Modelling room temperature ionic liquids.
Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L
2008-08-07
Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.
Modelling water temperature in TOXSWA
Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.
2010-01-01
A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the
Correlation Models for Temperature Fields
North, Gerald R.
2011-05-16
This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.
Analytical modelling of temperature effects on synapses
Kufel, Dominik S
2016-01-01
It was previously reported, that temperature may significantly influence neural dynamics on different levels of brain modelling. Due to this fact, while creating the model in computational neuroscience we would like to make it scalable for wide-range of various brain temperatures. However currently, because of a lack of experimental data and an absence of analytical model describing temperature influence on synapses, it is not possible to include temperature effects on multi-neuron modelling level. In this paper, we propose first step to deal with this problem: new analytical model of AMPA-type synaptic conductance, which is able to include temperature effects in low-frequency stimulations. It was constructed on basis of Markov model description of AMPA receptor kinetics and few simplifications motivated both experimentally and from Monte Carlo simulation of synaptic transmission. The model may be used for efficient and accurate implementation of temperature effects on AMPA receptor conductance in large scale...
Temperature dependent extension of a hysteresis model
Sixdenier, Fabien; MESSAL, Oualid; Hilal, Alaa; Martin, Christian; Raulet, Marie-Ange
2015-01-01
International audience; Some soft magnetic materials (like ferrites but not only) are strongly dependent of the temperature. In order to predict their behaviour in electrical devices, engineers need hysteresis models able to take into account the temperature. This paper is an attempt to take into account the temperature in an existing model of hysteresis through its parameters. Variations of some parameters are issued from Weiss’s works and others have to be fitted numerically. Simulation res...
Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature
DEFF Research Database (Denmark)
Andreasen, Søren Juhl; Kær, Søren Knudsen
2007-01-01
cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...... conduction through stack insulation, cathode air convection and heating of the inlet gasses in manifold. Various measurements are presented to validate the model predictions of the stack temperatures....
Temperature Modelling of the Biomass Pretreatment Process
DEFF Research Database (Denmark)
2012-01-01
In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... distribution. Therefore, an accurate temperature model is critical for observing the biomass pretreatment. More than that, the biomass is also pushed with a constant horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this paper is to derive a temperature model...
A numerical model for ground temperature determination
Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.
2016-09-01
The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.
Modeling of global surface air temperature
Gusakova, M. A.; Karlin, L. N.
2012-04-01
A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.
Multiple Temperature Model for Near Continuum Flows
Energy Technology Data Exchange (ETDEWEB)
XU, Kun; Liu, Hongwei [Hong Kong University of Science and Technology, Kowloon (Hong Kong); Jiang, Jianzheng [Chinese Academy ofSciences, Beijing (China)
2007-09-15
In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime.
Comparison of Different Fuel Temperature Models
Energy Technology Data Exchange (ETDEWEB)
Weddig, Beatrice
2003-02-01
The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature
Wang, Ruzhuan; Li, Weiguo
2016-11-01
The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.
Wang, Ruzhuan; Li, Weiguo
2017-08-01
The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.
Interpolation of climate variables and temperature modeling
Samanta, Sailesh; Pal, Dilip Kumar; Lohar, Debasish; Pal, Babita
2012-01-01
Geographic Information Systems (GIS) and modeling are becoming powerful tools in agricultural research and natural resource management. This study proposes an empirical methodology for modeling and mapping of the monthly and annual air temperature using remote sensing and GIS techniques. The study area is Gangetic West Bengal and its neighborhood in the eastern India, where a number of weather systems occur throughout the year. Gangetic West Bengal is a region of strong heterogeneous surface with several weather disturbances. This paper also examines statistical approaches for interpolating climatic data over large regions, providing different interpolation techniques for climate variables' use in agricultural research. Three interpolation approaches, like inverse distance weighted averaging, thin-plate smoothing splines, and co-kriging are evaluated for 4° × 4° area, covering the eastern part of India. The land use/land cover, soil texture, and digital elevation model are used as the independent variables for temperature modeling. Multiple regression analysis with standard method is used to add dependent variables into regression equation. Prediction of mean temperature for monsoon season is better than winter season. Finally standard deviation errors are evaluated after comparing the predicted temperature and observed temperature of the area. For better improvement, distance from the coastline and seasonal wind pattern are stressed to be included as independent variables.
High temperature furnace modeling and performance verifications
Smith, James E., Jr.
1992-01-01
Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.
Complex-temperature singularities of Ising models
Shrock, R E
1995-01-01
We report new results on complex-temperature properties of Ising models. These include studies of the s=1/2 model on triangular, honeycomb, kagom\\'e, 3 \\cdot 12^2, and 4 \\cdot 8^2 lattices. We elucidate the complex--T phase diagrams of the higher-spin 2D Ising models, using calculations of partition function zeros. Finally, we investigate the 2D Ising model in an external magnetic field, mapping the complex--T phase diagram and exploring various singularities therein. For the case \\beta H=i\\pi/2, we give exact results on the phase diagram and obtain susceptibility exponents \\gamma' at various singularities from low-temperature series analyses.
Enhanced battery model including temperature effects
Rosca, B.; Wilkins, S.
2013-01-01
Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy
Enhanced battery model including temperature effects
Rosca, B.; Wilkins, S.
2013-01-01
Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy
Enhanced battery model including temperature effects
Rosca, B.; Wilkins, S.
2013-01-01
Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a
Meth math: modeling temperature responses to methamphetamine.
Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V
2014-04-15
Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-03-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures.
Modeling Low-temperature Geochemical Processes
Nordstrom, D. K.
2003-12-01
Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for
A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature*
Institute of Scientific and Technical Information of China (English)
Jia Kan; Sun Weifeng; Shi Longxing
2011-01-01
A sub-circuit SPICE model ofa MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures.
Temperature influences in receiver clock modelling
Wang, Kan; Meindl, Michael; Rothacher, Markus; Schoenemann, Erik; Enderle, Werner
2016-04-01
In Precise Point Positioning (PPP), hardware delays at the receiver site (receiver, cables, antenna, …) are always difficult to be separated from the estimated receiver clock parameters. As a result, they are partially or fully contained in the estimated "apparent" clocks and will influence the deterministic and stochastic modelling of the receiver clock behaviour. In this contribution, using three years of data, the receiver clock corrections of a set of high-precision Hydrogen Masers (H-Masers) connected to stations of the ESA/ESOC network and the International GNSS Service (IGS) are firstly characterized concerning clock offsets, drifts, modified Allan deviations and stochastic parameters. In a second step, the apparent behaviour of the clocks is modelled with the help of a low-order polynomial and a known temperature coefficient (Weinbach, 2013). The correlations between the temperature and the hardware delays generated by different types of antennae are then analysed looking at daily, 3-day and weekly time intervals. The outcome of these analyses is crucial, if we intend to model the receiver clocks in the ground station network to improve the estimation of station-related parameters like coordinates, troposphere zenith delays and ambiguities. References: Weinbach, U. (2013) Feasibility and impact of receiver clock modeling in precise GPS data analysis. Dissertation, Leibniz Universität Hannover, Germany.
Temperature Buffer Test. Final THM modelling
Energy Technology Data Exchange (ETDEWEB)
Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan [Clay Technology AB, Lund (Sweden); Ledesma, Alberto; Jacinto, Abel [UPC, Universitat Politecnica de Catalunya, Barcelona (Spain)
2012-01-15
The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code{sub B}right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code{sub B}right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to
Temperature Buffer Test. Final THM modelling
Energy Technology Data Exchange (ETDEWEB)
Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan [Clay Technology AB, Lund (Sweden); Ledesma, Alberto; Jacinto, Abel [UPC, Universitat Politecnica de Catalunya, Barcelona (Spain)
2012-01-15
The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code{sub B}right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code{sub B}right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to
Analytic Models of High-Temperature Hohlraums
Energy Technology Data Exchange (ETDEWEB)
Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.
2000-11-29
A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.
Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling
Bonté, D.; Wees, J.-D. van; Verweij, J.M.
2012-01-01
Subsurface temperature is a key parameter for geothermal energy prospection in sedimentary basins. Here, we present the results of a 3D temperature modelling using a thermal-tectonic forward modelling method, calibrated with subsurface temperature measurements in the Netherlands. The first step invo
Modelling global fresh surface water temperature
Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.
2011-01-01
Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment
Modelling global fresh surface water temperature
Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.
2011-01-01
Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati
Modeling Phloem Temperatures Relative to Mountain Pine Beetle Phenology
Lewis, Matthew Jared
2011-01-01
We explore a variety of methods to estimate phloem temperatures from ambient air temperatures suitable for the mountain pine beetle, Dendroctonus ponderosae. A model's ability to induce the same phenology generated from observed phloem temperatures measures its effectiveness rather than a simple reconstruction of phloem temperatures. From a model's phenology results we are able to ascertain whether the model produces a similar amount of developmental energy exhibited by observed phloem temper...
Modelling of temperatures in continental convergence zones
Energy Technology Data Exchange (ETDEWEB)
Toksoz, M.N.; Bird, P.
1977-08-03
The thermal histories of continent-continent convergence zones are modelled by a finite-difference technique in an attempt to explain geologic observations of heating and melting in such zones. The suture zone between two converging continents divides a passively heated overriding plate from a quiet continental margin which is suddenly deformed in the collision. Both regions may be metamorphosed and intruded. On the continental-shelf side where mountains are formed by underthrusting within the crust, it was found that adiabatic and radioactive heating are negligible during the orogeny. Shear-strain heating may raise the fault zones to about 500/sup 0/C. At higher temperatures, dislocation creep of crustal rocks would be expected from laboratory results. Even high crustal radioactivity will not produce melting in less than 40 m.y. Thus any plutons in this zone (the granites of the Zagros, Urals, and Himalayas) probably result indirectly by melting of crust that is heated by deep asthenospheric intrusions, which may reach the crust at the time of detachment of the oceanic slab, combined with the effects of friction and water along the subduction plane. Across the suture, the thermal history begins before the collision during the oceanic subduction phase. The sinking slab creates asthenospheric circulations, which warm the passive plate from below and intrude it in an Andean-type arc along the suture (Zagros and Himalayan region). If total subduction exceeds about 3000 km the slow warming has time to weaken the plate and extensive crustal shortening may follow the collision. Crustal shortening and thickening is accompanied by differentiation and volcanism (Tibetan and Grenville orogenies). Thermal modelling of Tibet shows that volcanism cannot be produced in the available time by crustal thickening alone, but requires the initial warming phase as well.
Model of local temperature changes in brain upon functional activation.
Collins, Christopher M; Smith, Michael B; Turner, Robert
2004-12-01
Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.
DEFF Research Database (Denmark)
Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;
2011-01-01
Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...
Temperature-dependent rate models of vascular cambium cell mortality
Matthew B. Dickinson; Edward A. Johnson
2004-01-01
We use two rate-process models to describe cell mortality at elevated temperatures as a means of understanding vascular cambium cell death during surface fires. In the models, cell death is caused by irreversible damage to cellular molecules that occurs at rates that increase exponentially with temperature. The models differ in whether cells show cumulative effects of...
Temperature dependence of electronic heat capacity in Holstein model
Fialko, N S; Lakhno, V D
2015-01-01
The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T~0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.
THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE
Energy Technology Data Exchange (ETDEWEB)
Goodman, A.L.
1980-07-01
The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.
Water temperature modeling in the Garonne River (France
Directory of Open Access Journals (Sweden)
Larnier K.
2010-10-01
Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.
A concise wall temperature model for DI Diesel engines
Energy Technology Data Exchange (ETDEWEB)
Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)
2006-08-15
A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)
Modelling of tandem cell temperature coefficients
Energy Technology Data Exchange (ETDEWEB)
Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)
1996-05-01
This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.
Drinking Water Temperature Modelling in Domestic Systems
Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.
2014-01-01
Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According
Can a regional climate model reproduce observed extreme temperatures?
Directory of Open Access Journals (Sweden)
Peter F. Craigmile
2013-10-01
Full Text Available Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.
Cascade recursion models of computing the temperatures of underground layers
Institute of Scientific and Technical Information of China (English)
HAN; Liqun; BI; Siwen; SONG; Shixin
2006-01-01
An RBF neural network was used to construct computational models of the underground temperatures of different layers, using ground-surface parameters and the temperatures of various underground layers. Because series recursion models also enable researchers to use above-ground surface parameters to compute the temperatures of different underground layers, this method provides a new way of using thermal infrared remote sensing to monitor the suture zones of large areas of blocks and to research thermal anomalies in geologic structures.
3D subsurface temperature model of Europe for geothermal exploration
Limberger, J.; Wees, J.D. van
2014-01-01
For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,
3D subsurface temperature model of Europe for geothermal exploration
Limberger, J.; Wees, J.D. van
2014-01-01
For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,
A physically based analytical spatial air temperature and humidity model
Yang Yang; Theodore A. Endreny; David J. Nowak
2013-01-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...
Green Granary Temperature Control System Modeling and Simulation
Shi, Qingsheng
As an important link of food production and distribution process, Granary's temperature control performance seriously affects the food quality and storage costs. Based on the analysis of granary components, granary temperature control model is established. The simulation results show the validity of established model.
Temperature Calculations in the Coastal Modeling System
2017-04-01
sediment can be controlled by the density-driven flow and mixing. Temperature can alter the water physical environment that impacts marine organisms ...survey station locations. In application of the CMS to the Corrotoman River, a quadtree grid system was developed to discretize the computational...601-634-2840; fax: 601-634-3080) of the U.S. Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL). The CIRP
Refined Modeling of Water Temperature and Salinity in Coastal Areas
Institute of Scientific and Technical Information of China (English)
SHEN Yongming; ZHENG Yonghong; QIU Dahong
2000-01-01
The prediction of water temperature and salinity in coastal areas is one of the essential tasks in water quality control and management. This paper takes a refined forecasting model of water temperature and salinity in coastal areas as a basic target. Based on the Navier-Stokes equation and k- turbulence model, taking the characteristics of coastal areas into account, a refined model for water temperatureand salinity in coastal areas has been developed to simulate the seasonal variations of water temperatureand salinity fields in the Hakata Bay, Japan. The model takes into account the effects of a variety ofhydrodynamic and meteorological factors on water temperature and salinity. It predicts daily fluctuations in water temperature and salinity at different depths throughout the year. The model has been calibrated well against the data set of historical water temperature and salinity observations in the Hakata Bay,Japan.
Modeling, Prediction, and Control of Heating Temperature for Tube Billet
Directory of Open Access Journals (Sweden)
Yachun Mao
2015-01-01
Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.
A model of evaluating the pseudogap temperature for high-temperature superconductors
Indian Academy of Sciences (India)
Islam M R; Maruf H M A R; Chowdhury F-U-Z
2016-04-01
We have presented a model of evaluating the pseudogap temperature for high temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions. The pseudogap temperature T $^∗$ is found to depend on dimension and is calculated for 2D and 3D superconducting samples. Numerical calculation is given in favour of the YBCO and doped SmFeAsO$_{1−x}$ samples.
Effect of Flux Adjustments on Temperature Variability in Climate Models
Energy Technology Data Exchange (ETDEWEB)
Duffy, P.; Bell, J.; Covey, C.; Sloan, L.
1999-12-27
It has been suggested that ''flux adjustments'' in climate models suppress simulated temperature variability. If true, this might invalidate the conclusion that at least some of observed temperature increases since 1860 are anthropogenic, since this conclusion is based in part on estimates of natural temperature variability derived from flux-adjusted models. We assess variability of surface air temperatures in 17 simulations of internal temperature variability submitted to the Coupled Model Intercomparison Project. By comparing variability in flux-adjusted vs. non-flux adjusted simulations, we find no evidence that flux adjustments suppress temperature variability in climate models; other, largely unknown, factors are much more important in determining simulated temperature variability. Therefore the conclusion that at least some of observed temperature increases are anthropogenic cannot be questioned on the grounds that it is based in part on results of flux-adjusted models. Also, reducing or eliminating flux adjustments would probably do little to improve simulations of temperature variability.
Fundamental Thermodynamic Model for Analysis of Stream Temperature Data
Davis, L.; Reiter, M.; Groom, J.; Dent, L.
2012-12-01
Stream temperature is a critical aquatic ecosystem parameter and has been extensively studied for many years. Complex models have been built as a way to understand stream temperature dynamics and estimate the magnitude of anthropogenic influences on temperature. These models have proven very useful in estimating the relative contribution of various thermal energy sources to the stream heat budget and how management can alter the heat budget. However, the large number of measured or estimated input parameters required by such models makes their application to the analysis of specific stream temperature data difficult when the necessary input data is not readily available. To gain insight into the physical processes governing stream temperature behavior in forested streams we analyzed data based on fundamental thermodynamic concepts. The dataset we used is from a recent multi-year study on the effects of timber harvest on stream temperature in the Oregon Coast Range. From the hourly temperature data we extracted time-averaged diurnal heating and cooling rates. Examining the data in this context allowed us to qualitatively assess changes in the relative magnitude of stream temperature (T), stream equilibrium temperature (Teq), and effective heat transfer coefficient (h) across years and treatments. A benefit of analyzing the data in this way is that it separates the influence of timber harvest on stream temperature from that of climate variation. To categorize longitudinal temperature behaviors before and after timber harvest we developed a data-event matrix which specifies qualitative constraints (i.e., what is physically possible for T, Teq and h) for a given set of observed stream temperature responses. We then analyzed data from 18 different streams to categorize the temperature response to management. Understanding stream temperature dynamics using fundamental thermodynamic concepts provides insight into the processes governing stream temperature and the pathways
Numerical modeling of temperature distributions within the neonatal head.
Van Leeuwen, G M; Hand, J W; Lagendijk, J J; Azzopardi, D V; Edwards, A D
2000-09-01
Introduction of hypothermia therapy as a neuroprotection therapy after hypoxia-ischemia in newborn infants requires appraisal of cooling methods. In this numerical study thermal simulations were performed to test the hypothesis that cooling of the surface of the cranium by the application of a cooling bonnet significantly reduces deep brain temperature and produces a temperature differential between the deep brain and the body core. A realistic three-dimensional (3-D) computer model of infant head anatomy was used, derived from magnetic resonance data from a newborn infant. Temperature distributions were calculated using the Pennes heatsink model. The cooling bonnet was at a constant temperature of 10 degrees C. When modeling head cooling only, a constant body core temperature of 37 degrees C was imposed. The computed result showed no significant cooling of the deep brain regions, only the very superficial regions of the brain are cooled to temperatures of 33-34 degrees C. Poor efficacy of head cooling was still found after a considerable increase in the modeled thermal conductivities of the skin and skull, or after a decrease in perfusion. The results for the heatsink thermal model of the infant head were confirmed by comparison of results computed for a scaled down adult head, using both the heatsink description and a discrete vessel thermal model with both anatomy and vasculature obtained from MR data. The results indicate that significant reduction in brain temperature will only be achieved if the infant's core temperature is lowered.
Modelling temperature and concentration dependent solid/liquid interfacial energies
Lippmann, Stephanie; Jung, In-Ho; Paliwal, Manas; Rettenmayr, Markus
2016-01-01
Models for the prediction of the solid/liquid interfacial energy in pure substances and binary alloys, respectively, are reviewed and extended regarding the temperature and concentration dependence of the required thermodynamic entities. A CALPHAD-type thermodynamic database is used to introduce temperature and concentration dependent melting enthalpies and entropies for multicomponent alloys in the temperature range between liquidus and solidus. Several suitable models are extended and employed to calculate the temperature and concentration dependent interfacial energy for Al-FCC with their respective liquids and compared with experimental data.
Multiaxial Temperature- and Time-Dependent Failure Model
Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia
2003-01-01
A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..
Modelling of a Multi-Temperature Plasma Composition
Institute of Scientific and Technical Information of China (English)
B. Liani; R.Benallal; Z.Bentalha
2005-01-01
@@ Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. We use the Saha equation and Debye length equation to calculate the non-local thermodynamicequilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32 (1999)1711]can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature Te varies in the range 8000*20000 K at atmospheric pressure.
Monte Carlo grain growth modeling with local temperature gradients
Tan, Y.; Maniatty, A. M.; Zheng, C.; Wen, J. T.
2017-09-01
This work investigated the development of a Monte Carlo (MC) simulation approach to modeling grain growth in the presence of non-uniform temperature field that may vary with time. We first scale the MC model to physical growth processes by fitting experimental data. Based on the scaling relationship, we derive a grid site selection probability (SSP) function to consider the effect of a spatially varying temperature field. The SSP function is based on the differential MC step, which allows it to naturally consider time varying temperature fields too. We verify the model and compare the predictions to other existing formulations (Godfrey and Martin 1995 Phil. Mag. A 72 737-49 Radhakrishnan and Zacharia 1995 Metall. Mater. Trans. A 26 2123-30) in simple two-dimensional cases with only spatially varying temperature fields, where the predicted grain growth in regions of constant temperature are expected to be the same as for the isothermal case. We also test the model in a more realistic three-dimensional case with a temperature field varying in both space and time, modeling grain growth in the heat affected zone of a weld. We believe the newly proposed approach is promising for modeling grain growth in material manufacturing processes that involves time-dependent local temperature gradient.
Model-based control of district heating supply temperature
Energy Technology Data Exchange (ETDEWEB)
Saarinen, Linn
2010-11-15
A model-based control strategy for the supply temperature to a district heating network was tested during three weeks at Idbaecken's CHP plant. The aim was to increase the electricity efficiency by a lower supply temperature, without risking the delivery reliability of heat to the district heating customers. Simulations and tests showed that at high loads, the mean supply temperature could be reduced by 4 deg C and the electricity production could be increased by 2.5%
Statistical Modeling for Wind-Temperature Meteorological Elements in Troposphere
Virtser, A; Golbraikh, E
2010-01-01
A comprehensive statistical model for vertical profiles of the horizontal wind and temperature throughout the troposphere is presented. The model is based on radiosonde measurements of wind and temperature during several years. The profiles measured under quite different atmospheric conditions exhibit qualitative similarity, and a proper choice of the reference scales for the wind, temperature and altitude levels allows to consider the measurement data as realizations of a random process with universal characteristics: means, the basic functions and parameters of standard distributions for transform coefficients of the Principal Component Analysis. The features of the atmospheric conditions are described by statistical characteristics of the wind-temperature ensemble of dimensional reference scales. The high effectiveness of the proposed approach is provided by a similarity of wind - temperature vertical profiles, which allow to carry out the statistical modeling in the low-dimension space of the dimensional ...
Heat propagation models for superconducting nanobridges at millikelvin temperatures
Blois, A.; Rozhko, S.; Hao, L.; Gallop, J. C.; Romans, E. J.
2017-01-01
Nanoscale superconducting quantum interference devices (nanoSQUIDs) most commonly use Dayem bridges as Josephson elements to reduce the loop size and achieve high spin sensitivity. Except at temperatures close to the critical temperature T c, the electrical characteristics of these bridges exhibit undesirable thermal hysteresis which complicates device operation. This makes proper thermal analysis an essential design consideration for optimising nanoSQUID performance at ultralow temperatures. However the existing theoretical models for this hysteresis were developed for micron-scale devices operating close to liquid helium temperatures, and are not fully applicable to a new generation of much smaller devices operating at significantly lower temperatures. We have therefore developed a new analytic heat model which enables a more accurate prediction of the thermal behaviour in such circumstances. We demonstrate that this model is in good agreement with experimental results measured down to 100 mK and discuss its validity for different nanoSQUID geometries.
Subsurface temperatures in Denmark – measurements and modelling
DEFF Research Database (Denmark)
Balling, N.; Poulsen, Søren Erbs; Bording, Thue Sylvester;
2014-01-01
lithologies of different conductivity. Mean geothermal gradients from surface to depths of 1000 to 3000 m are generally between 20 and 30 °C/km. As an example, modelled temperatures for the Gassum geothermal reservoir are shown with temperatures largely between 35 and 90 °C for depths of interest....
Temperature sensitivity of a numerical pollen forecast model
Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone
2016-04-01
Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.
Blocking layer modeling for temperature analysis of electron transfer ...
African Journals Online (AJOL)
Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. ... Journal of Fundamental and Applied Sciences ... of the quantum dots and free energy of system and finally the Marcus equation.
Electronic Modeling and Design for Extreme Temperatures Project
National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...
On the Temperature Dependence of the UNIQUAC/UNIFAC Models
DEFF Research Database (Denmark)
Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage
1980-01-01
Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...
Modeling the Temperature Effect of Orientations in Residential Buildings
Directory of Open Access Journals (Sweden)
Sabahat Arif
2012-07-01
Full Text Available Indoor thermal comfort in a building has been an important issue for the environmental sustainability. It is an accepted fact that their designs and planning consume a lot of energy in the modern architecture of 20th and 21st centuries. An appropriate orientation of a building can provide thermally comfortable indoor temperatures which otherwise can consume extra energy to condition these spaces through all the seasons. This experimental study investigates the potential effect of this solar passive design strategy on indoor temperatures and a simple model is presented for predicting indoor temperatures based upon the ambient temperatures.
A THERMODYNAMIC CAVITATION MODEL APPLICABLE TO HIGH TEMPERATURE FLOW
Directory of Open Access Journals (Sweden)
De-Min Liu
2011-01-01
Full Text Available Cavitation is not only related with pressure, but also affected by temperature. Under high temperature, temperature depression of liquids is caused by latent heat of vaporization. The cavitation characteristics under such condition are different from those under room temperature. The paper focuses on thermodynamic cavitation based on the Rayleigh-Plesset equation and modifies the mass transfer equation with fully consideration of the thermodynamic effects and physical properties. To validate the modified model, the external and internal flow fields, such as hydrofoil NACA0015 and nozzle, are calculated, respectively. The hydrofoil NACA0015's cavitation characteristic is calculated by the modified model at different temperatures. The pressure coefficient is found in accordance with the experimental data. The nozzle cavitation under the thermodynamic condition is calculated and compared with the experiment.
Finite Temperature Casimir Effect in Randall-Sundrum Models
Rypestøl, Marianne
2009-01-01
The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation $a$ on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.
Modelling of the plasma-MIG welding temperature field
Institute of Scientific and Technical Information of China (English)
Bai Yan; Gao Hongming; Wu Lin; Shi Lei
2006-01-01
A three-dimensional simulation model for the plasma-MIG welding process, which takes the interaction between the plasma arc and MIG arc into account, is presented and the quasi-steady temperature fields on the workpiece are calculated with the model. The 10 mm-5A06 aluminum alloy is welded and the temperature fields are measured with the thermoelectric couple. The simulation results and measured results show that the biggest deviation of peak temperature between them is below 20 ℃ , which indicates good coincidence between the simulation and measurement.
Constitutive modelling of aluminium alloy sheet at warm forming temperatures
Kurukuri, S.; Worswick, M. J.; Winkler, S.
2016-08-01
The formability of aluminium alloy sheet can be greatly improved by warm forming. However predicting constitutive behaviour under warm forming conditions is a challenge for aluminium alloys due to strong, coupled temperature- and rate-sensitivity. In this work, uniaxial tensile characterization of 0.5 mm thick fully annealed aluminium alloy brazing sheet, widely used in the fabrication of automotive heat exchanger components, is performed at various temperatures (25 to 250 °C) and strain rates (0.002 and 0.02 s-1). In order to capture the observed rate- and temperature-dependent work hardening behaviour, a phenomenological extended-Nadai model and the physically based (i) Bergstrom and (ii) Nes models are considered and compared. It is demonstrated that the Nes model is able to accurately describe the flow stress of AA3003 sheet at different temperatures, strain rates and instantaneous strain rate jumps.
A Temperature-Dependent Battery Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Leonardo M. Rodrigues
2017-02-01
Full Text Available Energy consumption is a major issue in Wireless Sensor Networks (WSNs, as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.
A Temperature-Dependent Battery Model for Wireless Sensor Networks.
Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco
2017-02-22
Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.
A Temperature-Dependent Battery Model for Wireless Sensor Networks
Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco
2017-01-01
Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444
Event-based stormwater management pond runoff temperature model
Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.
2016-09-01
Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.
Temperature dependence of heterogeneous nucleation: Extension of the Fletcher model
McGraw, Robert; Winkler, Paul; Wagner, Paul
2015-04-01
Recently there have been several cases reported where the critical saturation ratio for onset of heterogeneous nucleation increases with nucleation temperature (positive slope dependence). This behavior contrasts with the behavior observed in homogeneous nucleation, where a decreasing critical saturation ratio with increasing nucleation temperature (negative slope dependence) seems universal. For this reason the positive slope dependence is referred to as anomalous. Negative slope dependence is found in heterogeneous nucleation as well, but because so few temperature-dependent measurements have been reported, it is not presently clear which slope condition (positive or negative) will become more frequent. Especially interesting is the case of water vapor condensation on silver nanoparticles [Kupc et al., AS&T 47: i-iv, 2013] where the critical saturation ratio for heterogeneous nucleation onset passes through a maximum, at about 278K, with higher (lower) temperatures showing the usual (anomalous) temperature dependence. In the present study we develop an extension of Fletcher's classical, capillarity-based, model of heterogeneous nucleation that explicitly resolves the roles of surface energy and surface entropy in determining temperature dependence. Application of the second nucleation theorem, which relates temperature dependence of nucleation rate to cluster energy, yields both necessary and sufficient conditions for anomalous temperature behavior in the extended Fletcher model. In particular it is found that an increasing contact angle with temperature is a necessary, but not sufficient, condition for anomalous temperature dependence to occur. Methods for inferring microscopic contact angle and its temperature dependence from heterogeneous nucleation probability measurements are discussed in light of the new theory.
Analytic regularization of the Yukawa model at finite temperature
Malbouisson, A P C; Svaiter, N F
1996-01-01
We analyse the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. In order to regularize the model a mix between dimensional and analytic regularization procedures is used. We find a general expression for the fermionic contribution in arbitrary spacetime dimension. It is found that in D=3 this contribution is finite.
Temperature Drift Modeling of FOG Based on LS-WSVM
Institute of Scientific and Technical Information of China (English)
WANG Li-ping; KONG Xiao-mei; FU Meng-yin; WANG Mei-ling; ZHANG Jia-wen; JIANG Ming
2008-01-01
Large temperature drift is an important factor for improving the performance of FOG. A trend term of temperature drift of FOG is obtained using stationary wavelets transform, and an FOG drift algorithm with least squares wavelet support vector machine (LS-WSVM) is developed. The algorithm used Maxihat wavelet as a kernel function of LSWSVM to establish an FOG drift model. It has better modeling precise than LS-WSVM model with Gauss kernel. Results indicate the efficiency of this algorithm of LS-WSVM.
Mathematical modelling of steam generator and design of temperature regulator
Energy Technology Data Exchange (ETDEWEB)
Bogdanovic, S.S. [EE Institute Nikola Tesla, Belgrade (Yugoslavia)
1999-07-01
The paper considers mathematical modelling of once-through power station boiler and numerical algorithm for simulation of the model. Fast and numerically stable algorithm based on the linearisation of model equations and on the simultaneous solving of differential and algebraic equations is proposed. The paper also presents the design of steam temperature regulator by using the method of projective controls. Dynamic behaviour of the system closed with optimal linear quadratic regulator is taken as the reference system. The desired proprieties of the reference system are retained and solutions for superheated steam temperature regulator are determined. (author)
MGP : a tool for wide range temperature modelling
Energy Technology Data Exchange (ETDEWEB)
Morales, A.F. [Inst. Tecnologico Autonomo de Mexico, Mexico City (Mexico); Seisdedos, L.V. [Univ. de Oriente, Santiago de Cuba (Cuba). Dept. de Control Automatico
2006-07-01
This paper proposed a practical temperature modelling tool that used genetic multivariate polynomials to determine polynomial expressions of enthalpy and empirical heat transfer equations in superheaters. The model was designed to transform static parameter estimations from distributed into lumped parameter systems. Two dynamic regimes were explored: (1) a power dynamics regime containing major inputs and outputs needed for overall plant control; and (2) a steam temperature dynamics scheme that considered consecutive superheater sections considered in terms of cooling water mass flow and steam mass flow. The single lumped parameters model was developed to provide temperature control for a fossil fuel-fired power plant. The design procedure used enthalpy to determine the plant's energy balance. The enthalpy curve was seen as a function of either temperature and steam pressure. A graphic simulation tool was used to optimize the model by comparing real and simulated plant data. The study showed that the amount of energy taken by the steam mass flow per time unit can be calculated by measuring temperatures and pressures at both ends of the superheater. An algorithm was then developed to determine the polynomial's coefficients according to best curve fitting over the training set and best maximum errors. It was concluded that a unified approach is now being developed to simulate and emulate the dynamics of steam temperature for each section's attemporator-superheater. 14 refs., 3 tabs., 5 figs.
