Search teams with high average detection rates exhibited detection probabilities about twice that of search teams with low average detection rates. Surveys conducted with bright moonlight and strong wind gusts exhibited moderately decreased probabilities of detecting snakes. Synthesis and applications. By

  5. Modeling co-occurrence of northern spotted and barred owls: accounting for detection probability differences

    Science.gov (United States)

    Bailey, Larissa L.; Reid, Janice A.; Forsman, Eric D.; Nichols, James D.

    2009-01-01

    Barred owls (Strix varia) have recently expanded their range and now encompass the entire range of the northern spotted owl (Strix occidentalis caurina). This expansion has led to two important issues of concern for management of northern spotted owls: (1) possible competitive interactions between the two species that could contribute to population declines of northern spotted owls, and (2) possible changes in vocalization behavior and detection probabilities of northern spotted owls induced by presence of barred owls. We used a two-species occupancy model to investigate whether there was evidence of competitive exclusion between the two species at study locations in Oregon, USA. We simultaneously estimated detection probabilities for both species and determined if the presence of one species influenced the detection of the other species. Model selection results and associated parameter estimates provided no evidence that barred owls excluded spotted owls from territories. We found strong evidence that detection probabilities differed for the two species, with higher probabilities for northern spotted owls that are the object of current surveys. Non-detection of barred owls is very common in surveys for northern spotted owls, and detection of both owl species was negatively influenced by the presence of the congeneric species. Our results suggest that analyses directed at hypotheses of barred owl effects on demographic or occupancy vital rates of northern spotted owls need to deal adequately with imperfect and variable detection probabilities for both species.

  6. Probability of Detection (POD) as a statistical model for the validation of qualitative methods.

    Science.gov (United States)

    Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T

    2011-01-01

    A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.

  7. Investigating the probability of detection of typical cavity shapes through modelling and comparison of geophysical techniques

    Science.gov (United States)

    James, P.

    2011-12-01

    With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance

  8. Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2016-12-01

    Full Text Available Marsh birds are notoriously elusive, with variation in detection probability across species, regions, seasons, and different times of day and weather. Therefore, it is important to develop regional field survey protocols that maximize detections, but that also produce data for estimating and analytically adjusting for remaining differences in detections. We aimed to improve regional field survey protocols by estimating detection probability of eight elusive marsh bird species throughout two regions that have ongoing marsh bird monitoring programs: the southern Canadian Prairies (Prairie region and the southern portion of the Great Lakes basin and parts of southern Québec (Great Lakes-St. Lawrence region. We accomplished our goal using generalized binomial N-mixture models and data from ~22,300 marsh bird surveys conducted between 2008 and 2014 by Bird Studies Canada's Prairie, Great Lakes, and Québec Marsh Monitoring Programs. Across all species, on average, detection probability was highest in the Great Lakes-St. Lawrence region from the beginning of May until mid-June, and then fell throughout the remainder of the season until the end of June; was lowest in the Prairie region in mid-May and then increased throughout the remainder of the season until the end of June; was highest during darkness compared with light; and did not vary significantly according to temperature (range: 0-30°C, cloud cover (0%-100%, or wind (0-20 kph, or during morning versus evening. We used our results to formulate improved marsh bird survey protocols for each region. Our analysis and recommendations are useful and contribute to conservation of wetland birds at various scales from local single-species studies to the continental North American Marsh Bird Monitoring Program.

  9. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    Science.gov (United States)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  10. Monitoring Least Bitterns (Ixobrychis exilis) in Vermont: Detection probability and occupancy modeling

    Science.gov (United States)

    Cherukuri, Aswini; Strong, Allan; Donovan, Therese M.

    2018-01-01

    Ixobrychus exillis (Least Bittern) is listed as a species of high concern in the North American Waterbird Conservation Plan and is a US Fish and Wildlife Service migratory bird species of conservation concern in the Northeast. Little is known about the population of Least Bitterns in the Northeast because of their low population density, tendency to nest in dense wetland vegetation, and secretive behavior. Urban and agricultural development is expected to encroach on and degrade suitable wetland habitat; however, we cannot predict the effects on Least Bittern populations without more accurate information on their abundance and distribution. We conducted surveys of wetlands in Vermont to assess the efficacy of a monitoring protocol and to establish baseline Least Bittern abundance and distribution data at a sample of 29 wetland sites. Surveys yielded detections of 31 individuals at 15 of 29 sites across 3 biophysical regions and at 5 sites where occupancy had not been previously reported. Probability of occupancy was positively related to wetland size and number of patches, though the relationships were not strong enough to conclude if these were true determinants of occupancy. Call—response broadcast surveys yielded 30 detections, while passive surveys yielded 13. Call—response broadcasts (P = 0.897) increased the rate of detection by 55% compared to passive surveys (P = 0.577). Our results suggest that call—response broadcast surveys are an effective means of assessing Least Bittern occupancy and may reduce bias in long-term monitoring programs.

  11. Model uncertainty and probability

    International Nuclear Information System (INIS)

    Parry, G.W.

    1994-01-01

    This paper discusses the issue of model uncertainty. The use of probability as a measure of an analyst's uncertainty as well as a means of describing random processes has caused some confusion, even though the two uses are representing different types of uncertainty with respect to modeling a system. The importance of maintaining the distinction between the two types is illustrated with a simple example

  12. Model uncertainty: Probabilities for models?

    International Nuclear Information System (INIS)

    Winkler, R.L.

    1994-01-01

    Like any other type of uncertainty, model uncertainty should be treated in terms of probabilities. The question is how to do this. The most commonly-used approach has a drawback related to the interpretation of the probabilities assigned to the models. If we step back and look at the big picture, asking what the appropriate focus of the model uncertainty question should be in the context of risk and decision analysis, we see that a different probabilistic approach makes more sense, although it raise some implementation questions. Current work that is underway to address these questions looks very promising

  13. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    Science.gov (United States)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  14. Computer simulation of probability of detection

    International Nuclear Information System (INIS)

    Fertig, K.W.; Richardson, J.M.

    1983-01-01

    This paper describes an integrated model for assessing the performance of a given ultrasonic inspection system for detecting internal flaws, where the performance of such a system is measured by probability of detection. The effects of real part geometries on sound propagations are accounted for and the noise spectra due to various noise mechanisms are measured. An ultrasonic inspection simulation computer code has been developed to be able to detect flaws with attributes ranging over an extensive class. The detection decision is considered to be a binary decision based on one received waveform obtained in a pulse-echo or pitch-catch setup. This study focuses on the detectability of flaws using an amplitude thresholding type. Some preliminary results on the detectability of radially oriented cracks in IN-100 for bore-like geometries are given

  15. Probability and stochastic modeling

    CERN Document Server

    Rotar, Vladimir I

    2012-01-01

    Basic NotionsSample Space and EventsProbabilitiesCounting TechniquesIndependence and Conditional ProbabilityIndependenceConditioningThe Borel-Cantelli TheoremDiscrete Random VariablesRandom Variables and VectorsExpected ValueVariance and Other Moments. Inequalities for DeviationsSome Basic DistributionsConvergence of Random Variables. The Law of Large NumbersConditional ExpectationGenerating Functions. Branching Processes. Random Walk RevisitedBranching Processes Generating Functions Branching Processes Revisited More on Random WalkMarkov ChainsDefinitions and Examples. Probability Distributions of Markov ChainsThe First Step Analysis. Passage TimesVariables Defined on a Markov ChainErgodicity and Stationary DistributionsA Classification of States and ErgodicityContinuous Random VariablesContinuous DistributionsSome Basic Distributions Continuous Multivariate Distributions Sums of Independent Random Variables Conditional Distributions and ExpectationsDistributions in the General Case. SimulationDistribution F...

  16. Optimizing Probability of Detection Point Estimate Demonstration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  17. Numerical modelling as a cost-reduction tool for probability of detection of bolt hole eddy current testing

    Science.gov (United States)

    Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.

    2011-03-01

    Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.

  18. Probability of detection of clinical seizures using heart rate changes.

    Science.gov (United States)

    Osorio, Ivan; Manly, B F J

    2015-08-01

    Heart rate-based seizure detection is a viable complement or alternative to ECoG/EEG. This study investigates the role of various biological factors on the probability of clinical seizure detection using heart rate. Regression models were applied to 266 clinical seizures recorded from 72 subjects to investigate if factors such as age, gender, years with epilepsy, etiology, seizure site origin, seizure class, and data collection centers, among others, shape the probability of EKG-based seizure detection. Clinical seizure detection probability based on heart rate changes, is significantly (pprobability of detecting clinical seizures (>0.8 in the majority of subjects) using heart rate is highest for complex partial seizures, increases with a patient's years with epilepsy, is lower for females than for males and is unrelated to the side of hemisphere origin. Clinical seizure detection probability using heart rate is multi-factorially dependent and sufficiently high (>0.8) in most cases to be clinically useful. Knowledge of the role that these factors play in shaping said probability will enhance its applicability and usefulness. Heart rate is a reliable and practical signal for extra-cerebral detection of clinical seizures originating from or spreading to central autonomic network structures. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  19. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    Science.gov (United States)

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  20. Accounting Fraud: an estimation of detection probability

    Directory of Open Access Journals (Sweden)

    Artur Filipe Ewald Wuerges

    2014-12-01

    Full Text Available Financial statement fraud (FSF is costly for investors and can damage the credibility of the audit profession. To prevent and detect fraud, it is helpful to know its causes. The binary choice models (e.g. logit and probit commonly used in the extant literature, however, fail to account for undetected cases of fraud and thus present unreliable hypotheses tests. Using a sample of 118 companies accused of fraud by the Securities and Exchange Commission (SEC, we estimated a logit model that corrects the problems arising from undetected frauds in U.S. companies. To avoid multicollinearity problems, we extracted seven factors from 28 variables using the principal factors method. Our results indicate that only 1.43 percent of the instances of FSF were publicized by the SEC. Of the six significant variables included in the traditional, uncorrected logit model, three were found to be actually non-significant in the corrected model. The likelihood of FSF is 5.12 times higher when the firm’s auditor issues an adverse or qualified report.

  1. Sensitivity of probability-of-failure estimates with respect to probability of detection curve parameters

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J. [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States); Millwater, H., E-mail: harry.millwater@utsa.edu [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States)

    2012-04-15

    A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: Black-Right-Pointing-Pointer Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. Black-Right-Pointing-Pointer The sensitivities are computed with negligible cost using Monte Carlo sampling. Black-Right-Pointing-Pointer The change in the POF due to a change in the POD curve parameters can be easily estimated.

  2. Sensitivity of the probability of failure to probability of detection curve regions

    International Nuclear Information System (INIS)

    Garza, J.; Millwater, H.

    2016-01-01

    Non-destructive inspection (NDI) techniques have been shown to play a vital role in fracture control plans, structural health monitoring, and ensuring availability and reliability of piping, pressure vessels, mechanical and aerospace equipment. Probabilistic fatigue simulations are often used in order to determine the efficacy of an inspection procedure with the NDI method modeled as a probability of detection (POD) curve. These simulations can be used to determine the most advantageous NDI method for a given application. As an aid to this process, a first order sensitivity method of the probability-of-failure (POF) with respect to regions of the POD curve (lower tail, middle region, right tail) is developed and presented here. The sensitivity method computes the partial derivative of the POF with respect to a change in each region of a POD or multiple POD curves. The sensitivities are computed at no cost by reusing the samples from an existing Monte Carlo (MC) analysis. A numerical example is presented considering single and multiple inspections. - Highlights: • Sensitivities of probability-of-failure to a region of probability-of-detection curve. • The sensitivities are computed with negligible cost. • Sensitivities identify the important region of a POD curve. • Sensitivities can be used as a guide to selecting the optimal POD curve.

  3. Sensitivity of probability-of-failure estimates with respect to probability of detection curve parameters

    International Nuclear Information System (INIS)

    Garza, J.; Millwater, H.

    2012-01-01

    A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: ► Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. ►The sensitivities are computed with negligible cost using Monte Carlo sampling. ► The change in the POF due to a change in the POD curve parameters can be easily estimated.

  4. The transition probabilities of the reciprocity model

    NARCIS (Netherlands)

    Snijders, T.A.B.

    1999-01-01

    The reciprocity model is a continuous-time Markov chain model used for modeling longitudinal network data. A new explicit expression is derived for its transition probability matrix. This expression can be checked relatively easily. Some properties of the transition probabilities are given, as well

  5. Quantifying Detection Probabilities for Proliferation Activities in Undeclared Facilities

    International Nuclear Information System (INIS)

    Listner, C.; Canty, M.; Niemeyer, I.; Rezniczek, A.; Stein, G.

    2015-01-01

    International Safeguards is currently in an evolutionary process to increase effectiveness and efficiency of the verification system. This is an obvious consequence of the inability to detect the Iraq's clandestine nuclear weapons programme in the early 90s. By the adoption of the Programme 93+2, this has led to the development of Integrated Safeguards and the State-level concept. Moreover, the IAEA's focus was extended onto proliferation activities outside the State's declared facilities. The effectiveness of safeguards activities within declared facilities can and have been quantified with respect to costs and detection probabilities. In contrast, when verifying the absence of undeclared facilities this quantification has been avoided in the past because it has been considered to be impossible. However, when balancing the allocation of budget between the declared and the undeclared field, explicit reasoning is needed why safeguards effort is distributed in a given way. Such reasoning can be given by a holistic, information and risk-driven approach to Acquisition Path Analysis comprising declared and undeclared facilities. Regarding the input, this approach relies on the quantification of several factors, i.e., costs of attractiveness values for specific proliferation activities, potential safeguards measures and detection probabilities for these measures also for the undeclared field. In order to overcome the lack of quantification for detection probabilities in undeclared facilities, the authors of this paper propose a general verification error model. Based on this model, four different approaches are explained and assessed with respect to their advantages and disadvantages: the analogy approach, the Bayes approach, the frequentist approach and the process approach. The paper concludes with a summary and an outlook on potential future research activities. (author)

  6. Comparing linear probability model coefficients across groups

    DEFF Research Database (Denmark)

    Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt

    2015-01-01

    of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....

  7. Traffic simulation based ship collision probability modeling

    Energy Technology Data Exchange (ETDEWEB)

    Goerlandt, Floris, E-mail: floris.goerlandt@tkk.f [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland); Kujala, Pentti [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland)

    2011-01-15

    Maritime traffic poses various risks in terms of human, environmental and economic loss. In a risk analysis of ship collisions, it is important to get a reasonable estimate for the probability of such accidents and the consequences they lead to. In this paper, a method is proposed to assess the probability of vessels colliding with each other. The method is capable of determining the expected number of accidents, the locations where and the time when they are most likely to occur, while providing input for models concerned with the expected consequences. At the basis of the collision detection algorithm lays an extensive time domain micro-simulation of vessel traffic in the given area. The Monte Carlo simulation technique is applied to obtain a meaningful prediction of the relevant factors of the collision events. Data obtained through the Automatic Identification System is analyzed in detail to obtain realistic input data for the traffic simulation: traffic routes, the number of vessels on each route, the ship departure times, main dimensions and sailing speed. The results obtained by the proposed method for the studied case of the Gulf of Finland are presented, showing reasonable agreement with registered accident and near-miss data.

  8. Dependency models and probability of joint events

    International Nuclear Information System (INIS)

    Oerjasaeter, O.

    1982-08-01

    Probabilistic dependencies between components/systems are discussed with reference to a broad classification of potential failure mechanisms. Further, a generalized time-dependency model, based on conditional probabilities for estimation of the probability of joint events and event sequences is described. The applicability of this model is clarified/demonstrated by various examples. It is concluded that the described model of dependency is a useful tool for solving a variety of practical problems concerning the probability of joint events and event sequences where common cause and time-dependent failure mechanisms are involved. (Auth.)

  9. A probability space for quantum models

    Science.gov (United States)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  10. Modelling the probability of building fires

    Directory of Open Access Journals (Sweden)

    Vojtěch Barták

    2014-12-01

    Full Text Available Systematic spatial risk analysis plays a crucial role in preventing emergencies.In the Czech Republic, risk mapping is currently based on the risk accumulationprinciple, area vulnerability, and preparedness levels of Integrated Rescue Systemcomponents. Expert estimates are used to determine risk levels for individualhazard types, while statistical modelling based on data from actual incidents andtheir possible causes is not used. Our model study, conducted in cooperation withthe Fire Rescue Service of the Czech Republic as a model within the Liberec andHradec Králové regions, presents an analytical procedure leading to the creation ofbuilding fire probability maps based on recent incidents in the studied areas andon building parameters. In order to estimate the probability of building fires, aprediction model based on logistic regression was used. Probability of fire calculatedby means of model parameters and attributes of specific buildings can subsequentlybe visualized in probability maps.

  11. Sampling, Probability Models and Statistical Reasoning Statistical

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...

  12. Improving detection probabilities for pests in stored grain.

    Science.gov (United States)

    Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant

    2010-12-01

    The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.

  13. Probability of detection as a function of multiple influencing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato

    2014-10-15

    Non-destructive testing is subject to measurement uncertainties. In safety critical applications the reliability assessment of its capability to detect flaws is therefore necessary. In most applications, the flaw size is the single most important parameter that influences the probability of detection (POD) of the flaw. That is why the POD is typically calculated and expressed as a function of the flaw size. The capability of the inspection system to detect flaws is established by comparing the size of reliably detected flaw with the size of the flaw that is critical for the structural integrity. Applications where several factors have an important influence on the POD are investigated in this dissertation. To devise a reliable estimation of the NDT system capability it is necessary to express the POD as a function of all these factors. A multi-parameter POD model is developed. It enables POD to be calculated and expressed as a function of several influencing parameters. The model was tested on the data from the ultrasonic inspection of copper and cast iron components with artificial flaws. Also, a technique to spatially present POD data called the volume POD is developed. The fusion of the POD data coming from multiple inspections of the same component with different sensors is performed to reach the overall POD of the inspection system.

  14. Probability of detection as a function of multiple influencing parameters

    International Nuclear Information System (INIS)

    Pavlovic, Mato

    2014-01-01

    Non-destructive testing is subject to measurement uncertainties. In safety critical applications the reliability assessment of its capability to detect flaws is therefore necessary. In most applications, the flaw size is the single most important parameter that influences the probability of detection (POD) of the flaw. That is why the POD is typically calculated and expressed as a function of the flaw size. The capability of the inspection system to detect flaws is established by comparing the size of reliably detected flaw with the size of the flaw that is critical for the structural integrity. Applications where several factors have an important influence on the POD are investigated in this dissertation. To devise a reliable estimation of the NDT system capability it is necessary to express the POD as a function of all these factors. A multi-parameter POD model is developed. It enables POD to be calculated and expressed as a function of several influencing parameters. The model was tested on the data from the ultrasonic inspection of copper and cast iron components with artificial flaws. Also, a technique to spatially present POD data called the volume POD is developed. The fusion of the POD data coming from multiple inspections of the same component with different sensors is performed to reach the overall POD of the inspection system.

  15. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  16. Modeling experiments using quantum and Kolmogorov probability

    International Nuclear Information System (INIS)

    Hess, Karl

    2008-01-01

    Criteria are presented that permit a straightforward partition of experiments into sets that can be modeled using both quantum probability and the classical probability framework of Kolmogorov. These new criteria concentrate on the operational aspects of the experiments and lead beyond the commonly appreciated partition by relating experiments to commuting and non-commuting quantum operators as well as non-entangled and entangled wavefunctions. In other words the space of experiments that can be understood using classical probability is larger than usually assumed. This knowledge provides advantages for areas such as nanoscience and engineering or quantum computation.

  17. Detection probability in aerial surveys of feral horses

    Science.gov (United States)

    Ransom, Jason I.

    2011-01-01

    Observation bias pervades data collected during aerial surveys of large animals, and although some sources can be mitigated with informed planning, others must be addressed using valid sampling techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to count large mammals without applying such methods to account for heterogeneity in visibility of animal groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to investigate potential sources of observation bias. I accounted for observer skill, population location, and aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of horse groups. The most important model-averaged effects for both fixed-wing and helicopter surveys included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850–0.935; helicopter: odds ratio = 0.640, 95% CI = 0.587–0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% CI = 0.350–1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080–0.470). Observer fatigue was also an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of survey time (odds ratio = 0.278, 95% CI = 0.144–0.537). Biases arising from sun effect and observer fatigue can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, topography, and vegetation can only be addressed by employing valid sampling techniques such as double sampling, mark–resight (batch-marked animals), mark–recapture (uniquely marked and

  18. Comparing coefficients of nested nonlinear probability models

    DEFF Research Database (Denmark)

    Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders

    2011-01-01

    In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...

  19. Uncertainty the soul of modeling, probability & statistics

    CERN Document Server

    Briggs, William

    2016-01-01

    This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book devoted to the philosophy of data aimed at working scientists and calls for a new consideration in the practice of probability and statistics to eliminate what has been referred to as the "Cult of Statistical Significance". The book explains the philosophy of these ideas and not the mathematics, though there are a handful of mathematical examples. The topics are logically laid out, starting with basic philosophy as related to probability, statistics, and science, and stepping through the key probabilistic ideas and concepts, and ending with statistical models. Its jargon-free approach asserts that standard methods, suc...

  20. Antitrust Enforcement Under Endogenous Fines and Price-Dependent Detection Probabilities

    NARCIS (Netherlands)

    Houba, H.E.D.; Motchenkova, E.; Wen, Q.

    2010-01-01

    We analyze the effectiveness of antitrust regulation in a repeated oligopoly model in which both fines and detection probabilities depend on the cartel price. Such fines are closer to actual guidelines than the commonly assumed fixed fines. Under a constant detection probability, we confirm the

  1. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    KAUST Repository

    Bermudez, Edgar F.

    2012-01-01

    of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs

  2. The Probability Heuristics Model of Syllogistic Reasoning.

    Science.gov (United States)

    Chater, Nick; Oaksford, Mike

    1999-01-01

    Proposes a probability heuristic model for syllogistic reasoning and confirms the rationality of this heuristic by an analysis of the probabilistic validity of syllogistic reasoning that treats logical inference as a limiting case of probabilistic inference. Meta-analysis and two experiments involving 40 adult participants and using generalized…

  3. Sampling, Probability Models and Statistical Reasoning -RE ...

    Indian Academy of Sciences (India)

    random sampling allows data to be modelled with the help of probability ... g based on different trials to get an estimate of the experimental error. ... research interests lie in the .... if e is indeed the true value of the proportion of defectives in the.

  4. Applied probability models with optimization applications

    CERN Document Server

    Ross, Sheldon M

    1992-01-01

    Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.

  5. Optimal sample size for probability of detection curves

    International Nuclear Information System (INIS)

    Annis, Charles; Gandossi, Luca; Martin, Oliver

    2013-01-01

    Highlights: • We investigate sample size requirement to develop probability of detection curves. • We develop simulations to determine effective inspection target sizes, number and distribution. • We summarize these findings and provide guidelines for the NDE practitioner. -- Abstract: The use of probability of detection curves to quantify the reliability of non-destructive examination (NDE) systems is common in the aeronautical industry, but relatively less so in the nuclear industry, at least in European countries. Due to the nature of the components being inspected, sample sizes tend to be much lower. This makes the manufacturing of test pieces with representative flaws, in sufficient numbers, so to draw statistical conclusions on the reliability of the NDT system under investigation, quite costly. The European Network for Inspection and Qualification (ENIQ) has developed an inspection qualification methodology, referred to as the ENIQ Methodology. It has become widely used in many European countries and provides assurance on the reliability of NDE systems, but only qualitatively. The need to quantify the output of inspection qualification has become more important as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. A measure of the NDE reliability is necessary to quantify risk reduction after inspection and probability of detection (POD) curves provide such a metric. The Joint Research Centre, Petten, The Netherlands supported ENIQ by investigating the question of the sample size required to determine a reliable POD curve. As mentioned earlier manufacturing of test pieces with defects that are typically found in nuclear power plants (NPPs) is usually quite expensive. Thus there is a tendency to reduce sample sizes, which in turn increases the uncertainty associated with the resulting POD curve. The main question in conjunction with POS curves is the appropriate sample size. Not

  6. Multiple model cardinalized probability hypothesis density filter

    Science.gov (United States)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  7. Statistical physics of pairwise probability models

    DEFF Research Database (Denmark)

    Roudi, Yasser; Aurell, Erik; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of  data......: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying...

  8. The Probability Model of Expectation Disconfirmation Process

    Directory of Open Access Journals (Sweden)

    Hui-Hsin HUANG

    2015-06-01

    Full Text Available This paper proposes a probability model to explore the dynamic process of customer’s satisfaction. Bases on expectation disconfirmation theory, the satisfaction is constructed with customer’s expectation before buying behavior and the perceived performance after purchase. The experiment method is designed to measure expectation disconfirmation effects and we also use the collection data to estimate the overall satisfaction and model calibration. The results show good fitness between the model and the real data. This model has application for business marketing areas in order to manage relationship satisfaction.

  9. A quantum probability model of causal reasoning

    Directory of Open Access Journals (Sweden)

    Jennifer S Trueblood

    2012-05-01

    Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.

  10. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    KAUST Repository

    Bermudez, Edgar F.

    2012-05-01

    Acoustic telemetry is an important tool for studying the movement patterns, behaviour, and site fidelity of marine organisms; however, its application is challenged in coral reef environments where complex topography and intense environmental noise interferes with acoustic signals, and there has been less study. Therefore, it is particularly critical in coral reef telemetry studies to first conduct a long-term range test, a tool that provides informa- tion on the variability and periodicity of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs in the central Red Sea. During this range test we determined the effect of the following factors on transmitter detection efficiency: distance from receiver, time of day, depth, wind, current, moon-phase and temperature. The experiment showed that biological noise is likely to be responsible for a diel pattern of -on average- twice as many detections during the day as during the night. Biological noise appears to be the most important noise source in coral reefs overwhelming the effect of wind-driven noise, which is important in other studies. Detection probability is also heavily influenced by the location of the acoustic sensor within the reef structure. Understanding the effect of environmental factors on transmitter detection probability allowed us to design a more effective receiver array for the large-scale tagging study.

  11. Statistical models based on conditional probability distributions

    International Nuclear Information System (INIS)

    Narayanan, R.S.

    1991-10-01

    We present a formulation of statistical mechanics models based on conditional probability distribution rather than a Hamiltonian. We show that it is possible to realize critical phenomena through this procedure. Closely linked with this formulation is a Monte Carlo algorithm, in which a configuration generated is guaranteed to be statistically independent from any other configuration for all values of the parameters, in particular near the critical point. (orig.)

  12. Search times and probability of detection in time-limited search

    Science.gov (United States)

    Wilson, David; Devitt, Nicole; Maurer, Tana

    2005-05-01

    When modeling the search and target acquisition process, probability of detection as a function of time is important to war games and physical entity simulations. Recent US Army RDECOM CERDEC Night Vision and Electronics Sensor Directorate modeling of search and detection has focused on time-limited search. Developing the relationship between detection probability and time of search as a differential equation is explored. One of the parameters in the current formula for probability of detection in time-limited search corresponds to the mean time to detect in time-unlimited search. However, the mean time to detect in time-limited search is shorter than the mean time to detect in time-unlimited search and the relationship between them is a mathematical relationship between these two mean times. This simple relationship is derived.

  13. Probability

    CERN Document Server

    Shiryaev, A N

    1996-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, ergodic theory, weak convergence of probability measures, stationary stochastic processes, and the Kalman-Bucy filter Many examples are discussed in detail, and there are a large number of exercises The book is accessible to advanced undergraduates and can be used as a text for self-study This new edition contains substantial revisions and updated references The reader will find a deeper study of topics such as the distance between probability measures, metrization of weak convergence, and contiguity of probability measures Proofs for a number of some important results which were merely stated in the first edition have been added The author included new material on the probability of large deviations, and on the central limit theorem for sums of dependent random variables

  14. Predicting Cumulative Incidence Probability: Marginal and Cause-Specific Modelling

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2005-01-01

    cumulative incidence probability; cause-specific hazards; subdistribution hazard; binomial modelling......cumulative incidence probability; cause-specific hazards; subdistribution hazard; binomial modelling...

  15. Statistical physics of pairwise probability models

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2009-11-01

    Full Text Available Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying and using pairwise models. We build on our previous work on the subject and study the relation between different methods for fitting these models and evaluating their quality. In particular, using data from simulated cortical networks we study how the quality of various approximate methods for inferring the parameters in a pairwise model depends on the time bin chosen for binning the data. We also study the effect of the size of the time bin on the model quality itself, again using simulated data. We show that using finer time bins increases the quality of the pairwise model. We offer new ways of deriving the expressions reported in our previous work for assessing the quality of pairwise models.

  16. Structural health monitoring and probability of detection estimation

    Science.gov (United States)

    Forsyth, David S.

    2016-02-01

    Structural health monitoring (SHM) methods are often based on nondestructive testing (NDT) sensors and are often proposed as replacements for NDT to lower cost and/or improve reliability. In order to take advantage of SHM for life cycle management, it is necessary to determine the Probability of Detection (POD) of the SHM system just as for traditional NDT to ensure that the required level of safety is maintained. Many different possibilities exist for SHM systems, but one of the attractive features of SHM versus NDT is the ability to take measurements very simply after the SHM system is installed. Using a simple statistical model of POD, some authors have proposed that very high rates of SHM system data sampling can result in high effective POD even in situations where an individual test has low POD. In this paper, we discuss the theoretical basis for determining the effect of repeated inspections, and examine data from SHM experiments against this framework to show how the effective POD from multiple tests can be estimated.

  17. PROBABILITY CALIBRATION BY THE MINIMUM AND MAXIMUM PROBABILITY SCORES IN ONE-CLASS BAYES LEARNING FOR ANOMALY DETECTION

    Data.gov (United States)

    National Aeronautics and Space Administration — PROBABILITY CALIBRATION BY THE MINIMUM AND MAXIMUM PROBABILITY SCORES IN ONE-CLASS BAYES LEARNING FOR ANOMALY DETECTION GUICHONG LI, NATHALIE JAPKOWICZ, IAN HOFFMAN,...

  18. Imperfection detection probability at ultrasonic testing of reactor vessels

    International Nuclear Information System (INIS)

    Kazinczy, F. de; Koernvik, L.Aa.

    1980-02-01

    The report is a lecture given at a symposium organized by the Swedish nuclear power inspectorate on February 1980. Equipments, calibration and testing procedures are reported. The estimation of defect detection probability for ultrasonic tests and the reliability of literature data are discussed. Practical testing of reactor vessels and welded joints are described. Swedish test procedures are compared with other countries. Series of test data for welded joints of the OKG-2 reactor are presented. Future recommendations for testing procedures are made. (GBn)

  19. Optimal Sample Size for Probability of Detection Curves

    International Nuclear Information System (INIS)

    Annis, Charles; Gandossi, Luca; Martin, Oliver

    2012-01-01

    The use of Probability of Detection (POD) curves to quantify NDT reliability is common in the aeronautical industry, but relatively less so in the nuclear industry. The European Network for Inspection Qualification's (ENIQ) Inspection Qualification Methodology is based on the concept of Technical Justification, a document assembling all the evidence to assure that the NDT system in focus is indeed capable of finding the flaws for which it was designed. This methodology has become widely used in many countries, but the assurance it provides is usually of qualitative nature. The need to quantify the output of inspection qualification has become more important, especially as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. To credit the inspections in structural reliability evaluations, a measure of the NDT reliability is necessary. A POD curve provides such metric. In 2010 ENIQ developed a technical report on POD curves, reviewing the statistical models used to quantify inspection reliability. Further work was subsequently carried out to investigate the issue of optimal sample size for deriving a POD curve, so that adequate guidance could be given to the practitioners of inspection reliability. Manufacturing of test pieces with cracks that are representative of real defects found in nuclear power plants (NPP) can be very expensive. Thus there is a tendency to reduce sample sizes and in turn reduce the conservatism associated with the POD curve derived. Not much guidance on the correct sample size can be found in the published literature, where often qualitative statements are given with no further justification. The aim of this paper is to summarise the findings of such work. (author)

  20. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    Science.gov (United States)

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which

  1. Detection probabilities for time-domain velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1991-01-01

    programs, it is demonstrated that the probability of correct estimation depends on the signal-to-noise ratio, transducer bandwidth, number of A-lines and number of samples used in the correlation estimate. The influence of applying a stationary echo-canceler is explained. The echo canceling can be modeled...

  2. Camera-Model Identification Using Markovian Transition Probability Matrix

    Science.gov (United States)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  3. Minimizing Detection Probability Routing in Ad Hoc Networks Using Directional Antennas

    Directory of Open Access Journals (Sweden)

    Towsley Don

    2009-01-01

    Full Text Available In a hostile environment, it is important for a transmitter to make its wireless transmission invisible to adversaries because an adversary can detect the transmitter if the received power at its antennas is strong enough. This paper defines a detection probability model to compute the level of a transmitter being detected by a detection system at arbitrary location around the transmitter. Our study proves that the probability of detecting a directional antenna is much lower than that of detecting an omnidirectional antenna if both the directional and omnidirectional antennas provide the same Effective Isotropic Radiated Power (EIRP in the direction of the receiver. We propose a Minimizing Detection Probability (MinDP routing algorithm to find a secure routing path in ad hoc networks where nodes employ directional antennas to transmit data to decrease the probability of being detected by adversaries. Our study shows that the MinDP routing algorithm can reduce the total detection probability of deliveries from the source to the destination by over 74%.

  4. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  5. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.

    Science.gov (United States)

    Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li

    2018-02-01

    In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.

  6. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis

    Science.gov (United States)

    Wilcox, Taylor M; Mckelvey, Kevin S.; Young, Michael K.; Sepulveda, Adam; Shepard, Bradley B.; Jane, Stephen F; Whiteley, Andrew R.; Lowe, Winsor H.; Schwartz, Michael K.

    2016-01-01

    Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection > 0.99 at densities of ≥ 3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.

  7. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.

    Science.gov (United States)

    Mittag, Maria; Takegata, Rika; Winkler, István

    2016-09-14

    Representations encoding the probabilities of auditory events do not directly support predictive processing. In contrast, information about the probability with which a given sound follows another (transitional probability) allows predictions of upcoming sounds. We tested whether behavioral and cortical auditory deviance detection (the latter indexed by the mismatch negativity event-related potential) relies on probabilities of sound patterns or on transitional probabilities. We presented healthy adult volunteers with three types of rare tone-triplets among frequent standard triplets of high-low-high (H-L-H) or L-H-L pitch structure: proximity deviant (H-H-H/L-L-L), reversal deviant (L-H-L/H-L-H), and first-tone deviant (L-L-H/H-H-L). If deviance detection was based on pattern probability, reversal and first-tone deviants should be detected with similar latency because both differ from the standard at the first pattern position. If deviance detection was based on transitional probabilities, then reversal deviants should be the most difficult to detect because, unlike the other two deviants, they contain no low-probability pitch transitions. The data clearly showed that both behavioral and cortical auditory deviance detection uses transitional probabilities. Thus, the memory traces underlying cortical deviance detection may provide a link between stimulus probability-based change/novelty detectors operating at lower levels of the auditory system and higher auditory cognitive functions that involve predictive processing. Our research presents the first definite evidence for the auditory system prioritizing transitional probabilities over probabilities of individual sensory events. Forming representations for transitional probabilities paves the way for predictions of upcoming sounds. Several recent theories suggest that predictive processing provides the general basis of human perception, including important auditory functions, such as auditory scene analysis. Our

  8. Geometric modeling in probability and statistics

    CERN Document Server

    Calin, Ovidiu

    2014-01-01

    This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...

  9. Probabilities of False Alarm for Vital Sign Detection on the Basis of a Doppler Radar System

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuoc Van

    2018-02-01

    Full Text Available Vital detection on the basis of Doppler radars has drawn a great deal of attention from researchers because of its high potential for applications in biomedicine, surveillance, and finding people alive under debris during natural hazards. In this research, the signal-to-noise ratio (SNR of the remote vital-sign detection system is investigated. On the basis of different types of noise, such as phase noise, Gaussian noise, leakage noise between the transmitting and receiving antennae, and so on, the SNR of the system has first been examined. Then the research has focused on the investigation of the detection and false alarm probabilities of the system when the transmission link between the human and the radar sensor system took the Nakagami-m channel model. The analytical model for the false alarm and the detection probabilities of the system have been derived. The proposed theoretical models for the SNR and detection probability match with the simulation and measurement results. These theoretical models have the potential to be used as good references for the hardware development of the vital-sign detection radar sensor system.

  10. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.

    Science.gov (United States)

    de Souza, Lesley S; Godwin, James C; Renshaw, Mark A; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs.

  11. High-resolution elastic recoil detection utilizing Bayesian probability theory

    International Nuclear Information System (INIS)

    Neumaier, P.; Dollinger, G.; Bergmaier, A.; Genchev, I.; Goergens, L.; Fischer, R.; Ronning, C.; Hofsaess, H.

    2001-01-01

    Elastic recoil detection (ERD) analysis is improved in view of depth resolution and the reliability of the measured spectra. Good statistics at even low ion fluences is obtained utilizing a large solid angle of 5 msr at the Munich Q3D magnetic spectrograph and using a 40 MeV 197 Au beam. In this way the elemental depth profiles are not essentially altered during analysis even if distributions with area densities below 1x10 14 atoms/cm 2 are measured. As the energy spread due to the angular acceptance is fully eliminated by ion-optical and numerical corrections, an accurate and reliable apparatus function is derived. It allows to deconvolute the measured spectra using the adaptive kernel method, a maximum entropy concept in the framework of Bayesian probability theory. In addition, the uncertainty of the reconstructed spectra is quantified. The concepts are demonstrated at 13 C depth profiles measured at ultra-thin films of tetrahedral amorphous carbon (ta-C). Depth scales of those profiles are given with an accuracy of 1.4x10 15 atoms/cm 2

  12. APPROXIMATION OF PROBABILITY DISTRIBUTIONS IN QUEUEING MODELS

    Directory of Open Access Journals (Sweden)

    T. I. Aliev

    2013-03-01

    Full Text Available For probability distributions with variation coefficient, not equal to unity, mathematical dependences for approximating distributions on the basis of first two moments are derived by making use of multi exponential distributions. It is proposed to approximate distributions with coefficient of variation less than unity by using hypoexponential distribution, which makes it possible to generate random variables with coefficient of variation, taking any value in a range (0; 1, as opposed to Erlang distribution, having only discrete values of coefficient of variation.

  13. Calculating the Probability of Returning a Loan with Binary Probability Models

    Directory of Open Access Journals (Sweden)

    Julian Vasilev

    2014-12-01

    Full Text Available The purpose of this article is to give a new approach in calculating the probability of returning a loan. A lot of factors affect the value of the probability. In this article by using statistical and econometric models some influencing factors are proved. The main approach is concerned with applying probit and logit models in loan management institutions. A new aspect of the credit risk analysis is given. Calculating the probability of returning a loan is a difficult task. We assume that specific data fields concerning the contract (month of signing, year of signing, given sum and data fields concerning the borrower of the loan (month of birth, year of birth (age, gender, region, where he/she lives may be independent variables in a binary logistics model with a dependent variable “the probability of returning a loan”. It is proved that the month of signing a contract, the year of signing a contract, the gender and the age of the loan owner do not affect the probability of returning a loan. It is proved that the probability of returning a loan depends on the sum of contract, the remoteness of the loan owner and the month of birth. The probability of returning a loan increases with the increase of the given sum, decreases with the proximity of the customer, increases for people born in the beginning of the year and decreases for people born at the end of the year.

