WorldWideScience

Sample records for modelingstream temperature modeling

  1. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.

    2011-05-16

    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  2. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.; Wang, Jue; Genton, Marc G.

    2011-01-01

    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  3. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  4. Temperature Calculations in the Coastal Modeling System

    Science.gov (United States)

    2017-04-01

    ERDC/CHL CHETN-IV-110 April 2017 Approved for public release; distribution is unlimited . Temperature Calculations in the Coastal Modeling...tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature

  5. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  6. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  7. Temperature Dependent Models of Semiconductor Devices for ...

    African Journals Online (AJOL)

    The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...

  8. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jensen, Jakob M.

    2012-01-01

    In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... that captures the environmental temperature differences inside the reactor using distributed parameters. A Kalman filter is then added to account for any missing dynamics and the overall model is embedded into a temperature soft sensor. The operator of the plant will be able to observe the temperature in any...

  9. Multiple Temperature Model for Near Continuum Flows

    International Nuclear Information System (INIS)

    XU, Kun; Liu, Hongwei; Jiang, Jianzheng

    2007-01-01

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

  10. Modeling of concrete response at high temperature

    International Nuclear Information System (INIS)

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  11. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  12. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  13. Effective model for deconfinement at high temperature

    International Nuclear Information System (INIS)

    Skokov, Vladimir

    2013-01-01

    In this talk I consider the deconfining phase transition at nonzero temperature in a SU(N) gauge theory, using a matrix model. I present some results including the position of the deconfining critical endpoint, where the first order transition for deconfinement is washed out by the presence of massive, dynamical quarks, and properites of the phase transition in the limit of large N. I show that the model is soluble at infinite N, and exhibits a Gross-Witten-Wadia transition

  14. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  15. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  16. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  17. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  18. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  19. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  20. Temperature Buffer Test. Final THM modelling

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan; Ledesma, Alberto; Jacinto, Abel

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code B right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code B right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  1. Temperature Buffer Test. Final THM modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan [Clay Technology AB, Lund (Sweden); Ledesma, Alberto; Jacinto, Abel [UPC, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code{sub B}right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code{sub B}right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  2. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  3. Integrated flow and temperature modeling at the catchment scale

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael

    2013-01-01

    –groundwater dynamics affect stream temperature. A coupled surface water–groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream...

  4. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  5. Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling

    NARCIS (Netherlands)

    Bonté, D.; Wees, J.-D. van; Verweij, J.M.

    2012-01-01

    Subsurface temperature is a key parameter for geothermal energy prospection in sedimentary basins. Here, we present the results of a 3D temperature modelling using a thermal-tectonic forward modelling method, calibrated with subsurface temperature measurements in the Netherlands. The first step

  6. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  7. A temperature dependent slip factor based thermal model for friction

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  8. Modeling of AlMg Sheet Forming at Elevated Temperatures

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Bolt, P.; Werkhoven, R.

    2001-01-01

    The process limits of aluminum sheet forming processes can be improved by control-ling local flow behavior by means of elevated temperatures and temperature gradients. In order to accurately model the deep drawing or stretching of aluminum sheet at elevated temperatures, a model is required that

  9. Modeling shoot-tip temperature in the greenhouse environment

    International Nuclear Information System (INIS)

    Faust, J.E.; Heins, R.D.

    1998-01-01

    An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m -2 . Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint. (author)

  10. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system co...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  11. Modelling of temperature distribution and temperature pulsations in elements of fast breeder reactor

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Bogoslovskaia, G.P.; Ushakov, P.A.; Zhukov, A.V.; Ivanov, Eu.F.; Matjukhin, N.M.

    2004-01-01

    From thermophysical point of view, integrated configuration of liquid metal cooled reactor has some limitations. Large volume of mixing chamber causes a complex behavior of thermal hydraulic characteristics in such facilities. Also, this volume is responsible for large-scale eddies in the coolant, existence of stagnant areas and flow stratification, occurrence of temperature non-uniformity and pulsation of coolant and structure temperatures. Temperature non-uniformities and temperature pulsations depend heavily even on small variations in reactor core design. The paper presents some results on modeling of thermal hydraulic processes occurring in liquid metal cooled reactor. The behavior of following parameters are discussed: temperature non-uniformities at the core output and related temperature pulsations; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation at the core output and related temperature pulsation; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation of temperature during transients and during transition to natural convection cooling. Also, the issue of modeling of temperature behavior in compact arrangement of fast reactor fuel pins using water as modeling liquid is considered in the paper. One more discussion is concerned with experimental method of modeling of liquid metal mixing with the use of air. The method is based on freon tracer technique. The results of simulation of the thermal hydraulic processes mentioned above have been analyzed, that will allow the main lines of the study to be determined and conclusion to be drawn regarding the temperature behavior in fast reactor units. (author)

  12. Low-temperature plasma modelling and simulation

    NARCIS (Netherlands)

    Dijk, van J.

    2011-01-01

    Since its inception in the beginning of the twentieth century, low-temperature plasma science has become a major ¿eld of science. Low-temperature plasma sources and gas discharges are found in domestic, industrial, atmospheric and extra-terrestrial settings. Examples of domestic discharges are those

  13. Temperature bounds in a model of laminar flames

    International Nuclear Information System (INIS)

    Kirane, M.; Badraoui, S.

    1994-06-01

    We consider reaction-diffusion equations coupling temperature and mass fraction in one-step-reaction model of combustion in R N . Uniform temperature bounds are derived when the Lewis number is less than one. This result completes the case of Lewis number greater than one studied by J.D. Avrin and M. Kirane ''Temperature growth and temperature bounds in special cases of combustion models'' (to appear in Applicable Analysis). (author). 5 refs

  14. A material model for aluminium sheet forming at elevated temperatures

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Werkhoven, R.J.; Bolt, P.J.

    2001-01-01

    In order to accurately simulate the deep drawing or stretching of aluminum sheet at elevated temperatures, a model is required that incorporates the temperature and strain-rate dependency of the material. In this paper two models are compared: a phenomenological material model in which the

  15. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

    National Research Council Canada - National Science Library

    Raye, Julie K; Smith, Ralph C

    2004-01-01

    This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...

  16. MODELS OF HOURLY DRY BULB TEMPERATURE AND ...

    African Journals Online (AJOL)

    Hourly meteorological data of both dry bulb temperature and relative humidity for 18 locations in Nigeria for the period 1995 to 2009 were analysed to obtain the mean monthly average and monthly hourly average of each of the two meteorological variables for each month for each location. The difference between the ...

  17. Modelling of tandem cell temperature coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  18. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  19. Modeling of the Temperature Field Recovery in the Oil Pool

    Science.gov (United States)

    Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.

    2018-05-01

    This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

  20. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  1. Stability of the Hartree-Fock model with temperature

    OpenAIRE

    Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu

    2008-01-01

    This paper is devoted to the Hartree-Fock model with temperature in the euclidean space. For large classes of free energy functionals, minimizers are obtained as long as the total charge of the system does not exceed a threshold which depends on the temperature. The usual Hartree-Fock model is recovered in the zero temperature limit. An orbital stability result for the Cauchy problem is deduced from the variational approach.

  2. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  3. A mathematical model for transducer working at high temperature

    International Nuclear Information System (INIS)

    Fabre, J.P.

    1974-01-01

    A mathematical model is proposed for a lithium niobate piezoelectric transducer working at high temperature in liquid sodium. The model proposed suitably described the operation of the high temperature transducer presented; it allows the optimization of the efficiency and band-pass [fr

  4. Modeling, Prediction, and Control of Heating Temperature for Tube Billet

    Directory of Open Access Journals (Sweden)

    Yachun Mao

    2015-01-01

    Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.

  5. Mathematical modeling of large floating roof reservoir temperature arena

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2018-03-01

    Full Text Available The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.

  6. Finite temperature CPN-1 model and long range Neel order

    International Nuclear Information System (INIS)

    Ichinose, Ikuo; Yamamoto, Hisashi.

    1989-09-01

    We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)

  7. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  8. Quantification Model for Estimating Temperature Field Distributions of Apple Fruit

    OpenAIRE

    Zhang , Min; Yang , Le; Zhao , Huizhong; Zhang , Leijie; Zhong , Zhiyou; Liu , Yanling; Chen , Jianhua

    2009-01-01

    International audience; A quantification model of transient heat conduction was provided to simulate apple fruit temperature distribution in the cooling process. The model was based on the energy variation of apple fruit of different points. It took into account, heat exchange of representative elemental volume, metabolism heat and external heat. The following conclusions could be obtained: first, the quantification model can satisfactorily describe the tendency of apple fruit temperature dis...

  9. Modelling of a multi-temperature plasma composition

    International Nuclear Information System (INIS)

    Liani, B.; Benallal, R.; Bentalha, Z.

    2005-01-01

    Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. The authors use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32(1999)1711] can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature T e varies in the range 8000∼20000 K at atmospheric pressure. (authors)

  10. Modeling the temperature dependence of thermophysical properties: Study on the effect of temperature dependence for RFA.

    Science.gov (United States)

    Watanabe, Hiroki; Kobayashi, Yo; Hashizume, Makoto; Fujie, Masakatsu G

    2009-01-01

    Radio frequency ablation (RFA) has increasingly been used over the past few years and RFA treatment is minimally invasive for patients. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. With this in mind, an ablation system using numerical simulation to analyze the temperature distribution of the organ is needed to overcome this deficiency. The objective of our work is to develop a temperature dependent thermophysical liver model. First, an overview is given of the development of the thermophysical liver model. Second, a simulation to evaluate the effect of temperature dependence of the thermophysical properties of the liver is explained. Finally, the result of the simulation, which indicated that the temperature dependence of thermophysical properties accounts for temperature differences influencing the accuracy of RFA treatment is described.

  11. Univaried models in the series of temperature of the air

    International Nuclear Information System (INIS)

    Leon Aristizabal Gloria esperanza

    2000-01-01

    The theoretical framework for the study of the air's temperature time series is the theory of stochastic processes, particularly those known as ARIMA, that make it possible to carry out a univaried analysis. ARIMA models are built in order to explain the structure of the monthly temperatures corresponding to the mean, the absolute maximum, absolute minimum, maximum mean and minimum mean temperatures, for four stations in Colombia. By means of those models, the possible evolution of the latter variables is estimated with predictive aims in mind. The application and utility of the models is discussed

  12. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  13. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  14. Modeling temperature noise in a fast-reactor pile

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    To observe partial overlapping of the heat carrier cross section in piles, leading to local temperature rise or boiling of the sodium, provision is made for individual monitoring of the fuel assemblies with respect to the output temperature. Since the deviation of the mean flow rate through the pile and the output temperature is slight with this anomaly, the temperature fluctuations may provide a more informative index. The change in noise characteristics with partial overlapping of the cross sections occurs because of strong distortion of the temperature profile in the overlap region. The turbulent flow in the upper part of the pile transforms this nonuniformity into temperature pulsations which may be recorded by a sensor at the pile output. In this paper the characteristics of temperature noise are studied for various pile conditions and sensor locations by statistical modeling

  15. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    Science.gov (United States)

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  16. A generalized conditional heteroscedastic model for temperature downscaling

    Science.gov (United States)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  17. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  18. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  19. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  20. A high temperature interparticle potential for an alternative gauge model

    International Nuclear Information System (INIS)

    Doria, R.M.

    1984-01-01

    A thermal Wilson loop for a model with two gauge fields associated with the same gauge group is discussed. Deconfinement appears at high temperature. It is not possible however specify the colour of the deconfined matter. (Author) [pt

  1. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    The temperature field, heat transfer rate and thermal stresses were investigated with numerical simulation models using FORTRAN FE (finite element) software. ...... specific heats, International Communications in Heat and Mass Transfer, Vol.

  2. Evaluation of brightness temperature from a forward model of ...

    Indian Academy of Sciences (India)

    profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of ... structure of the atmosphere in numerical weather prediction models. ..... quency channels that can be used in building.

  3. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  4. Modeling the Temperature Effect of Orientations in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Sabahat Arif

    2012-07-01

    Full Text Available Indoor thermal comfort in a building has been an important issue for the environmental sustainability. It is an accepted fact that their designs and planning consume a lot of energy in the modern architecture of 20th and 21st centuries. An appropriate orientation of a building can provide thermally comfortable indoor temperatures which otherwise can consume extra energy to condition these spaces through all the seasons. This experimental study investigates the potential effect of this solar passive design strategy on indoor temperatures and a simple model is presented for predicting indoor temperatures based upon the ambient temperatures.

  5. Peltier cells as temperature control elements: Experimental characterization and modeling

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio

    2014-01-01

    The use of Peltier cells to realize compact and precise temperature controlled devices is under continuous extension in recent years. In order to support the design of temperature control systems, a simplified modeling of heat transfer dynamics for thermoelectric devices is presented. By following a macroscopic approach, the heat flux removed at the cold side of Peltier cell can be expressed as Q . c =γ(T c −T c eq ), where γ is a coefficient dependent on the electric current, T c and T c eq are the actual and steady state cold side temperature, respectively. On the other hand, a microscopic modeling approach was pursued via finite element analysis software packages. To validate the models, an experimental apparatus was designed and build-up, consisting in a sample vial with the surfaces in direct contact with Peltier cells. Both modeling approaches led to reliable prediction of transient and steady state sample temperature. -- Highlights: • Simplified modeling of heat transfer dynamics in Peltier cells. • Coupled macroscopic and microscopic approach. • Experimental apparatus: temperature control of a sample vial. • Both modeling approaches predict accurately the transient and steady state sample temperature

  6. Temperature modelling and prediction for activated sludge systems.

    Science.gov (United States)

    Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K

    2009-01-01

    Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.

  7. Investigation of approximate models of experimental temperature characteristics of machines

    Science.gov (United States)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  8. Temperature shifts in the Sinai model: static and dynamical effects

    International Nuclear Information System (INIS)

    Sales, Marta; Bouchaud, Jean-Philippe; Ritort, Felix

    2003-01-01

    We study analytically and numerically the role of temperature shifts in the simplest model where the energy landscape is explicitly hierarchical, namely the Sinai model. This model has both attractive features (there are valleys within valleys in a strict self-similar sense), but also one important drawback: there is no phase transition so that the model is, in the large-size limit, effectively at zero temperature. We compute various static chaos indicators, that are found to be trivial in the large-size limit, but exhibit interesting features for finite sizes. Correspondingly, for finite times, some interesting rejuvenation effects, related to the self-similar nature of the potential, are observed. Still, the separation of time scales/length scales with temperature in this model is much weaker than in experimental spin glasses

  9. A new weighted mean temperature model in China

    Science.gov (United States)

    Liu, Jinghong; Yao, Yibin; Sang, Jizhang

    2018-01-01

    The Global Positioning System (GPS) has been applied in meteorology to monitor the change of Precipitable Water Vapor (PWV) in atmosphere, transformed from Zenith Wet Delay (ZWD). A key factor in converting the ZWD into the PWV is the weighted mean temperature (Tm), which has a direct impact on the accuracy of the transformation. A number of Bevis-type models, like Tm -Ts and Tm -Ts,Ps type models, have been developed by statistics approaches, and are not able to clearly depict the relationship between Tm and the surface temperature, Ts . A new model for Tm , called weighted mean temperature norm model (abbreviated as norm model), is derived as a function of Ts , the lapse rate of temperature, δ, the tropopause height, htrop , and the radiosonde station height, hs . It is found that Tm is better related to Ts through an intermediate temperature. The small effects of lapse rate can be ignored and the tropopause height be obtained from an empirical model. Then the norm model is reduced to a simplified form, which causes fewer loss of accuracy and needs two inputs, Ts and hs . In site-specific fittings, the norm model performs much better, with RMS values reduced averagely by 0.45 K and the Mean of Absolute Differences (MAD) values by 0.2 K. The norm model is also found more appropriate than the linear models to fit Tm in a large area, not only with the RMS value reduced from 4.3 K to 3.80 K, correlation coefficient R2 increased from 0.84 to 0.88, and MAD decreased from 3.24 K to 2.90 K, but also with the distribution of simplified model values to be more reasonable. The RMS and MAD values of the differences between reference and computed PWVs are reduced by on average 16.3% and 14.27%, respectively, when using the new norm models instead of the linear model.

  10. Modelling the effect of temperature on seed germination in some ...

    African Journals Online (AJOL)

    The prediction of germination percentage (GP) and germination speed (GS) of the seeds for some cucurbits (watermelon, melon, cucumber, summer squash, pumpkin and winter squash) was investigated by mathematical model based on temperature. The model, D = [a - (b x T) + (c x T2)] of Uzun et al. (2001), was adapted ...

  11. Mathematical modelling of steam generator and design of temperature regulator

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)

    1999-07-01

    The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)

  12. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  13. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  14. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Science.gov (United States)

    Portner, H.; Wolf, A.; Bugmann, H.

    2009-04-01

    Many biogeochemical models have been applied to study the response of the carbon cycle to changes in climate, whereby the process of carbon uptake (photosynthesis) has usually gained more attention than the equally important process of carbon release by respiration. The decomposition of soil organic matter is driven by a combination of factors with a prominent one being soil temperature [Berg and Laskowski(2005)]. One uncertainty concerns the response function used to describe the sensitivity of soil organic matter decomposition to temperature. This relationship is often described by one out of a set of similar exponential functions, but it has not been investigated how uncertainties in the choice of the response function influence the long term predictions of biogeochemical models. We built upon the well-established LPJ-GUESS model [Smith et al.(2001)]. We tested five candidate functions and calibrated them against eight datasets from different Ameriflux and CarboEuropeIP sites [Hibbard et al.(2006)]. We used a simple Exponential function with a constant Q10, the Arrhenius function, the Gaussian function [Tuomi et al.(2008), O'Connell(1990)], the Van't Hoff function [Van't Hoff(1901)] and the Lloyd&Taylor function [Lloyd and Taylor(1994)]. We assessed the impact of uncertainty in model formulation of temperature response on estimates of present and future long-term carbon storage in ecosystems and hence on the CO2 feedback potential to the atmosphere. We specifically investigated the relative importance of model formulation and the error introduced by using different data sets for the parameterization. Our results suggested that the Exponential and Arrhenius functions are inappropriate, as they overestimated the respiration rates at lower temperatures. The Gaussian, Van't Hoff and Lloyd&Taylor functions all fit the observed data better, whereby the functions of Gaussian and Van't Hoff underestimated the response at higher temperatures. We suggest, that the

  15. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  16. Statistical Downscaling of Temperature with the Random Forest Model

    Directory of Open Access Journals (Sweden)

    Bo Pang

    2017-01-01

    Full Text Available The issues with downscaling the outputs of a global climate model (GCM to a regional scale that are appropriate to hydrological impact studies are investigated using the random forest (RF model, which has been shown to be superior for large dataset analysis and variable importance evaluation. The RF is proposed for downscaling daily mean temperature in the Pearl River basin in southern China. Four downscaling models were developed and validated by using the observed temperature series from 61 national stations and large-scale predictor variables derived from the National Center for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. The proposed RF downscaling model was compared to multiple linear regression, artificial neural network, and support vector machine models. Principal component analysis (PCA and partial correlation analysis (PAR were used in the predictor selection for the other models for a comprehensive study. It was shown that the model efficiency of the RF model was higher than that of the other models according to five selected criteria. By evaluating the predictor importance, the RF could choose the best predictor combination without using PCA and PAR. The results indicate that the RF is a feasible tool for the statistical downscaling of temperature.

  17. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  18. Understanding and quantifying foliar temperature acclimation for Earth System Models

    Science.gov (United States)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  19. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  20. Cloud Impacts on Pavement Temperature in Energy Balance Models

    Science.gov (United States)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  1. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  2. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  3. Modeling apple surface temperature dynamics based on weather data.

    Science.gov (United States)

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  4. A complex autoregressive model and application to monthly temperature forecasts

    Directory of Open Access Journals (Sweden)

    X. Gu

    2005-11-01

    Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.

  5. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  6. Temperature driven annealing of perforations in bicellar model membranes.

    Science.gov (United States)

    Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter

    2011-04-19

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society

  7. Modelling of the high temperature behaviour of metallic materials

    International Nuclear Information System (INIS)

    Mohr, R.

    1999-01-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of a chromium steel and an intermetallic titanium aluminide alloy. (orig.)

  8. Neuro-models for discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    Nonlinear neuro-models for a discharge air temperature (DAT) system are developed. Experimental data gathered in a heating ventilating and air conditioning (HVAC) test facility is used to develop multi-input multi-output (MIMO) and single-input single-output (SISO) neuro-models. Several different network architectures were explored to build the models. Results show that a three layer second order neural network structure is necessary to achieve good accuracy of the predictions. Results from the developed models are compared, and some observations on sensitivity and standard deviation errors are presented

  9. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  10. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  11. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  12. Analytic regularization of the Yukawa model at finite temperature

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Svaiter, N.F.; Svaiter, B.F.

    1996-07-01

    It is analysed the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. Ir order to regularize the model a mix between dimensional and analytic regularization procedures is used. It is found a general expression for the fermionic contribution in arbitrary spacetime dimension. It is also found that in D = 3 this contribution is finite. (author). 19 refs

  13. Modeling Silicate Weathering for Elevated CO2 and Temperature

    Science.gov (United States)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  14. Modeling temperature variations in a pilot plant thermophilic anaerobic digester.