River water temperature and fish growth forecasting models
Danner, E.; Pike, A.; Lindley, S.; Mendelssohn, R.; Dewitt, L.; Melton, F. S.; Nemani, R. R.; Hashimoto, H.
2010-12-01
Water is a valuable, limited, and highly regulated resource throughout the United States. When making decisions about water allocations, state and federal water project managers must consider the short-term and long-term needs of agriculture, urban users, hydroelectric production, flood control, and the ecosystems downstream. In the Central Valley of California, river water temperature is a critical indicator of habitat quality for endangered salmonid species and affects re-licensing of major water projects and dam operations worth billions of dollars. There is consequently strong interest in modeling water temperature dynamics and the subsequent impacts on fish growth in such regulated rivers. However, the accuracy of current stream temperature models is limited by the lack of spatially detailed meteorological forecasts. To address these issues, we developed a high-resolution deterministic 1-dimensional stream temperature model (sub-hourly time step, sub-kilometer spatial resolution) in a state-space framework, and applied this model to Upper Sacramento River. We then adapted salmon bioenergetics models to incorporate the temperature data at sub-hourly time steps to provide more realistic estimates of salmon growth. The temperature model uses physically-based heat budgets to calculate the rate of heat transfer to/from the river. We use variables provided by the TOPS-WRF (Terrestrial Observation and Prediction System - Weather Research and Forecasting) model—a high-resolution assimilation of satellite-derived meteorological observations and numerical weather simulations—as inputs. The TOPS-WRF framework allows us to improve the spatial and temporal resolution of stream temperature predictions. The salmon growth models are adapted from the Wisconsin bioenergetics model. We have made the output from both models available on an interactive website so that water and fisheries managers can determine the past, current and three day forecasted water temperatures at
On the fate of the Standard Model at finite temperature
Rose, Luigi Delle; Urbano, Alfredo
2015-01-01
In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically---both at zero and finite temperature---the bounce equation, thus providing an accurate description of the thermal tunneling. We find that at finite temperature the instability bound excludes values of the top mass $M_t \\gtrsim 173.6$ GeV, assuming $M_h \\simeq 125$ GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.
Moisture Absorption Model of Composites Considering Water Temperature Effect
Directory of Open Access Journals (Sweden)
HUI Li
2016-11-01
Full Text Available The influence of water temperature on composite moisture absorption parameters was investigated in temperature-controlled water bath. Experiments of carbon fiber/bismaleimide resin composites immersed in water of 60℃, 70℃and 80℃ were developed respectively. According to the moisture content-time curves obtained from the experimental results, the diffusion coefficient and the balanced moisture content of the composites immersed in different water temperature could be calculated. What's more, the effect of water temperature on the diffusion coefficient and the balanced moisture content were discussed too. According to the Arrhenius equation and the law of Fick, a moisture absorption model was proposed to simulate the hygroscopic behaviour of the composite laminates immersed in different water temperature which can predict the absorption rate of water of the composites immersed in distilled water of 95℃ at any time precisely and can calculate how long it will take to reach the specific absorption rate.
Modeling the melting temperature of nanoscaled bimetallic alloys.
Li, Ming; Zhu, Tian-Shu
2016-06-22
The effect of size, composition and dimension on the melting temperature of nanoscaled bimetallic alloys was investigated by considering the interatomic interaction. The established thermodynamics model without any arbitrarily adjustable parameters can be used to predict the melting temperature of nanoscaled bimetallic alloys. It is found that, the melting temperature and interatomic interaction of nanoscaled bimetallic alloys decrease with the decrease in size and the increasing composition of the lower surface energy metal. Moreover, for the nanoscaled bimetallic alloys with the same size and composition, the dependence of the melting temperature on the dimension can be sequenced as follows: nanoparticles > nanowires > thin films. The accuracy of the developed model is verified by the recent experimental and computer simulation results.
A model of the ground surface temperature for micrometeorological analysis
Leaf, Julian S.; Erell, Evyatar
2017-07-01
Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.
Integrated flow and temperature modeling at the catchment scale
DEFF Research Database (Denmark)
Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael
2013-01-01
, the Silver Creek Basin in Idaho, where stream temperature affects the populations of fish and other aquatic organisms. The model calibration highlights the importance of spatially distributed flow dynamics in the catchment to accurately predict stream temperatures. The results also show the value...... Creek over 0.3°C and 1.5°C, respectively. In spring-fed systems like Silver Creek, it is clearly not feasible to separate river habitat restoration from upstream catchment and groundwater management....
Friedberg-Lee model at finite temperature and density
Mao, Hong; Yao, Minjie; Zhao, Wei-Qin
2008-06-01
The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant B(T) and B(T,μ) have been calculated at different temperatures and densities. It is shown that there is a critical temperature TC≃106.6 MeV when μ=0 MeV and a critical chemical potential μ≃223.1 MeV for fixing the temperature at T=50 MeV. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when T⩽TC (or μ⩽μC), there is a bag constant B(T) [or B(T,μ)] and the soliton solutions are stable. However, when T>TC (or μ>μC) the bag constant B(T)=0 MeV [or B(T,μ)=0 MeV] and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.
The Friedberg-Lee model at finite temperature and density
Mao, Hong; Zhao, Wei-Qin
2007-01-01
The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant $B(T)$ and $B(T,\\mu)$ have been calculated at different temperatures and densities. It is shown that there is a critical temperature $T_{C}\\simeq 106.6 \\mathrm{MeV}$ when $\\mu=0 \\mathrm{MeV}$ and a critical chemical potential $\\mu \\simeq 223.1 \\mathrm{MeV}$ for fixing the temperature at $T=50 \\mathrm{MeV}$. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when $T\\leq T_{C}$ (or $\\mu \\leq \\mu_C$), there is a bag constant $B(T)$ (or $B(T,\\mu)$) and the soliton solutions are stable. However, when $T>T_{C}$ (or $\\mu>\\mu_C$) the bag constant $B(T)=0 \\mathrm{MeV}$ (or $B(T,\\mu)=0 \\mathrm{MeV}$) and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.
Miyamoto, Hitoshi; Maeba, Hiroshi; Nakayama, Kazuya; Michioku, Kohji
A basin-wide stream network model was developed for stream temperature prediction in a river basin. The model used Horton’s geomorphologic laws for channel networks and river basins with stream ordering systems in order to connect channel segments from sources to the river mouth. Within the each segment, a theoretical solution derived from a thermal energy equation was used to predict longitudinal variation of stream temperatures. The model also took into account effects of solar radiation reduction due to both riparian vegetation and topography, thermal advection from the sources and lateral land-use. Comparison of the model prediction with observation in the Ibo River Basin of Japan showed very good agreement for the thermal structure throughout the river basin for almost all seasons, excluding the autumnal month in which the thermal budget on the stream water body was changed from positive to negative.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
Phase behaviors and membrane properties of model liposomes: Temperature effect
Wu, Hsing-Lun; Sheng, Yu-Jane; Tsao, Heng-Kwong
2014-09-01
The phase behaviors and membrane properties of small unilamellar vesicles have been explored at different temperatures by dissipative particle dynamics simulations. The vesicles spontaneously formed by model lipids exhibit pre-transition from gel to ripple phase and main transition from ripple to liquid phase. The vesicle shape exhibits the faceted feature at low temperature, becomes more sphere-like with increasing temperature, but loses its sphericity at high temperature. As the temperature rises, the vesicle size grows but the membrane thickness declines. The main transition (Tm) can be identified by the inflection point. The membrane structural characteristics are analyzed. The inner and outer leaflets are asymmetric. The length of the lipid tail and area density of the lipid head in both leaflets decrease with increasing temperature. However, the mean lipid volume grows at low temperature but declines at high temperature. The membrane mechanical properties are also investigated. The water permeability grows exponentially with increasing T but the membrane tension peaks at Tm. Both the bending and stretching moduli have their minima near Tm. Those results are consistent with the experimental observations, indicating that the main signatures associated with phase transition are clearly observed in small unilamellar vesicles.
Directory of Open Access Journals (Sweden)
H. Portner
2009-08-01
Full Text Available Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not understood. Thus, we made an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS.
We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff. We determined the parameter uncertainty ranges of the functions by nonlinear regression analysis based on eight experimental datasets from northern hemisphere ecosystems. We sampled over the uncertainty bounds of the parameters and run simulations for each pair of temperature response function and calibration site. The uncertainty in both long-term and short-term soil carbon dynamics was analyzed over an elevation gradient in southern Switzerland.
The function of Lloyd-Taylor turned out to be adequate for modelling the temperature dependency of soil organic matter decomposition, whereas the other functions either resulted in poor fits (Exponential, Arrhenius or were not applicable for all datasets (Gaussian, Van't Hoff. There were two main sources of uncertainty for model simulations: (1 the uncertainty in the parameter estimates of the response functions, which increased with increasing temperature and (2 the uncertainty in the simulated size of carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. The higher uncertainty in carbon pools with slow turn-over rates has important implications for the uncertainty in the projection of the change of soil carbon stocks driven by climate change, which turned out to be more uncertain for higher elevations and hence higher latitudes, which are of key importance for the global terrestrial carbon
Energy based model for temperature dependent behavior of ferromagnetic materials
Sah, Sanjay; Atulasimha, Jayasimha
2017-03-01
An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from 5 K to 300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior.
An exospheric temperature model from CHAMP thermospheric density
Weng, Libin; Lei, Jiuhou; Sutton, Eric; Dou, Xiankang; Fang, Hanxian
2017-02-01
In this study, the effective exospheric temperature, named as T∞, derived from thermospheric densities measured by the CHAMP satellite during 2002-2010 was utilized to develop an exospheric temperature model (ETM) with the aid of the NRLMSISE-00 model. In the ETM, the temperature variations are characterized as a function of latitude, local time, season, and solar and geomagnetic activities. The ETM is validated by the independent GRACE measurements, and it is found that T∞ and thermospheric densities from the ETM are in better agreement with the GRACE data than those from the NRLMSISE-00 model. In addition, the ETM captures well the thermospheric equatorial anomaly feature, seasonal variation, and the hemispheric asymmetry in the thermosphere.
Altitude dependence of atmospheric temperature trends: Climate models versus observation
Douglass, D H; Singer, F
2004-01-01
As a consequence of greenhouse forcing, all state of the art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200 to 400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.
Last interglacial temperature evolution – a model inter-comparison
Directory of Open Access Journals (Sweden)
H. Renssen
2012-09-01
Full Text Available There is a growing number of proxy-based reconstructions detailing the climatic changes during the Last Interglacial period. This period is of special interest because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in the light of projected global warming. However, mainly because synchronizing the different records is difficult, there is no consensus on a global picture of Last Interglacial temperature changes. Here we present the first model inter-comparison of transient simulations covering the Last Interglacial period. By comparing the different simulations we aim at investigating the robustness of the simulated surface air temperature evolution. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–122 ka BP with temperatures 0.4 to 6.8 K above pre-industrial values. This temperature evolution is in line with the changes in June insolation and greenhouse-gas concentrations. For the evolution of July temperatures in the Southern Hemisphere, the picture emerging from the inter-comparison is less clear. However, it does show that including greenhouse-gas concentration changes is critical. The simulations that include this forcing show an early, 128 ka BP July temperature anomaly maximum of 0.5 to 2.6 K. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. In these latitudes maximum January temperature anomalies of respectively −2.5 to 2 K and 0 to 2 K are simulated for the period after 118 ka BP. The inter-comparison is inconclusive on the evolution of January temperatures in the high-latitudes of the Northern Hemisphere. Further investigation of regional anomalous patterns and inter-model differences indicate that in specific regions, feedbacks within the climate system are important for the
Modeling temperature inversion in southeastern Yellow Sea during winter 2016
Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun
2017-05-01
A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.
A complex autoregressive model and application to monthly temperature forecasts
Directory of Open Access Journals (Sweden)
X. Gu
2005-11-01
Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.
Tests of the improved Weiland ion temperature gradient transport model
Energy Technology Data Exchange (ETDEWEB)
Kinsey, J.E.; Bateman, G.; Kritz, A.H. [Lehigh Univ., Bethlehem, PA (United States)] [and others
1996-12-31
The Weiland theoretically derived transport model for ion temperature gradient and trapped electron modes has been improved to include the effects of parallel ion motion, finite beta, and collisionality. The model also includes the effects of impurities, fast ions, unequal ion and electron temperatures, and finite Larmor radius. This new model has been implemented in our time-dependent transport code and is used in conjunction with pressure-driven modes and neoclassical theory to predict the radial particle and thermal transport in tokamak plasmas. Simulations of TFTR, DIII-D, and JET L-mode plasmas have been conducted to test how the new effects change the predicted density and temperature profiles. Comparisons are made with results obtained using the previous version of the model which was successful in reproducing experimental data from a wide variety of tokamak plasmas. Specifically, the older model has been benchmarked against over 50 discharges from at least 7 different tokamaks including L-mode scans in current, heating power, density, and dimensionless scans in normalized gyro-radius, collisionality, and beta. We have also investigated the non-diffusive elements included in the Weiland model, particularly the particle pinch in order to characterize its behavior. This is partly motivated by recent simulations of ITER. In those simulations, the older Weiland model predicted a particle pinch and ignition was more easily obtained.
Modeling Apple Surface Temperature Dynamics Based on Weather Data
Directory of Open Access Journals (Sweden)
Lei Li
2014-10-01
Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.
Can spatial statistical river temperature models be transferred between catchments?
Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.
2017-09-01
There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across
Modelling Brain Temperature and Perfusion for Cerebral Cooling
Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael
2015-11-01
Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.
Can sigma models describe finite temperature chiral transitions?
Kocic, Aleksandar; Aleksandar KOCIC; John KOGUT
1995-01-01
Large-N expansions and computer simulations indicate that the universality class of the finite temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean field theory. This is a counterexample to the standard 'sigma model' scenario which predicts the 2D Ising model universality class. We trace the breakdown of the standard scenario (dimensional reduction and universality) to the absence of canonical scalar fields in the model. We point out that our results could be generic for theories with dynamical symmetry breaking, such as Quantum Chromodynamics.
Test of modified BCS model at finite temperature
Ponomarev, V Yu
2005-01-01
A recently suggested modified BCS (MBCS) model has been studied at finite temperature. We show that this approach does not allow the existence of the normal (non-superfluid) phase at any finite temperature. Other MBCS predictions such as a negative pairing gap, pairing induced by heating in closed-shell nuclei, and ``superfluid -- super-superfluid'' phase transition are discussed also. The MBCS model is tested by comparing with exact solutions for the picket fence model. Here, severe violation of the internal symmetry of the problem is detected. The MBCS equations are found to be inconsistent. The limit of the MBCS applicability has been determined to be far below the ``superfluid -- normal'' phase transition of the conventional FT-BCS, where the model performs worse than the FT-BCS.
Temperature Driven Annealing of Perforations in Bicellar Model Membranes
Energy Technology Data Exchange (ETDEWEB)
Nieh, Mu-Ping [University of Connecticut, Storrs; Raghunathan, V.A. [Raman Research Institute, India; Pabst, Georg [Austrian Academy of Sciences, Graz, Austria; Harroun, Thad [Brock University, St. Catharines, ON, Canada; Nagashima, K [University of Toronto, Mississauga, ON, Canada; Morales, H [University of Toronto, Mississauga, ON, Canada; Katsaras, John [ORNL; Macdonald, P [University of Toronto, Mississauga, ON, Canada
2011-01-01
Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), {sup 31}P NMR, and {sup 1}H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. {sup 31}P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the 'mixed bicelle model' (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, {sup 31}P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.
Temperature driven annealing of perforations in bicellar model membranes.
Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter
2011-04-19
Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.
Braking System Modeling and Brake Temperature Response to Repeated Cycle
Directory of Open Access Journals (Sweden)
Zaini Dalimus
2014-12-01
Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.
Modeling and Forecasting Average Temperature for Weather Derivative Pricing
Directory of Open Access Journals (Sweden)
Zhiliang Wang
2015-01-01
Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.
Modeling Saturn Ring Temperature Variations as Solar Elevation Decreases
Spilker, L.; Flandes, A.; Altobelli, N.; Leyrat, C.; Pilorz, S.; Ferrari, C.
2008-12-01
After more than four years in orbit around Saturn, the Cassini Composite Infrared Spectrometer (CIRS) has acquired a wide-ranging set of thermal measurements of Saturn's main rings (A, B, C and Cassini Division). Temperatures were retrieved for the lit and unlit rings over a variety of ring geometries that include solar phase angle, spacecraft elevation, solar elevation and local hour angle. To first order, the largest temperature changes on the lit face of the rings are driven by variations in phase angle while differences in temperature with changing spacecraft elevation and local time are a secondary effect. Decreasing ring temperature with decreasing solar elevation are observed for both the lit and unlit faces of the rings after phase angle and local time effects are taken into account. For the lit rings, decreases of 2- 4 K are observed in the C ring and larger decreases, 7-10 and 10 - 13 K, are observed in the A and B rings respectively. Our thermal data cover a range of solar elevations from -21 to -8 degrees (south side of the rings). We test two simple models and evaluate how well they fit the observed decreases in temperature. The first model assumes that the particles are so widely spaced that they do not cast shadows on one another while the second model assumes that the particles are so close together they essentially form a slab. The optically thinnest and optically thickest regions of the rings show the best fits to these two end member models. We also extrapolate to the expected minimum ring temperatures at equinox. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and at CEA Saclay supported by the "Programme National de Planetologie". Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.
Temperature dependence of bag pressure from quasiparticle model
Prasad, N.; Singh, C. P.
2001-03-01
A quasiparticle model with effective thermal gluon and quark masses is used to derive a temperature /T- and baryon chemical potential /μ-dependent bag constant /B(μ,T). Consequences of such a bag constant are obtained on the equation of state (EOS) for a deconfined quark-gluon plasma (QGP).
Control and modelling of vertical temperature distribution in greenhouse crops
Kempkes, F.L.K.; Bakker, J.C.; Braak, van de N.J.
1998-01-01
Based on physical transport processes (radiation, convection and latent heat transfer) a model has been developed to describe the vertical temperature distribution of a greenhouse crop. The radiation exchange factors between heating pipes, crop layers, soil and roof were determined as a function of
Apply a hydrological model to estimate local temperature trends
Igarashi, Masao; Shinozawa, Tatsuya
2014-03-01
Continuous times series {f(x)} such as a depth of water is written f(x) = T(x)+P(x)+S(x)+C(x) in hydrological science where T(x),P(x),S(x) and C(x) are called the trend, periodic, stochastic and catastrophic components respectively. We simplify this model and apply it to the local temperature data such as given E. Halley (1693), the UK (1853-2010), Germany (1880-2010), Japan (1876-2010). We also apply the model to CO2 data. The model coefficients are evaluated by a symbolic computation by using a standard personal computer. The accuracy of obtained nonlinear curve is evaluated by the arithmetic mean of relative errors between the data and estimations. E. Halley estimated the temperature of Gresham College from 11/1692 to 11/1693. The simplified model shows that the temperature at the time rather cold compared with the recent of London. The UK and Germany data sets show that the maximum and minimum temperatures increased slowly from the 1890s to 1940s, increased rapidly from the 1940s to 1980s and have been decreasing since the 1980s with the exception of a few local stations. The trend of Japan is similar to these results.
Temperature in warm inflation in non minimal kinetic coupling model
Goodarzi, Parviz
2014-01-01
Warm inflation in the non minimal derivative coupling model with a general dissipation coefficient is considered. We investigate conditions for the existence of the slow roll approximation and study cosmological perturbations. The spectral index, and the power spectrum are calculated and the temperature of the universe at the end of the slow roll warm inflation is obtained.
Modeling temperature variations in a pilot plant thermophilic anaerobic digester.
Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max
2011-05-01
A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.
Last interglacial temperature evolution – a model inter-comparison
Directory of Open Access Journals (Sweden)
P. Bakker
2013-03-01
Full Text Available There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG. This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter
Modelling of temperature and perfusion during scalp cooling
Energy Technology Data Exchange (ETDEWEB)
Janssen, F E M; Leeuwen, G M J van; Steenhoven, A A van [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2005-09-07
Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 deg. C to 18.3 deg. C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q{sub 10} and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 deg. C to 21.8 deg. C, which in turn reduced relative perfusion to 13% and 33%, respectively.
Modelling of temperature and perfusion during scalp cooling
Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.
2005-09-01
Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.
Transformations for temperature flux in multiscale models of the tropics
Energy Technology Data Exchange (ETDEWEB)
Biello, Joseph A.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, New York, NY (United States)
2006-11-15
How much of the observed planetary-scale heating in the tropics is due to eddy flux convergence? A mathematical framework to address this important practical issue is developed here. We describe a pair of velocity transformations that remove components of the upscale temperature flux in the multiscale intraseasonal, planetary, equatorial synoptic-scale dynamics (IPESD) framework derived by Majda and Klein [J. Atmos. Sci. 60: 393-408, (2003)]. Using examples from the models of the Madden-Julian Oscillation of Biello and Majda [Proc. Natl. Acad. Sci. 101: 4736-4741, (2004); J. Atmos. Sci. 62: 1694-1721, (2005); Dyn. Oceans Atmos., in press] we demonstrate that the transformation for the meridional temperature flux convergence is possible with any restrictions on the heating profile, we show under which conditions the transformation for the vertical temperature flux convergence exists and, further, that the meridional transformation leads to a reinterpretation of lower troposphere Ekman dissipation as active heating plus zonal momentum drag. The meridional temperature flux transformation and induced meridional circulation is a new, tropical wave example of the transformed Eulerian mean theory in the case of strong vertical stratification of potential temperature. The asymptotic ordering of the flows means that the removal of the meridional temperature flux convergence has implications for how planetary-scale heating rates are inferred from velocity convergence measurements. (orig.)
Sensitivities and uncertainties of modeled ground temperatures in mountain environments
Directory of Open Access Journals (Sweden)
S. Gubler
2013-08-01
Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several
Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model
Rowe, J. N.; Noonan, C. H.; Garrick, J.
1996-01-01
The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.
A model of the tropical Pacific sea surface temperature climatology
Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.
1988-01-01
A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.
A model for quantification of temperature profiles via germination times
DEFF Research Database (Denmark)
Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik
2013-01-01
Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...
A Two-Temperature Model of Magnetized Protostellar Outflows
Wang, Liang-Yao; Krasnopolsky, Ruben; Chiang, Tzu-Yang
2015-01-01
We explore kinematics and morphologies of molecular outflows driven by young protostars using magnetohydrodynamic simulations in the context of the unified wind model of Shang et al. The model explains the observed high-velocity jet and low-velocity shell features. In this work we investigate how these characteristics are affected by the underlying temperature and magnetic field strength. We study the problem of a warm wind running into a cold ambient toroid by using a tracer field that keeps track of the wind material. While an isothermal equation of state is adopted, the effective temperature is determined locally based on the wind mass fraction. In the unified wind model, the density of the wind is cylindrically stratified and highly concentrated toward the outflow axis. Our simulations show that for a sufficiently magnetized wind, the jet identity can be well maintained even at high temperatures. However, for a high temperature wind with low magnetization, the thermal pressure of the wind gas can drive ma...
Global Surface Temperature Response Explained by Multibox Energy Balance Models
Fredriksen, H. B.; Rypdal, M.
2016-12-01
We formulate a multibox energy balance model, from which global temperature evolution can be described by convolving a linear response function and a forcing record. We estimate parameters in the response function from instrumental data and historic forcing, such that our model can produce a response to both deterministic forcing and stochastic weather forcing consistent with observations. Furthermore, if we make separate boxes for upper ocean layer and atmosphere over land, we can also make separate response functions for global land and sea surface temperature. By describing internal variability as a linear response to white noise, we demonstrate that the power-law form of the observed temperature spectra can be described by linear dynamics, contrary to a common belief that these power-law spectra must arise from nonlinear processes. In our multibox model, the power-law form can arise due to the multiple response times. While one of our main points is that the climate system responds over a wide range of time scales, we cannot find one set of time scales that can be preferred compared to other choices. Hence we think the temperature response can best be characterized as something that is scale-free, but still possible to approximate by a set of well separated time scales.
Lipkin-Meshkov-Glick model at finite temperature
Storozhenko, A N; Vdovin, A I
1997-01-01
The Lipkin-Meshkov-Glick model is used to examine the validity of some approximate methods in a many-body theory at finite temperatures. Namely, the thermal random phase approximation (TRPA) and the thermal renormalized random phase approximation (TRRPA) are studied. An average energy of the system, an average quasispin projection and a particle number variance are calculated within these approximation and exactly with the grand canonical ensemble partition function. On the whole the results of TRRPA are found to be in better agreement with the exact ones. The validity of the both approximation becomes better with increasing temperature as well as particle number.
Modeling high temperature materials behavior for structural analysis
Naumenko, Konstantin
2016-01-01
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
Surface air temperature variability in global climate models
Davy, Richard
2012-01-01
New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.
Sensitivities and uncertainties of modeled ground temperatures in mountain environments
Directory of Open Access Journals (Sweden)
S. Gubler
2013-02-01
Full Text Available Before operational use or for decision making, models must be validated, and the degree of trust in model outputs should be quantified. Often, model validation is performed at single locations due to the lack of spatially-distributed data. Since the analysis of parametric model uncertainties can be performed independently of observations, it is a suitable method to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainty of a physically-based mountain permafrost model are quantified within an artificial topography consisting of different elevations and exposures combined with six ground types characterized by their hydraulic properties. The analyses performed for all combinations of topographic factors and ground types allowed to quantify the variability of model sensitivity and uncertainty within mountain regions. We found that modeled snow duration considerably influences the mean annual ground temperature (MAGT. The melt-out day of snow (MD is determined by processes determining snow accumulation and melting. Parameters such as the temperature and precipitation lapse rate and the snow correction factor have therefore a great impact on modeled MAGT. Ground albedo changes MAGT from 0.5 to 4°C in dependence of the elevation, the aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter snow cover. Snow albedo and other parameters determining the amount of reflected solar radiation are important, changing MAGT at different depths by more than 1°C. Parameters influencing the turbulent fluxes as the roughness length or the dew temperature are more sensitive at low elevation sites due to higher air temperatures and decreased solar radiation. Modeling the individual terms of the energy
A High Temperature Liquid Plasma Model of the Sun
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2007-01-01
Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.
Kinetic modeling of temperature driven flows in short microchannels
Energy Technology Data Exchange (ETDEWEB)
Alexeenko, Alina A.; Gimelshein, Sergey F.; Muntz, E. Phillip [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Ketsdever, Andrew D. [Propulsion Directorate, Air Force Research Laboratory, Edwards Air Force Base, CA 93524 (United States)
2006-11-15
The temperature driven gas flows in both a two-dimensional finite length microchannel and a cylindrical tube have been studied numerically, with a goal of investigating performance optimization for a nano-membrane-based Knudsen Compressor. The numerical solutions were obtained using the direct simulation Monte Carlo (DSMC) method and a discrete ordinate method for the ellipsoidal statistical and Bhatnagar-Gross-Krook models. The Knudsen number was 0.2 and the length-to-height ratio 5. Three different wall temperature distributions were considered: linear, step-wise, and a non-monotonic profile typical for a radiantly heated Knudsen Compressor's membrane. The short channel end effects are characterized, and the sensitivity of the mass flow to a non-monotonic temperature distribution is shown. (author)
Constitutive model of discontinuous plastic flow at cryogenic temperatures
Skoczen, B; Bielski, J; Marcinek, D
2010-01-01
FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...
Generalized Stefan models accounting for a discontinuous temperature field
Danescu, A.
We construct a class of generalized Stefan models able to account for a discontinuous temperature field across a nonmaterial interface. The resulting theory introduces a constitutive scalar interfacial field, denoted by /lineθ and called the equivalent temperature of the interface. A classical procedure, based on the interfacial dissipation inequality, relates the interfacial energy release to the interfacial mass flux and restricts the equivalent temperature of the interface. We show that previously proposed theories are obtained as particular cases when /lineθ = ⪉θ > or /lineθ = ⪉(1)/(θ )>-1 or, more generally, when /lineθ = ⪉θ r ⪉ 1/θ1-r-1 for 0<= r<= 1. We study in a particular constitutive framework the solidification of an under-cooled liquid and we are able to give a sufficient condition for the existence of travelling wave solutions.
Mathematical model of the metal mould surface temperature optimization
Energy Technology Data Exchange (ETDEWEB)
Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)
2015-11-30
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.
Modeling the surface temperature of Earth-like planets
Vladilo, G; Murante, G; Filippi, L; Provenzale, A
2015-01-01
We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-convective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely l...
A multifluid model extended for strong temperature nonequilibrium
Energy Technology Data Exchange (ETDEWEB)
Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-08
We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.
Low temperature expansion of the gonihedric Ising model
Pietig, R
1998-01-01
We investigate a model of closed $(d-1)$-dimensional soft-self-avoiding random surfaces on a $d$-dimensional cubic lattice. The energy of a surface configuration is given by $E=J(n_{2}+4k n_{4})$, where $n_{2}$ is the number of edges, where two plaquettes meet at a right angle and $n_{4}$ is the number of edges, where 4 plaquettes meet. This model can be represented as a next-nearest-neighbour- and plaquette-interaction. It corresponds to a special case of a general class of spin systems introduced by Wegner and Savvidy. Since there is no term proportional to the surface area, the bare surface tension of the model vanishes, in contrast to the ordinary Ising model. By a suitable adaption of Peierls argument, we prove the existence of infinitely many ordered low temperature phases for the case $k=0$. A low temperature expansion of the free energy in 3 dimensions up to order $x^{38}$ ($x={e}^{-\\beta J}$) shows, that for $k>0$ only the ferromagnetic low temperature phases remain stable. An analysis of low tempera...
Modeling stream temperature in the Anthropocene: An earth system modeling approach
Li, Hong-Yi; Ruby Leung, L.; Tesfa, Teklu; Voisin, Nathalie; Hejazi, Mohamad; Liu, Lu; Liu, Ying; Rice, Jennie; Wu, Huan; Yang, Xiaofan
2015-12-01
A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. It is then shown that the model is capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparing against the observed data from over 320 USGS stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. Furthermore, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August-October) by as much as 1˜2°C due to enhanced low-flow conditions, which have important implications to aquatic ecosystems. Sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.
On the fate of the Standard Model at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)
2016-05-10
In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.