  14. Classical probability model for Bell inequality

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2014-01-01

    We show that by taking into account randomness of realization of experimental contexts it is possible to construct common Kolmogorov space for data collected for these contexts, although they can be incompatible. We call such a construction 'Kolmogorovization' of contextuality. This construction of common probability space is applied to Bell's inequality. It is well known that its violation is a consequence of collecting statistical data in a few incompatible experiments. In experiments performed in quantum optics contexts are determined by selections of pairs of angles (θ i ,θ ' j ) fixing orientations of polarization beam splitters. Opposite to the common opinion, we show that statistical data corresponding to measurements of polarizations of photons in the singlet state, e.g., in the form of correlations, can be described in the classical probabilistic framework. The crucial point is that in constructing the common probability space one has to take into account not only randomness of the source (as Bell did), but also randomness of context-realizations (in particular, realizations of pairs of angles (θ i , θ ' j )). One may (but need not) say that randomness of 'free will' has to be accounted for.

  15. Detection probability of gyrfalcons and other cliff-nesting raptors during aerial surveys in Alaska

    Science.gov (United States)

    Booms, Travis L.; Fuller, Mark R.; Schempf, Philip F.; McCaffery, Brian J.; Lindberg, Mark S.; Watson, Richard T.; Cade, Tom J.; Fuller, Mark; Hunt, Grainger; Potapov, Eugene

    2011-01-01

    Assessing the status of Gyrfalcons (Falco rusticolus) and other cliffnesting raptors as the Arctic climate changes often requires aerial surveys of their breeding habitats. Because traditional, count-based surveys that do not adjust for differing detection probabilities can provide faulty inference about population status (Link and Sauer 1998, Thompson 2002), it will be important to incorporate measures of detection probability into survey methods whenever possible. To evaluate the feasibility of this, we conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons, Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling following MacKenzie et al. (2002, 2006). We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills (hereafter called Volcanoes) near Bethel, Alaska. We used the following terms and definitions throughout: Survey Site: site of a nest used previously by a raptor and marked with a GPS-obtained latitude and longitude accurate to within 20 m. All GPS locations were obtained in prior years from a helicopter hovering approximately 10?20 m from a nest. The site was considered occupied if a bird or an egg was detected within approximately 500 m of the nest and this area served as our sampling unit. When multiple historical nests were located on a single cliff, we used only one GPS location to locate the survey site. Detection probability (p): the probability of a species being detected at a site given the site is occupied. Occupancy (?): the probability that the species of interest is present at a site during the survey period. A site was considered occupied if the

  16. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  17. Probability-of-Superiority SEM (PS-SEM—Detecting Probability-Based Multivariate Relationships in Behavioral Research

    Directory of Open Access Journals (Sweden)

    Johnson Ching-Hong Li

    2018-06-01

    Full Text Available In behavioral research, exploring bivariate relationships between variables X and Y based on the concept of probability-of-superiority (PS has received increasing attention. Unlike the conventional, linear-based bivariate relationship (e.g., Pearson's correlation, PS defines that X and Y can be related based on their likelihood—e.g., a student who is above mean in SAT has 63% likelihood of achieving an above-mean college GPA. Despite its increasing attention, the concept of PS is restricted to a simple bivariate scenario (X-Y pair, which hinders the development and application of PS in popular multivariate modeling such as structural equation modeling (SEM. Therefore, this study addresses an empirical-based simulation study that explores the potential of detecting PS-based relationship in SEM, called PS-SEM. The simulation results showed that the proposed PS-SEM method can detect and identify PS-based when data follow PS-based relationships, thereby providing a useful method for researchers to explore PS-based SEM in their studies. Conclusions, implications, and future directions based on the findings are also discussed.

  18. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions.

    Science.gov (United States)

    Wenger, Seth J; Freeman, Mary C

    2008-10-01

    Researchers have developed methods to account for imperfect detection of species with either occupancy (presence absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.

  19. Probability Modeling and Thinking: What Can We Learn from Practice?

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie; Fewster, Rachel; Fitch, Marie; Pattenwise, Simeon; Wild, Chris; Ziedins, Ilze

    2016-01-01

    Because new learning technologies are enabling students to build and explore probability models, we believe that there is a need to determine the big enduring ideas that underpin probabilistic thinking and modeling. By uncovering the elements of the thinking modes of expert users of probability models we aim to provide a base for the setting of…

  20. Model checking meets probability: a gentle introduction

    NARCIS (Netherlands)

    Katoen, Joost P.

    2013-01-01

    This paper considers fully probabilistic system models. Each transition is quantified with a probability—its likelihood of occurrence. Properties are expressed as automata that either accept or reject system runs. The central question is to determine the fraction of accepted system runs. We also

  1. More efficient integrated safeguards by applying a reasonable detection probability for maintaining low presence probability of undetected nuclear proliferating activities

    International Nuclear Information System (INIS)

    Otsuka, Naoto

    2013-01-01

    Highlights: • A theoretical foundation is presented for more efficient Integrated Safeguards (IS). • Probability of undetected nuclear proliferation activities should be maintained low. • For nations under IS, the probability to start proliferation activities is very low. • The fact can decrease the detection probability of IS by dozens of percentage points. • The cost of IS per nation can be cut down by reducing inspection frequencies etc. - Abstract: A theoretical foundation is presented for implementing more efficiently the present International Atomic Energy Agency (IAEA) integrated safeguards (ISs) on the basis of fuzzy evaluation of the probability that the evaluated nation will continue peaceful activities. It is shown that by determining the presence probability of undetected nuclear proliferating activities, nations under IS can be maintained at acceptably low proliferation risk levels even if the detection probability of current IS is decreased by dozens of percentage from the present value. This makes it possible to reduce inspection frequency and the number of collected samples, allowing the IAEA to cut costs per nation. This will contribute to further promotion and application of IS to more nations by the IAEA, and more efficient utilization of IAEA resources from the viewpoint of whole IS framework

  2. Some simple applications of probability models to birth intervals

    International Nuclear Information System (INIS)

    Shrestha, G.

    1987-07-01

    An attempt has been made in this paper to apply some simple probability models to birth intervals under the assumption of constant fecundability and varying fecundability among women. The parameters of the probability models are estimated by using the method of moments and the method of maximum likelihood. (author). 9 refs, 2 tabs

  3. Probability model for analyzing fire management alternatives: theory and structure

    Science.gov (United States)

    Frederick W. Bratten

    1982-01-01

    A theoretical probability model has been developed for analyzing program alternatives in fire management. It includes submodels or modules for predicting probabilities of fire behavior, fire occurrence, fire suppression, effects of fire on land resources, and financial effects of fire. Generalized "fire management situations" are used to represent actual fire...

  4. Convergence of Transition Probability Matrix in CLVMarkov Models

    Science.gov (United States)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  5. On the structure of the quantum-mechanical probability models

    International Nuclear Information System (INIS)

    Cufaro-Petroni, N.

    1992-01-01

    In this paper the role of the mathematical probability models in the classical and quantum physics in shortly analyzed. In particular the formal structure of the quantum probability spaces (QPS) is contrasted with the usual Kolmogorovian models of probability by putting in evidence the connections between this structure and the fundamental principles of the quantum mechanics. The fact that there is no unique Kolmogorovian model reproducing a QPS is recognized as one of the main reasons of the paradoxical behaviors pointed out in the quantum theory from its early days. 8 refs

  6. Modeling the probability distribution of peak discharge for infiltrating hillslopes

    Science.gov (United States)

    Baiamonte, Giorgio; Singh, Vijay P.

    2017-07-01

    Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.

  7. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    Science.gov (United States)

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  8. Study of detection probability from lesion by scintiscanning

    International Nuclear Information System (INIS)

    Silva, D.C. da; Dias-Neto, A.L.

    1992-01-01

    The importance of work with the information density parameter in scintiscanning is described, fixing the minimum values of information density, above of which the existent injuries are not detected, allowing also the reproducibility of the examination. (C.G.C.)

  9. Statistical validation of normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; van t Veld, Aart; Langendijk, Johannes A.; Schilstra, Cornelis

    2012-01-01

    PURPOSE: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: A penalized regression method, LASSO (least absolute shrinkage

  10. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  11. Optimize the Coverage Probability of Prediction Interval for Anomaly Detection of Sensor-Based Monitoring Series

    Directory of Open Access Journals (Sweden)

    Jingyue Pang

    2018-03-01

    Full Text Available Effective anomaly detection of sensing data is essential for identifying potential system failures. Because they require no prior knowledge or accumulated labels, and provide uncertainty presentation, the probability prediction methods (e.g., Gaussian process regression (GPR and relevance vector machine (RVM are especially adaptable to perform anomaly detection for sensing series. Generally, one key parameter of prediction models is coverage probability (CP, which controls the judging threshold of the testing sample and is generally set to a default value (e.g., 90% or 95%. There are few criteria to determine the optimal CP for anomaly detection. Therefore, this paper designs a graphic indicator of the receiver operating characteristic curve of prediction interval (ROC-PI based on the definition of the ROC curve which can depict the trade-off between the PI width and PI coverage probability across a series of cut-off points. Furthermore, the Youden index is modified to assess the performance of different CPs, by the minimization of which the optimal CP is derived by the simulated annealing (SA algorithm. Experiments conducted on two simulation datasets demonstrate the validity of the proposed method. Especially, an actual case study on sensing series from an on-orbit satellite illustrates its significant performance in practical application.

  12. Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)

    Science.gov (United States)

    Generazio, Edward R.

    2015-01-01

    Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that there is 95% confidence that the POD is greater than 90% (90/95 POD). Design of experiments for validating probability of detection capability of nondestructive evaluation (NDE) systems (DOEPOD) is a methodology that is implemented via software to serve as a diagnostic tool providing detailed analysis of POD test data, guidance on establishing data distribution requirements, and resolving test issues. DOEPOD demands utilization of observance of occurrences. The DOEPOD capability has been developed to provide an efficient and accurate methodology that yields observed POD and confidence bounds for both Hit-Miss or signal amplitude testing. DOEPOD does not assume prescribed POD logarithmic or similar functions with assumed adequacy over a wide range of flaw sizes and inspection system technologies, so that multi-parameter curve fitting or model optimization approaches to generate a POD curve are not required. DOEPOD applications for supporting inspector qualifications is included.

  13. Models for probability and statistical inference theory and applications

    CERN Document Server

    Stapleton, James H

    2007-01-01

    This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...

  14. A probability model for the failure of pressure containing parts

    International Nuclear Information System (INIS)

    Thomas, H.M.

    1978-01-01

    The model provides a method of estimating the order of magnitude of the leakage failure probability of pressure containing parts. It is a fatigue based model which makes use of the statistics available for both specimens and vessels. Some novel concepts are introduced but essentially the model simply quantifies the obvious i.e. that failure probability increases with increases in stress levels, number of cycles, volume of material and volume of weld metal. A further model based on fracture mechanics estimates the catastrophic fraction of leakage failures. (author)

  15. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Phillip E

    2003-01-01

    The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treatin

  16. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain

    Science.gov (United States)

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.

    2017-01-01

    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  17. Maximum parsimony, substitution model, and probability phylogenetic trees.

    Science.gov (United States)

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  18. Gap probability - Measurements and models of a pecan orchard

    Science.gov (United States)

    Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI

    1992-01-01

    Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.

  19. Illustrating Probability through Roulette: A Spreadsheet Simulation Model

    Directory of Open Access Journals (Sweden)

    Kala Chand Seal

    2005-11-01

    Full Text Available Teaching probability can be challenging because the mathematical formulas often are too abstract and complex for the students to fully grasp the underlying meaning and effect of the concepts. Games can provide a way to address this issue. For example, the game of roulette can be an exciting application for teaching probability concepts. In this paper, we implement a model of roulette in a spreadsheet that can simulate outcomes of various betting strategies. The simulations can be analyzed to gain better insights into the corresponding probability structures. We use the model to simulate a particular betting strategy known as the bet-doubling, or Martingale, strategy. This strategy is quite popular and is often erroneously perceived as a winning strategy even though the probability analysis shows that such a perception is incorrect. The simulation allows us to present the true implications of such a strategy for a player with a limited betting budget and relate the results to the underlying theoretical probability structure. The overall validation of the model, its use for teaching, including its application to analyze other types of betting strategies are discussed.

  20. Reach/frequency for printed media: Personal probabilities or models

    DEFF Research Database (Denmark)

    Mortensen, Peter Stendahl

    2000-01-01

    The author evaluates two different ways of estimating reach and frequency of plans for printed media. The first assigns reading probabilities to groups of respondents and calculates reach and frequency by simulation. the second estimates parameters to a model for reach/frequency. It is concluded ...... and estiamtes from such models are shown to be closer to panel data. the problem, however, is to get valid input for such models from readership surveys. Means for this are discussed....

  1. Count data, detection probabilities, and the demography, dynamics, distribution, and decline of amphibians.

    Science.gov (United States)

    Schmidt, Benedikt R

    2003-08-01

    The evidence for amphibian population declines is based on count data that were not adjusted for detection probabilities. Such data are not reliable even when collected using standard methods. The formula C = Np (where C is a count, N the true parameter value, and p is a detection probability) relates count data to demography, population size, or distributions. With unadjusted count data, one assumes a linear relationship between C and N and that p is constant. These assumptions are unlikely to be met in studies of amphibian populations. Amphibian population data should be based on methods that account for detection probabilities.

  2. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    Science.gov (United States)

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  3. Modeling highway travel time distribution with conditional probability models

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Neto, Francisco Moraes [ORNL; Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK)

    2014-01-01

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program provides a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).

  4. Computation of Probabilities in Causal Models of History of Science

    Directory of Open Access Journals (Sweden)

    Osvaldo Pessoa Jr.

    2006-12-01

    Full Text Available : The aim of this paper is to investigate the ascription of probabilities in a causal model of an episode in the history of science. The aim of such a quantitative approach is to allow the implementation of the causal model in a computer, to run simulations. As an example, we look at the beginning of the science of magnetism, “explaining” — in a probabilistic way, in terms of a single causal model — why the field advanced in China but not in Europe (the difference is due to different prior probabilities of certain cultural manifestations. Given the number of years between the occurrences of two causally connected advances X and Y, one proposes a criterion for stipulating the value pY=X of the conditional probability of an advance Y occurring, given X. Next, one must assume a specific form for the cumulative probability function pY=X(t, which we take to be the time integral of an exponential distribution function, as is done in physics of radioactive decay. Rules for calculating the cumulative functions for more than two events are mentioned, involving composition, disjunction and conjunction of causes. We also consider the problems involved in supposing that the appearance of events in time follows an exponential distribution, which are a consequence of the fact that a composition of causes does not follow an exponential distribution, but a “hypoexponential” one. We suggest that a gamma distribution function might more adequately represent the appearance of advances.

  5. Fixation probability in a two-locus intersexual selection model.

    Science.gov (United States)

    Durand, Guillermo; Lessard, Sabin

    2016-06-01

    We study a two-locus model of intersexual selection in a finite haploid population reproducing according to a discrete-time Moran model with a trait locus expressed in males and a preference locus expressed in females. We show that the probability of ultimate fixation of a single mutant allele for a male ornament introduced at random at the trait locus given any initial frequency state at the preference locus is increased by weak intersexual selection and recombination, weak or strong. Moreover, this probability exceeds the initial frequency of the mutant allele even in the case of a costly male ornament if intersexual selection is not too weak. On the other hand, the probability of ultimate fixation of a single mutant allele for a female preference towards a male ornament introduced at random at the preference locus is increased by weak intersexual selection and weak recombination if the female preference is not costly, and is strong enough in the case of a costly male ornament. The analysis relies on an extension of the ancestral recombination-selection graph for samples of haplotypes to take into account events of intersexual selection, while the symbolic calculation of the fixation probabilities is made possible in a reasonable time by an optimizing algorithm. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods

    Science.gov (United States)

    Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.

    2014-12-01

    Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.

  7. Using areas of known occupancy to identify sources of variation in detection probability of raptors: taking time lowers replication effort for surveys.

    Science.gov (United States)

    Murn, Campbell; Holloway, Graham J

    2016-10-01

    Species occurring at low density can be difficult to detect and if not properly accounted for, imperfect detection will lead to inaccurate estimates of occupancy. Understanding sources of variation in detection probability and how they can be managed is a key part of monitoring. We used sightings data of a low-density and elusive raptor (white-headed vulture Trigonoceps occipitalis ) in areas of known occupancy (breeding territories) in a likelihood-based modelling approach to calculate detection probability and the factors affecting it. Because occupancy was known a priori to be 100%, we fixed the model occupancy parameter to 1.0 and focused on identifying sources of variation in detection probability. Using detection histories from 359 territory visits, we assessed nine covariates in 29 candidate models. The model with the highest support indicated that observer speed during a survey, combined with temporal covariates such as time of year and length of time within a territory, had the highest influence on the detection probability. Averaged detection probability was 0.207 (s.e. 0.033) and based on this the mean number of visits required to determine within 95% confidence that white-headed vultures are absent from a breeding area is 13 (95% CI: 9-20). Topographical and habitat covariates contributed little to the best models and had little effect on detection probability. We highlight that low detection probabilities of some species means that emphasizing habitat covariates could lead to spurious results in occupancy models that do not also incorporate temporal components. While variation in detection probability is complex and influenced by effects at both temporal and spatial scales, temporal covariates can and should be controlled as part of robust survey methods. Our results emphasize the importance of accounting for detection probability in occupancy studies, particularly during presence/absence studies for species such as raptors that are widespread and

  8. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  9. Statistical validation of normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2013-01-01

    desired levels of false alarms and detection probabilities. Self-tuning residual generators are employed for diagnosis and are combined with statistical change detection to form a setup for robust fault diagnosis. On-line estimation of test statistics is used to obtain a detection threshold and a desired...... false alarm probability. A data based method is used to determine the validity of the methods proposed. Verification is achieved using real data and shows that the presented diagnosis method is efficient and could have avoided incidents where faults led to loss of aircraft....

  11. Assigning probability distributions to input parameters of performance assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta [INTERA Inc., Austin, TX (United States)

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.

  12. Assigning probability distributions to input parameters of performance assessment models

    International Nuclear Information System (INIS)

    Mishra, Srikanta

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available

  13. Fitting the Probability Distribution Functions to Model Particulate Matter Concentrations

    International Nuclear Information System (INIS)

    El-Shanshoury, Gh.I.

    2017-01-01

    The main objective of this study is to identify the best probability distribution and the plotting position formula for modeling the concentrations of Total Suspended Particles (TSP) as well as the Particulate Matter with an aerodynamic diameter<10 μm (PM 10 ). The best distribution provides the estimated probabilities that exceed the threshold limit given by the Egyptian Air Quality Limit value (EAQLV) as well the number of exceedance days is estimated. The standard limits of the EAQLV for TSP and PM 10 concentrations are 24-h average of 230 μg/m 3 and 70 μg/m 3 , respectively. Five frequency distribution functions with seven formula of plotting positions (empirical cumulative distribution functions) are compared to fit the average of daily TSP and PM 10 concentrations in year 2014 for Ain Sokhna city. The Quantile-Quantile plot (Q-Q plot) is used as a method for assessing how closely a data set fits a particular distribution. A proper probability distribution that represents the TSP and PM 10 has been chosen based on the statistical performance indicator values. The results show that Hosking and Wallis plotting position combined with Frechet distribution gave the highest fit for TSP and PM 10 concentrations. Burr distribution with the same plotting position follows Frechet distribution. The exceedance probability and days over the EAQLV are predicted using Frechet distribution. In 2014, the exceedance probability and days for TSP concentrations are 0.052 and 19 days, respectively. Furthermore, the PM 10 concentration is found to exceed the threshold limit by 174 days

  14. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  15. Probability theory for 3-layer remote sensing radiative transfer model: univariate case.

    Science.gov (United States)

    Ben-David, Avishai; Davidson, Charles E

    2012-04-23

    A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America

  16. NASA Lewis Launch Collision Probability Model Developed and Analyzed

    Science.gov (United States)

    Bollenbacher, Gary; Guptill, James D

    1999-01-01

    There are nearly 10,000 tracked objects orbiting the earth. These objects encompass manned objects, active and decommissioned satellites, spent rocket bodies, and debris. They range from a few centimeters across to the size of the MIR space station. Anytime a new satellite is launched, the launch vehicle with its payload attached passes through an area of space in which these objects orbit. Although the population density of these objects is low, there always is a small but finite probability of collision between the launch vehicle and one or more of these space objects. Even though the probability of collision is very low, for some payloads even this small risk is unacceptable. To mitigate the small risk of collision associated with launching at an arbitrary time within the daily launch window, NASA performs a prelaunch mission assurance Collision Avoidance Analysis (or COLA). For the COLA of the Cassini spacecraft, the NASA Lewis Research Center conducted an in-house development and analysis of a model for launch collision probability. The model allows a minimum clearance criteria to be used with the COLA analysis to ensure an acceptably low probability of collision. If, for any given liftoff time, the nominal launch vehicle trajectory would pass a space object with less than the minimum required clearance, launch would not be attempted at that time. The model assumes that the nominal positions of the orbiting objects and of the launch vehicle can be predicted as a function of time, and therefore, that any tracked object that comes within close proximity of the launch vehicle can be identified. For any such pair, these nominal positions can be used to calculate a nominal miss distance. The actual miss distances may differ substantially from the nominal miss distance, due, in part, to the statistical uncertainty of the knowledge of the objects positions. The model further assumes that these position uncertainties can be described with position covariance matrices

  17. Detection probability of cliff-nesting raptors during helicopter and fixed-wing aircraft surveys in western Alaska

    Science.gov (United States)

    Booms, T.L.; Schempf, P.F.; McCaffery, B.J.; Lindberg, M.S.; Fuller, M.R.

    2010-01-01

    We conducted repeated aerial surveys for breeding cliff-nesting raptors on the Yukon Delta National Wildlife Refuge (YDNWR) in western Alaska to estimate detection probabilities of Gyrfalcons (Falco rusticolus), Golden Eagles (Aquila chrysaetos), Rough-legged Hawks (Buteo lagopus), and also Common Ravens (Corvus corax). Using the program PRESENCE, we modeled detection histories of each species based on single species occupancy modeling. We used different observers during four helicopter replicate surveys in the Kilbuck Mountains and five fixed-wing replicate surveys in the Ingakslugwat Hills near Bethel, AK. During helicopter surveys, Gyrfalcons had the highest detection probability estimate (p^;p^ 0.79; SE 0.05), followed by Golden Eagles (p^=0.68; SE 0.05), Common Ravens (p^=0.45; SE 0.17), and Rough-legged Hawks (p^=0.10; SE 0.11). Detection probabilities from fixed-wing aircraft in the Ingakslugwat Hills were similar to those from the helicopter in the Kilbuck Mountains for Gyrfalcons and Golden Eagles, but were higher for Common Ravens (p^=0.85; SE 0.06) and Rough-legged Hawks (p^=0.42; SE 0.07). Fixed-wing aircraft provided detection probability estimates and SEs in the Ingakslugwat Hills similar to or better than those from helicopter surveys in the Kilbucks and should be considered for future cliff-nesting raptor surveys where safe, low-altitude flight is possible. Overall, detection probability varied by observer experience and in some cases, by study area/aircraft type.

  18. Raman spectroscopy detection of platelet for Alzheimer’s disease with predictive probabilities

    International Nuclear Information System (INIS)

    Wang, L J; Du, X Q; Du, Z W; Yang, Y Y; Chen, P; Wang, X H; Cheng, Y; Peng, J; Shen, A G; Hu, J M; Tian, Q; Shang, X L; Liu, Z C; Yao, X Q; Wang, J Z

    2014-01-01

    Alzheimer’s disease (AD) is a common form of dementia. Early and differential diagnosis of AD has always been an arduous task for the medical expert due to the unapparent early symptoms and the currently imperfect imaging examination methods. Therefore, obtaining reliable markers with clinical diagnostic value in easily assembled samples is worthy and significant. Our previous work with laser Raman spectroscopy (LRS), in which we detected platelet samples of different ages of AD transgenic mice and non-transgenic controls, showed great effect in the diagnosis of AD. In addition, a multilayer perception network (MLP) classification method was adopted to discriminate the spectral data. However, there were disturbances, which were induced by noise from the machines and so on, in the data set; thus the MLP method had to be trained with large-scale data. In this paper, we aim to re-establish the classification models of early and advanced AD and the control group with fewer features, and apply some mechanism of noise reduction to improve the accuracy of models. An adaptive classification method based on the Gaussian process (GP) featured, with predictive probabilities, is proposed, which could tell when a data set is related to some kind of disease. Compared with MLP on the same feature set, GP showed much better performance in the experimental results. What is more, since the spectra of platelets are isolated from AD, GP has good expansibility and can be applied in diagnosis of many other similar diseases, such as Parkinson’s disease (PD). Spectral data of 4 month and 12 month AD platelets, as well as control data, were collected. With predictive probabilities, the proposed GP classification method improved the diagnostic sensitivity to nearly 100%. Samples were also collected from PD platelets as classification and comparison to the 12 month AD. The presented approach and our experiments indicate that utilization of GP with predictive probabilities in

  19. Variable terrestrial GPS telemetry detection rates: Addressing the probability of successful acquisitions

    Science.gov (United States)

    Ironside, Kirsten E.; Mattson, David J.; Choate, David; Stoner, David; Arundel, Terry; Hansen, Jered R.; Theimer, Tad; Holton, Brandon; Jansen, Brian; Sexton, Joseph O.; Longshore, Kathleen M.; Edwards, Thomas C.; Peters, Michael

    2017-01-01

    Studies using global positioning system (GPS) telemetry rarely result in 100% fix success rates (FSR), which may bias datasets because data loss is systematic rather than a random process. Previous spatially explicit models developed to correct for sampling bias have been limited to small study areas, a small range of data loss, or were study-area specific. We modeled environmental effects on FSR from desert to alpine biomes, investigated the full range of potential data loss (0–100% FSR), and evaluated whether animal body position can contribute to lower FSR because of changes in antenna orientation based on GPS detection rates for 4 focal species: cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus nelsoni), and mule deer (Odocoileus hemionus). Terrain exposure and height of over story vegetation were the most influential factors affecting FSR. Model evaluation showed a strong correlation (0.88) between observed and predicted FSR and no significant differences between predicted and observed FSRs using 2 independent validation datasets. We found that cougars and canyon-dwelling bighorn sheep may select for environmental features that influence their detectability by GPS technology, mule deer may select against these features, and elk appear to be nonselective. We observed temporal patterns in missed fixes only for cougars. We provide a model for cougars, predicting fix success by time of day that is likely due to circadian changes in collar orientation and selection of daybed sites. We also provide a model predicting the probability of GPS fix acquisitions given environmental conditions, which had a strong relationship (r 2 = 0.82) with deployed collar FSRs across species.

  20. Improved detection probability of low level light and infrared image fusion system

    Science.gov (United States)

    Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang

    2018-02-01

    Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.

  1. A fast algorithm for estimating transmission probabilities in QTL detection designs with dense maps

    Directory of Open Access Journals (Sweden)

    Gilbert Hélène

    2009-11-01

    Full Text Available Abstract Background In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods. Results A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference. Conclusion The theory is fully developed and an example is given.

  2. Influence of porcine circovirus type 2 vaccination on the probability and severity of pneumonia detected postmortem.

    Science.gov (United States)

    Raith, J; Kuchling, S; Schleicher, C; Schobesberger, H; Köfer, J

    2015-01-31

    To evaluate the influence of porcine circovirus type 2 vaccination (PCV-2) on the probability and severity of pneumonia, postmortem findings of 247,505 pigs slaughtered between 2008 and 2011 were analysed by applying a cumulative link mixed model. Three major effects could be observed: (1) PCV-2 vaccination significantly (P<0.01) reduced the odds (coefficient: -0.05) of postmortem findings of mild, moderate and severe pneumonia for vaccinated pigs. (2) Pigs from fattening farms were less likely (coefficient: -0.44; P<0.05) to exhibit signs of pneumonia at slaughter than pigs from farrow-to-finish farms. (3) When vaccinated, the odds of detecting postmortem signs showed an even more pronounced reduction (coefficient: -0.19; P<0.001) for pigs from fattening farms. Combining PCV-2 vaccination, farm type and interaction effects between these two factors, a pig vaccinated against PCV-2 from a fattening farm had only half the chance (OR 0.51) of pneumonia being detected at postmortem than a non-vaccinated pig from a farrow-to-finish farm. The study demonstrates the benefit of a vaccination programme against PCV-2 as an important tool to reduce the risk of postmortem pneumonia findings and the severity of pneumonia in pigs at slaughter. British Veterinary Association.

  3. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  4. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    Science.gov (United States)

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  5. Summary of intrinsic and extrinsic factors affecting detection probability of marsh birds

    Science.gov (United States)

    Conway, C.J.; Gibbs, J.P.

    2011-01-01

    Many species of marsh birds (rails, bitterns, grebes, etc.) rely exclusively on emergent marsh vegetation for all phases of their life cycle, and many organizations have become concerned about the status and persistence of this group of birds. Yet, marsh birds are notoriously difficult to monitor due to their secretive habits. We synthesized the published and unpublished literature and summarized the factors that influence detection probability of secretive marsh birds in North America. Marsh birds are more likely to respond to conspecific than heterospecific calls, and seasonal peak in vocalization probability varies among co-existing species. The effectiveness of morning versus evening surveys varies among species and locations. Vocalization probability appears to be positively correlated with density in breeding Virginia Rails (Rallus limicola), Soras (Porzana carolina), and Clapper Rails (Rallus longirostris). Movement of birds toward the broadcast source creates biases when using count data from callbroadcast surveys to estimate population density. Ambient temperature, wind speed, cloud cover, and moon phase affected detection probability in some, but not all, studies. Better estimates of detection probability are needed. We provide recommendations that would help improve future marsh bird survey efforts and a list of 14 priority information and research needs that represent gaps in our current knowledge where future resources are best directed. ?? Society of Wetland Scientists 2011.

  6. Modelling the Probability of Landslides Impacting Road Networks

    Science.gov (United States)

    Taylor, F. E.; Malamud, B. D.

    2012-04-01

    During a landslide triggering event, the threat of landslides blocking roads poses a risk to logistics, rescue efforts and communities dependant on those road networks. Here we present preliminary results of a stochastic model we have developed to evaluate the probability of landslides intersecting a simple road network during a landslide triggering event and apply simple network indices to measure the state of the road network in the affected region. A 4000 x 4000 cell array with a 5 m x 5 m resolution was used, with a pre-defined simple road network laid onto it, and landslides 'randomly' dropped onto it. Landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power-law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL; the rollover (maximum probability) occurs at about AL = 400 m2 This statistical distribution was chosen based on three substantially complete triggered landslide inventories recorded in existing literature. The number of landslide areas (NL) selected for each triggered event iteration was chosen to have an average density of 1 landslide km-2, i.e. NL = 400 landslide areas chosen randomly for each iteration, and was based on several existing triggered landslide event inventories. A simple road network was chosen, in a 'T' shape configuration, with one road 1 x 4000 cells (5 m x 20 km) in a 'T' formation with another road 1 x 2000 cells (5 m x 10 km). The landslide areas were then randomly 'dropped' over the road array and indices such as the location, size (ABL) and number of road blockages (NBL) recorded. This process was performed 500 times (iterations) in a Monte-Carlo type simulation. Initial results show that for a landslide triggering event with 400 landslides over a 400 km2 region, the number of road blocks per iteration, NBL,ranges from 0 to 7. The average blockage area for the 500 iterations (A¯ BL) is about 3000 m

  7. Effects of population variability on the accuracy of detection probability estimates

    DEFF Research Database (Denmark)

    Ordonez Gloria, Alejandro

    2011-01-01

    Observing a constant fraction of the population over time, locations, or species is virtually impossible. Hence, quantifying this proportion (i.e. detection probability) is an important task in quantitative population ecology. In this study we determined, via computer simulations, the ef- fect of...

  8. Binomial Test Method for Determining Probability of Detection Capability for Fracture Critical Applications

    Science.gov (United States)

    Generazio, Edward R.

    2011-01-01

    The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that for a minimum flaw size and all greater flaw sizes, there is 0.90 probability of detection with 95% confidence (90/95 POD). Directed design of experiments for probability of detection (DOEPOD) has been developed to provide an efficient and accurate methodology that yields estimates of POD and confidence bounds for both Hit-Miss or signal amplitude testing, where signal amplitudes are reduced to Hit-Miss by using a signal threshold Directed DOEPOD uses a nonparametric approach for the analysis or inspection data that does require any assumptions about the particular functional form of a POD function. The DOEPOD procedure identifies, for a given sample set whether or not the minimum requirement of 0.90 probability of detection with 95% confidence is demonstrated for a minimum flaw size and for all greater flaw sizes (90/95 POD). The DOEPOD procedures are sequentially executed in order to minimize the number of samples needed to demonstrate that there is a 90/95 POD lower confidence bound at a given flaw size and that the POD is monotonic for flaw sizes exceeding that 90/95 POD flaw size. The conservativeness of the DOEPOD methodology results is discussed. Validated guidelines for binomial estimation of POD for fracture critical inspection are established.

  9. Probability of failure of the watershed algorithm for peak detection in comprehensive two-dimensional chromatography

    NARCIS (Netherlands)

    Vivó-Truyols, G.; Janssen, H.-G.

    2010-01-01

    The watershed algorithm is the most common method used for peak detection and integration In two-dimensional chromatography However, the retention time variability in the second dimension may render the algorithm to fail A study calculating the probabilities of failure of the watershed algorithm was

  10. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.

    Science.gov (United States)

    O'Connor, Kelly M; Nathan, Lucas R; Liberati, Marjorie R; Tingley, Morgan W; Vokoun, Jason C; Rittenhouse, Tracy A G

    2017-01-01

    Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1) by different sizes of camera arrays deployed (1-10 cameras), and (2) by total season length (1-365 days). Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus), bobcat (Lynx rufus), raccoon (Procyon lotor), and Virginia opossum (Didelphis virginiana). For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128%) from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored) detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori identify

  11. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.

    Directory of Open Access Journals (Sweden)

    Kelly M O'Connor

    Full Text Available Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1 by different sizes of camera arrays deployed (1-10 cameras, and (2 by total season length (1-365 days. Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus, bobcat (Lynx rufus, raccoon (Procyon lotor, and Virginia opossum (Didelphis virginiana. For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128% from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori

  12. Robust mislabel logistic regression without modeling mislabel probabilities.

    Science.gov (United States)

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  13. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current US innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery

  14. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current U.S. innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery. (orig.)

  15. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Energy Technology Data Exchange (ETDEWEB)

    Portnoy, David, E-mail: david.portnoy@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Feuerbach, Robert; Heimberg, Jennifer [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of

  16. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    International Nuclear Information System (INIS)

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-01-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of spectra

  17. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    Science.gov (United States)

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra

  18. Probability of defect detection of Posiva's electron beam weld

    International Nuclear Information System (INIS)

    Kanzler, D.; Mueller, C.; Pitkaenen, J.

    2013-12-01

    The report 'Probability of Defect Detection of Posiva's electron beam weld' describes POD curves of four NDT methods radiographic testing, ultrasonic testing, eddy current testing and visual testing. POD-curves are based on the artificial defects in reference blocks. The results are devoted to the demonstration of suitability of the methods for EB weld testing. Report describes methodology and procedure applied by BAM. Report creates a link from the assessment of the reliability and inspection performance to the risk assessment process of the canister final disposal project. Report ensures the confirmation of the basic quality of the NDT methods and their capability to describe the quality of the EB-weld. The probability of detection curves are determined based on the MIL-1823 standard and it's reliability guidelines. The MIL-1823 standard was developed for the determination of integrity of gas turbine engines for the US military. In the POD-process there are determined as a key parameter for the defect detectability the a90/95 magnitudes, i.e. the size measure a of the defect, for which the lower 95 % confidence band crosses the 90 % POD level. By this way can be confirmed that defects with a size of a90/95 will be detected with 90 % probability. In case the experiment will be repeated 5 % might fall outside this confidence limit. (orig.)

  19. A comparison of Probability Of Detection (POD) data determined using different statistical methods

    Science.gov (United States)

    Fahr, A.; Forsyth, D.; Bullock, M.

    1993-12-01

    Different statistical methods have been suggested for determining probability of detection (POD) data for nondestructive inspection (NDI) techniques. A comparative assessment of various methods of determining POD was conducted using results of three NDI methods obtained by inspecting actual aircraft engine compressor disks which contained service induced cracks. The study found that the POD and 95 percent confidence curves as a function of crack size as well as the 90/95 percent crack length vary depending on the statistical method used and the type of data. The distribution function as well as the parameter estimation procedure used for determining POD and the confidence bound must be included when referencing information such as the 90/95 percent crack length. The POD curves and confidence bounds determined using the range interval method are very dependent on information that is not from the inspection data. The maximum likelihood estimators (MLE) method does not require such information and the POD results are more reasonable. The log-logistic function appears to model POD of hit/miss data relatively well and is easy to implement. The log-normal distribution using MLE provides more realistic POD results and is the preferred method. Although it is more complicated and slower to calculate, it can be implemented on a common spreadsheet program.

  20. Detection probability of least tern and piping plover chicks in a large river system

    Science.gov (United States)

    Roche, Erin A.; Shaffer, Terry L.; Anteau, Michael J.; Sherfy, Mark H.; Stucker, Jennifer H.; Wiltermuth, Mark T.; Dovichin, Colin M.

    2014-01-01

    Monitoring the abundance and stability of populations of conservation concern is often complicated by an inability to perfectly detect all members of the population. Mark-recapture offers a flexible framework in which one may identify factors contributing to imperfect detection, while at the same time estimating demographic parameters such as abundance or survival. We individually color-marked, recaptured, and re-sighted 1,635 federally listed interior least tern (Sternula antillarum; endangered) chicks and 1,318 piping plover (Charadrius melodus; threatened) chicks from 2006 to 2009 at 4 study areas along the Missouri River and investigated effects of observer-, subject-, and site-level covariates suspected of influencing detection. Increasing the time spent searching and crew size increased the probability of detecting both species regardless of study area and detection methods were not associated with decreased survival. However, associations between detection probability and the investigated covariates were highly variable by study area and species combinations, indicating that a universal mark-recapture design may not be appropriate.

  1. Operational NDT simulator, towards human factors integration in simulated probability of detection

    Science.gov (United States)

    Rodat, Damien; Guibert, Frank; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    In the aeronautic industry, the performance demonstration of Non-Destructive Testing (NDT) procedures relies on Probability Of Detection (POD) analyses. This statistical approach measures the ability of the procedure to detect a flaw with regard to one of its characteristic dimensions. The inspection chain is evaluated as a whole, including equipment configuration, probe effciency but also operator manipulations. Traditionally, a POD study requires an expensive campaign during which several operators apply the procedure on a large set of representative samples. Recently, new perspectives for the POD estimation have been introduced using NDT simulation to generate data. However, these approaches do not offer straightforward solutions to take the operator into account. The simulation of human factors, including cognitive aspects, often raises questions. To address these diffculties, we propose a concept of operational NDT simulator [1]. This work presents the first steps in the implementation of such simulator for ultrasound phased array inspection of composite parts containing Flat Bottom Holes (FBHs). The final system will look like a classical ultrasound testing equipment with a single exception: the displayed signals will be synthesized. Our hardware (ultrasound acquisition card, 3D position tracker) and software (position analysis, inspection scenario, synchronization, simulations) environments are developed as a bench to test the meta-modeling techniques able to provide fast-simulated realistic ultra-sound signals. The results presented here are obtained by on-the-fly merging of real and simulated signals. They confirm the feasibility of our approach: the replacement of real signals by purely simulated ones has been unnoticed by operators. We believe this simulator is a great prospect for POD evaluation including human factors, and may also find applications for training or procedure set-up.