    Science.gov (United States)

    Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max

    2011-05-01

    A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.

  15. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    it acts as an insulating medium and prevents the heat flow, hence the need of providing insulation coating on valves is ... geometry metal components (piston, liner and cylinder head) and found a satisfactory .... model. Step8: Find the radial thermal stress at all the nodal point with the use of temperature ..... Cast iron St. 70.

  16. Modelling the effect of temperature on seed germination in some ...

    African Journals Online (AJOL)

    USER

    2010-03-01

    Mar 1, 2010 ... utilizes temperature for predicting seed germination and the model can be applied to ... seeds were sprinkled on round filter papers (Watman No. 1) in a 9 cm Petri dish and ..... A review of research on seedbed preparation for ...

  17. Last interglacial temperature evolution – a model inter-comparison

    Directory of Open Access Journals (Sweden)

    P. Bakker

    2013-03-01

    Full Text Available There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG. This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter

  18. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-08-01

    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  19. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...

  20. On the Temperature Dependence of the UNIQUAC/UNIFAC Models

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage

    1980-01-01

    of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models...... parameters based on excess enthalpy data, and the prediction of excess enthalpy information from only one isothermal set of vapor-liquid equilibrium data is qualitatively acceptable. A parameter table for the modified UNIFAC model is given for the five main groups: CH2, C = C, ACH, ACCH2 and CH2O.......Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...

  1. Zero temperature landscape of the random sine-Gordon model

    International Nuclear Information System (INIS)

    Sanchez, A.; Bishop, A.R.; Cai, D.

    1997-01-01

    We present a preliminary summary of the zero temperature properties of the two-dimensional random sine-Gordon model of surface growth on disordered substrates. We found that the properties of this model can be accurately computed by using lattices of moderate size as the behavior of the model turns out to be independent of the size above certain length (∼ 128 x 128 lattices). Subsequently, we show that the behavior of the height difference correlation function is of (log r) 2 type up to a certain correlation length (ξ ∼ 20), which rules out predictions of log r behavior for all temperatures obtained by replica-variational techniques. Our results open the way to a better understanding of the complex landscape presented by this system, which has been the subject of very many (contradictory) analysis

  2. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  3. Theoretical modeling of critical temperature increase in metamaterial superconductors

    Science.gov (United States)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  4. On effective temperature in network models of collective behavior

    International Nuclear Information System (INIS)

    Porfiri, Maurizio; Ariel, Gil

    2016-01-01

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems with small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.

  5. Baryon number dissipation at finite temperature in the standard model

    International Nuclear Information System (INIS)

    Mottola, E.; Raby, S.; Starkman, G.

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, γ is given in terms of real time correlation functions of the operator E·B, and is directly proportional to the sphaleron transition rate, Γ: γ preceq n f Γ/T 3 . Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs

  6. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  7. Elevated temperature alters carbon cycling in a model microbial community

    Science.gov (United States)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  8. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  9. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  10. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  11. Model predictive control of room temperature with disturbance compensation

    Science.gov (United States)

    Kurilla, Jozef; Hubinský, Peter

    2017-08-01

    This paper deals with temperature control of multivariable system of office building. The system is simplified to several single input-single output systems by decoupling their mutual linkages, which are separately controlled by regulator based on generalized model predictive control. Main part of this paper focuses on the accuracy of the office temperature with respect to occupancy profile and effect of disturbance. Shifting of desired temperature and changing of weighting coefficients are used to achieve the desired accuracy of regulation. The final structure of regulation joins advantages of distributed computing power and possibility to use network communication between individual controllers to consider the constraints. The advantage of using decoupled MPC controllers compared to conventional PID regulators is demonstrated in a simulation study.

  12. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  13. Modelling of monovacancy diffusion in W over wide temperature range

    International Nuclear Information System (INIS)

    Bukonte, L.; Ahlgren, T.; Heinola, K.

    2014-01-01

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10 15 Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T m , resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures

  14. A multifluid model extended for strong temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.

  15. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  16. On the fate of the Standard Model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)

    2016-05-10

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  17. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  18. Modelling Ischemic Stroke and Temperature Intervention Using Vascular Porous Method

    Science.gov (United States)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2017-11-01

    In the event of cerebral infarction, a region of tissue is supplied with insufficient blood flow to support normal metabolism. This can lead to an ischemic reaction which incurs cell death. Through a reduction of temperature, the metabolic demand can be reduced, which then offsets the onset of necrosis. This allows extra time for the patient to receive medical attention and could help prevent permanent brain damage from occurring. Here, we present a vascular-porous (VaPor) blood flow model that can simulate such an event. Cerebral blood flow is simulated using a combination of 1-Dimensional vessels embedded in 3-Dimensional porous media. This allows for simple manipulation of the structure and determining the effect of an obstructed vessel. Results show regional temperature increase of 1-1.5°C comparable with results from literature (in contrast to previous simpler models). Additionally, the application of scalp cooling in such an event dramatically reduces the temperature in the affected region to near hypothermic temperatures, which points to a potential rapid form of first intervention.

  19. Temperature-influenced energetics model for migrating waterfowl

    Science.gov (United States)

    Aagaard, Kevin; Thogmartin, Wayne E.; Lonsdorg, Eric V.

    2018-01-01

    Climate and weather affect avian migration by influencing when and where birds fly, the energy costs and risks of flight, and the ability to sense cues necessary for proper navigation. We review the literature of the physiology of avian migration and the influence of climate, specifically temperature, on avian migration dynamics. We use waterfowl as a model guild because of the ready availability of empirical physiological data and their enormous economic value, but our discussion and expectations are broadly generalizable to migratory birds in general. We detail potential consequences of an increasingly warm climate on avian migration, including the possibility of the cessation of migration by some populations and species. Our intent is to lay the groundwork for including temperature effects on energetic gains and losses of migratory birds with the expected consequences of increasing temperatures into a predictive modeling framework. To this end, we provide a simulation of migration progression exclusively focused on the influence of temperature on the physiological determinants of migration. This simulation produced comparable results to empirically derived and observed values for different migratory factors (e.g., body fat content, flight range, departure date). By merging knowledge from the arenas of avian physiology and migratory theory we have identified a clear need for research and have developed hypotheses for a path forward.

  20. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    Science.gov (United States)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  1. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  2. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  3. Foundations of modelling of nonequilibrium low-temperature plasmas

    Science.gov (United States)

    Alves, L. L.; Bogaerts, A.; Guerra, V.; Turner, M. M.

    2018-02-01

    This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma-surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.

  4. A Methodology for Modeling Confined, Temperature Sensitive Cushioning Systems

    Science.gov (United States)

    1980-06-01

    thickness of cushion T, and®- s temperature 0, and as a dependent variable, G, the peak acceleration. The initial model, Equation (IV-11), proved deficient ...k9) = TR * TCTH ALV(60) = Tk * TCTH AL2 V6)= Tk2 * FCTH V2 =TRk * TCrFH *AL V(6~3) =THZ * TC.TH AU! V(,34) =TRa * TCTH 141 Yj)=Tks * T(-Th * AL V(.4b

  5. An Empirical Temperature Variance Source Model in Heated Jets

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  6. Modeling of helium effects in metals: High temperature embrittlement

    International Nuclear Information System (INIS)

    Trinkaus, H.

    1985-01-01

    The effects of helium on swelling, creep rupture and fatigue properties of fusion reactor materials subjected to (n,α)-reactions and/or direct α-injection, are controlled by bubble formation. The understanding of such effects requires therefore the modeling of (1) diffusional reactions of He atoms with other defects; (2) nucleation and growth of He bubbles; (3) transformation of such bubbles into cavities under continuous He generation and irradiation or creep stress. The present paper is focussed on the modeling of the (coupled) high temperature bubble nucleation and growth processes within and on grain boundaries. Two limiting cases are considered: di-atomic nucleation described by the simplest possible sets of rate equations, and multi-atomic nucleation described by classical nucleation theory. Scaling laws are derived which characterize the dependence of the bubble densities upon time (He-dose), He generation rate and temperature. Comparison with experimental data of AISI 316 SS α-implanted at temperatures around 1000 K indicates bubble nucleation of the multi-atomic type. The nucleation and growth models are applied to creep tests performed during α-implantation suggesting that in these cases gas driven bubble growth is the life time controlling mechanism. The narrow (creep stress/He generation rate) range of this mechanism in a mechanism map constructed from these tests indicates that in many reactor situations the time to rupture is probably controlled by stress driven cavity growth rather than by gas driven bubble growth. (orig.)

  7. SMOS brightness temperature assimilation into the Community Land Model

    Directory of Open Access Journals (Sweden)

    D. Rains

    2017-11-01

    Full Text Available SMOS (Soil Moisture and Ocean Salinity mission brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF as well as to the Community Microwave Emission Model (CMEM. Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010–2015. Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 % for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.

  8. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter; Jü ngel, Ansgar; Aoki, Kazuo

    2010-01-01

    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  9. High-temperature series expansions for random Potts models

    Directory of Open Access Journals (Sweden)

    M.Hellmund

    2005-01-01

    Full Text Available We discuss recently generated high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices. Using the star-graph expansion technique, quenched disorder averages can be calculated exactly for arbitrary uncorrelated coupling distributions while keeping the disorder strength p as well as the dimension d as symbolic parameters. We present analyses of the new series for the susceptibility of the Ising (q=2 and 4-state Potts model in three dimensions up to the order 19 and 18, respectively, and compare our findings with results from field-theoretical renormalization group studies and Monte Carlo simulations.

  10. Reheating temperature and gauge mediation models of supersymmetry breaking

    International Nuclear Information System (INIS)

    Olechowski, Marek; Pokorski, Stefan; Turzynski, Krzysztof; Wells, James D.

    2009-01-01

    For supersymmetric theories with gravitino dark matter, the maximal reheating temperature consistent with big bang nucleosynthesis bounds arises when the physical gaugino masses are degenerate. We consider the cases of a stau or sneutrino next-to-lightest superpartner, which have relatively less constraint from big bang nucleosynthesis. The resulting parameter space is consistent with leptogenesis requirements, and can be reached in generalized gauge mediation models. Such models illustrate a class of theories that overcome the well-known tension between big bang nucleosynthesis and leptogenesis.

  11. Effects of electrostatic discharge on three cryogenic temperature sensor models

    Energy Technology Data Exchange (ETDEWEB)

    Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  12. Effects of electrostatic discharge on three cryogenic temperature sensor models

    International Nuclear Information System (INIS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure

  13. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  14. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    International Nuclear Information System (INIS)

    Marnier, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b)

  15. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  16. Low reheating temperatures in monomial and binomial inflationary models

    International Nuclear Information System (INIS)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-01-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ 2 inflationary potential is no longer favored by current CMB data, as well as ϕ p with p>2, a ϕ 1 potential and canonical reheating (w re =0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n s , implies an upper bound on the reheating temperature of T re ≲6×10 10 GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ 1 potential. We find that as a subdominant ϕ 2 term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T re =4 MeV is excluded by the Planck 2015 68% confidence limit

  17. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Model for low temperature oxidation during long term interim storage

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, Clara; Bertrand, Nathalie; Gauvain, Danielle; Terlain, Anne [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, CEA/Saclay - 91191 Gif-sur-Yvette Cedex (France); Poquillon, Dominique; Monceau, Daniel [CIRIMAT UMR 5085, ENSIACET-INPT, 31077 Toulouse Cedex 4 (France)

    2004-07-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  19. Model for low temperature oxidation during long term interim storage

    International Nuclear Information System (INIS)

    Desgranges, Clara; Bertrand, Nathalie; Gauvain, Danielle; Terlain, Anne; Poquillon, Dominique; Monceau, Daniel

    2004-01-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  20. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  1. Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.

    Science.gov (United States)

    Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas

    2016-03-08

    Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.

  2. Modelling the behaviour of 210Po in high temperature processes

    International Nuclear Information System (INIS)

    Mora, J.C.; Robles, B.; Corbacho, J.A.; Gasco, Catalina; Gazquez, M.J.

    2011-01-01

    In several Naturally Occurring Radioactive Material (NORM) industries, relatively high temperatures are used as part of their industrial processes. In coal combustion, as occur in other high temperature processes, an increase of the activity concentration of every natural radioisotope is produced both, in residues and by-products. An additional increase can be observed in the activity concentration of radionuclides of elements with low boiling point. This work is centred in the increase of polonium, more precisely in its radioisotope Po-210, present in the natural chains, and with a half-life long enough to be considered for radiation protection purposes. This additional increase appears mainly in the residual particles that are suspended in the flue gases: the fly-ashes. Besides, scales, with a high concentration of this radioisotope, were observed. These scales are produced on surfaces with a temperature lower than the boiling point of the chemical element. Both, the accumulation in particles and the production of scales are attributed to condensation effects. When effective doses for the public and the workers are evaluated, taking into account these increases in activity concentrations, the use of theoretical models is necessary. In this work a theoretical description of those effects is presented. Moreover, a verification of the predictions of the model was performed by comparing them with measurements carried on in coal-fired power plants. The same description here presented is applicable in general to the behaviour of Po-210 in other NORM industries where high temperature processes involving raw materials are used, as can be ceramic, cement production, tiles production or steel processing.

  3. Influence of spatial temperature estimation method in ecohydrologic modeling in the western Oregon Cascades

    Science.gov (United States)

    E. Garcia; C.L. Tague; J. Choate

    2013-01-01

    Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...

  4. High temperature viscoplastic ratchetting: Material response or modeling artifact

    International Nuclear Information System (INIS)

    Freed, A.D.

    1991-01-01

    Ratchetting, the net accumulation of strain over a loading cycle, is a deformation mechanism that leads to distortions in shape, often resulting in a loss of function that culminates in structural failure. Viscoplastic ratchetting is prevalent at high homologous temperatures where viscous characteristics are prominent in material response. This deformation mechanism is accentuated by the presence of a mean stress; a consequence of interaction between thermal gradients and structural constraints. Favorable conditions for viscoplastic ratchetting exist in the Stirling engines being developed by the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) for space and terrestrial power applications. To assess the potential for ratchetting and its effect on durability of high temperature structures requires a viscoplastic analysis of the design. But ratchetting is a very difficult phenomenon to accurately model. One must therefore ask whether the results from such an analysis are indicative of actual material behavior, or if they are artifacts of the theory being used in the analysis. There are several subtle aspects in a viscoplastic model that must be dealt with in order to accurately model ratchetting behavior, and therefore obtain meaningful predictions from it. In this paper, some of these subtlties and the necessary ratchet experiments needed to obtain an accurate viscoplastic representation of a material are discussed

  5. Design and Modelling of Small Scale Low Temperature Power Cycles

    DEFF Research Database (Denmark)

    Wronski, Jorrit

    he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance......-oriented Modelica code and was included in the thermo Cycle framework for small scale ORC systems. Special attention was paid to the valve system and a control method for variable expansion ratios was introduced based on a cogeneration scenario. Admission control based on evaporator and condenser conditions...

  6. Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models

    OpenAIRE

    Sastre, Francisco; Dornic, Ivan; Chaté, Hugues

    2003-01-01

    We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.

  7. Improving the performance of temperature index snowmelt model of SWAT by using MODIS land surface temperature data.

    Science.gov (United States)

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R (2)) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations.

  8. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  9. Understanding the tropical warm temperature bias simulated by climate models

    Science.gov (United States)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  10. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  11. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  12. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  13. Finite-temperature models of Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Proukakis, Nick P; Jackson, Brian [School of Mathematics and Statistics, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)], E-mail: Nikolaos.Proukakis@ncl.ac.uk

    2008-10-28

    The theoretical description of trapped weakly interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the 'maze' of abundant theoretical models, and simple correspondences between existing approaches are not always very transparent. This tutorial provides a generic introduction to such theories, in an attempt to single out common features and deficiencies of certain 'classes of approaches' identified by their physical content, rather than their particular mathematical implementation. This tutorial is structured in a manner accessible to a non-specialist with a good working knowledge of quantum mechanics. Although some familiarity with concepts of quantum field theory would be an advantage, key notions, such as the occupation number representation of second quantization, are nonetheless briefly reviewed. Following a general introduction, the complexity of models is gradually built up, starting from the basic zero-temperature formalism of the Gross-Pitaevskii equation. This structure enables readers to probe different levels of theoretical developments (mean field, number conserving and stochastic) according to their particular needs. In addition to its 'training element', we hope that this tutorial will prove useful to active researchers in this field, both in terms of the correspondences made between different theoretical models, and as a source of reference for existing and developing finite-temperature theoretical models. (phd tutorial)

  14. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław

    2017-01-01

    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  15. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    P. Marnier

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).

  16. Data-Model Comparison of Pliocene Sea Surface Temperature

    Science.gov (United States)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  17. Deterministic Modeling of the High Temperature Test Reactor

    International Nuclear Information System (INIS)

    Ortensi, J.; Cogliati, J.J.; Pope, M.A.; Ferrer, R.M.; Ougouag, A.M.

    2010-01-01

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL's current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green's Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2-3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control

  18. A model for temperature dependent resistivity of metallic superlattices

    Directory of Open Access Journals (Sweden)

    J. I. Uba

    2015-11-01

    Full Text Available The temperature dependent resistivity of metallic superlattices, to first order approximation, is assumed to have same form as bulk metal, ρ(T = ρo + aT, which permits describing these structures as linear atomic chain. The assumption is, substantiated with the derivation of the above expression from the standard magnetoresistance equation, in which the second term, a Bragg scattering factor, is a correction to the usual model involving magnon and phonon scatterings. Fitting the model to Fe/Cr data from literature shows that Bragg scattering is dominant at T < 50 K and magnon and phonon coefficients are independent of experiment conditions, with typical values of 4.7 × 10−4 μΩcmK−2 and −8 ± 0.7 × 10−7μΩcmK−3. From the linear atomic chain model, the dielectric constant ε q , ω = 8 . 33 × 10 − 2 at Debye frequency for all materials and acoustic speed and Thomas – Fermi screening length are pressure dependent with typical values of 1.53 × 104 m/s and 1.80 × 109 m at 0.5 GPa pressure for an Fe/Cr structure.

  19. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  20. New temperature model of the Netherlands from new data and novel modelling methodology

    Science.gov (United States)

    Bonté, Damien; Struijk, Maartje; Békési, Eszter; Cloetingh, Sierd; van Wees, Jan-Diederik

    2017-04-01

    Deep geothermal energy has grown in interest in Western Europe in the last decades, for direct use but also, as the knowledge of the subsurface improves, for electricity generation. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. The knowledge of the temperature subsurface, together with the available flow from the reservoir, is an important factor that can determine the success of a geothermal energy project. To support the development of deep geothermal energy system in the Netherlands, we have made a first assessment of the subsurface temperature based on thermal data but also on geological elements (Bonté et al, 2012). An outcome of this work was ThermoGIS that uses the temperature model. This work is a revision of the model that is used in ThermoGIS. The improvement from the first model are multiple, we have been improving not only the dataset used for the calibration and structural model, but also the methodology trough an improved software (called b3t). The temperature dataset has been updated by integrating temperature on the newly accessible wells. The sedimentary description in the basin has been improved by using an updated and refined structural model and an improved lithological definition. A major improvement in from the methodology used to perform the modelling, with b3t the calibration is made not only using the lithospheric parameters but also using the thermal conductivity of the sediments. The result is a much more accurate definition of the parameters for the model and a perfected handling of the calibration process. The result obtain is a precise and improved temperature model of the Netherlands. The thermal conductivity variation in the sediments associated with geometry of the layers is an important factor of temperature variations and the influence of the Zechtein salt in the north of the country is important. In addition, the radiogenic heat

  1. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  2. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  3. Fluid temperatures: Modeling the thermal regime of a river network

    Science.gov (United States)

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  4. Developing an Effective Model for Predicting Spatially and Temporally Continuous Stream Temperatures from Remotely Sensed Land Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Kristina M. McNyset

    2015-12-01

    Full Text Available Although water temperature is important to stream biota, it is difficult to collect in a spatially and temporally continuous fashion. We used remotely-sensed Land Surface Temperature (LST data to estimate mean daily stream temperature for every confluence-to-confluence reach in the John Day River, OR, USA for a ten year period. Models were built at three spatial scales: site-specific, subwatershed, and basin-wide. Model quality was assessed using jackknife and cross-validation. Model metrics for linear regressions of the predicted vs. observed data across all sites and years: site-specific r2 = 0.95, Root Mean Squared Error (RMSE = 1.25 °C; subwatershed r2 = 0.88, RMSE = 2.02 °C; and basin-wide r2 = 0.87, RMSE = 2.12 °C. Similar analyses were conducted using 2012 eight-day composite LST and eight-day mean stream temperature in five watersheds in the interior Columbia River basin. Mean model metrics across all basins: r2 = 0.91, RMSE = 1.29 °C. Sensitivity analyses indicated accurate basin-wide models can be parameterized using data from as few as four temperature logger sites. This approach generates robust estimates of stream temperature through time for broad spatial regions for which there is only spatially and temporally patchy observational data, and may be useful for managers and researchers interested in stream biota.