The O(2) model in polar coordinates at nonzero temperature
Grahl, Martin; Giacosa, Francesco; Rischke, Dirk H
2011-01-01
We study restoration of spontaneously broken symmetry at nonzero temperature in the framework of the O(2) model by using polar coordinates. We apply the CJT formalism to calculate the masses and the condensate in the double-bubble approximation, both with and without a term that explicitly breaks the O(2) symmetry. We find that, in the case with explicitly broken symmetry, the mass of the angular degree of freedom becomes tachyonic above a temperature of about 300 MeV. Taking the term that explicitly breaks the symmetry to be infinitesimally small, we find that the Goldstone theorem is respected below the critical temperature. However, this limit cannot be performed for temperatures above the phase transition. We find that, no matter whether we break the symmetry explicitly or not, there is no region of temperature in which the radial and the angular degree of freedom become degenerate in mass. These results hold also when the mass of the radial mode is sent to infinity.
Hamiltonian simulation of the Schwinger model at finite temperature
Buyens, Boye; Van Acoleyen, Karel
2016-01-01
Using Matrix Product Operators (MPO) the Schwinger model is simulated in thermal equilibrium. The variational manifold of gauge invariant MPO is constructed to represent Gibbs states. As a first application the chiral condensate in thermal equilibrium is computed and agreement with earlier studies is found. Furthermore, as a new application the Schwinger model is probed with a fractional charged static quark-antiquark pair separated infinitely far from each other. A critical temperature beyond which the string tension is exponentially suppressed is found, which is in qualitative agreement with analytical studies in the strong coupling limit. Finally, the CT symmetry breaking is investigated and our results strongly suggest that the symmetry is restored at any nonzero temperature.
Hamiltonian simulation of the Schwinger model at finite temperature
Buyens, Boye; Verstraete, Frank; Van Acoleyen, Karel
2016-10-01
Using matrix product operators, the Schwinger model is simulated in thermal equilibrium. The variational manifold of gauge-invariant matrix product operators is constructed to represent Gibbs states. As a first application, the chiral condensate in thermal equilibrium is computed, and agreement with earlier studies is found. Furthermore, as a new application, the Schwinger model is probed with a fractional charged static quark-antiquark pair separated infinitely far from each other. A critical temperature beyond which the string tension is exponentially suppressed is found and is in qualitative agreement with analytical studies in the strong coupling limit. Finally, the C T symmetry breaking is investigated, and our results strongly suggest that the symmetry is restored at any nonzero temperature.
Measurement of Laser Weld Temperatures for 3D Model Input.
Energy Technology Data Exchange (ETDEWEB)
Dagel, Daryl; GROSSETETE, GRANT; Maccallum, Danny O.
2016-10-01
Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.
IUKF neural network modeling for FOG temperature drift
Institute of Scientific and Technical Information of China (English)
Feng Zha; Jiangning Xu; Jingshu Li; Hongyang He
2013-01-01
A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com-pensate for the fiber optic gyro (FOG) bias drift caused by tempe-rature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure-ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea-surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20◦C) and drop (70-20◦C) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respec-tively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back-propagation (BP) and UKF network models.
Chaos in Temperature in Generic 2 p-Spin Models
Panchenko, Dmitry
2016-09-01
We prove chaos in temperature for even p-spin models which include sufficiently many p-spin interaction terms. Our approach is based on a new invariance property for coupled asymptotic Gibbs measures, similar in spirit to the invariance property that appeared in the proof of ultrametricity in Panchenko (Ann Math (2) 177(1):383-393, 2013), used in combination with Talagrand's analogue of Guerra's replica symmetry breaking bound for coupled systems.
Reheating temperature in non-minimal derivative coupling model
Sadjadi, H Mohseni
2013-01-01
We consider the inflaton as a scalar field described by a non-minimal derivative coupling model with a power law potential. We study the slow roll inflation, the rapid oscillation phase, the radiation dominated and the recombination eras respectively, and estimate e-folds numbers during these epochs. Using these results we determine the reheating temperature in terms of the spectral index and the amplitude of the power spectrum of scalar perturbations.
Temperature Modeling of the Molten Glass in Tin Bath
Institute of Scientific and Technical Information of China (English)
WEI Zhihua; CHEN Jinshu; NIE Yingsong
2009-01-01
Based on the experimental investigation by quantitative analysis, temperature fields of the molten glass in tin bath were numerically simulated by the finite elememt method. The ex-perimental results show that the cooling rate of glass is directly proportional to the draught speed, but inversely proportional to the thickness of the glass. This model lays the foundation for computer simulation system about float glass.
Finite-temperature corrections in the dilated chiral quark model
Kim, Y; Rho, M; Kim, Youngman; Lee, Hyun Kyu; Rho, Mannque
1995-01-01
We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense {\\it and} hot matter. We obtain the scaling law, \\frac{f_{\\pi}(T)}{f_{\\pi}} = \\frac{m_Q (T)}{m_Q} \\simeq \\frac{m_{\\sigma}(T)}{m_{\\sigma}} while we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense {\\it and} hot matter) and the RHIC experiments (hot and dilute matter) will ``see" different hadron...
Small velocity and finite temperature variations in kinetic relaxation models
Markowich, Peter
2010-01-01
A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.
Design and Modelling of Small Scale Low Temperature Power Cycles
DEFF Research Database (Denmark)
Wronski, Jorrit
impact on the work output of the expander.The final part of this report deals with the performance of plate heat exchangers. Several plate heat exchanger correlations were reviewed focussing on their applicability to ORC systems. A framework for dynamic heat exchanger modelling was developed......he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance...... times and below 10−7 away from the phase boundaries.Regarding expansion devices for small scale organic Rankine cycle (ORC) systems,this work focussed on reciprocating machines. A prototype of a reciprocating expander with a swept volume of 736 cm3 was tested and modelled. he model was written in object...
MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS
Directory of Open Access Journals (Sweden)
S. S. Belimenko
2016-10-01
Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.
Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature
DEFF Research Database (Denmark)
Andreasen, Søren Juhl; Kær, Søren Knudsen
2009-01-01
consists of a prototype cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes and runs on pure hydrogen in a dead-end anode configuration with a purge valve. The cooling of the stack...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....
Rheological modelling of physiological variables during temperature variations at rest
Vogelaere, P.; de Meyer, F.
1990-06-01
The evolution with time of cardio-respiratory variables, blood pressure and body temperature has been studied on six males, resting in semi-nude conditions during short (30 min) cold stress exposure (0°C) and during passive recovery (60 min) at 20°C. Passive cold exposure does not induce a change in HR but increases VO 2, VCO 2 Ve and core temperature T re, whereas peripheral temperature is significantly lowered. The kinetic evolution of the studied variables was investigated using a Kelvin-Voigt rheological model. The results suggest that the human body, and by extension the measured physiological variables of its functioning, does not react as a perfect viscoelastic system. Cold exposure induces a more rapid adaptation for heart rate, blood pressure and skin temperatures than that observed during the rewarming period (20°C), whereas respiratory adjustments show an opposite evolution. During the cooling period of the experiment the adaptative mechanisms, taking effect to preserve core homeothermy and to obtain a higher oxygen supply, increase the energy loss of the body.
Computer Modeling of Planetary Surface Temperatures in Introductory Astronomy Courses
Barker, Timothy; Goodman, J.
2013-01-01
Barker, T., and Goodman, J. C., Wheaton College, Norton, MA Computer modeling is an essential part of astronomical research, and so it is important that students be exposed to its powers and limitations in the first (and, perhaps, only) astronomy course they take in college. Building on the ideas of Walter Robinson (“Modeling Dynamic Systems,” Springer, 2002) we have found that STELLA software (ISEE Systems) allows introductory astronomy students to do sophisticated modeling by the end of two classes of instruction, with no previous experience in computer programming or calculus. STELLA’s graphical interface allows students to visualize systems in terms of “flows” in and out of “stocks,” avoiding the need to invoke differential equations. Linking flows and stocks allows feedback systems to be constructed. Students begin by building an easily understood system: a leaky bucket. This is a simple negative feedback system in which the volume in the bucket (a “stock”) depends on a fixed inflow rate and an outflow that increases in proportion to the volume in the bucket. Students explore how changing inflow rate and feedback parameters affect the steady-state volume and equilibration time of the system. This model is completed within a 50-minute class meeting. In the next class, students are given an analogous but more sophisticated problem: modeling a planetary surface temperature (“stock”) that depends on the “flow” of energy from the Sun, the planetary albedo, the outgoing flow of infrared radiation from the planet’s surface, and the infrared return from the atmosphere. Students then compare their STELLA model equilibrium temperatures to observed planetary temperatures, which agree with model ones for worlds without atmospheres, but give underestimates for planets with atmospheres, thus introducing students to the concept of greenhouse warming. We find that if we give the students part of this model at the start of a 50-minute class they are
Tantalum strength model incorporating temperature, strain rate and pressure
Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt
Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
PHD TUTORIAL: Finite-temperature models of Bose Einstein condensation
Proukakis, Nick P.; Jackson, Brian
2008-10-01
The theoretical description of trapped weakly interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the 'maze' of abundant theoretical models, and simple correspondences between existing approaches are not always very transparent. This tutorial provides a generic introduction to such theories, in an attempt to single out common features and deficiencies of certain 'classes of approaches' identified by their physical content, rather than their particular mathematical implementation. This tutorial is structured in a manner accessible to a non-specialist with a good working knowledge of quantum mechanics. Although some familiarity with concepts of quantum field theory would be an advantage, key notions, such as the occupation number representation of second quantization, are nonetheless briefly reviewed. Following a general introduction, the complexity of models is gradually built up, starting from the basic zero-temperature formalism of the Gross-Pitaevskii equation. This structure enables readers to probe different levels of theoretical developments (mean field, number conserving and stochastic) according to their particular needs. In addition to its 'training element', we hope that this tutorial will prove useful to active researchers in this field, both in terms of the correspondences made between different theoretical models, and as a source of reference for existing and developing finite-temperature theoretical models.
[Study on temperature correctional models of quantitative analysis with near infrared spectroscopy].
Zhang, Jun; Chen, Hua-cai; Chen, Xing-dan
2005-06-01
Effect of enviroment temperature on near infrared spectroscopic quantitative analysis was studied. The temperature correction model was calibrated with 45 wheat samples at different environment temperaturs and with the temperature as an external variable. The constant temperature model was calibated with 45 wheat samples at the same temperature. The predicted results of two models for the protein contents of wheat samples at different temperatures were compared. The results showed that the mean standard error of prediction (SEP) of the temperature correction model was 0.333, but the SEP of constant temperature (22 degrees C) model increased as the temperature difference enlarged, and the SEP is up to 0.602 when using this model at 4 degrees C. It was suggested that the temperature correctional model improves the analysis precision.
Analysis of Variation Characters and Prediction Model of Soil Temperature in Solar Greenhouse
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
[Objective] The aim was to study the soil temperature changes and its forecast model in greenhouse by solar heat. [Method] Annual and daily variation characters of soil temperature were analyzed in this paper by using the observation data of air temperature out of solar greenhouse and different layers soil temperature in it. The soil temperature (daily maximum, daily minimum and daily mean) forecasting models were also studied. Simulation and test were conducted to the forecast model of soil temperature in ...
Theoretical temperature model with experimental validation for CLIC Accelerating Structures
AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan
Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...
A schematic model for QCD at finite temperature
Lerma, S; Hess, P O; Civitarese, O; Reboiro, M
2002-01-01
The simplest version of a class of toy models for QCD is presented. It is a Lipkin-type model, for the quark-antiquark sector, and, for the gluon sector, gluon pairs with spin zero are treated as elementary bosons. The model restricts to mesons with spin zero and to few baryonic states. The corresponding energy spectrum is discussed. We show that ground state correlations are essential to describe physical properties of the spectrum at low energies. Phase transitions are described in an effective manner, by using coherent states. The appearance of a Goldstone boson for large values of the interaction strength is discussed, as related to a collective state. The formalism is extended to consider finite temperatures. The partition function is calculated, in an approximate way, showing the convenience of the use of coherent states. The energy density, heat capacity and transitions from the hadronic phase to the quark-gluon plasma are calculated.
Zhou, Xinyao; Bi, Shaojie; Yang, Yonghui; Tian, Fei; Ren, Dandan
2014-11-01
The three-temperature (3T) model is a simple model which estimates plant transpiration from only temperature data. In-situ field experimental results have shown that 3T is a reliable evapotranspiration (ET) estimation model. Despite encouraging results from recent efforts extending the 3T model to remote sensing applications, literature shows limited comparisons of the 3T model with other remote sensing driven ET models. This research used ET obtained from eddy covariance to evaluate the 3T model and in turn compared the model-simulated ET with that of the more traditional SEBAL (Surface Energy Balance Algorithm for Land) model. A field experiment was conducted in the cotton fields of Taklamakan desert oasis in Xinjiang, Northwest China. Radiation and surface temperature were obtained from hyperspectral and thermal infrared images for clear days in 2013. The images covered the time period of 0900-1800 h at four different phenological stages of cotton. Meteorological data were automatically recorded in a station located at the center of the cotton field. Results showed that the 3T model accurately captured daily and seasonal variations in ET. As low dry soil surface temperatures induced significant errors in the 3T model, it was unsuitable for estimating ET in the early morning and late afternoon periods. The model-simulated ET was relatively more accurate for squaring, bolling and boll-opening stages than for seedling stage of cotton during when ET was generally low. Wind speed was apparently not a limiting factor of ET in the 3T model. This was attributed to the fact that surface temperature, a vital input of the model, indirectly accounted for the effect of wind speed on ET. Although the 3T model slightly overestimated ET compared with SEBAL and eddy covariance, it was generally reliable for estimating daytime ET during 0900-1600 h.
Understanding the tropical warm temperature bias simulated by climate models
Brient, Florent; Schneider, Tapio
2017-04-01
The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.
Low reheating temperatures in monomial and binomial inflationary models
Energy Technology Data Exchange (ETDEWEB)
Rehagen, Thomas; Gelmini, Graciela B. [Department of Physics and Astronomy, UCLA,475 Portola Plaza, Los Angeles, CA 90095 (United States)
2015-06-23
We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ{sup 2} inflationary potential is no longer favored by current CMB data, as well as ϕ{sup p} with p>2, a ϕ{sup 1} potential and canonical reheating (w{sub re}=0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}≲6×10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ{sup 1} potential. We find that as a subdominant ϕ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.
The mass and temperature functions in a moving barrier model
Popolo, A D
2002-01-01
In this paper, I use the extension of the excursion set model of Sheth & Tormen (2002) and the barrier shape obtained in Del Popolo & Gambera (1998) to calculate the unconditional halo mass function, and the conditional mass function in several cosmological models. I show that the barrier obtained in Del Popolo & Gambera (1998), which takes account of tidal interaction between proto-haloes, is a better description of the mass functions than the spherical collapse and is in good agreement with numerical simulations (Tozzi & Governato 1998, and Governato et al. 1999). The results are also in good agreement with those obtained by Sheth & Tormen (2002), only slight differences are observed expecially at the low mass end. I moreover calculate, and compare with simulations, the temperature function obtained by means of the mass functions previously calculated and also using an improved version of the M-T relation, which accounts for the fact that massive clusters accrete matter quasi-continuousl...
High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes
Energy Technology Data Exchange (ETDEWEB)
Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M
2011-03-01
Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.
Precipitates/Salts Model Calculations for Various Drift Temperature Environments
Energy Technology Data Exchange (ETDEWEB)
P. Marnier
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).
MELCOR Model Development of High Temperature Gas-cooled Reactor
Energy Technology Data Exchange (ETDEWEB)
Jin, Changyong; Huh, Changwook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2013-05-15
The High Temperature Gas-cooled Reactor is one of the major challenging issues on the development of licensing technology for HTGR. The safety evaluation tools of HTGR can be developed in two ways - development of new HTGR-specific codes or revision of existing codes. The KINS is considering using existing analytic tools to the extent feasible, with appropriate modifications for the intended purpose. The system-level MELCOR code is traditionally used for LWR safety analysis, which is capable of performing thermal-fluid and accident analysis, including fission-product transport and release. Recently, this code is being modified for the NGNP HTGR by the NRC. In this study, the MELCOR input model for HTGR with Reactor Cavity Cooling System (RCCS) was developed and the steady state performance was analyzed to evaluate the applicability in HTGR. HTGR model with design characteristics of GT-MHR was developed using MELCOR 2.1 code to validate the applicability of MELCOR code to HTGR. In addition, the steady state of GT-MHR was analyzed with the developed model. It was evaluated to predict well the design parameters of GT-MHR. The developed model can be used as the basis for accident analysis of HTGR with further update of packages such as Radio Nuclide (RN) package.
Modeling temperature and stress in rocks exposed to the sun
Hallet, B.; Mackenzie, P.; Shi, J.; Eppes, M. C.
2012-12-01
The potential contribution of solar-driven thermal cycling to the progressive breakdown of surface rocks on the Earth and other planets is recognized but under studied. To shed light on this contribution we have launched a collaborative study integrating modern instrumental and numerical approaches to define surface temperatures, stresses, strains, and microfracture activity in exposed boulders, and to shed light on the thermo-mechanical response of boulders to diurnal solar exposure. The instrumental portion of our study is conducted by M. Eppes and coworkers who have monitored the surface and environmental conditions of two ~30 cm dia. granite boulders (one in North Carolina, one in New Mexico) in the field for one and tow years, respectively. Each boulder is instrumented with 8 thermocouples, 8 strain gauges, a surface moisture sensor and 6 acoustic emission (AE) sensors to monitor microfracture activity continuously and to locate it within 2.5 cm. Herein, we focus on the numerical modeling. Using a commercially available finite element program, MSC.Marc®2008r1, we have developed an adaptable, realistic thermo-mechanical model to investigate quantitatively the temporal and spatial distributions of both temperature and stress throughout a boulder. The model accounts for the effects of latitude and season (length of day and the sun's path relative to the object), atmospheric damping (reduction of solar radiation when traveling through the Earth's atmosphere), radiative interaction between the boulder and its surrounding soil, secondary heat exchange of the rock with air, and transient heat conduction in both rock and soil. Using representative thermal and elastic rock properties, as well as realistic representations of the size, shape and orientation of a boulder instrumented in the field in North Carolina, the model is validated by comparison with direct measurements of temperature and strain on the surface of one boulder exposed to the sun. Using the validated
Indian Academy of Sciences (India)
Rajeev Ranjan Kumar; D V Ramana; R N Singh
2012-10-01
Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature–depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.
Deterministic Modeling of the High Temperature Test Reactor
Energy Technology Data Exchange (ETDEWEB)
Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the
A moment model for phonon transport at room temperature
Mohammadzadeh, Alireza; Struchtrup, Henning
2017-01-01
Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also, the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system. A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave vector of phonons. As an example, a system of moment equations, consisting of three directional and seven frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is obtained.
Constructing warm inflationary model in finite temperature BIon
Setare, M R
2014-01-01
We study warm inflationary universe model on the BIon in thermal background. The BIon is a configuration in flat space of a D-brane and a parallel anti-D-brane connected by a wormhole with F-string charge. When the branes and antibranes are well separated and the brane's spike is far from the antibrane's spike, wormhole isn't formed however when two branes are close to each other, they can be connected by a wormhole. In this condition, there exists many channels for flowing energy from extra dimensions into our universe and inflation may naturally occur in a warm region. We present a model that allows all cosmological parameters like the scale factor $a$, the Hubble parameter $H$ and universe energy density depend on the shape function and temperature of wormhole in transverse dimension between two branes. In our model, the expansion of 4D universe is controlled by the thermal wormhole between branes and ends up in Big-Rip singularity. We show that at this singularity, universe would be destroyed and one blac...
Temperature characteristics of quantum dot devices: Rate vs. Master Equation Models
DEFF Research Database (Denmark)
Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg;
2001-01-01
The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures.......The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures....
Two-Temperature Model of Nonequilibrium Electron Relaxation:. a Review
Singh, Navinder
The present paper is a review of the phenomena related to nonequilibrium electron relaxation in bulk and nano-scale metallic samples. The workable Two-Temperature Model (TTM) based on Boltzmann-Bloch-Peierls kinetic equation has been applied to study the ultra-fast (femto-second) electronic relaxation in various metallic systems. The advent of new ultra-fast (femto-second) laser technology and pump-probe spectroscopy has produced wealth of new results for micro- and nano-scale electronic technology. The aim of this paper is to clarify the TTM, conditions of its validity and nonvalidity, its modifications for nano-systems, to sum-up the progress, and to point out open problems in this field. We also give a phenomenological integro-differential equation for the kinetics of nondegenerate electrons that goes beyond the TTM.
Long-term surface temperature modeling of Pluto
Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.
2017-05-01
NASA's New Horizons' reconnaissance of the Pluto system has revealed at high resolution the striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as the sharpness of boundaries for longitudinal variations. These contrasts suggest that Pluto must undergo dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, we explore the surface temperature variations driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (peak-to-peak amplitude of 23° over 3 million years) and regression of the orbital longitude of perihelion (3.7 million years). These orbital variations create epochs of ;Extreme Seasons; where one pole receives a short, relatively warm summer and long winter, while the other receives a much longer, but less intense summer and short winter. We use thermal modeling to build upon the long-term insolation history model described by Earle and Binzel (2015) and investigate how these seasons couple with Pluto's albedo contrasts to create temperature effects. From this study we find that a bright region at the equator, once established, can become a site for net deposition. We see the region informally known as Sputnik Planitia as an example of this, and find it will be able to perpetuate itself as an ;always available; cold trap, thus having the potential to survive on million year or substantially longer timescales. Meanwhile darker, low-albedo, regions near the equator will remain relative warm and generally not attract volatile deposition. We argue that the equatorial region is a ;preservation zone; for whatever albedo is seeded there. This offers insight as to why the equatorial band of Pluto displays the planet's greatest albedo contrasts.
Modelling Cerebral Blood Flow and Temperature Using a Vascular Porous Model
Blowers, Stephen; Thrippleton, Michael; Marshall, Ian; Harris, Bridget; Andrews, Peter; Valluri, Prashant
2016-11-01
Macro-modelling of cerebral blood flow can assist in determining the impact of temperature intervention to reduce permanent tissue damage during instances of brain trauma. Here we present a 3D two phase fluid-porous model for simulating blood flow through the capillary region linked to intersecting 1D arterial and venous vessel trees. This combined vasculature porous (VaPor) model simulates both flow and energy balances, including heat from metabolism, using a vasculature extracted from MRI data which are expanded upon using a tree generation algorithm. Validation of temperature balance has been achieved using rodent brain data. Direct flow validation is not as straight forward due to the method used in determining regional cerebral blood flow (rCBF). In-vivo measurements are achieved using a tracer, which disagree with direct measurements of simulated flow. However, by modelling a virtual tracer, rCBF values are obtained that agree with those found in literature. Temperature profiles generated with the VaPor model show a reduction in core brain temperature after cooling the scalp not seen previously in other models.
A Model of Temperature-Dependent Young's Modulus for Ultrahigh Temperature Ceramics
Directory of Open Access Journals (Sweden)
Weiguo Li
2011-01-01
Full Text Available Based on the different sensitivities of material properties to temperature between ultrahigh temperature ceramics (UHTCs and traditional ceramics, the original empirical formula of temperature-dependent Young's modulus of ceramic materials is unable to describe the temperature dependence of Young's modulus of UHTCs which are used as thermal protection materials. In this paper, a characterization applied to Young's modulus of UHTC materials under high temperature which is revised from the original empirical formula is established. The applicable temperature range of the characterization extends to the higher temperature zone. This study will provide a basis for the characterization for strength and fracture toughness of UHTC materials and provide theoretical bases and technical reserves for the UHTC materials' design and application in the field of spacecraft.
New temperature model of the Netherlands from new data and novel modelling methodology
Bonté, Damien; Struijk, Maartje; Békési, Eszter; Cloetingh, Sierd; van Wees, Jan-Diederik
2017-04-01
Deep geothermal energy has grown in interest in Western Europe in the last decades, for direct use but also, as the knowledge of the subsurface improves, for electricity generation. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. The knowledge of the temperature subsurface, together with the available flow from the reservoir, is an important factor that can determine the success of a geothermal energy project. To support the development of deep geothermal energy system in the Netherlands, we have made a first assessment of the subsurface temperature based on thermal data but also on geological elements (Bonté et al, 2012). An outcome of this work was ThermoGIS that uses the temperature model. This work is a revision of the model that is used in ThermoGIS. The improvement from the first model are multiple, we have been improving not only the dataset used for the calibration and structural model, but also the methodology trough an improved software (called b3t). The temperature dataset has been updated by integrating temperature on the newly accessible wells. The sedimentary description in the basin has been improved by using an updated and refined structural model and an improved lithological definition. A major improvement in from the methodology used to perform the modelling, with b3t the calibration is made not only using the lithospheric parameters but also using the thermal conductivity of the sediments. The result is a much more accurate definition of the parameters for the model and a perfected handling of the calibration process. The result obtain is a precise and improved temperature model of the Netherlands. The thermal conductivity variation in the sediments associated with geometry of the layers is an important factor of temperature variations and the influence of the Zechtein salt in the north of the country is important. In addition, the radiogenic heat
Considerations for modeling thin cirrus effects via brightness temperature differences
Schmidt, E. O.; Arduini, R. F.; Wielicki, B. A.; Stone, R. S.; Tsay, S.-C.
1995-01-01
Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational Environmental Satellite (GOES-6) channels (3.9, 12.7 micrometer) and Advanced Very High Resolution Radiometer channels (3.7, 12.0 micrometer). Daytime and nighttime discrimination of particle size information is possible given the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. Surface and view-angle effects are incorporated to provide more realistic simulation.
Modelling property changes in graphite irradiated at changing irradiation temperature
CSIR Research Space (South Africa)
Kok, S
2011-01-01
Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...
Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro
2015-07-01
The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT.
Vasudevan, R.; Poli, I.; Deligiannis, D.; Zeman, M.; Smets, A. H. M.
2016-11-01
This work adapts a model to simulate the carrier injection dependent minority carrier lifetime of crystalline silicon passivated with hydrogenated amorphous silicon at elevated temperatures. Two existing models that respectively calculate the bulk lifetime and surface recombination velocity are used and the full temperature dependency of these models are explored. After a thorough description of these temperature dependencies, experimental results using this model show that the minority carrier lifetime changes upon annealing of silicon heterojunction structures are not universal. Furthermore, comparisons of the temperature dependent model to using the room temperature model at elevated temperatures is given and significant differences are observed when using temperatures above 100 °C. This shows the necessity of taking temperature effects into account during in-situ annealing experiments.
Fluid temperatures: Modeling the thermal regime of a river network
Rhonda Mazza; Ashley Steel
2017-01-01
Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...
Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O’Brien, Katherine R.
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Knies, Jennifer L; Kingsolver, Joel G
2010-08-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.
Gupta, Saurabh; Pal, Pinaki; Im, Hong G
2014-01-01
The flamelet approach offers a viable framework for combustion modeling of homogeneous charge compression ignition (HCCI) engines under stratified mixture conditions. Scalar dissipation rate acts as a key parameter in flamelet-based combustion models which connects the physical mixing space to the reactive space. The aim of this paper is to gain fundamental insights into turbulent mixing in low temperature combustion (LTC) engines and investigate the modeling of scalar dissipation rate. Three direct numerical simulation (DNS) test cases of two-dimensional turbulent auto-ignition of a hydrogen-air mixture with different correlations of temperature and mixture fraction are considered, which are representative of different ignition regimes. The existing models of mean and conditional scalar dissipation rates, and probability density functions (PDFs) of mixture fraction and total enthalpy are a priori validated against the DNS data.
Modeling of the jack rabbit series of experiments with a temperature based reactive burn model
Desbiens, Nicolas
2017-01-01
The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.
Road to room-temperature superconductivity: A universal model
Bucher, Manfred
2013-01-01
In a semiclassical view superconductivity is attributed exclusively to the advance of atoms' outer s electrons through the nuclei of neighbor atoms in a solid. The necessary progression of holes in the opposite direction has the electric and magnetic effect as if two electrons were advancing instead of each actual one. Superconductivity ceases when the associated lateral oscillation of the outer s electrons extends between neighbor atoms. If such overswing occurs already at T = 0, then the material is a normal conductor. Otherwise, lateral overswing can be caused by lattice vibrations at a critical temperature Tc or by a critical magnetic field Bc. Lateral electron oscillations are reduced - and Tc is increased - when the atoms of the outer s electrons are squeezed, be it in the bulk crystal, in a thin film, or under external pressure on the sample. The model is applied to alkali metals and alkali-doped fullerenes. Aluminum serves as an example of a simple metal with superconductivity. Application of the mode...
Effect of irradiation temperature in PWR RPV materials and its inclusion in semi-mechanistic model
Energy Technology Data Exchange (ETDEWEB)
Debarberis, L. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands); Acosta, B. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands)]. E-mail: beatriz.acosta-iborra@jrc.nl; Zeman, A. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands); Sevini, F. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands); Ballesteros, A. [Tecnatom, Avd. Montes de Oca 1, San Sebasitan de los Reyes, E-28709 Madrid (Spain); Kryukov, A. [Russian Research Centre Kurchatov Institute, Kurchatov Square 1, 123182 Moscow (Russian Federation); Gillemot, F. [AEKI Atomic Research Institute, Konkoly Thege M. ut 29-33, 1121 Budapest (Hungary); Brumovsky, M. [NRI, Nuclear Research Institute, Husinec, Rez 130, 25068 Rez (Czech Republic)
2005-09-15
The irradiation temperature is a very important parameter in radiation damage kinetics. In this article the challenge of including temperature into a general semi-mechanistic model for radiation embrittlement is presented. In this manner the model allows data obtained at different temperatures, both in surveillance programmes and in research reactors, to be understood.
An analysis of the numerical model influence on the ground temperature profile determination
Jaszczur, Marek; Polepszyc, Inga; Sapińska-Śliwa, Aneta; Gonet, Andrzej
2017-02-01
The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.
Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses
Energy Technology Data Exchange (ETDEWEB)
Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2017-09-01
This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.
Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...
Letcher, Benjamin; Hocking, Daniel; O'Neill, K.; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew
2016-01-01
Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59 °C), identified a clear warming trend (0.63 °C · decade-1) and a widening of the synchronized period (29 d · decade-1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (~ 0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (~ 0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.
Letcher, Benjamin H; Hocking, Daniel J; O'Neil, Kyle; Whiteley, Andrew R; Nislow, Keith H; O'Donnell, Matthew J
2016-01-01
Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.
Directory of Open Access Journals (Sweden)
Benjamin H. Letcher
2016-02-01
Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.
Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices
Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael
2012-01-01
Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.
Improved light and temperature responses for light-use-efficiency-based GPP models
Directory of Open Access Journals (Sweden)
I. McCallum
2013-10-01
Full Text Available Gross primary production (GPP is the process by which carbon enters ecosystems. Models based on the theory of light use efficiency (LUE have emerged as an efficient method to estimate ecosystem GPP. However, problems have been noted when applying global parameterizations to biome-level applications. In particular, model–data comparisons of GPP have shown that models (including LUE models have difficulty matching estimated GPP. This is significant as errors in simulated GPP may propagate through models (e.g. Earth system models. Clearly, unique biome-level characteristics must be accounted for if model accuracy is to be improved. We hypothesize that in boreal regions (which are strongly temperature controlled, accounting for temperature acclimation and non-linear light response of daily GPP will improve model performance. To test this hypothesis, we have chosen four diagnostic models for comparison, namely an LUE model (linear in its light response both with and without temperature acclimation and an LUE model and a big leaf model both with temperature acclimation and non-linear in their light response. All models include environmental modifiers for temperature and vapour pressure deficit (VPD. Initially, all models were calibrated against five eddy covariance (EC sites within Russia for the years 2002–2005, for a total of 17 site years. Model evaluation was performed via 10-out cross-validation. Cross-validation clearly demonstrates the improvement in model performance that temperature acclimation makes in modelling GPP at strongly temperature-controlled sites in Russia. These results would indicate that inclusion of temperature acclimation in models on sites experiencing cold temperatures is imperative. Additionally, the inclusion of a non-linear light response function is shown to further improve performance, particularly in less temperature-controlled sites.