  2. Idealized models of the joint probability distribution of wind speeds

    Science.gov (United States)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  3. A study on the effect of flaw detection probability assumptions on risk reduction achieved by non-destructive inspection

    International Nuclear Information System (INIS)

    Cronvall, O.; Simola, K.; Männistö, I.; Gunnars, J.; Alverlind, L.; Dillström, P.; Gandossi, L.

    2012-01-01

    Leakages and ruptures of piping components lead to reduction or loss of the pressure retaining capability of the system, and thus contribute to the overall risk associated with nuclear power plants. In-service inspection (ISI) aims at verifying that defects are not present in components of the pressure boundary or, if defects are present, ensuring that these are detected before they affect the safe operation of the plant. Reliability estimates of piping are needed e.g., in probabilistic safety assessment (PSA) studies, risk-informed ISI (RI-ISI) applications, and other structural reliability assessments. Probabilistic fracture mechanics models can account for ISI reliability, but a quantitative estimate for the latter is needed. This is normally expressed in terms of probability of detection (POD) curves, which correlate the probability of detecting a flaw with flaw size. A detailed POD curve is often difficult (or practically impossible) to obtain. If sufficient risk reduction can be shown by using simplified (but reasonably conservative) POD estimates, more complex PODs are not needed. This paper summarises the results of a study on the effect of piping inspection reliability assumptions on failure probability using structural reliability models. The main interest was to investigate whether it is justifiable to use a simplified POD curve. Further, the study compared various structural reliability calculation approaches for a set of analysis cases. The results indicate that the use of a simplified POD could be justifiable in RI-ISI applications.

  4. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    (Divoky et al., 2005). Nevertheless, such events occur and in Ireland alone there are several cases of serious damage due to flooding resulting from a combination of high sea water levels and river flows driven by the same meteorological conditions (e.g. Olbert et al. 2015). A November 2009 fluvial-coastal flooding of Cork City bringing €100m loss was one such incident. This event was used by Olbert et al. (2015) to determine processes controlling urban flooding and is further explored in this study to elaborate on coastal and fluvial flood mechanisms and their roles in controlling water levels. The objective of this research is to develop a methodology to assess combined effect of multiple source flooding on flood probability and severity in urban areas and to establish a set of conditions that dictate urban flooding due to extreme climatic events. These conditions broadly combine physical flood drivers (such as coastal and fluvial processes), their mechanisms and thresholds defining flood severity. The two main physical processes controlling urban flooding: high sea water levels (coastal flooding) and high river flows (fluvial flooding), and their threshold values for which flood is likely to occur, are considered in this study. Contribution of coastal and fluvial drivers to flooding and their impacts are assessed in a two-step process. The first step involves frequency analysis and extreme value statistical modelling of storm surges, tides and river flows and ultimately the application of joint probability method to estimate joint exceedence return periods for combination of surges, tide and river flows. In the second step, a numerical model of Cork Harbour MSN_Flood comprising a cascade of four nested high-resolution models is used to perform simulation of flood inundation under numerous hypothetical coastal and fluvial flood scenarios. The risk of flooding is quantified based on a range of physical aspects such as the extent and depth of inundation (Apel et al

  5. Modelling soft error probability in firmware: A case study

    African Journals Online (AJOL)

    The purpose is to estimate the probability that external disruptive events (such as ..... also changed the 16-bit magic variable to its unique 'magic' value. .... is mutually independent, not only over registers but over spikes, such that the above.

  6. Options and pitfalls of normal tissues complication probability models

    International Nuclear Information System (INIS)

    Dorr, Wolfgang

    2011-01-01

    Full text: Technological improvements in the physical administration of radiotherapy have led to increasing conformation of the treatment volume (TV) with the planning target volume (PTV) and of the irradiated volume (IV) with the TV. In this process of improvement of the physical quality of radiotherapy, the total volumes of organs at risk exposed to significant doses have significantly decreased, resulting in increased inhomogeneities in the dose distributions within these organs. This has resulted in a need to identify and quantify volume effects in different normal tissues. Today, irradiated volume today must be considered a 6t h 'R' of radiotherapy, in addition to the 5 'Rs' defined by Withers and Steel in the mid/end 1980 s. The current status of knowledge of these volume effects has recently been summarized for many organs and tissues by the QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic) initiative [Int. J. Radiat. Oncol. BioI. Phys. 76 (3) Suppl., 2010]. However, the concept of using dose-volume histogram parameters as a basis for dose constraints, even without applying any models for normal tissue complication probabilities (NTCP), is based on (some) assumptions that are not met in clinical routine treatment planning. First, and most important, dose-volume histogram (DVH) parameters are usually derived from a single, 'snap-shot' CT-scan, without considering physiological (urinary bladder, intestine) or radiation induced (edema, patient weight loss) changes during radiotherapy. Also, individual variations, or different institutional strategies of delineating organs at risk are rarely considered. Moreover, the reduction of the 3-dimentional dose distribution into a '2dimensl' DVH parameter implies that the localization of the dose within an organ is irrelevant-there are ample examples that this assumption is not justified. Routinely used dose constraints also do not take into account that the residual function of an organ may be

  7. Probability of detecting perchlorate under natural conditions in deep groundwater in California and the Southwestern United States

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    We use data from 1626 groundwater samples collected in California, primarily from public drinking water supply wells, to investigate the distribution of perchlorate in deep groundwater under natural conditions. The wells were sampled for the California Groundwater Ambient Monitoring and Assessment Priority Basin Project. We develop a logistic regression model for predicting probabilities of detecting perchlorate at concentrations greater than multiple threshold concentrations as a function of climate (represented by an aridity index) and potential anthropogenic contributions of perchlorate (quantified as an anthropogenic score, AS). AS is a composite categorical variable including terms for nitrate, pesticides, and volatile organic compounds. Incorporating water-quality parameters in AS permits identification of perturbation of natural occurrence patterns by flushing of natural perchlorate salts from unsaturated zones by irrigation recharge as well as addition of perchlorate from industrial and agricultural sources. The data and model results indicate low concentrations (0.1-0.5 μg/L) of perchlorate occur under natural conditions in groundwater across a wide range of climates, beyond the arid to semiarid climates in which they mostly have been previously reported. The probability of detecting perchlorate at concentrations greater than 0.1 μg/L under natural conditions ranges from 50-70% in semiarid to arid regions of California and the Southwestern United States to 5-15% in the wettest regions sampled (the Northern California coast). The probability of concentrations above 1 μg/L under natural conditions is low (generally <3%).

  8. An Estimation of a Passive Infra-Red Sensor Probability of Detection

    International Nuclear Information System (INIS)

    Osman, E.A.; El-Gazar, M.I.; Shaat, M.K.; El-Kafas, A.A.; Zidan, W.I.; Wadoud, A.A.

    2009-01-01

    Passive Infera-Red (PIR) sensors are one of many detection sensors are used to detect any intrusion process of the nuclear sites. In this work, an estimation of a PIR Sensor's Probability of Detection of a hypothetical facility is presented. sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensor test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The PIR sensor construction, operation and design for the investigated nuclear site are explained. Walking and running intrusion tests were carried out inside the field areas of the PIR sensor to evaluate the sensor performance during the intrusion process. 10 trials experimentally performed for achieving the intrusion process via a passive infra-red sensor's network system. The performance and intrusion senses of PIR sensors inside the internal zones was recorded and evaluated.

  9. The intensity detection of single-photon detectors based on photon counting probability density statistics

    International Nuclear Information System (INIS)

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  10. Hotspots ampersand other hidden targets: Probability of detection, number, frequency and area

    International Nuclear Information System (INIS)

    Vita, C.L.

    1994-01-01

    Concepts and equations are presented for making probability-based estimates of the detection probability, and the number, frequency, and area of hidden targets, including hotspots, at a given site. Targets include hotspots, which are areas of extreme or particular contamination, and any object or feature that is hidden from direct visual observation--including buried objects and geologic or hydrologic details or anomalies. Being Bayesian, results are fundamentally consistent with observational methods. Results are tools for planning or interpreting exploration programs used in site investigation or characterization, remedial design, construction, or compliance monitoring, including site closure. Used skillfully and creatively, these tools can help streamline and expedite environmental restoration, reducing time and cost, making site exploration cost-effective, and providing acceptable risk at minimum cost. 14 refs., 4 figs

  11. Optimizing an objective function under a bivariate probability model

    NARCIS (Netherlands)

    X. Brusset; N.M. Temme (Nico)

    2007-01-01

    htmlabstractThe motivation of this paper is to obtain an analytical closed form of a quadratic objective function arising from a stochastic decision process with bivariate exponential probability distribution functions that may be dependent. This method is applicable when results need to be

  12. Parametric modeling of probability of bank loan default in Kenya ...

    African Journals Online (AJOL)

    This makes the study on probability of a customer defaulting very useful while analyzing the credit risk policies. In this paper, we use a raw data set that contains demographic information about the borrowers. The data sets have been used to identify which risk factors associated with the borrowers contribute towards default.

  13. Estimation of the defect detection probability for ultrasonic tests on thick sections steel weldments. Technical report

    International Nuclear Information System (INIS)

    Johnson, D.P.; Toomay, T.L.; Davis, C.S.

    1979-02-01

    An inspection uncertainty analysis of published PVRC Specimen 201 data is reported to obtain an estimate of the probability of recording an indication as a function of imperfection height for ASME Section XI Code ultrasonic inspections of the nuclear reactor vessel plate seams and to demonstrate the advantages of inspection uncertainty analysis over conventional detection/nondetection counting analysis. This analysis found the probability of recording a significant defect with an ASME Section XI Code ultrasonic inspection to be very high, if such a defect should exist in the plate seams of a nuclear reactor vessel. For a one-inch high crack, for example, this analysis gives a best estimate recording probability of .985 and a 90% lower confidence bound recording probabilty of .937. It is also shown that inspection uncertainty analysis gives more accurate estimates and gives estimates over a much greater flaw size range than is possible with conventional analysis. There is reason to believe that the estimation procedure used is conservative, the estimation is based on data generated several years ago, on very small defects, in an environment that is different from the actual in-service inspection environment

  14. Normal mammogram detection based on local probability difference transforms and support vector machines

    International Nuclear Information System (INIS)

    Chiracharit, W.; Kumhom, P.; Chamnongthai, K.; Sun, Y.; Delp, E.J.; Babbs, C.F

    2007-01-01

    Automatic detection of normal mammograms, as a ''first look'' for breast cancer, is a new approach to computer-aided diagnosis. This approach may be limited, however, by two main causes. The first problem is the presence of poorly separable ''crossed-distributions'' in which the correct classification depends upon the value of each feature. The second problem is overlap of the feature distributions that are extracted from digitized mammograms of normal and abnormal patients. Here we introduce a new Support Vector Machine (SVM) based method utilizing with the proposed uncrossing mapping and Local Probability Difference (LPD). Crossed-distribution feature pairs are identified and mapped into a new features that can be separated by a zero-hyperplane of the new axis. The probability density functions of the features of normal and abnormal mammograms are then sampled and the local probability difference functions are estimated to enhance the features. From 1,000 ground-truth-known mammograms, 250 normal and 250 abnormal cases, including spiculated lesions, circumscribed masses or microcalcifications, are used for training a support vector machine. The classification results tested with another 250 normal and 250 abnormal sets show improved testing performances with 90% sensitivity and 89% specificity. (author)

  15. Naive Probability: Model-based Estimates of Unique Events

    Science.gov (United States)

    2014-05-04

    of inference. Argument and Computation, 1–17, iFirst. Khemlani, S., & Johnson-Laird, P.N. (2012b). Theories of the syllogism: A meta -analysis...is the probability that… 1 space tourism will achieve widespread popularity in the next 50 years? advances in material science will lead to the... governments dedicate more resources to contacting extra-terrestrials? 8 the United States adopts an open border policy of universal acceptance? English is

  16. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo [Div. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  17. Estimation of probability density functions of damage parameter for valve leakage detection in reciprocating pump used in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Jong Kyeom; Kim, Tae Yun; Kim, Hyun Su; Chai, Jang Bom; Lee, Jin Woo

    2016-01-01

    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage

  18. Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Jong Kyeom Lee

    2016-10-01

    Full Text Available This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

  19. Studies on the effect of flaw detection probability assumptions on risk reduction at inspection

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K.; Cronvall, O.; Maennistoe, I. (VTT Technical Research Centre of Finland (Finland)); Gunnars, J.; Alverlind, L.; Dillstroem, P. (Inspecta Technology, Stockholm (Sweden)); Gandossi, L. (European Commission Joint Research Centre, Brussels (Belgium))

    2009-12-15

    The aim of the project was to study the effect of POD assumptions on failure probability using structural reliability models. The main interest was to investigate whether it is justifiable to use a simplified POD curve e.g. in risk-informed in-service inspection (RI-ISI) studies. The results of the study indicate that the use of a simplified POD curve could be justifiable in RI-ISI applications. Another aim was to compare various structural reliability calculation approaches for a set of cases. Through benchmarking one can identify differences and similarities between modelling approaches, and provide added confidence on models and identify development needs. Comparing the leakage probabilities calculated by different approaches at the end of plant lifetime (60 years) shows that the results are very similar when inspections are not accounted for. However, when inspections are taken into account the predicted order of magnitude differs. Further studies would be needed to investigate the reasons for the differences. Development needs and plans for the benchmarked structural reliability models are discussed. (author)

  20. Studies on the effect of flaw detection probability assumptions on risk reduction at inspection

    International Nuclear Information System (INIS)

    Simola, K.; Cronvall, O.; Maennistoe, I.; Gunnars, J.; Alverlind, L.; Dillstroem, P.; Gandossi, L.

    2009-12-01

    The aim of the project was to study the effect of POD assumptions on failure probability using structural reliability models. The main interest was to investigate whether it is justifiable to use a simplified POD curve e.g. in risk-informed in-service inspection (RI-ISI) studies. The results of the study indicate that the use of a simplified POD curve could be justifiable in RI-ISI applications. Another aim was to compare various structural reliability calculation approaches for a set of cases. Through benchmarking one can identify differences and similarities between modelling approaches, and provide added confidence on models and identify development needs. Comparing the leakage probabilities calculated by different approaches at the end of plant lifetime (60 years) shows that the results are very similar when inspections are not accounted for. However, when inspections are taken into account the predicted order of magnitude differs. Further studies would be needed to investigate the reasons for the differences. Development needs and plans for the benchmarked structural reliability models are discussed. (author)

  1. What is the probability that direct detection experiments have observed dark matter?

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Schwetz, Thomas

    2014-01-01

    In Dark Matter direct detection we are facing the situation of some experiments reporting positive signals which are in conflict with limits from other experiments. Such conclusions are subject to large uncertainties introduced by the poorly known local Dark Matter distribution. We present a method to calculate an upper bound on the joint probability of obtaining the outcome of two potentially conflicting experiments under the assumption that the Dark Matter hypothesis is correct, but completely independent of assumptions about the Dark Matter distribution. In this way we can quantify the compatibility of two experiments in an astrophysics independent way. We illustrate our method by testing the compatibility of the hints reported by DAMA and CDMS-Si with the limits from the LUX and SuperCDMS experiments. The method does not require Monte Carlo simulations but is mostly based on using Poisson statistics. In order to deal with signals of few events we introduce the so-called ''signal length'' to take into account energy information. The signal length method provides a simple way to calculate the probability to obtain a given experimental outcome under a specified Dark Matter and background hypothesis

  2. Reliability assessment for thickness measurements of pipe wall using probability of detection

    International Nuclear Information System (INIS)

    Nakamoto, Hiroyuki; Kojima, Fumio; Kato, Sho

    2013-01-01

    This paper proposes a reliability assessment method for thickness measurements of pipe wall using probability of detection (POD). Thicknesses of pipes are measured by qualified inspectors with ultrasonic thickness gauges. The inspection results are affected by human factors of the inspectors and include some errors, because the inspectors have different experiences and frequency of inspections. In order to ensure reliability for inspection results, first, POD evaluates experimental results of pipe-wall thickness inspection. We verify that the results have differences depending on inspectors including qualified inspectors. Second, two human factors that affect POD are indicated. Finally, it is confirmed that POD can identify the human factors and ensure reliability for pipe-wall thickness inspections. (author)

  3. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    National Research Council Canada - National Science Library

    Taboada, Fernando

    2002-01-01

    Low probability of intercept (LPI) is that property of an emitter that because of its low power, wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by means of passive...

  4. Probability of detection for bolt hole eddy current in extracted from service aircraft wing structures

    Science.gov (United States)

    Underhill, P. R.; Uemura, C.; Krause, T. W.

    2018-04-01

    Fatigue cracks are prone to develop around fasteners found in multi-layer aluminum structures on aging aircraft. Bolt hole eddy current (BHEC) is used for detection of cracks from within bolt holes after fastener removal. In support of qualification towards a target a90/95 (detect 90% of cracks of depth a, 95% of the time) of 0.76 mm (0.030"), a preliminary probability of detection (POD) study was performed to identify those parameters whose variation may keep a bolt hole inspection from attaining its goal. Parameters that were examined included variability in lift-off due to probe type, out-of-round holes, holes with diameters too large to permit surface-contact of the probe and mechanical damage to the holes, including burrs. The study examined the POD for BHEC of corner cracks in unfinished fastener holes extracted from service material. 68 EDM notches were introduced into two specimens of a horizontal stabilizer from a CC-130 Hercules aircraft. The fastener holes were inspected in the unfinished state, simulating potential inspection conditions, by 7 certified inspectors using a manual BHEC setup with an impedance plane display and also with one inspection conducted utilizing a BHEC automated C-Scan apparatus. While the standard detection limit of 1.27 mm (0.050") was achieved, given the a90/95 of 0.97 mm (0.039"), the target 0.76 mm (0.030") was not achieved. The work highlighted a number of areas where there was insufficient information to complete the qualification. Consequently, a number of recommendations were made. These included; development of a specification for minimum probe requirements; criteria for condition of the hole to be inspected, including out-of-roundness and presence of corrosion pits; statement of range of hole sizes; inspection frequency and data display for analysis.

  5. Canonical Probability Distributions for Model Building, Learning, and Inference

    National Research Council Canada - National Science Library

    Druzdzel, Marek J

    2006-01-01

    ...) improvements of stochastic sampling algorithms based on importance sampling, and (3) practical applications of our general purpose decision modeling environment to diagnosis of complex systems...

  6. Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2012-01-01

    Silicon Photomultipliers (SiPM), also called Solid State Photomultipliers (SSPM), are based on Geiger mode avalanche breakdown that is limited by a strong negative feedback. An SSPM can detect and resolve single photons due to the high gain and ultra-low excess noise of avalanche multiplication in this mode. Crosstalk and afterpulsing processes associated with the high gain introduce specific excess noise and deteriorate the photon number resolution of the SSPM. The probabilistic features of these processes are widely studied because of its significance for the SSPM design, characterization, optimization and application, but the process modeling is mostly based on Monte Carlo simulations and numerical methods. In this study, crosstalk is considered to be a branching Poisson process, and analytical models of probability distribution and excess noise factor (ENF) of SSPM signals based on the Borel distribution as an advance on the geometric distribution models are presented and discussed. The models are found to be in a good agreement with the experimental probability distributions for dark counts and a few photon spectrums in a wide range of fired pixels number as well as with observed super-linear behavior of crosstalk ENF.

  7. Influences of variables on ship collision probability in a Bayesian belief network model

    International Nuclear Information System (INIS)

    Hänninen, Maria; Kujala, Pentti

    2012-01-01

    The influences of the variables in a Bayesian belief network model for estimating the role of human factors on ship collision probability in the Gulf of Finland are studied for discovering the variables with the largest influences and for examining the validity of the network. The change in the so-called causation probability is examined while observing each state of the network variables and by utilizing sensitivity and mutual information analyses. Changing course in an encounter situation is the most influential variable in the model, followed by variables such as the Officer of the Watch's action, situation assessment, danger detection, personal condition and incapacitation. The least influential variables are the other distractions on bridge, the bridge view, maintenance routines and the officer's fatigue. In general, the methods are found to agree on the order of the model variables although some disagreements arise due to slightly dissimilar approaches to the concept of variable influence. The relative values and the ranking of variables based on the values are discovered to be more valuable than the actual numerical values themselves. Although the most influential variables seem to be plausible, there are some discrepancies between the indicated influences in the model and literature. Thus, improvements are suggested to the network.

  8. Estimation and asymptotic theory for transition probabilities in Markov Renewal Multi–state models

    NARCIS (Netherlands)

    Spitoni, C.; Verduijn, M.; Putter, H.

    2012-01-01

    In this paper we discuss estimation of transition probabilities for semi–Markov multi–state models. Non–parametric and semi–parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional

  9. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna.

    Science.gov (United States)

    Hagihara, Rie; Jones, Rhondda E; Sobtzick, Susan; Cleguer, Christophe; Garrigue, Claire; Marsh, Helene

    2018-01-01

    The probability of an aquatic animal being available for detection is typically probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon) is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs) at three sites with distinct seagrass depth distributions: 1) open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015); 2) a protected bay (average water depth 6.8 m) with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012); and 3) a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013). The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of coastal megafauna including surveys using Unmanned

  10. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...

  11. Modeling the probability of giving birth at health institutions among ...

    African Journals Online (AJOL)

    2014-06-02

    Jun 2, 2014 ... deemed sufficient evidence of the utility of the logistic regression model. .... making decision by herself and gravid had significantly predicted the ..... Health Education: Theory, Research and Practice-3rd edition.2002.

  12. Discrete probability models and methods probability on graphs and trees, Markov chains and random fields, entropy and coding

    CERN Document Server

    Brémaud, Pierre

    2017-01-01

    The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book. .

  13. Some aspects of statistical modeling of human-error probability

    International Nuclear Information System (INIS)

    Prairie, R.R.

    1982-01-01

    Human reliability analyses (HRA) are often performed as part of risk assessment and reliability projects. Recent events in nuclear power have shown the potential importance of the human element. There are several on-going efforts in the US and elsewhere with the purpose of modeling human error such that the human contribution can be incorporated into an overall risk assessment associated with one or more aspects of nuclear power. An effort that is described here uses the HRA (event tree) to quantify and model the human contribution to risk. As an example, risk analyses are being prepared on several nuclear power plants as part of the Interim Reliability Assessment Program (IREP). In this process the risk analyst selects the elements of his fault tree that could be contributed to by human error. He then solicits the HF analyst to do a HRA on this element

  14. Probability model for worst case solar proton event fluences

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary orbits, polar orbits and on interplanetary missions. A predictive model of worst case solar proton event fluences is presented. It allows the expected worst case event fluence to be calculated for a given confidence level and for periods of time corresponding to space missions. The proton energy range is from >1 to >300 MeV, so that the model is useful for a variety of radiation effects applications. For each proton energy threshold, the maximum entropy principle is used to select the initial distribution of solar proton event fluences. This turns out to be a truncated power law, i.e., a power law for smaller event fluences that smoothly approaches zero at a maximum fluence. The strong agreement of the distribution with satellite data for the last three solar cycles indicates this description captures the essential features of a solar proton event fluence distribution. Extreme value theory is then applied to the initial distribution of events to obtain the model of worst case fluences

  15. Linear-quadratic model predictions for tumor control probability

    International Nuclear Information System (INIS)

    Yaes, R.J.

    1987-01-01

    Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

  16. Interpretation of the results of statistical measurements. [search for basic probability model

    Science.gov (United States)

    Olshevskiy, V. V.

    1973-01-01

    For random processes, the calculated probability characteristic, and the measured statistical estimate are used in a quality functional, which defines the difference between the two functions. Based on the assumption that the statistical measurement procedure is organized so that the parameters for a selected model are optimized, it is shown that the interpretation of experimental research is a search for a basic probability model.

  17. Study of embryonic ploidy: a probable embryo model

    Energy Technology Data Exchange (ETDEWEB)

    Kundt, Miriam S; Cabrini, Romulo L [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Radiobiologia

    2001-07-01

    The second polar body (PB) studies in preimplantation mouse embryos were carried out to evaluate the possibility as reference cell to analyze ploidy. For that purpose embryos in a one cell stage [obtained by crossing hybrid females (CBAxC57BL) to NIH males] were cultured in vitro during 72 hs, individually fixed at morula stage and stained with Feulgen. The DNA content of 263 individual nucleus was evaluated cytophotometrically corresponding to 22 compact morulas of normal development. As haploid PB is present in all pre implanted stage, only embryos with one haploid nuclei were considered as normal. In 95.5% (n = 21) of the embryos the PB was present. DNA measurement of 21 PB was 1n {+-} 0.1. By the height sensibility of PB ploidy, the abnormalities were detected by the criterion of >4.1 n and <1.9 n. The results showed that one embryo was completely haploid (1n). The rest of the embryos (n = 20) 222 blastomeres and 20 PB were analyzed. The DNA measurement showed that 92,7% of the blastomeres (n = 206) are between 2 n and 4 n and 7.3% showed ploidy anomalies, regarding the value n of their PB. The period of the cellular cycle was studied in the normal cell ploidy. This study showed that 16.5% of the blastomeres (n = 34) were in the period G1, 70.39% (n =34) in the period S and 13.2% in the period G2 (n = 27). It is concluded that the PB study showed that it has properties as an excellent indicator of internal ploidia: it is present from the moment of the conception, easily recognizable in the perivitelin space in the embryo of one-two cells, remains in interface during the preimplantation development, it is haploid and digitalized pixel by pixel PB study showed the homogeneity of this type of cell, giving a reliable value of ploidy. The properties of the PB and the results showed that the PB could be an excellent indicator for embryonic ploidy studies on genotoxicity, maintaining its original ploidia during the preimplantation development while the blastomeres are

  18. Probability of detection - Comparative study of computed and film radiography for high-energy applications

    International Nuclear Information System (INIS)

    Venkatachalam, R.; Venugopal, M.; Prasad, T.

    2007-01-01

    Full text of publication follows: Suitability of computed radiography with Ir-192, Co-60 and up to 9 MeV x-rays for weld inspections is of importance to many heavy engineering and aerospace industries. CR is preferred because of lesser exposure and processing time as compared to film based radiography and also digital images offers other advantages such as image enhancements, quantitative measurements and easier archival. This paper describes systemic experimental approaches and image quality metrics to compare imaging performance of CR with film-based radiography. Experiments were designed using six-sigma methodology to validate performance of CR for steel thickness up to 160 mm with Ir- 192, Co-60 and x-ray energies varying from 100 kV up to 9 MeV. Weld specimens with defects such as lack of fusion, penetration, cracks, concavity, and porosities were studied for evaluating radiographic sensitivity and imaging performance of the system. Attempts were also made to quantify probability of detection using specimens with artificial and natural defects for various experimental conditions and were compared with film based systems. (authors)

  19. A Comparison of Error Bounds for a Nonlinear Tracking System with Detection Probability Pd < 1

    Science.gov (United States)

    Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    2012-01-01

    Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS) bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF) posterior Cramer-Rao lower bound (PCRLB) and enumeration method (ENUM) PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds. PMID:23242274

  20. Modern Approaches to the Computation of the Probability of Target Detection in Cluttered Environments

    Science.gov (United States)

    Meitzler, Thomas J.

    The field of computer vision interacts with fields such as psychology, vision research, machine vision, psychophysics, mathematics, physics, and computer science. The focus of this thesis is new algorithms and methods for the computation of the probability of detection (Pd) of a target in a cluttered scene. The scene can be either a natural visual scene such as one sees with the naked eye (visual), or, a scene displayed on a monitor with the help of infrared sensors. The relative clutter and the temperature difference between the target and background (DeltaT) are defined and then used to calculate a relative signal -to-clutter ratio (SCR) from which the Pd is calculated for a target in a cluttered scene. It is shown how this definition can include many previous definitions of clutter and (DeltaT). Next, fuzzy and neural -fuzzy techniques are used to calculate the Pd and it is shown how these methods can give results that have a good correlation with experiment. The experimental design for actually measuring the Pd of a target by observers is described. Finally, wavelets are applied to the calculation of clutter and it is shown how this new definition of clutter based on wavelets can be used to compute the Pd of a target.

  1. A scan statistic for continuous data based on the normal probability model

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2009-10-01

    Full Text Available Abstract Temporal, spatial and space-time scan statistics are commonly used to detect and evaluate the statistical significance of temporal and/or geographical disease clusters, without any prior assumptions on the location, time period or size of those clusters. Scan statistics are mostly used for count data, such as disease incidence or mortality. Sometimes there is an interest in looking for clusters with respect to a continuous variable, such as lead levels in children or low birth weight. For such continuous data, we present a scan statistic where the likelihood is calculated using the the normal probability model. It may also be used for other distributions, while still maintaining the correct alpha level. In an application of the new method, we look for geographical clusters of low birth weight in New York City.

  2. Ruin probability of the renewal model with risky investment and large claims

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ruin probability of the renewal risk model with investment strategy for a capital market index is investigated in this paper.For claim sizes with common distribution of extended regular variation,we study the asymptotic behaviour of the ruin probability.As a corollary,we establish a simple asymptotic formula for the ruin probability for the case of Pareto-like claims.

  3. Probability of identification: a statistical model for the validation of qualitative botanical identification methods.

    Science.gov (United States)

    LaBudde, Robert A; Harnly, James M

    2012-01-01

    A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.

  4. Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia

    Directory of Open Access Journals (Sweden)

    Ibsen Chivatá Cárdenas

    2008-05-01

    Full Text Available This article presents a rainfall model constructed by applying non-parametric modelling and imprecise probabilities; these tools were used because there was not enough homogeneous information in the study area. The area’s hydro-logical information regarding rainfall was scarce and existing hydrological time series were not uniform. A distributed extended rainfall model was constructed from so-called probability boxes (p-boxes, multinomial probability distribu-tion and confidence intervals (a friendly algorithm was constructed for non-parametric modelling by combining the last two tools. This model confirmed the high level of uncertainty involved in local rainfall modelling. Uncertainty en-compassed the whole range (domain of probability values thereby showing the severe limitations on information, leading to the conclusion that a detailed estimation of probability would lead to significant error. Nevertheless, rele-vant information was extracted; it was estimated that maximum daily rainfall threshold (70 mm would be surpassed at least once every three years and the magnitude of uncertainty affecting hydrological parameter estimation. This paper’s conclusions may be of interest to non-parametric modellers and decisions-makers as such modelling and imprecise probability represents an alternative for hydrological variable assessment and maybe an obligatory proce-dure in the future. Its potential lies in treating scarce information and represents a robust modelling strategy for non-seasonal stochastic modelling conditions

  5. The ruin probability of a discrete time risk model under constant interest rate with heavy tails

    NARCIS (Netherlands)

    Tang, Q.

    2004-01-01

    This paper investigates the ultimate ruin probability of a discrete time risk model with a positive constant interest rate. Under the assumption that the gross loss of the company within one year is subexponentially distributed, a simple asymptotic relation for the ruin probability is derived and

  6. Compact baby universe model in ten dimension and probability function of quantum gravity

    International Nuclear Information System (INIS)

    Yan Jun; Hu Shike

    1991-01-01

    The quantum probability functions are calculated for ten-dimensional compact baby universe model. The authors find that the probability for the Yang-Mills baby universe to undergo a spontaneous compactification down to a four-dimensional spacetime is greater than that to remain in the original homogeneous multidimensional state. Some questions about large-wormhole catastrophe are also discussed

  7. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  8. Probability of Detection Study to Assess the Performance of Nondestructive Inspection Methods for Wind Turbine Blades.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Wind turbine blades pose a unique set of inspection challenges that span from very thick and attentive spar cap structures to porous bond lines, varying core material and a multitude of manufacturing defects of interest. The need for viable, accurate nondestructive inspection (NDI) technology becomes more important as the cost per blade, and lost revenue from downtime, grows. NDI methods must not only be able to contend with the challenges associated with inspecting extremely thick composite laminates and subsurface bond lines, but must also address new inspection requirements stemming from the growing understanding of blade structural aging phenomena. Under its Blade Reliability Collaborative program, Sandia Labs quantitatively assessed the performance of a wide range of NDI methods that are candidates for wind blade inspections. Custom wind turbine blade test specimens, containing engineered defects, were used to determine critical aspects of NDI performance including sensitivity, accuracy, repeatability, speed of inspection coverage, and ease of equipment deployment. The detection of fabrication defects helps enhance plant reliability and increase blade life while improved inspection of operating blades can result in efficient blade maintenance, facilitate repairs before critical damage levels are reached and minimize turbine downtime. The Sandia Wind Blade Flaw Detection Experiment was completed to evaluate different NDI methods that have demonstrated promise for interrogating wind blades for manufacturing flaws or in-service damage. These tests provided the Probability of Detection information needed to generate industry-wide performance curves that quantify: 1) how well current inspection techniques are able to reliably find flaws in wind turbine blades (industry baseline) and 2) the degree of improvements possible through integrating more advanced NDI techniques and procedures. _____________ S a n d i a N a t i o n a l L a b o r a t o r i e s i s a m u l t i

  9. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  10. The Probability of Detection in the Telephone Line of Device of the Unauthorized Removal of Information

    Directory of Open Access Journals (Sweden)

    I. V. Svintsov

    2011-06-01

    Full Text Available The article discusses the theory of quantitative description of the possible presence in the telephone line devices unauthorized removal of information, investigated with the help of probability theory.

  11. An analytical calculation of neighbourhood order probabilities for high dimensional Poissonian processes and mean field models

    International Nuclear Information System (INIS)

    Tercariol, Cesar Augusto Sangaletti; Kiipper, Felipe de Moura; Martinez, Alexandre Souto

    2007-01-01

    Consider that the coordinates of N points are randomly generated along the edges of a d-dimensional hypercube (random point problem). The probability P (d,N) m,n that an arbitrary point is the mth nearest neighbour to its own nth nearest neighbour (Cox probabilities) plays an important role in spatial statistics. Also, it has been useful in the description of physical processes in disordered media. Here we propose a simpler derivation of Cox probabilities, where we stress the role played by the system dimensionality d. In the limit d → ∞, the distances between pair of points become independent (random link model) and closed analytical forms for the neighbourhood probabilities are obtained both for the thermodynamic limit and finite-size system. Breaking the distance symmetry constraint drives us to the random map model, for which the Cox probabilities are obtained for two cases: whether a point is its own nearest neighbour or not

  12. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.

    2012-01-01

    PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator

  13. Developing a probability-based model of aquifer vulnerability in an agricultural region

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei

    2013-04-01

    SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.

  14. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution

    Science.gov (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun

    2010-10-01

    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  15. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Ohtani, Masanori; Fujita, Yushi

    2002-01-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  16. Quantification of a decision-making failure probability of the accident management using cognitive analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Ohtani, Masanori [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Fujita, Yushi [TECNOVA Corp., Tokyo (Japan)

    2002-09-01

    In the nuclear power plant, much knowledge is acquired through probabilistic safety assessment (PSA) of a severe accident, and accident management (AM) is prepared. It is necessary to evaluate the effectiveness of AM using the decision-making failure probability of an emergency organization, operation failure probability of operators, success criteria of AM and reliability of AM equipments in PSA. However, there has been no suitable qualification method for PSA so far to obtain the decision-making failure probability, because the decision-making failure of an emergency organization treats the knowledge based error. In this work, we developed a new method for quantification of the decision-making failure probability of an emergency organization using cognitive analysis model, which decided an AM strategy, in a nuclear power plant at the severe accident, and tried to apply it to a typical pressurized water reactor (PWR) plant. As a result: (1) It could quantify the decision-making failure probability adjusted to PSA for general analysts, who do not necessarily possess professional human factors knowledge, by choosing the suitable value of a basic failure probability and an error-factor. (2) The decision-making failure probabilities of six AMs were in the range of 0.23 to 0.41 using the screening evaluation method and in the range of 0.10 to 0.19 using the detailed evaluation method as the result of trial evaluation based on severe accident analysis of a typical PWR plant, and a result of sensitivity analysis of the conservative assumption, failure probability decreased about 50%. (3) The failure probability using the screening evaluation method exceeded that using detailed evaluation method by 99% of probability theoretically, and the failure probability of AM in this study exceeded 100%. From this result, it was shown that the decision-making failure probability was more conservative than the detailed evaluation method, and the screening evaluation method satisfied

  17. Unconventional signal detection techniques with Gaussian probability mixtures adaptation in non-AWGN channels: full resolution receiver

    Science.gov (United States)

    Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.

    2011-04-01

    In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.

  18. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    Science.gov (United States)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  19. Device to detect the presence of a pure signal in a discrete noisy signal measured at an average rate of constant noise with a probability of false detection lower than one predeterminated

    International Nuclear Information System (INIS)

    Poussier, E.; Rambaut, M.

    1986-01-01

    Detection consists of a measurement of a counting rate. A probability of wrong detection is associated with this counting rate and with an average estimated rate of noise. Detection consists also in comparing the wrong detection probability to a predeterminated rate of wrong detection. The comparison can use tabulated values. Application is made to corpuscule radiation detection [fr

  20. Success probability orientated optimization model for resource allocation of the technological innovation multi-project system

    Institute of Scientific and Technical Information of China (English)

    Weixu Dai; Weiwei Wu; Bo Yu; Yunhao Zhu

    2016-01-01

    A success probability orientated optimization model for resource al ocation of the technological innovation multi-project system is studied. Based on the definition of the technological in-novation multi-project system, the leveling optimization of cost and success probability is set as the objective of resource al ocation. The cost function and the probability function of the optimization model are constructed. Then the objective function of the model is constructed and the solving process is explained. The model is applied to the resource al ocation of an enterprise’s technological innovation multi-project system. The results show that the pro-posed model is more effective in rational resource al ocation, and is more applicable in maximizing the utility of the technological innovation multi-project system.

  1. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    Science.gov (United States)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  2. A stochastic model for the probability of malaria extinction by mass drug administration.

    Science.gov (United States)

    Pemberton-Ross, Peter; Chitnis, Nakul; Pothin, Emilie; Smith, Thomas A

    2017-09-18

    Mass drug administration (MDA) has been proposed as an intervention to achieve local extinction of malaria. Although its effect on the reproduction number is short lived, extinction may subsequently occur in a small population due to stochastic fluctuations. This paper examines how the probability of stochastic extinction depends on population size, MDA coverage and the reproduction number under control, R c . A simple compartmental model is developed which is used to compute the probability of extinction using probability generating functions. The expected time to extinction in small populations after MDA for various scenarios in this model is calculated analytically. The results indicate that mass drug administration (Firstly, R c must be sustained at R c  95% to have a non-negligible probability of successful elimination. Stochastic fluctuations only significantly affect the probability of extinction in populations of about 1000 individuals or less. The expected time to extinction via stochastic fluctuation is less than 10 years only in populations less than about 150 individuals. Clustering of secondary infections and of MDA distribution both contribute positively to the potential probability of success, indicating that MDA would most effectively be administered at the household level. There are very limited circumstances in which MDA will lead to local malaria elimination with a substantial probability.

  3. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    Science.gov (United States)

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  4. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    Science.gov (United States)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  5. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  6. Probability Distribution and Deviation Information Fusion Driven Support Vector Regression Model and Its Application

    Directory of Open Access Journals (Sweden)

    Changhao Fan

    2017-01-01

    Full Text Available In modeling, only information from the deviation between the output of the support vector regression (SVR model and the training sample is considered, whereas the other prior information of the training sample, such as probability distribution information, is ignored. Probabilistic distribution information describes the overall distribution of sample data in a training sample that contains different degrees of noise and potential outliers, as well as helping develop a high-accuracy model. To mine and use the probability distribution information of a training sample, a new support vector regression model that incorporates probability distribution information weight SVR (PDISVR is proposed. In the PDISVR model, the probability distribution of each sample is considered as the weight and is then introduced into the error coefficient and slack variables of SVR. Thus, the deviation and probability distribution information of the training sample are both used in the PDISVR model to eliminate the influence of noise and outliers in the training sample and to improve predictive performance. Furthermore, examples with different degrees of noise were employed to demonstrate the performance of PDISVR, which was then compared with those of three SVR-based methods. The results showed that PDISVR performs better than the three other methods.