  5. Modelling fruit-temperature dynamics within apple tree crowns using virtual plants.

    Science.gov (United States)

    Saudreau, M; Marquier, A; Adam, B; Sinoquet, H

    2011-10-01

    Fruit temperature results from a complex system involving the climate, the tree architecture, the fruit location within the tree crown and the fruit thermal properties. Despite much theoretical and experimental evidence for large differences (up to 10 °C in sunny conditions) between fruit temperature and air temperature, fruit temperature is never used in horticultural studies. A way of modelling fruit-temperature dynamics from climate data is addressed in this work. The model is based upon three-dimensional virtual representation of apple trees and links three-dimensional virtual trees with a physical-based fruit-temperature dynamical model. The overall model was assessed by comparing model outputs to field measures of fruit-temperature dynamics. The model was able to simulate both the temperature dynamics at fruit scale, i.e. fruit-temperature gradients and departure from air temperature, and at the tree scale, i.e. the within-tree-crown variability in fruit temperature (average root mean square error value over fruits was 1·43 °C). This study shows that linking virtual plants with the modelling of the physical plant environment offers a relevant framework to address the modelling of fruit-temperature dynamics within a tree canopy. The proposed model offers opportunities for modelling effects of the within-crown architecture on fruit thermal responses in horticultural studies.

  6. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species.

    Science.gov (United States)

    Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R

    2017-01-04

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  7. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    Science.gov (United States)

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  8. Temperature modulated differential scanning calorimetry. Modelling and applications

    International Nuclear Information System (INIS)

    Jiang, Z.

    2000-01-01

    DSC. Some shortcomings of TMDSC have been noticed in both modelling and application work. Firstly, any experiments for purpose of either understanding or the quantitative measurements of TMDSC output quantities should be performed under carefully selected conditions which can satisfy the linear response assumption. Secondly, some signals in particular those associated with kinetic processes may not be fully sampled by TMDSC due to the limit of the observing window of a modulation. Thirdly, the TMDSC evaluation procedure introduces mathematical artefacts into the output signals. As a consequence, it is preferable to include as many temperature modulations as possible within any transition being studied in order obtain good quality experimental signals by eliminating or minimising these artefacts. (author)

  9. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy

    Directory of Open Access Journals (Sweden)

    Augusto C. M. Souza

    2018-04-01

    Full Text Available While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae, at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  10. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.

    Science.gov (United States)

    Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A

    2018-04-24

    While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  11. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  12. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    Science.gov (United States)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  13. A critical view on temperature modelling for application in weather derivatives markets

    International Nuclear Information System (INIS)

    Šaltytė Benth, Jūratė; Benth, Fred Espen

    2012-01-01

    In this paper we present a stochastic model for daily average temperature. The model contains seasonality, a low-order autoregressive component and a variance describing the heteroskedastic residuals. The model is estimated on daily average temperature records from Stockholm (Sweden). By comparing the proposed model with the popular model of Campbell and Diebold (2005), we point out some important issues to be addressed when modelling the temperature for application in weather derivatives market. - Highlights: ► We present a stochastic model for daily average temperature, containing seasonality, a low-order autoregressive component and a variance describing the heteroskedastic residuals. ► We compare the proposed model with the popular model of Campbell and Diebold (2005). ► Some important issues to be addressed when modelling the temperature for application in weather derivatives market are pointed out.

  14. Modelling of aluminium sheet forming at elevated temperatures

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Huetink, Han

    2004-01-01

    The formability of Al–Mg sheet can be improved considerably, by increasing the temperature. By heating the sheet in areas with large shear strains, but cooling it on places where the risk of necking is high, the limiting drawing ratio can be increased to values above 2.5. At elevated temperatures,

  15. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  16. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    The observation of pseudogap in normal-state properties of high-temperature supercon- ducting (HTS) oxide materials has raised many questions about the origin and its relation with superconductivity. Emery and Kevilson [1] first used the term pseudogap temper- ature for underdoped high-Tc materials. The temperature at ...

  17. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  18. A linear regression model for predicting PNW estuarine temperatures in a changing climate

    Science.gov (United States)

    Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...

  19. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  20. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  1. The infinite range Heisenberg model and high temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  2. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  3. Comparison of high-temperature flare models with observations and implications for the low-temperature flare

    International Nuclear Information System (INIS)

    Machado, M.E.; Emslie, A.G.

    1979-01-01

    We analyze EUV data from the Harvard College Observatory and Naval Research Laboratory instruments on board the Skylab Apollo Telescope Mount, together with SOLRAD 9 X-ray data, in order to empirically deduce the variation of emission measure with temperature in the atmosphere of a number of solar flares. From these data we construct a ''mean'' differential emission measure profile Q (T) for a flare, which we find to be characterized by a low-lying plateau at temperatures of a few hundred thousand K, representative of a thin transition zone at these temperatures.We then compare this empirical profile with that predicted by a number of theoretical models, each of which represents a solution of the energy equation for the flare under various simplifying assumptions. In this way we not only deduce estimates of various flare parameters, such as gas pressure, but also gain insight into the validity of the various modeling assumptions employed.We find that realistic flare models must include both conductive and radiative terms in the energy equation, and that hydrodynamic terms may be important at low temperatures. Considering only models which neglect this hydrodynamic term, we compute conductive fluxes at various levels in the high-temperature plasma and compare them to the observed radiated power throughout the atmosphere, with particular reference to the 1973 September 5 event, which is rich in observations throughout most of the electromagnetic spectrum. This comparison yields results which reinforce our belief in the dominance of the conduction and radiation terms in the flare energy balance.The implications of this result for flare models in general is discussed; in particular, it is shown that the inclusion of the conductive term into models which have hitherto neglected it can perhaps resolve some of the observational difficulties with such models

  4. Electronic Modeling and Design for Extreme Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  5. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  6. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....

  7. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles

    DEFF Research Database (Denmark)

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold

    2017-01-01

    of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA...... ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 °C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME...

  8. Two-dimensional model of laser alloying of binary alloy powder with interval of melting temperature

    Science.gov (United States)

    Knyzeva, A. G.; Sharkeev, Yu. P.

    2017-10-01

    The paper contains two-dimensional model of laser beam melting of powders from binary alloy. The model takes into consideration the melting of alloy in some temperature interval between solidus and liquidus temperatures. The external source corresponds to laser beam with energy density distributed by Gauss law. The source moves along the treated surface according to given trajectory. The model allows investigating the temperature distribution and thickness of powder layer depending on technological parameters.

  9. Indonesian commercial bus drum brake system temperature model

    International Nuclear Information System (INIS)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-01-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  10. Indonesian commercial bus drum brake system temperature model

    Science.gov (United States)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-03-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  11. Indonesian commercial bus drum brake system temperature model

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo, D. B., E-mail: rmt.bowo@gmail.com; Haryanto, I., E-mail: ismoyo2001@yahoo.de; Laksono, N. P., E-mail: priyolaksono89@gmail.com [Mechanical Engineering Dept., Faculty of Engineering, Diponegoro University (Indonesia)

    2016-03-29

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  12. Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators

    International Nuclear Information System (INIS)

    Xu Jun; You Bo; Li Xin; Cui Juan

    2007-01-01

    To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm 0 C -1 with the measured temperature range varying from 0 to 100 0 C

  13. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    Science.gov (United States)

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  14. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  15. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  16. Modeling thermal spike driven reactions at low temperature and application to zirconium carbide radiation damage

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.

    2017-11-01

    The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.

  17. Element size and other restrictions in finite-element modeling of reinforced concrete at elevated temperatures

    DEFF Research Database (Denmark)

    Carstensen, Josephine Voigt; Jomaas, Grunde; Pankaj, Pankaj

    2013-01-01

    to extend this approach for RC at elevated temperatures. Prior to the extension, the approach is investigated for associated modeling issues and a set of limits of application are formulated. The available models of the behavior of plain concrete at elevated temperatures were used to derive inherent......One of the accepted approaches for postpeak finite-element modeling of RC comprises combining plain concrete, reinforcement, and interaction behaviors. In these, the postpeak strain-softening behavior of plain concrete is incorporated by the use of fracture energy concepts. This study attempts...... fracture energy variation with temperature. It is found that the currently used tensile elevated temperature model assumes that the fracture energy decays with temperature. The existing models in compression also show significant decay of fracture energy at higher temperatures (>400°) and a considerable...

  18. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling

    Science.gov (United States)

    Jacques Regniere; James Powell; Barbara Bentz; Vincent Nealis

    2012-01-01

    The developmental response of insects to temperature is important in understanding the ecology of insect life histories. Temperature-dependent phenology models permit examination of the impacts of temperature on the geographical distributions, population dynamics and management of insects. The measurement of insect developmental, survival and reproductive responses to...

  19. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    International Nuclear Information System (INIS)

    Wang Dianfu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures

  20. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  1. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  2. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing

    Directory of Open Access Journals (Sweden)

    K. Rankinen

    2004-01-01

    Full Text Available Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990 were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model

  3. Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel via Two-Temperature Homogenized Model

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2013-01-01

    The FCM fuel is based on a proven safety philosophy that has been utilized operationally in very high temperature reactors (VHTRs). However, the FCM fuel consists of TRISO particles randomly dispersed in SiC matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of such a fuel. Therefore, an appropriate homogenization model becomes essential. In this paper, we apply the two-temperature homogenized model to thermal analysis of an FCM fuel. The model was recently proposed in order to provide more realistic temperature profiles in the fuel element in VHTRs. We applied the two-temperature homogenized model to FCM fuel. The two-temperature homogenized model was obtained by particle transport Monte Carlo calculation applied to the pellet region consisting of many coated particles uniformly dispersed in SiC matrix. Since this model gives realistic temperature profiles in the pellet (providing fuel-kernel temperature and SiC matrix temperature distinctly), it can be used for more accurate neutronics evaluation such as Doppler temperature feedback. The transient thermal calculation may be performed also more realistically with temperature-dependent homogenized parameters in various scenarios

  4. Axial temperatures and fuel management models for a HTR system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1971-11-12

    In the HTR system, there is a large difference in temperature between different parts of the reactor core. The softer neutron spectrum in the upper colder core regions tends to shift the power productions in the fresh fuel upwards. As uranium 235 depletes and plutonium with its higher cross sections in the lower hot regions is built-up, an axial power flattening takes place. These effects have been studied in detail for a single column in an equilibrium environment. The aim of this paper is to relate these findings to a whole reactor core and to investigate the influence of axial temperatures on the overall performance and in particular, the fuel management scheme chosen for the reference design. A further objective has been to calculate the reactivity requirements for different part load conditions and for various daily and weekly load diagrams. As the xenon cross section changes significantly with temperature these investigations are performed for an equilibrium core with due representation of axial temperature zones.

  5. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  6. Development of a temperature-dependent cyclic plasticity constitutive model for SUS304 steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1990-01-01

    Development of an accurate inelastic constitutive model is required to improve the accuracy of inelastic analysis for structural components used in the inelastic region. Based on two fundamental assumptions derived from physical interpretation of temperature dependency of the plastic deformation behavior of type 304 stainless steel, a temperature-dependent cyclic plastic constitutive model is constructed here. Particular emphasis is placed on the modeling of enhanced hardening caused by the dynamic strain aging effect observed in some temperature regimes. Constants and functions involved in the model are determined based on the deformation characteristics observed in the low-cycle fatigue tests conducted at room temperature through 600degC. Several comparisons of model predictions with experimental data show the effectiveness of the present model in non-isothermal condition as well as in isothermal condition between room temperature and 600degC. (author)

  7. Mean atmospheric temperature model estimation for GNSS meteorology using AIRS and AMSU data

    Directory of Open Access Journals (Sweden)

    Rata Suwantong

    2017-03-01

    Full Text Available In this paper, the problem of modeling the relationship between the mean atmospheric and air surface temperatures is addressed. Particularly, the major goal is to estimate the model parameters at a regional scale in Thailand. To formulate the relationship between the mean atmospheric and air surface temperatures, a triply modulated cosine function was adopted to model the surface temperature as a periodic function. The surface temperature was then converted to mean atmospheric temperature using a linear function. The parameters of the model were estimated using an extended Kalman filter. Traditionally, radiosonde data is used. In this paper, satellite data from an atmospheric infrared sounder, and advanced microwave sounding unit sensors was used because it is open source data and has global coverage with high temporal resolution. The performance of the proposed model was tested against that of a global model via an accuracy assessment of the computed GNSS-derived PWV.

  8. Temperature modulation with an esophageal heat transfer device- a pediatric swine model study

    OpenAIRE

    Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark

    2015-01-01

    Background An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1?C) would ...

  9. Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

    OpenAIRE

    Nasser Mohamed Ramli; Mohamad Syafiq Mohamad

    2017-01-01

    Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of...

  10. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    International Nuclear Information System (INIS)

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions

  11. A Temperature Dependent Lumped-charge Model for Trench FS-IGBT

    DEFF Research Database (Denmark)

    Duan, Yaoqiang; Kang, Yong; Iannuzzo, Francesco

    2018-01-01

    Abstract: This paper proposes a temperature dependent lumped-charge model for FS-IGBT. Due to the evolution of the IGBT structure, the existing lumped-charge IGBT model established for NPT-IGBT is not suitable for the simulation of FS-IGBT. This paper extends the lumped-charge IGBT model including...... the field-stop (FS) structure and temperature characteristics. The temperature characteristics of the model are considered for both the bipolar part and unipolar part. In addition, a new PN junction model which can distinguish the collector structure is presented and validated by TCAD simulation. Finally...

  12. Crop Model Improvement Reduces the Uncertainty of the Response to Temperature of Multi-Model Ensembles

    Science.gov (United States)

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold; Ewert, Frank; Mueller, Christoph; Roetter, Reimund P.; Ruane, Alex C.; Semenov, Mikhail A.; Wallach, Daniel; Wang, Enli

    2016-01-01

    To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures greater than 24 C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.

  13. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  14. Temperature prediction model of asphalt pavement in cold regions based on an improved BP neural network

    International Nuclear Information System (INIS)

    Xu, Bo; Dan, Han-Cheng; Li, Liang

    2017-01-01

    Highlights: • Pavement temperature prediction model is presented with improved BP neural network. • Dynamic and static methods are presented to predict pavement temperature. • Pavement temperature can be excellently predicted in next 3 h. - Abstract: Ice cover on pavement threatens traffic safety, and pavement temperature is the main factor used to determine whether the wet pavement is icy or not. In this paper, a temperature prediction model of the pavement in winter is established by introducing an improved Back Propagation (BP) neural network model. Before the application of the BP neural network model, many efforts were made to eliminate chaos and determine the regularity of temperature on the pavement surface (e.g., analyze the regularity of diurnal and monthly variations of pavement temperature). New dynamic and static prediction methods are presented by improving the algorithms to intelligently overcome the prediction inaccuracy at the change point of daily temperature. Furthermore, some scenarios have been compared for different dates and road sections to verify the reliability of the prediction model. According to the analysis results, the daily pavement temperatures can be accurately predicted for the next 3 h from the time of prediction by combining the dynamic and static prediction methods. The presented method in this paper can provide technical references for temperature prediction of the pavement and the development of an early-warning system for icy pavements in cold regions.

  15. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  16. A model-data comparison of the Holocene global sea surface temperature evolution

    NARCIS (Netherlands)

    Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.

    2013-01-01

    We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate

  17. Inclusion of temperature dependence of fission barriers in statistical model calculations

    International Nuclear Information System (INIS)

    Newton, J.O.; Popescu, D.G.; Leigh, J.R.

    1990-08-01

    The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs

  18. Temperature distribution model for the semiconductor dew point detector

    Science.gov (United States)

    Weremczuk, Jerzy; Gniazdowski, Z.; Jachowicz, Ryszard; Lysko, Jan M.

    2001-08-01

    The simulation results of temperature distribution in the new type silicon dew point detector are presented in this paper. Calculations were done with use of the SMACEF simulation program. Fabricated structures, apart from the impedance detector used to the dew point detection, contained the resistive four terminal thermometer and two heaters. Two detector structures, the first one located on the silicon membrane and the second one placed on the bulk materials were compared in this paper.

  19. Mathematical model for temperature change of a journal bearing

    Directory of Open Access Journals (Sweden)

    Antunović Ranko

    2018-01-01

    Full Text Available In this work, a representative mathematical model has been developed, which reliably describes the heating and cooling of a journal bearing as a result of its malfunctioning, and the model has been further confirmed on a test bench. The bearing model was validated by using analytical modeling methods, i. e. the experimental results were compared to the data obtained by analytical calculations. The regression and variance analysis techniques were applied to process the recorded data, to test the mathematical model and to define mathematical functions for the heating/cooling of the journal bearing. This investigation shows that a representative model may reliably indicate the change in the thermal field, which may be a consequence of journal bearing damage.

  20. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  1. Modelling of peak temperature during friction stir processing of magnesium alloy AZ91

    Science.gov (United States)

    Vaira Vignesh, R.; Padmanaban, R.

    2018-02-01

    Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.

  2. Model simulation for high-temperature gas desulphurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Tonini; Zaccagnini; Berg; Vitolo; Tartarelli; Zeppi (Struttura Informatica, Florence (Italy))

    1993-01-01

    Metal oxides such as zinc ferrite, zinc titanate and tin oxide have been identified as promising adsorbent materials in the removal of sulphur compounds from hot coal gas in power generation operations. A mathematical model for the sulfidation phase in fixed, moving and fluidised bed reactors has been developed. This paper presents kinetic models of spherical sorbent particles applicable to all reactor configurations and a mathematical model limited to the moving bed reactor. 10 refs., 5 figs.

  3. 2d Model Field Theories at Finite Temperature and Density

    OpenAIRE

    Schoen, Verena; Thies, Michael

    2000-01-01

    In certain 1+1 dimensional field theoretic toy models, one can go all the way from microscopic quarks via the hadron spectrum to the properties of hot and dense baryonic matter in an essentially analytic way. This "miracle" is illustrated through case studies of two popular large N models, the Gross-Neveu and the 't Hooft model - caricatures of the Nambu-Jona-Lasinio model and real QCD, respectively. The main emphasis will be on aspects related to spontaneous symmetry breaking (discrete or co...

  4. LIQUIDUS TEMPERATURE AND ONE PERCENT CRYSTAL CONTENT MODELS FOR INITIAL HANFORD HLW GLASSES

    International Nuclear Information System (INIS)

    Vienna, John D.; Edwards, Tommy B.; Crum, Jarrod V.; Kim, Dong-Sang; Peeler, David K.

    2005-01-01

    Preliminary models for liquidus temperature (TL) and temperature at 1 vol% crystal (T01) applicable to WTP HLW glasses in the spinel primary phase field were developed. A series of literature model forms were evaluated using consistent sets of data form model fitting and validation. For TL, the ion potential and linear mixture models performed best, while for T01 the linear mixture model out performed all other model forms. TL models were able to predict with smaller uncertainty. However, the lower T01 values (even with higher prediction uncertainties) were found to allow for a much broader processing envelope for WTP HLW glasses

  5. Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain

    Directory of Open Access Journals (Sweden)

    P. Cowpertwait

    2013-02-01

    Full Text Available A spatiotemporal point process model of rainfall is fitted to data taken from three homogeneous regions in the Basque Country, Spain. The model is the superposition of two spatiotemporal Neyman–Scott processes, in which rain cells are modelled as discs with radii that follow exponential distributions. In addition, the model includes a parameter for the radius of storm discs, so that rain only occurs when both a cell and a storm disc overlap a point. The model is fitted to data for each month, taken from each of the three homogeneous regions, using a modified method of moments procedure that ensures a smooth seasonal variation in the parameter estimates.

    Daily temperature data from 23 sites are used to fit a stochastic temperature model. A principal component analysis of the maximum daily temperatures across the sites indicates that 92% of the variance is explained by the first component, implying that this component can be used to account for spatial variation. A harmonic equation with autoregressive error terms is fitted to the first principal component. The temperature model is obtained by regressing the maximum daily temperature on the first principal component, an indicator variable for the region, and altitude. This, together with scaling and a regression model of temperature range, enables hourly temperatures to be predicted. Rainfall is included as an explanatory variable but has only a marginal influence when predicting temperatures.

    A distributed model (TETIS; Francés et al., 2007 is calibrated for a selected catchment. Five hundred years of data are simulated using the rainfall and temperature models and used as input to the calibrated TETIS model to obtain simulated discharges to compare with observed discharges. Kolmogorov–Smirnov tests indicate that there is no significant difference in the distributions of observed and simulated maximum flows at the same sites, thus supporting the use of the spatiotemporal

  6. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Energy Technology Data Exchange (ETDEWEB)

    Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering

    2016-03-15

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  7. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    International Nuclear Information System (INIS)

    Debbarma, Ajoy; Pandey, Krishna Murari

    2016-01-01

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  8. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  9. High Temperature Test Facility Preliminary RELAP5-3D Input Model Description

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.