Identifying the optimal supply temperature in district heating networks - A modelling approach
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2014-01-01
of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....
Electronic Modeling and Design for Extreme Temperatures Project
National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...
Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed
Institute of Scientific and Technical Information of China (English)
Yurong He; Tianyu Wang; Niels Deen; Martin van Sint Annaland; Hans Kuipers; Dongsheng Wen
2012-01-01
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed.The dimensions of the bed and other parameters are set to correspond to those of Müller et al.(2008).Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures.Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics.It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature,particle translational granular temperature and particle rotational granular temperature.The drag force model affects more seriously the large scale variables such as the bubble granular temperature.Restitution coefficient influences all granular temperatures to some degree.Simulation results are compared with experimental results by Müller et al.(2008) showing reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Lee, S.Y.; Coronella, C.J.; Bhadkamkar, A.S.; Seader, J.D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering
1993-12-01
A two-stage, thermally coupled fluidized-bed reactor system has been developed for energy-efficient conversion of tar-sand bitumen to synthetic crude oil. Modeling and temperature control of a system are addressed in this study. A process model and transfer function are determined by a transient response technique and the reactor temperature are controlled by PI controllers with tuning settings determined by an internal model control (IMC) strategy. Using the IMC tuning method, sufficiently good control performance was experimentally observed without lengthy on-line tuning. It is shown that IMC strategy provides a means to directly use process knowledge to make a control decision. Although this control method allows for fine tuning by adjusting a single tuning parameter, it is not easy to determine the optimal value of this tuning parameter, which must be specified by the user. A novel method is presented to evaluate that parameter, which must be specified by the user. A novel method is presented to evaluate that parameter in this study. It was selected based on the magnitude of elements on the off-diagonal of the relative gain array to account for the effect of thermal coupling on control performance. It is shown that this method provides stable and fast control of reactor temperatures. By successfully decoupling the system, a simple method of extending the IMC tuning technique to multiinput/multioutput systems is obtained.
A Nonlinear Model for Relativistic Electrons at Positive Temperature
Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert
2008-01-01
We study the relativistic electron-positron field at positive temperature in the Hartree-Fock-approximation. We consider both the case with and without exchange term, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, S\\'er\\'e, and Solovej where the case of zero temperature was considered.
Temperature-Dependent Conformations of Model Viscosity Index Improvers
Energy Technology Data Exchange (ETDEWEB)
Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie
2015-05-01
Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.
Lim, L; Lee, D. S.; Sausen, R.; Ponater, M.
2007-01-01
Simplified climate models can be used to calculate and to compare temperature response contributions from small forcings without the need for considerable computer resources. A linear climate response model using Green’s functions has been formulated to calculate radiative forcing (RF) and the global mean temperature response from aviation. The model, LinClim, can calculate aviation RF for CO2, O3, CH4, water vapour, contrails, sulphate and black carbon aerosols. From these RFs, temperatur...
French, N A
1997-01-01
A simple model to describe the relationship between the temperature of the developing embryo, incubator temperature, embryo heat production, and thermal conductivity of the egg and surrounding air is presented. During early incubation, embryo temperature is slightly lower than incubator temperature because of evaporative cooling. However, from midincubation onwards, metabolic heat production from the embryo raises embryo temperature above incubator temperature. The extent of the rise in embryo temperature depends on thermal conductivity, which, in turn, is mainly influenced by the air speed over the egg. The importance of air speed and restrictions to air flow within artificial incubators is discussed. Exact determinations of optimum incubation temperatures from studies reported in the literature are difficult because only incubator temperatures are reported. Embryo temperatures can differ from incubator temperature because of differences in thermal conductivity between different incubation systems and differences between incubators in their ability to control temperatures uniformly. It is suggested that shell surface temperatures are monitored in experiments to investigate temperature effects to allow consistent comparisons between trials. Monitoring shell temperatures would also make it easier to translate optimum temperatures derived in small experimental incubators to the large commercial incubators used by the poultry industry. The relationship between egg temperature, the metabolism of the developing embryo and egg size is discussed.
Improved light and temperature responses for light use efficiency based GPP models
Directory of Open Access Journals (Sweden)
I. McCallum
2013-05-01
Full Text Available Gross primary production (GPP is the process by which carbon enters ecosystems. Diagnostic models, based on the theory of light use efficiency (LUE have emerged as one method to estimate ecosystem GPP. However, problems have been noted particularly when applying global results at regional levels. We hypothesize that accounting for non-linear light response and temperature acclimation of daily GPP in boreal regions will improve model performance. To test this hypothesis, we have chosen four diagnostic models for comparison, namely: an LUE model (linear in its light response both with and without temperature acclimation and an LUE model and a big leaf model both with temperature acclimation and non-linear in their light response. All models include environmental modifiers for temperature and vapour pressure deficit (VPD. Initially, all models were calibrated against four eddy covariance sites within Russia for the years 2002–2004, for a total of 10 site years. Model evaluation was performed via 10-out cross-validation. This study presents a methodology for comparing diagnostic modeling approaches. Cross validation clearly demonstrates the improvement in model performance that temperature acclimation makes in modeling GPP at strongly temperature controlled sites in Russia. Additionally, the inclusion of a non-linear light response function is shown to further improve performance. Furthermore we demonstrate the parameterization of the big leaf model, incorporating environmental modifiers for temperature and VPD.
Jun, Xu; Bo, You; Xin, Li; Juan, Cui
2007-12-01
To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm °C-1 with the measured temperature range varying from 0 to 100 °C.
E. Glocker; S. Boppu; Chen, Q; Schlichtmann, U.; Teich, J.; D. Schmitt-Landsiedel
2014-01-01
This contribution provides an approach for emulating the behaviour of an ASIC temperature monitoring system (TMon) during run-time for a tightly-coupled processor array (TCPA) of a heterogeneous invasive multi-tile architecture to be used for FPGA prototyping. It is based on a thermal RC modeling approach. Also different usage scenarios of TCPA are analyzed and compared.
Partial Discharge in Capacitor Model at Low Temperature
Directory of Open Access Journals (Sweden)
P. Rain
2009-01-01
Full Text Available The partial discharge plays an important role in the ageing and the rupture process of solid or mixed insulation systems. Ithas been recognized that the failure of this insulation can be joined to the presence of partial discharge often in inclusionssparkling. Liquid filled cavities can be considered as the most likely defects that can exist in capacitors. In this paper wedescribe the partial discharge evolution at low temperatures in all-PP film capacitors according to the time and the appliedvoltage. We distinguish two regimes of discharges for all the range of temperature and the low temperatures encourage thebreakdown of capacitors at weak voltage, we assign this phenomenon to the increase of the viscosity of filling liquid.
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu
2008-01-01
In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures.
Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature
Directory of Open Access Journals (Sweden)
Jin Woo Moon
2016-12-01
Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.
Novel Analytical Model of Mean Temperature and Experimental Research on the Rail Universal Rolling
Institute of Scientific and Technical Information of China (English)
DONG Yonggang; ZHANG Wenzhi; SONG Jianfeng
2009-01-01
For building the analytical model of mean temperature in rail universal rolling, the cross-section ofworkpieces and the profile of horizontal roll and vertical roll are simplified rationally. The mean temperature of the web of rail, the top of rail and the base of rail are considered individually. The temperature rises for plastic deformation and friction incorresponding deformation zone, the temperature drop for contact is calculated on the base of variation principle and energy conservation law. Then the mean temperature is obtained. For verifying the theoretical model, the 18 kg/m light rail universal rolling experiments are accomplished in Yanshan University Roiling Laboratory, China and the surface temperature is measured. The surface temperature is not exact enough to express the true temperature and the mean temperature can show the status of the true temperature basically. So the mean temperature can be used to express the true temperature and this theoretical model and its results can be applied as an important reference to control the temperature of rail universal rolling and the beat treatment of the rolled rail.
Temperature of the thermosphere. [Titan atmospheric model with energy transfer
Strobel, D. L.
1974-01-01
The vertical temperature contrast for the thermosphere of Titan is estimated considering heating by absorption of solar energy, energy loss through infrared radiation by polyatomic molecules, and energy transfer by thermal conduction between the regions of energy deposition and loss. Current observational data suggest a CH4/H2 mixing ratio of approximately greater than 1, and a vertical temperature contrast smaller than 10 K. However, it is highly probable that H2 and CH4 are not in equilibrium in the thermosphere if there are large H2 escape rates.
Raleigh, M. S.; Landry, C.; Hayashi, M.; Quinton, W. L.; Lundquist, J. D.
2013-12-01
The snow surface skin temperature (Ts) is important in the snowmelt energy balance, land-atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is rarely measured at observational networks. Reliable Ts datasets are needed to validate remote sensing and distributed modeling, in order to represent land-atmosphere feedbacks. Previous research demonstrated that the dew point temperature (Td) close to the snow surface approximates Ts well because air is saturated immediately above snow. However, standard height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), are much more readily available than measurements of Ts or near-surface Td. There is limited understanding of how these standard height variables approximate Ts, and how the approximations vary with climate, seasonality, time of day, and atmospheric conditions (stability and radiation). We used sub-daily measurements from seven sites in varying snow climates and environments to test Ts approximations with standard height temperature and moisture. Td produced the lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating mean daily Ts, but tended to underestimate daily extremes in Ts. For comparison, air temperature (Ta) was biased +3.2 °C to +6.8 °C. Ts biases increased with increasing frequency in nighttime stability and daytime clear sky conditions. We illustrate that mean daily Td can be used to detect systematic input data bias in physically-based snowmelt modeling, a useful tool when validating spatially distributed snow models in data sparse regions. Thus, improved understanding of Td variations can advance understanding of Ts in space and time, providing a simple yet robust measure of surface feedback to the atmospheric energy budget.
Climate change, global warming and coral reefs: modelling the effects of temperature.
Crabbe, M James C
2008-10-01
Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.
Extending temperature sum models to simulate onset of birch flowering on the regional scale
Klein, Christian; Biernath, Christian; Priesack, Eckart
2015-04-01
For human health issues a reliable forecast of the onset of flowering of different plants which produce allergenic pollen is important. Yet, there are numerous phenological models available with different degrees of model complexity. All models consider the effect of the air temperatures on plant development; but only few models also include other environmental factors and/or plant internal water and nutrient status. However, the more complex models often use empirical relations without physiological meaning and are often tested against small datasets derived from a limited amount of sites. Most models which are used to simulate plant phenology are based on the temporal integration of temperatures above a defined base temperature. A critical temperature sum then defines the onset of a new phenological stage. The use of models that base on temperatures only, is efficient as temperatures are the most frequently documented and available weather component on global, regional and local scales. These models score by their robustness over a wide range of environmental conditions. However, the simulations sometimes fail by more than 20 days compared to measurements, and thus are not adequate for their use in pollen forecast. We tested the ability of temperature sum models to simulate onset of flowering of wild (e.g. birch) and domestic plants in Bavaria. In a first step we therefore determined both, a regional averaged optimum base temperature and temperature sum for the examined plant species in Bavaria. In the second step, the base temperatures were optimized to each site for the simulation period 2001-2010. Our hypothesis is that domestic plants depend much less on the regional weather conditions than wild plants do, due to low and high genetic variability, respectively. If so, the observed base temperatures of wild plants are smaller for low annual average temperatures and higher for high annual average temperatures. In the cases of domestic plants the optimized base
High Temperature Flow Response Modeling of Ultra-Fine Grained Titanium
Directory of Open Access Journals (Sweden)
Seyed Vahid Sajadifar
2015-07-01
Full Text Available This work presents the mechanical behavior modeling of commercial purity titanium subjected to severe plastic deformation (SPD during post-SPD compression, at temperatures of 600-900 °C and at strain rates of 0.001-0.1 s−1. The flow response of the ultra-fine grained microstructure is modeled using the modified Johnson-Cook model as a predictive tool, aiding high temperature forming applications. It was seen that the model was satisfactory at all deformation conditions except for the deformation temperature of 600 °C. In order to improve the predictive capability, the model was extended with a corrective term for predictions at temperatures below 700 °C. The accuracy of the model was displayed with reasonable agreement, resulting in error levels of less than 5% at all deformation temperatures.
Modeling Temperature Data: An Illustration of the Use of Biplots in Nonlinear Modeling.
Tsianco, Michael C.; Ruben Gabriel, K.
1984-05-01
A strategy for exploring multivariate data and modeling is presented and illustrated on meteorological data. Its principal tool is the biplot two-dimensional display of data matrices and its three-dimensional analog. Application to temperature data is shown to lead to a nonlinear harmonic model which fits the data closely and has parameters with obvious physical interpretations. This may be useful for extrapolation in time as originally proposed by Brier and Meltesen, who previously analyzed these data. The strategy proposed in this paper has wide applications to multivariate data and could well be used by meteorologists for data exploration and for diagnosing models (not necessarily of the particular form used here) that would closely fit their data.
Sentic, Stipo; Sessions, Sharon
2012-10-01
In the tropics, gravity waves quickly redistribute buoyancy anomalies, which leads to approximately weak temperature gradients (WTG) in the horizontal. In our cloud resolving model (CRM), the WTG approximation is enforced by relaxing potential temperature perturbations to a reference profile which represents the mean state of the atmosphere. To obtain reference profiles, the model is run in a non-WTG mode until radiative convective equilibrium (RCE). RCE vertical profiles of temperature and moisture are then used as reference profiles for WTG simulations. Continuing the work of Sessions et al (2010), we investigate the sensitivity of multiple equilibria in a CRM to changes in sea surface temperatures (SST). Multiple equilibria refers to a precipitating or non-precipitating steady state under identical forcing conditions. Specifically, we run RCE simulations for different SSTs to generate reference profiles representing different large scale environments for WTG simulations. We then perform WTG experiments for each SST with varying surface wind speeds. The model domain is initialized either with a completely dry troposphere, or with a RCE moisture profile. We find that the range of wind speeds maintaining both a dry and a precipitating steady state is strongly dependent on SST.
Modeling of Sokoto Daily Average Temperature: A Fractional ...
African Journals Online (AJOL)
the daily average temperature (DAT) series of Sokoto metropolis for the period of 01/01/2003 to. 03/04/2007. ... in Melbourne, Australia, for the period 1981–1990 ..... Advances in Meteorology, 1-2. Period ... paper, Department of Economics.
HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS
Energy Technology Data Exchange (ETDEWEB)
Vinayak N. Kabadi
2000-05-01
The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.
A physically based model of global freshwater surface temperature
Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.
2012-01-01
Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through
A physically based model of global freshwater surface temperature
Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.
2012-01-01
Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through
Models of Ballistic Propagation of Heat at Low Temperatures
Kovács, R.; Ván, P.
2016-09-01
Heat conduction at low temperatures shows several effects that cannot be described by the Fourier law. In this paper, the performance of various theories is compared in case of wave-like and ballistic propagation of heat pulses in NaF.
Modeling Study of High Pressure and High Temperature Reservoir Fluids
DEFF Research Database (Denmark)
Varzandeh, Farhad
to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can...
Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...
Maiorano, Andrea; Martre, Pierre; Asseng, Senthold; Ewert, Frank; Mueller, Christoph; Roetter, Reimund P.; Ruane, Alex C.; Semenov, Mikhail A.; Wallach, Daniel; Wang, Enli
2016-01-01
To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures greater than 24 C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.
A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations
Wu,Rui; Wang, Huai; Ma, Ke; Ghimire, Pramod; Iannuzzo, Francesco; Blaabjerg, Frede
2014-01-01
Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal capacitances. The temperature effect is investigated by Finite Element Method (FEM) simulation based on the geometry and material information of the IGBT module. The developed model is ready for circu...
A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.
Directory of Open Access Journals (Sweden)
Guillaume Bal
Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.
Idrissi, J Lakhdar; Orbi, A; Hilmi, K; Zidane, F; Moncef, M
2005-07-01
The objective of this work is to develop an aquatic ecosystem and apply it on Moroccan lagoon systems. This model will keep us abreast of the yearly development of the main parameters that characterize these ecosystems while integrating all the data that have so far been acquired. Within this framework, a simulation model of the thermal system and a model of the water quality have been elaborated. These models, which have been simulated on the lagoon of Oualidia (North of Morocco) and validated on the lagoon of Nador (North West Mediterranean), permit to foresee the cycles of temperature of the surface and the parameters of the water quality (dissolved oxygen and biomass phytoplankton) by using meteorological information, specific features and in situ measurements in the studied sites. The elaborated model, called Zero-Dimensional, simulates the average conduct of the site during the time of variable states that are representatives of the studied ecosystem. This model will provide answers for the studied phenomena and is a work tool adequate for numerical simplicity.
Modeling of Schottky Barrier Diode Millimeter-Wave Multipliers at Cryogenic Temperatures
DEFF Research Database (Denmark)
Johansen, Tom K.; Rybalko, Oleksandr; Zhurbenko, Vitaliy
2015-01-01
We report on the evaluation of Schottky barrier diode GaAs multipliers at cryogenic temperatures. A GaAs Schottky barrier diode model is developed for theoretical estimation of doubler performance. The model is used to predict efficiency of doublers from room to cryogenic temperatures...
Temperature-variable high-frequency dynamic modeling of PIN diode
Shangbin, Ye; Jiajia, Zhang; Yicheng, Zhang; Yongtao, Yao
2016-04-01
The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at a wide range of temperature. In this paper, a temperature-variable high frequency dynamic model for the PIN diode is built, which is based on the Laplace-transform analytical model at constant temperature. The relationship between model parameters and temperature is expressed as temperature functions by analyzing the physical principle of these parameters. A fast recovery power diode MUR1560 is chosen as the test sample and its dynamic performance is tested under inductive load by a temperature chamber experiment, which is used for model parameter extraction and model verification. Results show that the model proposed in this paper is accurate for reverse recovery simulation with relatively small errors at the temperature range from 25 to 120 °C. Project supported by the National High Technology and Development Program of China (No. 2011AA11A265).
A model-data comparison of the Holocene global sea surface temperature evolution
Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.
2013-01-01
We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate
A model-data comparison of the Holocene global sea surface temperature evolution
Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.
2013-01-01
We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate
Rare events analysis of temperature chaos in the Sherrington-Kirkpatrick model
Billoire, Alain
2014-04-01
We investigate the question of temperature chaos in the Sherrington-Kirkpatrick spin glass model, applying a recently proposed rare events based data analysis method to existing Monte Carlo data. Thanks to this new method, temperature chaos is now observable for this model, even with the limited size systems that can currently be simulated.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Directory of Open Access Journals (Sweden)
Haemmerich Dieter
2005-07-01
Full Text Available Abstract Background The finite element method (FEM has been used to simulate cardiac and hepatic radiofrequency (RF ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Dolfi, M; Hehn, A; Imriška, J; Pakrouski, K; Rønnow, T F; Troyer, M; Zintchenko, I; Chirigati, F; Freire, J; Shasha, D
2014-01-01
In this paper we present a simple, yet typical simulation in statistical physics, consisting of large scale Monte Carlo simulations followed by an involved statistical analysis of the results. The purpose is to provide an example publication to explore tools for writing reproducible papers. The simulation estimates the critical temperature where the Ising model on the square lattice becomes magnetic to be Tc /J = 2.26934(6) using a finite size scaling analysis of the crossing points of Binder cumulants. We provide a virtual machine which can be used to reproduce all figures and results.
Simulation of land surface temperatures: comparison of two climate models and satellite retrievals
Directory of Open Access Journals (Sweden)
J. M. Edwards
2009-03-01
Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.
Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-08-01
A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan
2012-06-01
Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.
Directory of Open Access Journals (Sweden)
P. Cowpertwait
2012-09-01
Full Text Available A spatial-temporal point process model of rainfall is fitted to data taken from three homogeneous regions in the Basque Country, Spain. The model is the superposition of two spatial-temporal Neyman-Scott processes, in which rain cells are modelled as discs with radii that follow exponential distributions. In addition, the model includes a parameter for the radius of storm discs, so that rain only occurs when both a cell and a storm disc overlap a point. The model is fitted to data for each month, taken from each of the three homogeneous regions, using a modified method of moments procedure that ensures a smooth seasonal variation in the parameter estimates.
Daily temperature data from twenty three sites are used to fit a stochastic temperature model. A principal component analysis of the maximum daily temperatures across the sites indicates that 92% of the variance is explained by the first component, implying that this component can be used to account for spatial variation. A harmonic equation with autoregressive error terms is fitted to the first principal component. The temperature model is obtained by regressing the maximum daily temperature on the first principal component, an indicator variable for the region, and altitude. This, together with scaling and a regression model of temperature range, enables hourly temperatures to be predicted. Rainfall is included as an explanatory variable but has only a marginal influence when predicting temperatures.
A distributed model (TETIS; Francés et al., 2007 is calibrated for a selected catchment. Five hundred years of data are simulated using the rainfall and temperature models and used as input to the calibrated TETIS model to obtain simulated discharges to compare with observed discharges. Kolmogorov-Smirnov tests indicate that there is no significant difference in the distributions of observed and simulated maximum flows at the same sites, thus supporting the use of the
Gougouli, Maria; Koutsoumanis, Konstantinos P
2010-06-15
The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the
Institute of Scientific and Technical Information of China (English)
Liu Dong; Wang Fei; Huang Qun-Xing; Yan Jian-Hua; Chi Yong; Cen Ke-Fa
2008-01-01
This paper presents a reconstruction model of three-dimensional temperature distribution in furnace based on radiative energy images captured by charge-coupled device (CCD) cameras within the visible wavelength range. Numerical simulation case was used in this study and a zigzag eccentric temperature distribution was assumed to verify the model. Least square QR-factorization (LSQR) method was introduced to deal with reconstruction equation. It is found that the reconstructed temperature distributions in low-temperature areas had some fluctuations and high-temperature areas were reconstructed well The whole reconstruction relative error was mainly due to errors in low-temperature areas and the relative error for highest-temperature reconstruction was quite small.
Temperature fields in machining processes and heat transfer models
Energy Technology Data Exchange (ETDEWEB)
Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics
2002-07-01
This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)
Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles
DEFF Research Database (Denmark)
Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.
2011-01-01
controlling the internal build up of heat leading to potential self-incineration. However, site specific measurements of temperature-dependent heat production as well as simulation results show that the heat produced from pyrite oxidation alone cannot cause such a temperature increase and that processes......Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...
Energy Technology Data Exchange (ETDEWEB)
Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering
2016-03-15
Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.
Energy Technology Data Exchange (ETDEWEB)
Jin, M.; Manchester, W. B.; Van der Holst, B.; Oran, R.; Sokolov, I.; Toth, G.; Gombosi, T. I. [Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Y.; Sun, X. D., E-mail: jinmeng@umich.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, CA 94305 (United States)
2013-08-10
During Carrington rotation (CR) 2107, a fast coronal mass ejection (CME; >2000 km s{sup -1}) occurred in active region NOAA 11164. This event is also associated with a solar energetic particle event. In this study, we present simulations of this CME with one-temperature (1T) and two-temperature (2T: coupled thermodynamics of the electron and proton populations) models. Both the 1T and 2T models start from the chromosphere with heat conduction and radiative cooling. The background solar wind is driven by Alfven-wave pressure and heated by Alfven-wave dissipation in which we have incorporated the balanced turbulence at the top of the closed field lines. The magnetic field of the inner boundary is set up using a synoptic map from Solar Dynamics Observatory/Helioseismic and Magnetic Imager. The Titov-Demoulin flux-rope model is used to initiate the CME event. We compare the propagation of fast CMEs and the thermodynamics of CME-driven shocks in both the 1T and 2T CME simulations. Also, the synthesized white light images are compared with the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph observations. Because there is no distinction between electron and proton temperatures, heat conduction in the 1T model creates an unphysical temperature precursor in front of the CME-driven shock and makes the shock parameters (e.g., shock Mach number, compression ratio) incorrect. Our results demonstrate the importance of the electron heat conduction in conjunction with proton shock heating in order to produce the physically correct CME structures and CME-driven shocks.
Distributed snow and rock temperature modelling in steep rock walls using Alpine3D
Haberkorn, Anna; Wever, Nander; Hoelzle, Martin; Phillips, Marcia; Kenner, Robert; Bavay, Mathias; Lehning, Michael
2017-02-01
In this study we modelled the influence of the spatially and temporally heterogeneous snow cover on the surface energy balance and thus on rock temperatures in two rugged, steep rock walls on the Gemsstock ridge in the central Swiss Alps. The heterogeneous snow depth distribution in the rock walls was introduced to the distributed, process-based energy balance model Alpine3D with a precipitation scaling method based on snow depth data measured by terrestrial laser scanning. The influence of the snow cover on rock temperatures was investigated by comparing a snow-covered model scenario (precipitation input provided by precipitation scaling) with a snow-free (zero precipitation input) one. Model uncertainties are discussed and evaluated at both the point and spatial scales against 22 near-surface rock temperature measurements and high-resolution snow depth data from winter terrestrial laser scans.In the rough rock walls, the heterogeneously distributed snow cover was moderately well reproduced by Alpine3D with mean absolute errors ranging between 0.31 and 0.81 m. However, snow cover duration was reproduced well and, consequently, near-surface rock temperatures were modelled convincingly. Uncertainties in rock temperature modelling were found to be around 1.6 °C. Errors in snow cover modelling and hence in rock temperature simulations are explained by inadequate snow settlement due to linear precipitation scaling, missing lateral heat fluxes in the rock, and by errors caused by interpolation of shortwave radiation, wind and air temperature into the rock walls.Mean annual near-surface rock temperature increases were both measured and modelled in the steep rock walls as a consequence of a thick, long-lasting snow cover. Rock temperatures were 1.3-2.5 °C higher in the shaded and sunny rock walls, while comparing snow-covered to snow-free simulations. This helps to assess the potential error made in ground temperature modelling when neglecting snow in steep bedrock.
High Temperature Test Facility Preliminary RELAP5-3D Input Model Description
Energy Technology Data Exchange (ETDEWEB)
Bayless, Paul David [Idaho National Laboratory
2015-12-01
A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.
Neural models on temperature regulation for cold-stressed animals
Horowitz, J. M.
1975-01-01
The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.
An assessment of precipitation and surface air temperature over China by regional climate models
Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu
2016-12-01
An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.
Nuin, Maider; Alfaro, Begoña; Cruz, Ziortza; Argarate, Nerea; George, Susie; Le Marc, Yvan; Olley, June; Pin, Carmen
2008-10-31
Kinetic models were developed to predict the microbial spoilage and the sensory quality of fresh fish and to evaluate the efficiency of a commercial time-temperature integrator (TTI) label, Fresh Check(R), to monitor shelf life. Farmed turbot (Psetta maxima) samples were packaged in PVC film and stored at 0, 5, 10 and 15 degrees C. Microbial growth and sensory attributes were monitored at regular time intervals. The response of the Fresh Check device was measured at the same temperatures during the storage period. The sensory perception was quantified according to a global sensory indicator obtained by principal component analysis as well as to the Quality Index Method, QIM, as described by Rahman and Olley [Rahman, H.A., Olley, J., 1984. Assessment of sensory techniques for quality assessment of Australian fish. CSIRO Tasmanian Regional Laboratory. Occasional paper n. 8. Available from the Australian Maritime College library. Newnham. Tasmania]. Both methods were found equally valid to monitor the loss of sensory quality. The maximum specific growth rate of spoilage bacteria, the rate of change of the sensory indicators and the rate of change of the colour measurements of the TTI label were modelled as a function of temperature. The temperature had a similar effect on the bacteria, sensory and Fresh Check kinetics. At the time of sensory rejection, the bacterial load was ca. 10(5)-10(6) cfu/g. The end of shelf life indicated by the Fresh Check label was close to the sensory rejection time. The performance of the models was validated under fluctuating temperature conditions by comparing the predicted and measured values for all microbial, sensory and TTI responses. The models have been implemented in a Visual Basic add-in for Excel called "Fish Shelf Life Prediction (FSLP)". This program predicts sensory acceptability and growth of spoilage bacteria in fish and the response of the TTI at constant and fluctuating temperature conditions. The program is freely
An improved temperature-dependent large signal model of microwave GaN HEMTs
Changsi, Wang; Yuehang, Xu; Zhang, Wen; Zhikai, Chen; Ruimin, Xu
2016-07-01
Accurate modeling of the electrothermal effects of GaN electronic devices is critical for reliability design and assessment. In this paper, an improved temperature-dependent model for large signal equivalent circuit modeling of GaN HEMTs is proposed. To accurately describe the thermal effects, a modified nonlinear thermal sub-circuit which is related not only to power dissipation, but also ambient temperature is used to calculate the variations of channel temperature of the device; the temperature-dependent parasitic and intrinsic elements are also taken into account in this model. The parameters of the thermal sub-circuit are extracted by using the numerical finite element method. The results show that better performance can be achieved by using the proposed large signal model in the range of -55 to 125 °C compared with the conventional model with a linear thermal sub-circuit. Project supported by the National Natural Science Foundation of China (No. 61106115).
Institute of Scientific and Technical Information of China (English)
杨柳; 罗迎社
2008-01-01
The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better.
Asymptotic freedom in a string model of high temperature QCD
Awada, M
1995-01-01
Recently we have shown that a phase transition occurs in the leading and subleading approximation of the large N limit in rigid strings coupled to long range Kalb-Ramond interactions. The disordered phase is essentially the Nambu-Goto-Polyakov string theory while the ordered phase is a new theory. In this letter we compute the free energy per unit length of the interacting rigid string at finite temperature. We show that the mass of the winding states solves that of QCD strings in the limit of high temperature. We obtain a precise identification of the QCD coupling constant and those of the interacting rigid string. The relation we obtain is Ng_{QCD}^2 = ({8\\pi^2 (D-2)\\over 9})^2{1\\over 3\\kappa} where \\kappa = {D t \\alpha\\over \\pi \\mu_{c}} is the ratio of the extrinsic curvature coupling constant t, the Kalb-Ramond coupling constant \\alpha, and the critical string tension \\mu_{c}. The running beta function of \\kappa reproduces correctly the asymptotic behaviour of QCD.
A model for evaluating stream temperature response to climate change scenarios in Wisconsin
Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven
2010-01-01
Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.
Summer stream water temperature models for Great Lakes streams: New York
Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.
2010-01-01
Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.
Finite Temperature Induced Fermion Number In The Nonlinear sigma Model In (2+1) Dimensions
Dunne, G V; Rao, K; Dunne, Gerald V.; Lopez-Sarrion, Justo; Rao, Kumar
2002-01-01
We compute the finite temperature induced fermion number for fermions coupled to a static nonlinear sigma model background in (2+1) dimensions, in the derivative expansion limit. While the zero temperature induced fermion number is well known to be topological (it is the winding number of the background), at finite temperature there is a temperature dependent correction that is nontopological -- this finite T correction is sensitive to the detailed shape of the background. At low temperature we resum the derivative expansion to all orders, and we consider explicit forms of the background as a CP^1 instanton or as a baby skyrmion.
Directory of Open Access Journals (Sweden)
Orlova K.Y.
2017-01-01
Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.
Inhomogeneous and Self-Organized Temperature in Schelling-Ising Model
Müller, Katharina; Schulze, Christian; Stauffer, Dietrich
The Schelling model of 1971 is a complicated version of a square-lattice Ising model at zero temperature, to explain urban segregation, based on the neighbor preferences of the residents, without external reasons. Various versions between Ising and Schelling models give about the same results. Inhomogeneous "temperatures" T do not change the results much, while a feedback between segregation and T leads to a self-organization of an average T.