  7. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models

    Science.gov (United States)

    Mandal, S.; Choudhury, B. U.

    2015-07-01

    Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.

  8. Laser Raman detection for oral cancer based on an adaptive Gaussian process classification method with posterior probabilities

    International Nuclear Information System (INIS)

    Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Shen, Aiguo; Hu, Jiming; Jia, Jun

    2013-01-01

    The existing methods for early and differential diagnosis of oral cancer are limited due to the unapparent early symptoms and the imperfect imaging examination methods. In this paper, the classification models of oral adenocarcinoma, carcinoma tissues and a control group with just four features are established by utilizing the hybrid Gaussian process (HGP) classification algorithm, with the introduction of the mechanisms of noise reduction and posterior probability. HGP shows much better performance in the experimental results. During the experimental process, oral tissues were divided into three groups, adenocarcinoma (n = 87), carcinoma (n = 100) and the control group (n = 134). The spectral data for these groups were collected. The prospective application of the proposed HGP classification method improved the diagnostic sensitivity to 56.35% and the specificity to about 70.00%, and resulted in a Matthews correlation coefficient (MCC) of 0.36. It is proved that the utilization of HGP in LRS detection analysis for the diagnosis of oral cancer gives accurate results. The prospect of application is also satisfactory. (paper)

  9. Laser Raman detection for oral cancer based on an adaptive Gaussian process classification method with posterior probabilities

    Science.gov (United States)

    Du, Zhanwei; Yang, Yongjian; Bai, Yuan; Wang, Lijun; Su, Le; Chen, Yong; Li, Xianchang; Zhou, Xiaodong; Jia, Jun; Shen, Aiguo; Hu, Jiming

    2013-03-01

    The existing methods for early and differential diagnosis of oral cancer are limited due to the unapparent early symptoms and the imperfect imaging examination methods. In this paper, the classification models of oral adenocarcinoma, carcinoma tissues and a control group with just four features are established by utilizing the hybrid Gaussian process (HGP) classification algorithm, with the introduction of the mechanisms of noise reduction and posterior probability. HGP shows much better performance in the experimental results. During the experimental process, oral tissues were divided into three groups, adenocarcinoma (n = 87), carcinoma (n = 100) and the control group (n = 134). The spectral data for these groups were collected. The prospective application of the proposed HGP classification method improved the diagnostic sensitivity to 56.35% and the specificity to about 70.00%, and resulted in a Matthews correlation coefficient (MCC) of 0.36. It is proved that the utilization of HGP in LRS detection analysis for the diagnosis of oral cancer gives accurate results. The prospect of application is also satisfactory.

  10. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    Science.gov (United States)

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  11. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis

    Science.gov (United States)

    Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Adam J. Sepulveda; Bradley B. Shepard; Stephen F. Jane; Andrew R. Whiteley; Winsor H. Lowe; Michael K. Schwartz

    2016-01-01

    Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive...

  12. Estimating the Probability of Vegetation to Be Groundwater Dependent Based on the Evaluation of Tree Models

    Directory of Open Access Journals (Sweden)

    Isabel C. Pérez Hoyos

    2016-04-01

    Full Text Available Groundwater Dependent Ecosystems (GDEs are increasingly threatened by humans’ rising demand for water resources. Consequently, it is imperative to identify the location of GDEs to protect them. This paper develops a methodology to identify the probability of an ecosystem to be groundwater dependent. Probabilities are obtained by modeling the relationship between the known locations of GDEs and factors influencing groundwater dependence, namely water table depth and climatic aridity index. Probabilities are derived for the state of Nevada, USA, using modeled water table depth and aridity index values obtained from the Global Aridity database. The model selected results from the performance comparison of classification trees (CT and random forests (RF. Based on a threshold-independent accuracy measure, RF has a better ability to generate probability estimates. Considering a threshold that minimizes the misclassification rate for each model, RF also proves to be more accurate. Regarding training accuracy, performance measures such as accuracy, sensitivity, and specificity are higher for RF. For the test set, higher values of accuracy and kappa for CT highlight the fact that these measures are greatly affected by low prevalence. As shown for RF, the choice of the cutoff probability value has important consequences on model accuracy and the overall proportion of locations where GDEs are found.

  13. NDE reliability and probability of detection (POD) evolution and paradigm shift

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra [NDE Engineering, Materials and Process Engineering, Honeywell Aerospace, Phoenix, AZ 85034 (United States)

    2014-02-18

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed “Have Cracks – Will Travel” or in short “Have Cracks” by Lockheed Georgia Company for US Air Force during 1974–1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability and Reproducibility (Gage R and R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using

  14. Uncovering the Best Skill Multimap by Constraining the Error Probabilities of the Gain-Loss Model

    Science.gov (United States)

    Anselmi, Pasquale; Robusto, Egidio; Stefanutti, Luca

    2012-01-01

    The Gain-Loss model is a probabilistic skill multimap model for assessing learning processes. In practical applications, more than one skill multimap could be plausible, while none corresponds to the true one. The article investigates whether constraining the error probabilities is a way of uncovering the best skill assignment among a number of…

  15. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    Science.gov (United States)

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  16. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    Science.gov (United States)

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  17. Real Time Robot Soccer Game Event Detection Using Finite State Machines with Multiple Fuzzy Logic Probability Evaluators

    Directory of Open Access Journals (Sweden)

    Elmer P. Dadios

    2009-01-01

    Full Text Available This paper presents a new algorithm for real time event detection using Finite State Machines with multiple Fuzzy Logic Probability Evaluators (FLPEs. A machine referee for a robot soccer game is developed and is used as the platform to test the proposed algorithm. A novel technique to detect collisions and other events in microrobot soccer game under inaccurate and insufficient information is presented. The robots' collision is used to determine goalkeeper charging and goal score events which are crucial for the machine referee's decisions. The Main State Machine (MSM handles the schedule of event activation. The FLPE calculates the probabilities of the true occurrence of the events. Final decisions about the occurrences of events are evaluated and compared through threshold crisp probability values. The outputs of FLPEs can be combined to calculate the probability of an event composed of subevents. Using multiple fuzzy logic system, the FLPE utilizes minimal number of rules and can be tuned individually. Experimental results show the accuracy and robustness of the proposed algorithm.

  18. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    Science.gov (United States)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  19. The probabilities of one- and multi-track events for modeling radiation-induced cell kill

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Vasi, Fabiano; Besserer, Juergen [University of Zuerich, Department of Physics, Science Faculty, Zurich (Switzerland); Radiotherapy Hirslanden, Zurich (Switzerland)

    2017-08-15

    In view of the clinical importance of hypofractionated radiotherapy, track models which are based on multi-hit events are currently reinvestigated. These models are often criticized, because it is believed that the probability of multi-track hits is negligible. In this work, the probabilities for one- and multi-track events are determined for different biological targets. The obtained probabilities can be used with nano-dosimetric cluster size distributions to obtain the parameters of track models. We quantitatively determined the probabilities for one- and multi-track events for 100, 500 and 1000 keV electrons, respectively. It is assumed that the single tracks are statistically independent and follow a Poisson distribution. Three different biological targets were investigated: (1) a DNA strand (2 nm scale); (2) two adjacent chromatin fibers (60 nm); and (3) fiber loops (300 nm). It was shown that the probabilities for one- and multi-track events are increasing with energy, size of the sensitive target structure, and dose. For a 2 x 2 x 2 nm{sup 3} target, one-track events are around 10,000 times more frequent than multi-track events. If the size of the sensitive structure is increased to 100-300 nm, the probabilities for one- and multi-track events are of the same order of magnitude. It was shown that target theories can play a role for describing radiation-induced cell death if the targets are of the size of two adjacent chromatin fibers or fiber loops. The obtained probabilities can be used together with the nano-dosimetric cluster size distributions to determine model parameters for target theories. (orig.)

  20. The effect of coupling hydrologic and hydrodynamic models on probable maximum flood estimation

    Science.gov (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2017-07-01

    Deterministic rainfall-runoff modelling usually assumes stationary hydrological system, as model parameters are calibrated with and therefore dependant on observed data. However, runoff processes are probably not stationary in the case of a probable maximum flood (PMF) where discharge greatly exceeds observed flood peaks. Developing hydrodynamic models and using them to build coupled hydrologic-hydrodynamic models can potentially improve the plausibility of PMF estimations. This study aims to assess the potential benefits and constraints of coupled modelling compared to standard deterministic hydrologic modelling when it comes to PMF estimation. The two modelling approaches are applied using a set of 100 spatio-temporal probable maximum precipitation (PMP) distribution scenarios. The resulting hydrographs, the resulting peak discharges as well as the reliability and the plausibility of the estimates are evaluated. The discussion of the results shows that coupling hydrologic and hydrodynamic models substantially improves the physical plausibility of PMF modelling, although both modelling approaches lead to PMF estimations for the catchment outlet that fall within a similar range. Using a coupled model is particularly suggested in cases where considerable flood-prone areas are situated within a catchment.

  1. On Probability Leakage

    OpenAIRE

    Briggs, William M.

    2012-01-01

    The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.

  2. Exact results for survival probability in the multistate Landau-Zener model

    International Nuclear Information System (INIS)

    Volkov, M V; Ostrovsky, V N

    2004-01-01

    An exact formula is derived for survival probability in the multistate Landau-Zener model in the special case where the initially populated state corresponds to the extremal (maximum or minimum) slope of a linear diabatic potential curve. The formula was originally guessed by S Brundobler and V Elzer (1993 J. Phys. A: Math. Gen. 26 1211) based on numerical calculations. It is a simple generalization of the expression for the probability of diabatic passage in the famous two-state Landau-Zener model. Our result is obtained via analysis and summation of the entire perturbation theory series

  3. Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation

    Directory of Open Access Journals (Sweden)

    Michal Halas

    2012-01-01

    Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.

  4. Simulation Model of Mobile Detection Systems

    International Nuclear Information System (INIS)

    Edmunds, T.; Faissol, D.; Yao, Y.

    2009-01-01

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  5. Simulation Model of Mobile Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  6. A Visual Detection Learning Model

    Science.gov (United States)

    Beard, Bettina L.; Ahumada, Albert J., Jr.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Our learning model has memory templates representing the target-plus-noise and noise-alone stimulus sets. The best correlating template determines the response. The correlations and the feedback participate in the additive template updating rule. The model can predict the relative thresholds for detection in random, fixed and twin noise.

  7. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  8. Use of the AIC with the EM algorithm: A demonstration of a probability model selection technique

    Energy Technology Data Exchange (ETDEWEB)

    Glosup, J.G.; Axelrod M.C. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The problem of discriminating between two potential probability models, a Gaussian distribution and a mixture of Gaussian distributions, is considered. The focus of our interest is a case where the models are potentially non-nested and the parameters of the mixture model are estimated through the EM algorithm. The AIC, which is frequently used as a criterion for discriminating between non-nested models, is modified to work with the EM algorithm and is shown to provide a model selection tool for this situation. A particular problem involving an infinite mixture distribution known as Middleton`s Class A model is used to demonstrate the effectiveness and limitations of this method.

  9. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy

    International Nuclear Information System (INIS)

    Huang, S.K.; Wen, Y.H.; Li, N.; Teng, J.; Ding, S.; Xu, Y.G.

    2008-01-01

    In this paper, the damping mechanism model of Fe-Mn alloy was analyzed using dislocation theory. Moreover, as an important parameter in Fe-Mn based alloy, the effect of stacking fault probability on the damping capacity of Fe-19.35Mn alloy after deep-cooling or tensile deformation was also studied. The damping capacity was measured using reversal torsion pendulum. The stacking fault probability of γ-austenite and ε-martensite was determined by means of X-ray diffraction (XRD) profile analysis. The microstructure was observed using scanning electronic microscope (SEM). The results indicated that with the strain amplitude increasing above a critical value, the damping capacity of Fe-19.35Mn alloy increased rapidly which could be explained using the breakaway model of Shockley partial dislocations. Deep-cooling and suitable tensile deformation could improve the damping capacity owning to the increasing of stacking fault probability of Fe-19.35Mn alloy

  10. An extended car-following model considering random safety distance with different probabilities

    Science.gov (United States)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  11. Probability of atrial fibrillation after ablation: Using a parametric nonlinear temporal decomposition mixed effects model.

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Ehrlinger, John; Li, Liang; Ishwaran, Hemant; Parides, Michael K

    2018-01-01

    Atrial fibrillation is an arrhythmic disorder where the electrical signals of the heart become irregular. The probability of atrial fibrillation (binary response) is often time varying in a structured fashion, as is the influence of associated risk factors. A generalized nonlinear mixed effects model is presented to estimate the time-related probability of atrial fibrillation using a temporal decomposition approach to reveal the pattern of the probability of atrial fibrillation and their determinants. This methodology generalizes to patient-specific analysis of longitudinal binary data with possibly time-varying effects of covariates and with different patient-specific random effects influencing different temporal phases. The motivation and application of this model is illustrated using longitudinally measured atrial fibrillation data obtained through weekly trans-telephonic monitoring from an NIH sponsored clinical trial being conducted by the Cardiothoracic Surgery Clinical Trials Network.

  12. Assessment of different models for computing the probability of a clear line of sight

    Science.gov (United States)

    Bojin, Sorin; Paulescu, Marius; Badescu, Viorel

    2017-12-01

    This paper is focused on modeling the morphological properties of the cloud fields in terms of the probability of a clear line of sight (PCLOS). PCLOS is defined as the probability that a line of sight between observer and a given point of the celestial vault goes freely without intersecting a cloud. A variety of PCLOS models assuming the cloud shape hemisphere, semi-ellipsoid and ellipsoid are tested. The effective parameters (cloud aspect ratio and absolute cloud fraction) are extracted from high-resolution series of sunshine number measurements. The performance of the PCLOS models is evaluated from the perspective of their ability in retrieving the point cloudiness. The advantages and disadvantages of the tested models are discussed, aiming to a simplified parameterization of PCLOS models.

  13. Ruin probabilities

    DEFF Research Database (Denmark)

    Asmussen, Søren; Albrecher, Hansjörg

    The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...... updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber–Shiu functions and dependence....

  14. Blind Students' Learning of Probability through the Use of a Tactile Model

    Science.gov (United States)

    Vita, Aida Carvalho; Kataoka, Verônica Yumi

    2014-01-01

    The objective of this paper is to discuss how blind students learn basic concepts of probability using the tactile model proposed by Vita (2012). Among the activities were part of the teaching sequence "Jefferson's Random Walk", in which students built a tree diagram (using plastic trays, foam cards, and toys), and pictograms in 3D…

  15. Modeling tumor control probability for spatially inhomogeneous risk of failure based on clinical outcome data

    DEFF Research Database (Denmark)

    Lühr, Armin; Löck, Steffen; Jakobi, Annika

    2017-01-01

    PURPOSE: Objectives of this work are (1) to derive a general clinically relevant approach to model tumor control probability (TCP) for spatially variable risk of failure and (2) to demonstrate its applicability by estimating TCP for patients planned for photon and proton irradiation. METHODS AND ...

  16. On the Probability of Occurrence of Clusters in Abelian Sandpile Model

    OpenAIRE

    Moradi, M.; Rouhani, S.

    2004-01-01

    We have performed extensive simulations on the Abelian Sandpile Model (ASM) on square lattice. We have estimated the probability of observation of many clusters. Some are in good agreement with previous analytical results, while some show discrepancies between simulation and analytical results.

  17. Developing a Model and Applications for Probabilities of Student Success: A Case Study of Predictive Analytics

    Science.gov (United States)

    Calvert, Carol Elaine

    2014-01-01

    This case study relates to distance learning students on open access courses. It demonstrates the use of predictive analytics to generate a model of the probabilities of success and retention at different points, or milestones, in a student journey. A core set of explanatory variables has been established and their varying relative importance at…

  18. A new formulation of the probability density function in random walk models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Falk, Anne Katrine Vinther; Gryning, Sven-Erik

    1997-01-01

    In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials...

  19. Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing

    Science.gov (United States)

    2013-01-01

    a precipitation hardened martensitic stainless steel . The inspections were based on MIL-STD-1949A [51], now superseded but current at the time...inspector population involved in the tests, it is not possible to draw any further conclusions.  MPT of flat 17-4PH stainless steel plates. A brief...inspection method used to detect surface-breaking cracks in high-strength steel components. A survey of the available literature on the reliability

  20. Physicochemical properties determining the detection probability of tryptic peptides in Fourier transform mass spectrometry. A correlation study

    DEFF Research Database (Denmark)

    Nielsen, Michael L; Savitski, Mikhail M; Kjeldsen, Frank

    2004-01-01

    Sequence verification and mapping of posttranslational modifications require nearly 100% sequence coverage in the "bottom-up" protein analysis. Even in favorable cases, routine liquid chromatography-mass spectrometry detects from protein digests peptides covering 50-90% of the sequence. Here we...... investigated the reasons for limited peptide detection, considering various physicochemical aspects of peptide behavior in liquid chromatography-Fourier transform mass spectrometry (LC-FTMS). No overall correlation was found between the detection probability and peptide mass. In agreement with literature data...... between pI and signal response. An explanation of this paradoxal behavior was found through the observation that more acidic tryptic peptide lengths tend to be longer. Longer peptides tend to acquire higher average charge state in positive mode electrospray ionization than more basic but shorter...

  1. Modeling Perceived Quality, Customer Satisfaction and Probability of Guest Returning to the Destination

    Directory of Open Access Journals (Sweden)

    Olivera Blagojevic Popovic

    2018-03-01

    Full Text Available In the hotel industry, it is a well-known fact that, despite of quality and variety of services provided, there is a low probability that the guests will return. This research is focused on identifying the basic factors of the hotel offer, which could determine the influence on the correlation between the guests’ satisfaction and the probability of their return. The objective of the article is to explore the relationship between the guests’ satisfaction with the quality hotel services in total (including the tourist offer of the place and the probability of his return to the same destination. The questionnaire method was applied in the survey, and the data were analysed based on factor analysis. Thereafter, the model for forecasting the probability of the guests returning to the destination was established, by using the example of Montenegrin tourism. The model represents a defined framework for the guest’s decision-making process. It identifies two main characteristics of guest experiences: satisfaction and rated quality (of the destination’s overall hotel service and tourist offer. The same model evaluates the impact of the above factors on the probability of the guests’ returning to the same destination. The starting hypothesis was the existence of a high degree of correlation between the guests’ satisfaction (with the destination’s hotel services and tourist offer and the probability of returning to the selected Montenegrin destinations. The research confirmed the above-mentioned hypothesis. The results have revealed that there are significant differences in perceived quality, i.e. satisfaction between the target groups of Eastern and Western European tourists

  2. On new cautious structural reliability models in the framework of imprecise probabilities

    DEFF Research Database (Denmark)

    Utkin, Lev; Kozine, Igor

    2010-01-01

    measures when the number of events of interest or observations is very small. The main feature of the models is that prior ignorance is not modelled by a fixed single prior distribution, but by a class of priors which is defined by upper and lower probabilities that can converge as statistical data......New imprecise structural reliability models are described in this paper. They are developed based on the imprecise Bayesian inference and are imprecise Dirichlet, imprecise negative binomial, gamma-exponential and normal models. The models are applied to computing cautious structural reliability...

  3. On the Inclusion of Short-distance Bystander Effects into a Logistic Tumor Control Probability Model.

    Science.gov (United States)

    Tempel, David G; Brodin, N Patrik; Tomé, Wolfgang A

    2018-01-01

    Currently, interactions between voxels are neglected in the tumor control probability (TCP) models used in biologically-driven intensity-modulated radiotherapy treatment planning. However, experimental data suggests that this may not always be justified when bystander effects are important. We propose a model inspired by the Ising model, a short-range interaction model, to investigate if and when it is important to include voxel to voxel interactions in biologically-driven treatment planning. This Ising-like model for TCP is derived by first showing that the logistic model of tumor control is mathematically equivalent to a non-interacting Ising model. Using this correspondence, the parameters of the logistic model are mapped to the parameters of an Ising-like model and bystander interactions are introduced as a short-range interaction as is the case for the Ising model. As an example, we apply the model to study the effect of bystander interactions in the case of radiation therapy for prostate cancer. The model shows that it is adequate to neglect bystander interactions for dose distributions that completely cover the treatment target and yield TCP estimates that lie in the shoulder of the dose response curve. However, for dose distributions that yield TCP estimates that lie on the steep part of the dose response curve or for inhomogeneous dose distributions having significant hot and/or cold regions, bystander effects may be important. Furthermore, the proposed model highlights a previously unexplored and potentially fruitful connection between the fields of statistical mechanics and tumor control probability/normal tissue complication probability modeling.

  4. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jing [ORNL; Mahmassani, Hani S. [Northwestern University, Evanston

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  5. Consistent Practices for the Probability of Detection (POD) of Fracture Critical Metallic Components Project

    Science.gov (United States)

    Hughitt, Brian; Generazio, Edward (Principal Investigator); Nichols, Charles; Myers, Mika (Principal Investigator); Spencer, Floyd (Principal Investigator); Waller, Jess (Principal Investigator); Wladyka, Jordan (Principal Investigator); Aldrin, John; Burke, Eric; Cerecerez, Laura; hide

    2016-01-01

    NASA-STD-5009 requires that successful flaw detection by NDE methods be statistically qualified for use on fracture critical metallic components, but does not standardize practices. This task works towards standardizing calculations and record retention with a web-based tool, the NNWG POD Standards Library or NPSL. Test methods will also be standardized with an appropriately flexible appendix to -5009 identifying best practices. Additionally, this appendix will describe how specimens used to qualify NDE systems will be cataloged, stored and protected from corrosion, damage, or loss.

  6. Probability density function modeling of scalar mixing from concentrated sources in turbulent channel flow

    OpenAIRE

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2010-01-01

    Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...

  7. A stochastic-bayesian model for the fracture probability of PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Alexandre S.; Duran, Jorge Alberto R., E-mail: afrancisco@metal.eeimvr.uff.br, E-mail: duran@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Dept. de Engenharia Mecanica

    2013-07-01

    Fracture probability of pressure vessels containing cracks can be obtained by methodologies of easy understanding, which require a deterministic treatment, complemented by statistical methods. However, more accurate results are required, methodologies need to be better formulated. This paper presents a new methodology to address this problem. First, a more rigorous methodology is obtained by means of the relationship of probability distributions that model crack incidence and nondestructive inspection efficiency using the Bayes' theorem. The result is an updated crack incidence distribution. Further, the accuracy of the methodology is improved by using a stochastic model for the crack growth. The stochastic model incorporates the statistical variability of the crack growth process, combining the stochastic theory with experimental data. Stochastic differential equations are derived by the randomization of empirical equations. From the solution of this equation, a distribution function related to the crack growth is derived. The fracture probability using both probability distribution functions is in agreement with theory, and presents realistic value for pressure vessels. (author)

  8. A stochastic-bayesian model for the fracture probability of PWR pressure vessels

    International Nuclear Information System (INIS)

    Francisco, Alexandre S.; Duran, Jorge Alberto R.

    2013-01-01

    Fracture probability of pressure vessels containing cracks can be obtained by methodologies of easy understanding, which require a deterministic treatment, complemented by statistical methods. However, more accurate results are required, methodologies need to be better formulated. This paper presents a new methodology to address this problem. First, a more rigorous methodology is obtained by means of the relationship of probability distributions that model crack incidence and nondestructive inspection efficiency using the Bayes' theorem. The result is an updated crack incidence distribution. Further, the accuracy of the methodology is improved by using a stochastic model for the crack growth. The stochastic model incorporates the statistical variability of the crack growth process, combining the stochastic theory with experimental data. Stochastic differential equations are derived by the randomization of empirical equations. From the solution of this equation, a distribution function related to the crack growth is derived. The fracture probability using both probability distribution functions is in agreement with theory, and presents realistic value for pressure vessels. (author)

  9. BER Analysis Using Beat Probability Method of 3D Optical CDMA Networks with Double Balanced Detection

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2015-01-01

    Full Text Available This study proposes novel three-dimensional (3D matrices of wavelength/time/spatial code for code-division multiple-access (OCDMA networks, with a double balanced detection mechanism. We construct 3D carrier-hopping prime/modified prime (CHP/MP codes by extending a two-dimensional (2D CHP code integrated with a one-dimensional (1D MP code. The corresponding coder/decoder pairs were based on fiber Bragg gratings (FBGs and tunable optical delay lines integrated with splitters/combiners. System performance was enhanced by the low cross correlation properties of the 3D code designed to avoid the beat noise phenomenon. The CHP/MP code cardinality increased significantly compared to the CHP code under the same bit error rate (BER. The results indicate that the 3D code method can enhance system performance because both the beating terms and multiple-access interference (MAI were reduced by the double balanced detection mechanism. Additionally, the optical component can also be relaxed for high transmission scenery.

  10. Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model

    International Nuclear Information System (INIS)

    Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-01-01

    We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution

  11. Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ferson, Scott [Applied Biomathematics, Setauket, NY (United States); Nelsen, Roger B. [Lewis & Clark College, Portland OR (United States); Hajagos, Janos [Applied Biomathematics, Setauket, NY (United States); Berleant, Daniel J. [Iowa State Univ., Ames, IA (United States); Zhang, Jianzhong [Iowa State Univ., Ames, IA (United States); Tucker, W. Troy [Applied Biomathematics, Setauket, NY (United States); Ginzburg, Lev R. [Applied Biomathematics, Setauket, NY (United States); Oberkampf, William L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  12. Using probability modelling and genetic parentage assignment to test the role of local mate availability in mating system variation.

    Science.gov (United States)

    Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B

    2012-02-01

    The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.

  13. On New Cautious Structural Reliability Models in the Framework of imprecise Probabilities

    DEFF Research Database (Denmark)

    Utkin, Lev V.; Kozine, Igor

    2010-01-01

    models and gen-eralizing conventional ones to imprecise probabili-ties. The theoretical setup employed for this purpose is imprecise statistical reasoning (Walley 1991), whose general framework is provided by upper and lower previsions (expectations). The appeal of this theory is its ability to capture......Uncertainty of parameters in engineering design has been modeled in different frameworks such as inter-val analysis, fuzzy set and possibility theories, ran-dom set theory and imprecise probability theory. The authors of this paper for many years have been de-veloping new imprecise reliability...... both aleatory (stochas-tic) and epistemic uncertainty and the flexibility with which information can be represented. The previous research of the authors related to generalizing structural reliability models to impre-cise statistical measures is summarized in Utkin & Kozine (2002) and Utkin (2004...

  14. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  15. Guided waves based SHM systems for composites structural elements: statistical analyses finalized at probability of detection definition and assessment

    Science.gov (United States)

    Monaco, E.; Memmolo, V.; Ricci, F.; Boffa, N. D.; Maio, L.

    2015-03-01

    Maintenance approaches based on sensorised structures and Structural Health Monitoring systems could represent one of the most promising innovations in the fields of aerostructures since many years, mostly when composites materials (fibers reinforced resins) are considered. Layered materials still suffer today of drastic reductions of maximum allowable stress values during the design phase as well as of costly and recurrent inspections during the life cycle phase that don't permit of completely exploit their structural and economic potentialities in today aircrafts. Those penalizing measures are necessary mainly to consider the presence of undetected hidden flaws within the layered sequence (delaminations) or in bonded areas (partial disbonding); in order to relax design and maintenance constraints a system based on sensors permanently installed on the structure to detect and locate eventual flaws can be considered (SHM system) once its effectiveness and reliability will be statistically demonstrated via a rigorous Probability Of Detection function definition and evaluation. This paper presents an experimental approach with a statistical procedure for the evaluation of detection threshold of a guided waves based SHM system oriented to delaminations detection on a typical wing composite layered panel. The experimental tests are mostly oriented to characterize the statistical distribution of measurements and damage metrics as well as to characterize the system detection capability using this approach. Numerically it is not possible to substitute part of the experimental tests aimed at POD where the noise in the system response is crucial. Results of experiments are presented in the paper and analyzed.

  16. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees.

    Science.gov (United States)

    Yang, Ziheng; Zhu, Tianqi

    2018-02-20

    The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.

  17. Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.

    Science.gov (United States)

    Breskin, Alexander; Cole, Stephen R; Westreich, Daniel

    2018-05-01

    Since being introduced to epidemiology in 2000, marginal structural models have become a commonly used method for causal inference in a wide range of epidemiologic settings. In this brief report, we aim to explore three subtleties of marginal structural models. First, we distinguish marginal structural models from the inverse probability weighting estimator, and we emphasize that marginal structural models are not only for longitudinal exposures. Second, we explore the meaning of the word "marginal" in "marginal structural model." Finally, we show that the specification of a marginal structural model can have important implications for the interpretation of its parameters. Each of these concepts have important implications for the use and understanding of marginal structural models, and thus providing detailed explanations of them may lead to better practices for the field of epidemiology.

  18. Scaling Qualitative Probability

    OpenAIRE

    Burgin, Mark

    2017-01-01

    There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...

  19. Fishnet model for failure probability tail of nacre-like imbricated lamellar materials

    Science.gov (United States)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Nacre, the iridescent material of the shells of pearl oysters and abalone, consists mostly of aragonite (a form of CaCO3), a brittle constituent of relatively low strength (≈10 MPa). Yet it has astonishing mean tensile strength (≈150 MPa) and fracture energy (≈350 to 1,240 J/m2). The reasons have recently become well understood: (i) the nanoscale thickness (≈300 nm) of nacre's building blocks, the aragonite lamellae (or platelets), and (ii) the imbricated, or staggered, arrangement of these lamellea, bound by biopolymer layers only ≈25 nm thick, occupying engineering applications, however, the failure probability of ≤10-6 is generally required. To guarantee it, the type of probability density function (pdf) of strength, including its tail, must be determined. This objective, not pursued previously, is hardly achievable by experiments alone, since >10^8 tests of specimens would be needed. Here we outline a statistical model of strength that resembles a fishnet pulled diagonally, captures the tail of pdf of strength and, importantly, allows analytical safety assessments of nacreous materials. The analysis shows that, in terms of safety, the imbricated lamellar structure provides a major additional advantage—˜10% strength increase at tail failure probability 10^-6 and a 1 to 2 orders of magnitude tail probability decrease at fixed stress. Another advantage is that a high scatter of microstructure properties diminishes the strength difference between the mean and the probability tail, compared with the weakest link model. These advantages of nacre-like materials are here justified analytically and supported by millions of Monte Carlo simulations.

  20. Probabilities and energies to obtain the counting efficiency of electron-capture nuclides, KLMN model

    International Nuclear Information System (INIS)

    Casas Galiano, G.; Grau Malonda, A.

    1994-01-01

    An intelligent computer program has been developed to obtain the mathematical formulae to compute the probabilities and reduced energies of the different atomic rearrangement pathways following electron-capture decay. Creation and annihilation operators for Auger and X processes have been introduced. Taking into account the symmetries associated with each process, 262 different pathways were obtained. This model allows us to obtain the influence of the M-electron-capture in the counting efficiency when the atomic number of the nuclide is high

  1. Probability-based collaborative filtering model for predicting gene–disease associations

    OpenAIRE

    Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan

    2017-01-01

    Background Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene–disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. Methods We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our mo...

  2. How to model a negligible probability under the WTO sanitary and phytosanitary agreement?

    Science.gov (United States)

    Powell, Mark R

    2013-06-01

    Since the 1997 EC--Hormones decision, World Trade Organization (WTO) Dispute Settlement Panels have wrestled with the question of what constitutes a negligible risk under the Sanitary and Phytosanitary Agreement. More recently, the 2010 WTO Australia--Apples Panel focused considerable attention on the appropriate quantitative model for a negligible probability in a risk assessment. The 2006 Australian Import Risk Analysis for Apples from New Zealand translated narrative probability statements into quantitative ranges. The uncertainty about a "negligible" probability was characterized as a uniform distribution with a minimum value of zero and a maximum value of 10(-6) . The Australia - Apples Panel found that the use of this distribution would tend to overestimate the likelihood of "negligible" events and indicated that a triangular distribution with a most probable value of zero and a maximum value of 10⁻⁶ would correct the bias. The Panel observed that the midpoint of the uniform distribution is 5 × 10⁻⁷ but did not consider that the triangular distribution has an expected value of 3.3 × 10⁻⁷. Therefore, if this triangular distribution is the appropriate correction, the magnitude of the bias found by the Panel appears modest. The Panel's detailed critique of the Australian risk assessment, and the conclusions of the WTO Appellate Body about the materiality of flaws found by the Panel, may have important implications for the standard of review for risk assessments under the WTO SPS Agreement. © 2012 Society for Risk Analysis.

  3. A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays.

    Science.gov (United States)

    Lee, Mei-Ling Ting; Bulyk, Martha L; Whitmore, G A; Church, George M

    2002-12-01

    There is considerable scientific interest in knowing the probability that a site-specific transcription factor will bind to a given DNA sequence. Microarray methods provide an effective means for assessing the binding affinities of a large number of DNA sequences as demonstrated by Bulyk et al. (2001, Proceedings of the National Academy of Sciences, USA 98, 7158-7163) in their study of the DNA-binding specificities of Zif268 zinc fingers using microarray technology. In a follow-up investigation, Bulyk, Johnson, and Church (2002, Nucleic Acid Research 30, 1255-1261) studied the interdependence of nucleotides on the binding affinities of transcription proteins. Our article is motivated by this pair of studies. We present a general statistical methodology for analyzing microarray intensity measurements reflecting DNA-protein interactions. The log probability of a protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This model is convenient because it employs familiar statistical concepts and procedures and also because it is effective for investigating the probability structure of the binding mechanism.

  4. An extended car-following model considering the appearing probability of truck and driver's characteristics

    Science.gov (United States)

    Rong, Ying; Wen, Huiying

    2018-05-01

    In this paper, the appearing probability of truck is introduced and an extended car-following model is presented to analyze the traffic flow based on the consideration of driver's characteristics, under honk environment. The stability condition of this proposed model is obtained through linear stability analysis. In order to study the evolution properties of traffic wave near the critical point, the mKdV equation is derived by the reductive perturbation method. The results show that the traffic flow will become more disorder for the larger appearing probability of truck. Besides, the appearance of leading truck affects not only the stability of traffic flow, but also the effect of other aspects on traffic flow, such as: driver's reaction and honk effect. The effects of them on traffic flow are closely correlated with the appearing probability of truck. Finally, the numerical simulations under the periodic boundary condition are carried out to verify the proposed model. And they are consistent with the theoretical findings.

  5. Application of a weighted spatial probability model in GIS to analyse landslides in Penang Island, Malaysia

    Directory of Open Access Journals (Sweden)

    Samy Ismail Elmahdy

    2016-01-01

    Full Text Available In the current study, Penang Island, which is one of the several mountainous areas in Malaysia that is often subjected to landslide hazard, was chosen for further investigation. A multi-criteria Evaluation and the spatial probability weighted approach and model builder was applied to map and analyse landslides in Penang Island. A set of automated algorithms was used to construct new essential geological and morphometric thematic maps from remote sensing data. The maps were ranked using the weighted probability spatial model based on their contribution to the landslide hazard. Results obtained showed that sites at an elevation of 100–300 m, with steep slopes of 10°–37° and slope direction (aspect in the E and SE directions were areas of very high and high probability for the landslide occurrence; the total areas were 21.393 km2 (11.84% and 58.690 km2 (32.48%, respectively. The obtained map was verified by comparing variogram models of the mapped and the occurred landslide locations and showed a strong correlation with the locations of occurred landslides, indicating that the proposed method can successfully predict the unpredictable landslide hazard. The method is time and cost effective and can be used as a reference for geological and geotechnical engineers.

  6. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van' t [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-03-15

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  7. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    International Nuclear Information System (INIS)

    Xu Chengjian; Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van’t

    2012-01-01

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  9. Comparing rapid methods for detecting Listeria in seafood and environmental samples using the most probably number (MPN) technique.

    Science.gov (United States)

    Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C

    2012-02-15

    The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A prescription fraud detection model.

    Science.gov (United States)

    Aral, Karca Duru; Güvenir, Halil Altay; Sabuncuoğlu, Ihsan; Akar, Ahmet Ruchan

    2012-04-01

    Prescription fraud is a main problem that causes substantial monetary loss in health care systems. We aimed to develop a model for detecting cases of prescription fraud and test it on real world data from a large multi-center medical prescription database. Conventionally, prescription fraud detection is conducted on random samples by human experts. However, the samples might be misleading and manual detection is costly. We propose a novel distance based on data-mining approach for assessing the fraudulent risk of prescriptions regarding cross-features. Final tests have been conducted on adult cardiac surgery database. The results obtained from experiments reveal that the proposed model works considerably well with a true positive rate of 77.4% and a false positive rate of 6% for the fraudulent medical prescriptions. The proposed model has the potential advantages including on-line risk prediction for prescription fraud, off-line analysis of high-risk prescriptions by human experts, and self-learning ability by regular updates of the integrative data sets. We conclude that incorporating such a system in health authorities, social security agencies and insurance companies would improve efficiency of internal review to ensure compliance with the law, and radically decrease human-expert auditing costs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Interpreting and Understanding Logits, Probits, and other Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Karlson, Kristian Bernt; Holm, Anders

    2018-01-01

    Methods textbooks in sociology and other social sciences routinely recommend the use of the logit or probit model when an outcome variable is binary, an ordered logit or ordered probit when it is ordinal, and a multinomial logit when it has more than two categories. But these methodological...... guidelines take little or no account of a body of work that, over the past 30 years, has pointed to problematic aspects of these nonlinear probability models and, particularly, to difficulties in interpreting their parameters. In this chapterreview, we draw on that literature to explain the problems, show...

  12. A cellular automata model of traffic flow with variable probability of randomization

    International Nuclear Information System (INIS)

    Zheng Wei-Fan; Zhang Ji-Ye

    2015-01-01

    Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow–density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. (paper)

  13. The limiting conditional probability distribution in a stochastic model of T cell repertoire maintenance.

    Science.gov (United States)

    Stirk, Emily R; Lythe, Grant; van den Berg, Hugo A; Hurst, Gareth A D; Molina-París, Carmen

    2010-04-01

    The limiting conditional probability distribution (LCD) has been much studied in the field of mathematical biology, particularly in the context of epidemiology and the persistence of epidemics. However, it has not yet been applied to the immune system. One of the characteristic features of the T cell repertoire is its diversity. This diversity declines in old age, whence the concepts of extinction and persistence are also relevant to the immune system. In this paper we model T cell repertoire maintenance by means of a continuous-time birth and death process on the positive integers, where the origin is an absorbing state. We show that eventual extinction is guaranteed. The late-time behaviour of the process before extinction takes place is modelled by the LCD, which we prove always exists for the process studied here. In most cases, analytic expressions for the LCD cannot be computed but the probability distribution may be approximated by means of the stationary probability distributions of two related processes. We show how these approximations are related to the LCD of the original process and use them to study the LCD in two special cases. We also make use of the large N expansion to derive a further approximation to the LCD. The accuracy of the various approximations is then analysed. (c) 2009 Elsevier Inc. All rights reserved.