  10. Model for prediction of strip temperature in hot strip steel mill

    International Nuclear Information System (INIS)

    Panjkovic, Vladimir

    2007-01-01

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good

  11. Model for prediction of strip temperature in hot strip steel mill

    Energy Technology Data Exchange (ETDEWEB)

    Panjkovic, Vladimir [BlueScope Steel, TEOB, 1 Bayview Road, Hastings Vic. 3915 (Australia)]. E-mail: Vladimir.Panjkovic@BlueScopeSteel.com

    2007-10-15

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good.

  12. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Directory of Open Access Journals (Sweden)

    Orlova K.Y.

    2017-01-01

    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  13. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  14. The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances

    International Nuclear Information System (INIS)

    Barukčić, M.; Ćorluka, V.; Miklošević, K.

    2015-01-01

    Highlights: • The temperature and irradiance dependent model for the I–V curve estimation is presented. • The purely mathematical model based on the analysis of the I–V curve shape is presented. • The model includes the Gompertz function with temperature and irradiance dependent parameters. • The input data are extracted from the data sheet I–V curves. - Abstract: The temperature and irradiance dependent mathematical model for photovoltaic panel performances estimation is proposed in the paper. The base of the model is the mathematical function of the photovoltaic panel current–voltage curve. The model of the current–voltage curve is based on the sigmoid function with temperature and irradiance dependent parameters. The temperature and irradiance dependencies of the parameters are proposed in the form of analytic functions. The constant parameters are involved in the analytical functions. The constant parameters need to be estimated to get the temperature and irradiance dependent current–voltage curve. The mathematical model contains 12 constant parameters and they are estimated by using the evolutionary algorithm. The optimization problem is defined for this purpose. The optimization problem objective function is based on estimated and extracted (measured) current and voltage values. The current and voltage values are extracted from current–voltage curves given in datasheet of the photovoltaic panels. The new procedure for estimation of open circuit voltage value at any temperature and irradiance is proposed in the model. The performance of the proposed mathematical model is presented for three different photovoltaic panel technologies. The simulation results indicate that the proposed mathematical model is acceptable for estimation of temperature and irradiance dependent current–voltage curve and photovoltaic panel performances within temperature and irradiance ranges

  15. Model of two-temperature convective transfer in porous media

    Science.gov (United States)

    Gruais, Isabelle; Poliševski, Dan

    2017-12-01

    In this paper, we study the asymptotic behaviour of the solution of a convective heat transfer boundary problem in an ɛ -periodic domain which consists of two interwoven phases, solid and fluid, separated by an interface. The fluid flow and its dependence with respect to the temperature are governed by the Boussinesq approximation of the Stokes equations. The tensors of thermal diffusion of both phases are ɛ -periodic, as well as the heat transfer coefficient which is used to describe the first-order jump condition on the interface. We find by homogenization that the two-scale limits of the solutions verify the most common system used to describe local thermal non-equilibrium phenomena in porous media (see Nield and Bejan in Convection in porous media, Springer, New York, 1999; Rees and Pop in Transport phenomena in porous media III, Elsevier, Oxford, 2005). Since now, this system was justified only by volume averaging arguments.

  16. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    Science.gov (United States)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  17. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  18. Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Haifeng Dai

    2018-01-01

    Full Text Available Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs, and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.

  19. Model of electron capture in low-temperature glasses

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Swiatla, D.; Kroh, J.

    1983-01-01

    The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)

  20. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics

    International Nuclear Information System (INIS)

    Bomberger, Cory C.; Attia, Peter M.; Prasad, Ajay K.; Zide, Joshua M.O.

    2013-01-01

    This paper presents a model to predict the power generation of a thermoelectric generator in a temporally-varying temperature environment. The model employs a thermoelectric plate sandwiched between two different heat exchangers to convert a temporal temperature gradient in the environment to a spatial temperature gradient within the device suitable for thermoelectric power generation. The two heat exchangers are designed such that their temperatures respond to a change in the environment's temperature at different rates which sets up a temperature differential across the thermoelectric and results in power generation. In this model, radiative and convective heat transfer between the device and its surroundings, and heat flow between the two heat exchangers across the thermoelectric plate are considered. The model is simulated for power generation in Death Valley, CA during the summer using the diurnal variation of air temperature and radiative exchange with the sun and night sky as heat sources and sinks. The optimization of power generation via scaling the device size is discussed. Additional applications of this device are considered. -- Highlights: • Thermoelectric power generation with time-varying temperature is modeled. • The ability to generate power without a natural spatial gradient is demonstrated. • Time dependent heat-transfer and differential heat flow rates are considered. • Optimization of power generation via scaling the device size is discussed

  1. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  2. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    thermal modelling of FSW process by assuming the slip factor as a function of any one of the parameters such as ... Normal load, Fn. 31138 N .... source was moved in discrete steps of 1 mm to simulate the linear motion of the tool. At each load.

  3. Modeling of low temperature plasma for surface and Airborne decontamination

    NARCIS (Netherlands)

    Mihailova, D.; van Dijk, J.; Hagelaar, G.; Belenguer, P.; Guillot, P.

    2014-01-01

    This paper aims to study and develop new plasma-based technology for the next generation of molecular decontamination systems. A capacitively coupled plasma is considered for cleaning using the plasma fluxes directed to the walls. The model used for this purpose is the PLASIMO fluid module applied

  4. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    Science.gov (United States)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  5. Nucleon-nucleon interaction of a chiral σ-ω model at finite temperature

    International Nuclear Information System (INIS)

    Rukeng Su

    1994-01-01

    By using the imaginery time Green's function method, the nucleon-nucleon interaction of the chiral σ-ω model has been investigated under the one-loop approximation. The effective masses of the pion, σ-meson and ω-meson at finite temperature are given. We have found that the potential well of the nucleon-nucleon interaction becomes shallow as the temperature increases. At a critical temperature T c (70 MEV) the potential well disappears. (author)

  6. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Jiuchun; Ruan, Haijun; Sun, Bingxiang; Zhang, Weige; Gao, Wenzhong; Wang, Le Yi; Zhang, Linjing

    2016-01-01

    Highlights: • A reduced low-temperature electro-thermal coupled model is proposed. • A novel frequency-dependent equation for polarization parameters is presented. • The model is validated under different frequency and low-temperature conditions. • The reduced model exhibits a high accuracy with a low computational effort. • The adaptability of the proposed methodology for model reduction is verified. - Abstract: A low-temperature electro-thermal coupled model, which is based on the electrochemical mechanism, is developed to accurately capture both electrical and thermal behaviors of batteries. Activation energies reveal that temperature dependence of resistances is greater than that of capacitances. The influence of frequency on polarization voltage and irreversible heat is discussed, and frequency dependence of polarization resistance and capacitance is obtained. Based on the frequency-dependent equation, a reduced low-temperature electro-thermal coupled model is proposed and experimentally validated under different temperature, frequency and amplitude conditions. Simulation results exhibit good agreement with experimental data, where the maximum relative voltage error and temperature error are below 2.65% and 1.79 °C, respectively. The reduced model is demonstrated to have almost the same accuracy as the original model and require a lower computational effort. The effectiveness and adaptability of the proposed methodology for model reduction is verified using batteries with three different cathode materials from different manufacturers. The reduced model, thanks to its high accuracy and simplicity, provides a promising candidate for development of rapid internal heating and optimal charging strategies at low temperature, and for evaluation of the state of battery health in on-board battery management system.

  7. Modeling of Temperature Effect on Modal Frequency of Concrete Beam Based on Field Monitoring Data

    Directory of Open Access Journals (Sweden)

    Wenchen Shan

    2018-01-01

    Full Text Available Temperature variation has been widely demonstrated to produce significant effect on modal frequencies that even exceed the effect of actual damage. In order to eliminate the temperature effect on modal frequency, an effective method is to construct quantitative models which accurately predict the modal frequency corresponding to temperature variation. In this paper, principal component analysis (PCA is conducted on the temperatures taken from all embedded thermocouples for extracting input parameters of regression models. Three regression-based numerical models using multiple linear regression (MLR, back-propagation neural network (BPNN, and support vector regression (SVR techniques are constructed to capture the relationships between modal frequencies and temperature distributions from measurements of a concrete beam during a period of forty days of monitoring. A comparison with respect to the performance of various optimally configured regression models has been performed on measurement data. Results indicate that the SVR exhibits a better reproduction and prediction capability than BPNN and MLR models for predicting the modal frequencies with respect to nonuniformly distributed temperatures. It is succeeded that temperature effects on modal frequencies can be effectively eliminated based on the optimally formulated SVR model.

  8. Finite Element Modelling of a Pattern of Temperature Distribution during Travelling Heat Source from Oxyacetylene Flame

    Directory of Open Access Journals (Sweden)

    Alkali Adam Umar

    2014-07-01

    Full Text Available A 3D Finite element model was developed to analyse the conduction temperature distribution on type 304 stainless steel workpiece. An experimental heating-only test was conducted using the input parameters from FEM model which predicted the temperature field on the 304 stainless steel work pieces. Similar temperature pattern was noticed for both the FEM model as well as the experimental. Conduction was observed to be the dominant heat transfer mode. Maximum temperatures were observed to occur at the regions of contact between flame heat and the work pieces. Maximum temperature attained during the two investigated runs was 355°C. Even so austenite crystal morphology was retained on the preheated workpiece.

  9. Safety of nuclear reactors - Part A - unsteady state temperature history mathematical model

    International Nuclear Information System (INIS)

    El-Shayeb, M.; Yusoff, M.Z.; Boosroh, M.H.; Ideris, F.; Hasmady Abu Hassan, S.; Bondok, A.

    2004-01-01

    A nuclear reactor structure under abnormal operations of near meltdown will be exposed to a tremendous amount of heat flux in addition to the stress field applied under normal operation. Temperature encountered in such case is assumed to be beyond 1000 Celsius degrees. A 2-dimensional mathematical model based on finite difference methods, has been developed for the fire resistance calculation of a concrete-filled square steel column with respect to its temperature history. Effects due to nuclear radiation and mechanical vibrations will be explored in a later future model. The temperature rise in each element can be derived from its heat balance by applying the parabolic unsteady state, partial differential equation and numerical solution into the steel region. Calculation of the temperature of the elementary regions needs to satisfy the symmetry conditions and the relevant material properties. The developed mathematical model is capable to predict the temperature history in the column and on the surface with respect to time. (authors)

  10. Vortex-line fluctuations in model high-temperature superconductors

    International Nuclear Information System (INIS)

    Li, Y.; Teitel, S.

    1993-01-01

    We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model, as a model for vortex-line fluctuations in a high-T c superconductor in an external magnetic field. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low-T superconducting phase is an ordered vortex-line lattice. The high-T normal phase is a vortex-line liquid, with much entangling, cutting, and loop excitations. An intermediate phase is found, which is characterized as a vortex-line liquid of disentangled, approximately straight, lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the field. A detailed analysis of the vortex structure function is carried out

  11. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  12. Modeling Temperature Dependent Singlet Exciton Dynamics in Multilayered Organic Nanofibers

    DEFF Research Database (Denmark)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob

    2018-01-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers, but also by the behavior of the excitons generated...... dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a Kinetic Monte Carlo (KMC) model is employed in combination with a genetic algorithm to theoretically reproduce time resolved photoluminescence measurements...

  13. Properties of lattice gauge theory models at low temperatures

    International Nuclear Information System (INIS)

    Mack, G.

    1980-01-01

    The Z(N) theory of quark confinement is discussed and how fluctuations of Z(N) gauge fields may continue to be important in the continuum limit. Existence of a model in four dimensions is pointed out in which confinement of (scalar) quarks can be shown to persist in the continuum limit. This article is based on the author's Cargese lectures 1979. Some of its results are published here for the first time. (orig.) 891 HSI/orig. 892 MKO

  14. Surface multifragmentation investigated with a finite temperature spherical TDHF model

    International Nuclear Information System (INIS)

    Ngo, H.; Ighezou, F.Z.; Paula, L. De

    1992-01-01

    A model for multifragmentation caused by heavy ion collision is developed. The initial state is a hot and compressed spherical nucleus in thermal equilibrium. The dynamical evolution of this nucleus is studied. The nuclear density of the system is calculated with mean field approximation. It is shown that, in some cases, the surface of the nucleus breaks up before its volume. (K.A.) 8 refs.; 1 fig

  15. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  16. Numerical modelling and analysis of a room temperature magnetic refrigeration system

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank

    This thesis presents a two-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration at room temperature. The purpose of the model is to simulate a laboratory-scale AMR constructed at Risø National Laboratory. The AMR model geometry....... The AMR performs a cyclic process, and to simulate the AMR refrigeration cycle the model starts from an initial temperature distribution in the regenerator and fluid channel and takes time steps forward in time until the cyclical steady-state is obtained. The model can therefore be used to study both...... transient and steady-state phenomena. The AMR performance can be evaluated in terms of the no-load temperature span as well as the refrigeration capacity and the COP. The AMR model was verified extensively and it was concluded that the model has energy conservation and that the solution is independent...

  17. Prediction models and control algorithms for predictive applications of setback temperature in cooling systems

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung

    2017-01-01

    Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature

  18. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    Science.gov (United States)

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  19. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2014-01-01

    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  20. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  1. Modeling of the pyrolysis of biomass under parabolic and exponential temperature increases using the Distributed Activation Energy Model

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor

    2016-01-01

    Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.

  2. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup

    2016-01-01

    A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...

  3. Hot Temperatures, Hostile Affect, Hostile Cognition, and Arousal: Tests of a General Model of Affective Aggression.

    Science.gov (United States)

    Anderson, Craig A.; And Others

    1995-01-01

    Used a general model of affective aggression to generate predictions concerning hot temperatures. Results indicated that hot temperatures produced increases in hostile affect, hostile cognition, and physiological arousal. Concluded that hostile affect, hostile cognitions, and excitation transfer processes may all increase the likelihood of biased…

  4. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV...

  5. IMPORTANCE OF TEMPERATURE IN MODELLING PCB BIOACCUMULATION IN THE LAKE MICHIGAN FOOD WEB

    Science.gov (United States)

    In most food web models, the exposure temperature of a food web is typically defined using a single spatial compartment. This essentially assumes that the predator and prey are exposed to the same temperature. However, in a large water body such as Lake Michigan, due to the spati...

  6. Improving the CROPGRO-Tomato model for predicting growth and yield to temperature

    NARCIS (Netherlands)

    Boote, K.J.; Rybak, M.R.; Scholberg, J.M.S.; Jones, J.W.

    2012-01-01

    Parameterizing crop models for more accurate response to climate factors such as temperature is important considering potential temperature increases associated with climate change, particularly for tomato (Lycopersicon esculentum Mill.), which is a heat-sensitive crop. The objective of this work

  7. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.

    1981-05-01

    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  8. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  9. Time series modelling of global mean temperature for managerial decision-making.

    Science.gov (United States)

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  10. A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells

    Directory of Open Access Journals (Sweden)

    Langfeng Mu

    2018-02-01

    Full Text Available Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence the temperature distribution inside the tubing and that the mass flow rate of oil is the main factor affecting temperature distribution in the annulus. Finally, the new model was tested in three various wells and compared with other models. The results showed that the new model is more accurate and provides significant references for temperature prediction in gas lift well.

  11. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yiqi, E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, Elia; Obabko, Aleksandr [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Thomas, Justin [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-12-15

    Highlights: • The proposed models are 400 times less computationally expensive than CFD simulations. • The proposed models show good duct wall temperature agreement with CFD simulations. • The paper provides an efficient tool for coupled radial core expansion calculation. - Abstract: Porous medium models have been established for predicting duct wall temperature of sodium fast reactor rod bundle assembly, which is much less computationally expensive than conventional CFD simulations that explicitly represent the wire-wrap and fuel pin geometry. Three porous medium models are proposed in this paper. Porous medium model 1 takes the whole assembly as one porous medium of uniform characteristics in the conventional approach. Porous medium model 2 distinguishes the pins along the assembly's edge from those in the interior with two distinct regions, each with a distinct porosity, resistance, and volumetric heat source. This accounts for the different fuel-to-coolant volume ratio in the two regions, which is important for predicting the temperature of the assembly's exterior duct wall. In Porous medium model 3, a precise resistance distribution was employed to define the characteristic of the porous medium. The results show that both porous medium model 2 and 3 can capture the average duct wall temperature well. Furthermore, the local duct wall variations due to different sub-channel patterns in bare rod bundles are well captured by porous medium model 3, although the wire effect on the duct wall temperature in wire wrap rod bundle has not been fully reproduced yet.

  12. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  13. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors

    Directory of Open Access Journals (Sweden)

    Spiros Pagiatakis

    2009-10-01

    Full Text Available In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times. It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF. It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at −40 °C, −20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  14. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    Science.gov (United States)

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  15. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    Science.gov (United States)

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17°C to 32°C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years.

  16. Modelling temperature dynamics of a district heating system in Naestved, Denmark-A case study

    International Nuclear Information System (INIS)

    Gabrielaitiene, Irina; Bohm, Benny; Sunden, Bengt

    2007-01-01

    Modelling the temperature dynamics of a district heating system is typically validated for a single pipe or a system with limited information about dynamic consumer behaviour. In the present work, time dependent consumer data from the Naestved district heating system was used to investigate the ability of modelling tools to represent the temperature profile distortion throughout an entire heating system network. The Naestved district heating subsystem was modelled by two approaches (the node method developed at the Technical University of Denmark and the software TERMIS), and these modelling results were compared with measured data. The results indicate that the discrepancies between the predicted and measured temperatures are pronounced for consumers located in pipelines at distant pipelines containing numerous bends and fittings. Additionally, it was found that representing the consumer behaviour on an annual average basis introduced a deviation between the predicted and the measured return temperatures at the heat source

  17. models of hourly dry bulb temperature and relative humidity of key

    African Journals Online (AJOL)

    user

    3: Worst cases of MFE for Dry bulb temperature and Relative humidity. Fig. 4: Best cases of ... the Second Joint International Conference of. University of Ilorin, Ilorin, Nigeria and University ... Erbs, D. G., “Models and Applications for Weather.

  18. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    Science.gov (United States)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  19. Short-Term City Electric Load Forecasting with Considering Temperature Effects: An Improved ARIMAX Model

    Directory of Open Access Journals (Sweden)

    Herui Cui

    2015-01-01

    Full Text Available Short-term electric load is significantly affected by weather, especially the temperature effects in summer. External factors can result in mutation structures in load data. Under the influence of the external temperature factors, city electric load cannot be easily forecasted as usual. This research analyzes the relationship between electricity load and daily temperature in city. An improved ARIMAX model is proposed in this paper to deal with the mutation data structures. It is found that information amount of the improved ARIMAX model is smaller than that of the classic method and its relative error is less than AR, ARMA and Sigmoid-Function ANN models. The forecasting results are more accurately fitted. This improved model is highly valuable when dealing with mutation data structure in the field of load forecasting. And it is also an effective technique in forecasting electric load with temperature effects.

  20. Small-amplitude vibrations at a finite temperature in the liquid drop model

    International Nuclear Information System (INIS)

    Providencia, J. da Jr.

    1991-01-01

    The ground state of a hot nucleus is studied in the classical limit. The equations of motion and boundary conditions of the liquid drop model are derived from the variational principle. The effect of the surface tension is taken into account. The temperature dependence of small-amplitude vibrations in the liquid drop model is investigated. It is shown that the breathing mode suffers a 6.3% decrease in energy when the temperature increases from 0 to 5 MeV. The present model allows for a description of surface modes with an A -1/2 dependence of the energy. It is also found that the surface modes will show an appreciable temperature dependence if a reasonable temperature dependence of the surface tension is postulated. It is shown that the model satisfies the energy-weighted sum rule and the inverse energy-weighted sum rule. (orig.)D

  1. A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials

    OpenAIRE

    Kopfová, J.; Krejčí, P. (Pavel)

    2011-01-01

    We establish the well-posedness and thermodynamic consistency of a variational inequality modeling temperature-induced memory erasure in shape memory materials. It is shown that the input-output operator is continuous with respect to uniform convergence.

  2. Temperature-Dependent Kinetics of Grape Seed Phenolic Compounds Extraction: Experiment and Model

    Czech Academy of Sciences Publication Activity Database

    Bucic´-Kojic´, A.; Sovová, Helena; Planinic´, M.; Tomas, S.

    2013-01-01

    Roč. 136, 3-4 (2013), s. 1136-1140 ISSN 0308-8146 Institutional support: RVO:67985858 Keywords : kinetics modelling * temperature * grape seed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.259, year: 2013

  3. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    Science.gov (United States)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference

  4. Temperature modulation with an esophageal heat transfer device - a pediatric swine model study.

    Science.gov (United States)

    Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark

    2015-01-01

    An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).

  5. Microstructure-based multiscale modeling of elevated temperature deformation in aluminum alloys

    International Nuclear Information System (INIS)

    Krajewski, Paul E.; Hector, Louis G.; Du Ningning; Bower, Allan F.