Temperature dependency of the hysteresis behaviour of PZT actuators using Preisach model
DEFF Research Database (Denmark)
Mangeot, Charles; Zsurzsan, Tiberiu-Gabriel
2016-01-01
The Preisach model is a powerful tool for modelling the hysteresis phenomenon on multilayer piezo actuators under large signal excitation. In this paper, measurements at different temperatures are presented, showing the effect on the density of the Preisach matrix. An energy-based approach...... is presented, aiming at defining a temperature-dependent phenomenological model of hysteresis for a better understanding of the non-linear effects in piezo actuators....
Energy Technology Data Exchange (ETDEWEB)
Kaellblad, K.
1998-05-01
The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs
Numerical modeling of temperature and species distributions in hydrocarbon reservoirs
Bolton, Edward W.; Firoozabadi, Abbas
2014-01-01
We examine bulk fluid motion and diffusion of multicomponent hydrocarbon species in porous media in the context of nonequilibrium thermodynamics, with particular focus on the phenomenology induced by horizontal thermal gradients at the upper and lower horizontal boundaries. The problem is formulated with respect to the barycentric (mass-averaged) frame of reference. Thermally induced convection, with fully time-dependent temperature distributions, can lead to nearly constant hydrocarbon composition, with minor unmixing due to thermal gradients near the horizontal boundaries. Alternately, the composition can be vertically segregated due to gravitational effects. Independent and essentially steady solutions have been found to depend on how the compositions are initialized in space and may have implications for reservoir history. We also examine injection (to represent filling) and extraction (to represent leakage) of hydrocarbons at independent points and find a large distortion of the gas-oil contact for low permeability.
Computer modeling of endovascular patch welding using temperature feedback
Energy Technology Data Exchange (ETDEWEB)
Glinsky, M.E.; London, R.A.; Zimmerman, G.B. [Lawrence Livermore National Lab., CA (United States); Jacques, S.L. [Anderson (M.D.) Cancer Center, Houston, TX (United States); Ols, J.D. [Ols & Associates, Mountain View, CA (United States)
1995-11-01
A new computer program, LATIS, being developed at Lawrence Livermore National Laboratory is used to study the effect of pulsed laser irradiation with temperature feedback on endovascular patch welding. Various physical and biophysical effects are included in these simulations: laser light scattering and absorption, tissue heating and heat conduction, vascular cooling, and tissue thermal damage. The geometry of a patch being held against the inner vessel wall (500 {mu}m inner diameter) by a balloon is considered. The system is exposed to light pulsed from an optical fiber inside the balloon. The laser power is adjusted during the course of a pulse. This is done automatically in the simulation by temperature feedback. A minimum in the depth of damage into the vessel wall is found. The minimum damage zone is about the thickness of the patch material that is heated by the laser. The more ordered the tissue the thinner the minimum zone of damage. The pulse length which minimizes the zone of damage is found to be the time for energy to diffuse across the layer. The delay time between the pulses is determined by the time for the heated layer to cool down. An optimal pulse length exists which minimizes the total time needed to weld the patch to the wall while keeping the thickness of the damaged tissue to less than 100 {mu}m. For the case that is considered, a patch dyed with light absorbing ICG on the side next to the vessel (thickness of the dyed layer is 60 {mu}m), the best protocol is found to be 33-600 ms pulses applied over 1.6 min.
A carbohydrate supply and demand model of vegetative growth: response to temperature and light.
Gent, Martin P N; Seginer, Ido
2012-07-01
Photosynthesis is the limiting factor in crop growth models, but metabolism may also limit growth. We hypothesize that, over a wide range of temperature, growth is the minimum of the supply of carbohydrate from photosynthesis, and the demand of carbohydrate to synthesize new tissue. Biosynthetic demand limits growth at cool temperatures and increases exponentially with temperature. Photosynthesis limits growth at warm temperatures and decreases with temperature. Observations of tomato seedlings were used to calibrate a model based on this hypothesis. Model predictions were tested with published data for growth and carbohydrate content of sunflower and wheat. The model qualitatively fitted the response of growth of tomato and sunflower to both cool and warm temperatures. The transition between demand and supply limitation occurred at warmer temperatures under higher light and faster photosynthesis. Modifications were required to predict the observed non-structural carbohydrate (NSC). Some NSC was observed at warm temperatures, where demand should exceed supply. It was defined as a required reserve. Less NSC was found at cool temperatures than predicted from the difference between supply and demand. This was explained for tomato and sunflower, by feedback inhibition of NSC on photosynthesis. This inhibition was much less in winter wheat.
A novel theoretical model for the temperature dependence of band gap energy in semiconductors
Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo
2017-10-01
We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T > 400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.
Chatterjee, Abhijit; Bhattacharya, Swati
2015-09-21
Several studies in the past have generated Markov State Models (MSMs), i.e., kinetic models, of biomolecular systems by post-analyzing long standard molecular dynamics (MD) calculations at the temperature of interest and focusing on the maximally ergodic subset of states. Questions related to goodness of these models, namely, importance of the missing states and kinetic pathways, and the time for which the kinetic model is valid, are generally left unanswered. We show that similar questions arise when we generate a room-temperature MSM (denoted MSM-A) for solvated alanine dipeptide using state-constrained MD calculations at higher temperatures and Arrhenius relation — the main advantage of such a procedure being a speed-up of several thousand times over standard MD-based MSM building procedures. Bounds for rate constants calculated using probability theory from state-constrained MD at room temperature help validate MSM-A. However, bounds for pathways possibly missing in MSM-A show that alternate kinetic models exist that produce the same dynamical behaviour at short time scales as MSM-A but diverge later. Even in the worst case scenario, MSM-A is found to be valid longer than the time required to generate it. Concepts introduced here can be straightforwardly extended to other MSM building techniques.
Northern Watershed Change, Modeled Permafrost Temperatures in the Yukon River Watershed
Bryan, R.; Hinzman, L. D.
2009-12-01
Changes in the terrestrial hydrologic cycle in northern watersheds can be seen through permafrost warming. Furthermore, vegetation shifts occur with climate changes coupled with permafrost degradation. Permafrost warming is resultant from warming air temperatures and the collection of buffers between the atmosphere and the cryosphere: the active layer, snow, and vegetation. Our modeling methods combine a meteorological model with a permafrost temperature model in 1 km2 resolution in the 847,642 km2 Yukon River Watershed. The MicroMet model is a quasi-physically based model developed in 2006 by Liston & Elder to spatially interpolate irregularly spaced point meteorological data using known temperature-elevation, wind-topography, humidity-cloudiness, and radiation-cloud-topography relationships. We call on 1997-2007 data from 104 Integrated Surface Data meteorological stations and 100 grid points in a 5 best models ensemble A1B 2090-2100 projection. The Temperature at the Top of the Permafrost (TTOP) model is a numerical model for estimating the thermal state of permafrost. This model is attributed to Smith & Riseborough, 1996. TTOP relates more readily available near surface temperatures to temperatures at the depth of seasonal variation using user-defined landcover n-factors (to relate air temperature to soil surface temperature) and soil thermal conductivities (to simulate the propagation of heat through the active layer). TTOP simulates warm top of the permafrost temperatures for high soil thermal conductivity, land cover with high n-factor, and a high number of thawing degree-days/ year. Here we compare the present and future thermal stability of permafrost in the Yukon River Watershed.
A model for evaluating stream temperature response to climate change in Wisconsin
Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.
2015-01-01
Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.
Ultrasound thermography: A new temperature reconstruction model and in vivo results
Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.
2017-03-01
The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.
Thermal modelling of the high temperature treatment of wood based on Luikov's approach
Energy Technology Data Exchange (ETDEWEB)
Younsi, R.; Kocaefe, D.; Poncsak, S.; Kocaefe, Y. [University of Quebec, Chicoutimi (Canada). Dept. of Applied Sciences
2005-07-01
A 3D, unsteady-state mathematical model was used to simulate the behaviour of wood during high temperature treatment. The model is based on Luikov's approach and solves a set of coupled heat and mass transfer equations. Using the model, the temperature and moisture content profiles of wood were predicted as a function of time for different heating rates. Parallel to the modelling study, an experimental study was carried out using small birch samples. The samples were subjected to high temperature treatment in a thermogravimetric system under different operating conditions. The experimental results and the model predictions were found to be in good agreement. The results show that the distributions of temperature and moisture content are influenced appreciably by the heating rate and the initial moisture content. (author)
Temperature effects in a nonlinear model of monolayer Scheibe aggregates
DEFF Research Database (Denmark)
Bang, Ole; Christiansen, Peter Leth; If, F.
1994-01-01
A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the excitons is the two dimensional nonlinear Schrodinger equation with noise. Two limits...
Equation of state and transition temperatures in the quark-hadron hybrid model
Miyahara, Akihisa; Torigoe, Yuhei; Kouno, Hiroaki; Yahiro, Masanobu
2016-07-01
We analyze the equation of state of 2 +1 flavor lattice QCD at zero baryon density by constructing a simple quark-hadron hybrid model that has both quark and hadron components simultaneously. We calculate the hadron and quark contributions separately and parameterize those to match with lattice QCD data. Lattice data on the equation of state are decomposed into hadron and quark components by using the model. The transition temperature is defined by the temperature at which the hadron component is equal to the quark one in the equation of state. The transition temperature thus obtained is about 215 MeV; this is somewhat higher than the chiral and the deconfinement pseudocritical temperatures defined by the temperature at which the susceptibility or the absolute value of the derivative of the order parameter with respect to temperature becomes maximum.
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES
Institute of Scientific and Technical Information of China (English)
G.Z.Kang; Q.Gao; J.Zhang
2004-01-01
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 400-600C for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results.
Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network
Chong, Shen; Rui, Song; Jie, Li; Xiaoming, Zhang; Jun, Tang; Yunbo, Shi; Jun, Liu; Huiliang, Cao
2016-05-01
In order to improve the temperature drift modeling precision of a tuning fork micro-electromechanical system (MEMS) gyroscope, a novel multiple inputs/single output model based on genetic algorithm (GA) and Elman neural network (Elman NN) is proposed. First, the temperature experiment of MEMS gyroscope is carried out and the outputs of MEMS gyroscope and temperature sensors are collected; then the temperature drift model based on temperature, temperature variation rate and the coupling term is proposed, and the Elman NN is employed to guarantee the generalization ability of the model; at last the genetic algorithm is used to tune the parameters of Elman NN in order to improve the modeling precision. The Allan analysis results validate that, compared to traditional single input/single output model, the novel multiple inputs/single output model can guarantee high accurate fitting ability because the proposed model can provide more plentiful controllable information. By the way, the generalization ability of the Elman neural network can be improved significantly due to the parameters are optimized by genetic algorithm.
Modeling of high homologous temperature deformation behavior for stress and life-time analyses
Energy Technology Data Exchange (ETDEWEB)
Krempl, E. [Rensselaer Polytechnic Institute, Troy, NY (United States)
1997-12-31
Stress and lifetime analyses need realistic and accurate constitutive models for the inelastic deformation behavior of engineering alloys at low and high temperatures. Conventional creep and plasticity models have fundamental difficulties in reproducing high homologous temperature behavior. To improve the modeling capabilities {open_quotes}unified{close_quotes} state variable theories were conceived. They consider all inelastic deformation rate-dependent and do not have separate repositories for creep and plasticity. The viscoplasticity theory based on overstress (VBO), one of the unified theories, is introduced and its properties are delineated. At high homologous temperature where secondary and tertiary creep are observed modeling is primarily accomplished by a static recovery term and a softening isotropic stress. At low temperatures creep is merely a manifestation of rate dependence. The primary creep modeled at low homologous temperature is due to the rate dependence of the flow law. The model is unaltered in the transition from low to high temperature except that the softening of the isotropic stress and the influence of the static recovery term increase with an increase of the temperature.
Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach
Mezio, Alejandro; McKenzie, Ross H.
2017-07-01
We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility.
Effect of temperature gradient on heavy quark anti-quark potential using gravity dual model
Ganesh, S
2016-01-01
The Quark-gluon plasma (QGP) is an expanding fireball, with finite dimensions. Given the finite dimensions, the temperature would be highest at the center, and close to the critical temperature, $T_c$, at the boundary, giving rise to a temperature gradient inside the QGP. A heavy quark anti-quark pair immersed in the QGP medium would see this temperature gradient. The effect of the temperature gradient on the quark anti-quark potential is analyzed using a gravity dual model. The resulting modification to the potential due to the temperature gradient is seen to have a $L^{-2}$ correction term. This could be a possible fallout of the breaking of conformal invariance at finite temperature.
Directory of Open Access Journals (Sweden)
B. Thrasher
2012-09-01
Full Text Available When applying a quantile mapping-based bias correction to daily temperature extremes simulated by a global climate model (GCM, the transformed values of maximum and minimum temperatures are changed, and the diurnal temperature range (DTR can become physically unrealistic. While causes are not thoroughly explored, there is a strong relationship between GCM biases in snow albedo feedback during snowmelt and bias correction resulting in unrealistic DTR values. We propose a technique to bias correct DTR, based on comparing observations and GCM historic simulations, and combine that with either bias correcting daily maximum temperatures and calculating daily minimum temperatures or vice versa. By basing the bias correction on a base period of 1961–1980 and validating it during a test period of 1981–1999, we show that bias correcting DTR and maximum daily temperature can produce more accurate estimations of daily temperature extremes while avoiding the pathological cases of unrealistic DTR values.
Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China
Dong, Siyan; Xu, Ying; Zhou, Botao; Shi, Ying
2015-08-01
Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. This paper investigates recent changes in temperature extremes in China using 25 state-of-the-art global climate models participating in CMIP5. Thirteen indices that represent extreme temperature events were chosen and derived by daily maximum and minimum temperatures, including those representing the intensity (absolute indices and threshold indices), duration (duration indices), and frequency (percentile indices) of extreme temperature. The overall performance of each model is summarized by a "portrait" diagram based on relative root-mean-square error, which is the RMSE relative to the median RMSE of all models, revealing the multi-model ensemble simulation to be better than individual model for most indices. Compared with observations, the models are able to capture the main features of the spatial distribution of extreme temperature during 1986-2005. Overall, the CMIP5 models are able to depict the observed indices well, and the spatial structure of the ensemble result is better for threshold indices than frequency indices. The spread amongst the CMIP5 models in different subregions for intensity indices is small and the median CMIP5 is close to observations; however, for the duration and frequency indices there can be wide disagreement regarding the change between models and observations in some regions. The model ensemble also performs well in reproducing the observational trend of temperature extremes. All absolute indices increase over China during 1961-2005.
A temperature-dependent surface free energy model for solid single crystals
Cheng, Tianbao; Fang, Daining; Yang, Yazheng
2017-01-01
A temperature-dependent theoretical model for the surface free energy of the solid single crystals is established. This model relates the surface free energy at the elevated temperatures to that at the reference temperature, the temperature-dependent specific heat at constant pressure and coefficient of the linear thermal expansion, the heat of phase transition, the melting heat, and the vapor heat. As examples, the surface free energies of Fe, Cu, Al, Ni, and Pb from 0 K to melting points are calculated and are in reasonable agreement with these from Tyson's theories and the experimental results. This model has obvious advantages compared to Tyson's semi-empirical equations from the aspect of physical meaning, applicable condition, and accuracy. The study shows that the surface free energy of the solid single crystals firstly remains approximately constant and then decreases linearly as temperature increases from 0 K to melting point.
Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J
2013-02-01
The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.
DEFF Research Database (Denmark)
Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus;
2016-01-01
Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six...... temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius–Clapeyron equation, ln(P) = −H/RT + a0, where...... changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R2>94%) of the variation in indoor air PCB levels...
Numerical modeling of inward and outward melting of high temperature PCM in a vertical cylinder
Riahi, S.; Saman, W. Y.; Bruno, F.; Tay, N. H. S.
2016-05-01
Numerical study of inward and outward melting of a high temperature PCM in cylindrical enclosures were performed, using FLUENT 15. For validation purposes, numerical modeling of inward melting of a low temperature PCM was initially conducted and the predicted results were compared with the experimental data from the literature. The validated model for the low temperature PCM was used for two high temperature cases; inward melting of a high temperature PCM in a cylindrical enclosure and outward melting in a cylindrical case with higher aspect ratio. The results of this study show that the numerical model developed is capable of capturing the details of melting process with buoyancy driven convection for RaPCM and can be used for the design and optimization of a latent heat thermal storage unit.
Temperature analysis of induction motors using a hybrid thermal model with distributed heat sources
Mukhopadhyay, S. C.; Pal, S. K.
1998-06-01
The article presents a hybrid thermal model for the accurate estimation of temperature distribution of induction motors. The developed model is a combination of lumped and distributed thermal parameters which are obtained from motor dimensions and other constants such as material density, specific heats, thermal conductivity, etc. The model is especially suited for the derating of induction motors operating under distorted and unbalanced supply condition. The model have been applied to a small (2hp, 415 V, 3-phase) cage rotor induction motor. The performance of the model is confirmed by experimental temperature data from the body and the conductor inside the slots of the motor.
Pryor, S. C.; Schoof, J. T.
2016-04-01
Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.
RELATION BETWEEN PORE MODEL AND CENTER-LINE TEMPERATURE IN HIGH BURN-UP UO2 PELLET
Directory of Open Access Journals (Sweden)
Suwardi Suwardi
2010-06-01
Full Text Available Relation between pore model and center-line temperature of high burn up UO2 Pellet. Temperature distribution has been evaluated by using different model of pore distribution. Typical data of power distribution and coolant data have been chosen in this study. Different core model and core distribution model have been studied for related temperature, in correlation with high burn up thermal properties. Finite element combined finite different adapted from Saturn-1 has been used for calculating the temperature distribution. The center-line temperature for different pore model and related discussion is presented. Keywords: pore model, high burn up, UO2 pellet, centerline temperature.
Directory of Open Access Journals (Sweden)
Jianli Li
2014-01-01
Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.
Estimating internal tissue temperature using microwave radiometry data and bioheat models
Xu, Jingyu; Kelly, Patrick
2017-03-01
An ability to noninvasively measure the temperature of internal tissue regions would be valuable for applications including the detection of malignancy, inflammation, or ischemia. The output power of a microwave radiometer with an antenna at the skin surface is a weighted average of temperature in a tissue volume beneath the antenna. It is difficult, however, to translate radiometric measurements into temperature estimates for specific internal tissue regions. The chief difficulty is insufficient data: in a realistic system there are no more than a few measurements to characterize the entire volume. Efficient use must be made of available prior information together with the radiometric data in order to generate a useful temperature map. In this work we assume that we know the tissue configuration (obtained from another modality), along with arterial blood temperature, skin temperature, and nominal tissue-specific values for metabolic and blood perfusion rates, thermal conductivity, and dielectric constants. The Pennes bioheat equation can then be used to construct a nominal temperature map, and electromagnetic simulation software to construct the radiometric weighting functions for any given radiometer configuration. We show that deviations from the nominal conditions in localized regions (due, e.g., to the presence of a tumor) lead to changes in the tissue temperature that can also be approximated in terms of the nominal bioheat model. This enables the development of algorithms that use the nominal model along with radiometric data to detect areas of elevated temperature and estimate the temperature in specified tissue regions.
Finite temperature quantum correlations in su(2)(c) quark states and quantum spin models
Hamieh, S; Tawfik, A
2005-01-01
The entanglement at finite temperatures is analyzed by using thermal models for colored quarks making tip the hadron physical states. We have found that these quantum correlations entirely vanish at T-c >= m(q)/ln(1.5). For temperatures larger than T-c the correlations are classical. We have also wo
Mathematical Model for Temperature Field of Strip Coil in Cooling and Heating Process
Institute of Scientific and Technical Information of China (English)
SUN Ji-quan; SUN Jing-hong; WU Bin; LIAN Jia-chuang
2005-01-01
The convection between the strip coil boundary and the surrounding medium was studied,and the math ematical model and boundary conditions for the temperature field of anisotropic strip coil was proposed,and the temperature field of strip coil were calculated by the analytic method.
Heising, J.K.; Boekel, van M.A.J.S.; Dekker, M.
2014-01-01
The microbial formation of trimethylamine (TMA) can be used as a quality indicator compound to predict the freshness of fish during its shelf life. In a supply chain with fluctuating temperatures, mathematical models will be valuable tools to simulate this formation as a function of temperature and
Institute of Scientific and Technical Information of China (English)
Andrea Escobar; Rodrigo Gil; Carlos Ricardo Bojacá; Jaime Jiménez
2012-01-01
Predicting the population dynamics of insects in natural conditions is essential for their management or preservation,and temperature-dependent development models contribute to achieving this.In this research the effects of temperature and soil moisture content on egg development and hatching of Clavipalpus ursinus (Blanchard)were evaluated.The eggs were exposed to seven temperature treatments with averages of 7.2,13.0,15.5,19.7,20.6,22.0 and 25.3℃,in combination with three soil moisture contents of 40％,60％ and 80％.A linear and two non-linear (Lactin and Briere) models were evaluated in order to determine the thermal requirements of this developmental stage.Temperature affected significantly the time of development and egg hatching,while no significant effect was observed for moisture content.Thermal requirements were set as:7.2℃ for lower developmental threshold,20.6℃ for optimum developmental threshold,25.3℃ for maximum temperature and 344.83 degree-days for the thermal constant.The linear model described satisfactorily egg development at intermediate temperatures; nevertheless,a slightly better fit of the observed data was obtained with the Lactin model.Egg development took place inside a narrow range of temperatures.Consequently,an increment of soil temperature could generate a negative impact on the population size of this species or changes in its biological parameters.
Coupled daily streamflow and water temperature modelling in large river basins
Vliet, van M.T.H.; Yearsley, J.R.; Franssen, W.H.P.; Ludwig, F.; Haddeland, I.; Kabat, P.
2012-01-01
Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully
Model-based temperature measurement system development for marine methane hydrate-bearing sediments
Energy Technology Data Exchange (ETDEWEB)
Fukuhara, Masafumi; Sugiyama, Hitoshi; Igarashi, Juei; Fujii, Kasumi; Shun' etsu, Onodera; Tertychnyi, Vladimir; Shandrygin, Alexander; Pimenov, Viacheslav; Shako, Valery; Matsubayashi, Osamu; Ochiai, Koji
2005-07-01
This paper describes the effect of the sensor installation on the temperature of the hydrate-bearing sediments through modeling, how the system was deployed in Nankai Trough area in Japan, and the features of the marine methane hydrate temperature measurement system. (Author)
Complete analyticity of the 2D Potts model above the critical temperature
Enter, Aernout C.D. van; Fernández, Roberto; Schonmann, Roberto H.; Shlosman, Senya B.
1997-01-01
We investigate the complete analyticity (CA) of the two-dimensional q-state Potts model for large values of q. We are able to prove it for every temperature T > Tcr(q), provided we restrict ourselves to nice subsets, their niceness depending on the temperature T. Contrary to this restricted complete
Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy
DEFF Research Database (Denmark)
Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen
2008-01-01
This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...
Two-temperature model for pulsed-laser-induced subsurface modifications in Si
Verburg, P.C.; Römer, G.R.B.E.; Huis In 'T Veld, A.J.
2014-01-01
We investigated the laser-material interaction during the production of laser-induced subsurface modifications in silicon with a numerical model. Such modifications are of interest for subsurface wafer dicing. To predict the shape of these modifications, a two-temperature model and an optical model
Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks
DEFF Research Database (Denmark)
Callen, J.D.; Christiansen, J.P.; Cordey, J.G.;
1987-01-01
The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically i...
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Institute of Scientific and Technical Information of China (English)
YE Liming; YANG Guixia; Eric VAN RANST; TANG Huajun
2013-01-01
A generalized,structural,time series modeling framework was developed to analyze the monthly records of absolute surface temperature,one of the most important environmental parameters,using a deterministicstochastic combined (DSC) approach.Although the development of the framework was based on the characterization of the variation patterns of a global dataset,the methodology could be applied to any monthly absolute temperature record.Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal,involving polynomial functions and the Fourier method,respectively,while stochastic processes were employed to account for any remaining patterns in the temperature signal,involving seasonal autoregressive integrated moving average (SARIMA) models.A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years.The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors,suggesting that DSC models,when coupled with other ecoenvironmental models,can be used as a supplemental tool for short-term (～10-year) environmental planning and decision making.
Response surface and neural network based predictive models of cutting temperature in hard turning
Directory of Open Access Journals (Sweden)
Mozammel Mia
2016-11-01
Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.
Opinion formation model for markets with a social temperature and fear.
Krause, Sebastian M; Bornholdt, Stefan
2012-11-01
In the spirit of behavioral finance, we study the process of opinion formation among investors using a variant of the two-dimensional voter model with a tunable social temperature. Further, a feedback acting on the temperature is introduced, such that social temperature reacts to market imbalances and thus becomes time dependent. In this toy market model, social temperature represents nervousness of agents toward market imbalances representing speculative risk. We use the knowledge about the discontinuous generalized voter model phase transition to determine critical fixed points. The system exhibits metastable phases around these fixed points characterized by structured lattice states, with intermittent excursions away from the fixed points. The statistical mechanics of the model is characterized, and its relation to dynamics of opinion formation among investors in real markets is discussed.
Finite Temperature CPT-even Electrodynamics of the Standard Model Extension
Casana, Rodolfo; Rodrigues, Josberg S; Silva, Madson R O
2009-01-01
In this work, we examine the finite temperature properties of the non-birefringent coefficients of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term $W_{\\alpha \
Opinion formation model for markets with a social temperature and fear
Krause, Sebastian M.; Bornholdt, Stefan
2012-11-01
In the spirit of behavioral finance, we study the process of opinion formation among investors using a variant of the two-dimensional voter model with a tunable social temperature. Further, a feedback acting on the temperature is introduced, such that social temperature reacts to market imbalances and thus becomes time dependent. In this toy market model, social temperature represents nervousness of agents toward market imbalances representing speculative risk. We use the knowledge about the discontinuous generalized voter model phase transition to determine critical fixed points. The system exhibits metastable phases around these fixed points characterized by structured lattice states, with intermittent excursions away from the fixed points. The statistical mechanics of the model is characterized, and its relation to dynamics of opinion formation among investors in real markets is discussed.
Opinion formation model for markets with a social temperature and fear
Krause, Sebastian M; 10.1103/PhysRevE.86.056106
2012-01-01
In the spirit of behavioral finance, we study the process of opinion formation among investors using a variant of the 2D Voter Model with a tunable social temperature. Further, a feedback acting on the temperature is introduced, such that social temperature reacts to market imbalances and thus becomes time dependent. In this toy market model, social temperature represents nervousness of agents towards market imbalances representing speculative risk. We use the knowledge about the discontinuous Generalized Voter Model phase transition to determine critical fixed points. The system exhibits metastable phases around these fixed points characterized by structured lattice states, with intermittent excursions away from the fixed points. The statistical mechanics of the model is characterized and its relation to dynamics of opinion formation among investors in real markets is discussed.
A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor
Kirana, Firman Ahmad; Husein, Irzaman Sulaiman
2016-01-01
We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process. PMID:27774102
A Coupled Phase-Temperature Model for Dynamics of Transient Neuronal Signal in Mammals Cold Receptor
Directory of Open Access Journals (Sweden)
Firman Ahmad Kirana
2016-01-01
Full Text Available We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.
DEFF Research Database (Denmark)
Bak, J.
1999-01-01
A computer program was produced to make rapid simulations of CO gas spectra at a spectral resolution of 1 cm(-1) and at temperatures ranging from 295 to 845 K and concentrations from 5 to 400 mg/m(3). The program is based on loadings and scores from three principal component regression (PCR......) temperature calibration models. Three sets of 12 Hitran-simulated high-density spectra, each set spanning the entire temperature range at constant concentrations (50, 150, and 300 mg/m(3)), were used as calibration spectra in the PCR temperature models. All the spectra were convoluted with a sine......-squared instrumental line-shape function and reduced in the number of data points prior to PCR modeling. The simulated spectra, calculated on the basis of the PCR model parameters, were next scaled by using the areas of the spectra to represent the input concentration. The program simulates spectra very rapidly...
Two Models of DMFC under Effects of Cathode Humidification Temperature and Anode Flow Rate
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper introduced a novel self-adjustment of parameters of fuzzy neural networks. Then,the effects of cathode humidification temperature and anode flow rate on the performance of direct methanol fuel cell (DMFC)were described respectively. Two dynamic performance models of DMFC under the influences of cathode humidification temperature and anode flow rate were established separately based on fuzzy neural networks. The simulation results show the accuracy of the models established is satisfactory.
2016-01-01
The transformation of snow into ice is a complex phenomenon difficult to model. Depending on surface temperature and accumulation rate, it may take several decades to millennia for air to be entrapped in ice. The air is thus always younger that the surrounding ice. The resulting gas-ice age difference is essential to document the phasing between CO2 and temperature changes especially during deglaciations. The air trapping depth can be inferred in the past using a firn densification model, or ...
Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model
Loewe, M; Villavicencio, C; Zamora, R
2014-01-01
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
Finite temperature behaviour of the ISS-uplifted KKLT model
Energy Technology Data Exchange (ETDEWEB)
Papineau, C.
2008-02-15
We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector. (orig.)
DEFF Research Database (Denmark)
Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus
2016-01-01
Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six....... The results showed that one easured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also...
Spin polarization and color superconductivity in the Nambu-Jona-Lasinio model at finite temperature
Matsuoka, Hiroaki; da Providencia, Joao; Providencia, Constancia; Yamamura, Masatoshi
2016-01-01
We investigate the possible existence of spin polarization and color superconductivity in the Nambu-Jona-Lasinio model with a tensor-type interaction at finite density and temperature. The thermodynamic potential is calculated by the functional integral method. Numerical results indicate that at low temperature and quark chemical potential the chiral condensed phase exists, and at intermediate chemical potential the color superconducting phase appears. In addition, depending on the magnitude of the tensor coupling, at large chemical potential and low temperature, a color superconducting phase and a spin polarized phase may coexist while at intermediate temperatures only the spin polarized phase occurs.
SU($4$) Polyakov linear-sigma model at finite temperature and density
Diab, Abdel Magied; Tawfik, Abdel Nasser; Dahab, Eiman Abou El
2016-01-01
In mean-field approximation, the SU($4$) Polyakov linear - sigma model (PLSM) is constructed in order to characterize the quark-hadron phase structure in a wide range of temperatures and densities. The chiral condensates $\\sigma_l$, $\\sigma_s$ and $\\sigma_c$ for light, strange and charm quarks, respectively, and the deconfinement order-parameters $\\phi$ and $\\phi^*$ shall be analyzed at finite temperatures and densities. We conclude that the critical temperatures corresponding to charm condensates are greater than that to strange and light ones, respectively. Thus, the charm condensates are likely not affected by the QCD phase transition. Furthermore, increasing the chemical potentials decreases the corresponding critical temperatures.
Hybrid Modeling for Soft Sensing of Molten Steel Temperature in LF
Institute of Scientific and Technical Information of China (English)
TIAN Hui-xin; MAO Zhi-zhong; WANG An-na
2009-01-01
Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conservation is described; and then, an improved intelligent model based on process data is presented by ensemble ELM (extreme learning machine) for predicting the molten steel temperature in LF. Secondly, the self-adaptive data fusion is proposed as a hybrid modeling method to combine the thermal model with the intelligent model. The new hybrid model could complement mutual advantage of two models by combination. It can overcome the shortcoming of parameters obtained on-line hardly in a thermal model and the disadvantage of lacking the analysis of ladle furnace metallurgical process in an intelligent model. The new hybrid model is applied to a 300 t LF in Baoshan Iron and Steel Co Ltd for predicting the molten steel temperature. The experiments demonstrate that the hybrid model has good generalization performance and high accuracy.