  14. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    Science.gov (United States)

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  15. A Novel Probability Model for Suppressing Multipath Ghosts in GPR and TWI Imaging: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Tan Yun-hua

    2015-10-01

    Full Text Available A novel concept for suppressing the problem of multipath ghosts in Ground Penetrating Radar (GPR and Through-Wall Imaging (TWI is presented. Ghosts (i.e., false targets mainly arise from the use of the Born or single-scattering approximations that lead to linearized imaging algorithms; however, these approximations neglect the effect of multiple scattering (or multipath between the electromagnetic wavefield and the object under investigation. In contrast to existing methods of suppressing multipath ghosts, the proposed method models for the first time the reflectivity of the probed objects as a probability function up to a normalized factor and introduces the concept of random subaperture by randomly picking up measurement locations from the entire aperture. Thus, the final radar image is a joint probability distribution that corresponds to radar images derived from multiple random subapertures. Finally, numerical experiments are used to demonstrate the performance of the proposed methodology in GPR and TWI imaging.

  16. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  17. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities.

    Science.gov (United States)

    Blöchliger, Nicolas; Keller, Peter M; Böttger, Erik C; Hombach, Michael

    2017-09-01

    The procedure for setting clinical breakpoints (CBPs) for antimicrobial susceptibility has been poorly standardized with respect to population data, pharmacokinetic parameters and clinical outcome. Tools to standardize CBP setting could result in improved antibiogram forecast probabilities. We propose a model to estimate probabilities for methodological categorization errors and defined zones of methodological uncertainty (ZMUs), i.e. ranges of zone diameters that cannot reliably be classified. The impact of ZMUs on methodological error rates was used for CBP optimization. The model distinguishes theoretical true inhibition zone diameters from observed diameters, which suffer from methodological variation. True diameter distributions are described with a normal mixture model. The model was fitted to observed inhibition zone diameters of clinical Escherichia coli strains. Repeated measurements for a quality control strain were used to quantify methodological variation. For 9 of 13 antibiotics analysed, our model predicted error rates of  0.1% for ampicillin, cefoxitin, cefuroxime and amoxicillin/clavulanic acid. Increasing the susceptible CBP (cefoxitin) and introducing ZMUs (ampicillin, cefuroxime, amoxicillin/clavulanic acid) decreased error rates to < 0.1%. ZMUs contained low numbers of isolates for ampicillin and cefuroxime (3% and 6%), whereas the ZMU for amoxicillin/clavulanic acid contained 41% of all isolates and was considered not practical. We demonstrate that CBPs can be improved and standardized by minimizing methodological categorization error rates. ZMUs may be introduced if an intermediate zone is not appropriate for pharmacokinetic/pharmacodynamic or drug dosing reasons. Optimized CBPs will provide a standardized antibiotic susceptibility testing interpretation at a defined level of probability. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  18. Protein single-model quality assessment by feature-based probability density functions.

    Science.gov (United States)

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  19. Probabilities in quantum cosmological models: A decoherent histories analysis using a complex potential

    International Nuclear Information System (INIS)

    Halliwell, J. J.

    2009-01-01

    In the quantization of simple cosmological models (minisuperspace models) described by the Wheeler-DeWitt equation, an important step is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation. This gives sensible semiclassical results but lacks an underlying operator formalism. In this paper, we address the issue of constructing probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in nonrelativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit, and are closely related to an intersection number operator. The definitions of class operators given here handle the key case in which the underlying classical system has multiple crossings of the boundaries of the regions of interest. We show that oscillatory WKB solutions to the Wheeler-DeWitt equation give approximate decoherence of histories, as do superpositions of WKB solutions, as long as the regions of configuration space are sufficiently large. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures

  20. Detection probability of Campylobacter

    NARCIS (Netherlands)

    Evers, E.G.; Post, J.; Putirulan, F.F.; Wal, van der F.J.

    2010-01-01

    A rapid presence/absence test for Campylobacter in chicken faeces is being evaluated to support the scheduling of highly contaminated broiler flocks as a measure to reduce public health risks [Nauta, M. J., & Havelaar, A. H. (2008). Risk-based standards for Campylobacter in the broiler meat

  1. Various models for pion probability distributions from heavy-ion collisions

    International Nuclear Information System (INIS)

    Mekjian, A.Z.; Mekjian, A.Z.; Schlei, B.R.; Strottman, D.; Schlei, B.R.

    1998-01-01

    Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed. The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion laser model, and a description which generates a negative binomial description. The approach developed can be used to discuss other cases which will be mentioned. The pion probability distributions for these various cases are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion emission strength η of a Poisson emitter and a critical density η c are connected in a thermal model by η/n c =e -m/T <1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in terms of the relativistic hydrodynamic model. copyright 1998 The American Physical Society

  2. Finite element model updating of concrete structures based on imprecise probability

    Science.gov (United States)

    Biswal, S.; Ramaswamy, A.

    2017-09-01

    Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.

  3. Capacity analysis in multi-state synaptic models: a retrieval probability perspective.

    Science.gov (United States)

    Huang, Yibi; Amit, Yali

    2011-06-01

    We define the memory capacity of networks of binary neurons with finite-state synapses in terms of retrieval probabilities of learned patterns under standard asynchronous dynamics with a predetermined threshold. The threshold is set to control the proportion of non-selective neurons that fire. An optimal inhibition level is chosen to stabilize network behavior. For any local learning rule we provide a computationally efficient and highly accurate approximation to the retrieval probability of a pattern as a function of its age. The method is applied to the sequential models (Fusi and Abbott, Nat Neurosci 10:485-493, 2007) and meta-plasticity models (Fusi et al., Neuron 45(4):599-611, 2005; Leibold and Kempter, Cereb Cortex 18:67-77, 2008). We show that as the number of synaptic states increases, the capacity, as defined here, either plateaus or decreases. In the few cases where multi-state models exceed the capacity of binary synapse models the improvement is small.

  4. A formalism to generate probability distributions for performance-assessment modeling

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1990-01-01

    A formalism is presented for generating probability distributions of parameters used in performance-assessment modeling. The formalism is used when data are either sparse or nonexistent. The appropriate distribution is a function of the known or estimated constraints and is chosen to maximize a quantity known as Shannon's informational entropy. The formalism is applied to a parameter used in performance-assessment modeling. The functional form of the model that defines the parameter, data from the actual field site, and natural analog data are analyzed to estimate the constraints. A beta probability distribution of the example parameter is generated after finding four constraints. As an example of how the formalism is applied to the site characterization studies of Yucca Mountain, the distribution is generated for an input parameter in a performance-assessment model currently used to estimate compliance with disposal of high-level radioactive waste in geologic repositories, 10 CFR 60.113(a)(2), commonly known as the ground water travel time criterion. 8 refs., 2 figs

  5. Empirical probability model of cold plasma environment in the Jovian magnetosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Wang, Xiao-Dong; Barabash, Stas; Roussos, Elias; Truscott, Pete

    2015-04-01

    We analyzed the Galileo PLS dataset to produce a new cold plasma environment model for the Jovian magneto- sphere. Although there exist many sophisticated radiation models, treating energetic plasma (e.g. JOSE, GIRE, or Salammbo), only a limited number of simple models has been utilized for cold plasma environment. By extend- ing the existing cold plasma models toward the probability domain, we can predict the extreme periods of Jovian environment by specifying the percentile of the environmental parameters. The new model was produced in the following procedure. We first referred to the existing cold plasma models of Divine and Garrett, 1983 (DG83) or Bagenal and Delamere 2011 (BD11). These models are scaled to fit the statistical median of the parameters obtained from Galileo PLS data. The scaled model (also called as "mean model") indicates the median environment of Jovian magnetosphere. Then, assuming that the deviations in the Galileo PLS parameters are purely due to variations in the environment, we extended the mean model toward the percentile domain. The input parameter of the model is simply the position of the spacecraft (distance, magnetic longitude and lati- tude) and the specific percentile (e.g. 0.5 for the mean model). All the parameters in the model are described in mathematical forms; therefore the needed computational resources are quite low. The new model can be used for assessing the JUICE mission profile. The spatial extent of the model covers the main phase of the JUICE mission; namely from the Europa orbit to 40 Rj (where Rj is the radius of Jupiter). In addition, theoretical extensions toward the latitudinal direction are also included in the model to support the high latitude orbit of the JUICE spacecraft.

  6. Fast Outage Probability Simulation for FSO Links with a Generalized Pointing Error Model

    KAUST Repository

    Ben Issaid, Chaouki

    2017-02-07

    Over the past few years, free-space optical (FSO) communication has gained significant attention. In fact, FSO can provide cost-effective and unlicensed links, with high-bandwidth capacity and low error rate, making it an exciting alternative to traditional wireless radio-frequency communication systems. However, the system performance is affected not only by the presence of atmospheric turbulences, which occur due to random fluctuations in the air refractive index but also by the existence of pointing errors. Metrics, such as the outage probability which quantifies the probability that the instantaneous signal-to-noise ratio is smaller than a given threshold, can be used to analyze the performance of this system. In this work, we consider weak and strong turbulence regimes, and we study the outage probability of an FSO communication system under a generalized pointing error model with both a nonzero boresight component and different horizontal and vertical jitter effects. More specifically, we use an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results.

  7. Fixation Probability in a Two-Locus Model by the Ancestral Recombination–Selection Graph

    Science.gov (United States)

    Lessard, Sabin; Kermany, Amir R.

    2012-01-01

    We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination. PMID:22095080

  8. Precipitation intensity probability distribution modelling for hydrological and construction design purposes

    International Nuclear Information System (INIS)

    Koshinchanov, Georgy; Dimitrov, Dobri

    2008-01-01

    The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: - The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; - As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. - Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; - Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; - Next method is considering only

  9. Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model.

    Directory of Open Access Journals (Sweden)

    Daniel Ting

    2010-04-01

    Full Text Available Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1 input data size and criteria for structure inclusion (resolution, R-factor, etc.; 2 filtering of suspect conformations and outliers using B-factors or other features; 3 secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included; 4 the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5 whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.

  10. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  11. Pre-Service Mathematics Teachers' Use of Probability Models in Making Informal Inferences about a Chance Game

    Science.gov (United States)

    Kazak, Sibel; Pratt, Dave

    2017-01-01

    This study considers probability models as tools for both making informal statistical inferences and building stronger conceptual connections between data and chance topics in teaching statistics. In this paper, we aim to explore pre-service mathematics teachers' use of probability models for a chance game, where the sum of two dice matters in…

  12. Probabilities and energies to obtain the counting efficiency of electron-capture nuclides. KLMN model

    International Nuclear Information System (INIS)

    Galiano, G.; Grau, A.

    1994-01-01

    An intelligent computer program has been developed to obtain the mathematical formulae to compute the probabilities and reduced energies of the different atomic rearrangement pathways following electron-capture decay. Creation and annihilation operators for Auger and X processes have been introduced. Taking into account the symmetries associated with each process, 262 different pathways were obtained. This model allows us to obtain the influence of the M-electro capture in the counting efficiency when the atomic number of the nuclide is high. (Author)

  13. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  14. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  15. A Study of Probability Models in Monitoring Environmental Pollution in Nigeria

    Directory of Open Access Journals (Sweden)

    P. E. Oguntunde

    2014-01-01

    Full Text Available In Lagos State, Nigeria, pollutant emissions were monitored across the state to detect any significant change which may cause harm to human health and the environment at large. In this research, three theoretical distributions, Weibull, lognormal, and gamma distributions, were examined on the carbon monoxide observations to determine the best fit. The characteristics of the pollutant observation were established and the probabilities of exceeding the Lagos State Environmental Protection Agency (LASEPA and the Federal Environmental Protection Agency (FEPA acceptable limits have been successfully predicted. Increase in the use of vehicles and increase in the establishment of industries have been found not to contribute significantly to the high level of carbon monoxide concentration in Lagos State for the period studied.

  16. Using exceedance probabilities to detect anomalies in routinely recorded animal health data, with particular reference to foot-and-mouth disease in Viet Nam.

    Science.gov (United States)

    Richards, K K; Hazelton, M L; Stevenson, M A; Lockhart, C Y; Pinto, J; Nguyen, L

    2014-10-01

    The widespread availability of computer hardware and software for recording and storing disease event information means that, in theory, we have the necessary information to carry out detailed analyses of factors influencing the spatial distribution of disease in animal populations. However, the reliability of such analyses depends on data quality, with anomalous records having the potential to introduce significant bias and lead to inappropriate decision making. In this paper we promote the use of exceedance probabilities as a tool for detecting anomalies when applying hierarchical spatio-temporal models to animal health data. We illustrate this methodology through a case study data on outbreaks of foot-and-mouth disease (FMD) in Viet Nam for the period 2006-2008. A flexible binomial logistic regression was employed to model the number of FMD infected communes within each province of the country. Standard analyses of the residuals from this model failed to identify problems, but exceedance probabilities identified provinces in which the number of reported FMD outbreaks was unexpectedly low. This finding is interesting given that these provinces are on major cattle movement pathways through Viet Nam. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. fatalityCMR: capture-recapture software to correct raw counts of wildlife fatalities using trial experiments for carcass detection probability and persistence time

    Science.gov (United States)

    Peron, Guillaume; Hines, James E.

    2014-01-01

    Many industrial and agricultural activities involve wildlife fatalities by collision, poisoning or other involuntary harvest: wind turbines, highway network, utility network, tall structures, pesticides, etc. Impacted wildlife may benefit from official protection, including the requirement to monitor the impact. Carcass counts can often be conducted to quantify the number of fatalities, but they need to be corrected for carcass persistence time (removal by scavengers and decay) and detection probability (searcher efficiency). In this article we introduce a new piece of software that fits a superpopulation capture-recapture model to raw count data. It uses trial data to estimate detection and daily persistence probabilities. A recurrent issue is that fatalities of rare, protected species are infrequent, in which case the software offers the option to switch to an ‘evidence of absence’ mode, i.e., estimate the number of carcasses that may have been missed by field crews. The software allows distinguishing between different turbine types (e.g. different vegetation cover under turbines, or different technical properties), as well between two carcass age-classes or states, with transition between those classes (e.g, fresh and dry). There is a data simulation capacity that may be used at the planning stage to optimize sampling design. Resulting mortality estimates can be used 1) to quantify the required amount of compensation, 2) inform mortality projections for proposed development sites, and 3) inform decisions about management of existing sites.

  18. Probability-based collaborative filtering model for predicting gene-disease associations.

    Science.gov (United States)

    Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan

    2017-12-28

    Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene-disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our model. Firstly, on the basis of a typical latent factorization model, we propose model I with an average heterogeneous regularization. Secondly, we develop modified model II with personal heterogeneous regularization to enhance the accuracy of aforementioned models. In this model, vector space similarity or Pearson correlation coefficient metrics and data on related species are also used. We compared the results of PCFM with the results of four state-of-arts approaches. The results show that PCFM performs better than other advanced approaches. PCFM model can be leveraged for predictions of disease genes, especially for new human genes or diseases with no known relationships.

  19. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy

    Science.gov (United States)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2017-08-01

    Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.

  20. Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.

    Science.gov (United States)

    Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David

    2018-07-01

    To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP

  1. Improving Ranking Using Quantum Probability

    OpenAIRE

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...

  2. Probability Models Based on Soil Properties for Predicting Presence-Absence of Pythium in Soybean Roots.

    Science.gov (United States)

    Zitnick-Anderson, Kimberly K; Norland, Jack E; Del Río Mendoza, Luis E; Fortuna, Ann-Marie; Nelson, Berlin D

    2017-10-01

    Associations between soil properties and Pythium groups on soybean roots were investigated in 83 commercial soybean fields in North Dakota. A data set containing 2877 isolates of Pythium which included 26 known spp. and 1 unknown spp. and 13 soil properties from each field were analyzed. A Pearson correlation analysis was performed with all soil properties to observe any significant correlation between properties. Hierarchical clustering, indicator spp., and multi-response permutation procedures were used to identify groups of Pythium. Logistic regression analysis using stepwise selection was employed to calculate probability models for presence of groups based on soil properties. Three major Pythium groups were identified and three soil properties were associated with these groups. Group 1, characterized by P. ultimum, was associated with zinc levels; as zinc increased, the probability of group 1 being present increased (α = 0.05). Pythium group 2, characterized by Pythium kashmirense and an unknown Pythium sp., was associated with cation exchange capacity (CEC) (α < 0.05); as CEC increased, these spp. increased. Group 3, characterized by Pythium heterothallicum and Pythium irregulare, were associated with CEC and calcium carbonate exchange (CCE); as CCE increased and CEC decreased, these spp. increased (α = 0.05). The regression models may have value in predicting pathogenic Pythium spp. in soybean fields in North Dakota and adjacent states.

  3. The perception of probability.

    Science.gov (United States)

    Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E

    2014-01-01

    We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. [Application of Bayes Probability Model in Differentiation of Yin and Yang Jaundice Syndromes in Neonates].

    Science.gov (United States)

    Mu, Chun-sun; Zhang, Ping; Kong, Chun-yan; Li, Yang-ning

    2015-09-01

    To study the application of Bayes probability model in differentiating yin and yang jaundice syndromes in neonates. Totally 107 jaundice neonates who admitted to hospital within 10 days after birth were assigned to two groups according to syndrome differentiation, 68 in the yang jaundice syndrome group and 39 in the yin jaundice syndrome group. Data collected for neonates were factors related to jaundice before, during and after birth. Blood routines, liver and renal functions, and myocardial enzymes were tested on the admission day or the next day. Logistic regression model and Bayes discriminating analysis were used to screen factors important for yin and yang jaundice syndrome differentiation. Finally, Bayes probability model for yin and yang jaundice syndromes was established and assessed. Factors important for yin and yang jaundice syndrome differentiation screened by Logistic regression model and Bayes discriminating analysis included mothers' age, mother with gestational diabetes mellitus (GDM), gestational age, asphyxia, or ABO hemolytic diseases, red blood cell distribution width (RDW-SD), platelet-large cell ratio (P-LCR), serum direct bilirubin (DBIL), alkaline phosphatase (ALP), cholinesterase (CHE). Bayes discriminating analysis was performed by SPSS to obtain Bayes discriminant function coefficient. Bayes discriminant function was established according to discriminant function coefficients. Yang jaundice syndrome: y1= -21. 701 +2. 589 x mother's age + 1. 037 x GDM-17. 175 x asphyxia + 13. 876 x gestational age + 6. 303 x ABO hemolytic disease + 2.116 x RDW-SD + 0. 831 x DBIL + 0. 012 x ALP + 1. 697 x LCR + 0. 001 x CHE; Yin jaundice syndrome: y2= -33. 511 + 2.991 x mother's age + 3.960 x GDM-12. 877 x asphyxia + 11. 848 x gestational age + 1. 820 x ABO hemolytic disease +2. 231 x RDW-SD +0. 999 x DBIL +0. 023 x ALP +1. 916 x LCR +0. 002 x CHE. Bayes discriminant function was hypothesis tested and got Wilks' λ =0. 393 (P =0. 000). So Bayes

  5. Repopulation of interacting tumor cells during fractionated radiotherapy: Stochastic modeling of the tumor control probability

    International Nuclear Information System (INIS)

    Fakir, Hatim; Hlatky, Lynn; Li, Huamin; Sachs, Rainer

    2013-01-01

    Purpose: Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the “five Rs” (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider “stem-like cancer cells” (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. Methods: The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. Results: In sample calculations with linear quadratic parameters α = 0.3 per Gy, α/β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. Conclusions: The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are

  6. Repopulation of interacting tumor cells during fractionated radiotherapy: stochastic modeling of the tumor control probability.

    Science.gov (United States)

    Fakir, Hatim; Hlatky, Lynn; Li, Huamin; Sachs, Rainer

    2013-12-01

    Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the "five Rs" (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider "stem-like cancer cells" (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. In sample calculations with linear quadratic parameters α = 0.3 per Gy, α∕β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are the ones appropriate for individualized

  7. Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    2015-07-01

    Full Text Available Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene-gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.

  8. Probability distributions in conservative energy exchange models of multiple interacting agents

    International Nuclear Information System (INIS)

    Scafetta, Nicola; West, Bruce J

    2007-01-01

    Herein we study energy exchange models of multiple interacting agents that conserve energy in each interaction. The models differ regarding the rules that regulate the energy exchange and boundary effects. We find a variety of stochastic behaviours that manifest energy equilibrium probability distributions of different types and interaction rules that yield not only the exponential distributions such as the familiar Maxwell-Boltzmann-Gibbs distribution of an elastically colliding ideal particle gas, but also uniform distributions, truncated exponential distributions, Gaussian distributions, Gamma distributions, inverse power law distributions, mixed exponential and inverse power law distributions, and evolving distributions. This wide variety of distributions should be of value in determining the underlying mechanisms generating the statistical properties of complex phenomena including those to be found in complex chemical reactions

  9. Energies and transition probabilities from the full solution of nuclear quadrupole-octupole model

    International Nuclear Information System (INIS)

    Strecker, M.; Lenske, H.; Minkov, N.

    2013-01-01

    A collective model of nuclear quadrupole-octupole vibrations and rotations, originally restricted to a coherent interplay between quadrupole and octupole modes, is now developed for application beyond this restriction. The eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in the basis of the analytic solution obtained in the case of the coherent-mode assumption. Within this scheme the yrast alternating-parity band is constructed by the lowest eigenvalues having the appropriate parity at given angular momentum. Additionally we include the calculation of transition probabilities which are fitted with the energies simultaneously. As a result we obtain a unique set of parameters. The obtained model parameters unambiguously determine the shape of the quadrupole-octupole potential. From the resulting wave functions quadrupole deformation expectation values are calculated which are found to be in agreement with experimental values. (author)

  10. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    Directory of Open Access Journals (Sweden)

    Abdalla Ahmed Abdel-Ghaly

    2016-06-01

    Full Text Available This paper suggests the use of the conditional probability integral transformation (CPIT method as a goodness of fit (GOF technique in the field of accelerated life testing (ALT, specifically for validating the underlying distributional assumption in accelerated failure time (AFT model. The method is based on transforming the data into independent and identically distributed (i.i.d Uniform (0, 1 random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.

  11. Probability density function modeling of scalar mixing from concentrated sources in turbulent channel flow

    Science.gov (United States)

    Bakosi, J.; Franzese, P.; Boybeyi, Z.

    2007-11-01

    Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.

  12. A statistical model for deriving probability distributions of contamination for accidental releases

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Davison, A.C.

    1986-01-01

    Results generated from a detailed long-range transport model, MESOS, simulating dispersal of a large number of hypothetical releases of radionuclides in a variety of meteorological situations over Western Europe have been used to derive a simpler statistical model, MESOSTAT. This model may be used to generate probability distributions of different levels of contamination at a receptor point 100-1000 km or so from the source (for example, across a frontier in another country) without considering individual release and dispersal scenarios. The model is embodied in a series of equations involving parameters which are determined from such factors as distance between source and receptor, nuclide decay and deposition characteristics, release duration, and geostrophic windrose at the source. Suitable geostrophic windrose data have been derived for source locations covering Western Europe. Special attention has been paid to the relatively improbable extreme values of contamination at the top end of the distribution. The MESOSTAT model and its development are described, with illustrations of its use and comparison with the original more detailed modelling techniques. (author)

  13. Time series modeling of pathogen-specific disease probabilities with subsampled data.

    Science.gov (United States)

    Fisher, Leigh; Wakefield, Jon; Bauer, Cici; Self, Steve

    2017-03-01

    Many diseases arise due to exposure to one of multiple possible pathogens. We consider the situation in which disease counts are available over time from a study region, along with a measure of clinical disease severity, for example, mild or severe. In addition, we suppose a subset of the cases are lab tested in order to determine the pathogen responsible for disease. In such a context, we focus interest on modeling the probabilities of disease incidence given pathogen type. The time course of these probabilities is of great interest as is the association with time-varying covariates such as meteorological variables. In this set up, a natural Bayesian approach would be based on imputation of the unsampled pathogen information using Markov Chain Monte Carlo but this is computationally challenging. We describe a practical approach to inference that is easy to implement. We use an empirical Bayes procedure in a first step to estimate summary statistics. We then treat these summary statistics as the observed data and develop a Bayesian generalized additive model. We analyze data on hand, foot, and mouth disease (HFMD) in China in which there are two pathogens of primary interest, enterovirus 71 (EV71) and Coxackie A16 (CA16). We find that both EV71 and CA16 are associated with temperature, relative humidity, and wind speed, with reasonably similar functional forms for both pathogens. The important issue of confounding by time is modeled using a penalized B-spline model with a random effects representation. The level of smoothing is addressed by a careful choice of the prior on the tuning variance. © 2016, The International Biometric Society.

  14. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    Science.gov (United States)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  15. Accounting for detectability in fish distribution models: an approach based on time-to-first-detection

    Directory of Open Access Journals (Sweden)

    Mário Ferreira

    2015-12-01

    Full Text Available Imperfect detection (i.e., failure to detect a species when the species is present is increasingly recognized as an important source of uncertainty and bias in species distribution modeling. Although methods have been developed to solve this problem by explicitly incorporating variation in detectability in the modeling procedure, their use in freshwater systems remains limited. This is probably because most methods imply repeated sampling (≥ 2 of each location within a short time frame, which may be impractical or too expensive in most studies. Here we explore a novel approach to control for detectability based on the time-to-first-detection, which requires only a single sampling occasion and so may find more general applicability in freshwaters. The approach uses a Bayesian framework to combine conventional occupancy modeling with techniques borrowed from parametric survival analysis, jointly modeling factors affecting the probability of occupancy and the time required to detect a species. To illustrate the method, we modeled large scale factors (elevation, stream order and precipitation affecting the distribution of six fish species in a catchment located in north-eastern Portugal, while accounting for factors potentially affecting detectability at sampling points (stream depth and width. Species detectability was most influenced by depth and to lesser extent by stream width and tended to increase over time for most species. Occupancy was consistently affected by stream order, elevation and annual precipitation. These species presented a widespread distribution with higher uncertainty in tributaries and upper stream reaches. This approach can be used to estimate sampling efficiency and provide a practical framework to incorporate variations in the detection rate in fish distribution models.

  16. Probability of detecting marine predator-prey and species interactions using novel hybrid acoustic transmitter-receiver tags.

    Directory of Open Access Journals (Sweden)

    Laurie L Baker

    Full Text Available Understanding the nature of inter-specific and conspecific interactions in the ocean is challenging because direct observation is usually impossible. The development of dual transmitter/receivers, Vemco Mobile Transceivers (VMT, and satellite-linked (e.g. GPS tags provides a unique opportunity to better understand between and within species interactions in space and time. Quantifying the uncertainty associated with detecting a tagged animal, particularly under varying field conditions, is vital for making accurate biological inferences when using VMTs. We evaluated the detection efficiency of VMTs deployed on grey seals, Halichoerus grypus, off Sable Island (NS, Canada in relation to environmental characteristics and seal behaviour using generalized linear models (GLM to explore both post-processed detection data and summarized raw VMT data. When considering only post-processed detection data, only about half of expected detections were recorded at best even when two VMT-tagged seals were estimated to be within 50-200 m of one another. At a separation of 400 m, only about 15% of expected detections were recorded. In contrast, when incomplete transmissions from the summarized raw data were also considered, the ratio of complete transmission to complete and incomplete transmissions was about 70% for distances ranging from 50-1000 m, with a minimum of around 40% at 600 m and a maximum of about 85% at 50 m. Distance between seals, wind stress, and depth were the most important predictors of detection efficiency. Access to the raw VMT data allowed us to focus on the physical and environmental factors that limit a transceiver's ability to resolve a transmitter's identity.

  17. Modeling of Viral Aerosol Transmission and Detection

    KAUST Repository

    Khalid, Maryam; Amin, Osama; Ahmed, Sajid; Alouini, Mohamed-Slim

    2018-01-01

    The objective of this work is to investigate the spread mechanism of diseases in the atmosphere as an engineering problem. Among the viral transmission mechanisms that do not include physical contact, aerosol transmission is the most significant mode of transmission where virus-laden droplets are carried over long distances by wind. In this work, we focus on aerosol transmission of virus and introduce the idea of viewing virus transmission through aerosols and their transport as a molecular communication problem, where one has no control over transmission source but a robust receiver can be designed using nano-biosensors. To investigate this idea, a complete system is presented and end-toend mathematical model for the aerosol transmission channel is derived under certain constraints and boundary conditions. In addition to transmitter and channel, a receiver architecture composed of air sampler and Silicon Nanowire field effect transistor is also discussed. Furthermore, a detection problem is formulated for which maximum likelihood decision rule and the corresponding missed detection probability is discussed. At the end, simulation results are presented to investigate the parameters that affect the performance and justify the feasibility of proposed setup in related applications.

  18. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    International Nuclear Information System (INIS)

    Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D’Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto

    2013-01-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity

  19. Influence of call broadcast timing within point counts and survey duration on detection probability of marsh breeding birds

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2017-12-01

    Full Text Available The Standardized North American Marsh Bird Monitoring Protocol recommends point counts consisting of a 5-min passive observation period, meant to be free of broadcast bias, followed by call broadcasts to entice elusive species to reveal their presence. Prior to this protocol, some monitoring programs used point counts with broadcasts during the first 5 min of 10-min counts, and have since used 15-min counts with an initial 5-min passive period (P1 followed by 5 min of broadcasts (B and a second 5-min passive period (P2 to ensure consistency across years and programs. Influence of timing of broadcasts within point counts and point count duration, however, have rarely been assessed. Using data from 23,973 broadcast-assisted 15-min point counts conducted throughout the Great Lakes-St. Lawrence region between 2008 and 2016 by Bird Studies Canada's Marsh Monitoring Program and Central Michigan University's Great Lakes Coastal Wetland Monitoring Program, we estimated detection probabilities of individuals for 14 marsh breeding bird species during P1B compared to BP2, P1 compared to P2, and P1B compared to P1BP2. For six broadcast species and American Bittern (Botaurus lentiginosus, we found no significant difference in detection during P1B compared to BP2, and no significant difference in four of the same seven species during P1 compared to P2. We observed small but significant differences in detection for 7 of 14 species during P1B compared to P1BP2. We conclude that differences in timing of broadcasts causes no bias based on counts from entire 10-minute surveys, although P1B should be favored over BP2 because the same amount of effort in P1B avoids broadcast bias in all broadcast species, and 10-min surveys are superior to 15-min surveys because modest gains in detection of some species does not warrant the additional effort. We recommend point counts consisting of 5 min of passive observation followed by broadcasts, consistent with the standardized

  20. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Myers, Adam D.; Hennawi, Joseph F.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.

    2012-01-01

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  1. Normal Tissue Complication Probability Modeling of Acute Hematologic Toxicity in Cervical Cancer Patients Treated With Chemoradiotherapy

    International Nuclear Information System (INIS)

    Rose, Brent S.; Aydogan, Bulent; Liang, Yun; Yeginer, Mete; Hasselle, Michael D.; Dandekar, Virag; Bafana, Rounak; Yashar, Catheryn M.; Mundt, Arno J.; Roeske, John C.; Mell, Loren K.

    2011-01-01

    Purpose: To test the hypothesis that increased pelvic bone marrow (BM) irradiation is associated with increased hematologic toxicity (HT) in cervical cancer patients undergoing chemoradiotherapy and to develop a normal tissue complication probability (NTCP) model for HT. Methods and Materials: We tested associations between hematologic nadirs during chemoradiotherapy and the volume of BM receiving ≥10 and 20 Gy (V 10 and V 20 ) using a previously developed linear regression model. The validation cohort consisted of 44 cervical cancer patients treated with concurrent cisplatin and pelvic radiotherapy. Subsequently, these data were pooled with data from 37 identically treated patients from a previous study, forming a cohort of 81 patients for normal tissue complication probability analysis. Generalized linear modeling was used to test associations between hematologic nadirs and dosimetric parameters, adjusting for body mass index. Receiver operating characteristic curves were used to derive optimal dosimetric planning constraints. Results: In the validation cohort, significant negative correlations were observed between white blood cell count nadir and V 10 (regression coefficient (β) = -0.060, p = 0.009) and V 20 (β = -0.044, p = 0.010). In the combined cohort, the (adjusted) β estimates for log (white blood cell) vs. V 10 and V 20 were as follows: -0.022 (p = 0.025) and -0.021 (p = 0.002), respectively. Patients with V 10 ≥ 95% were more likely to experience Grade ≥3 leukopenia (68.8% vs. 24.6%, p 20 > 76% (57.7% vs. 21.8%, p = 0.001). Conclusions: These findings support the hypothesis that HT increases with increasing pelvic BM volume irradiated. Efforts to maintain V 10 20 < 76% may reduce HT.

  2. From Remotely Sensed Vegetation Onset to Sowing Dates: Aggregating Pixel-Level Detections into Village-Level Sowing Probabilities

    Directory of Open Access Journals (Sweden)

    Eduardo Marinho

    2014-11-01

    Full Text Available Monitoring the start of the crop season in Sahel provides decision makers with valuable information for an early assessment of potential production and food security threats. Presently, the most common method for the estimation of sowing dates in West African countries consists of applying given thresholds on rainfall estimations. However, the coarse spatial resolution and the possible inaccuracy of these estimations are limiting factors. In this context, the remote sensing approach, which consists of deriving green-up onset dates from satellite remote sensing data, appears as an interesting alternative. It builds upon a novel statistic model that translates vegetation onset detections derived from MODIS time series into sowing probabilities at the village level. Results for Niger show that this approach outperforms the standard method adopted in the region based on rainfall thresholds.

  3. Interrelationships Between Receiver/Relative Operating Characteristics Display, Binomial, Logit, and Bayes' Rule Probability of Detection Methodologies

    Science.gov (United States)

    Generazio, Edward R.

    2014-01-01

    Unknown risks are introduced into failure critical systems when probability of detection (POD) capabilities are accepted without a complete understanding of the statistical method applied and the interpretation of the statistical results. The presence of this risk in the nondestructive evaluation (NDE) community is revealed in common statements about POD. These statements are often interpreted in a variety of ways and therefore, the very existence of the statements identifies the need for a more comprehensive understanding of POD methodologies. Statistical methodologies have data requirements to be met, procedures to be followed, and requirements for validation or demonstration of adequacy of the POD estimates. Risks are further enhanced due to the wide range of statistical methodologies used for determining the POD capability. Receiver/Relative Operating Characteristics (ROC) Display, simple binomial, logistic regression, and Bayes' rule POD methodologies are widely used in determining POD capability. This work focuses on Hit-Miss data to reveal the framework of the interrelationships between Receiver/Relative Operating Characteristics Display, simple binomial, logistic regression, and Bayes' Rule methodologies as they are applied to POD. Knowledge of these interrelationships leads to an intuitive and global understanding of the statistical data, procedural and validation requirements for establishing credible POD estimates.

  4. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  5. Constituent quarks as clusters in quark-gluon-parton model. [Total cross sections, probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1976-12-01

    We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).

  6. Detecting deviating behaviors without models

    NARCIS (Netherlands)

    Lu, X.; Fahland, D.; van den Biggelaar, F.J.H.M.; van der Aalst, W.M.P.; Reichert, M.; Reijers, H.A.

    2016-01-01

    Deviation detection is a set of techniques that identify deviations from normative processes in real process executions. These diagnostics are used to derive recommendations for improving business processes. Existing detection techniques identify deviations either only on the process instance level

  7. Probability distribution of magnetization in the one-dimensional Ising model: effects of boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antal, T [Physics Department, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH 1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest, Pazmany setany 1/a (Hungary)

    2004-02-06

    Finite-size scaling functions are investigated both for the mean-square magnetization fluctuations and for the probability distribution of the magnetization in the one-dimensional Ising model. The scaling functions are evaluated in the limit of the temperature going to zero (T {yields} 0), the size of the system going to infinity (N {yields} {infinity}) while N[1 - tanh(J/k{sub B}T)] is kept finite (J being the nearest neighbour coupling). Exact calculations using various boundary conditions (periodic, antiperiodic, free, block) demonstrate explicitly how the scaling functions depend on the boundary conditions. We also show that the block (small part of a large system) magnetization distribution results are identical to those obtained for free boundary conditions.

  8. Probability Model of Allele Frequency of Alzheimer’s Disease Genetic Risk Factor

    Directory of Open Access Journals (Sweden)

    Afshin Fayyaz-Movaghar

    2016-06-01

    Full Text Available Background and Purpose: The identification of genetics risk factors of human diseases is very important. This study is conducted to model the allele frequencies (AFs of Alzheimer’s disease. Materials and Methods: In this study, several candidate probability distributions are fitted on a data set of Alzheimer’s disease genetic risk factor. Unknown parameters of the considered distributions are estimated, and some criterions of goodness-of-fit are calculated for the sake of comparison. Results: Based on some statistical criterions, the beta distribution gives the best fit on AFs. However, the estimate values of the parameters of beta distribution lead us to the standard uniform distribution. Conclusion: The AFs of Alzheimer’s disease follow the standard uniform distribution.

  9. Improving normal tissue complication probability models: the need to adopt a "data-pooling" culture.

    Science.gov (United States)

    Deasy, Joseph O; Bentzen, Søren M; Jackson, Andrew; Ten Haken, Randall K; Yorke, Ellen D; Constine, Louis S; Sharma, Ashish; Marks, Lawrence B

    2010-03-01

    Clinical studies of the dependence of normal tissue response on dose-volume factors are often confusingly inconsistent, as the QUANTEC reviews demonstrate. A key opportunity to accelerate progress is to begin storing high-quality datasets in repositories. Using available technology, multiple repositories could be conveniently queried, without divulging protected health information, to identify relevant sources of data for further analysis. After obtaining institutional approvals, data could then be pooled, greatly enhancing the capability to construct predictive models that are more widely applicable and better powered to accurately identify key predictive factors (whether dosimetric, image-based, clinical, socioeconomic, or biological). Data pooling has already been carried out effectively in a few normal tissue complication probability studies and should become a common strategy. Copyright 2010 Elsevier Inc. All rights reserved.

  10. The probability distribution model of air pollution index and its dominants in Kuala Lumpur

    Science.gov (United States)

    AL-Dhurafi, Nasr Ahmed; Razali, Ahmad Mahir; Masseran, Nurulkamal; Zamzuri, Zamira Hasanah

    2016-11-01

    This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria's are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.

  11. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    cell loss due to irradiation, the log-kill model, therefore, predicts that incomplete treatment of a kinetically heterogeneous tumor will yield a more proliferative tumor. The probability of tumor control in such a simulation may be obtained from the nadir in tumor cell number. If the nadir is not sufficiently low to yield a high probability of tumor control, then the tumor will re-grow. Since tumors in each sub-population are assumed lost at the same rate, cells comprising the sub-population with the shortest potential doubling time will re-grow the fastest, yielding a recurrent tumor that is more proliferative. A number of assumptions and simplifications are both implicitly and explicitly made in converting absorbed dose to tumor control probability. The modeling analyses described above must, therefore, be viewed in terms of understanding and evaluating different treatment approaches with the goal of treatment optimization rather than outcome prediction

  12. Hypothyroidism after primary radiotherapy for head and neck squamous cell carcinoma: Normal tissue complication probability modeling with latent time correction

    DEFF Research Database (Denmark)

    Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren

    2013-01-01

    To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors.......To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors....

  13. A transmission/escape probabilities model for neutral particle transport in the outer regions of a diverted tokamak

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1992-12-01

    A new computational model for neutral particle transport in the outer regions of a diverted tokamak plasma chamber is presented. The model is based on the calculation of transmission and escape probabilities using first-flight integral transport theory and the balancing of fluxes across the surfaces bounding the various regions. The geometrical complexity of the problem is included in precomputed probabilities which depend only on the mean free path of the region

  14. MEASURING MODEL FOR BAD LOANS IN BANKS. THE DEFAULT PROBABILITY MODEL.

    Directory of Open Access Journals (Sweden)

    SOCOL ADELA

    2010-12-01

    Full Text Available The banking sectors of the transition countries have progressed remarkably in the last 20 years. In fact, banking in most transition countries has largely shaken off the traumas of the transition eraAt the start of the 21st century banks in these countries look very much like banks elsewhere. That is, they are by no means problem free but they are struggling with the same issues as banks in other emerging market countries during the financial crises conditions. The institutional environment differs considerably among the countries. The goal we set with this article is to examine in terms of methodology the most important assessment criteria of a measuring model for bad loans.