    2010-01-01

    A multiscale model for predicting elevated temperature deformation in Al-Mg alloys is presented. Constitutive models are generated from a theoretical methodology and used to investigate the effects of grain size on formability. Flow data are computed with a polycrystalline, microstructure-based model which accounts for grain boundary sliding, stress-induced diffusion, and dislocation creep. Favorable agreement is found between the computed flow data and elevated temperature tensile measurements. A creep constitutive model is then fit to the computed flow data and used in finite-element simulations of two simple gas pressure forming processes, where favorable results are observed. These results are fully consistent with gas pressure forming experiments, and suggest a greater role for constitutive models, derived largely from theoretical methodologies, in the design of Al alloys with enhanced elevated temperature formability. The methodology detailed herein provides a framework for incorporation of results from atomistic-scale models of dislocation creep and diffusion.

  6. Finite temperature behaviour of the ISS-uplifted KKLT model

    International Nuclear Information System (INIS)

    Papineau, Chloe

    2008-01-01

    We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector.

  7. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  8. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels

    International Nuclear Information System (INIS)

    Lang, Peter; Rath, Markus; Kozeschnik, Ernst; Rivera-Diaz-del-Castillo, Pedro E.J.

    2015-01-01

    Hydrogen trapping behaviour is investigated by means of thermokinetic simulations in a martensitic steel. The heat treatment consists of austenitisation followed by quenching and tempering. The model prescribes a minimum in hydrogen trapping at an austenitisation temperature of 1050 °C. Below this temperature, austenite grain boundaries are the prevailing trap, whereas niobium atoms in solid solution are the main traps above 1050 °C. The model describes precisely the experimental results

  9. Analysis model for forecasting extreme temperature using refined rank set pair

    Directory of Open Access Journals (Sweden)

    Qiao Ling-Xia

    2013-01-01

    Full Text Available In order to improve the precision of forecasting extreme temperature time series, a refined rank set pair analysis model with a refined rank transformation function is proposed to improve precision of its prediction. The measured values of the annual highest temperature of two China’s cities, Taiyuan and Shijiazhuang, in July are taken to examine the performance of a refined rank set pair model.

  10. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Ma, Ke

    2014-01-01

    Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal ...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model....

  11. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Directory of Open Access Journals (Sweden)

    F. Richter

    2018-03-01

    Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  12. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Science.gov (United States)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  13. Hybrid Prediction Model of the Temperature Field of a Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Lixiu Zhang

    2017-10-01

    Full Text Available The thermal characteristics of a motorized spindle are the main determinants of its performance, and influence the machining accuracy of computer numerical control machine tools. It is important to accurately predict the thermal field of a motorized spindle during its operation to improve its thermal characteristics. This paper proposes a model to predict the temperature field of a high-speed and high-precision motorized spindle under different working conditions using a finite element model and test data. The finite element model considers the influence of the parameters of the cooling system and the lubrication system, and that of environmental conditions on the coefficient of heat transfer based on test data for the surface temperature of the motorized spindle. A genetic algorithm is used to optimize the coefficient of heat transfer of the spindle, and its temperature field is predicted using a three-dimensional model that employs this optimal coefficient. A prediction model of the 170MD30 temperature field of the motorized spindle is created and simulation data for the temperature field are compared with the test data. The results show that when the speed of the spindle is 10,000 rpm, the relative mean prediction error is 1.5%, and when its speed is 15,000 rpm, the prediction error is 3.6%. Therefore, the proposed prediction model can predict the temperature field of the motorized spindle with high accuracy.

  14. Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies

    International Nuclear Information System (INIS)

    Choi, B.; Pearce, J.A.; Welch, A.J.

    2000-01-01

    The use of thermographic techniques has increased as infrared detector technology has evolved and improved. For laser-tissue interactions, thermal cameras have been used to monitor the thermal response of tissue to pulsed and continuous wave irradiation. It is important to note that the temperature indicated by the thermal camera may not be equal to the actual surface temperature. It is crucial to understand the limitations of using thermal cameras to measure temperature during laser irradiation of tissue. The goal of this study was to demonstrate the potential difference between measured and actual surface temperatures in a quantitative fashion using a 1D finite difference model. Three ablation models and one cryogen spray cooling simulation were adapted from the literature, and predictions of radiometric temperature measurements were calculated. In general, (a) steep superficial temperature gradients, with a surface peak, resulted in an underestimation of the actual surface temperature, (b) steep superficial temperature gradients, with a subsurface peak, resulted in an overestimation, and (c) small gradients led to a relatively accurate temperature estimate. (author)

  15. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature....... A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  16. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  17. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  18. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  19. The existence of negative absolute temperatures in Axelrod’s social influence model

    Science.gov (United States)

    Villegas-Febres, J. C.; Olivares-Rivas, W.

    2008-06-01

    We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.

  20. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders (GEO INNOVA AB, Linkoeping (Sweden))

    2009-06-15

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with

  1. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders

    2009-05-01

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m 2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with air

  2. Three-dimensional temperature effect modelling of piezoceramic transducers used for Lamb wave based damage detection

    International Nuclear Information System (INIS)

    Kijanka, Piotr; Packo, Pawel; Staszewski, Wieslaw J; Zhu, Xuan; Di Scalea, Francesco Lanza

    2015-01-01

    The paper presents a three-dimensional temperature-dependent model of surface-bonded, low-profile piezoceramic transducers (PZT) used for Lamb wave propagation. The effect of temperature on Lamb wave actuation, propagation and sensing is investigated. The major focus is on the study of actuation and sensing properties of PZT for various temperature levels. These properties are investigated through the electric field analysis of transducers. The temperature effect on transducer bond layers is also investigated. Numerically simulated amplitude responses are analysed for various temperatures and excitation frequencies. Numerical simulations are validated experimentally. The results demonstrate that temperature-dependent physical properties of PZT, bond layers and particularly host structures significantly affect the amplitude and phase of Lamb wave responses. (paper)

  3. MONITORING CANOPY AND AIR TEMPERATURE OF DOMINANT VEGETATION IN TROPICAL SEMI-ARID USING BIOCLIMATIC MODEL

    Directory of Open Access Journals (Sweden)

    Josiclêda Domiciano Galvíncio

    2016-10-01

    Full Text Available Typical vegetation of arid environments consist of few dominant species highly threatened by climate change. Jurema preta (Mimosa tenuiflora (Willd. Poiret is one of these successful species that now is dominant in extensive semiarid areas in the world. The development of a simple bioclimatic model using climate change scenarios based on optimistic and pessimistic predictions of the Intergovernmental Panel on Climate Change (IPCC shown as a simple tool to predict possible responses of dominant species under dry land conditions and low functional biodiversity. The simple bioclimatic model proved satisfactory in creating climate change scenarios and impacts on the canopy temperature of Jurema preta in semiarid Brazil. The bioclimatic model was efficient to obtain spatially relevant estimations of air temperature from determinations of the surface temperature using satellite images. The model determined that the average difference of 5oC between the air temperature and the leaf temperature for Jurema preta, and an increase of 3oC in air temperature, promote an increase of 2oC in leaf temperature. It lead to disturbances in vital physiological mechanisms in the leaf, mainly the photosynthesis and efficient use of water.

  4. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios

    Science.gov (United States)

    Sanikhani, Hadi; Kisi, Ozgur; Maroufpoor, Eisa; Yaseen, Zaher Mundher

    2018-02-01

    The establishment of an accurate computational model for predicting reference evapotranspiration (ET0) process is highly essential for several agricultural and hydrological applications, especially for the rural water resource systems, water use allocations, utilization and demand assessments, and the management of irrigation systems. In this research, six artificial intelligence (AI) models were investigated for modeling ET0 using a small number of climatic data generated from the minimum and maximum temperatures of the air and extraterrestrial radiation. The investigated models were multilayer perceptron (MLP), generalized regression neural networks (GRNN), radial basis neural networks (RBNN), integrated adaptive neuro-fuzzy inference systems with grid partitioning and subtractive clustering (ANFIS-GP and ANFIS-SC), and gene expression programming (GEP). The implemented monthly time scale data set was collected at the Antalya and Isparta stations which are located in the Mediterranean Region of Turkey. The Hargreaves-Samani (HS) equation and its calibrated version (CHS) were used to perform a verification analysis of the established AI models. The accuracy of validation was focused on multiple quantitative metrics, including root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient (R 2), coefficient of residual mass (CRM), and Nash-Sutcliffe efficiency coefficient (NS). The results of the conducted models were highly practical and reliable for the investigated case studies. At the Antalya station, the performance of the GEP and GRNN models was better than the other investigated models, while the performance of the RBNN and ANFIS-SC models was best compared to the other models at the Isparta station. Except for the MLP model, all the other investigated models presented a better performance accuracy compared to the HS and CHS empirical models when applied in a cross-station scenario. A cross-station scenario examination implies the

  5. Response of Soil Temperature to Climate Change in the CMIP5 Earth System Models

    Science.gov (United States)

    Phillips, C. L.; Torn, M. S.; Koven, C. D.

    2014-12-01

    Predictions of soil temperature changes are as critical to policy development and climate change adaptation as predictions of air temperature, but have received comparatively little attention. Soil temperature determines seed germination and growth of wild and agricultural plants, and impacts climate through both geophysical and carbon-cycle feedbacks. The Intergovernmental Panel on Climate Change 5th Assessment Report does not report soil temperature predictions, but focuses instead on surface air temperatures, despite the fact that mean annual soil temperatures and mean surface air temperatures are often different from each other. Here we aim to fill this important knowledge gap by reporting soil temperature and moisture predictions for 15 earth system models (ESMs) that participated in phase 5 of the Coupled Model Intercomparison 5 Project (CMIP5). Under the RCP 4.5 and 8.5 emissions scenarios, soil warming is predicted to almost keep pace with soil air warming, with about 10% less warming in soil than air, globally. The slower warming of soil compared to air is likely related to predictions of soil drying, with drier soils having reduced soil heat capacity and thermal conductivity. Mollisol soils, which are typically regarded as the most productive soil order for cultivating cereal crops, are anticipated to see warming in North America of 3.5 to 5.5 °C at the end of the 21st century (2080-2100) compared to 1986-2005. One impact of soil warming is likely to be an acceleration of germination timing, with the 3°C temperature threshold for wheat germination anticipated to advance by several weeks in Mollisol regions. Furthermore, soil warming at 1 m depth is predicted to be almost equivalent to warming at 1 cm depth in frost-free regions, indicating vulnerability of deep soil carbon pools to destabilization. To assess model performance we compare the models' predictions with observations of damping depth, and offsets between mean annual soil and air temperature

  6. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Science.gov (United States)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  7. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    Science.gov (United States)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  8. MEMPREDIKSI POLA PERUBAHAN TEMPERATUR DALAM RUMAH TROPIS LEMBAB DENGAN MENGGUNAKAN MODEL ANALOGI ELEKTRIK SATU DIMENSI

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2002-01-01

    Full Text Available This study concern in the application of a simplified heat transfer model for simulation of thermal behaviour of tropical buildings. The model is to be integrated to a transient simulation program TRNSYS. The objective of this study is to predict the variable of indoor air temperature due to outdoors environmental climatic. The first case is about the comparison of the model with other model from ASHRAE (i.e. Transfer Function Method. The second case is the application of the model for a thermal simulation of a 7-zones typical tropical house. The simulation results (indoor air temperature and surfaces temperature are to be then compared to the results from field measurement. The comparison shows that there is similarity between those two approaches. Abstract in Bahasa Indonesia : Studi ini diarahkan pada validasi dan penggunaan suatu model perhitungan perpindahan panas sederhana satu dimensi untuk memprediksi perubahan suhu udara dalam ruang rumah beriklim tropis lembab. Model tersebut adalah model analogi elektrik yang dapat dipakai untuk membuat simulasi perpindahan panas pada kondisi tak-stedi.Pada penerapan di kasus pertama, hasil perhitungan dengan model sederhana tersebut dibandingkan terhadap perhitungan dengan model lainnya yaitu model TFM (Transfer Function Method dari ASHRAE (American Society of Heating, Referigerating and Air conditioning Engineers. Pada penerapan di kasus kedua, dilakukan pembandingan terhadap hasil pengukuran pada kasus rumah tinggal 7 zona. Hasilnya menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara hasil perhitungan dengan model sederhana tersebut dibandingkan terhadap hasil perhitungan dengan model TFM maupun terhadap hasil pengukuran di lapangan.

  9. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.

    2016-01-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  10. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  11. Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling

    Directory of Open Access Journals (Sweden)

    Javed Akram

    2018-04-01

    Full Text Available A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D microstructure model was developed for Inconel 718 alloy using theoretical aspects of dynamic recrystallization. Flow curves were simulated and compared with experimental results using hot deformation parameter obtained from literature work. Using validated model, simulations were performed for friction welds of Inconel 718 alloy generated at three rotational speed i.e., 1200, 1500, and 1500 RPM. Results showed the increase in strain rates with increasing rotational speed. These simulated strain rates were found to match with the analytical results. Temperature difference of 150 K was noticed from center to edge of the weld. At all the rotational speeds, the temperature was identical implying steady state temperature (0.89Tm attainment. Keywords: Microstructure modeling, Dynamic recrystallization, Friction welding, Inconel 718, EBSD, Hot deformation, Strain map

  12. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  13. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  14. Development of a HEC-RAS temperature model for the North Santiam River, northwestern Oregon

    Science.gov (United States)

    Stonewall, Adam J.; Buccola, Norman L.

    2015-01-01

    A one-dimensional, unsteady streamflow and temperature model (HEC-RAS) of the North Santiam and Santiam Rivers was developed by the U.S. Geological Survey to be used in conjunction with previously developed two-dimensional hydrodynamic water-quality models (CE-QUAL-W2) of Detroit and Big Cliff Lakes upstream of the study area. In conjunction with the output from the previously developed models, the HEC-RAS model can simulate streamflows and temperatures within acceptable limits (mean error [bias] near zero; typical streamflow errors less than 5 percent; typical water temperature errors less than 1.0 °C) for the length of the North Santiam River downstream of Big Cliff Dam under a series of potential future conditions in which dam structures and/or dam operations are modified to improve temperature conditions for threatened and endangered fish. Although a two-dimensional (longitudinal, vertical) CE-QUAL-W2 model for the North Santiam and Santiam Rivers downstream of Big Cliff Dam exists, that model proved unstable under highly variable flow conditions. The one-dimensional HEC-RAS model documented in this report can better simulate cross-sectional-averaged stream temperatures under a wide range of flow conditions.

  15. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-01-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression

  16. Temperature dependence of the CP/sup N-1/ model and the analogy with quantum chromodynamics

    International Nuclear Information System (INIS)

    Actor, A.

    1985-01-01

    The two-dimensional CP/sup N-1/ model - a simple field-theoretic analogue of four-dimensional quantum chromodynamics (QCD) - is analysed and reviewed. The major themes are the temperature dependence of the CP/sup N-1/ model, and the analogy between CP/sup N-1/ and QCD. A detailed treatment of the 1/N approximation of the CP/sup N-1/ model is given. The main results emerging from this approximation are discussed at length. These are: asymptotic freedom, dimensional transmutation, confinement and topological charge nonquantization at zero temperature T = 0, screening and topological charge quantization at finite temperature T. The analogy with QCD is explained in detail. A new, qualitative, analysis of the CP/sup N-1/ model at finite temperature is introduced. This approach exploits the conformal invariance of the model to 'heat' an arbitrary CP/sup N-1/ field from T = 0 to finite temperature. This is achieved by conformal-transforming the flat Euclidean space-time of the T = 0 theory to the cylindrical space-time of the finite temperature theory. (author)

  17. On the temperature dependence of H-U{sub iso} in the riding hydrogen model

    Energy Technology Data Exchange (ETDEWEB)

    Lübben, Jens; Volkmann, Christian [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Grabowsky, Simon [School of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley (Australia); Edwards, Alison [Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Morgenroth, Wolfgang [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Fabbiani, Francesca P. A. [GZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen (Germany); Sheldrick, George M. [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Dittrich, Birger, E-mail: birger.dittrich@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany)

    2014-07-01

    The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

  18. On the temperature dependence of H-Uiso in the riding hydrogen model

    International Nuclear Information System (INIS)

    Lübben, Jens; Volkmann, Christian; Grabowsky, Simon; Edwards, Alison; Morgenroth, Wolfgang; Fabbiani, Francesca P. A.; Sheldrick, George M.; Dittrich, Birger

    2014-01-01

    The temperature dependence of hydrogen U iso and parent U eq in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U iso in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U iso below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found

  19. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre.

    Science.gov (United States)

    Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J

    2009-08-01

    The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

  20. Development of fatigue crack propagation models for engineering applications at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.

    1975-05-01

    The value of modelling the fatigue crack propagation process is discussed and current models are examined in the light of increasing knowledge of crack tip deformation. Elevated temperature fatigue is examined in detail as an area in which models could contribute significantly to engineering design. A model is developed which examines the role of time-dependent creep cavitation on the failure process in an interactive creep-fatigue situation. (auth)

  1. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  2. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  3. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  4. Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature

    Science.gov (United States)

    Howe, R.

    Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.

  5. [Multispectral Radiation Algorithm Based on Emissivity Model Constraints for True Temperature Measurement].

    Science.gov (United States)

    Liang, Mei; Sun, Xiao-gang; Luan, Mei-sheng

    2015-10-01

    Temperature measurement is one of the important factors for ensuring product quality, reducing production cost and ensuring experiment safety in industrial manufacture and scientific experiment. Radiation thermometry is the main method for non-contact temperature measurement. The second measurement (SM) method is one of the common methods in the multispectral radiation thermometry. However, the SM method cannot be applied to on-line data processing. To solve the problems, a rapid inversion method for multispectral radiation true temperature measurement is proposed and constraint conditions of emissivity model are introduced based on the multispectral brightness temperature model. For non-blackbody, it can be drawn that emissivity is an increasing function in the interval if the brightness temperature is an increasing function or a constant function in a range and emissivity satisfies an inequality of emissivity and wavelength in that interval if the brightness temperature is a decreasing function in a range, according to the relationship of brightness temperatures at different wavelengths. The construction of emissivity assumption values is reduced from multiclass to one class and avoiding the unnecessary emissivity construction with emissivity model constraint conditions on the basis of brightness temperature information. Simulation experiments and comparisons for two different temperature points are carried out based on five measured targets with five representative variation trends of real emissivity. decreasing monotonically, increasing monotonically, first decreasing with wavelength and then increasing, first increasing and then decreasing and fluctuating with wavelength randomly. The simulation results show that compared with the SM method, for the same target under the same initial temperature and emissivity search range, the processing speed of the proposed algorithm is increased by 19.16%-43.45% with the same precision and the same calculation results.

  6. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-05-01

    Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.

  7. Inferring the temperature dependence of Beremin cleavage model parameters from the Master Curve

    International Nuclear Information System (INIS)

    Cao Yupeng; Hui Hu; Wang Guozhen; Xuan Fuzhen

    2011-01-01

    Research highlights: → Temperature dependence of Beremin model parameters is inferred by Master Curve approach. → Weibull modulus decreases while Weibull stress scale parameter increases with increasing the temperature. → Estimation of Weibull stress parameters in terms of small amounts of specimens leads to a considerable uncertainty. - Abstract: The temperature dependence of Beremin model parameters in the ductile-to-brittle transition region was addressed by employing the Master Curve. Monte Carlo simulation was performed to produce a large number of 1T fracture toughness data randomly drawn from the scatter band at a temperature of interest and thus to determine Beremin model parameters. In terms of the experimental data of a C-Mn steel (the 16MnR steel in China), results revealed that the Weibull modulus, m, decreases with temperature over the lower transition range and remains a constant in the lower-to-mid transition region. The Weibull scale parameter, σ u , increases with temperature over the temperature range of investigated. A small sample may lead to a considerable uncertainty in estimates of the Weibull stress parameters. However, no significant difference was observed for the average of Weibull stress parameters from different sample sizes.

  8. On modeling and measuring the temperature of the z ∼ 5 intergalactic medium

    International Nuclear Information System (INIS)

    Lidz, Adam; Malloy, Matthew

    2014-01-01

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z ≳ 5 using semi-numeric models of patchy reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z ≳ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ∼ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ∼ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.

  9. The Effect of Process and Model Parameters in Temperature Prediction for Hot Stamping of Boron Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2013-01-01

    Full Text Available Finite element models of the hot stamping and cold die quenching process for boron steel sheet were developed using either rigid or elastic tools. The effect of tool elasticity and process parameters on workpiece temperature was investigated. Heat transfer coefficient between blank and tools was modelled as a function of gap and contact pressure. Temperature distribution and thermal history in the blank were predicted, and thickness distribution of the blank was obtained. Tests were carried out and the test results are used for the validation of numerical predictions. The effect of holding load and the size of cooling ducts on temperature distribution during the forming and the cool die quenching process was also studied by using two models. The results show that higher accuracy predictions of blank thickness and temperature distribution during deformation were obtained using the elastic tool model. However, temperature results obtained using the rigid tool model were close to those using the elastic tool model for a range of holding load.

  10. Utilising temperature differences as constraints for estimating parameters in a simple climate model

    International Nuclear Information System (INIS)

    Bodman, Roger W; Karoly, David J; Enting, Ian G

    2010-01-01

    Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.

  11. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    Science.gov (United States)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  12. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    Science.gov (United States)

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  13. Simulation tests for temperature mixing in a core bottom model of the HTR-module

    International Nuclear Information System (INIS)

    Damm, G.; Wehrlein, R.