Lifetime-Temperature Rise Model for the Evaluation of Degradation in Electric Connections/Contacts
Energy Technology Data Exchange (ETDEWEB)
Kim, J.T.; Kim, N.J. [Daejin University, Pochon (Korea)
2002-02-01
In this paper, 'lifetime-temperature rise model' based on the 'lifetime-resistance model' is theoretically proposed, in order to find out the evaluation method of degradation and the residual lifetime by use of infrared image camera for electric connections/contacts. Two assumptions have been builded up for the 'lifetime-temperature rise model' ; one is associated with the linear relationship between the temperature rise {delta}K and contact resistance, and the other the functional relationship between the temperature of electric connections/contacts and the operating time presenting in the 'lifetime-resistance model'. To prove the proposed model, experiments have been performed for various electric connections/contacts. >From the experimental results, measured values were quite similar to the calculated values, which proved the above-mentioned two assumptions. Therefore, by use of 'lifetime-temperature rise model', it is possible to estimate the trend of degradation and the residual lifetime for electric connections/contacts through the temperature measurements. (author). 5 refs., 7 figs., 3 tabs.
Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin
Institute of Scientific and Technical Information of China (English)
ZENG Yan; QIU XinFa; HE YongJian; SHI GuoPing; LIU ChangMing
2009-01-01
Our analyses of the monthly mean air temperature of meteorological stations show that altitude, global solar radiation and surface effective radiation have a significant impact on air temperature. We set up a physically-based empirical model for monthly air temperature simulation. Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological ob-servation data, we also developed a method for the distributed simulation of monthly sir temperatures over rugged terrain. Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean, the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin. Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature. Cross-validation shows that the pro-posed model displays good stability with mean absolute bias errors of 0.19℃-0.35℃. Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity. The proposed model solely uses routine meteorological data and can be applied easily to other regions.
Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Our analyses of the monthly mean air temperature of meteorological stations show that altitude,global solar radiation and surface effective radiation have a significant impact on air temperature.We set up a physically-based empirical model for monthly air temperature simulation.Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological observation data,we also developed a method for the distributed simulation of monthly air temperatures over rugged terrain.Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean,the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin.Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature.Cross-validation shows that the proposed model displays good stability with mean absolute bias errors of 0.19℃-0.35℃.Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity.The proposed model solely uses routine meteorological data and can be applied easily to other regions.
Régnière, Jacques; Powell, James; Bentz, Barbara; Nealis, Vincent
2012-05-01
The developmental response of insects to temperature is important in understanding the ecology of insect life histories. Temperature-dependent phenology models permit examination of the impacts of temperature on the geographical distributions, population dynamics and management of insects. The measurement of insect developmental, survival and reproductive responses to temperature poses practical challenges because of their modality, variability among individuals and high mortality near the lower and upper threshold temperatures. We address this challenge with an integrated approach to the design of experiments and analysis of data based on maximum likelihood. This approach expands, simplifies and unifies the analysis of laboratory data parameterizing the thermal responses of insects in particular and poikilotherms in general. This approach allows the use of censored observations (records of surviving individuals that have not completed development after a certain time) and accommodates observations from temperature transfer treatments in which individuals pass only a portion of their development at an extreme (near-threshold) temperature and are then placed in optimal conditions to complete their development with a higher rate of survival. Results obtained from this approach are directly applicable to individual-based modeling of insect development, survival and reproduction with respect to temperature. This approach makes possible the development of process-based phenology models that are based on optimal use of available information, and will aid in the development of powerful tools for analyzing eruptive insect population behavior and response to changing climatic conditions.
A two-temperature model for thermoelectric effects and its consequences in practical applications
Sellitto, A.
2015-12-01
In recent papers, a two-temperature model for thermoelectric effects has been introduced. That model is able to account for the difference in phonon and electron temperature and may open new lines of research in thermoelectricity. Here, we perform a scrutiny of that model in order to check its physical standing. We further provide some useful characteristic numbers which may be used in practical applications in order to reduce to a simpler level the analysis. The consequences of that model on the usual Kelvin relations are pointed out, as well.
Directory of Open Access Journals (Sweden)
K. A. Klyukvin
2017-01-01
Full Text Available The paper deals with the parametrical identification method of differential-difference heat transfer models during determining of lidar temperature condition. The problem is solved for enclosure external flange that is the most thermally influenced device part. During researches carried out in a climatic chamber, discrepancy of the both flange temperature and mounted on it sensor temperature is detected. The need of measuring system thermal inertia compensation for the purpose of error decrease is proved. The algorithm for transient flange temperature determining by forward heat transfer problem solution is formed. The inverse procedure is carried out for the purpose of discrepancy minimizing between true object temperature and measured temperature. Computational experiments are carried out for calculating lidar enclosure flange temperature field under known external heat transfer conditions with the use of special computer program and experimental data. The experiment results enable to conclude about the value of error emerging because of temperature measuring system thermal inertia. We show application feasibility for proposed method of parametrical identification of differential-difference heat transfer model in object for error decrease during the device temperature monitoring and control.
Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas
Bahrami, Parviz A.
2012-01-01
A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.
Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih
2014-01-01
This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.
Directory of Open Access Journals (Sweden)
Jing-Nang Lee
2014-01-01
Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.
A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations
DEFF Research Database (Denmark)
Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup;
2016-01-01
A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...... circuits or overloads. The updated Cauer thermal model with varying thermal parameters is obtained by means of FEM thermal simulations with temperature-dependent physical parameters. The proposed method is applied to a case study of a 1700 V/1000 A IGBT module. Furthermore, a testing setup is built up...
Self-Organizing Two-Temperature Ising Model Describing Human Segregation
Ódor, Géza
A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by Müller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered here as a second temperature added to the decision of individuals who consider a change of accommodation. A numerical evidence is presented for a discontinuous phase transition of the magnetization.
Evaluation of approaches for modeling temperature wave propagation in district heating pipelines
DEFF Research Database (Denmark)
Gabrielaitiene, I.; Bøhm, Benny; Sunden, B.
2008-01-01
The limitations of a pseudo-transient approach for modeling temperature wave propagation in district heating pipes were investigated by comparing numerical predictions with experimental data. The performance of two approaches, namely a pseudo-transient approach implemented in the finite element...... code ANSYS and a node method, was examined for a low turbulent Reynolds number regime and small velocity fluctuations. Both approaches are found to have limitations in predicting the temperature response time and predicting the peak values of the temperature wave, which is further hampered by the fact...... to be given to the detailed modeling of the turbulent flow characteristics....
Viscoelastic Model of Cross-Linked Polyethylene Including Effects of Temperature and Crystallinity
Olasz, L.; Gudmundson, P.
2005-12-01
Characterization of the mechanical behavior of cross-linked polyethylene (XLPE) commonly used in high voltage cable insulation was performed by an extensive set of isothermal uniaxial tensile relaxation tests. Tensile relaxation experiments were complemented by pressure-volume-temperature experiments as well as density and crystallinity measurements. Based on the experimental results, a viscoelastic power law model with four parameters was formulated, incorporating temperature and crystallinity dependence. It was found that a master curve can be developed by both horizontal and vertical shifting of the relaxation curves. The model was evaluated by making comparisons of the predicted stress responses with the measured responses in relaxation tests with transient temperature histories.
Energy Technology Data Exchange (ETDEWEB)
Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders (GEO INNOVA AB, Linkoeping (Sweden))
2009-06-15
This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with
Directory of Open Access Journals (Sweden)
Eitzinger Bernhard
2014-07-01
Full Text Available The diffusion capacity of cigarette paper has been reported to be an important parameter in relation to the self-extinguishment of cigarettes and also in relation to carbon monoxide yields. Although the diffusion capacity is routinely measured and instruments for this measurement have been available for several years, differences between measured values obtained on the same paper sample but on different instruments or in different laboratories may be substantial and may make it difficult to use these values, for example, as a basis for paper specifications. Among several reasons, deviations of temperature and pressure from standard conditions, especially within the measurement chamber of the instrument, may contribute to the high variation in diffusion capacity data. Deviations of temperature and pressure will have an influence on the gas flow rates, the diffusion processes inside the measurement chamber and consequently the measured CO2 concentration. Generally, the diffusion capacity is determined from a mathematical model, which describes the diffusion processes inside the measurement chamber. Such models provide the CO2 concentration in the outflow gas for a given diffusion capacity. For practical applications the inverse model is needed, that is, the diffusion capacity shall be determined from a measured CO2 concentration. Often such an inverse model is approximated by a polynomial, which, however, is only valid for standard temperature and pressure. It is shown that relative approximation errors from such polynomials, even without temperature and pressure deviations, cannot always be neglected and it is proposed to eliminate such errors by direct inversion of the model with a comparably simple iterative method. A model which includes temperature and pressure effects is described and the effects of temperature and pressure deviations on the diffusion capacity are theoretically estimated by comparing the output of a model with and without
Maletta, Carmine; Sgambitterra, Emanuele; Niccoli, Fabrizio
2016-12-21
Temperature dependent fracture properties of NiTi-based Shape Memory Alloys (SMAs), within the pseudoelastic regime, were analyzed. In particular, the effective Stress Intensity Factor (SIF) was estimated, at different values of the testing temperature, by a fitting of the William's expansion series, based on Digital Image Correlation (DIC) measurements. It was found that temperature plays an important role on SIF and on critical fast fracture conditions. As a consequence, Linear Elastic Fracture Mechanics (LEFM) approaches are not suitable to predict fracture properties of SMAs, as they do not consider the effects of temperature. On the contrary, good agreements between DIC results and the predictions of an ad-hoc analytical model were observed. In fact, the model takes into account the whole thermo mechanical loading condition, including both mechanical load and temperature. Results revealed that crack tip stress-induced transformations do not represent a toughening effect and this is a completely novel result within the SMA community. Furthremore, it was demonstrated that the analytical model can be actually used to define a temperature independent fracture toughness parameter. Therefore, a new approach is proposed, based on the analytical model, where both mechanical load and temperature are considered as loading parameters in SIF computation.
A granular-biomass high temperature pyrolysis model based on the Darcy flow
Guan, Jian; Qi, Guoli; Dong, Peng
2015-03-01
We established a model for the chemical reaction kinetics of biomass pyrolysis via the high-temperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.
João Rocha, Maria; Dutra, Emanuel; Vieira, Gonçalo; Miranda, Pedro; Ramos, Miguel
2010-05-01
This study focus on Livingston Island (South Shetlands Antarctic Peninsula), one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using land surface models. A contribution will be the evaluation of the possibilities for using land surface modeling approaches to areas of the Antarctic Peninsula with lack of data on observational meteorological forcing data, as well as on permafrost temperatures. The climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) Era-Interim and observational data from boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced with ERA-Interim for modeling ground temperatures in the study region. The simulation results of run of HTESSEL are compared against soil temperature observations. The results show a favorable match between simulated and observed soil temperatures. The use of different forcing parameters is compared and the model vs. observation results from different results is analyzed. The main variable needing further improvement in the modeling is snow cover. The developed methodology provides a good tool for the analysis of the influence of climate variability on permafrost of the Maritime Antarctic.
Directory of Open Access Journals (Sweden)
G. Ganbavale
2014-06-01
Full Text Available This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic–water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients. This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~275 to ~400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures with the introduction of a new temperature dependence parameterisation. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multicomponent system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~190 to ~440 K for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of
Directory of Open Access Journals (Sweden)
Sangkertadi Sangkertadi
2002-01-01
Full Text Available This study concern in the application of a simplified heat transfer model for simulation of thermal behaviour of tropical buildings. The model is to be integrated to a transient simulation program TRNSYS. The objective of this study is to predict the variable of indoor air temperature due to outdoors environmental climatic. The first case is about the comparison of the model with other model from ASHRAE (i.e. Transfer Function Method. The second case is the application of the model for a thermal simulation of a 7-zones typical tropical house. The simulation results (indoor air temperature and surfaces temperature are to be then compared to the results from field measurement. The comparison shows that there is similarity between those two approaches. Abstract in Bahasa Indonesia : Studi ini diarahkan pada validasi dan penggunaan suatu model perhitungan perpindahan panas sederhana satu dimensi untuk memprediksi perubahan suhu udara dalam ruang rumah beriklim tropis lembab. Model tersebut adalah model analogi elektrik yang dapat dipakai untuk membuat simulasi perpindahan panas pada kondisi tak-stedi.Pada penerapan di kasus pertama, hasil perhitungan dengan model sederhana tersebut dibandingkan terhadap perhitungan dengan model lainnya yaitu model TFM (Transfer Function Method dari ASHRAE (American Society of Heating, Referigerating and Air conditioning Engineers. Pada penerapan di kasus kedua, dilakukan pembandingan terhadap hasil pengukuran pada kasus rumah tinggal 7 zona. Hasilnya menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara hasil perhitungan dengan model sederhana tersebut dibandingkan terhadap hasil perhitungan dengan model TFM maupun terhadap hasil pengukuran di lapangan.
UTCI-Fiala multi-node model of human heat transfer and temperature regulation
Fiala, Dusan; Havenith, George; Bröde, Peter; Kampmann, Bernhard; Jendritzky, Gerd
2012-05-01
The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates.
Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries
DEFF Research Database (Denmark)
Propp, Karsten; Marinescu, Monica; Auger, Daniel J.;
2016-01-01
-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li......Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...
DEFF Research Database (Denmark)
Ren, Tao; Modest, Michael F.; Fateev, Alexander
2015-01-01
In this study, we present an inverse calculation model based on the Levenberg-Marquardt optimization method to reconstruct temperature and species concentration from measured line-of-sight spectral transmissivity data for homogeneous gaseous media. The high temperature gas property database HITEMP...... 2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O...... transmissivity measurements. Optimal wavenumber ranges for CO2 and H2O transmissivity measured across a wide range of temperatures and concentrations were determined according to the performance of inverse calculations. Results indicate that the inverse radiation model shows good feasibility for measurements...
X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model
Institute of Scientific and Technical Information of China (English)
Wang Jun; Zhang Hong; Cheng Xin-Lu
2013-01-01
Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER),so the determination and modeling of spectra of tungsten plasma,especially the spectra at high temperature were intensely focused on recently.In this work,using the atomic structure code of Cowan,a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed.Based on this model,the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated.The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63％ and 1.26％,respectively.The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work.
Directory of Open Access Journals (Sweden)
Balik Franciszek
2016-03-01
Full Text Available The aim of this work was to elaborate two-dimensional behavioral modeling method of thick-film resistors working in low-temperature conditions. The investigated resistors (made from 5 various resistive inks: 10 resistor coupons, each with 36 resistors with various dimensions, were measured automatically in a cryostat system. The low temperature was achieved in a nitrogen-helium continuous-flow cryostat. For nitrogen used as a freezing liquid the minimal temperature possible to achieve was equal to −195.85 °C (77.3 K. Mathematical model in the form of a multiplication of two polynomials was elaborated based on the above mentioned measurements. The first polynomial approximated temperature behavior of the normalized resistance, while the second one described the dependence of resistance on planar resistors dimensions. Special computational procedures for multidimensional approximation purpose were elaborated. It was shown that proper approximation polynomials and sufficiently exact methods of calculations ensure acceptable modeling errors.
Influence of temperature on Cole-Cole dielectric model of oil-immersed bushing
Wang, K.; Chen, X. J.; Xu, X. W.; Liu, G. Q.; Zou, D. X.; Liu, W. D.
2017-07-01
In this paper, 72.5 kV oil-immersed bushing was produced in laboratory. The frequency-domain dielectric response tests of oil-immersed bushings were carried out at different test temperatures. The experimental data were fitted by using the modified double relaxation Cole-Cole dielectric model. The influence of temperature variation on the dielectric response test of the oil-immersed bushing and the Cole-Cole dielectric model parameters were analysed. The results showed that with the increase of the test temperature, the spectrum of the real and imaginary of the complex permittivity are shifted to the high frequency direction; the parameters of the dielectric model are significantly affected by temperature.
A Temperature Prediction Model for Oil-immersed Transformer Based on Thermal-circuit Theory
Institute of Scientific and Technical Information of China (English)
WEI Ben-gang; LIN Jun; TAN Li; GAO Kai; LIU Jia-yu; LI Hua-long; LI Jiang-tao
2012-01-01
This paper proposed an improved temperature prediction model for oil-immersed transformer.The influences of the environmental temperature and heat-sinking capability changing with temperature were considered.When calculating the heat dissipation from the transformer tank to surroundings,the average oil temperature was selected as the node value in the thermal circuit.The new thermal models will be validated with the delivery experimental data of three transformers:a 220 kV-300 MV·A unit,a 110 kV-40 MV ·A unit and a 220 kV-75 MV ·A unit.Meanwhile,the results from the proposed model were also compared with two methods recommended in the IEC loading guide.
A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations
DEFF Research Database (Denmark)
Wu, Rui; Wang, Huai; Ma, Ke
2014-01-01
Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal ...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model.......Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal...
SIMULATED MATHEMATICAL MODEL FOR HIGH PRESSURE CYLINDER WALL TEMPERATURE OF HOMEMADE TURBINE
Institute of Scientific and Technical Information of China (English)
Shi Xiaoping; Zhu Yin
2005-01-01
In order to balance the contradiction between the demand of high precision and that of short time interval of model computing for the power plant simulator, a set of simulated mathematical models are constructed. The model describes the cylinder wall temperature located at four key positions of the high pressure cylinder. The simulated model is confirmed to be not only simple but also precise via comparison between the simulated results and the autoptic data of a power plant.
MARSpline model for lead seven-day maximum and minimum air temperature prediction in Chennai, India
Indian Academy of Sciences (India)
K Ramesh; R Anitha
2014-06-01
In this study, a Multivariate Adaptive Regression Spline (MARS) based lead seven days minimum and maximum surface air temperature prediction system is modelled for station Chennai, India. To emphasize the effectiveness of the proposed system, comparison is made with the models created using statistical learning technique Support Vector Machine Regression (SVMr). The analysis highlights that prediction accuracy of MARS models for minimum temperature forecast are promising for short-term forecast (lead days 1 to 3) with mean absolute error (MAE) less than 1°C and the prediction efficiency and skill degrades in medium term forecast (lead days 4 to 7) with slightly above 1°C. The MAE of maximum temperature is little higher than minimum temperature forecast varying from 0.87°C for day-one to 1.27°C for lag day-seven with MARS approach. The statistical error analysis emphasizes that MARS models perform well with an average 0.2°C of reduction in MAE over SVMr models for all ahead seven days and provide significant guidance for the prediction of temperature event. The study also suggests that the correlation between the atmospheric parameters used as predictors and the temperature event decreases as the lag increases with both approaches.
Energy Technology Data Exchange (ETDEWEB)
Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.
2008-10-01
Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression.
On the temperature dependence of H-U{sub iso} in the riding hydrogen model
Energy Technology Data Exchange (ETDEWEB)
Lübben, Jens; Volkmann, Christian [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Grabowsky, Simon [School of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley (Australia); Edwards, Alison [Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Morgenroth, Wolfgang [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Fabbiani, Francesca P. A. [GZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen (Germany); Sheldrick, George M. [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Dittrich, Birger, E-mail: birger.dittrich@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany)
2014-07-01
The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.
Regression-based air temperature spatial prediction models: an example from Poland
Directory of Open Access Journals (Sweden)
Mariusz Szymanowski
2013-10-01
Full Text Available A Geographically Weighted Regression ? Kriging (GWRK algorithm, based on the local Geographically Weighted Regression (GWR, is applied for spatial prediction of air temperature in Poland. Hengl's decision tree for selecting a suitable prediction model is extended for varying spatial relationships between the air temperature and environmental predictors with an assumption of existing environmental dependence of analyzed temperature variables. The procedure includes the potential choice of a local GWR instead of the global Multiple Linear Regression (MLR method for modeling the deterministic part of spatial variation, which is usual in the standard regression (residual kriging model (MLRK. The analysis encompassed: testing for environmental correlation, selecting an appropriate regression model, testing for spatial autocorrelation of the residual component, and validating the prediction accuracy. The proposed approach was performed for 69 air temperature cases, with time aggregation ranging from daily to annual average air temperatures. The results show that, irrespective of the level of data aggregation, the spatial distribution of temperature is better fitted by local models, and hence is the reason for choosing a GWR instead of the MLR for all variables analyzed. Additionally, in most cases (78% there is spatial autocorrelation in the residuals of the deterministic part, which suggests that the GWR model should be extended by ordinary kriging of residuals to the GWRK form. The decision tree used in this paper can be considered as universal as it encompasses either spatially varying relationships of modeled and explanatory variables or random process that can be modeled by a stochastic extension of the regression model (residual kriging. Moreover, for all cases analyzed, the selection of a method based on the local regression model (GWRK or GWR does not depend on the data aggregation level, showing the potential versatility of the technique.
Zhang, Ji Zhuang; Zhang, Xue Xue; Audette, Michel
2011-09-01
The theory of selective photothermolysis (SP) is used in many fields of laser surgery and medicine. As several parameters and a number of complicated photothermal interactions are involved in SP, numerical simulations have been providing an important and effective way in SP studies. However, with different photothermal models of SP, simulated results differ considerably. In addition, insufficient attention has been paid to tissue pressure variation during SP in these models, so that vessel rupture and other clinical phenomena cannot be explained. A novel photothermal model of SP was proposed using a Monte Carlo method to simulate the laser transport in the tissue, a heat transfer equation with dynamically changing vaporization temperature to calculate the temperature distribution, and the Arrhenius equation to predict the thermal damage. A factor of trapped vaporized tissue water k was introduced to describe the effects on tissue pressure, temperature, and other related parameters. It was shown that the simulation results are affected significantly by k. Temperature and thermal damage volume are almost identical, respectively, to those obtained with models with vaporization at 100°C and models without vaporization when k = 0 and 1, while thermal damage volume is close to that obtained with models of vaporization at 110°C and 130°C, respectively, when k = 0.022 and k = 0.18. To some extent, the current models without vaporization and models with vaporization at constant temperature can be regarded as special cases at specific situations of this new photothermal model of SP. In addition, more descriptive simulation results, such as temperature, thermal damage, and pressure, are accessible with this model, although the accuracy depends on the value of k, the estimation of which is planned as future work.
Modelling the temperature evolution of bone under high intensity focused ultrasound.
ten Eikelder, H M M; Bošnački, D; Elevelt, A; Donato, K; Di Tullio, A; Breuer, B J T; van Wijk, J H; van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H
2016-02-21
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR
Modelling the temperature evolution of bone under high intensity focused ultrasound
ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.
2016-02-01
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR
Coupled Chemistry Climate Model Simulations of Stratospheric Temperature for the Recent Past
Austin, J.
2007-12-01
Temperature results for the recent past from multi-decadal simulations of eleven coupled chemistry climate models are analysed using multi-linear regression including a trend, solar cycle and volcanic aerosol terms. The climatology of the models since 1980 is in good agreement with observations for the troposphere but diverge from each other and from observations in the stratosphere. Overall, the models agree better with observations than previous assessments. As a function of latitude and pressure, the simulated trends vary substantially from model to model, although all models show several consistent features. These include statistically significant cooling trends from about the lower stratosphere upwards in the low and middle latitudes. Several models have statistically significant cooling in the lower stratosphere over the polar region. The temporal variation in the global average temperature in the lower stratosphere indicates a clear increase during volcanic eruptions, superimposed on an overall cooling. The model responses to the volcanic aerosol varies by about a factor of two with several models substantially overpredicting the observed response during the 1980s and 1990s. The globally averaged temperature simulated by the models is generally in agreement with corrected satellite observations over much of their range. Model trend comparisons are also shown for the polar spring and illlustrate even larger inter-model differences. These differences are caused by different simulations of trends in planetary waves and ozone amounts, and illustrate the challenge of predicting ozone recovery in polar regions.
Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C
2004-11-17
Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical
Directory of Open Access Journals (Sweden)
Martin Gregory T
2004-11-01
Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the
Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature
Howe, R.
Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.
Directory of Open Access Journals (Sweden)
E. Zenklusen Mutter
2011-10-01
Full Text Available Air temperatures influence ground temperatures with a certain delay, which increases with depth. Borehole temperatures measured at 0.5 m depth in Alpine permafrost and air temperatures measured at or near the boreholes have been used to model this dependency. Statistical transfer function models have been fitted to the daily difference series of air and ground temperatures measured at seven different permafrost sites in the Swiss Alps.
The relation between air and ground temperature is influenced by various factors such as ground surface cover, snow depth, water or ground ice content. To avoid complications induced by the insulating properties of the snow cover and by phase changes in the ground, only the mostly snow-free summer period when the ground at 0.5 m depth is thawed has been considered here. All summers from 2006 to 2009 have been analysed, with the main focus on summer 2006.
The results reveal that in summer 2006 daily air temperature changes influence ground temperatures at 0.5 m depth with a delay ranging from one to six days, depending on the site. The fastest response times are found for a very coarse grained, blocky rock glacier site whereas slower response times are found for blocky scree slopes with smaller grain sizes.
Temperature Effect on Rheological Behavior of Silicone Oils. A Model for the Viscous Heating.
Romano, Mario R; Cuomo, Francesca; Massarotti, Nicola; Mauro, Alessandro; Salahudeen, Mohamed; Costagliola, Ciro; Ambrosone, Luigi
2017-07-27
The rheological behavior of silicone oils, (CH3)3SiO-[Si(CH3)2O]n-Si(CH3)3, and their mixtures is studied. Shear-stress measurements, in the temperature range of 293-313 K, reveal that this polymer family is a group of shear-thinning liquids with a yield stress below which no flow occurs. Experimental diagrams, i.e., shear stress versus shear rate, are satisfactorily described by the Casson fluid model over a wide range of shear rates. In order to monitor the effect of temperature on fluid properties, Casson's rheological model is reformulated using the fictitious shear rate, γ̇f, and the infinite-shear viscosity, η∞, as constitutive parameters. Due to low intermolecular forces and high chain flexibility, γ̇f varies very little when the temperature increases. For this reason, the apparent material viscosity depends on temperature only through η∞, which exponentially decreases until high shear rates are reached, and there is more alignment possible. Interestingly, the temperature sensitivity of this pseudoplastic behavior is the same for all of the silicone oils investigated; therefore, they can be classified according to their tendency to emulsify. Experimental results are then used to model the flow of silicone oils in a cylindrical pipe and estimate the temperature increase due to viscous heating. Numerical results show that the normalized temperature, i.e., ratio of fluid temperature to wall temperature, increases approximately 23%, and the apparent viscosity decreases drastically, going toward the center of the tube. The non-Newtonian nature of fluid is reflected in the presence of a critical region. In this region, the velocity and temperature gradients vanish. Since silicon oil is a surgical tool, we hope that the acquired physicochemical information can provide help to facilitate the removal of this material during surgical procedures.
Liang, Mei; Sun, Xiao-gang; Luan, Mei-sheng
2015-10-01
Temperature measurement is one of the important factors for ensuring product quality, reducing production cost and ensuring experiment safety in industrial manufacture and scientific experiment. Radiation thermometry is the main method for non-contact temperature measurement. The second measurement (SM) method is one of the common methods in the multispectral radiation thermometry. However, the SM method cannot be applied to on-line data processing. To solve the problems, a rapid inversion method for multispectral radiation true temperature measurement is proposed and constraint conditions of emissivity model are introduced based on the multispectral brightness temperature model. For non-blackbody, it can be drawn that emissivity is an increasing function in the interval if the brightness temperature is an increasing function or a constant function in a range and emissivity satisfies an inequality of emissivity and wavelength in that interval if the brightness temperature is a decreasing function in a range, according to the relationship of brightness temperatures at different wavelengths. The construction of emissivity assumption values is reduced from multiclass to one class and avoiding the unnecessary emissivity construction with emissivity model constraint conditions on the basis of brightness temperature information. Simulation experiments and comparisons for two different temperature points are carried out based on five measured targets with five representative variation trends of real emissivity. decreasing monotonically, increasing monotonically, first decreasing with wavelength and then increasing, first increasing and then decreasing and fluctuating with wavelength randomly. The simulation results show that compared with the SM method, for the same target under the same initial temperature and emissivity search range, the processing speed of the proposed algorithm is increased by 19.16%-43.45% with the same precision and the same calculation results.
Consistent negative response of US crops to high temperatures in observations and crop models
Schauberger, Bernhard; Archontoulis, Sotirios; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Pugh, Thomas A. M.; Rolinski, Susanne; Schaphoff, Sibyll; Schmid, Erwin; Wang, Xuhui; Schlenker, Wolfram; Frieler, Katja
2017-04-01
High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day above 30°C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures above 30°C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.
Consistent negative response of US crops to high temperatures in observations and crop models
Schauberger, Bernhard; Archontoulis, Sotirios; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Pugh, Thomas A. M.; Rolinski, Susanne; Schaphoff, Sibyll; Schmid, Erwin; Wang, Xuhui; Schlenker, Wolfram; Frieler, Katja
2017-01-01
High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.
Directory of Open Access Journals (Sweden)
Jaewon Kwak
2017-05-01
Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.
Kim, Yura; Jun, Mikyoung; Min, Seung-Ki; Suh, Myoung-Seok; Kang, Hyun-Suk
2016-05-01
CORDEX-East Asia, a branch of the coordinated regional climate downscaling experiment (CORDEX) initiative, provides high-resolution climate simulations for the domain covering East Asia. This study analyzes temperature data from regional climate models (RCMs) participating in the CORDEX - East Asia region, accounting for the spatial dependence structure of the data. In particular, we assess similarities and dissimilarities of the outputs from two RCMs, HadGEM3-RA and RegCM4, over the region and over time. A Bayesian functional analysis of variance (ANOVA) approach is used to simultaneously model the temperature patterns from the two RCMs for the current and future climate. We exploit nonstationary spatial models to handle the spatial dependence structure of the temperature variable, which depends heavily on latitude and altitude. For a seasonal comparison, we examine changes in the winter temperature in addition to the summer temperature data. We find that the temperature increase projected by RegCM4 tends to be smaller than the projection of HadGEM3-RA for summers, and that the future warming projected by HadGEM3-RA tends to be weaker for winters. Also, the results show that there will be a warming of 1-3°C over the region in 45 years. More specifically, the warming pattern clearly depends on the latitude, with greater temperature increases in higher latitude areas, which implies that warming may be more severe in the northern part of the domain.
Marek, Juraj; Chvála, Aleš; Donoval, Daniel; Príbytný, Patrik; Molnár, Marián; Mikolášek, Miroslav
2014-04-01
A new, more accurate SPICE-like model of a power MOSFET containing a temperature dependent thermal network is described. The designed electro-thermal MOSFET model consists of several parts which represent different transistor behavior under different conditions such as reverse bias, avalanche breakdown and others. The designed model is able to simulate destruction of the device as thermal runaway and/or overcurrent destruction during the switching process of a wide variety of inductive loads. Modified thermal equivalent circuit diagrams were designed taking into account temperature dependence of thermal resistivity. The potential and limitations of the new models are presented and analyzed. The new model is compared with the standard and empirical models and brings a higher accuracy for rapid heating pulses. An unclamped inductive switching (UIS) test as a stressful condition was used to verify the proper behavior of the designed MOSFET model.