  15. Diagnostics of enterprise bankruptcy occurrence probability in an anti-crisis management: modern approaches and classification of models

    Directory of Open Access Journals (Sweden)

    I.V. Zhalinska

    2015-09-01

    Full Text Available Diagnostics of enterprise bankruptcy occurrence probability is defined as an important tool ensuring the viability of an organization under conditions of unpredictable dynamic environment. The paper aims to define the basic features of diagnostics of bankruptcy occurrence probability models and their classification. The article grounds the objective increasing of crisis probability in modern enterprises where such increasing leads to the need to improve the efficiency of anti-crisis enterprise activities. The system of anti-crisis management is based on the subsystem of diagnostics of bankruptcy occurrence probability. Such a subsystem is the main one for further measures to prevent and overcome the crisis. The classification of existing models of enterprise bankruptcy occurrence probability has been suggested. The classification is based on methodical and methodological principles of models. The following main groups of models are determined: the models using financial ratios, aggregates and scores, the models of discriminated analysis, the methods of strategic analysis, informal models, artificial intelligence systems and the combination of the models. The classification made it possible to identify the analytical capabilities of each of the groups of models suggested.

  16. Z → bb-bar probability and asymmetry in a model of dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Osipov, M.Yu.

    1997-01-01

    The deviations from the standard model in the probability of Z → bb-bar decay and in the forward-backward asymmetry in the reaction e + e - → bb-bar are studied in the framework of the model of dynamical electroweak symmetry breaking, the basic point of which is the existence of a triple anomalous W-boson vertex in a region of momenta restricted by a cutoff. A set of equations for additional terms in the W b t-bar vertex is obtained and its solution to the process Z → bb-bar is applied. It is shown that it is possible to obtain a consistent description of both deviations, which is quite nontrivial because these effects are not simply correlated. The necessary value of the anomalous W interaction coupling, λ = -0.22 ± 0.01, is consistent with existing limitations and leads to definite predictions, e.g., for pair W production in e + e - collisions at LEP 200

  17. Constraint-based Student Modelling in Probability Story Problems with Scaffolding Techniques

    Directory of Open Access Journals (Sweden)

    Nabila Khodeir

    2018-01-01

    Full Text Available Constraint-based student modelling (CBM is an important technique employed in intelligent tutoring systems to model student knowledge to provide relevant assistance. This paper introduces the Math Story Problem Tutor (MAST, a Web-based intelligent tutoring system for probability story problems, which is able to generate problems of different contexts, types and difficulty levels for self-paced learning. Constraints in MAST are specified at a low-level of granularity to allow fine-grained diagnosis of the student error. Furthermore, MAST extends CBM to address errors due to misunderstanding of the narrative story. It can locate and highlight keywords that may have been overlooked or misunderstood leading to an error. This is achieved by utilizing the role of sentences and keywords that are defined through the Natural Language Generation (NLG methods deployed in the story problem generation. MAST also integrates CBM with scaffolding questions and feedback to provide various forms of help and guidance to the student. This allows the student to discover and correct any errors in his/her solution. MAST has been preliminary evaluated empirically and the results show the potential effectiveness in tutoring students with a decrease in the percentage of violated constraints along the learning curve. Additionally, there is a significant improvement in the results of the post–test exam in comparison to the pre-test exam of the students using MAST in comparison to those relying on the textbook

  18. ESTIMATION OF BANKRUPTCY PROBABILITIES BY USING FUZZY LOGIC AND MERTON MODEL: AN APPLICATION ON USA COMPANIES

    Directory of Open Access Journals (Sweden)

    Çiğdem ÖZARİ

    2018-01-01

    Full Text Available In this study, we have worked on developing a brand-new index called Fuzzy-bankruptcy index. The aim of this index is to find out the default probability of any company X, independent from the sector it belongs. Fuzzy logic is used to state the financial ratiointerruption change related with time and inside different sectors, the new index is created to eliminate the number of the relativity of financial ratios. The four input variables inside the five main input variables used for the fuzzy process, are chosen from both factor analysis and clustering and the last input variable calculated from Merton Model. As we analyze in the past cases of the default history of companies, one could explore different reasons such as managerial arrogance, fraud and managerial mistakes, that are responsible for the very poor endings of prestigious companies like Enron, K-Mart. Because of these kind of situations, we try to design a model which one could be able to get a better view of a company’s financial position, and it couldbe prevent credit loan companies from investing in the wrong company and possibly from losing all investments using our Fuzzy-bankruptcy index.

  19. Characteristics of the probability function for three random-walk models of reaction--diffusion processes

    International Nuclear Information System (INIS)

    Musho, M.K.; Kozak, J.J.

    1984-01-01

    A method is presented for calculating exactly the relative width (sigma 2 )/sup 1/2// , the skewness γ 1 , and the kurtosis γ 2 characterizing the probability distribution function for three random-walk models of diffusion-controlled processes. For processes in which a diffusing coreactant A reacts irreversibly with a target molecule B situated at a reaction center, three models are considered. The first is the traditional one of an unbiased, nearest-neighbor random walk on a d-dimensional periodic/confining lattice with traps; the second involves the consideration of unbiased, non-nearest-neigh bor (i.e., variable-step length) walks on the same d-dimensional lattice; and, the third deals with the case of a biased, nearest-neighbor walk on a d-dimensional lattice (wherein a walker experiences a potential centered at the deep trap site of the lattice). Our method, which has been described in detail elsewhere [P.A. Politowicz and J. J. Kozak, Phys. Rev. B 28, 5549 (1983)] is based on the use of group theoretic arguments within the framework of the theory of finite Markov processes

  20. Rooting phylogenetic trees under the coalescent model using site pattern probabilities.

    Science.gov (United States)

    Tian, Yuan; Kubatko, Laura

    2017-12-19

    Phylogenetic tree inference is a fundamental tool to estimate ancestor-descendant relationships among different species. In phylogenetic studies, identification of the root - the most recent common ancestor of all sampled organisms - is essential for complete understanding of the evolutionary relationships. Rooted trees benefit most downstream application of phylogenies such as species classification or study of adaptation. Often, trees can be rooted by using outgroups, which are species that are known to be more distantly related to the sampled organisms than any other species in the phylogeny. However, outgroups are not always available in evolutionary research. In this study, we develop a new method for rooting species tree under the coalescent model, by developing a series of hypothesis tests for rooting quartet phylogenies using site pattern probabilities. The power of this method is examined by simulation studies and by application to an empirical North American rattlesnake data set. The method shows high accuracy across the simulation conditions considered, and performs well for the rattlesnake data. Thus, it provides a computationally efficient way to accurately root species-level phylogenies that incorporates the coalescent process. The method is robust to variation in substitution model, but is sensitive to the assumption of a molecular clock. Our study establishes a computationally practical method for rooting species trees that is more efficient than traditional methods. The method will benefit numerous evolutionary studies that require rooting a phylogenetic tree without having to specify outgroups.

  1. Probability Modeling of Precipitation Extremes over Two River Basins in Northwest of China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2015-01-01

    Full Text Available This paper is focused on the probability modeling with a range of distribution models over two inland river basins in China, together with the estimations of return levels on various return periods. Both annual and seasonal maximum precipitations (MP are investigated based on daily precipitation data at 13 stations from 1960 to 2010 in Heihe River and Shiyang River basins. Results show that GEV, Burr, and Weibull distributions provide the best fit to both annual and seasonal MP. Exponential and Pareto 2 distributions show the worst fit. The estimated return levels for spring MP show decreasing trends from the upper to the middle and then to the lower reaches totally speaking. Summer MP approximates to annual MP both in the quantity and in the spatial distributions. Autumn MP shows a little higher value in the estimated return levels than Spring MP, while keeping consistent with spring MP in the spatial distribution. It is also found that the estimated return levels for annual MP derived from various distributions differ by 22%, 36%, and 53% on average at 20-year, 50-year, and 100-year return periods, respectively.

  2. Bayesian network models for error detection in radiotherapy plans

    International Nuclear Information System (INIS)

    Kalet, Alan M; Ford, Eric C; Phillips, Mark H; Gennari, John H

    2015-01-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures. (paper)

  3. A Mechanistic Beta-Binomial Probability Model for mRNA Sequencing Data.

    Science.gov (United States)

    Smith, Gregory R; Birtwistle, Marc R

    2016-01-01

    A main application for mRNA sequencing (mRNAseq) is determining lists of differentially-expressed genes (DEGs) between two or more conditions. Several software packages exist to produce DEGs from mRNAseq data, but they typically yield different DEGs, sometimes markedly so. The underlying probability model used to describe mRNAseq data is central to deriving DEGs, and not surprisingly most softwares use different models and assumptions to analyze mRNAseq data. Here, we propose a mechanistic justification to model mRNAseq as a binomial process, with data from technical replicates given by a binomial distribution, and data from biological replicates well-described by a beta-binomial distribution. We demonstrate good agreement of this model with two large datasets. We show that an emergent feature of the beta-binomial distribution, given parameter regimes typical for mRNAseq experiments, is the well-known quadratic polynomial scaling of variance with the mean. The so-called dispersion parameter controls this scaling, and our analysis suggests that the dispersion parameter is a continually decreasing function of the mean, as opposed to current approaches that impose an asymptotic value to the dispersion parameter at moderate mean read counts. We show how this leads to current approaches overestimating variance for moderately to highly expressed genes, which inflates false negative rates. Describing mRNAseq data with a beta-binomial distribution thus may be preferred since its parameters are relatable to the mechanistic underpinnings of the technique and may improve the consistency of DEG analysis across softwares, particularly for moderately to highly expressed genes.

  4. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  5. Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yonglong Yan

    2014-05-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.

  6. Ruin probability with claims modeled by a stationary ergodic stable process

    NARCIS (Netherlands)

    Mikosch, T.; Samorodnitsky, G.

    2000-01-01

    For a random walk with negative drift we study the exceedance probability (ruin probability) of a high threshold. The steps of this walk (claim sizes) constitute a stationary ergodic stable process. We study how ruin occurs in this situation and evaluate the asymptotic behavior of the ruin

  7. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  8. Investigating the Differences of Single-Vehicle and Multivehicle Accident Probability Using Mixed Logit Model

    Directory of Open Access Journals (Sweden)

    Bowen Dong

    2018-01-01

    Full Text Available Road traffic accidents are believed to be associated with not only road geometric feature and traffic characteristic, but also weather condition. To address these safety issues, it is of paramount importance to understand how these factors affect the occurrences of the crashes. Existing studies have suggested that the mechanisms of single-vehicle (SV accidents and multivehicle (MV accidents can be very different. Few studies were conducted to examine the difference of SV and MV accident probability by addressing unobserved heterogeneity at the same time. To investigate the different contributing factors on SV and MV, a mixed logit model is employed using disaggregated data with the response variable categorized as no accidents, SV accidents, and MV accidents. The results indicate that, in addition to speed gap, length of segment, and wet road surfaces which are significant for both SV and MV accidents, most of other variables are significant only for MV accidents. Traffic, road, and surface characteristics are main influence factors of SV and MV accident possibility. Hourly traffic volume, inside shoulder width, and wet road surface are found to produce statistically significant random parameters. Their effects on the possibility of SV and MV accident vary across different road segments.

  9. Interval forecasting of cyberattack intensity on informatization objects of industry using probability cluster model

    Science.gov (United States)

    Krakovsky, Y. M.; Luzgin, A. N.; Mikhailova, E. A.

    2018-05-01

    At present, cyber-security issues associated with the informatization objects of industry occupy one of the key niches in the state management system. As a result of functional disruption of these systems via cyberattacks, an emergency may arise related to loss of life, environmental disasters, major financial and economic damage, or disrupted activities of cities and settlements. When cyberattacks occur with high intensity, in these conditions there is the need to develop protection against them, based on machine learning methods. This paper examines interval forecasting and presents results with a pre-set intensity level. The interval forecasting is carried out based on a probabilistic cluster model. This method involves forecasting of one of the two predetermined intervals in which a future value of the indicator will be located; probability estimates are used for this purpose. A dividing bound of these intervals is determined by a calculation method based on statistical characteristics of the indicator. Source data are used that includes a number of hourly cyberattacks using a honeypot from March to September 2013.

  10. A Novel Adaptive Conditional Probability-Based Predicting Model for User’s Personality Traits

    Directory of Open Access Journals (Sweden)

    Mengmeng Wang

    2015-01-01

    Full Text Available With the pervasive increase in social media use, the explosion of users’ generated data provides a potentially very rich source of information, which plays an important role in helping online researchers understand user’s behaviors deeply. Since user’s personality traits are the driving force of user’s behaviors, hence, in this paper, along with social network features, we first extract linguistic features, emotional statistical features, and topic features from user’s Facebook status updates, followed by quantifying importance of features via Kendall correlation coefficient. And then, on the basis of weighted features and dynamic updated thresholds of personality traits, we deploy a novel adaptive conditional probability-based predicting model which considers prior knowledge of correlations between user’s personality traits to predict user’s Big Five personality traits. In the experimental work, we explore the existence of correlations between user’s personality traits which provides a better theoretical support for our proposed method. Moreover, on the same Facebook dataset, compared to other methods, our method can achieve an F1-measure of 80.6% when taking into account correlations between user’s personality traits, and there is an impressive improvement of 5.8% over other approaches.

  11. Methane emission through ebullition from an estuarine mudflat: 2. Field observations and modeling of occurrence probability

    Science.gov (United States)

    Chen, Xi; Schäfer, Karina V. R.; Slater, Lee

    2017-08-01

    Ebullition can transport methane (CH4) at a much faster rate than other pathways, albeit over limited time and area, in wetland soils and sediments. However, field observations present large uncertainties in ebullition occurrences and statistic models are needed to describe the function relationship between probability of ebullition occurrence and water level changes. A flow-through chamber was designed and installed in a mudflat of an estuarine temperate marsh. Episodic increases in CH4 concentration signaling ebullition events were observed during ebbing tides (15 events over 456 ebbing tides) and occasionally during flooding tides (4 events over 455 flooding tides). Ebullition occurrence functions were defined using logistic regression as the relative initial and end water levels, as well as tidal amplitudes were found to be the key functional variables related to ebullition events. Ebullition of methane was restricted by a surface frozen layer during winter; melting of this layer during spring thaw caused increases in CH4 concentration, with ebullition fluxes similar to those associated with large fluctuations in water level around spring tides. Our findings suggest that initial and end relative water levels, in addition to tidal amplitude, partly regulate ebullition events in tidal wetlands, modulated by the lunar cycle, storage of gas bubbles at different depths and seasonal changes in the surface frozen layer. Maximum tidal strength over a few days, rather than hourly water level, may be more closely associated with the possibility of ebullition occurrence as it represents a trade-off time scale in between hourly and lunar periods.

  12. Interpretations of probability

    CERN Document Server

    Khrennikov, Andrei

    2009-01-01

    This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.

  13. Probability of Detection (POD) Analysis for the Advanced Retirement for Cause (RFC)/Engine Structural Integrity Program (ENSIP) Nondestructive Evaluation (NDE) System-Volume 3: Material Correlation Study

    National Research Council Canada - National Science Library

    Berens, Alan

    2000-01-01

    .... Volume 1 presents a description of changes made to the probability of detection (POD) analysis program of Mil-STD-1823 and the statistical evaluation of modifications that were made to version 3 of the Eddy Current Inspection System (ECIS v3...

  14. Comparing a recursive digital filter with the moving-average and sequential probability-ratio detection methods for SNM portal monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1993-01-01

    The author compared a recursive digital filter proposed as a detection method for French special nuclear material monitors with the author's detection methods, which employ a moving-average scaler or a sequential probability-ratio test. Each of these nine test subjects repeatedly carried a test source through a walk-through portal monitor that had the same nuisance-alarm rate with each method. He found that the average detection probability for the test source is also the same for each method. However, the recursive digital filter may have on drawback: its exponentially decreasing response to past radiation intensity prolongs the impact of any interference from radiation sources of radiation-producing machinery. He also examined the influence of each test subject on the monitor's operation by measuring individual attenuation factors for background and source radiation, then ranked the subjects' attenuation factors against their individual probabilities for detecting the test source. The one inconsistent ranking was probably caused by that subject's unusually long stride when passing through the portal

  15. Development of a new model to evaluate the probability of automatic plant trips for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshio [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Kawai, Katsunori; Suzuki, Hiroshi [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2001-09-01

    In order to improve the reliability of plant operations for pressurized water reactors, a new fault tree model was developed to evaluate the probability of automatic plant trips. This model consists of fault trees for sixteen systems. It has the following features: (1) human errors and transmission line incidents are modeled by the existing data, (2) the repair of failed components is considered to calculate the failure probability of components, (3) uncertainty analysis is performed by an exact method. From the present results, it is confirmed that the obtained upper and lower bound values of the automatic plant trip probability are within the existing data bound in Japan. Thereby this model can be applicable to the prediction of plant performance and reliability. (author)

  16. Quantitative non-monotonic modeling of economic uncertainty by probability and possibility distributions

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans

    2012-01-01

    uncertainty can be calculated. The possibility approach is particular well suited for representation of uncertainty of a non-statistical nature due to lack of knowledge and requires less information than the probability approach. Based on the kind of uncertainty and knowledge present, these aspects...... to the understanding of similarities and differences of the two approaches as well as practical applications. The probability approach offers a good framework for representation of randomness and variability. Once the probability distributions of uncertain parameters and their correlations are known the resulting...... are thoroughly discussed in the case of rectangular representation of uncertainty by the uniform probability distribution and the interval, respectively. Also triangular representations are dealt with and compared. Calculation of monotonic as well as non-monotonic functions of variables represented...

  17. Path Loss, Shadow Fading, and Line-Of-Sight Probability Models for 5G Urban Macro-Cellular Scenarios

    DEFF Research Database (Denmark)

    Sun, Shu; Thomas, Timothy; Rappaport, Theodore S.

    2015-01-01

    This paper presents key parameters including the line-of-sight (LOS) probability, large-scale path loss, and shadow fading models for the design of future fifth generation (5G) wireless communication systems in urban macro-cellular (UMa) scenarios, using the data obtained from propagation...... measurements in Austin, US, and Aalborg, Denmark, at 2, 10, 18, and 38 GHz. A comparison of different LOS probability models is performed for the Aalborg environment. Both single-slope and dual-slope omnidirectional path loss models are investigated to analyze and contrast their root-mean-square (RMS) errors...

  18. Modelling of oil spill frequency, leak sources and contamination probability in the Caspian Sea using multi-temporal SAR images 2006–2010 and stochastic modelling

    Directory of Open Access Journals (Sweden)

    Emil Bayramov

    2016-05-01

    Full Text Available The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution images acquired during 2006–2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2–10 (3471.04 sq km, 11–20 (971.66 sq km, 21–50 (692.44 sq km, 51–128 (191.38 sq km. The most critical oil leak sources with the frequency range of 41–128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  19. Modeling the probability distribution of positional errors incurred by residential address geocoding

    Directory of Open Access Journals (Sweden)

    Mazumdar Soumya

    2007-01-01

    Full Text Available Abstract Background The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Results Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m than 100%-matched automated geocoding (median error length = 168 m. The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Conclusion Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  20. The probability of malignancy in small pulmonary nodules coexisting with potentially operable lung cancer detected by CT

    International Nuclear Information System (INIS)

    Yuan, Yue; Matsumoto, Tsuneo; Hiyama, Atsuto; Miura, Goji; Tanaka, Nobuyuki; Emoto, Takuya; Kawamura, Takeo; Matsunaga, Naofumi

    2003-01-01

    The aim of this study was to assess the probability of malignancy in one or two small nodules 1 cm or less coexisting with potentially operable lung cancer (coexisting small nodules). The preoperative helical CT scans of 223 patients with lung cancer were retrospectively reviewed. The probability of malignancy of coexisting small nodules was evaluated based on nodule size, location, and clinical stage of the primary lung cancers. Seventy-one coexisting small nodules were found on conventional CT in 58 (26%) of 223 patients, and 14 (6%) patients had malignant nodules. Eighteen (25%) of such nodules were malignant. The probability of malignancy was not significantly different between two groups of nodules larger and smaller than 0.5 cm (p=0.1). The probability of malignancy of such nodules within primary tumor lobe was significantly higher than that in the other lobes (p<0.01). Metastatic nodules were significantly fewer in clinical stage-IA patients than in the patients with the other stage (p<0.01); however, four (57%) of seven synchronous lung cancers were located in the non-primary tumor lobes in the clinical stage-I patients. Malignant coexisting small nodules are not infrequent, and such nodules in the non-primary tumor lobes should be carefully diagnosed. (orig.)

  1. Modeling spatial variability of sand-lenses in clay till settings using transition probability and multiple-point geostatistics

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Nilsson, Bertel; Klint, Knud Erik

    2010-01-01

    (TPROGS) of alternating geological facies. The second method, multiple-point statistics, uses training images to estimate the conditional probability of sand-lenses at a certain location. Both methods respect field observations such as local stratigraphy, however, only the multiple-point statistics can...... of sand-lenses in clay till. Sand-lenses mainly account for horizontal transport and are prioritised in this study. Based on field observations, the distribution has been modeled using two different geostatistical approaches. One method uses a Markov chain model calculating the transition probabilities...

  2. Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

    Directory of Open Access Journals (Sweden)

    Katherine M O'Donnell

    Full Text Available Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling, while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling. By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and

  3. Model-Based Calculations of the Probability of a Country's Nuclear Proliferation Decisions

    International Nuclear Information System (INIS)

    Li, Jun; Yim, Man-Sung; McNelis, David N.

    2007-01-01

    The first nuclear weapon was detonated in August 1945 over Japan to end World War II. During the past six decades, the majority of the world's countries have abstained from acquiring nuclear weapons. However, a number of countries have explored the nuclear weapons option, 23 in all. Among them, 14 countries have dropped their interest in nuclear weapons after initiating some efforts. And nine of them today possess nuclear weapons. These countries include the five nuclear weapons states - U.S., Russia, U.K., France, and China - and the four non- NPT member states - Israel, India, Pakistan, and North Korea. Many of these countries initially used civilian nuclear power technology development as a basis or cover for their military program. Recent proliferation incidents in Iraq, Iran, and North Korea brought the world together to pay much attention to nuclear nonproliferation. With the expected surge in the use of nuclear energy for power generation by developing countries, the world's nuclear nonproliferation regime needs to be better prepared for potential future challenges. For the world's nuclear nonproliferation regime to effectively cope with any future proliferation attempts, early detection of potentially proliferation-related activities is highly desirable. Early detection allows the international community to respond and take necessary actions - ideally using political and diplomatic influences without resorting to harsh measures such as sanctions or military actions. In this regard, a capability to quantitatively predict the chance of a country's nuclear proliferation intent or activities is of significant interest. There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. These efforts have shown that information about the political issues surrounding a country's security along with economic development data can be useful to

  4. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    National Research Council Canada - National Science Library

    Taboada, Fernando

    2002-01-01

    ... intercept devices such as radar warning, electronic support and electronic intelligence receivers, In order to detect LPI radar waveforms new signal processing techniques are required This thesis first...

  5. Delay or probability discounting in a model of impulsive behavior: effect of alcohol.

    Science.gov (United States)

    Richards, J B; Zhang, L; Mitchell, S H; de Wit, H

    1999-01-01

    Little is known about the acute effects of drugs of abuse on impulsivity and self-control. In this study, impulsivity was assessed in humans using a computer task that measured delay and probability discounting. Discounting describes how much the value of a reward (or punisher) is decreased when its occurrence is either delayed or uncertain. Twenty-four healthy adult volunteers ingested a moderate dose of ethanol (0.5 or 0.8 g/kg ethanol: n = 12 at each dose) or placebo before completing the discounting task. In the task the participants were given a series of choices between a small, immediate, certain amount of money and $10 that was either delayed (0, 2, 30, 180, or 365 days) or probabilistic (i.e., certainty of receipt was 1.0, .9, .75, .5, or .25). The point at which each individual was indifferent between the smaller immediate or certain reward and the $10 delayed or probabilistic reward was identified using an adjusting-amount procedure. The results indicated that (a) delay and probability discounting were well described by a hyperbolic function; (b) delay and probability discounting were positively correlated within subjects; (c) delay and probability discounting were moderately correlated with personality measures of impulsivity; and (d) alcohol had no effect on discounting. PMID:10220927

  6. Modelling the impact of creep on the probability of failure of a solid oxidefuel cell stack

    DEFF Research Database (Denmark)

    Greco, Fabio; Frandsen, Henrik Lund; Nakajo, Arata

    2014-01-01

    In solid oxide fuel cell (SOFC) technology a major challenge lies in balancing thermal stresses from an inevitable thermal field. The cells are known to creep, changing over time the stress field. The main objective of this study was to assess the influence of creep on the failure probability of ...

  7. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    Directory of Open Access Journals (Sweden)

    Kiwako S Araki

    Full Text Available In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals. We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers. We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms

  8. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    Science.gov (United States)

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for

  9. Developing a Mathematical Model for Scheduling and Determining Success Probability of Research Projects Considering Complex-Fuzzy Networks

    Directory of Open Access Journals (Sweden)

    Gholamreza Norouzi

    2015-01-01

    Full Text Available In project management context, time management is one of the most important factors affecting project success. This paper proposes a new method to solve research project scheduling problems (RPSP containing Fuzzy Graphical Evaluation and Review Technique (FGERT networks. Through the deliverables of this method, a proper estimation of project completion time (PCT and success probability can be achieved. So algorithms were developed to cover all features of the problem based on three main parameters “duration, occurrence probability, and success probability.” These developed algorithms were known as PR-FGERT (Parallel and Reversible-Fuzzy GERT networks. The main provided framework includes simplifying the network of project and taking regular steps to determine PCT and success probability. Simplifications include (1 equivalent making of parallel and series branches in fuzzy network considering the concepts of probabilistic nodes, (2 equivalent making of delay or reversible-to-itself branches and impact of changing the parameters of time and probability based on removing related branches, (3 equivalent making of simple and complex loops, and (4 an algorithm that was provided to resolve no-loop fuzzy network, after equivalent making. Finally, the performance of models was compared with existing methods. The results showed proper and real performance of models in comparison with existing methods.

  10. A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models

    International Nuclear Information System (INIS)

    Echard, B.; Gayton, N.; Lemaire, M.; Relun, N.

    2013-01-01

    Applying reliability methods to a complex structure is often delicate for two main reasons. First, such a structure is fortunately designed with codified rules leading to a large safety margin which means that failure is a small probability event. Such a probability level is difficult to assess efficiently. Second, the structure mechanical behaviour is modelled numerically in an attempt to reproduce the real response and numerical model tends to be more and more time-demanding as its complexity is increased to improve accuracy and to consider particular mechanical behaviour. As a consequence, performing a large number of model computations cannot be considered in order to assess the failure probability. To overcome these issues, this paper proposes an original and easily implementable method called AK-IS for active learning and Kriging-based Importance Sampling. This new method is based on the AK-MCS algorithm previously published by Echard et al. [AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Structural Safety 2011;33(2):145–54]. It associates the Kriging metamodel and its advantageous stochastic property with the Importance Sampling method to assess small failure probabilities. It enables the correction or validation of the FORM approximation with only a very few mechanical model computations. The efficiency of the method is, first, proved on two academic applications. It is then conducted for assessing the reliability of a challenging aerospace case study submitted to fatigue.

  11. Probability model of solid to liquid-like transition of a fluid suspension after a shear flow onset

    Czech Academy of Sciences Publication Activity Database

    Nouar, C.; Říha, Pavel

    2008-01-01

    Roč. 34, č. 5 (2008), s. 477-483 ISSN 0301-9322 R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : laminar suspension flow * liquid-liquid interface * probability model Subject RIV: BK - Fluid Dynamics Impact factor: 1.497, year: 2008

  12. Optimal selection for BRCA1 and BRCA2 mutation testing using a combination of ' easy to apply ' probability models

    NARCIS (Netherlands)

    Bodmer, D.; Ligtenberg, M. J. L.; van der Hout, A. H.; Gloudemans, S.; Ansink, K.; Oosterwijk, J. C.; Hoogerbrugge, N.

    2006-01-01

    To establish an efficient, reliable and easy to apply risk assessment tool to select families with breast and/or ovarian cancer patients for BRCA mutation testing, using available probability models. In a retrospective study of 263 families with breast and/or ovarian cancer patients, the utility of

  13. Conceptual and Statistical Issues Regarding the Probability of Default and Modeling Default Risk

    Directory of Open Access Journals (Sweden)

    Emilia TITAN

    2011-03-01

    Full Text Available In today’s rapidly evolving financial markets, risk management offers different techniques in order to implement an efficient system against market risk. Probability of default (PD is an essential part of business intelligence and customer relation management systems in the financial institutions. Recent studies indicates that underestimating this important component, and also the loss given default (LGD, might threaten the stability and smooth running of the financial markets. From the perspective of risk management, the result of predictive accuracy of the estimated probability of default is more valuable than the standard binary classification: credible or non credible clients. The Basle II Accord recognizes the methods of reducing credit risk and also PD and LGD as important components of advanced Internal Rating Based (IRB approach.

  14. Generalized Probability-Probability Plots

    NARCIS (Netherlands)

    Mushkudiani, N.A.; Einmahl, J.H.J.

    2004-01-01

    We introduce generalized Probability-Probability (P-P) plots in order to study the one-sample goodness-of-fit problem and the two-sample problem, for real valued data.These plots, that are constructed by indexing with the class of closed intervals, globally preserve the properties of classical P-P

  15. Determination of probability density functions for parameters in the Munson-Dawson model for creep behavior of salt

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Mellegard, K.D.; Munson, D.E.

    1992-10-01

    The modified Munson-Dawson (M-D) constitutive model that describes the creep behavior of salt will be used in performance assessment calculations to assess compliance of the Waste Isolation Pilot Plant (WIPP) facility with requirements governing the disposal of nuclear waste. One of these standards requires that the uncertainty of future states of the system, material model parameters, and data be addressed in the performance assessment models. This paper presents a method in which measurement uncertainty and the inherent variability of the material are characterized by treating the M-D model parameters as random variables. The random variables can be described by appropriate probability distribution functions which then can be used in Monte Carlo or structural reliability analyses. Estimates of three random variables in the M-D model were obtained by fitting a scalar form of the model to triaxial compression creep data generated from tests of WIPP salt. Candidate probability distribution functions for each of the variables were then fitted to the estimates and their relative goodness-of-fit tested using the Kolmogorov-Smirnov statistic. A sophisticated statistical software package obtained from BMDP Statistical Software, Inc. was used in the M-D model fitting. A separate software package, STATGRAPHICS, was used in fitting the candidate probability distribution functions to estimates of the variables. Skewed distributions, i.e., lognormal and Weibull, were found to be appropriate for the random variables analyzed

  16. Probability, Nondeterminism and Concurrency

    DEFF Research Database (Denmark)

    Varacca, Daniele

    Nondeterminism is modelled in domain theory by the notion of a powerdomain, while probability is modelled by that of the probabilistic powerdomain. Some problems arise when we want to combine them in order to model computation in which both nondeterminism and probability are present. In particula...

  17. Probability-1

    CERN Document Server

    Shiryaev, Albert N

    2016-01-01

    This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.

  18. Ignition Probability

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...

  19. Probability of bystander effect induced by alpha-particles emitted by radon progeny using the analytical model of tracheobronchial tree

    International Nuclear Information System (INIS)

    Jovanovic, B.; Nikezic, D.

    2010-01-01

    Radiation-induced biological bystander effects have become a phenomenon associated with the interaction of radiation with cells. There is a need to include the influence of biological effects in the dosimetry of the human lung. With this aim, the purpose of this work is to calculate the probability of bystander effect induced by alpha-particle radiation on sensitive cells of the human lung. Probability was calculated by applying the analytical model cylinder bifurcation, which was created to simulate the geometry of the human lung with the geometric distribution of cell nuclei in the airway wall of the tracheobronchial tree. This analytical model of the human tracheobronchial tree represents the extension of the ICRP 66 model, and follows it as much as possible. Reported probabilities are calculated for various targets and alpha-particle energies. Probability of bystander effect has been calculated for alpha particles with 6 and 7.69 MeV energies, which are emitted in the 222 Rn chain. The application of these results may enhance current dose risk estimation approaches in the sense of the inclusion of the influence of the biological effects. (authors)

  20. Effective and efficient model clone detection

    DEFF Research Database (Denmark)

    Störrle, Harald

    2015-01-01

    Code clones are a major source of software defects. Thus, it is likely that model clones (i.e., duplicate fragments of models) have a significant negative impact on model quality, and thus, on any software created based on those models, irrespective of whether the software is generated fully...... automatically (“MDD-style”) or hand-crafted following the blueprint defined by the model (“MBSD-style”). Unfortunately, however, model clones are much less well studied than code clones. In this paper, we present a clone detection algorithm for UML domain models. Our approach covers a much greater variety...... of model types than existing approaches while providing high clone detection rates at high speed....

  1. Development of a methodology for probable maximum precipitation estimation over the American River watershed using the WRF model

    Science.gov (United States)

    Tan, Elcin

    A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the

  2. Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows

    Science.gov (United States)

    Haberlandt, U.; Radtke, I.

    2014-01-01

    Derived flood frequency analysis allows the estimation of design floods with hydrological modeling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices regarding precipitation input, discharge output and consequently the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets and to propose the most suitable approach. Event based and continuous, observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output, short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in northern Germany with the hydrological model HEC-HMS (Hydrologic Engineering Center's Hydrologic Modeling System). The results show that (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, and (III) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the

  3. The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution.

    Science.gov (United States)

    Li, Ning; Liu, Xueqin; Xie, Wei; Wu, Jidong; Zhang, Peng

    2013-01-01

    New features of natural disasters have been observed over the last several years. The factors that influence the disasters' formation mechanisms, regularity of occurrence and main characteristics have been revealed to be more complicated and diverse in nature than previously thought. As the uncertainty involved increases, the variables need to be examined further. This article discusses the importance and the shortage of multivariate analysis of natural disasters and presents a method to estimate the joint probability of the return periods and perform a risk analysis. Severe dust storms from 1990 to 2008 in Inner Mongolia were used as a case study to test this new methodology, as they are normal and recurring climatic phenomena on Earth. Based on the 79 investigated events and according to the dust storm definition with bivariate, the joint probability distribution of severe dust storms was established using the observed data of maximum wind speed and duration. The joint return periods of severe dust storms were calculated, and the relevant risk was analyzed according to the joint probability. The copula function is able to simulate severe dust storm disasters accurately. The joint return periods generated are closer to those observed in reality than the univariate return periods and thus have more value in severe dust storm disaster mitigation, strategy making, program design, and improvement of risk management. This research may prove useful in risk-based decision making. The exploration of multivariate analysis methods can also lay the foundation for further applications in natural disaster risk analysis. © 2012 Society for Risk Analysis.

  4. Grading the probabilities of credit default risk for Malaysian listed companies by using the KMV-Merton model

    Science.gov (United States)

    Anuwar, Muhammad Hafidz; Jaffar, Maheran Mohd

    2017-08-01

    This paper provides an overview for the assessment of credit risk specific to the banks. In finance, risk is a term to reflect the potential of financial loss. The risk of default on loan may increase when a company does not make a payment on that loan when the time comes. Hence, this framework analyses the KMV-Merton model to estimate the probabilities of default for Malaysian listed companies. In this way, banks can verify the ability of companies to meet their loan commitments in order to overcome bad investments and financial losses. This model has been applied to all Malaysian listed companies in Bursa Malaysia for estimating the credit default probabilities of companies and compare with the rating given by the rating agency, which is RAM Holdings Berhad to conform to reality. Then, the significance of this study is a credit risk grade is proposed by using the KMV-Merton model for the Malaysian listed companies.

  5. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    International Nuclear Information System (INIS)

    Adamovich, Igor V.

    2014-01-01

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

  6. Estimating site occupancy and detection probabilities for cooper's and sharp-shinned hawks in the Southern Sierra Nevada

    Science.gov (United States)

    Jennifer E. Carlson; Douglas D. Piirto; John J. Keane; Samantha J. Gill

    2015-01-01

    Long-term monitoring programs that can detect a population change over time can be useful for managers interested in assessing population trends in response to forest management activities for a particular species. Such long-term monitoring programs have been designed for the Northern Goshawk (Accipiter gentilis), but not for the more elusive Sharp...

  7. a Probability Model for Drought Prediction Using Fusion of Markov Chain and SAX Methods

    Science.gov (United States)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Drought is one of the most powerful natural disasters which are affected on different aspects of the environment. Most of the time this phenomenon is immense in the arid and semi-arid area. Monitoring and prediction the severity of the drought can be useful in the management of the natural disaster caused by drought. Many indices were used in predicting droughts such as SPI, VCI, and TVX. In this paper, based on three data sets (rainfall, NDVI, and land surface temperature) which are acquired from MODIS satellite imagery, time series of SPI, VCI, and TVX in time limited between winters 2000 to summer 2015 for the east region of Isfahan province were created. Using these indices and fusion of symbolic aggregation approximation and hidden Markov chain drought was predicted for fall 2015. For this purpose, at first, each time series was transformed into the set of quality data based on the state of drought (5 group) by using SAX algorithm then the probability matrix for the future state was created by using Markov hidden chain. The fall drought severity was predicted by fusion the probability matrix and state of drought severity in summer 2015. The prediction based on the likelihood for each state of drought includes severe drought, middle drought, normal drought, severe wet and middle wet. The analysis and experimental result from proposed algorithm show that the product of this algorithm is acceptable and the proposed algorithm is appropriate and efficient for predicting drought using remote sensor data.

  8. Quantum Probabilities as Behavioral Probabilities

    Directory of Open Access Journals (Sweden)

    Vyacheslav I. Yukalov

    2017-03-01

    Full Text Available We demonstrate that behavioral probabilities of human decision makers share many common features with quantum probabilities. This does not imply that humans are some quantum objects, but just shows that the mathematics of quantum theory is applicable to the description of human decision making. The applicability of quantum rules for describing decision making is connected with the nontrivial process of making decisions in the case of composite prospects under uncertainty. Such a process involves deliberations of a decision maker when making a choice. In addition to the evaluation of the utilities of considered prospects, real decision makers also appreciate their respective attractiveness. Therefore, human choice is not based solely on the utility of prospects, but includes the necessity of resolving the utility-attraction duality. In order to justify that human consciousness really functions similarly to the rules of quantum theory, we develop an approach defining human behavioral probabilities as the probabilities determined by quantum rules. We show that quantum behavioral probabilities of humans do not merely explain qualitatively how human decisions are made, but they predict quantitative values of the behavioral probabilities. Analyzing a large set of empirical data, we find good quantitative agreement between theoretical predictions and observed experimental data.

  9. Risk Probabilities

    DEFF Research Database (Denmark)

    Rojas-Nandayapa, Leonardo

    Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... analytic expression for the distribution function of a sum of random variables. The presence of heavy-tailed random variables complicates the problem even more. The objective of this dissertation is to provide better approximations by means of sharp asymptotic expressions and Monte Carlo estimators...

  10. Probabilistic sensitivity analysis on Markov models with uncertain transition probabilities: an application in evaluating treatment decisions for type 2 diabetes.