    1992-01-01

    Interatom and Siemens are developing a helium-cooled Modular High Temperature Reactor. Under nominal operating conditions temperature differences of up to 120deg C will occur in the 700deg C hot helium flow leaving the core. In addition, cold gas leakages into the hot gas header can produce even higher temperature differences in the coolant flow. At the outlet of the reactor only a very low temperature difference of maximum ± 15deg C is allowed in order to avoid damages at the heat exchanging components due to alternating thermal loads. Since it is not possible to calculate the complex flow behaviour, experimental investigations of the temperature mixing in the core bottom had to be carried out in order to guarantee the necessary reduction of temperature differences in the helium. The presented air simulation tests in a 1:2.9 scaled plexiglas model of the core bottom showed an extremely high mixing rate of the hot gas header and the hot gas duct of the reactor. The temperature mixing of the simulated coolant flow as well as the leakage flows was larger than 95%. Transfered to reactor conditions this means a temperature difference of only ± 3deg C for the main flow at a quite resonable pressure drop. For the cold gas leakages temperature differences in the hot gas up to 400deg C proved to be permissible. The results of the simulation experiments in the Aerodynamic Test Facility of Interatom permitted to design a shorter bottom reflector of the core. (orig.)

  14. On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling

    Science.gov (United States)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1993-01-01

    Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.

  15. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    Science.gov (United States)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow

  16. Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-01-01

    Full Text Available Boreal deforestation plays an important role in affecting regional and global climate. In this study, the regional temperature variation induced by future boreal deforestation in European Russia boreal forest region was simulated based on future land cover change and the Weather Research and Forecasting (WRF model. This study firstly tested and validated the simulation results of the WRF model. Then the land cover datasets in different years (2000 as baseline year, 2010, and 2100 was used in the WRF model to explore the impacts of boreal deforestation on the near-surface temperature. The results indicated that the WRF model has good ability to simulate the temperature change in European Russia. The land cover change in European Russia boreal forest region, which will be characterized by the conversion from boreal forests to croplands (boreal deforestation in the future 100 years, will lead to significant change of the near-surface temperature. The regional annual temperature will decrease by 0.58°C in the future 100 years, resulting in cooling effects to some extent and making the near-surface temperature decrease in most seasons except the spring.

  17. Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace

    Directory of Open Access Journals (Sweden)

    Hari S. Ganesh

    2016-12-01

    Full Text Available Quench hardening is the process of strengthening and hardening ferrous metals and alloys by heating the material to a specific temperature to form austenite (austenitization, followed by rapid cooling (quenching in water, brine or oil to introduce a hardened phase called martensite. The material is then often tempered to increase toughness, as it may decrease from the quench hardening process. The austenitization process is highly energy-intensive and many of the industrial austenitization furnaces were built and equipped prior to the advent of advanced control strategies and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the furnace and the part temperature profile as a function of time and position within the furnace under temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace for a batch of forty parts under heuristic temperature set points suggested by the operators of the plant. A model predictive control (MPC system is then developed and deployed to control the the part temperature at the furnace exit thereby preventing the parts from overheating. An energy efficiency gain of 5.3 % was obtained under model predictive control compared to operation under heuristic temperature set points tracked by a regulatory control layer.

  18. Topoclimatic modeling for minimum temperature prediction at a regional scale in the Central Valley of Chile

    International Nuclear Information System (INIS)

    Santibáñez, F.; Morales, L.; Fuente, J. de la; Cellier, P.; Huete, A.

    1997-01-01

    Spring frost may strongly affect fruit production in the Central Valley of Chile. Minimum temperatures are spatially variable owing to topography and soil conditions. A methodology for forecasting minimum temperature at a regional scale in the Central Valley of Chile, integrating spatial variability of temperature under radiative frost conditions, has been developed. It uses simultaneously a model for forecasting minimum temperatures at a reference station using air temperature and humidity measured at 6 pm, and topoclimatic models, based on satellite infra-red imagery (NOAA/AVHRR) and a digital elevation model, to extend the prediction at a regional scale. The methodological developments were integrated in a geographic information system for geo referencing of a meteorological station with satellite imagery and modeled output. This approach proved to be a useful tool for short range (12 h) minimum temperature prediction by generating thermal images over the Central Valley of Chile. It may also be used as a tool for frost risk assessment, in order to adapt production to local climatological conditions. (author)

  19. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NARCIS (Netherlands)

    Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR

  20. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  1. Temperature dependency of the hysteresis behaviour of PZT actuators using Preisach model

    DEFF Research Database (Denmark)

    Mangeot, Charles; Zsurzsan, Tiberiu-Gabriel

    2016-01-01

    The Preisach model is a powerful tool for modelling the hysteresis phenomenon on multilayer piezo actuators under large signal excitation. In this paper, measurements at different temperatures are presented, showing the effect on the density of the Preisach matrix. An energy-based approach is pre...

  2. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  3. A temperature dependent simple spice based modeling platform for power IGBT modules

    NARCIS (Netherlands)

    Sfakianakis, G.; Nawaz, M.; Chimento, F.

    2014-01-01

    This paper deals with the development of a PSpice based temperature dependent modelling platform for the evaluation of silicon based IGBT power modules. The developed device modelling platform is intended to be used for the design and assessment of converter valves/cells for potential high power

  4. High temperature limit of the order parameter correlation functions in the quantum Ising model

    Science.gov (United States)

    Reyes, S. A.; Tsvelik, A. M.

    2006-06-01

    In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.

  5. High temperature limit of the order parameter correlation functions in the quantum Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.A. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tsvelik, A.M. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States) and Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)]. E-mail tsvelik@bnl.gov

    2006-06-12

    In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.

  6. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and

  7. Comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available This paper presents two new schemes for interpolating missing samples in satellite diurnal temperature cycles (DTCs). The first scheme, referred to here as the cosine model, is an improvement of the model proposed in [2] and combines a cosine...

  8. Better temperature predictions in geothermal modelling by improved quality of input parameters

    DEFF Research Database (Denmark)

    Fuchs, Sven; Bording, Thue Sylvester; Balling, N.

    2015-01-01

    Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties...

  9. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    Science.gov (United States)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  10. A model to predict stream water temperature across the conterminous USA

    Science.gov (United States)

    Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang

    2014-01-01

    Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...

  11. Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2008-01-01

    heat exchanger. The model simulates the different steps of the AMR refrigeration cycle and evaluates the performance in terms of refrigeration capacity and temperature span between the two heat exchangers. The model was used to perform an analysis of an AMR with a regenerator made of gadolinium...

  12. An advanced material model for aluminum sheet forming at elevated temperatures

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, Alexis; Ghosh, Manojit; van den Boogaard, Antonius H.; Oñate, E.; Owen, D.R.J; Suárez, B.

    2009-01-01

    A physically-based material model according to Nes is used to simulate the warm forming of Al-Mg-Si sheet. This model incorporates the influence of the temperature and strain rate on the flow stress and on the hardening rate based on storage and dynamic recovery of dislocations. The effect of size

  13. ANS-5.4 fission gas release model. I. Noble gases at high temperature

    International Nuclear Information System (INIS)

    Noble, L.D.

    1979-01-01

    A correlation to describe the release of volatile radioactive fission products has been developed by the ANS Working Group (ANS 5.4) on Fuel Plenum Activity. The model for release at higher temperatures is identical in form to conventional diffusion equations, but the effective diffusion coefficient incorporates an explicit dependence upon exposure. Because applicable radioactive release data is limited, parameters in the model were determined from stable fission measurements, and calculated or measured fuel temperatures. Although the model predicts high release, particularly at higher exposures, values for many cases of interest are considerably less than the 100% assumed in some accident analyses: providing potential for removal of unnecessary conservations

  14. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  15. Unsuppressed fermion-number violation at high temperature: An O(3) model

    International Nuclear Information System (INIS)

    Mottola, E.; Wipf, A.

    1989-01-01

    The O(3) nonlinear σ model in 1+1 dimensions, modified by an explicit symmetry-breaking term, is presented as a model for baryon- and lepton-number violation in the standard electroweak theory. Although arguments based on the Atiyah-Singer index theorem and instanton physics apply to the model, we show by explicit calculations that the rate of chiral fermion-number violation due to the axial anomaly is entirely unsuppressed at sufficiently high temperatures. Our results apply to unbroken gauge theories as well and may require reevaluation of the role of instantons in high-temperature QCD

  16. Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod

    DEFF Research Database (Denmark)

    Mantzouni, Irene; Sørensen, Helle; O'Hara, Robert B.

    2010-01-01

    and Beverton and Holt stock–recruitment (SR) models were extended by applying hierarchical methods, mixed-effects models, and Bayesian inference to incorporate the influence of these ecosystem factors on model parameters representing cod maximum reproductive rate and carrying capacity. We identified......Understanding how temperature affects cod (Gadus morhua) ecology is important for forecasting how populations will develop as climate changes in future. The effects of spawning-season temperature and habitat size on cod recruitment dynamics have been investigated across the North Atlantic. Ricker...

  17. Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties on induced temperature variation.

    Science.gov (United States)

    de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony

    2016-08-01

    A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.

  18. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  19. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials; Outils de caracterisation thermophysique et modeles numeriques pour les composites thermostructuraux a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lorrette, Ch

    2007-04-15

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  20. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction

    Directory of Open Access Journals (Sweden)

    Fabio Di Napoli

    2017-02-01

    Full Text Available Residual lifetime estimation has gained a key point among the techniques that improve the reliability and the efficiency of power converters. The main cause of failures are the junction temperature cycles exhibited by switching devices during their normal operation; therefore, reliable power converter lifetime estimation requires the knowledge of the junction temperature time profile. Since on-line dynamic temperature measurements are extremely difficult, in this work an innovative real-time monitoring strategy is proposed, which is capable of estimating the junction temperature profile from the measurement of the dissipated powers through an accurate and compact thermal model of the whole power module. The equations of this model can be easily implemented inside a FPGA, exploiting the control architecture already present in modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method.

  1. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  2. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    Science.gov (United States)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  3. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  4. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    Science.gov (United States)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  5. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder...... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...... was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature...

  6. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  7. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  8. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    Science.gov (United States)

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  9. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

    Science.gov (United States)

    Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen

    2017-07-01

    This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

  10. The upper end of climate model temperature projections is inconsistent with past warming

    International Nuclear Information System (INIS)

    Stott, Peter; Good, Peter; Jones, Gareth; Gillett, Nathan; Hawkins, Ed

    2013-01-01

    Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming. (letter)

  11. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    Science.gov (United States)

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model

    Institute of Scientific and Technical Information of China (English)

    Takaya Ikemoto; Issei Kurahashi; Pei-Jian Shi

    2013-01-01

    The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecological and evolutional processes.The Sharpe-Schoolfield-Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a particular temperature the probability of an active enzyme reaching its maximum activity is realized.Previously,an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments.Journal of Medical Entomology,45,963-969) to estimate model parameters,but that program was computationally very time consuming.Now,investigators can use the SSI model more easily because a full automatic computer program was designed by Shi et al.(A modified program for estimating the parameters of the SSI model.Environmental Entomology,40,462-469).However,the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined.Here,we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method.For this purpose,it was necessary to develop a new program for a faster estimation of the parameters in the SSI model,which we have also done.

  13. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  14. Pedestal Temperature Model for Type III ELMy H-mode Plasma

    International Nuclear Information System (INIS)

    Buangam, W.; Suwanna, S.; Onjun, T.; Poolyarat, N.; Picha, R.; Singhsomroje, W.

    2009-07-01

    Full text: It is widely known that the improved performance of H-mode plasma results mainly from a formation of the pedestal, which is a narrow region of strong pressure gradient near the edge of plasma. A predictive capability for the conditions at the top of the pedestal is important, especially for predictive simulations of future experiments. New models for predicting the temperature values at the top of the pedestal for type III ELMy H-mode plasma are developed by using two different approaches: a theory-based approaches and an empirical approach. For a theory-based approach, a model is developed based on the calculation of thermal energy in the pedestal region and on accepted scaling laws of energy confinement time. For an empirical model, a scaling law for pedestal temperature in terms of plasma controlled parameters, such as plasma current, magnetic field, heating power, is deduced from experimental data. Predictions from these models are compared with experimental data from the Pedestal International Database. Statistical quantities, such as Root-Mean Square Error (RMSE) and offset values, are computed to quantify the predictive capability of the models. It is found that the theory-based model predicts the pedestal temperature values moderately well yielding RMSE between 30% and 40%. The IPB98(y,3) scaling law yields with best agreement with RMSE of 30.4%. The empirical model predicts the pedestal temperature value with better agreement, yield RMSE of 25.9%

  15. Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube

    Science.gov (United States)

    Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian

    2018-05-01

    In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.

  16. Modeling annual extreme temperature using generalized extreme value distribution: A case study in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salam, Norfatin; Kassim, Suraiya

    2013-04-01

    Extreme temperature of several stations in Malaysia is modeled by fitting the annual maximum to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are used to detect stochastic trends among the stations. The Mann-Kendall (MK) test suggests a non-stationary model. Three models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. The results show that Subang and Bayan Lepas stations favour a model which is linear for the location parameters while Kota Kinabalu and Sibu stations are suitable with a model in the logarithm of the scale parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

  17. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.

  18. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Arias, J.; Marques, L.A.; Ruiz-Bueno, A.; Bailon, L.

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results

  19. Volume dependence of the melting temperature for alkali metals with Debye's model

    International Nuclear Information System (INIS)

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  20. Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Stonewall, Adam J.

    2016-05-19

    During summer 2014, lake level, streamflow, and water temperature in and around Crystal Springs Lake in Portland, Oregon, were measured by the U.S. Geological Survey and the City of Portland Bureau of Environmental Services to better understand the effect of the lake on Crystal Springs Creek and Johnson Creek downstream. Johnson Creek is listed as an impaired water body for temperature by the Oregon Department of Environmental Quality (ODEQ), as required by section 303(d) of the Clean Water Act. A temperature total maximum daily load applies to all streams in the Johnson Creek watershed, including Crystal Springs Creek. Summer water temperatures downstream of Crystal Springs Lake and the Golf Pond regularly exceed the ODEQ numeric criterion of 64.4 °F (18.0 °C) for salmonid rearing and migration. To better understand temperature contributions of this system, the U.S. Geological Survey developed two-dimensional hydrodynamic water temperature models of Crystal Springs Lake and the Golf Pond. Model grids were developed to closely resemble the bathymetry of the lake and pond using data from a 2014 survey. The calibrated models simulated surface water elevations to within 0.06 foot (0.02 meter) and outflow water temperature to within 1.08 °F (0.60 °C). Streamflow, water temperature, and lake elevation data collected during summer 2014 supplied the boundary and reference conditions for the model. Measured discrepancies between outflow and inflow from the lake, assumed to be mostly from unknown and diffuse springs under the lake, accounted for about 46 percent of the total inflow to the lake.

  1. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    International Nuclear Information System (INIS)

    Saito, H; Jansen, K.; Cichy, K.; Frankfurt Univ.; Poznan Univ.

    2014-12-01

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  2. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  3. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  4. Theoretical study on the inverse modeling of deep body temperature measurement

    International Nuclear Information System (INIS)

    Huang, Ming; Chen, Wenxi

    2012-01-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)

  5. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANGDian-Fu; SONGHe-Shan; MIDong

    2004-01-01

    In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.

  6. Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan; MI Dong

    2004-01-01

    In terms of the Nambu-Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple localgauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalarfields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential isgiven which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinementbehavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can bemelted away under high temperatures.

  7. Computing the temperature dependence of effective CP violation in the standard model

    DEFF Research Database (Denmark)

    Brauner, Tomas; Taanila, Olli; Tranberg, Anders

    2012-01-01

    model is strongly suppressed at high temperature, but that at T less than or similar to 1 GeV it may be relevant for certain scenarios of baryogenesis. We also identify a selected class of operators at the next, eighth order and discuss the convergence of the covariant gradient expansion....... of the effective action to the leading nontrivial, sixth order in the covariant gradient expansion as a function of temperature. In the limit of zero temperature, our result addresses the discrepancy between two independent calculations existing in the literature [1, 2]. We find that CP violation in the standard...

  8. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  9. Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard

    Science.gov (United States)

    Plouffe, Dany

    Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique

  10. Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

    Directory of Open Access Journals (Sweden)

    Dan Sui

    2018-04-01

    Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

  11. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    Science.gov (United States)

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource

  12. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  13. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    International Nuclear Information System (INIS)

    Moreira, Uebert G.; Dominguez, Dany S.

    2017-01-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  14. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    Science.gov (United States)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  15. Matching of experimental and statistical-model thermonuclear reaction rates at high temperatures

    International Nuclear Information System (INIS)

    Newton, J. R.; Longland, R.; Iliadis, C.

    2008-01-01

    We address the problem of extrapolating experimental thermonuclear reaction rates toward high stellar temperatures (T>1 GK) by using statistical model (Hauser-Feshbach) results. Reliable reaction rates at such temperatures are required for studies of advanced stellar burning stages, supernovae, and x-ray bursts. Generally accepted methods are based on the concept of a Gamow peak. We follow recent ideas that emphasized the fundamental shortcomings of the Gamow peak concept for narrow resonances at high stellar temperatures. Our new method defines the effective thermonuclear energy range (ETER) by using the 8th, 50th, and 92nd percentiles of the cumulative distribution of fractional resonant reaction rate contributions. This definition is unambiguous and has a straightforward probability interpretation. The ETER is used to define a temperature at which Hauser-Feshbach rates can be matched to experimental rates. This matching temperature is usually much higher compared to previous estimates that employed the Gamow peak concept. We suggest that an increased matching temperature provides more reliable extrapolated reaction rates since Hauser-Feshbach results are more trustwhorthy the higher the temperature. Our ideas are applied to 21 (p,γ), (p,α), and (α,γ) reactions on A=20-40 target nuclei. For many of the cases studied here, our extrapolated reaction rates at high temperatures differ significantly from those obtained using the Gamow peak concept

  16. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  17. Bayesian neural network modeling of tree-ring temperature variability record from the Western Himalayas

    Directory of Open Access Journals (Sweden)

    R. K. Tiwari

    2011-08-01

    Full Text Available A novel technique based on the Bayesian neural network (BNN theory is developed and employed to model the temperature variation record from the Western Himalayas. In order to estimate an a posteriori probability function, the BNN is trained with the Hybrid Monte Carlo (HMC/Markov Chain Monte Carlo (MCMC simulations algorithm. The efficacy of the new algorithm is tested on the well known chaotic, first order autoregressive (AR and random models and then applied to model the temperature variation record decoded from the tree-ring widths of the Western Himalayas for the period spanning over 1226–2000 AD. For modeling the actual tree-ring temperature data, optimum network parameters are chosen appropriately and then cross-validation test is performed to ensure the generalization skill of the network on the new data set. Finally, prediction result based on the BNN model is compared with the conventional artificial neural network (ANN and the AR linear models results. The comparative results show that the BNN based analysis makes better prediction than the ANN and the AR models. The new BNN modeling approach provides a viable tool for climate studies and could also be exploited for modeling other kinds of environmental data.

  18. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  19. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97, d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = −0.10 to −1.30). Validation analyses showed all models performed

  20. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-11-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58-1.311, NSE = 0.99-0.97, d = 0.98-0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = -0.10 to -1.30). Validation analyses showed all models performed well; the

  1. Polymer-based blood vessel models with micro-temperature sensors in EVE

    Science.gov (United States)

    Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi

    2017-04-01

    Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.

  2. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  3. Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

    International Nuclear Information System (INIS)

    Blasco-Gimenez, Ramón; Lequerica, Juan L; Herrero, Maria; Hornero, Fernando; Berjano, Enrique J

    2010-01-01

    The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min −1 ). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 °C; (3) substantial errors (larger than 15 °C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 °C)

  4. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    Science.gov (United States)

    Lovelady, D. C.; Harper, H. M.; Brodsky, I. E.; Rabson, D. A.

    2006-05-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72 Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based.

  5. Multiphase region of helimagnetic superlattices at low temperature in an extended six-state clock model

    International Nuclear Information System (INIS)

    Lovelady, D C; Harper, H M; Brodsky, I E; Rabson, D A

    2006-01-01

    The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72; Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based

  6. Profile modifications in laser-driven temperature fronts using flux-limiters and delocalization models

    Science.gov (United States)

    Colombant, Denis; Manheimer, Wallace; Busquet, Michel

    2004-11-01

    A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)

  7. A two-temperature model for selective photothermolysis laser treatment of port wine stains

    International Nuclear Information System (INIS)

    Li, D.; Wang, G.X.; He, Y.L.; Kelly, K.M.; Wu, W.J.; Wang, Y.X.; Ying, Z.X.