Michaels, Patrick J; Christy, John R; Herman, Chad S; Liljegren, Lucia M; Annan, James D
2013-01-01
Assessing the consistency between short-term global temperature trends in observations and climate model projections is a challenging problem. While climate models capture many processes governing short-term climate fluctuations, they are not expected to simulate the specific timing of these somewhat random phenomena - the occurrence of which may impact the realized trend. Therefore, to assess model performance, we develop distributions of projected temperature trends from a collection of climate models running the IPCC A1B emissions scenario. We evaluate where observed trends of length 5 to 15 years fall within the distribution of model trends of the same length. We find that current trends lie near the lower limits of the model distributions, with cumulative probability-of-occurrence values typically between 5 percent and 20 percent, and probabilities below 5 percent not uncommon. Our results indicate cause for concern regarding the consistency between climate model projections and observed climate behavior...
Comparison of different models for the high-temperature heat-treatment of wood
Energy Technology Data Exchange (ETDEWEB)
Kocaefe, Duygu; Younsi, Ramdane; Poncsak, Sandor; Kocaefe, Yasar [Research Group on the Thermotransformation of Wood (GRTB), Department of Applied Sciences, University of Quebec at Chicoutimi, 555, boul. de l' Universite, Chicoutimi, Quebec (Canada)
2007-07-15
The high temperature thermal treatment of wood is an environment-friendly method for wood preservation. This technique has attracted considerable attention in recent years. The GRTB (groupe de recherche sur la thermotransformation du bois) at the University of Quebec at Chicoutimi, Canada, has been working on this subject for the past number of years. In this article, the work is presented with a focus on the mathematical modelling of the process. Three models (model based on Luikov's approach, diffusion model, and multiphase model) have been developed for the high temperature treatment of wood. The predictions of the models are compared with the experimental data. The diffusion model was found to be the most practical approach when the accuracy of the results and the computation times are both taken into account. (author)
Energy Technology Data Exchange (ETDEWEB)
Gyekenyesi, A.L.
2000-01-01
This study focuses on the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed greater reductions due to the elevated temperature. The stiffness degradation as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment covering the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.
Probabilistic models for assessment of extreme temperatures and relative humidity in Lithuania
Alzbutas, Robertas; Šeputytė, Ilona
2015-04-01
Extreme temperatures are fairly common natural phenomenon in Lithuania. They have mainly negative effects both on the environment and humans. Thus there are important to perform probabilistic and statistical analyzes of possibly extreme temperature values and their time-dependant changes. This is especially important in areas where technical objects (sensitive to the extreme temperatures) are foreseen to be constructed. In order to estimate the frequencies and consequences of possible extreme temperatures, the probabilistic analysis of the event occurrence and its uncertainty has been performed: statistical data have been collected and analyzed. The probabilistic analysis of extreme temperatures in Lithuanian territory is based on historical data taken from Lithuanian Hydrometeorology Service, Dūkštas Meteorological Station, Lithuanian Energy Institute and Ignalina NNP Environmental Protection Department of Environmental Monitoring Service. The main objective of performed work was the probabilistic assessment of occurrence and impact of extreme temperature and relative humidity occurring in whole Lithuania and specifically in Dūkštas region where Ignalina Nuclear Power Plant is closed for decommissioning. In addition, the other purpose of this work was to analyze the changes of extreme temperatures. The probabilistic analysis of extreme temperatures increase in Lithuanian territory was based on more than 50 years historical data. The probabilistic assessment was focused on the application and comparison of Gumbel, Weibull and Generalized Value (GEV) distributions, enabling to select a distribution, which has the best fit for data of extreme temperatures. In order to assess the likelihood of extreme temperatures different probabilistic models were applied to evaluate the probability of exeedance of different extreme temperatures. According to the statistics and the relationship between return period and probabilities of temperatures the return period for 30
A body temperature model for lizards as estimated from the thermal environment
Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.
2012-01-01
A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re
Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets
Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.
2014-01-01
A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR
A body temperature model for lizards as estimated from the thermal environment
Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.
2012-01-01
A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re
Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation
Willey, Ronald J.
1993-01-01
Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.
CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL
A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...
Temperature dependence of universal fluctuations in the two-dimensional harmonic XY model.
Palma, G
2006-04-01
We compute exact analytical expressions for the skewness and kurtosis in the two-dimensional harmonic XY model. These quantities correspond to the third and fourth normalized moments of the probability density function (PDF) of the magnetization of the model. From their behavior, we conclude that they depend explicitly on the system temperature even in the thermodynamic limit, and hence the PDF itself must depend on it. Our results correct the hypothesis called universal fluctuations, they confirm and extend previous results which showed a T dependence of the PDF, including perturbative expansions within the XY model up to first order in temperature.
Dynamic behavior of the HTR-10 reactor: Dual temperature feedback model
Directory of Open Access Journals (Sweden)
Hosseini Seyed Ali
2015-01-01
Full Text Available The current work aims at presenting a simple model for PBM-type reactors' dynamic behavior analysis. The proposed model is based on point kinetics equations coupled with feedbacks from fuel and moderator temperatures. The temperature reactivity coefficients were obtained through MCNP code and via available experimental data. Parameters such as heat capacity and heat conductivity were carefully analyzed and the final system of equations was numerically solved. The obtained results, while in partial agreement with previously proposed models, suggest lower sensitivity to step reactivity insertion as compared to other reactor designs and inherent safety of the design.
Liquid-vapor coexistence in a primitive model for a room-temperature ionic liquid.
Martín-Betancourt, Marianela; Romero-Enrique, José M; Rull, Luis F
2009-07-09
We present a primitive model for a room-temperature ionic liquid, where the cation is modeled as a charged hard spherocylinder of diameter sigma and length l and the anion as a charged hard sphere of diameter sigma. Liquid-vapor coexistence curves and critical parameters for this model have been studied by grand-canonical Monte Carlo methods. Our results show a decrease of both the critical temperature and density as the cation length l increases. These results are in qualitative agreement with recent experimental estimates of the critical parameters.
Extension of Lithium Ion Cell Model to Include Transient and Low-Temperature Behaviour
Dudley, G.
2014-08-01
Current-interruption resistance measurements have been analysed in detail allowing the ESTEC lithium ion cell electrical/thermal model to be extended to allow modelling of cell voltage in response to imposed current changes at low temperatures and short time scales where activation polarisation becomes important. Whilst an unnecessary complication in most cases, this extension is needed under certain circumstances such as the simulation of Mars rover batteries forced to operate at low temperature and possible effects of battery voltage transients on battery-bus power subsystems. Comparison with test data show that the model is capable of giving a good fit in these circumstances.
Phase Structure in a Quark Mass Density-and-Temperature-Dependent Model
Institute of Scientific and Technical Information of China (English)
WEN Xin-Jian; PENG Guang-Xiong; SHEN Peng-Nian
2007-01-01
The phase diagram of bulk quark matter in equilibrium with a finite hadronic gas is studied. Different from previous investigations, we treat the quark phase with the quark rnass density-and-temperature-dependent model to take the strong quark interaction into account, while the hadron phase is treated by hard core repulsion factor. It is found that the phase diagram in this model is, in several aspects, different from those in the conventional MIT bag model, especially at high temperature. The new phase diagram also has strong effects on the mass-radius relation of compact hybrid stars.
Pekker, Leonid
2015-01-01
In this paper we propose new boundary conditions at the hot walls with thermionic electron emission for two-temperature thermal arc models. In the derived boundary conditions the walls are assumed to be made from refractory metals and that the erosion of the wall is small and, therefore, is not taken into account in the model. In these boundary conditions the plasma sheath formed at the electrode is considered as the interface between the plasma and the wall. The derived boundary conditions allow the calculation of the heat flux to the walls from the plasma and consequently the thermionic electron current that makes the two temperature thermal model self consistent.
Oubei, Hassan M.
2017-06-16
In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.
Zhang, Jun; Fan, Jing; Jiang, Jianzheng
2011-08-01
The information preservation (IP) method has been successfully applied to various nonequilibrium gas flows. Comparing with the direct simulation Monte Carlo (DSMC) method, the IP method dramatically reduces the statistical scatter by preserving collective information of simulation molecules. In this paper, a multiple temperature model is proposed to extend the IP method to strongly translational nonequilibrium gas flows. The governing equations for the IP quantities have been derived from the Boltzmann equation based on an assumption that each simulation molecule represents a Gaussian distribution function with a second-order temperature tensor. According to the governing equations, the implementation of IP method is divided into three steps: molecular movement, molecular collision, and update step. With a reasonable multiple temperature collision model and the flux splitting method in the update step, the transport of IP quantities can be accurately modeled. We apply the IP method with the multiple temperature model to shear-driven Couette flow, external force-driven Poiseuille flow and thermal creep flow, respectively. In the former two cases, the separation of different temperature components is clearly observed in the transition regime, and the velocity, temperature and pressure distributions are also well captured. The thermal creep flow, resulting from the presence of temperature gradients along boundary walls, is properly simulated. All of the IP results compare well with the corresponding DSMC results, whereas the IP method uses much smaller sampling sizes than the DSMC method. This paper shows that the IP method with the multiple temperature model is an accurate and efficient tool to simulate strongly translational nonequilibrium gas flows.
Zellers, E T; Sulewski, R
1993-09-01
This paper describes the temperature dependence of N-methylpyrrolidone (NMP) permeation through gloves used in microelectronics fabrication facilities. One type of butyl-rubber glove (North B161), two types of natural-rubber gloves (Edmont Puretek and Ansell Pacific White), and a natural rubber/nitrile/neoprene-blend glove (Pioneer Trionic) were tested at four temperatures from 25-50 degrees C using the ASTM F739-85 permeation test method. The butyl-rubber glove showed no breakthrough after four hours of exposure at any temperature. The variations with temperature of measured breakthrough times (BT) and steady-state permeation rates (SSPR) for the other gloves were described well by Arrhenius relationships, with BT values decreasing by factors of 7-10 and SSPR values increasing by factors of 4-6 over the temperature range studied. Extrapolation to 70 and 93 degrees C, the temperatures at which degreasing is often performed, yielded BT values of rubber glove, following an initial exposure at 25 degrees C and air drying overnight, low levels of NMP vapor were detected off-gassing from the inner surfaces of the gloves. Experimental results were then compared to those expected from several permeation models. Estimates of the equilibrium solvent solubility, S, were calculated using a model based on three-dimensional solubility parameters. Estimates of the solvent diffusion coefficient, D, were obtained from correlations with either the solvent kinematic viscosity or the product of the Flory interaction parameter, chi, and the solvent molar volume. Combining these values of D and S in Fickian diffusion equations gave modeled BT estimates that were within 23% of experimental values over the temperature range examined. Modeled SSPR values were within 50% (typically within 25%) of experimental values. Another model based on a generalized Arrhenius relationship also provided useful but generally less accurate estimates of the changes in BT and SSPR values with temperature.
Modeling of the thermal expansion behaviour of ZERODUR at arbitrary temperature profiles
Jedamzik, Ralf; Johansson, Thoralf; Westerhoff, Thomas
2010-07-01
Modeling of the thermal expansion behavior of ZERODUR® for the site conditions of the upcoming Extremely Large Telescope's (ELT's) allows an optimized material selection to yield the best performing ZERODUR® for the mirror substrates. The thermal expansion of glass ceramics is a function of temperature and a function of time, due to the structural relaxation behavior of the materials. The application temperature range of the upcoming ELT projects varies depending on the possible construction site between -13°C and +27°C. Typical temperature change rates during the night are in the range between 0.1°C/h and 0.3°C/h. Such temperature change rates are much smaller than the typical economic laboratory measurement rate, therefore the material behavior under these conditions can not be measured directly. SCHOTT developed a model approach to describe the structural relaxation behavior of ZERODUR®. With this model it is possible to precisely predict the thermal expansion behavior of the individual ZERODUR® material batches at any application temperature profile T(t). This paper presents results of the modeling and shows ZERODUR® material behavior at typical temperature profiles of different applications.
A lithium-ion capacitor model working on a wide temperature range
Barcellona, S.; Piegari, L.
2017-02-01
Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.
Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace
Directory of Open Access Journals (Sweden)
Hari S. Ganesh
2016-12-01
Full Text Available Quench hardening is the process of strengthening and hardening ferrous metals and alloys by heating the material to a specific temperature to form austenite (austenitization, followed by rapid cooling (quenching in water, brine or oil to introduce a hardened phase called martensite. The material is then often tempered to increase toughness, as it may decrease from the quench hardening process. The austenitization process is highly energy-intensive and many of the industrial austenitization furnaces were built and equipped prior to the advent of advanced control strategies and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the furnace and the part temperature profile as a function of time and position within the furnace under temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace for a batch of forty parts under heuristic temperature set points suggested by the operators of the plant. A model predictive control (MPC system is then developed and deployed to control the the part temperature at the furnace exit thereby preventing the parts from overheating. An energy efficiency gain of 5.3 % was obtained under model predictive control compared to operation under heuristic temperature set points tracked by a regulatory control layer.
Energy Technology Data Exchange (ETDEWEB)
Getu, H.M.; Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand)
2007-11-15
This paper presents modeling and experimental analyses of evaporators in 'in situ' frozen-food display cabinets at low temperatures in the supermarket industry. Extensive experiments were conducted to measure store and display cabinet relative humidities and temperatures, and pressures, temperatures and mass flow rates of the refrigerant. The mathematical model adopts various empirical correlations of heat transfer coefficients and frost properties in a fin-tube heat exchanger in order to investigate the influence of indoor conditions on the performance of the display cabinets. The model is validated with the experimental data of 'in situ' cabinets. The model would be a good guide tool to the design engineers to evaluate the performance of supermarket display cabinet heat exchangers under various store conditions. (author)
Nucleon Properties at Finite Temperature in the Extended Quark-Sigma Model
Abu-Shady, M
2014-01-01
Hadron properties are studied at hot medium using the quark sigma model. The quark sigma model is extended to include eighth-order of mesonic interactions based on some aspects of quantum chromodynamic (QCD) theory. The extended effective potential tends to the original effective potential when the coupling between the higher order mesonic interactions equal to zero. The field equations have been solved in the mean-field approximation by using the extended iteration method. We found that the nucleon mass increases with increasing temperature and the magnetic moments of proton and neutron increase with increasing temperature. A comparison is presented with recent previous works and other models. We conclude that higher-order mesonic interactions play an important role in changing the behavior of nucleon properties at finite temperature. In addition, the deconfinement phase transition is satisfied in the present model.
Constraining decaying dark energy density models with the CMB temperature-redshift relation
Jetzer, Philippe
2012-01-01
We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as $\\rho_x \\propto (1+z)^{m}$, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to $z \\sim 3$. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter $w_{eff}$ for such types of dark energy models.
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
A multi-layer zone model for predicting temperature distribution in a fire room
Institute of Scientific and Technical Information of China (English)
CHEN Xiaojun; YANG Lizhong; DENG Zhihua; FAN Weicheng
2004-01-01
A multi-layer zone fire growth model is developed to predict the vertical distributions of the temperature in a single room. The fire room volume is divided into a number of horizontal layers, in which the temperature and other physical properties are assumed to be uniform. The principal equations for each laminated horizontal layer are derived from the conservation equations of mass and energy. The implemented fire sub-models are introduced, including the combustion, fluid flow and heat transfer models. Combined with these sub-models, the zone equations for the gas temperature of each layer are solved by Runge-Kutta method for each time step. The results of the sample calculations compare well with the results of experiments conducted by Steckler et al.
Simulation of field-temperature effects in magnetic media using anisotropic Preisach models
Energy Technology Data Exchange (ETDEWEB)
Adly, A.A. [Cairo Univ., Giza (Egypt); Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.
1998-07-01
Prediction of temperature effects on magnetic properties has always been a topic of wide interest. Studying these effects may be particularly crucial for estimating the reliability of magnetic recording media and/or proper electrical machine core designs when significant working temperature variations are expected. In this paper, simulation of field-temperature effects in magnetic media is proposed by using a 2-D anisotropic Preisach-type hysteresis model. A technique for solving the identification problem of this model is developed. Experimental testing of the proposed model has been carried out on two different thin film hard disk samples. Comparison between measured and computed values indicate that the suggested model can lead to good qualitative, as well as quantitative, simulation results.
Limits on decaying dark energy density models from the CMB temperature-redshift relation
Jetzer, Philippe; Tortora, Crescenzo
2012-03-01
We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx propto (1 + z)m, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to z ~ 3. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weff for such types of dark energy models.
Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator
DEFF Research Database (Denmark)
Petersen, Thomas Frank; Pryds, Nini; Smith, Anders;
2008-01-01
heat exchanger. The model simulates the different steps of the AMR refrigeration cycle and evaluates the performance in terms of refrigeration capacity and temperature span between the two heat exchangers. The model was used to perform an analysis of an AMR with a regenerator made of gadolinium...... and water as the heat transfer fluid. The results show that the AMR is able to obtain a no-load temperature span of 10.9 K in a 1 T magnetic field with a corresponding work input of 93.0 kJ m−3 of gadolinium per cycle. The model shows significant temperature differences between the regenerator and the heat...... transfer fluid during the AMR cycle. This indicates that it is necessary to use two-dimensional models when a parallel-plate regenerator geometry is used....
Energy Technology Data Exchange (ETDEWEB)
Lorrette, Ch
2007-04-15
This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)
A regional neural network model for predicting mean daily river water temperature
Wagner, Tyler; DeWeber, Jefferson Tyrell
2014-01-01
Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate
Janson, Lucas; Rajaratnam, Bala
Great strides have been made in the field of reconstructing past temperatures based on models relating temperature to temperature-sensitive paleoclimate proxies. One of the goals of such reconstructions is to assess if current climate is anomalous in a millennial context. These regression based approaches model the conditional mean of the temperature distribution as a function of paleoclimate proxies (or vice versa). Some of the recent focus in the area has considered methods which help reduce the uncertainty inherent in such statistical paleoclimate reconstructions, with the ultimate goal of improving the confidence that can be attached to such endeavors. A second important scientific focus in the subject area is the area of forward models for proxies, the goal of which is to understand the way paleoclimate proxies are driven by temperature and other environmental variables. One of the primary contributions of this paper is novel statistical methodology for (1) quantile regression with autoregressive residual structure, (2) estimation of corresponding model parameters, (3) development of a rigorous framework for specifying uncertainty estimates of quantities of interest, yielding (4) statistical byproducts that address the two scientific foci discussed above. We show that by using the above statistical methodology we can demonstrably produce a more robust reconstruction than is possible by using conditional-mean-fitting methods. Our reconstruction shares some of the common features of past reconstructions, but we also gain useful insights. More importantly, we are able to demonstrate a significantly smaller uncertainty than that from previous regression methods. In addition, the quantile regression component allows us to model, in a more complete and flexible way than least squares, the conditional distribution of temperature given proxies. This relationship can be used to inform forward models relating how proxies are driven by temperature.
Coupled model of deformation and gas flow process with temperature and slippage effect
Directory of Open Access Journals (Sweden)
Chunhui ZHANG
2015-06-01
Full Text Available The effects of temperature, slippage effect and effective stress of coal on the coupled mechanism of deformation and gas glow are key issues to control coal and gas outburst and design the methane recovery engineering. Firstly, intact coal from Huaxing mine in Jilin Province is crushed and coal briquette specimen are made. Then the tri-axial coupled test setup of the deformation, gas flow and temperature developed by ourselves is adopted to investigate the effects of pore pressure, effective stress and temperature on the permeability of coal briquette specimen. The results show that: 1 Under the condition of low pore pressure, the permeability first reduces with pore pressure increasing, then at a threshold of pore pressure it rises with pore pressure increasing, which is called “slippage effect”. 2 The effective confining stress significantly influences the permeability. With increasing effective confining stress, the space of pores and cracks are compressed and the permeability reduces. 3 The temperature significantly influences the permeability and the permeability decreases with temperature increasing. The main reason is that the space of pores and cracks is compressed due to the temperature stress. Because of the constraint around, temperature compressive stress appears in internal coal samples. Coal pore and fracture space is compressed, and the sample permeability decreases. Besides, the viscosity of gas increases with temperature increasing. It decreases the trend of coal permeability . The temperature influence on coal permeability approximates to linear relationship. 4 The empirical permeability evolution equation with varying temperature, effective stress and slippage effects is presented. The coal is viewed as elastic medium, combined with effective stress principle and the empirical permeability equation, the coupled model of deformation and gas flow with varying temperature and slippage effects is built. Furthermore, the code
Leach, J.; Moore, D.
2015-12-01
Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.
Rotating Pressure and Temperature Measurements on Scale Model Fans Using Luminescent Paints
Bencic, Timothy J.
1998-01-01
Pressure and temperature sensitive paint (PSP, TSP) technology is a rapidly developing measurement technique that is widely accepted in external aerodynamic wind tunnel measurements. Almost all quantitative full field measurements have been on stationary surfaces. Rotating pressure and temperature measurements were successfully acquired during scale-model fan tests in the NASA Lewis Research Center 9 foot by 15 foot low speed wind tunnel at speeds as high as 9500 RPM. The use of PSP and TSP on rotating surfaces presents additional challenges to data acquisition. This paper describes in detail the techniques used to acquire global rotating pressure and temperature measurements and overcome the problems associated with this type of measurement. These include illumination and detection problems associated with moving surfaces, temperature dependence of PSP and limited emitted light available from short duration illumination sources. Solutions to these problems as well as pressure and temperature results will be discussed.
Estimating water temperatures in small streams in western Oregon using neural network models
Risley, John C.; Roehl, Edwin A.; Conrads, Paul A.
2003-01-01
Artificial neural network models were developed to estimate water temperatures in small streams using data collected at 148 sites throughout western Oregon from June to September 1999. The sites were located on 1st-, 2nd-, or 3rd-order streams having undisturbed or minimally disturbed conditions. Data collected at each site for model development included continuous hourly water temperature and description of riparian habitat. Additional data pertaining to the landscape characteristics of the basins upstream of the sites were assembled using geographic information system (GIS) techniques. Hourly meteorological time series data collected at 25 locations within the study region also were assembled. Clustering analysis was used to partition 142 sites into 3 groups. Separate models were developed for each group. The riparian habitat, basin characteristic, and meteorological time series data were independent variables and water temperature time series were dependent variables to the models, respectively. Approximately one-third of the data vectors were used for model training, and the remaining two-thirds were used for model testing. Critical input variables included riparian shade, site elevation, and percentage of forested area of the basin. Coefficient of determination and root mean square error for the models ranged from 0.88 to 0.99 and 0.05 to 0.59 oC, respectively. The models also were tested and validated using temperature time series, habitat, and basin landscape data from 6 sites that were separate from the 142 sites that were used to develop the models. The models are capable of estimating water temperatures at locations along 1st-, 2nd-, and 3rd-order streams in western Oregon. The model user must assemble riparian habitat and basin landscape characteristics data for a site of interest. These data, in addition to meteorological data, are model inputs. Output from the models include simulated hourly water temperatures for the June to September period
Universal low-temperature crossover in two-channel Kondo models
Mitchell, Andrew K.; Sela, Eran
2012-06-01
An exact expression is derived for the electron Green function in two-channel Kondo models with one and two impurities, describing the crossover from non-Fermi liquid (NFL) behavior at intermediate temperatures to standard Fermi liquid (FL) physics at low temperatures. Symmetry-breaking perturbations generically present in experiment ensure the standard low-energy FL description, but the full crossover is wholly characteristic of the unstable NFL state. Distinctive conductance lineshapes in quantum dot devices should result. We exploit a connection between this crossover and one occurring in a classical boundary Ising model to calculate real-space electron densities at finite temperature. The single universal finite-temperature Green function is then extracted by inverting the integral transformation relating these Friedel oscillations to the t matrix. Excellent agreement is demonstrated between exact results and full numerical renormalization group calculations.
Modelling and L1 Adaptive Control of Temperature in Biomass Pretreatment
DEFF Research Database (Denmark)
Prunescu, Remus Mihail; Blanke, Mogens; Sin, Gürkan
2013-01-01
Biomass steam pretreatment is a key process in converting agricultural wastes to bioethanol. The pretreatment occurs in a large pressurized tank called a thermal reactor. Two key parameters influence the successfulness of the process: the reactor temperature, and the retention time. A particle pump...... pressurizes untreated biomass from atmospheric to reactor pressure with recycled steam from the reactor. This paper formulates a steam mathematical model both for the thermal reactor and the particle pump, which is then used to design an L1 adaptive output feedback controller for the reactor temperature....... As steam is recycled from the reactor to pressurize the particle pump, pressure drops and the reactor temperature is disturbed. The main control challenge is to reject these disturbances and keep a steady temperature. The nonlinear process model embeds mass and energy balances, valve characteristics...
Melt nucleating and the three-dimension steady model of the temperature fluctuation with convection
Institute of Scientific and Technical Information of China (English)
Mingwen Chen; Renji Sun; Zidong Wang; Fengying Wang
2005-01-01
A three-dimensional steady model of temperature fluctuation with melt convection is studied. It is proved that there exists a unique and stable solution in the model and the solution is expressed in a Fourier series form. It theoretically conf1rms the mechanism of melt nucleating: as long as the convection with transverse directions exists, the melt temperature on the front of the solidliquid interface would be not only periodical along the direction which is perpendicular to the direction of crystal growth, but also oscillatory and exponential decay along the direction of crystal growth; this oscillatory property, i.e. temperature fluctuation, leads to local supercooling, accelerates local temperature fluctuation and then results in a large number of nuclei.
Mathematical modelling and analysis of the mushroom drying process at the optimal temperature
Directory of Open Access Journals (Sweden)
O. Kubaychuk
2016-02-01
Full Text Available To preserve food is used drying method. It was found experimentally that drying mushroom caps and legs should be conducted at temperatures close to 52,5°C and 55,5°C, accordingly. In this case, we can get the product of the highest quality. Statistically, we proved that the drying processes of mushroom caps are different for fixed levels of temperature (from 40° C to 80° C, by step 10° C. At the same time, at higher temperatures, the nature of the process changes abruptly. Based on the experimental data, the polynomial regression model was built. This model can used for estimating and forecasting a specific evaporation heat at the optimal temperature.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
High-speed, high-resolution infrared t hermography, as a non-contact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to cyclic fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. The change of temperature during fatigue was utilized to reveal the accumulation of fatigue damage . A constitutive model was developed for predicting the thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The model was constru cted in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress -strain and temperature responses were found to be in good agreement with the e xperimental results.
Flavor dependence of baryon melting temperature in effective models of QCD
Torres-Rincon, Juan M.; Sintes, Benjamin; Aichelin, Joerg
2015-06-01
We apply the three-flavor (Polyakov-)Nambu-Jona-Lasinio model to generate baryons as quark-diquark bound states using many-body techniques at finite temperature. All the baryonic states belonging to the octet and decuplet flavor representations are generated in the isospin-symmetric case. For each state we extract the melting temperature at which the baryon may decay into a quark-diquark pair. We seek for an evidence of the strangeness dependence of the baryon melting temperature as suggested by the statistical thermal models and supported by lattice quantum chromodynamics results. A clear and robust signal for this claim is found, pointing to a flavor dependence of the hadronic deconfinement temperature.
Plumb, John M.; Moffitt, Christine M.
2015-01-01
Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.
High latitude temperature evolution across the Last Interglacial: a model-data comparison
Capron, Emilie; Stone, Emma; Govin, Aline; Loutre, Marie-France; Masson-Delmotte, Valerie; Mulitza, Stefan; Otto-Bliesner, Betty; Sime, Louise; Waelbroeck, Claire; Wolff, Eric W.
2014-05-01
The Last Interglacial (LIG, 129-116 thousand of years, ka) represents an interesting test bed for climate model feedbacks for warmer-than-present high latitudes. However, mainly because synchronising different paleoclimatic archives from different parts of the world is not trivial, a global picture of LIG temperature changes is difficult to obtain. In the framework of the UK iGlass consortium and the European Past4Future project, we have selected 49 polar ice core and sub-polar marine sediment records and developed a strategy to synchronise them onto the recent AICC2012 ice core chronology. This new synthesis enables us to describe the spatial and temporal climatic patterns over polar ice sheets (surface air temperature) and around the ice margins (sea surface temperatures) at a pluri-centennial to millennial-scale. Major features highlighted are (i) non synchronous maximum temperature change between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records and (ii) Southern hemisphere records exhibiting warm conditions for a longer time period compared to records from the Northern Hemisphere and smaller temperature amplitude changes. Our compiled records are compared with recent snapshot and transient model experiments performed with three state of the art General Circulation Models (HADCM3, CCSM3, FAMOUS) and an Earth Model of Intermediary Complexity (LOVECLIM). Such an exercise enables us to investigate the climate feedbacks which causes the most apparent model-data differences.
Modeling of high-temperature treatment of wood using the reaction engineering approach (REA).
Putranto, Aditya; Chen, Xiao Dong; Xiao, Zongyuan; Webley, Paul A
2011-05-01
A simple and accurate model of high-temperature treatment of wood can assist in the process design and the evaluation of performance of equipment. The high-temperature treatment of wood is essentially a drying process under linearly-increased gas temperature up to final temperature of 220-230°C which is a challenging process to model. This study is aimed to assess the applicability and accuracy of the reaction engineering approach (REA) to model the heat treatment of wood. In order to describe the process using the REA, the maximum activation energy (ΔE(v,b)) is evaluated according to the corresponding external conditions during the heat treatment. Results indicate that the REA coupled with the heat balance describes both moisture content and temperature profiles during the heat treatment very well. A good agreement towards the experimental data is indicated. It has also been shown that the current model is highly comparable in accuracy with the complex models.
Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model.
Ikemoto, Takaya; Kurahashi, Issei; Shi, Pei-Jian
2013-06-01
The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecological and evolutional processes. The Sharpe-Schoolfield-Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a particular temperature the probability of an active enzyme reaching its maximum activity is realized. Previously, an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments. Journal of Medical Entomology, 45, 963-969) to estimate model parameters, but that program was computationally very time consuming. Now, investigators can use the SSI model more easily because a full automatic computer program was designed by Shi et al. (A modified program for estimating the parameters of the SSI model. Environmental Entomology, 40, 462-469). However, the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined. Here, we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method. For this purpose, it was necessary to develop a new program for a faster estimation of the parameters in the SSI model, which we have also done. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.
Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen
2017-07-01
This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)
2005-01-01
Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.
Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits.
Zhao, Fuman; Rogers, William J; Mannan, M Sam
2010-02-15
Heat loss can affect experimental flammability limits, and it becomes indispensable to quantify flammability limits when apparatus quenching effect becomes significant. In this research, the lower flammability limits of binary hydrocarbon mixtures are predicted using calculated flame temperature (CFT) modeling, which is based on the principle of energy conservation. Specifically, the hydrocarbon mixture lower flammability limit is quantitatively correlated to its final flame temperature at non-adiabatic conditions. The modeling predictions are compared with experimental observations to verify the validity of CFT modeling, and the minor deviations between them indicated that CFT modeling can represent experimental measurements very well. Moreover, the CFT modeling results and Le Chatelier's Law predictions are also compared, and the agreement between them indicates that CFT modeling provides a theoretical justification for the Le Chatelier's Law.
Numerical modelling and analysis of a room temperature magnetic refrigeration system
DEFF Research Database (Denmark)
Petersen, Thomas Frank
This thesis presents a two-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration at room temperature. The purpose of the model is to simulate a laboratory-scale AMR constructed at Risø National Laboratory. The AMR model geometry...... comprises a regenerator made of parallel plates, which are separated by channels of a heat transfer fluid. The time-dependent model solves the momentum and continuity equations of the flow of the heat transfer fluid and the coupled energy equations of the heat transfer in the regenerator and the fluid....... The AMR performs a cyclic process, and to simulate the AMR refrigeration cycle the model starts from an initial temperature distribution in the regenerator and fluid channel and takes time steps forward in time until the cyclical steady-state is obtained. The model can therefore be used to study both...