    Science.gov (United States)

    Zhang, Yuanhui; Wu, Haipeng; Denton, Brian T; Wilson, James R; Lobo, Jennifer M

    2017-10-27

    Markov models are commonly used for decision-making studies in many application domains; however, there are no widely adopted methods for performing sensitivity analysis on such models with uncertain transition probability matrices (TPMs). This article describes two simulation-based approaches for conducting probabilistic sensitivity analysis on a given discrete-time, finite-horizon, finite-state Markov model using TPMs that are sampled over a specified uncertainty set according to a relevant probability distribution. The first approach assumes no prior knowledge of the probability distribution, and each row of a TPM is independently sampled from the uniform distribution on the row's uncertainty set. The second approach involves random sampling from the (truncated) multivariate normal distribution of the TPM's maximum likelihood estimators for its rows subject to the condition that each row has nonnegative elements and sums to one. The two sampling methods are easily implemented and have reasonable computation times. A case study illustrates the application of these methods to a medical decision-making problem involving the evaluation of treatment guidelines for glycemic control of patients with type 2 diabetes, where natural variation in a patient's glycated hemoglobin (HbA1c) is modeled as a Markov chain, and the associated TPMs are subject to uncertainty.

  11. OL-DEC-MDP Model for Multiagent Online Scheduling with a Time-Dependent Probability of Success

    Directory of Open Access Journals (Sweden)

    Cheng Zhu

    2014-01-01

    Full Text Available Focusing on the on-line multiagent scheduling problem, this paper considers the time-dependent probability of success and processing duration and proposes an OL-DEC-MDP (opportunity loss-decentralized Markov Decision Processes model to include opportunity loss into scheduling decision to improve overall performance. The success probability of job processing as well as the process duration is dependent on the time at which the processing is started. The probability of completing the assigned job by an agent would be higher when the process is started earlier, but the opportunity loss could also be high due to the longer engaging duration. As a result, OL-DEC-MDP model introduces a reward function considering the opportunity loss, which is estimated based on the prediction of the upcoming jobs by a sampling method on the job arrival. Heuristic strategies are introduced in computing the best starting time for an incoming job by each agent, and an incoming job will always be scheduled to the agent with the highest reward among all agents with their best starting policies. The simulation experiments show that the OL-DEC-MDP model will improve the overall scheduling performance compared with models not considering opportunity loss in heavy-loading environment.

  12. Trackline and Point Detection Probabilities for Acoustic Surveys of Cuvier’s and Blainville’s Beaked Whales

    Science.gov (United States)

    2013-09-01

    of sperm whales. Although the methods developed in those papers demonstrate feasibility, they are not applicable to a)Author to whom correspondence...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...location clicks (Marques et al., 2009) instead of detecting individual animals or groups of animals; these cue- counting methods will not be specifically

  13. Toward a generalized probability theory: conditional probabilities

    International Nuclear Information System (INIS)

    Cassinelli, G.

    1979-01-01

    The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)

  14. An efficient background modeling approach based on vehicle detection

    Science.gov (United States)

    Wang, Jia-yan; Song, Li-mei; Xi, Jiang-tao; Guo, Qing-hua

    2015-10-01

    The existing Gaussian Mixture Model(GMM) which is widely used in vehicle detection suffers inefficiency in detecting foreground image during the model phase, because it needs quite a long time to blend the shadows in the background. In order to overcome this problem, an improved method is proposed in this paper. First of all, each frame is divided into several areas(A, B, C and D), Where area A, B, C and D are decided by the frequency and the scale of the vehicle access. For each area, different new learning rate including weight, mean and variance is applied to accelerate the elimination of shadows. At the same time, the measure of adaptive change for Gaussian distribution is taken to decrease the total number of distributions and save memory space effectively. With this method, different threshold value and different number of Gaussian distribution are adopted for different areas. The results show that the speed of learning and the accuracy of the model using our proposed algorithm surpass the traditional GMM. Probably to the 50th frame, interference with the vehicle has been eliminated basically, and the model number only 35% to 43% of the standard, the processing speed for every frame approximately has a 20% increase than the standard. The proposed algorithm has good performance in terms of elimination of shadow and processing speed for vehicle detection, it can promote the development of intelligent transportation, which is very meaningful to the other Background modeling methods.

  15. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    Science.gov (United States)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  16. A Model to Determinate the Influence of Probability Density Functions (PDFs of Input Quantities in Measurements

    Directory of Open Access Journals (Sweden)

    Jesús Caja

    2016-06-01

    Full Text Available A method for analysing the effect of different hypotheses about the type of the input quantities distributions of a measurement model is presented here so that the developed algorithms can be simplified. As an example, a model of indirect measurements with optical coordinate measurement machine was employed to evaluate these different hypotheses. As a result of the different experiments, the assumption that the different variables of the model can be modelled as normal distributions is proved.

  17. Uniform Estimate of the Finite-Time Ruin Probability for All Times in a Generalized Compound Renewal Risk Model

    Directory of Open Access Journals (Sweden)

    Qingwu Gao

    2012-01-01

    Full Text Available We discuss the uniformly asymptotic estimate of the finite-time ruin probability for all times in a generalized compound renewal risk model, where the interarrival times of successive accidents and all the claim sizes caused by an accident are two sequences of random variables following a wide dependence structure. This wide dependence structure allows random variables to be either negatively dependent or positively dependent.

  18. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    Science.gov (United States)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations

  19. Outlier Detection in Structural Time Series Models

    DEFF Research Database (Denmark)

    Marczak, Martyna; Proietti, Tommaso

    investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general......–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we...

  20. Setting Performance Objectives for Radiation Detection Systems in Homeland Security Applications - Economic Models

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Bredt, Ofelia P.; Heasler, Patrick G.; Reichmuth, Barbara A.; Milazzo, Matthew D.

    2005-01-01

    This paper develops simple frameworks for cost minimization of detector systems by trading off the costs of failed detection against the social costs of false alarms. A workable system must have a high degree of certainty in detecting real threats and yet impose low social costs. The models developed here use standard measures of detector performance and derive target detection probabilities and false-alarm tolerance specifications as functions of detector performance, threat traffic densities, and estimated costs

  1. Setting Performance Objectives for Radiation Detection Systems in Homeland Security Applications - Economic Models

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Bredt, Ofelia P.; Heasler, Patrick G.; Reichmuth, Barbara A.; Milazzo, Matthew D.

    2005-04-28

    This paper develops simple frameworks for cost minimization of detector systems by trading off the costs of failed detection against the social costs of false alarms. A workable system must have a high degree of certainty in detecting real threats and yet impose low social costs. The models developed here use standard measures of detector performance and derive target detection probabilities and false-alarm tolerance specifications as functions of detector performance, threat traffic densities, and estimated costs.

  2. Dynamic N -occupancy models: estimating demographic rates and local abundance from detection-nondetection data

    Science.gov (United States)

    Sam Rossman; Charles B. Yackulic; Sarah P. Saunders; Janice Reid; Ray Davis; Elise F. Zipkin

    2016-01-01

    Occupancy modeling is a widely used analytical technique for assessing species distributions and range dynamics. However, occupancy analyses frequently ignore variation in abundance of occupied sites, even though site abundances affect many of the parameters being estimated (e.g., extinction, colonization, detection probability). We introduce a new model (“dynamic

  3. Numerical modelling of local deposition patients, activity distributions and cellular hit probabilities of inhaled radon progenies in human airways

    International Nuclear Information System (INIS)

    Farkas, A.; Balashazy, I.; Szoeke, I.

    2003-01-01

    The general objective of our research is modelling the biophysical processes of the effects of inhaled radon progenies. This effort is related to the rejection or support of the linear no threshold (LNT) dose-effect hypothesis, which seems to be one of the most challenging tasks of current radiation protection. Our approximation and results may also serve as a useful tool for lung cancer models. In this study, deposition patterns, activity distributions and alpha-hit probabilities of inhaled radon progenies in the large airways of the human tracheobronchial tree are computed. The airflow fields and related particle deposition patterns strongly depend on the shape of airway geometry and breathing pattern. Computed deposition patterns of attached an unattached radon progenies are strongly inhomogeneous creating hot spots at the carinal regions and downstream of the inner sides of the daughter airways. The results suggest that in the vicinity of the carinal regions the multiple hit probabilities are quite high even at low average doses and increase exponentially in the low-dose range. Thus, even the so-called low doses may present high doses for large clusters of cells. The cell transformation probabilities are much higher in these regions and this phenomenon cannot be modeled with average burdens. (authors)

  4. The correct estimate of the probability of false detection of the matched filter in weak-signal detection problems . II. Further results with application to a set of ALMA and ATCA data

    Science.gov (United States)

    Vio, R.; Vergès, C.; Andreani, P.

    2017-08-01

    The matched filter (MF) is one of the most popular and reliable techniques to the detect signals of known structure and amplitude smaller than the level of the contaminating noise. Under the assumption of stationary Gaussian noise, MF maximizes the probability of detection subject to a constant probability of false detection or false alarm (PFA). This property relies upon a priori knowledge of the position of the searched signals, which is usually not available. Recently, it has been shown that when applied in its standard form, MF may severely underestimate the PFA. As a consequence the statistical significance of features that belong to noise is overestimated and the resulting detections are actually spurious. For this reason, an alternative method of computing the PFA has been proposed that is based on the probability density function (PDF) of the peaks of an isotropic Gaussian random field. In this paper we further develop this method. In particular, we discuss the statistical meaning of the PFA and show that, although useful as a preliminary step in a detection procedure, it is not able to quantify the actual reliability of a specific detection. For this reason, a new quantity is introduced called the specific probability of false alarm (SPFA), which is able to carry out this computation. We show how this method works in targeted simulations and apply it to a few interferometric maps taken with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Australia Telescope Compact Array (ATCA). We select a few potential new point sources and assign an accurate detection reliability to these sources.

  5. Improved process for calculating the probability of being hit by crashing aircraft by the Balfanz-model

    International Nuclear Information System (INIS)

    Hennings, W.

    1988-01-01

    For calculating the probability of being hit by crashing military aircraft on different buildings, a model was introduced, which has already been used in the conventional fields. In the context of converting the research reactor BER II, this model was also used in the nuclear field. The report introduces this model and shows the application to a vertical cylinder as an example. Compared to the previous model, an exact and also simpler solution of the model attempt for determining the shade surface for different shapes of buildings is derived. The problems of the distribution of crashes given by the previous model is treated via the vertical angle and an attempt to solve these problems is given. (orig./HP) [de

  6. A Scan Statistic for Continuous Data Based on the Normal Probability Model

    OpenAIRE

    Konty, Kevin; Kulldorff, Martin; Huang, Lan

    2009-01-01

    Abstract Temporal, spatial and space-time scan statistics are commonly used to detect and evaluate the statistical significance of temporal and/or geographical disease clusters, without any prior assumptions on the location, time period or size of those clusters. Scan statistics are mostly used for count data, such as disease incidence or mortality. Sometimes there is an interest in looking for clusters with respect to a continuous variable, such as lead levels in children or low birth weight...

  7. Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling

    DEFF Research Database (Denmark)

    Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief

    2018-01-01

    by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded...

  8. Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network

    DEFF Research Database (Denmark)

    Postnov, Dmitry D; Marsh, Donald J; Postnov, Dmitry E

    2016-01-01

    CT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation...

  9. A comparison of the probability distribution of observed substorm magnitude with that predicted by a minimal substorm model

    Directory of Open Access Journals (Sweden)

    S. K. Morley

    2007-11-01

    Full Text Available We compare the probability distributions of substorm magnetic bay magnitudes from observations and a minimal substorm model. The observed distribution was derived previously and independently using the IL index from the IMAGE magnetometer network. The model distribution is derived from a synthetic AL index time series created using real solar wind data and a minimal substorm model, which was previously shown to reproduce observed substorm waiting times. There are two free parameters in the model which scale the contributions to AL from the directly-driven DP2 electrojet and loading-unloading DP1 electrojet, respectively. In a limited region of the 2-D parameter space of the model, the probability distribution of modelled substorm bay magnitudes is not significantly different to the observed distribution. The ranges of the two parameters giving acceptable (95% confidence level agreement are consistent with expectations using results from other studies. The approximately linear relationship between the two free parameters over these ranges implies that the substorm magnitude simply scales linearly with the solar wind power input at the time of substorm onset.

  10. Probability tales

    CERN Document Server

    Grinstead, Charles M; Snell, J Laurie

    2011-01-01

    This book explores four real-world topics through the lens of probability theory. It can be used to supplement a standard text in probability or statistics. Most elementary textbooks present the basic theory and then illustrate the ideas with some neatly packaged examples. Here the authors assume that the reader has seen, or is learning, the basic theory from another book and concentrate in some depth on the following topics: streaks, the stock market, lotteries, and fingerprints. This extended format allows the authors to present multiple approaches to problems and to pursue promising side discussions in ways that would not be possible in a book constrained to cover a fixed set of topics. To keep the main narrative accessible, the authors have placed the more technical mathematical details in appendices. The appendices can be understood by someone who has taken one or two semesters of calculus.

  11. A GRASS GIS Semi-Stochastic Model for Evaluating the Probability of Landslides Impacting Road Networks in Collazzone, Central Italy

    Science.gov (United States)

    Taylor, Faith E.; Santangelo, Michele; Marchesini, Ivan; Malamud, Bruce D.

    2013-04-01

    During a landslide triggering event, the tens to thousands of landslides resulting from the trigger (e.g., earthquake, heavy rainfall) may block a number of sections of the road network, posing a risk to rescue efforts, logistics and accessibility to a region. Here, we present initial results from a semi-stochastic model we are developing to evaluate the probability of landslides intersecting a road network and the network-accessibility implications of this across a region. This was performed in the open source GRASS GIS software, where we took 'model' landslides and dropped them on a 79 km2 test area region in Collazzone, Umbria, Central Italy, with a given road network (major and minor roads, 404 km in length) and already determined landslide susceptibilities. Landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power-law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL; the rollover (maximum probability) occurs at about AL = 400 m.2 The number of landslide areas selected for each triggered event iteration was chosen to have an average density of 1 landslide km-2, i.e. 79 landslide areas chosen randomly for each iteration. Landslides were then 'dropped' over the region semi-stochastically: (i) random points were generated across the study region; (ii) based on the landslide susceptibility map, points were accepted/rejected based on the probability of a landslide occurring at that location. After a point was accepted, it was assigned a landslide area (AL) and length to width ratio. Landslide intersections with roads were then assessed and indices such as the location, number and size of road blockage recorded. The GRASS-GIS model was performed 1000 times in a Monte-Carlo type simulation. Initial results show that for a landslide triggering event of 1 landslide km-2 over a 79 km2 region with 404 km of road, the number of road blockages

  12. Exit probability of the one-dimensional q-voter model: Analytical results and simulations for large networks

    Science.gov (United States)

    Timpanaro, André M.; Prado, Carmen P. C.

    2014-05-01

    We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.

  13. Analytical Model for the Probability Characteristics of a Crack Penetrating Capsules in Capsule-Based Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Zhong LV

    2017-08-01

    Full Text Available Autonomous crack healing using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of capsule-based self-healing materials. Continuing our previous study, in this contribution a more practical rupturing mode of capsules characterizing the rupturing manner of capsules fractured by cracks in cementitious materials is presented, i.e., penetrating mode. With the underlying assumption that a crack penetrating capsules undoubtedly leads to crack healing, geometrical probability theory is employed to develop the quantitative relationship between crack size and capsule size, capsule concentration in capsule-based self-healing virtual cementitious material. Moreover, an analytical expression of probability of a crack penetrating with randomly dispersed capsules is developed in two-dimensional material matrix setup. The influences of the induced rupturing modes of capsules embedded on the self-healing efficiency are analyzed. Much attention is paid to compare the penetrating probability and the hitting probability, in order to assist the designer to make a choice of the optimal rupturing modes of capsules embedded. The accuracy of results of the theoretical model is also compared with Monte-Carlo numerical analysis of crack interacting with capsules. It shows that the developed probability characteristics of a crack interaction with capsules for different rupturing modes is helpful to provide guidelines for designer working with capsule-based self-healing cementitious materials.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16888

  14. Probability theory

    CERN Document Server

    Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V

    1997-01-01

    This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.

  15. Diagnostic accuracy of the MMSE in detecting probable and possible Alzheimer's disease in ethnically diverse highly educated individuals: an analysis of the NACC database.

    Science.gov (United States)

    Spering, Cynthia C; Hobson, Valerie; Lucas, John A; Menon, Chloe V; Hall, James R; O'Bryant, Sid E

    2012-08-01

    To validate and extend the findings of a raised cut score of O'Bryant and colleagues (O'Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963-967.) for the Mini-Mental State Examination in detecting cognitive dysfunction in a bilingual sample of highly educated ethnically diverse individuals. Archival data were reviewed from participants enrolled in the National Alzheimer's Coordinating Center minimum data set. Data on 7,093 individuals with 16 or more years of education were analyzed, including 2,337 cases with probable and possible Alzheimer's disease, 1,418 mild cognitive impairment patients, and 3,088 nondemented controls. Ethnic composition was characterized as follows: 6,296 Caucasians, 581 African Americans, 4 American Indians or Alaska natives, 2 native Hawaiians or Pacific Islanders, 149 Asians, 43 "Other," and 18 of unknown origin. Diagnostic accuracy estimates (sensitivity, specificity, and likelihood ratio) of Mini-Mental State Examination cut scores in detecting probable and possible Alzheimer's disease were examined. A standard Mini-Mental State Examination cut score of 24 (≤23) yielded a sensitivity of 0.58 and a specificity of 0.98 in detecting probable and possible Alzheimer's disease across ethnicities. A cut score of 27 (≤26) resulted in an improved balance of sensitivity and specificity (0.79 and 0.90, respectively). In the cognitively impaired group (mild cognitive impairment and probable and possible Alzheimer's disease), the standard cut score yielded a sensitivity of 0.38 and a specificity of 1.00 while raising the cut score to 27 resulted in an improved balance of 0.59 and 0.96 of sensitivity and specificity, respectively. These findings cross-validate our previous work and extend them to an ethnically diverse cohort. A higher cut score is needed to maximize diagnostic accuracy of the Mini-Mental State Examination in individuals

  16. Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

    Science.gov (United States)

    O'Donnell, Katherine M; Thompson, Frank R; Semlitsch, Raymond D

    2015-01-01

    Detectability of individual animals is highly variable and nearly always binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.

  17. The influence of olfactory concept on the probability of detecting sub- and peri-threshold odorants in a complex mixture

    NARCIS (Netherlands)

    Bult, J.H.F.; Schifferstein, H.N.J.; Roozen, J.P.; Voragen, A.G.J.; Kroeze, J.H.A.

    2001-01-01

    The headspace of apple juice was analysed to obtain an ecologically relevant stimulus model mixture of apple volatiles. Two sets of volatiles were made up: a set of eight supra-threshold volatiles (MIX) and a set of three sub-threshold volatiles. These sets were used to test the hypothesis that

  18. Use of a field model to analyze probable fire environments encountered within the complex geometries of nuclear power plants

    International Nuclear Information System (INIS)

    Boccio, J.L.; Usher, J.L.; Singhal, A.K.; Tam, L.T.

    1985-08-01

    A fire in a nuclear power plant (NPP) can damage equipment needed to safely operate the plant and thereby either directly cause an accident or else reduce the plant's margin of safety. The development of a field-model fire code to analyze the probable fire environments encountered within NPP is discussed. A set of fire tests carried out under the aegis of the US Nuclear Regulatory Commission (NRC) is described. The results of these tests are then utilized to validate the field model

  19. A dynamic model of liquid containers (tanks) with legs and probability analysis of response to simulated earthquake

    International Nuclear Information System (INIS)

    Fujita, Takafumi; Shimosaka, Haruo

    1980-01-01

    This paper is described on the results of analysis of the response of liquid containers (tanks) to earthquakes. Sine wave oscillation was applied experimentally to model tanks with legs. A model with one degree of freedom is good enough for the analysis. To investigate the reason of this fact, the response multiplication factor of tank displacement was analysed. The shapes of the model tanks were rectangular and cylindrical. Analyses were made by a potential theory. The experimental studies show that the characteristics of attenuation of oscillation was non-linear. The model analysis of this non-linear attenuation was also performed. Good agreement between the experimental and the analytical results was recognized. The probability analysis of the response to earthquake with simulated shock waves was performed, using the above mentioned model, and good agreement between the experiment and the analysis was obtained. (Kato, T.)

  20. ISS Destiny Laboratory Smoke Detection Model

    Science.gov (United States)

    Brooker, John E.; Urban, David L.; Ruff, Gary A.

    2007-01-01

    Smoke transport and detection were modeled numerically in the ISS Destiny module using the NIST, Fire Dynamics Simulator code. The airflows in Destiny were modeled using the existing flow conditions and the module geometry included obstructions that simulate the currently installed hardware on orbit. The smoke source was modeled as a 0.152 by 0.152 m region that emitted smoke particulate ranging from 1.46 to 8.47 mg/s. In the module domain, the smoke source was placed in the center of each Destiny rack location and the model was run to determine the time required for the two smoke detectors to alarm. Overall the detection times were dominated by the circumferential flow, the axial flow from the intermodule ventilation and the smoke source strength.

  1. Building a Model Using Bayesian Network for Assessment of Posterior Probabilities of Falling From Height at Workplaces

    Directory of Open Access Journals (Sweden)

    Seyed Shamseddin Alizadeh

    2014-12-01

    Full Text Available Background: Falls from height are one of the main causes of fatal occupational injuries. The objective of this study was to present a model for estimating occurrence probability of falling from height. Methods: In order to make a list of factors affecting falls, we used four expert group's judgment, literature review and an available database. Then the validity and reliability of designed questionnaire were determined and Bayesian networks were built. The built network, nodes and curves were quantified. For network sensitivity analysis, four types of analysis carried out. Results: A Bayesian network for assessment of posterior probabilities of falling from height proposed. The presented Bayesian network model shows the interrelationships among 37 causes affecting the falling from height and can calculate its posterior probabilities. The most important factors affecting falling were Non-compliance with safety instructions for work at height (0.127, Lack of safety equipment for work at height (0.094 and Lack of safety instructions for work at height (0.071 respectively. Conclusion: The proposed Bayesian network used to determine how different causes could affect the falling from height at work. The findings of this study can be used to decide on the falling accident prevention programs.

  2. Developing an Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  3. Model-based prognostics for batteries which estimates useful life and uses a probability density function

    Science.gov (United States)

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor)

    2012-01-01

    This invention develops a mathematical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The basis for the form of the model has been linked to the internal processes of the battery and validated using experimental data. Effects of temperature and load current have also been incorporated into the model. Subsequently, the model has been used in a Particle Filtering framework to make predictions of remaining useful life for individual discharge cycles as well as for cycle life. The prediction performance was found to be satisfactory as measured by performance metrics customized for prognostics for a sample case. The work presented here provides initial steps towards a comprehensive health management solution for energy storage devices.

  4. From classical to quantum models: the regularising role of integrals, symmetry and probabilities

    OpenAIRE

    Gazeau, Jean-Pierre

    2018-01-01

    In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like "point" particle, motion "on the line", "smooth" observables, wave function, and even "going to infinity", without forgetting perplexing phrases like "classical world" versus "quantum world".... On the other hand, when a mathematical model becomes really inoperative with regard to correct predictions, one is forced to repla...

  5. A study of quantum mechanical probabilities in the classical Hodgkin-Huxley model.

    Science.gov (United States)

    Moradi, N; Scholkmann, F; Salari, V

    2015-03-01

    The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that in many ion-channel proteins the flow of ions through the pore is governed by a gate, comprising a so-called "selectivity filter" inside the ion channel, which can be controlled by electrical interactions. The selectivity filter (SF) is believed to be responsible for the selection and fast conduction of particular ions across the membrane of an excitable cell. Other (generally larger) parts of the molecule such as the pore-domain gate control the access of ions to the channel protein. In fact, two types of gates are considered here for ion channels: the "external gate", which is the voltage sensitive gate, and the "internal gate" which is the selectivity filter gate (SFG). Some quantum effects are expected in the SFG due to its small dimensions, which may play an important role in the operation of an ion channel. Here, we examine parameters in a generalized model of HH to see whether any parameter affects the spike generation. Our results indicate that the previously suggested semi-quantum-classical equation proposed by Bernroider and Summhammer (BS) agrees strongly with the HH equation under different conditions and may even provide a better explanation in some cases. We conclude that the BS model can refine the classical HH model substantially.

  6. Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study.

    Science.gov (United States)

    de Uña-Álvarez, Jacobo; Meira-Machado, Luís

    2015-06-01

    Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. © 2015, The International Biometric Society.

  7. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Moiseenko, Vitali; Battista, Jerry; Van Dyk, Jake

    2000-01-01

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  8. Correlator bank detection of gravitational wave chirps--False-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue

    International Nuclear Information System (INIS)

    Croce, R.P.; Demma, Th.; Pierro, V.; Pinto, I.M.; Longo, M.; Marano, S.; Matta, V.

    2004-01-01

    The general problem of computing the false-alarm probability vs the detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves in additive stationary Gaussian noise. Specific reference is made to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a Gaussian-correlation inequality. The result is used to readdress the problem of relating the template density to the fraction of potentially observable sources which could be dismissed as an effect of template space discreteness

  9. Birth-death models and coalescent point processes: the shape and probability of reconstructed phylogenies.

    Science.gov (United States)

    Lambert, Amaury; Stadler, Tanja

    2013-12-01

    Forward-in-time models of diversification (i.e., speciation and extinction) produce phylogenetic trees that grow "vertically" as time goes by. Pruning the extinct lineages out of such trees leads to natural models for reconstructed trees (i.e., phylogenies of extant species). Alternatively, reconstructed trees can be modelled by coalescent point processes (CPPs), where trees grow "horizontally" by the sequential addition of vertical edges. Each new edge starts at some random speciation time and ends at the present time; speciation times are drawn from the same distribution independently. CPPs lead to extremely fast computation of tree likelihoods and simulation of reconstructed trees. Their topology always follows the uniform distribution on ranked tree shapes (URT). We characterize which forward-in-time models lead to URT reconstructed trees and among these, which lead to CPP reconstructed trees. We show that for any "asymmetric" diversification model in which speciation rates only depend on time and extinction rates only depend on time and on a non-heritable trait (e.g., age), the reconstructed tree is CPP, even if extant species are incompletely sampled. If rates additionally depend on the number of species, the reconstructed tree is (only) URT (but not CPP). We characterize the common distribution of speciation times in the CPP description, and discuss incomplete species sampling as well as three special model cases in detail: (1) the extinction rate does not depend on a trait; (2) rates do not depend on time; (3) mass extinctions may happen additionally at certain points in the past. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. ABOUT PROBABILITY OF RESEARCH OF THE NN Ser SPECTRUM BY MODEL ATMOSPHERES METHOD

    OpenAIRE

    Sakhibullin, N. A.; Shimansky, V. V.

    2017-01-01

    The spectrum of close binary system NN Ser is investigated by a models atmospheres method. It is show that the atmosphere near the centrum of a hot spot on surface of red dwarf has powerful chromospheres, arising from heating in Laiman continua. Four models of binary system with various of parameters are constructed and their theoretical spectra are obtained. Temperature of white dwarf Tef = 62000 K, radius of the red dwarf RT = 0.20139 and angle inclination of system i = 82“ are determined. ...

  11. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2013-01-01

    This paper considers discrete choice, with choice probabilities coming from maximization of preferences from a random utility field perturbed by additive location shifters (ARUM). Any ARUM can be characterized by a choice-probability generating function (CPGF) whose gradient gives the choice...... probabilities, and every CPGF is consistent with an ARUM. We relate CPGF to multivariate extreme value distributions, and review and extend methods for constructing CPGF for applications. The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended...

  12. Posterior Probability Matching and Human Perceptual Decision Making.

    Directory of Open Access Journals (Sweden)

    Richard F Murray

    2015-06-01

    Full Text Available Probability matching is a classic theory of decision making that was first developed in models of cognition. Posterior probability matching, a variant in which observers match their response probabilities to the posterior probability of each response being correct, is being used increasingly often in models of perception. However, little is known about whether posterior probability matching is consistent with the vast literature on vision and hearing that has developed within signal detection theory. Here we test posterior probability matching models using two tools from detection theory. First, we examine the models' performance in a two-pass experiment, where each block of trials is presented twice, and we measure the proportion of times that the model gives the same response twice to repeated stimuli. We show that at low performance levels, posterior probability matching models give highly inconsistent responses across repeated presentations of identical trials. We find that practised human observers are more consistent across repeated trials than these models predict, and we find some evidence that less practised observers more consistent as well. Second, we compare the performance of posterior probability matching models on a discrimination task to the performance of a theoretical ideal observer that achieves the best possible performance. We find that posterior probability matching is very inefficient at low-to-moderate performance levels, and that human observers can be more efficient than is ever possible according to posterior probability matching models. These findings support classic signal detection models, and rule out a broad class of posterior probability matching models for expert performance on perceptual tasks that range in complexity from contrast discrimination to symmetry detection. However, our findings leave open the possibility that inexperienced observers may show posterior probability matching behaviour, and our methods

  13. Business model risk analysis: predicting the probability of business network profitability

    NARCIS (Netherlands)

    Johnson, Pontus; Iacob, Maria Eugenia; Valja, Margus; van Sinderen, Marten J.; Magnusson, Christer; Ladhe, Tobias; van Sinderen, Marten J.; Oude Luttighuis, P.H.W.M.; Folmer, Erwin Johan Albert; Bosems, S.

    In the design phase of business collaboration, it is desirable to be able to predict the profitability of the business-to-be. Therefore, techniques to assess qualities such as costs, revenues, risks, and profitability have been previously proposed. However, they do not allow the modeler to properly

  14. Probability density function shape sensitivity in the statistical modeling of turbulent particle dispersion

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.

  15. Computational Modeling of Statistical Learning: Effects of Transitional Probability versus Frequency and Links to Word Learning

    Science.gov (United States)

    Mirman, Daniel; Estes, Katharine Graf; Magnuson, James S.

    2010-01-01

    Statistical learning mechanisms play an important role in theories of language acquisition and processing. Recurrent neural network models have provided important insights into how these mechanisms might operate. We examined whether such networks capture two key findings in human statistical learning. In Simulation 1, a simple recurrent network…

  16. Computational modeling of the probability of destructions in total joint endoprosthesis ceramic heads using Weibull's theory

    Czech Academy of Sciences Publication Activity Database

    Janíček, P.; Fuis, Vladimír; Málek, M.

    2010-01-01

    Roč. 14, č. 4 (2010), s. 42-51 ISSN 1335-2393 Institutional research plan: CEZ:AV0Z20760514 Keywords : computational modeling * ceramic head * in vivo destructions * hip joint endoprosthesis * probabily of rupture Subject RIV: BO - Biophysics

  17. Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills

    Science.gov (United States)

    2005-01-01

    The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning. PMID:15746978

  18. On the probability distribution of stock returns in the Mike-Farmer model

    Science.gov (United States)

    Gu, G.-F.; Zhou, W.-X.

    2009-02-01

    Recently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.

  19. Fuzzy modeling of analytical redundancy for sensor failure detection

    International Nuclear Information System (INIS)

    Tsai, T.M.; Chou, H.P.

    1991-01-01

    Failure detection and isolation (FDI) in dynamic systems may be accomplished by testing the consistency of the system via analytically redundant relations. The redundant relation is basically a mathematical model relating system inputs and dissimilar sensor outputs from which information is extracted and subsequently examined for the presence of failure signatures. Performance of the approach is often jeopardized by inherent modeling error and noise interference. To mitigate such effects, techniques such as Kalman filtering, auto-regression-moving-average (ARMA) modeling in conjunction with probability tests are often employed. These conventional techniques treat the stochastic nature of uncertainties in a deterministic manner to generate best-estimated model and sensor outputs by minimizing uncertainties. In this paper, the authors present a different approach by treating the effect of uncertainties with fuzzy numbers. Coefficients in redundant relations derived from first-principle physical models are considered as fuzzy parameters and on-line updated according to system behaviors. Failure detection is accomplished by examining the possibility that a sensor signal occurred in an estimated fuzzy domain. To facilitate failure isolation, individual FDI monitors are designed for each interested sensor

  20. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    Science.gov (United States)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  1. Extinction probabilities and stationary distributions of mobile genetic elements in prokaryotes: The birth-death-diversification model.

    Science.gov (United States)

    Drakos, Nicole E; Wahl, Lindi M

    2015-12-01

    Theoretical approaches are essential to our understanding of the complex dynamics of mobile genetic elements (MGEs) within genomes. Recently, the birth-death-diversification model was developed to describe the dynamics of mobile promoters (MPs), a particular class of MGEs in prokaryotes. A unique feature of this model is that genetic diversification of elements was included. To explore the implications of diversification on the longterm fate of MGE lineages, in this contribution we analyze the extinction probabilities, extinction times and equilibrium solutions of the birth-death-diversification model. We find that diversification increases both the survival and growth rate of MGE families, but the strength of this effect depends on the rate of horizontal gene transfer (HGT). We also find that the distribution of MGE families per genome is not necessarily monotonically decreasing, as observed for MPs, but may have a peak in the distribution that is related to the HGT rate. For MPs specifically, we find that new families have a high extinction probability, and predict that the number of MPs is increasing, albeit at a very slow rate. Additionally, we develop an extension of the birth-death-diversification model which allows MGEs in different regions of the genome, for example coding and non-coding, to be described by different rates. This extension may offer a potential explanation as to why the majority of MPs are located in non-promoter regions of the genome. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota

    Directory of Open Access Journals (Sweden)

    Kaushi S. T. Kanankege

    2018-01-01

    Full Text Available Zebra mussels (ZMs (Dreissena polymorpha and Eurasian watermilfoil (EWM (Myriophyllum spicatum are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78. The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76. Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45% or EWM (12.43% invasions, whereas only 125/18,411 (0.67% and 304/18,411 (1.65% are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions.

  3. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota.

    Science.gov (United States)

    Kanankege, Kaushi S T; Alkhamis, Moh A; Phelps, Nicholas B D; Perez, Andres M

    2017-01-01

    Zebra mussels (ZMs) ( Dreissena polymorpha ) and Eurasian watermilfoil (EWM) ( Myriophyllum spicatum ) are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78). The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76). Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45%) or EWM (12.43%) invasions, whereas only 125/18,411 (0.67%) and 304/18,411 (1.65%) are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions.

  4. A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm

    International Nuclear Information System (INIS)

    Lin, Cheng; Mu, Hao; Xiong, Rui; Shen, Weixiang

    2016-01-01

    Highlights: • A novel multi-model probability battery SOC fusion estimation approach was proposed. • The linear matrix inequality-based H∞ technique is employed to estimate the SOC. • The Bayes theorem has been employed to realize the optimal weight for the fusion. • The robustness of the proposed approach is verified by different batteries. • The results show that the proposed method can promote global estimation accuracy. - Abstract: Due to the strong nonlinearity and complex time-variant property of batteries, the existing state of charge (SOC) estimation approaches based on a single equivalent circuit model (ECM) cannot provide the accurate SOC for the entire discharging period. This paper aims to present a novel SOC estimation approach based on a multiple ECMs fusion method for improving the practical application performance. In the proposed approach, three battery ECMs, namely the Thevenin model, the double polarization model and the 3rd order RC model, are selected to describe the dynamic voltage of lithium-ion batteries and the genetic algorithm is then used to determine the model parameters. The linear matrix inequality-based H-infinity technique is employed to estimate the SOC from the three models and the Bayes theorem-based probability method is employed to determine the optimal weights for synthesizing the SOCs estimated from the three models. Two types of lithium-ion batteries are used to verify the feasibility and robustness of the proposed approach. The results indicate that the proposed approach can improve the accuracy and reliability of the SOC estimation against uncertain battery materials and inaccurate initial states.

  5. Leak rate models and leak detection

    International Nuclear Information System (INIS)

    1992-01-01

    Leak detection may be carried out by a number of detection systems, but selection of the systems must be carefully adapted to the fluid state and the location of the leak in the reactor coolant system. Computer programs for the calculation of leak rates contain different models to take into account the fluid state before its entrance into the crack, and they have to be verified by experiments; agreement between experiments and calculations is generally not satisfactory for very small leak rates resulting from narrow cracks or from a closing bending moment

  6. Phase transitions in community detection: A solvable toy model

    Science.gov (United States)

    Ver Steeg, Greg; Moore, Cristopher; Galstyan, Aram; Allahverdyan, Armen

    2014-05-01

    Recently, it was shown that there is a phase transition in the community detection problem. This transition was first computed using the cavity method, and has been proved rigorously in the case of q = 2 groups. However, analytic calculations using the cavity method are challenging since they require us to understand probability distributions of messages. We study analogous transitions in the so-called “zero-temperature inference” model, where this distribution is supported only on the most likely messages. Furthermore, whenever several messages are equally likely, we break the tie by choosing among them with equal probability, corresponding to an infinitesimal random external field. While the resulting analysis overestimates the thresholds, it reproduces some of the qualitative features of the system. It predicts a first-order detectability transition whenever q > 2 (as opposed to q > 4 according to the finite-temperature cavity method). It also has a regime analogous to the “hard but detectable” phase, where the community structure can be recovered, but only when the initial messages are sufficiently accurate. Finally, we study a semisupervised setting where we are given the correct labels for a fraction ρ of the nodes. For q > 2, we find a regime where the accuracy jumps discontinuously at a critical value of ρ.

  7. Implementation of PSA models to estimate the probabilities associated with external event combination

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2014-01-01

    This note endeavors to address some significant issues revealed by the Fukushima accident in Japan in 2011, such as the analysis of various dependency aspects arisen in the light of the external event PSA framework, as the treatment of the correlated hazards. To this aim some foundational notions to implement the PSA models related to specific aspects, like the external hazard combination, e.g., earthquake and tsunami as at the Fukushima accident, and the external hazard-caused internal events, e.g., seismic induced fire, are proposed and discussed to be incorporated within the risk assessment structure. Risk assessment of external hazards is required and utilized as an integrated part of PRA for operating and new reactor units. In the light of the Fukushima accident, of special interest are correlated events, whose modelling is proposed in the present study, in the form of some theoretical concepts, which lay the foundations for the PSA framework implementation. An applicative example is presented for illustrative purposes, since the analysis is carried out on the basis of generic numerical values assigned to an oversimplified model and results are achieved without any baseline comparison. Obviously the first step aimed at the process endorsement is the analysis of all available information in order to determine the level of applicability of the observed specific plant site events to the envisaged model and the statistical correlation analysis for event occurrence data that can be used as part of this process. Despite these drawbacks that actually do not qualify the achieved results, the present work represents an exploratory study aimed at resolving current open issues to be resolved in the PSA, like topics related to unanticipated scenarios: the combined external hazards of the earthquake and tsunami in Fukushima, external hazards causing internal events, such as seismic induced fire. These topics are to be resolved among the other ones as emerging from the

  8. Biochemical transport modeling, estimation, and detection in realistic environments

    Science.gov (United States)

    Ortner, Mathias; Nehorai, Arye

    2006-05-01

    Early detection and estimation of the spread of a biochemical contaminant are major issues for homeland security applications. We present an integrated approach combining the measurements given by an array of biochemical sensors with a physical model of the dispersion and statistical analysis to solve these problems and provide system performance measures. We approximate the dispersion model of the contaminant in a realistic environment through numerical simulations of reflected stochastic diffusions describing the microscopic transport phenomena due to wind and chemical diffusion using the Feynman-Kac formula. We consider arbitrary complex geometries and account for wind turbulence. Localizing the dispersive sources is useful for decontamination purposes and estimation of the cloud evolution. To solve the associated inverse problem, we propose a Bayesian framework based on a random field that is particularly powerful for localizing multiple sources with small amounts of measurements. We also develop a sequential detector using the numerical transport model we propose. Sequential detection allows on-line analysis and detecting wether a change has occurred. We first focus on the formulation of a suitable sequential detector that overcomes the presence of unknown parameters (e.g. release time, intensity and location). We compute a bound on the expected delay before false detection in order to decide the threshold of the test. For a fixed false-alarm rate, we obtain the detection probability of a substance release as a function of its location and initial concentration. Numerical examples are presented for two real-world scenarios: an urban area and an indoor ventilation duct.