    2013-01-01

    Selective photothermolysis is the basic principle for laser treatment of vascular malformations such as port wine stain birthmarks (PWS). During cutaneous laser surgery, blood inside blood vessels is heated due to selective absorption of laser energy, while the surrounding normal tissue is spared. As a result, the blood and the surrounding tissue experience a local thermodynamic non-equilibrium condition. Traditionally, the PWS laser treatment process was simulated by a discrete-blood-vessel model that simplifies blood vessels into parallel cylinders buried in a multi-layer skin model. In this paper, PWS skin is treated as a porous medium made of tissue matrix and blood in the dermis. A two-temperature model is constructed following the local thermal non-equilibrium theory of porous media. Both transient and steady heat conduction problems are solved in a unit cell for the interfacial heat transfer between blood vessels and the surrounding tissue to close the present two-temperature model. The present two-temperature model is validated by good agreement with those from the discrete-blood-vessel model. The characteristics of the present two-temperature model are further illustrated through a comparison with the previously-used homogenous model, in which a local thermodynamic equilibrium assumption between the blood and the surrounding tissue is employed. -- Highlights: • Local thermal non-equilibrium theory was adapted in field of laser dermatology. • Transient interfacial heat transfer coefficient between two phases is presented. • Less PWS blood vessel micro-structure information is required in present model. • Good agreement between present model and classical discrete-blood-vessel model

  8. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air

    Directory of Open Access Journals (Sweden)

    Luciane Bastistella

    2018-02-01

    Full Text Available New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens, Cyclobalanopsis glauca, Trigonostemon huangmosun, and Bambusa vulgaris, and involved five relative humidity conditions (22, 43, 75, 84, and 90%, two mass samples (0.1 and 1 g, and two particle sizes (powder and piece. Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  9. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  10. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  11. Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction.

    Science.gov (United States)

    Saska, Pavel; van der Werf, Wopke; Hemerik, Lia; Luff, Martin L; Hatten, Timothy D; Honek, Alois; Pocock, Michael

    2013-02-01

    Carabids and other epigeal arthropods make important contributions to biodiversity, food webs and biocontrol of invertebrate pests and weeds. Pitfall trapping is widely used for sampling carabid populations, but this technique yields biased estimates of abundance ('activity-density') because individual activity - which is affected by climatic factors - affects the rate of catch. To date, the impact of temperature on pitfall catches, while suspected to be large, has not been quantified, and no method is available to account for it. This lack of knowledge and the unavailability of a method for bias correction affect the confidence that can be placed on results of ecological field studies based on pitfall data.Here, we develop a simple model for the effect of temperature, assuming a constant proportional change in the rate of catch per °C change in temperature, r , consistent with an exponential Q 10 response to temperature. We fit this model to 38 time series of pitfall catches and accompanying temperature records from the literature, using first differences and other detrending methods to account for seasonality. We use meta-analysis to assess consistency of the estimated parameter r among studies.The mean rate of increase in total catch across data sets was 0·0863 ± 0·0058 per °C of maximum temperature and 0·0497 ± 0·0107 per °C of minimum temperature. Multiple regression analyses of 19 data sets showed that temperature is the key climatic variable affecting total catch. Relationships between temperature and catch were also identified at species level. Correction for temperature bias had substantial effects on seasonal trends of carabid catches. Synthesis and Applications . The effect of temperature on pitfall catches is shown here to be substantial and worthy of consideration when interpreting results of pitfall trapping. The exponential model can be used both for effect estimation and for bias correction of observed data. Correcting for temperature

  12. Development of temperature statistical model when machining of aerospace alloy materials

    Directory of Open Access Journals (Sweden)

    Kadirgama Kumaran

    2014-01-01

    Full Text Available This paper presents to develop first-order models for predicting the cutting temperature for end-milling operation of Hastelloy C-22HS by using four different coated carbide cutting tools and two different cutting environments. The first-order equations of cutting temperature are developed using the response surface methodology (RSM. The cutting variables are cutting speed, feed rate, and axial depth. The analyses are carried out with the aid of the statistical software package. It can be seen that the model is suitable to predict the longitudinal component of the cutting temperature close to those readings recorded experimentally with a 95% confident level. The results obtained from the predictive models are also compared with results obtained from finite-element analysis (FEA. The developed first-order equations for the cutting temperature revealed that the feed rate is the most crucial factor, followed by axial depth and cutting speed. The PVD coated cutting tools perform better than the CVD-coated cutting tools in terms of cutting temperature. The cutting tools coated with TiAlN perform better compared with other cutting tools during the machining performance of Hastelloy C-22HS. It followed by TiN/TiCN/TiN and CVD coated with TiN/TiCN/Al2O3 and TiN/TiCN/TiN. From the finite-element analysis, the distribution of the cutting temperature can be discussed. High temperature appears in the lower sliding friction zone and at the cutting tip of the cutting tool. Maximum temperature is developed at the rake face some distance away from the tool nose, however, before the chip lift away.

  13. Modifying the baricity of local anesthetics for spinal anesthesia by temperature adjustment: model calculations.

    Science.gov (United States)

    Heller, Axel R; Zimmermann, Katrin; Seele, Kristin; Rössel, Thomas; Koch, Thea; Litz, Rainer J

    2006-08-01

    Although local anesthetics (LAs) are hyperbaric at room temperature, density drops within minutes after administration into the subarachnoid space. LAs become hypobaric and therefore may cranially ascend during spinal anesthesia in an uncontrolled manner. The authors hypothesized that temperature and density of LA solutions have a nonlinear relation that may be described by a polynomial equation, and that conversion of this equation may provide the temperature at which individual LAs are isobaric. Density of cerebrospinal fluid was measured using a vibrating tube densitometer. Temperature-dependent density data were obtained from all LAs commonly used for spinal anesthesia, at least in triplicate at 5 degrees, 20 degrees, 30 degrees, and 37 degrees C. The hypothesis was tested by fitting the obtained data into polynomial mathematical models allowing calculations of substance-specific isobaric temperatures. Cerebrospinal fluid at 37 degrees C had a density of 1.000646 +/- 0.000086 g/ml. Three groups of local anesthetics with similar temperature (T, degrees C)-dependent density (rho) characteristics were identified: articaine and mepivacaine, rho1(T) = 1.008-5.36 E-06 T2 (heavy LAs, isobaric at body temperature); L-bupivacaine, rho2(T) = 1.007-5.46 E-06 T2 (intermediate LA, less hypobaric than saline); bupivacaine, ropivacaine, prilocaine, and lidocaine, rho3(T) = 1.0063-5.0 E-06 T (light LAs, more hypobaric than saline). Isobaric temperatures (degrees C) were as follows: 5 mg/ml bupivacaine, 35.1; 5 mg/ml L-bupivacaine, 37.0; 5 mg/ml ropivacaine, 35.1; 20 mg/ml articaine, 39.4. Sophisticated measurements and mathematic models now allow calculation of the ideal injection temperature of LAs and, thus, even better control of LA distribution within the cerebrospinal fluid. The given formulae allow the adaptation on subpopulations with varying cerebrospinal fluid density.

  14. Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp. on sliced mushroom (Agaricus bisporus).

    Science.gov (United States)

    Tarlak, Fatih; Ozdemir, Murat; Melikoglu, Mehmet

    2018-02-02

    The growth data of Pseudomonas spp. on sliced mushrooms (Agaricus bisporus) stored between 4 and 28°C were obtained and fitted to three different primary models, known as the modified Gompertz, logistic and Baranyi models. The goodness of fit of these models was compared by considering the mean squared error (MSE) and the coefficient of determination for nonlinear regression (pseudo-R 2 ). The Baranyi model yielded the lowest MSE and highest pseudo-R 2 values. Therefore, the Baranyi model was selected as the best primary model. Maximum specific growth rate (r max ) and lag phase duration (λ) obtained from the Baranyi model were fitted to secondary models namely, the Ratkowsky and Arrhenius models. High pseudo-R 2 and low MSE values indicated that the Arrhenius model has a high goodness of fit to determine the effect of temperature on r max . Observed number of Pseudomonas spp. on sliced mushrooms from independent experiments was compared with the predicted number of Pseudomonas spp. with the models used by considering the B f and A f values. The B f and A f values were found to be 0.974 and 1.036, respectively. The correlation between the observed and predicted number of Pseudomonas spp. was high. Mushroom spoilage was simulated as a function of temperature with the models used. The models used for Pseudomonas spp. growth can provide a fast and cost-effective alternative to traditional microbiological techniques to determine the effect of storage temperature on product shelf-life. The models can be used to evaluate the growth behaviour of Pseudomonas spp. on sliced mushroom, set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  16. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  17. Nonstationary modeling of a long record of rainfall and temperature over Rome

    Science.gov (United States)

    Villarini, Gabriele; Smith, James A.; Napolitano, Francesco

    2010-10-01

    A long record (1862-2004) of seasonal rainfall and temperature from the Rome observatory of Collegio Romano are modeled in a nonstationary framework by means of the Generalized Additive Models in Location, Scale and Shape (GAMLSS). Modeling analyses are used to characterize nonstationarities in rainfall and related climate variables. It is shown that the GAMLSS models are able to represent the magnitude and spread in the seasonal time series with parameters which are a smooth function of time. Covariate analyses highlight the role of seasonal and interannual variability of large-scale climate forcing, as reflected in three teleconnection indexes (Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Mediterranean Index), for modeling seasonal rainfall and temperature over Rome. In particular, the North Atlantic Oscillation is a significant predictor during the winter, while the Mediterranean Index is a significant predictor for almost all seasons.

  18. Modeling of radionuclide migration and a temperature dynamics in underground disposal of liquid radioactive waste

    International Nuclear Information System (INIS)

    Larin, V.K.; Zubkov, A.A.; Balakhonov, V.G.; Sukhorukov, V.A.; Zhiganov, A.N.; Noskov, M.D.; Istomin, A.D.; Kesler, A.G.

    2002-01-01

    Mathematical model of radionuclide migration and temperature field dynamics during underground disposal of liquid radioactive wastes is presented. The model involves the description of filtration, convective-dispersion mass transfer, sorption and desorption of radionuclides, radioactive decay, convective heat transport and hear transfer. Software making possible to conduct prognosis calculations of changing state of stratum-collector of radioactive wastes was made. Results of the simulation of temperature field dynamics and behaviour of radionuclides on underground disposal of liquid radioactive wastes of the Siberian chemical plant are performed [ru

  19. Temperature Covariance in Tree Ring Reconstructions and Model Simulations Over the Past Millennium

    Czech Academy of Sciences Publication Activity Database

    Hartl-Meier, C. T. M.; Büntgen, Ulf; Smerdon, J. E.; Zorita, E.; Krusic, P. J.; Ljungqvist, F. C.; Schneider, L.; Esper, J.

    2017-01-01

    Roč. 44, č. 18 (2017), s. 9458-9469 ISSN 0094-8276 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:68378076 Keywords : last millennium * northern-hemisphere * summer temperatures * american southwest * volcanic-eruptions * tibetan plateau * sierra-nevada * system model * central-asia * climate * paleoclimate * spatial temperature synchrony * millennial scale * radiative forcing * proxy model comparison Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.253, year: 2016

  20. Constitutive Modelling and Identification of Parameters of 316L Stainless Steel at Cryogenic Temperatures

    Directory of Open Access Journals (Sweden)

    Ryś Maciej

    2014-09-01

    Full Text Available In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.

  1. Standard Model Extension and Casimir effect for fermions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Department of Physics, University of Alberta, T6J 2J1, Edmonton, Alberta (Canada)

    2016-11-10

    Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan–Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.

  2. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  3. Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

    Directory of Open Access Journals (Sweden)

    C. Bréant

    2017-07-01

    Full Text Available The transformation of snow into ice is a complex phenomenon that is difficult to model. Depending on surface temperature and accumulation rate, it may take several decades to millennia for air to be entrapped in ice. The air is thus always younger than the surrounding ice. The resulting gas–ice age difference is essential to documenting the phasing between CO2 and temperature changes, especially during deglaciations. The air trapping depth can be inferred in the past using a firn densification model, or using δ15N of air measured in ice cores. All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at several sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications of the LGGE firn densification model, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica (Vostok, Dome C, while preserving the good agreement between measured and modelled modern firn density profiles. In particular, we introduce a dependency of the creep factor on temperature and impurities in the firn densification rate calculation. The temperature influence intends to reflect the dominance of different mechanisms for firn compaction at different temperatures. We show that both the new temperature parameterization and the influence of impurities contribute to the increased agreement between modelled and measured δ15N evolution during the last deglaciation at sites with low temperature and low accumulation rate, such as Dome C or Vostok. We find that a very low sensitivity of the densification rate to temperature has to be used in the coldest conditions. The inclusion of impurity effects improves the agreement between modelled and measured δ15N at cold East Antarctic sites during the last

  4. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui

    2017-03-15

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  5. Can climate models be tuned to simulate the global mean absolute temperature correctly?

    Science.gov (United States)

    Duan, Q.; Shi, Y.; Gong, W.

    2016-12-01

    The Inter-government Panel on Climate Change (IPCC) has already issued five assessment reports (ARs), which include the simulation of the past climate and the projection of the future climate under various scenarios. The participating models can simulate reasonably well the trend in global mean temperature change, especially of the last 150 years. However, there is a large, constant discrepancy in terms of global mean absolute temperature simulations over this period. This discrepancy remained in the same range between IPCC-AR4 and IPCC-AR5, which amounts to about 3oC between the coldest model and the warmest model. This discrepancy has great implications to the land processes, particularly the processes related to the cryosphere, and casts doubts over if land-atmosphere-ocean interactions are correctly considered in those models. This presentation aims to explore if this discrepancy can be reduced through model tuning. We present an automatic model calibration strategy to tune the parameters of a climate model so the simulated global mean absolute temperature would match the observed data over the last 150 years. An intermediate complexity model known as LOVECLIM is used in the study. This presentation will show the preliminary results.

  6. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    Science.gov (United States)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  7. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  8. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  9. Finite element model to study temperature distribution in skin and deep tissues of human limbs.

    Science.gov (United States)

    Agrawal, Mamta; Pardasani, K R

    2016-12-01

    The temperature of body tissues is viewed as an indicator of tissue response in clinical applications since ancient times. The tissue temperature depends on various physical and physiological parameters like blood flow, metabolic heat generation, thermal conductivity of tissues, shape and size of organs etc. In this paper a finite element model has been proposed to study temperature distribution in skin and deep tissues of human limbs. The geometry of human limb is taken as elliptical tapered shape. It is assumed that outer surface of the limb is exposed to the environment. The appropriate boundary conditions have been framed based on physical conditions of the problem. The model has been developed for a three dimensional steady state case. Hexahedral circular sectoral elements are used to discretize the region. The results have been computed to obtain temperature profiles and study the relation of tissue temperature with the parameters like atmospheric temperature, rate of evaporation, thickness of tissues layers and shape of the limb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Failure Mechanical Behavior of Australian Strathbogie Granite at High Temperatures: Insights from Particle Flow Modeling

    Directory of Open Access Journals (Sweden)

    Sheng-Qi Yang

    2017-05-01

    Full Text Available Thermally induced damage has an important influence on rock mechanics and engineering, especially for high-level radioactive waste repositories, geological carbon storage, underground coal gasification, and hydrothermal systems. Additionally, the wide application of geothermal heat requires knowledge of the geothermal conditions of reservoir rocks at elevated temperature. However, few methods to date have been reported for investigating the micro-mechanics of specimens at elevated temperatures. Therefore, this paper uses a cluster model in particle flow code in two dimensions (PFC2D to simulate the uniaxial compressive testing of Australian Strathbogie granite at various elevated temperatures. The peak strength and ultimate failure mode of the granite specimens at different elevated temperatures obtained by the numerical methods are consistent with those obtained by experimentation. Since the tensile force is always concentrated around the boundary of the crystal, cracks easily occur at the intergranular contacts, especially between the b-b and b-k boundaries where less intragranular contact is observed. The intergranular and intragranular cracking of the specimens is almost constant with increasing temperature at low temperature, and then it rapidly and linearly increases. However, the inflection point of intergranular micro-cracking is less than that of intragranular cracking. Intergranular cracking is more easily induced by a high temperature than intragranular cracking. At an elevated temperature, the cumulative micro-crack counts curve propagates in a stable way during the active period, and it has no unstable crack propagation stage. The micro-cracks and parallel bond forces in the specimens with elevated temperature evolution and axial strain have different characteristics than those at lower temperature. More branch fractures and isolated wider micro-cracks are generated with increasing temperature when the temperature is over 400

  11. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    International Nuclear Information System (INIS)

    Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M. Schoot

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect future energy demand. This paper critically analyzes these implicit or explicit assumptions and their possible effect on the studies' outcomes. First we analyze the interaction between the socio-economic structure and the temperature dependence pattern (TDP) of energy demand. We find that socio-economic changes may alter the TDP in various ways. Next we investigate how current studies manage these dynamics in socio-economic structure. We find that many studies systematically misrepresent the possible effect of socio-economic changes on the TDP of energy demand. Finally, we assess the consequences of these misrepresentations in an energy demand model based on temperature dependence and climate scenarios. Our model results indicate that expected socio-economic dynamics generally lead to an underestimation of future energy demand in models that misrepresent such dynamics. We conclude that future energy demand models should improve the incorporation of socio-economic dynamics. We propose dynamically modeling several key parameters and using direct meteorological data instead of degree days. (author)

  12. Integrated modeling of temperature profiles in L-mode tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Tangri, V. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Voitsekhovitch, I. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-12-15

    Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.

  13. Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models

    Science.gov (United States)

    Samadian, P.; Parsa, M. H.; Mirzadeh, H.

    2015-02-01

    Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.

  14. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang

    2015-07-01

    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  15. A new approach to modeling temperature-related mortality: Non-linear autoregressive models with exogenous input.

    Science.gov (United States)

    Lee, Cameron C; Sheridan, Scott C

    2018-07-01

    Temperature-mortality relationships are nonlinear, time-lagged, and can vary depending on the time of year and geographic location, all of which limits the applicability of simple regression models in describing these associations. This research demonstrates the utility of an alternative method for modeling such complex relationships that has gained recent traction in other environmental fields: nonlinear autoregressive models with exogenous input (NARX models). All-cause mortality data and multiple temperature-based data sets were gathered from 41 different US cities, for the period 1975-2010, and subjected to ensemble NARX modeling. Models generally performed better in larger cities and during the winter season. Across the US, median absolute percentage errors were 10% (ranging from 4% to 15% in various cities), the average improvement in the r-squared over that of a simple persistence model was 17% (6-24%), and the hit rate for modeling spike days in mortality (>80th percentile) was 54% (34-71%). Mortality responded acutely to hot summer days, peaking at 0-2 days of lag before dropping precipitously, and there was an extended mortality response to cold winter days, peaking at 2-4 days of lag and dropping slowly and continuing for multiple weeks. Spring and autumn showed both of the aforementioned temperature-mortality relationships, but generally to a lesser magnitude than what was seen in summer or winter. When compared to distributed lag nonlinear models, NARX model output was nearly identical. These results highlight the applicability of NARX models for use in modeling complex and time-dependent relationships for various applications in epidemiology and environmental sciences. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    International Nuclear Information System (INIS)

    Saragi, Elfrida; Setiadji, Moch

    2013-01-01

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 °C at one end and about 40 °C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier

  17. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes.

    Science.gov (United States)

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-06-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.

  18. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    International Nuclear Information System (INIS)

    Mølgaard Mortensen, Peter; Willum Hansen, Thomas; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures

  19. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol and 10 mW transmission power). The designed sensor housings were capable......Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor; and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  20. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol, and 10 mW transmission power). The designed sensor housings were capable......By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor: and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  1. Model of discontinuous plastic flow at temperature close to absolute zero

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, Stefano

    In the present study cryogenic tensile tests performed on different materials (316LN, JK2LB) were used. The discontinuous plastic flow phenomenon was analysed, in order to develop a constitutive model of serrated yielding as a support for analysis of structural materials at low temperatures. Devices and structures, cooled be means of liquid helium, operate at the temperatures equal or lower than 4.2 K, which for the examined materials is below the transition threshold between screw and edge dislocations. It is considered a threshold for the appearance of DPF consisting in cyclic drop of load followed by deformation jumps and generation of heat. Temperature oscillations resulting from the thermodynamic instability in stainless steel can be of the order of dT = 40 K, which is exceptionally dangerous for superconducting cables. Suitably calibrated numerical algorithm allows prediction of the behaviour of the material subjected to deformation at low temperatures. The issues presented in the present study are curr...

  2. EXPERIMENTAL MEASUREMENT, ANALYSIS AND MODELLING OF DEPENDENCY EMISSIVITY IN FUNCTION OF TEMPERATURE

    Directory of Open Access Journals (Sweden)

    N. Baba Ahmed

    2015-08-01

    Full Text Available We propose a direct method of measurement of the total emissivity of opaque samples on a range of temperature around the ambient one. The method rests on the modulation of the temperature of the sample and the infra-red signal processing resulting from the surface of the sample we model the total emissivity obtained in experiments according to the temperature to establish linear correlations. This leads us to apply the method of optimal linearization associated the finite element method with the nonlinear problem of transfer of heat if thermal conductivity, the specific heat and the emissivity of studied material depend on the temperature. We obtain a good agreement between the resolution of the nonlinear equation of heat and the results obtained by the experimentation. .