  9. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    Science.gov (United States)

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the

  10. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshandeh, Mohsen [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi Mehdi [Department of Medical Physics, Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nikoofar, Alireza; Vasheghani, Maryam [Department of Radiation Oncology, Hafte-Tir Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kazemnejad, Anoshirvan [Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented

  11. Inferring the most probable maps of underground utilities using Bayesian mapping model

    Science.gov (United States)

    Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony

    2018-03-01

    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.

  12. Betting on change: modeling transitional probabilities to guide therapy development for opioid dependence.

    Science.gov (United States)

    Carpenter, Kenneth M; Jiang, Huiping; Sullivan, Maria A; Bisaga, Adam; Comer, Sandra D; Raby, Wilfrid Noel; Brooks, Adam C; Nunes, Edward V

    2009-03-01

    This study investigated the process of change by modeling transitions among four clinical states encountered in 64 detoxified opiate-dependent individuals treated with daily oral naltrexone: no opiate use, blocked opiate use (i.e., opiate use while adhering to oral naltrexone), unblocked opiate use (i.e., opiate use after having discontinued oral naltrexone), and treatment dropout. The effects of baseline characteristics and two psychosocial interventions of differing intensity, behavioral naltrexone therapy (BNT) and compliance enhancement (CE), on these transitions were studied. Participants using greater quantities of opiates were more likely than other participants to be retained in BNT relative to CE. Markov modeling indicated a transition from abstinence to treatment dropout was approximately 3.56 times greater among participants in CE relative to participants in BNT, indicating the more comprehensive psychosocial intervention kept participants engaged in treatment longer. Transitions to stopping treatment were more likely to occur after unblocked opiate use in both treatments. Continued opiate use while being blocked accounted for a relatively low proportion of transitions to abstinence and may have more deleterious effects later in a treatment episode. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  13. A probabilistic framework for microarray data analysis: fundamental probability models and statistical inference.

    Science.gov (United States)

    Ogunnaike, Babatunde A; Gelmi, Claudio A; Edwards, Jeremy S

    2010-05-21

    Gene expression studies generate large quantities of data with the defining characteristic that the number of genes (whose expression profiles are to be determined) exceed the number of available replicates by several orders of magnitude. Standard spot-by-spot analysis still seeks to extract useful information for each gene on the basis of the number of available replicates, and thus plays to the weakness of microarrays. On the other hand, because of the data volume, treating the entire data set as an ensemble, and developing theoretical distributions for these ensembles provides a framework that plays instead to the strength of microarrays. We present theoretical results that under reasonable assumptions, the distribution of microarray intensities follows the Gamma model, with the biological interpretations of the model parameters emerging naturally. We subsequently establish that for each microarray data set, the fractional intensities can be represented as a mixture of Beta densities, and develop a procedure for using these results to draw statistical inference regarding differential gene expression. We illustrate the results with experimental data from gene expression studies on Deinococcus radiodurans following DNA damage using cDNA microarrays. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    Science.gov (United States)

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  15. Relationship between the generalized equivalent uniform dose formulation and the Poisson statistics-based tumor control probability model

    International Nuclear Information System (INIS)

    Zhou Sumin; Das, Shiva; Wang Zhiheng; Marks, Lawrence B.

    2004-01-01

    The generalized equivalent uniform dose (GEUD) model uses a power-law formalism, where the outcome is related to the dose via a power law. We herein investigate the mathematical compatibility between this GEUD model and the Poisson statistics based tumor control probability (TCP) model. The GEUD and TCP formulations are combined and subjected to a compatibility constraint equation. This compatibility constraint equates tumor control probability from the original heterogeneous target dose distribution to that from the homogeneous dose from the GEUD formalism. It is shown that this constraint equation possesses a unique, analytical closed-form solution which relates radiation dose to the tumor cell survival fraction. It is further demonstrated that, when there is no positive threshold or finite critical dose in the tumor response to radiation, this relationship is not bounded within the realistic cell survival limits of 0%-100%. Thus, the GEUD and TCP formalisms are, in general, mathematically inconsistent. However, when a threshold dose or finite critical dose exists in the tumor response to radiation, there is a unique mathematical solution for the tumor cell survival fraction that allows the GEUD and TCP formalisms to coexist, provided that all portions of the tumor are confined within certain specific dose ranges

  16. Survival under uncertainty an introduction to probability models of social structure and evolution

    CERN Document Server

    Volchenkov, Dimitri

    2016-01-01

    This book introduces and studies a number of stochastic models of subsistence, communication, social evolution and political transition that will allow the reader to grasp the role of uncertainty as a fundamental property of our irreversible world. At the same time, it aims to bring about a more interdisciplinary and quantitative approach across very diverse fields of research in the humanities and social sciences. Through the examples treated in this work – including anthropology, demography, migration, geopolitics, management, and bioecology, among other things – evidence is gathered to show that volatile environments may change the rules of the evolutionary selection and dynamics of any social system, creating a situation of adaptive uncertainty, in particular, whenever the rate of change of the environment exceeds the rate of adaptation. Last but not least, it is hoped that this book will contribute to the understanding that inherent randomness can also be a great opportunity – for social systems an...

  17. Binary logistic regression modelling: Measuring the probability of relapse cases among drug addict

    Science.gov (United States)

    Ismail, Mohd Tahir; Alias, Siti Nor Shadila

    2014-07-01

    For many years Malaysia faced the drug addiction issues. The most serious case is relapse phenomenon among treated drug addict (drug addict who have under gone the rehabilitation programme at Narcotic Addiction Rehabilitation Centre, PUSPEN). Thus, the main objective of this study is to find the most significant factor that contributes to relapse to happen. The binary logistic regression analysis was employed to model the relationship between independent variables (predictors) and dependent variable. The dependent variable is the status of the drug addict either relapse, (Yes coded as 1) or not, (No coded as 0). Meanwhile the predictors involved are age, age at first taking drug, family history, education level, family crisis, community support and self motivation. The total of the sample is 200 which the data are provided by AADK (National Antidrug Agency). The finding of the study revealed that age and self motivation are statistically significant towards the relapse cases..

  18. Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis

    Czech Academy of Sciences Publication Activity Database

    Hamilton, A. J.; Novotný, Vojtěch; Waters, E. K.; Basset, Y.; Benke, K. K.; Grimbacher, P. S.; Miller, S. E.; Samuelson, G. A.; Weiblen, G. D.; Yen, J. D. L.; Stork, N. E.

    2013-01-01

    Roč. 171, č. 2 (2013), s. 357-365 ISSN 0029-8549 R&D Projects: GA MŠk(CZ) LH11008; GA ČR GA206/09/0115 Grant - others:Czech Ministry of Education(CZ) CZ.1.07/2.3.00/20.0064; National Science Foundarion(US) DEB-0841885; Otto Kinne Foundation, Darwin Initiative(GB) 19-008 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : host specificity * model * Monte Carlo Subject RIV: EH - Ecology, Behaviour Impact factor: 3.248, year: 2013 http://link.springer.com/article/10.1007%2Fs00442-012-2434-5

  19. Concepts of probability theory

    CERN Document Server

    Pfeiffer, Paul E

    1979-01-01

    Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.

  20. Development of a statistical model for the determination of the probability of riverbank erosion in a Meditteranean river basin

    Science.gov (United States)

    Varouchakis, Emmanouil; Kourgialas, Nektarios; Karatzas, George; Giannakis, Georgios; Lilli, Maria; Nikolaidis, Nikolaos

    2014-05-01

    Riverbank erosion affects the river morphology and the local habitat and results in riparian land loss, damage to property and infrastructures, ultimately weakening flood defences. An important issue concerning riverbank erosion is the identification of the areas vulnerable to erosion, as it allows for predicting changes and assists with stream management and restoration. One way to predict the vulnerable to erosion areas is to determine the erosion probability by identifying the underlying relations between riverbank erosion and the geomorphological and/or hydrological variables that prevent or stimulate erosion. A statistical model for evaluating the probability of erosion based on a series of independent local variables and by using logistic regression is developed in this work. The main variables affecting erosion are vegetation index (stability), the presence or absence of meanders, bank material (classification), stream power, bank height, river bank slope, riverbed slope, cross section width and water velocities (Luppi et al. 2009). In statistics, logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable, e.g. binary response, based on one or more predictor variables (continuous or categorical). The probabilities of the possible outcomes are modelled as a function of independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. 1 = "presence of erosion" and 0 = "no erosion") for any value of the independent variables. The regression coefficients are estimated by using maximum likelihood estimation. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding

  1. Modeling visual search using three-parameter probability functions in a hierarchical Bayesian framework.

    Science.gov (United States)

    Lin, Yi-Shin; Heinke, Dietmar; Humphreys, Glyn W

    2015-04-01

    In this study, we applied Bayesian-based distributional analyses to examine the shapes of response time (RT) distributions in three visual search paradigms, which varied in task difficulty. In further analyses we investigated two common observations in visual search-the effects of display size and of variations in search efficiency across different task conditions-following a design that had been used in previous studies (Palmer, Horowitz, Torralba, & Wolfe, Journal of Experimental Psychology: Human Perception and Performance, 37, 58-71, 2011; Wolfe, Palmer, & Horowitz, Vision Research, 50, 1304-1311, 2010) in which parameters of the response distributions were measured. Our study showed that the distributional parameters in an experimental condition can be reliably estimated by moderate sample sizes when Monte Carlo simulation techniques are applied. More importantly, by analyzing trial RTs, we were able to extract paradigm-dependent shape changes in the RT distributions that could be accounted for by using the EZ2 diffusion model. The study showed that Bayesian-based RT distribution analyses can provide an important means to investigate the underlying cognitive processes in search, including stimulus grouping and the bottom-up guidance of attention.

  2. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  3. Evaluation of Presumed Probability-Density-Function Models in Non-Premixed Flames by using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Cao Hong-Jun; Zhang Hui-Qiang; Lin Wen-Yi

    2012-01-01

    Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones. (fundamental areas of phenomenology(including applications))

  4. Hydrological model calibration for flood prediction in current and future climates using probability distributions of observed peak flows and model based rainfall

    Science.gov (United States)

    Haberlandt, Uwe; Wallner, Markus; Radtke, Imke

    2013-04-01

    Derived flood frequency analysis based on continuous hydrological modelling is very demanding regarding the required length and temporal resolution of precipitation input data. Often such flood predictions are obtained using long precipitation time series from stochastic approaches or from regional climate models as input. However, the calibration of the hydrological model is usually done using short time series of observed data. This inconsistent employment of different data types for calibration and application of a hydrological model increases its uncertainty. Here, it is proposed to calibrate a hydrological model directly on probability distributions of observed peak flows using model based rainfall in line with its later application. Two examples are given to illustrate the idea. The first one deals with classical derived flood frequency analysis using input data from an hourly stochastic rainfall model. The second one concerns a climate impact analysis using hourly precipitation from a regional climate model. The results show that: (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated on extreme conditions works quite well for average conditions but not vice versa, (III) the calibration of the hydrological model using regional climate model data works as an implicit bias correction method and (IV) the best performance for flood estimation is usually obtained when model based precipitation and observed probability distribution of peak flows are used for model calibration.

  5. Developing logistic regression models using purchase attributes and demographics to predict the probability of purchases of regular and specialty eggs.

    Science.gov (United States)

    Bejaei, M; Wiseman, K; Cheng, K M

    2015-01-01

    Consumers' interest in specialty eggs appears to be growing in Europe and North America. The objective of this research was to develop logistic regression models that utilise purchaser attributes and demographics to predict the probability of a consumer purchasing a specific type of table egg including regular (white and brown), non-caged (free-run, free-range and organic) or nutrient-enhanced eggs. These purchase prediction models, together with the purchasers' attributes, can be used to assess market opportunities of different egg types specifically in British Columbia (BC). An online survey was used to gather data for the models. A total of 702 completed questionnaires were submitted by BC residents. Selected independent variables included in the logistic regression to develop models for different egg types to predict the probability of a consumer purchasing a specific type of table egg. The variables used in the model accounted for 54% and 49% of variances in the purchase of regular and non-caged eggs, respectively. Research results indicate that consumers of different egg types exhibit a set of unique and statistically significant characteristics and/or demographics. For example, consumers of regular eggs were less educated, older, price sensitive, major chain store buyers, and store flyer users, and had lower awareness about different types of eggs and less concern regarding animal welfare issues. However, most of the non-caged egg consumers were less concerned about price, had higher awareness about different types of table eggs, purchased their eggs from local/organic grocery stores, farm gates or farmers markets, and they were more concerned about care and feeding of hens compared to consumers of other eggs types.

  6. Calculation of the uncertainty in complication probability for various dose-response models, applied to the parotid gland

    International Nuclear Information System (INIS)

    Schilstra, C.; Meertens, H.

    2001-01-01

    Purpose: Usually, models that predict normal tissue complication probability (NTCP) are fitted to clinical data with the maximum likelihood (ML) method. This method inevitably causes a loss of information contained in the data. In this study, an alternative method is investigated that calculates the parameter probability distribution (PD), and, thus, conserves all information. The PD method also allows the calculation of the uncertainty in the NTCP, which is an (often-neglected) prerequisite for the intercomparison of both treatment plans and NTCP models. The PD and ML methods are applied to parotid gland data, and the results are compared. Methods and Materials: The drop in salivary flow due to radiotherapy was measured in 25 parotid glands of 15 patients. Together with the parotid gland dose-volume histograms (DVH), this enabled the calculation of the parameter PDs for three different NTCP models (Lyman, relative seriality, and critical volume). From these PDs, the NTCP and its uncertainty could be calculated for arbitrary parotid gland DVHs. ML parameters and resulting NTCP values were calculated also. Results: All models fitted equally well. The parameter PDs turned out to have nonnormal shapes and long tails. The NTCP predictions of the ML and PD method usually differed considerably, depending on the NTCP model and the nature of irradiation. NTCP curves and ML parameters suggested a highly parallel organization of the parotid gland. Conclusions: Considering the substantial differences between the NTCP predictions of the ML and PD method, the use of the PD method is preferred, because this is the only method that takes all information contained in the clinical data into account. Furthermore, PD method gives a true measure of the uncertainty in the NTCP

  7. Computing elastic‐rebound‐motivated rarthquake probabilities in unsegmented fault models: a new methodology supported by physics‐based simulators

    Science.gov (United States)

    Field, Edward H.

    2015-01-01

    A methodology is presented for computing elastic‐rebound‐based probabilities in an unsegmented fault or fault system, which involves computing along‐fault averages of renewal‐model parameters. The approach is less biased and more self‐consistent than a logical extension of that applied most recently for multisegment ruptures in California. It also enables the application of magnitude‐dependent aperiodicity values, which the previous approach does not. Monte Carlo simulations are used to analyze long‐term system behavior, which is generally found to be consistent with that of physics‐based earthquake simulators. Results cast doubt that recurrence‐interval distributions at points on faults look anything like traditionally applied renewal models, a fact that should be considered when interpreting paleoseismic data. We avoid such assumptions by changing the "probability of what" question (from offset at a point to the occurrence of a rupture, assuming it is the next event to occur). The new methodology is simple, although not perfect in terms of recovering long‐term rates in Monte Carlo simulations. It represents a reasonable, improved way to represent first‐order elastic‐rebound predictability, assuming it is there in the first place, and for a system that clearly exhibits other unmodeled complexities, such as aftershock triggering.

  8. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  9. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  10. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  11. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: a tutorial.

    Science.gov (United States)

    Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J

    2014-02-01

    Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model

  12. On the shapes of the presumed probability density function for the modeling of turbulence-radiation interactions

    International Nuclear Information System (INIS)

    Liu, L.H.; Xu, X.; Chen, Y.L.

    2004-01-01

    The laminar flamelet equations in combination with the joint probability density function (PDF) transport equation of mixture fraction and turbulence frequency have been used to simulate turbulent jet diffusion flames. To check the suitability of the presumed shapes of the PDF for the modeling of turbulence-radiation interactions (TRI), two types of presumed joint PDFs are constructed by using the second-order moments of temperature and the species concentrations, which are derived by the laminar flamelet model. The time-averaged radiative source terms and the time-averaged absorption coefficients are calculated by the presumed joint PDF approaches, and compared with those obtained by the laminar flamelet model. By comparison, it is shown that there are obvious differences between the results of the independent PDF approach and the laminar flamelet model. Generally, the results of the dependent PDF approach agree better with those of the flamelet model. For the modeling of TRI, the dependent PDF approach is superior to the independent PDF approach

  13. Hypothyroidism after primary radiotherapy for head and neck squamous cell carcinoma: Normal tissue complication probability modeling with latent time correction

    International Nuclear Information System (INIS)

    Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren M.; Hegedüs, Laszlo; Overgaard, Jens; Johansen, Jørgen

    2013-01-01

    Background and purpose: To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors. Patients and methods: Patients with HNSCC receiving definitive radiotherapy with 66–68 Gy without surgery were followed up with serial post-treatment thyrotropin (TSH) assessment. HT was defined as TSH >4.0 mU/l. Data were analyzed with both a logistic and a mixture model (correcting for latency) to determine risk factors for HT and develop an NTCP model based on mean thyroid dose (MTD) and thyroid volume. Results: 203 patients were included. Median follow-up: 25.1 months. Five-year estimated risk of HT was 25.6%. In the mixture model, the only independent risk factors for HT were thyroid volume (cm 3 ) (OR = 0.75 [95% CI: 0.64–0.85], p 3 , respectively. Conclusions: Comparing the logistic and mixture models demonstrates the importance of latent-time correction in NTCP-modeling. Thyroid dose constraints in treatment planning should be individualized based on thyroid volume

  14. SU-E-T-144: Bayesian Inference of Local Relapse Data Using a Poisson-Based Tumour Control Probability Model

    Energy Technology Data Exchange (ETDEWEB)

    La Russa, D [The Ottawa Hospital Cancer Centre, Ottawa, ON (Canada)

    2015-06-15

    Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributions found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.

  15. The HYDROMED model and its application to semi-arid Mediterranean catchments with hill reservoirs 3: Reservoir storage capacity and probability of failure model

    Directory of Open Access Journals (Sweden)

    R. Ragab

    2001-01-01

    Full Text Available This paper addresses the issue of "what reservoir storage capacity is required to maintain a yield with a given probability of failure?". It is an important issue in terms of construction and cost. HYDROMED offers a solution based on the modified Gould probability matrix method. This method has the advantage of sampling all years data without reference to the sequence and is therefore particularly suitable for catchments with patchy data. In the HYDROMED model, the probability of failure is calculated on a monthly basis. The model has been applied to the El-Gouazine catchment in Tunisia using a long rainfall record from Kairouan together with the estimated Hortonian runoff, class A pan evaporation data and estimated abstraction data. Generally, the probability of failure differed from winter to summer. Generally, the probability of failure approaches zero when the reservoir capacity is 500,000 m3. The 25% probability of failure (75% success is achieved with a reservoir capacity of 58,000 m3 in June and 95,000 m3 in January. The probability of failure for a 240,000 m3 capacity reservoir (closer to storage capacity of El-Gouazine 233,000 m3, is approximately 5% in November, December and January, 3% in March, and 1.1% in May and June. Consequently there is no high risk of El-Gouazine being unable to meet its requirements at a capacity of 233,000 m3. Subsequently the benefit, in terms of probability of failure, by increasing the reservoir volume of El-Gouazine to greater than the 250,000 m3 is not high. This is important for the design engineers and the funding organizations. However, the analysis is based on the existing water abstraction policy, absence of siltation rate data and on the assumption that the present climate will prevail during the lifetime of the reservoir. Should these conditions change, a new analysis should be carried out. Keywords: HYDROMED, reservoir, storage capacity, probability of failure, Mediterranean

  16. Affective topic model for social emotion detection.

    Science.gov (United States)

    Rao, Yanghui; Li, Qing; Wenyin, Liu; Wu, Qingyuan; Quan, Xiaojun

    2014-10-01

    The rapid development of social media services has been a great boon for the communication of emotions through blogs, microblogs/tweets, instant-messaging tools, news portals, and so forth. This paper is concerned with the detection of emotions evoked in a reader by social media. Compared to classical sentiment analysis conducted from the writer's perspective, analysis from the reader's perspective can be more meaningful when applied to social media. We propose an affective topic model with the intention to bridge the gap between social media materials and a reader's emotions by introducing an intermediate layer. The proposed model can be used to classify the social emotions of unlabeled documents and to generate a social emotion lexicon. Extensive evaluations using real-world data validate the effectiveness of the proposed model for both these applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Time-series models on somatic cell score improve detection of matistis

    DEFF Research Database (Denmark)

    Norberg, E; Korsgaard, I R; Sloth, K H M N

    2008-01-01

    In-line detection of mastitis using frequent milk sampling was studied in 241 cows in a Danish research herd. Somatic cell scores obtained at a daily basis were analyzed using a mixture of four time-series models. Probabilities were assigned to each model for the observations to belong to a normal...... "steady-state" development, change in "level", change of "slope" or "outlier". Mastitis was indicated from the sum of probabilities for the "level" and "slope" models. Time-series models were based on the Kalman filter. Reference data was obtained from veterinary assessment of health status combined...... with bacteriological findings. At a sensitivity of 90% the corresponding specificity was 68%, which increased to 83% using a one-step back smoothing. It is concluded that mixture models based on Kalman filters are efficient in handling in-line sensor data for detection of mastitis and may be useful for similar...

  18. Probabilities in physics

    CERN Document Server

    Hartmann, Stephan

    2011-01-01

    Many results of modern physics--those of quantum mechanics, for instance--come in a probabilistic guise. But what do probabilistic statements in physics mean? Are probabilities matters of objective fact and part of the furniture of the world, as objectivists think? Or do they only express ignorance or belief, as Bayesians suggest? And how are probabilistic hypotheses justified and supported by empirical evidence? Finally, what does the probabilistic nature of physics imply for our understanding of the world? This volume is the first to provide a philosophical appraisal of probabilities in all of physics. Its main aim is to make sense of probabilistic statements as they occur in the various physical theories and models and to provide a plausible epistemology and metaphysics of probabilities. The essays collected here consider statistical physics, probabilistic modelling, and quantum mechanics, and critically assess the merits and disadvantages of objectivist and subjectivist views of probabilities in these fie...

  19. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.

    2012-01-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011–0.013) clinical factor was “previous abdominal surgery.” As second significant (p = 0.012–0.016) factor, “cardiac history” was included in all three rectal bleeding fits, whereas including “diabetes” was significant (p = 0.039–0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003–0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D 50 . Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions

  20. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Defraene, Gilles, E-mail: gilles.defraene@uzleuven.be [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Van den Bergh, Laura [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Al-Mamgani, Abrahim [Department of Radiation Oncology, Erasmus Medical Center - Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Haustermans, Karin [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Heemsbergen, Wilma [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Van den Heuvel, Frank [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Lebesque, Joos V. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints

  1. Tennis Elbow Diagnosis Using Equivalent Uniform Voltage to Fit the Logistic and the Probit Diseased Probability Models

    Directory of Open Access Journals (Sweden)

    Tsair-Fwu Lee

    2015-01-01

    Full Text Available To develop the logistic and the probit models to analyse electromyographic (EMG equivalent uniform voltage- (EUV- response for the tenderness of tennis elbow. In total, 78 hands from 39 subjects were enrolled. In this study, surface EMG (sEMG signal is obtained by an innovative device with electrodes over forearm region. The analytical endpoint was defined as Visual Analog Score (VAS 3+ tenderness of tennis elbow. The logistic and the probit diseased probability (DP models were established for the VAS score and EMG absolute voltage-time histograms (AVTH. TV50 is the threshold equivalent uniform voltage predicting a 50% risk of disease. Twenty-one out of 78 samples (27% developed VAS 3+ tenderness of tennis elbow reported by the subject and confirmed by the physician. The fitted DP parameters were TV50 = 153.0 mV (CI: 136.3–169.7 mV, γ50 = 0.84 (CI: 0.78–0.90 and TV50 = 155.6 mV (CI: 138.9–172.4 mV, m = 0.54 (CI: 0.49–0.59 for logistic and probit models, respectively. When the EUV ≥ 153 mV, the DP of the patient is greater than 50% and vice versa. The logistic and the probit models are valuable tools to predict the DP of VAS 3+ tenderness of tennis elbow.

  2. Tennis Elbow Diagnosis Using Equivalent Uniform Voltage to Fit the Logistic and the Probit Diseased Probability Models

    Science.gov (United States)

    Lin, Wei-Chun; Lin, Shu-Yuan; Wu, Li-Fu; Guo, Shih-Sian; Huang, Hsiang-Jui; Chao, Pei-Ju

    2015-01-01

    To develop the logistic and the probit models to analyse electromyographic (EMG) equivalent uniform voltage- (EUV-) response for the tenderness of tennis elbow. In total, 78 hands from 39 subjects were enrolled. In this study, surface EMG (sEMG) signal is obtained by an innovative device with electrodes over forearm region. The analytical endpoint was defined as Visual Analog Score (VAS) 3+ tenderness of tennis elbow. The logistic and the probit diseased probability (DP) models were established for the VAS score and EMG absolute voltage-time histograms (AVTH). TV50 is the threshold equivalent uniform voltage predicting a 50% risk of disease. Twenty-one out of 78 samples (27%) developed VAS 3+ tenderness of tennis elbow reported by the subject and confirmed by the physician. The fitted DP parameters were TV50 = 153.0 mV (CI: 136.3–169.7 mV), γ 50 = 0.84 (CI: 0.78–0.90) and TV50 = 155.6 mV (CI: 138.9–172.4 mV), m = 0.54 (CI: 0.49–0.59) for logistic and probit models, respectively. When the EUV ≥ 153 mV, the DP of the patient is greater than 50% and vice versa. The logistic and the probit models are valuable tools to predict the DP of VAS 3+ tenderness of tennis elbow. PMID:26380281

  3. Probability of Ship on Collision Courses Based on the New PAW Using MMG Model and AIS Data

    Directory of Open Access Journals (Sweden)

    I Putu Sindhu Asmara

    2015-03-01

    Full Text Available This paper proposes an estimation method for ships on collision courses taking crash astern maneuvers based on a new potential area of water (PAW for maneuvering. A crash astern maneuver is an emergency option a ship can take when exposed to the risk of a collision with other ships that have lost control. However, lateral forces and yaw moments exerted by the reversing propeller, as well as the uncertainty of the initial speed and initial yaw rate, will move the ship out of the intended stopping position landing it in a dangerous area. A new PAW for crash astern maneuvers is thus introduced. The PAW is developed based on a probability density function of the initial yaw rate. Distributions of the yaw rates and speeds are analyzed from automatic identification system (AIS data in Madura Strait, and estimated paths of the maneuvers are simulated using a mathematical maneuvering group model.

  4. Ruin Probabilities in a Dependent Discrete-Time Risk Model With Gamma-Like Tailed Insurance Risks

    Directory of Open Access Journals (Sweden)

    Xing-Fang Huang

    2017-03-01

    Full Text Available This paper considered a dependent discrete-time risk model, in which the insurance risks are represented by a sequence of independent and identically distributed real-valued random variables with a common Gamma-like tailed distribution; the financial risks are denoted by another sequence of independent and identically distributed positive random variables with a finite upper endpoint, but a general dependence structure exists between each pair of the insurance risks and the financial risks. Following the works of Yang and Yuen in 2016, we derive some asymptotic relations for the finite-time and infinite-time ruin probabilities. As a complement, we demonstrate our obtained result through a Crude Monte Carlo (CMC simulation with asymptotics.

  5. Influence of Coloured Correlated Noises on Probability Distribution and Mean of Tumour Cell Number in the Logistic Growth Model

    Institute of Scientific and Technical Information of China (English)

    HAN Li-Bo; GONG Xiao-Long; CAO Li; WU Da-Jin

    2007-01-01

    An approximate Fokker-P1anck equation for the logistic growth model which is driven by coloured correlated noises is derived by applying the Novikov theorem and the Fox approximation. The steady-state probability distribution (SPD) and the mean of the tumour cell number are analysed. It is found that the SPD is the single extremum configuration when the degree of correlation between the multiplicative and additive noises, λ, is in -1<λ ≤ 0 and can be the double extrema in 0<λ<1. A configuration transition occurs because of the variation of noise parameters. A minimum appears in the curve of the mean of the steady-state tumour cell number, 〈x〉, versus λ. The position and the value of the minimum are controlled by the noise-correlated times.

  6. Robotic Detection of Marine Litter Using Deep Visual Detection Models

    OpenAIRE

    Fulton, Michael; Hong, Jungseok; Islam, Md Jahidul; Sattar, Junaed

    2018-01-01

    Trash deposits in aquatic environments have a destructive effect on marine ecosystems and pose a long-term economic and environmental threat. Autonomous underwater vehicles (AUVs) could very well contribute to the solution of this problem by finding and eventually removing trash. A step towards this goal is the successful detection of trash in underwater environments. This paper evaluates a number of deep-learning algorithms to the task of visually detecting trash in realistic underwater envi...

  7. Reliability considerations of NDT by probability of detection (POD). Determination using ultrasound phased array. Results from a project in frame of the German nuclear safety research program

    International Nuclear Information System (INIS)

    Kurz, Jochen H.; Dugan, Sandra; Juengert, Anne

    2013-01-01

    Reliable assessment procedures are an important aspect of maintenance concepts. Non-destructive testing (NDT) methods are an essential part of a variety of maintenance plans. Fracture mechanical assessments require knowledge of flaw dimensions, loads and material parameters. NDT methods are able to acquire information on all of these areas. However, it has to be considered that the level of detail information depends on the case investigated and therefore on the applicable methods. Reliability aspects of NDT methods are of importance if quantitative information is required. Different design concepts e.g. the damage tolerance approach in aerospace already include reliability criteria of NDT methods applied in maintenance plans. NDT is also an essential part during construction and maintenance of nuclear power plants. In Germany, type and extent of inspection are specified in Safety Standards of the Nuclear Safety Standards Commission (KTA). Only certified inspections are allowed in the nuclear industry. The qualification of NDT is carried out in form of performance demonstrations of the inspection teams and the equipment, witnessed by an authorized inspector. The results of these tests are mainly statements regarding the detection capabilities of certain artificial flaws. In other countries, e.g. the U.S., additional blind tests on test blocks with hidden and unknown flaws may be required, in which a certain percentage of these flaws has to be detected. The knowledge of the probability of detection (POD) curves of specific flaws in specific testing conditions is often not present. This paper shows the results of a research project designed for POD determination of ultrasound phased array inspections of real and artificial cracks. The continuative objective of this project was to generate quantitative POD results. The distribution of the crack sizes of the specimens and the inspection planning is discussed, and results of the ultrasound inspections are presented. In

  8. Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context.

    Science.gov (United States)

    Karim, Mohammad Ehsanul; Platt, Robert W

    2017-06-15

    Correct specification of the inverse probability weighting (IPW) model is necessary for consistent inference from a marginal structural Cox model (MSCM). In practical applications, researchers are typically unaware of the true specification of the weight model. Nonetheless, IPWs are commonly estimated using parametric models, such as the main-effects logistic regression model. In practice, assumptions underlying such models may not hold and data-adaptive statistical learning methods may provide an alternative. Many candidate statistical learning approaches are available in the literature. However, the optimal approach for a given dataset is impossible to predict. Super learner (SL) has been proposed as a tool for selecting an optimal learner from a set of candidates using cross-validation. In this study, we evaluate the usefulness of a SL in estimating IPW in four different MSCM simulation scenarios, in which we varied the specification of the true weight model specification (linear and/or additive). Our simulations show that, in the presence of weight model misspecification, with a rich and diverse set of candidate algorithms, SL can generally offer a better alternative to the commonly used statistical learning approaches in terms of MSE as well as the coverage probabilities of the estimated effect in an MSCM. The findings from the simulation studies guided the application of the MSCM in a multiple sclerosis cohort from British Columbia, Canada (1995-2008), to estimate the impact of beta-interferon treatment in delaying disability progression. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution

    International Nuclear Information System (INIS)

    Keall, P J; Webb, S

    2007-01-01

    The heterogeneity of human tumour radiation response is well known. Researchers have used the normal distribution to describe interpatient tumour radiosensitivity. However, many natural phenomena show a log-normal distribution. Log-normal distributions are common when mean values are low, variances are large and values cannot be negative. These conditions apply to radiosensitivity. The aim of this work was to evaluate the log-normal distribution to predict clinical tumour control probability (TCP) data and to compare the results with the homogeneous (δ-function with single α-value) and normal distributions. The clinically derived TCP data for four tumour types-melanoma, breast, squamous cell carcinoma and nodes-were used to fit the TCP models. Three forms of interpatient tumour radiosensitivity were considered: the log-normal, normal and δ-function. The free parameters in the models were the radiosensitivity mean, standard deviation and clonogenic cell density. The evaluation metric was the deviance of the maximum likelihood estimation of the fit of the TCP calculated using the predicted parameters to the clinical data. We conclude that (1) the log-normal and normal distributions of interpatient tumour radiosensitivity heterogeneity more closely describe clinical TCP data than a single radiosensitivity value and (2) the log-normal distribution has some theoretical and practical advantages over the normal distribution. Further work is needed to test these models on higher quality clinical outcome datasets

  10. Emotion detection model of Filipino music

    Science.gov (United States)

    Noblejas, Kathleen Alexis; Isidro, Daryl Arvin; Samonte, Mary Jane C.

    2017-02-01

    This research explored the creation of a model to detect emotion from Filipino songs. The emotion model used was based from Paul Ekman's six basic emotions. The songs were classified into the following genres: kundiman, novelty, pop, and rock. The songs were annotated by a group of music experts based on the emotion the song induces to the listener. Musical features of the songs were extracted using jAudio while the lyric features were extracted by Bag-of- Words feature representation. The audio and lyric features of the Filipino songs were extracted for classification by the chosen three classifiers, Naïve Bayes, Support Vector Machines, and k-Nearest Neighbors. The goal of the research was to know which classifier would work best for Filipino music. Evaluation was done by 10-fold cross validation and accuracy, precision, recall, and F-measure results were compared. Models were also tested with unknown test data to further determine the models' accuracy through the prediction results.

  11. Multivariate normal tissue complication probability modeling of gastrointestinal toxicity after external beam radiotherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Cella, Laura; D’Avino, Vittoria; Liuzzi, Raffaele; Conson, Manuel; Doria, Francesca; Faiella, Adriana; Loffredo, Filomena; Salvatore, Marco; Pacelli, Roberto

    2013-01-01

    The risk of radio-induced gastrointestinal (GI) complications is affected by several factors other than the dose to the rectum such as patient characteristics, hormonal or antihypertensive therapy, and acute rectal toxicity. Purpose of this work is to study clinical and dosimetric parameters impacting on late GI toxicity after prostate external beam radiotherapy (RT) and to establish multivariate normal tissue complication probability (NTCP) model for radiation-induced GI complications. A total of 57 men who had undergone definitive RT for prostate cancer were evaluated for GI events classified using the RTOG/EORTC scoring system. Their median age was 73 years (range 53–85). The patients were assessed for GI toxicity before, during, and periodically after RT completion. Several clinical variables along with rectum dose-volume parameters (Vx) were collected and their correlation to GI toxicity was analyzed by Spearman’s rank correlation coefficient (Rs). Multivariate logistic regression method using resampling techniques was applied to select model order and parameters for NTCP modeling. Model performance was evaluated through the area under the receiver operating characteristic curve (AUC). At a median follow-up of 30 months, 37% (21/57) patients developed G1-2 acute GI events while 33% (19/57) were diagnosed with G1-2 late GI events. An NTCP model for late mild/moderate GI toxicity based on three variables including V65 (OR = 1.03), antihypertensive and/or anticoagulant (AH/AC) drugs (OR = 0.24), and acute GI toxicity (OR = 4.3) was selected as the most predictive model (Rs = 0.47, p < 0.001; AUC = 0.79). This three-variable model outperforms the logistic model based on V65 only (Rs = 0.28, p < 0.001; AUC = 0.69). We propose a logistic NTCP model for late GI toxicity considering not only rectal irradiation dose but also clinical patient-specific factors. Accordingly, the risk of G1-2 late GI increases as V65 increases, it is higher for patients experiencing

  12. An integrated logit model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables

    Science.gov (United States)

    Cannon, Alex J.

    2018-01-01

    Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin

  14. Optimal Release Time and Sensitivity Analysis Using a New NHPP Software Reliability Model with Probability of Fault Removal Subject to Operating Environments

    Directory of Open Access Journals (Sweden)

    Kwang Yoon Song

    2018-05-01

    Full Text Available With the latest technological developments, the software industry is at the center of the fourth industrial revolution. In today’s complex and rapidly changing environment, where software applications must be developed quickly and easily, software must be focused on rapidly changing information technology. The basic goal of software engineering is to produce high-quality software at low cost. However, because of the complexity of software systems, software development can be time consuming and expensive. Software reliability models (SRMs are used to estimate and predict the reliability, number of remaining faults, failure intensity, total and development cost, etc., of software. Additionally, it is very important to decide when, how, and at what cost to release the software to users. In this study, we propose a new nonhomogeneous Poisson process (NHPP SRM with a fault detection rate function affected by the probability of fault removal on failure subject to operating environments and discuss the optimal release time and software reliability with the new NHPP SRM. The example results show a good fit to the proposed model, and we propose an optimal release time for a given change in the proposed model.

  15. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2010-01-01

    This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications....... The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended to competing risk survival models....

  16. Design and Selection of Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication Probability Modeling of Xerostomia.

    Science.gov (United States)

    Gabryś, Hubert S; Buettner, Florian; Sterzing, Florian; Hauswald, Henrik; Bangert, Mark

    2018-01-01

    The purpose of this study is to investigate whether machine learning with dosiomic, radiomic, and demographic features allows for xerostomia risk assessment more precise than normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands. A cohort of 153 head-and-neck cancer patients was used to model xerostomia at 0-6 months (early), 6-15 months (late), 15-24 months (long-term), and at any time (a longitudinal model) after radiotherapy. Predictive power of the features was evaluated by the area under the receiver operating characteristic curve (AUC) of univariate logistic regression models. The multivariate NTCP models were tuned and tested with single and nested cross-validation, respectively. We compared predictive performance of seven classification algorithms, six feature selection methods, and ten data cleaning/class balancing techniques using the Friedman test and the Nemenyi post hoc analysis. NTCP models based on the parotid mean dose failed to predict xerostomia (AUCs  0.85), dose gradients in the right-left (AUCs > 0.78), and the anterior-posterior (AUCs > 0.72) direction. Multivariate models of long-term xerostomia were typically based on the parotid volume, the parotid eccentricity, and the dose-volume histogram (DVH) spread with the generalization AUCs ranging from 0.74 to 0.88. On average, support vector machines and extra-trees were the top performing classifiers, whereas the algorithms based on logistic regression were the best choice for feature selection. We found no advantage in using data cleaning or class balancing methods. We demonstrated that incorporation of organ- and dose-shape descriptors is beneficial for xerostomia prediction in highly conformal radiotherapy treatments. Due to strong reliance on patient-specific, dose-independent factors, our results underscore the need for development of personalized data-driven risk profiles for NTCP models of xerostomia. The facilitated