  3. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  4. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    International Nuclear Information System (INIS)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-01-01

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%

  5. Computer simulation of temperature-dependent growth of fractal and compact domains in diluted Ising models

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1989-01-01

    temperature are studied as functions of temperature, time, and concentration. At zero temperature and high dilution, the growing solid is found to have a fractal morphology and the effective fractal exponent D varies with concentration and ratio of time scales of the two dynamical processes. The mechanism...... responsible for forming the fractal solid is shown to be a buildup of a locally high vacancy concentration in the active growth zone. The growth-probability measure of the fractals is analyzed in terms of multifractality by calculating the f(α) spectrum. It is shown that the basic ideas of relating...... probability measures of static fractal objects to the growth-probability distribution during formation of the fractal apply to the present model. The f(α) spectrum is found to be in the universality class of diffusion-limited aggregation. At finite temperatures, the fractal solid domains become metastable...

  6. Modelling of Dynamic Transmission Cable Temperature Considering Soil-Specific Heat, Thermal Resistivity, and Precipitation

    DEFF Research Database (Denmark)

    Olsen, Rasmus; Anders, George J.; Holboell, Joachim

    2013-01-01

    This paper presents an algorithm for the estimation of the time-dependent temperature evolution of power cables, when real-time temperature measurements of the cable surface or a point within its vicinity are available. The thermal resistivity and specific heat of the cable surroundings are varied...... as functions of the moisture content which is known to vary with time. Furthermore, issues related to the cooling effect during rainy weather are considered. The algorithm is based on the lumped parameters model and takes as input distributed temperature sensing measurements as well as the current and ambient...... temperature. The concept is verified by studying a laboratory setup of a 245 kV cable system....

  7. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  8. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  9. A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Manchester, W. B.; Van der Holst, B.; Gruesbeck, J. R.; Frazin, R. A.; Landi, E.; Toth, G.; Gombosi, T. I. [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, A. M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina); Lamy, P. L.; Llebaria, A.; Fedorov, A., E-mail: jinmeng@umich.edu [Laboratoire d' Astrophysique de Marseille, Universite de Provence, Marseille (France)

    2012-01-20

    The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.

  10. Modelling the effect of low soil temperatures on transpiration by Scots pine

    Science.gov (United States)

    Mellander, Per-Erik; Stähli, Manfred; Gustafsson, David; Bishop, Kevin

    2006-06-01

    For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring-early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70-year-old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high-latitude stands.

  11. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism

    International Nuclear Information System (INIS)

    Yang, Weihong; Blasiak, Wlodzimierz

    2005-01-01

    A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N 2 O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. The results show that NO emission formed by N 2 O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N 2 O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace. (author)

  12. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    Science.gov (United States)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  13. The development of stream temperature model in a mountainous river of Taiwan.

    Science.gov (United States)

    Tung, Ching-Pin; Lee, Tsung-Yu; Huang, Jr-Chuang; Perng, Po-Wen; Kao, Shih-Ji; Liao, Lin-Yen

    2014-11-01

    Formosan landlocked salmon is an endangered species and is very sensitive to stream temperature change. This study attempts to improve a former stream temperature model (STM) which was developed for the salmon's habitat to simulate stream temperature more realistically. Two modules, solar radiation modification (SRM) and surface/subsurface runoff mixing (RM), were incorporated to overcome the limitation of STM designed only for clear-sky conditions. It was found that daily temperature difference is related to cloud cover and can be used to adjust the effects of cloud cover on incident solar radiation to the ground level. The modified model (STM + SRM) improved the simulation during a baseflow period in both winter and summer with the Nash-Sutcliffe efficiency coefficient improved from 0.37 (by STM only) to 0.71 for the winter and from -0.18 to 0.70 for the summer. On the days with surface/subsurface runoff, the incorporation of the two new modules together (STM + SRM + RM) improved the Nash-Sutcliffe efficiency coefficient from 0.00 to 0.65 and from 0.29 to 0.83 in the winter and the summer, respectively. Meanwhile, the contributions of major thermal sources to stream temperature changes were identified. Groundwater is a major controlling factor for regulating seasonal changes of stream temperature while solar radiation is the primary factor controlling daily stream temperature variations. This study advanced our understanding on short-term stream temperature variation, which could be useful for the authorities to restore the salmon's habitat.

  14. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-03-15

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  15. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Science.gov (United States)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  16. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site....... This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  17. Temperature elevation in the eye of anatomically based human head models for plane-wave exposures

    International Nuclear Information System (INIS)

    Hirata, A; Watanabe, S; Fujiwara, O; Kojima, M; Sasaki, K; Shiozawa, T

    2007-01-01

    This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112-0.147 deg. C kg W -1 ) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement

  18. A Mathematical Model for Temperature Induced Loosening due to Radial Expansion of Rectangle Thread Bolted Joints

    Directory of Open Access Journals (Sweden)

    Shiyuan Hou

    2015-01-01

    Full Text Available This paper proposed a mathematical model to investigate the radial expansion induced loosening of rectangle thread bolted joints that were subjected to cyclic temperature variation, which could cause slippage between contact pairs of engaged threads and bolt bearing. Firstly, integral equations were derived for the shear stress components caused by expansion difference, as well as the bearing and thread friction torque components, which depended on the temperature variation. Secondly, the relationship of displacement components was developed based on quasi-static hypotheses. Then, treating the rotation of bolt as plastic elongation, the bolt tension's evolution was obtained by using a one-dimensional bolted joint model. Numerical results showed that the temperature variation decreased the bearing and thread friction torque components, which could lead bolted joint to loosen. Finally, the effects of some associated factors on the progress were discussed.

  19. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A water-balance model is used to simulate time series of water-year runoff for 4 km ?? 4 km grid cells for the conterminous United States during the 1900-2008 period. Model outputs are used to examine the separate effects of precipitation and temperature on runoff variability. Overall, water-year runoff has increased in the conterminous United States and precipitation has accounted for almost all of the variability in water-year runoff during the past century. In contrast, temperature effects on runoff have been small for most locations in the United States even during periods when temperatures for most of the United States increased significantly. Copyright 2011 by the American Geophysical Union.

  20. Exponential sinusoidal model for predicting temperature inside underground wine cellars from a Spanish region

    Energy Technology Data Exchange (ETDEWEB)

    Mazarron, Fernando R.; Canas, Ignacio [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2008-07-01

    This article develops a mathematical model for determining the annual cycle of air temperature inside traditional underground wine cellars in the Spanish region of ''Ribera del Duero'', known because of the quality of its wines. It modifies the sinusoidal analytical model for soil temperature calculation. Results obtained when contrasting the proposed model with experimental data of three subterranean wine cellars for 2 years are satisfactory. The RMSE is below 1 C and the index of agreement is above 0.96 for the three cellars. When using the average of experimental data corresponding to the 2 years' time, results improve noticeably: the RMSE decreases by more than 30% and the mean d reaches 0.99. This model should be a useful tool for designing underground wine cellars making the most of soil energy advantages. (author)

  1. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  2. NORA-2, a model for creep deformation and rupture of zircaloy at high temperatures

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1983-01-01

    A model has been developed to describe Zircaloy cladding behaviour under LOCA and small leak conditions within specified temperature range and strain rates. The deformation model consists of a strain rate equation with two components representing strain rate controlled contributions from different deformation mechanisms. Transition from one mechanism to the other produces the strain rate dependence of the stress exponent of steady state creep. During transient creep the change of creep mechanisms produces a flow softening behaviour which induces unstable creep. Together with a strain hardening model, the strain history can be described for low and high strain values. The influence of oxidation is taken into account by modelling hardening due to solid solution of oxygen, cracking of the brittle oxide and oxygen stabilised α-phase layers, and by an oxidation-induced creep component in steam atmosphere. The rupture criterion is based on a strain fraction rule whose variables are temperature, strain rate or applied stress, and oxygen content. (author)

  3. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    Science.gov (United States)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  4. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  5. CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Lukas Blesak

    2016-12-01

    Full Text Available Research on structural load-bearing systems exposed to elevated temperatures is an active topic in civil engineering. Carrying out a full-size experiment of a specimen exposed to fire is a challenging task considering not only the preparation labour but also the necessary costs. Therefore, such experiments are simulated using various software and computational models in order to predict the structural behaviour as exactly as possible. In this paper such a procedure, focusing on software simulation, is described in detail. The proposed constitutive model is based on the stress-strain curve and allows predicting SFRC material behaviour in bending at ambient and elevated temperature. SFRC material is represented by the initial linear behaviour, an instantaneous drop of stress after the initial crack occurs and its consequent specific ductility, which influences the overall modelled specimen behaviour under subjected loading. The model is calibrated with ATENA FEM software using experimental results.

  6. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  7. Temperature and precipitation records from stalagmites grown under disequilibrium conditions: A model approach.

    Science.gov (United States)

    Mühlinghaus, C.; Scholz, D.; Mangini, A.

    2009-04-01

    To reconstruct past variations in Earth's climate, a variety of climate archives are studied. During the last decades stalagmites came into focus due to their long, continuous growth and absolute dating techniques. In this study a numerical model was developed, which calculates variations in temperature and precipitation during the growth period of stalagmites grown under isotopic disequilibrium conditions using the isotope profiles both along the growth axis and individual growth layers as well as the growth depth relation. The model is based on the inversion and combination of existing models (Dreybrodt 1999, Kaufmann et al. 2004, Mühlinghaus et al. 2007, Scholz et al. 2008, Mühlinghaus et al. 2008b) and incorporates important parameters describing the cave and the overlying soil. Beside the dependence on temperature and water supply it depends on the isotopic composition of the drip water, the pCO2 pressure of the soil and the cave atmosphere as well as on the mixing coefficient, which describes mixing between the impinging drop and the existing solution layer. To determine the characteristics of temperature and precipitation, in a first step all other parameters are assumed to remain constant over the whole growth period to simplify calculations. This allows to run the model with only two input variables: the isotopic composition ^13C of the drip water and a temperature information at any point of time during the growth period of the stalagmite (e.g. the recent cave temperature). All other parameters are determined by the model. The CSM (Combined Stalagmite Model, Mühlinghaus et al. 2008a) was applied to three stalagmites from the Marcelo Arévalo cave in Southern Patagonia, Chile (Schimpf 2005, Kilian et al. 2006, Schimpf et al. in prep). These stalagmites grew in a small cave next to each other during the last 4500 years. However, their isotopic profiles along the growth axis show different kinetic influences. Despite these conditions, the temperature

  8. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    Science.gov (United States)

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  9. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2012-11-01

    Full Text Available The impact of historical land use induced land cover change (LULCC on regional-scale climate extremes is examined using four climate models within the Land Use and Climate, IDentification of robust impacts project. To assess those impacts, multiple indices based on daily maximum and minimum temperatures and daily precipitation were used. We contrast the impact of LULCC on extremes with the impact of an increase in atmospheric CO2 from 280 ppmv to 375 ppmv. In general, consistent changes in both high and low temperature extremes are similar to the simulated change in mean temperature caused by LULCC and are restricted to regions of intense modification. The impact of LULCC on both means and on most temperature extremes is statistically significant. While the magnitude of the LULCC-induced change in the extremes can be of similar magnitude to the response to the change in CO2, the impacts of LULCC are much more geographically isolated. For most models, the impacts of LULCC oppose the impact of the increase in CO2 except for one model where the CO2-caused changes in the extremes are amplified. While we find some evidence that individual models respond consistently to LULCC in the simulation of changes in rainfall and rainfall extremes, LULCC's role in affecting rainfall is much less clear and less commonly statistically significant, with the exception of a consistent impact over South East Asia. Since the simulated response of mean and extreme temperatures to LULCC is relatively large, we conclude that unless this forcing is included, we risk erroneous conclusions regarding the drivers of temperature changes over regions of intense LULCC.

  10. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    Science.gov (United States)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  11. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    Science.gov (United States)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  12. Multifactorial modelling of high-temperature treatment of timber in the saturated water steam medium

    Science.gov (United States)

    Prosvirnikov, D. B.; Safin, R. G.; Ziatdinova, D. F.; Timerbaev, N. F.; Lashkov, V. A.

    2016-04-01

    The paper analyses experimental data obtained in studies of high-temperature treatment of softwood and hardwood in an environment of saturated water steam. Data were processed in the Curve Expert software for the purpose of statistical modelling of processes and phenomena occurring during this process. The multifactorial modelling resulted in the empirical dependences, allowing determining the main parameters of this type of hydrothermal treatment with high accuracy.

  13. A PV temperature prediction model for BIPV configurations, comparison with other models and experimental results

    OpenAIRE

    Kaplanis, Socrates; Kaplani, Eleni

    2018-01-01

    The temperatures of c-Si and pc-Si BIPV configurations of different manufacturers were studied when operating under various environmental conditions. The BIPV configurations formed part of the roof in a Zero Energy Building, (ZEB), hanged over windows with varying inclination on a seasonal basis and finally two identical 0.5kWp PV generators were mounted on a terrace in two modes: fixed inclination and sun-tracking. The PV and ambient temperatures, Tpv and Ta, respectively, the intensity of t...

  14. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    OpenAIRE

    Matthew P. Adams; Catherine J. Collier; Sven Uthicke; Yan X. Ow; Lucas Langlois; Katherine R. O’Brien

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluat...

  15. Modeling skin temperature to assess the effect of air velocity to mitigate heat stress among growing pigs

    DEFF Research Database (Denmark)

    Bjerg, Bjarne; Pedersen, Poul; Morsing, Svend

    2017-01-01

    It is generally accepted that increased air velocity can help to mitigate heat stress in livestock housing, however, it is not fully clear how much it helps and significant uncertainties exists when the air temperature approaches the animal body temperature. This study aims to develop a skin...... temperature model to generated data for determining the potential effect of air velocity to mitigate heat stress among growing pigs housed in warm environment. The model calculates the skin temperature as function of body temperature, air temperature and the resistances for heat transfer from the body...

  16. The two bands model for the high temperature conductivity of the binary rare earth alloys

    International Nuclear Information System (INIS)

    Borgiel, W.

    1983-09-01

    The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account

  17. Statistics of energy levels and zero temperature dynamics for deterministic spin models with glassy behaviour

    NARCIS (Netherlands)

    Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.

    2001-01-01

    We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,

  18. Zero-temperature renormalization of the 2D transverse Ising model

    International Nuclear Information System (INIS)

    Kamieniarz, G.

    1982-08-01

    A zero-temperature real-space renormalization-group method is applied to the transverse Ising model on planar hexagonal, triangular and quadratic lattices. The critical fields and the critical exponents describing low-field large-field transition are calculated. (author)

  19. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus

    2016-01-01

    tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln...

  20. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  1. An inverse radiation model for optical determination of temperature and species concentration: Development and validation

    DEFF Research Database (Denmark)

    Ren, Tao; Modest, Michael F.; Fateev, Alexander

    2015-01-01

    2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O...

  2. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts

    NARCIS (Netherlands)

    Mensonides, Femke I. C.; Brul, Stanley; Hellingwerf, Klaas J.; Bakker, Barbara M.; de Mattos, M. Joost Teixeira

    In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the shortand

  3. Hydrologic modelling of the effect of snowmelt and temperature on a ...

    Indian Academy of Sciences (India)

    In this study, a distributed hydrologic model is used to explore the orographic effects on the snowmelt-runoff using the snowfall-snowmelt routine in Soil and Water Assessment Tool (SWAT). Three parameters, namely maximum snowmelt factor, minimum snowmelt factor, and snowpack temperature lag were analysed during ...

  4. Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed

    Science.gov (United States)

    Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...

  5. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae druing temperature shift.

    NARCIS (Netherlands)

    Mensonides, F.I.C.; Brul, S.; Hellingwerf, K.J.; Bakker, B.M.; Teixeira de Mattos, M.J.

    2014-01-01

    In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the shortand

  6. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts

    NARCIS (Netherlands)

    Mensonides, F.I.C.; Brul, S.; Hellingwerf, K.J.; Bakker, B.M.; Teixeira De Mattos, M.J.

    2014-01-01

    In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the short- and

  7. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  8. The effective temperature of the DBV's, and the sensitivity of DB model atmospheres to input physics

    International Nuclear Information System (INIS)

    Thejll, P.; Delaware Univ., Newark, DE; Vennes, S.; Shipman, H.L.

    1990-01-01

    A new grid of DB models is applied to the problem of the DBV temperatures and the DB gap. It is found that the DBV instability strip lies lower than thought before. This has consequences for the calibration of mixing-length theories and the reality of the DB gap. The DBV GD358 is discussed in detail. (orig.)

  9. Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake

    DEFF Research Database (Denmark)

    Antonio Villaescusa, Juan; Jorgensen, Sven Erik; Rochera, Carlos

    2016-01-01

    food web. This preliminary model aims to describe part of the carbon dynamics, especially for bacterioplankton and associated factors, in this maritime Antarctic lake highly affected by temperature increase linked to regional warming. To describe the system, the effects of the variation of different...

  10. Symmetry restoration in the Georgi-Glashow model at finite temperature

    International Nuclear Information System (INIS)

    Guerra Junior, J.M.

    1985-01-01

    Symmetry restoration in the SU(5) model is analysed by means of finite temperature field theory. In our calculations symmetry restoration is due to topological defects which appear thanks to thermodynamical effects. We apply our results in cosmology, in order to explain the primordial inhomogeneity. Our results are compatible with Zeldovich's spectrum. (author) [pt

  11. Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.

    2010-01-01

    Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.

  12. Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth

    Science.gov (United States)

    Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing

    2014-10-01

    The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.

  13. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  14. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  15. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.; Jun, M.

    2015-01-01

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  16. New proposal of moderator temperature coefficient estimation method using gray-box model in NPP, (1)

    International Nuclear Information System (INIS)

    Mori, Michitsugu; Kagami, Yuichi; Kanemoto, Shigeru; Enomoto, Mitsuhiro; Tamaoki, Tetsuo; Kawamura, Shinichiro

    2004-01-01

    The purpose of the present paper is to establish a new void reactivity coefficient (VRC) estimation method based on gray box modeling concept. The gray box model consists of a point kinetics model as the first principle model and a fitting model of moderator temperature kinetics. Applying Kalman filter and maximum likehood estimation algorithms to the gray box model, MTC can be estimated. The verification test is done by Monte Carlo simulation, and, it is shown that the present method gives the best estimation results comparing with the conventional methods from the viewpoints of non-biased and smallest scattering estimation performance. Furthermore, the method is verified via real plant data analysis. The reason of good performance of the present method is explained by proper definition of likelihood function based on explicit expression of observation and system noise in the gray box model. (author)

  17. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    Science.gov (United States)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  18. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final report

    International Nuclear Information System (INIS)

    Du, Q.

    1997-01-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. The work so far has focused on mezoscale models as typified by the celebrated Ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models they have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations

  19. Analyses, algorithms, and computations for models of high-temperature superconductivity. Final technical report

    International Nuclear Information System (INIS)

    Gunzburger, M.D.; Peterson, J.S.

    1998-01-01

    Under the sponsorship of the Department of Energy, the authors have achieved significant progress in the modeling, analysis, and computation of superconducting phenomena. Their work has focused on mezoscale models as typified by the celebrated ginzburg-Landau equations; these models are intermediate between the microscopic models (that can be used to understand the basic structure of superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale, or homogenized, models (that can be of use for the design of devices). The models the authors have considered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models for high values of the Ginzburg-Landau parameter, models that account for normal inclusions and fluctuations and Josephson effects, and the anisotropic Ginzburg-Landau and Lawrence-Doniach models for layered superconductors, including those with high critical temperatures. In each case, they have developed or refined the models, derived rigorous mathematical results that enhance the state of understanding of the models and their solutions, and developed, analyzed, and implemented finite element algorithms for the approximate solution of the model equations

  20. Modeling of dengue occurrences early warning involving temperature and rainfall factors

    Directory of Open Access Journals (Sweden)

    Prama Setia Putra

    2017-07-01

    Full Text Available Objective: To understand dengue transmission process and its vector dynamics and to develop early warning model of dengue occurrences based on mosquito population and host-vector threshold values considering temperature and rainfall. Methods: To obtain the early warning model, mosquito population and host-vector models are developed initially. Both are developed using differential equations. Basic offspring number (R0m and basic reproductive ratio (R0d which are the threshold values are derived from the models under constant parameters assumption. Temperature and rainfall effects on mosquito and dengue are performed in entomological and disease transmission parameters. Some of parameters are set as functions of temperature or rainfall while other parameters are set to be constant. Hereafter, both threshold values are computed using those parameters. Monthly dengue occurrences data are categorized as zero and one values which one means the outbreak does occur in that month. Logistics regression is chosen to bridge the threshold values and categorized data. Threshold values are considered as the input of early warning model. Semarang city is selected as the sample to develop this early waning model. Results: The derived threshold values which are R 0 m and R 0 d show to have relation that mosquito as dengue vector affects transmission of the disease. Result of the early warning model will be a value between zero and one. It is categorized as outbreak does occur when the value is larger than 0.5 while other is categorized as outbreak does not occur. By using single predictor, the model can perform 68% accuracy approximately. Conclusions: The extinction of mosquitoes will be followed by disease disappearance while mosquitoes existence can lead to disease free or endemic states. Model simulations show that mosquito population are more affected by weather factors than human. Involving weather factors implicitly in the threshold value and linking them