Thermal modeling and temperature control of a PEM fuel cell system for forklift applications
DEFF Research Database (Denmark)
Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen
2014-01-01
. A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... designers in choosing the required coolant mass flow rate and radiator size to minimize the stack temperature gradients....
Energy Technology Data Exchange (ETDEWEB)
Saito, H; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Ba nuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics
2014-12-15
We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.
Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon
Buccola, Norman L.; Stonewall, Adam J.
2016-05-19
During summer 2014, lake level, streamflow, and water temperature in and around Crystal Springs Lake in Portland, Oregon, were measured by the U.S. Geological Survey and the City of Portland Bureau of Environmental Services to better understand the effect of the lake on Crystal Springs Creek and Johnson Creek downstream. Johnson Creek is listed as an impaired water body for temperature by the Oregon Department of Environmental Quality (ODEQ), as required by section 303(d) of the Clean Water Act. A temperature total maximum daily load applies to all streams in the Johnson Creek watershed, including Crystal Springs Creek. Summer water temperatures downstream of Crystal Springs Lake and the Golf Pond regularly exceed the ODEQ numeric criterion of 64.4 °F (18.0 °C) for salmonid rearing and migration. To better understand temperature contributions of this system, the U.S. Geological Survey developed two-dimensional hydrodynamic water temperature models of Crystal Springs Lake and the Golf Pond. Model grids were developed to closely resemble the bathymetry of the lake and pond using data from a 2014 survey. The calibrated models simulated surface water elevations to within 0.06 foot (0.02 meter) and outflow water temperature to within 1.08 °F (0.60 °C). Streamflow, water temperature, and lake elevation data collected during summer 2014 supplied the boundary and reference conditions for the model. Measured discrepancies between outflow and inflow from the lake, assumed to be mostly from unknown and diffuse springs under the lake, accounted for about 46 percent of the total inflow to the lake.
Finite Element Modeling of Transient Temperatures in a Small-Caliber Projectile
Directory of Open Access Journals (Sweden)
M. B. Thomas
2010-01-01
Full Text Available Problem statement: Future generations of intelligent munitions will use Microelectromechanical Systems (MEMS for guidance, fuzing logic and assessment of the battlefield environment. The temperatures fund in a gun system, however, are sufficient to damage some materials used in the fabrication of MEMS. The motivation of this study is to model the dynamic temperature distribution in a typical small-caliber projectile. Approach: An axisymmetric finite-element model of a projectile is developed to simulate temperatures through internal ballistics (the projectile is in the gun barrel and external ballistics (the projectile travels in a free trajectory towards the target. Accuracy of the simulation is confirmed through comparison to analytical models and to payloads attached to experimental projectiles. In the simulation, the exact values for some boundary conditions are unknown and/or unknowable. A sensitivity analysis determines the effect of these uncertain parameters. Results: The simulation shows that friction at the projectile-gun barrel interface is primarily responsible for elevated temperatures in a gun system. Other factors have much smaller effects. The short duration of the internal ballistics prevents the frictional heat from diffusing into the bulk of the projectile. As a result, the projectile has a shallow, high-temperature zone at its bearing surface as it leaves the gun barrel. During external ballistics, this heat will diffuse through the projectile, but most of the projectile experiences temperatures of 56°C or lower. Simulation shows that the polymer package around a MEMS device will further attenuate heat flow, limiting temperatures in the device to less than 30°C. Conclusion: The finite element model demonstrates that a MEMS device may be engineered to survive temperatures expected in the ballistic environment.
Saito, Hana; Cichy, Krzysztof; Cirac, J Ignacio; Jansen, Karl
2014-01-01
We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.
Masuda, Hiroshi; Okubo, Tsuyoshi; Kawamura, Hikaru
2012-08-03
Motivated by the recent experiment on kagome-lattice antiferromagnets, we study the zero-field ordering behavior of the antiferromagnetic classical Heisenberg model on a uniaxially distorted kagome lattice by Monte Carlo simulations. A first-order transition, which has no counterpart in the corresponding undistorted model, takes place at a very low temperature. The origin of the transition is ascribed to a cooperative proliferation of topological excitations inherent to the model.
Modeling discharge, temperature, and water quality in the Tualatin River, Oregon
Rounds, Stewart A.; Wood, Tamara M.; Lynch, Dennis D.
1999-01-01
The discharge, water temperature, and water quality of the Tualatin River in northwestern Oregon was simulated with CE-QUAL-W2, a two-dimensional, laterally averaged model developed by the U.S. Army Corps of Engineers. The model was calibrated for May through October periods of 1991, 1992, and 1993. Nine hypothetical scenarios were tested with the model to provide insight for river managers and regulators.
Finite line-source model for borehole heat exchangers. Effect of vertical temperature variations
Energy Technology Data Exchange (ETDEWEB)
Bandos, Tatyana V.; Fernandez, Esther; Santander, Juan Luis G.; Isidro, Jose Maria; Perez, Jezabel; Cordoba, Pedro J. Fernandez de [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montero, Alvaro; Urchueguia, Javier F. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)
2009-06-15
A solution to the three-dimensional finite line-source (FLS) model for borehole heat exchangers (BHEs) that takes into account the prevailing geothermal gradient and allows arbitrary ground surface temperature changes is presented. Analytical expressions for the average ground temperature are derived by integrating the exact solution over the line-source depth. A self-consistent procedure to evaluate the in situ thermal response test (TRT) data is outlined. The effective thermal conductivity and the effective borehole thermal resistance can be determined by fitting the TRT data to the time-series expansion obtained for the average temperature. (author)
Dynamical Temperature of a One- Dimensional Many-Body Systerm in the Lennard-Jones Model
Institute of Scientific and Technical Information of China (English)
刘觉平; 袁保仑
2001-01-01
A new way to derive the formula of the dynamical temperature by using the invariance of the Liouville measure and the ergodicity hypothesis is presented, based on the invariance of the functional under the transformation of the measure. The obtained dynamical temperature is intrinsic to the underlying dynamics of the system. A molecular dynamical simulation of a one-dimensional many-body system in the Lennard-Jones model has been performed. The temperature calculated from the Hamiltonian for the stationary state of the system coincides with that determined with the thermodynamical method.
Directory of Open Access Journals (Sweden)
M. Abu-Shady
2014-01-01
Full Text Available A baryonic chemical potential (μb is included in the linear sigma model at finite temperature. The effective mesonic potential is numerically calculated using the N-midpoint rule. The meson masses are investigated as functions of the temperature (T at fixed value of baryonic chemical potential. The pressure and energy density are investigated as functions of temperature at fi xed value of μb. The obtained results are in good agreement in comparison with other techniques. We conclude that the calculated effective potential successfully predicts the meson properties and thermodynamic properties at finite baryonic chemical potential.
Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shan; MI Dong
2004-01-01
In terms of the Nambu-Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple localgauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalarfields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential isgiven which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinementbehavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can bemelted away under high temperatures.
Dynamical Model of QCD Vacuum and Color Thaw at Finite Temperatures
Institute of Scientific and Technical Information of China (English)
WANGDian-Fu; SONGHe-Shan; MIDong
2004-01-01
In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.
Institute of Scientific and Technical Information of China (English)
Xin-ting Zhang; Lung-an Ying
2005-01-01
We study the dependence of qualitative behavior of the numerical solutions (obtained by a projective and upwind finite difference scheme) on the ignition temperature for a combustion model problem with general initial condition. Convergence to weak solution is proved under the Courant-Friedrichs-Lewy condition. Some condition on the ignition temperature is given to guarantee the solution containing a strong detonation wave or a weak detonation wave. Finally, we give some numerical examples which show that a strong detonation wave can be transformed to a weak detonation wave under some well-chosen ignition temperature.
A temperature dependent slip factor based thermal model for friction stir welding of stainless steel
Indian Academy of Sciences (India)
M Selvaraj
2013-12-01
This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the effect of process parameters on heat generation per mm length of the weld and peak temperature during the friction stir welding process. Simulations of friction stir welding process were carried out on 304L stainless steel workpieces for various rotational and welding speeds. The predicted thermal cycle, power required and temperature distributions were found to be in good agreement with the experimental results. The heat generation per mm length of weld and peak temperature were found to be directly proportional to rotational speed and inversely proportional to welding speed. The rate of increase in heat generation per mm length of the weld and peak temperature are found to be higher at lower rotational speeds and lower at higher rotational speed. The heat generation during friction stir welding was found to be 80.8 % at shoulder, 16.1 % at pin side and 3.1 % at the bottom of the pin.
Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras.
Wolf, Alejandro; Pezoa, Jorge E; Figueroa, Miguel
2016-07-19
Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array's temperature varies by approximately 15 ∘ C.
A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics
Directory of Open Access Journals (Sweden)
Ruzhuan Wang
2015-08-01
Full Text Available A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.
Extraction of static parameters to extend the EKV model to cryogenic temperatures
Fonseca, Germano S.; de Sá, Leonardo B.; Mesquita, Antonio C.
2016-05-01
The electric simulation models of CMOS devices provided by the foundries are valid at the standard temperature range of -55 to 125°C. These models are not suitable to the design of circuits intended to operate at cryogenic temperatures as is the case of cooled infrared readout circuits. To generate a library of CMOS electric simulation models valid at cryogenic temperatures, the characterization of wide and long CMOS transistors are investigated. The EKV2.6 model, which is an industry-standard compact simulation model for CMOS transistors, is used in this characterization. Due to its relatively small number of parameters the EKV2.6 model is well suited to the parameter extraction procedures when not disposing of an expensive automated parameter extraction system. It is shown that to provide an appropriate IV-characteristic fit to cryogenic temperature range it is sufficient to extract only five parameters - threshold voltage VT0, body effect GAMMA, Fermi potential PHI, transconductance factor KP, and the vertical characteristic field for mobility reduction E0. The proposed approach is tested in a standard 0.35μm/3.3V CMOS technology, employing extraction procedures recommended in the literature. Simulations are made with a BSIM3V3 standard library provided by the foundry changing the temperature parameter and with the generated library. The results are compared with the measurements. As expected, the simulations made with the generated library show a best agreement with the performed measurements at 77K than the simulations with the BSIM3V3 model. The proposed methodology is shown to be particularly effective above strong freeze-out temperature.
Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail
2017-01-01
Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource
A novel model to predict cutaneous finger blood flow via finger and rectal temperatures.
Carrillo, Andres E; Cheung, Stephen S; Flouris, Andreas D
2011-11-01
To generate a model that predicts fingertip blood flow (BF(f) ) and to cross-validate it in another group of subjects. We used fingertip temperature (T(f)), forearm temperature minus T(f) (T(For-f)), rectal temperature (T(re)), and their changes across time ((lag) T) to estimate BF(f). Ten participants (six male, four female) were randomly divided into "model" and "validation" groups. We employed a passive hot-cold water immersion protocol during which each participant's core temperature increased and decreased by 0.5°C above/below baseline during hot/cold conditions, respectively. A hierarchical multiple linear regression analysis was introduced to generate models using temperature indicators and (lag) T (independent variables) obtained from the model group to predict BF(f) (dependent variable). Mean BF(f) (109.5 ± 158.2 PU) and predicted BF(f) (P-BF(f)) (111.4 ± 136.7 PU) in the model group calculated using the strongest (R(2) = 0.766, p model [P-BF(f) =T(f) × 19.930 + (lag4) T(f) × 74.766 + (lag4) T(re) × 124.255 - 447.474] were similar (p = 0.6) and correlated (r = 0.880, p Box statistic = 8.097; p model that predicts BF(f) via two practical temperature indicators that can be implemented in both clinical and field settings. © 2011 John Wiley & Sons Ltd.
Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard
Plouffe, Dany
Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique
The influence of temperature on ozone production under varying NOx conditions - a modelling study
Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.
2016-09-01
Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of
Energy Technology Data Exchange (ETDEWEB)
Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
2015-04-15
A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.
Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I
2012-12-21
A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Photospheric Spot Temperature Models of Young Stars in the Orion Nebula Cluster
Miller, M. J.; Stassun, K. G.; Jensen, E. L. N.
2003-12-01
We apply a simple photospheric spot temperature model to photometric variability measurements of T Tauri stars in the Trapezium region of the Orion Nebula Cluster. Our aim is to search for the relationship, if any, between spot temperatures and stellar rotation periods to better understand the relationship between accretion and angular momentum regulation in T Tauri stars. Current magnetic disk-locking models of young stars ascribe spot temperatures hotter than the photosphere to signatures of active accretion from a circumstellar disk. If accretion acts to brake stellar rotation, spot temperatures hotter than the photosphere should be more prevalent among slow rotators. From the variability amplitudes at four wavelengths (B, V, R, I), we determine spot temperatures and the areal coverage of the spot on the stellar surface. The results of our model show that we can unambiguously distinguish spots hotter than the photosphere from spots cooler than the photosphere for most stars. We present the results of our search for correlations between spot temperatures and previously determined rotation periods.
Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores
Energy Technology Data Exchange (ETDEWEB)
Blackwell, B.F.; Ortega, A.
1983-01-01
A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.
Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong
2016-05-01
The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.
Hilderbrand, Robert H; Kashiwagi, Michael T; Prochaska, Anthony P
2014-07-01
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air-water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R (2) for stream-specific models was positively related to a stream's thermal sensitivity. Both the regional and the stream-specific air-water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream's thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.
Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models
Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.;
2012-01-01
In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.
Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models
Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.
2012-01-01
In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.
Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.
2014-01-01
Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97, d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = −0.10 to −1.30). Validation analyses showed all models performed
Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.
2014-11-01
Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58-1.311, NSE = 0.99-0.97, d = 0.98-0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = -0.10 to -1.30). Validation analyses showed all models performed well; the
Coupled daily streamflow and water temperature modelling in large river basins
Directory of Open Access Journals (Sweden)
M. T. H. van Vliet
2012-11-01
Full Text Available Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully applied to small catchments and short time periods, much less work has been done at large spatial and temporal scales. We present a physically based modelling framework for daily river discharge and water temperature simulations applicable to large river systems on a global scale. Model performance was tested globally at 1/2 × 1/2° spatial resolution and a daily time step for the period 1971–2000. We made specific evaluations on large river basins situated in different hydro-climatic zones and characterized by different anthropogenic impacts. Effects of anthropogenic heat discharges on simulated water temperatures were incorporated by using global gridded thermoelectric water use datasets and representing thermal discharges as point sources into the heat advection equation. This resulted in a significant increase in the quality of the water temperature simulations for thermally polluted basins (Rhine, Meuse, Danube and Mississippi. Due to large reservoirs in the Columbia which affect streamflow and thermal regimes, a reservoir routing model was used. This resulted in a significant improvement in the performance of the river discharge and water temperature modelling. Overall, realistic estimates were obtained at daily time step for both river discharge (median normalized BIAS = 0.3; normalized RMSE = 1.2; r = 0.76 and water temperature (median BIAS = −0.3 °C; RMSE = 2.8 °C; r = 0.91 for the entire validation period, with similar performance during warm, dry periods. Simulated water temperatures are sensitive to headwater temperature, depending on resolution and flow velocity. A high sensitivity of water temperature to river
Coupled daily streamflow and water temperature modelling in large river basins
Directory of Open Access Journals (Sweden)
M. T. H. van Vliet
2012-07-01
Full Text Available Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. electricity and drinking water production and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully applied to small catchments and short time periods, much less work has been done at large spatial and temporal scales. We present a physically-based modelling framework for daily river discharge and water temperature simulations applicable to large river systems on a global scale. Model performance was tested globally at 1/2° × 1/2° spatial resolution and a daily time step for the period 1971–2000. We made specific evaluations on large river basins situated in different hydro-climatic zones and characterized by different anthropogenic impacts. Effects of anthropogenic heat discharges on simulated water temperatures were incorporated by using global gridded thermoelectric water use data sets and representing thermal discharges as point sources into the heat-advection equation. This resulted in a significant increase in the quality of the water temperature simulations for thermally polluted basins (Rhine, Meuse, Danube and Mississippi. Due to large reservoirs in the Columbia which affect streamflow and thermal regimes, a reservoir routing model was used. This resulted in a significant improvement in the performance of the river discharge and water temperature modelling. Overall, realistic estimates were obtained at daily time step for both river discharge (median normalized BIAS = 0.3; normalized RMSE = 1.2; r = 0.76 and water temperature (median BIAS = −0.3 °C; RMSE = 2.8 °C; r = 0.91 for the entire validation period, with similar performance during warm, dry periods. Simulated water temperatures are sensitive to headwater temperature, depending on resolution and flow velocity. A high sensitivity of water temperature to river
Steel Temperature Compensating Model With Multi-Factor Coupling Based on Ladle Thermal State
Institute of Scientific and Technical Information of China (English)
WU Peng-fei; XU An-jun; TIAN Nai-yuan; HE Dong-feng
2012-01-01
Combined with the parameters of the production process of a steel factory, numerical simulations for a new ladle from preheating to turnover are conducted using the finite element analysis system software （ANSYS）. The measured data proved that the simulated results are reliable. The effects of preheating time, thermal cycling times, and empty package time on steel temperature are calculated, an ideal preheating time is provided, besides, based on the analysis of a single factor and use the nonlinear analysis method, a steel temperature compensating model with di- versified coupling factors is proposed, with the largest error of the present coupling model at 1. 462 ~C, and the er- rors between actual and target steel temperature in tundish after the model is applied to practical production are basi- cally controlled within -4-6 ~C, which can meet the accuracy of the manufacturer and has a practical guiding significance for the production in steelmaking workshops.
Polymer-based blood vessel models with micro-temperature sensors in EVE
Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi
2017-04-01
Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.
Efficient Monte Carlo Methods for the Potts Model at Low Temperature
Molkaraie, Mehdi
2015-01-01
We consider the problem of estimating the partition function of the ferromagnetic $q$-state Potts model. We propose an importance sampling algorithm in the dual of the normal factor graph representing the model. The algorithm can efficiently compute an estimate of the partition function in a wide range of parameters; in particular, when the coupling parameters of the model are strong (corresponding to models at low temperature) or when the model contains a mixture of strong and weak couplings. We show that, in this setting, the proposed algorithm significantly outperforms the state of the art methods in the primal and in the dual domains.
Improvements on Calculation Model of Theoretical Combustion Temperature in a Blast Furnace
Institute of Scientific and Technical Information of China (English)
WU Sheng-li; LIU Cheng-song; FU Chang-liang; XU Jian; KOU Ming-yin
2011-01-01
On the basis of the existing originally modified calculation models of theoretical combustion temperature（TCT）,some factors,such as the combustion ratio of pulverized coal injection（PCI）,the decomposition heat of PCI and the heat consumption of SiO2 in ash reduced in high temperature environment,were amended and improved to put forward a more comprehensive model for calculating TCT.The influences of each improvement on TCT were studied and the results were analyzed compared with those of traditional model and originally modified model,which showed that the present model could reflect the thermal state of a hearth more effectively.
Modeling the microbial growth and temperature profile in a fixed-bed bioreactor.
da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G
2014-10-01
Aiming to scale up and apply control and optimization strategies, currently is required the development of accurate plant models to forecast the process nonlinear dynamics. In this work, a mathematical model to predict the growth of the Kluyveromyces marxianus and temperature profile in a fixed-bed bioreactor for solid-state fermentation using sugarcane bagasse as substrate was built up. A parameter estimation technique was performed to fit the mathematical model to the experimental data. The estimated parameters and the model fitness were evaluated with statistical analyses. The results have shown the estimated parameters significance, with 95 % confidence intervals, and the good quality of process model to reproduce the experimental data.
Hydrologic modelling of the effect of snowmelt and temperature on a mountainous watershed
Indian Academy of Sciences (India)
Kwangmin Kang; Joo Hyoung Lee
2014-06-01
Snowmelt-runoff modelling in a mountainous basin is perceived as difficult due to the complexity of simulation. Theoretically, the snowmelt process should be influenced by temperature changes. It is still controversial as how to incorporate the temperature changes into the snowmelt-runoff model in a mountainous basin. This paper presents the results of a study in the North Fork American River basin where the snowmelt-runoff mechanism is modelled by relating the temperature changes to the elevation band in the basin. In this study, a distributed hydrologic model is used to explore the orographic effects on the snowmelt-runoff using the snowfall-snowmelt routine in Soil and Water Assessment Tool (SWAT). Three parameters, namely maximum snowmelt factor, minimum snowmelt factor, and snowpack temperature lag were analysed during the simulation. The model was validated using streamflow data from October 1, 1991 to September 30, 1994, with and without considering the elevation band. The result of this study suggests that the snowmelt-runoff model associated with the elevation band better represents the snowmelt-runoff mechanism in terms of Nash–Sutcliffe coefficient (NS), 2, and Root Mean Square Error (RMSE).
Energy Technology Data Exchange (ETDEWEB)
Lee, Jinwoo [KEPCO E and C, Sungnam (Korea, Republic of); Engelhardt, Michael D. [The Univ., of Texas at Austin, Austin (United States)
2014-05-15
ASTM A992 is the most common grade of high strength steel used for building structures in the U. S. and considered to be applied in Korean nuclear power plant in an immediate future. This paper provides two constitutive models for high strength steel of ASTM A992 steel at elevated temperature to use in steel structures or steel building subjected to fire loads and thermal loads. One is the detailed full constitutive model and it has good agreements for every temperatures from room temperature to 1,000 .deg. C with increments of 100 .deg. C because it was developed using a best-fitting approach method with separated special zones; elastic, plastic plateau, strain-hardening and strain-softening regions. The curve-fitting results were helpful to derive the constitutive models of the stress-strain curves at room and elevated temperatures. The first of these models was developed for academia, and very closely fit the observed test data throughout the strain-hardening and softening zones. The second model was developed as a design model. Despite its simplicity (assumed bilinear stress-strain behavior), it captures the observed stress-strain behavior better than the Eurocode 3-1-2 provisions, most notably in terms of its predicted strain softening behavior and ultimate strains.
Modeling the temperature in coal char particle during fluidized bed combustion
Energy Technology Data Exchange (ETDEWEB)
Vasilije Manovic; Mirko Komatina; Simeon Oka [University of Belgrade, Belgrade (Serbia)
2008-05-15
The temperatures of a coal char particle in hot bubbling fluidized bed (FB) were analyzed by a model of combustion. The unsteady model includes phenomena of heat and mass transfer through a porous char particle, as well as heterogeneous reaction at the interior char surface and homogeneous reaction in the pores. The parametric analysis of the model has shown that above 550{sup o}C combustion occurs under the regime limited by diffusion. The experimental results of temperature measurements by thermocouple in the particle center during FB combustion at temperatures in the range 590-710{sup o}C were compared with the model predictions. Two coals of different rank were used: lignite and brown coal, with particle size in the range 5-10 mm. The comparisons have shown that the model can adequately predict the histories of temperatures in char particles during combustion in FB. In the first order, the model predicts the influence of the particle size, coal rank (via porosity), and oxygen concentration in its surroundings. 53 refs., 6 figs., 2 tabs.
Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.
1990-01-01
A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.
Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.
1990-01-01
A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.
Temperature field modeling during multi-modes CO 2 laser irradiation of human enamel
Mihai, Oane; Scarlat, Florea; Mihailescu, Ion N.
2007-04-01
We examine the temperature fields of human enamel [Yu D, Fox JL, Hsu J, Lynn Powell G, Higuchi WI. Computer simulation of surface temperature profiles during CO 2 laser irradiation of human enamel. Opt Eng 1993; 32(2)] during multi-modes CO 2 laser irradiation. For this we use the integral transform method as well as direct and inverse Laplace transform [Oane M, Sporea D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys Technol 2001; 42(1): 31-40; Oane M, Sporea D. Study of heat transfer in IR optical components during CO 2 laser irradiation. Proc SPIE 2001; 4430: 898-904; Oane M. Mathematical modeling of the thermal field distributions in solids under multiple laser irradiations. Proc SPIE 2003; 5227: 329-34; Oane M, Apostol I, Timcu A. Temperature field modeling in laser heated metals for laser cleaning of surfaces. Proc SPIE 2003; 5227: 323-8]. The enamel block is modeled as homogeneous cylinder in three dimensions. Results indicate that (i) the thermal field depends on multi-modes structure; (ii) heat transfer coefficient plays an important role in temperature distribution.
Development and evaluation of the Soil and Water Temperature Model (SWTM) for rural catchments
Kwon, Yonghwan; Koo, Bhon K.
2017-10-01
A physically-based energy balance model, the Soil and Water Temperature Model (SWTM), is developed in an effort to improve the soil temperature estimation for Korean rural watersheds or catchments, which are characterized by heterogeneous land-cover types and rugged topography and have many paddy fields retaining surface water during the growing season. The developed model is applied to a small rural catchment in South Korea where soil temperature is measured for two months, July to August 2008, at eight monitoring sites including forest, paddy field, dry field, and natural vegetation area. The degree of agreement between the simulated and observed soil temperature is quite good for the soil surface (RMSE 1.11-3.16 °C, R2 0.80-0.88), except for forests. Although some estimation errors resulting from data deficiency and model structure are observed, SWTM reasonably well simulates the spatial and temporal distribution of soil temperature at the catchment scale by considering the effects of topography, vegetation cover, and hydrological characteristics, especially the existence of surface water. SWTM is well suited for rural watersheds or catchments and expected to contribute to enhancing our understanding of watershed biogeochemical processes and managing the watershed environment.
Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.
Manzocco, Lara; Nicoli, Maria Cristina
2007-08-08
This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature.
Prediction of soil temperature using regression and artificial neural network models
Bilgili, Mehmet
2010-12-01
In this study, monthly soil temperature was modeled by linear regression (LR), nonlinear regression (NLR) and artificial neural network (ANN) methods. The soil temperature and other meteorological parameters, which have been taken from Adana meteorological station, were observed between the years of 2000 and 2007 by the Turkish State Meteorological Service (TSMS). The soil temperatures were measured at depths of 5, 10, 20, 50 and 100 cm below the ground level. A three-layer feed-forward ANN structure was constructed and a back-propagation algorithm was used for the training of ANNs. In order to get a successful simulation, the correlation coefficients between all of the meteorological variables (soil temperature, atmospheric temperature, atmospheric pressure, relative humidity, wind speed, rainfall, global solar radiation and sunshine duration) were calculated taking them two by two. First, all independent variables were split into two time periods such as cold and warm seasons. They were added to the enter regression model. Then, the method of stepwise multiple regression was applied for the selection of the "best" regression equation (model). Thus, the best independent variables were selected for the LR and NLR models and they were also used in the input layer of the ANN method. Results of these methods were compared to each other. Finally, the ANN method was found to provide better performance than the LR and NLR methods.
Directory of Open Access Journals (Sweden)
J. Xu
2013-10-01
Full Text Available On the basis of the fifth Coupled Model Intercomparison Project (CMIP5 and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3 simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5, although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the
Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas
2016-08-01
We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against
Bisht, K.; Dodamani, S. S.
2016-12-01
Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.
Modeling the impacts of climate change on stream water temperature across scales
Segura, C.; Caldwell, P. V.; Cohen, E.; Sun, G.; McNulty, S. G.
2015-12-01
Water temperature is a critical variable to aquatic ecosystems because it controls metabolic rates and the distribution of aquatic organisms. Therefore, understanding the impacts of future climate on stream water temperature is relevant to sustainable management of water resources. Empirical models based on the statistical relation between air and steam water temperature offer a powerful tool for prediction at large scales. We will demonstrate how simple linear regression models based on short-term historical stream temperature (ts) observations and readily available interpolated air temperature (ta) estimates can be used for rapid assessment of historical and future changes in ts. This methodology was applied to 61 sites in the Southeast region of the US. We found that between 2011 and 2060, all sites were projected to experience increases in ts under the three evaluated climate projections (mean of +0.41 °C per decade). We also developed continental scale models to predict mean and maximum ts in ungauged locations across the US. The models linearly describe site relationships between monthly mean and maximum ta and ts as a function of climatic, hydrologic, and land cover variables. The empirical models were derived using data from 171 reference sites. These sites drain areas spanning four orders of magnitude and are located in 32 states and 16 hydrologic regions. Model performances yielded average Nash-Sutcliffe efficiency coefficients between 0.78 and 0.85. These models were incorporated into the Water Supply Stress Index (WaSSI) Ecosystem Services Model developed by the U.S. Forest Service to predict mean and maximum ts under different climatic projections and land cover changes at the USGS 8 digit hydrologic unit code watershed resolution across the US. The results identify regions in the country where significant increases in ts may occur, potentially causing stress to aquatic ecosystems as climate change progresses.
Institute of Scientific and Technical Information of China (English)
Qi Zhidong; Zhu Xinjian; Cao Guangyi
2006-01-01
Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.
A semi-nonlocal numerical approach for modeling of temperature-dependent crack-wave interaction
Martowicz, Adam; Kijanka, Piotr; Staszewski, Wieslaw J.
2016-04-01
Numerical tools, which are used to simulate complex phenomena for models of complicated shapes suffer from either long computational time or accuracy. Hence, new modeling and simulation tools, which could offer reliable results within reasonable time periods, are highly demanded. Among other approaches, the nonlocal methods have appeared to fulfill these requirements quite efficiently and opened new perspectives for accurate simulations based on crude meshes of the model's degrees of freedom. In the paper, the preliminary results are shown for simulations of the phenomenon of temperature-dependent crack-wave interaction for elastic wave propagation in a model of an aluminum plate. Semi-nonlocal finite differences are considered to solve the problem of thermoelasticity - based on the discretization schemes, which were already proposed by the authors and taken from the previously published work. Numerical modeling is used to examine wave propagation primarily in the vicinity of a notch. Both displacement and temperature fields are sought in the investigated case study.
Zhang, B.; Chen, Kuiying; Baddour, N.; Patnaik, P. C.
2017-06-01
The failure analysis and life prediction of atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) were carried out for a thermal cyclic process. A residual stress model for the top coat of APS-TBC was proposed and then applied to life prediction. This residual stress model shows an inversion characteristic versus thickness of thermally grown oxide. The capability of the life model was demonstrated using temperature-dependent model parameters. Using existing life data, a comparison of fitting approaches of life model parameters was performed. A larger discrepancy was found for the life predicted using linearized fitting parameters versus temperature compared to those using non-linear fitting parameters. A method for integrating the residual stress was proposed by using the critical time of stress inversion. The role of the residual stresses distributed at each individual coating layer was explored and their interplay on the coating's delamination was analyzed.
Development of temperature statistical model when machining of aerospace alloy materials
Directory of Open Access Journals (Sweden)
Kadirgama Kumaran
2014-01-01
Full Text Available This paper presents to develop first-order models for predicting the cutting temperature for end-milling operation of Hastelloy C-22HS by using four different coated carbide cutting tools and two different cutting environments. The first-order equations of cutting temperature are developed using the response surface methodology (RSM. The cutting variables are cutting speed, feed rate, and axial depth. The analyses are carried out with the aid of the statistical software package. It can be seen that the model is suitable to predict the longitudinal component of the cutting temperature close to those readings recorded experimentally with a 95% confident level. The results obtained from the predictive models are also compared with results obtained from finite-element analysis (FEA. The developed first-order equations for the cutting temperature revealed that the feed rate is the most crucial factor, followed by axial depth and cutting speed. The PVD coated cutting tools perform better than the CVD-coated cutting tools in terms of cutting temperature. The cutting tools coated with TiAlN perform better compared with other cutting tools during the machining performance of Hastelloy C-22HS. It followed by TiN/TiCN/TiN and CVD coated with TiN/TiCN/Al2O3 and TiN/TiCN/TiN. From the finite-element analysis, the distribution of the cutting temperature can be discussed. High temperature appears in the lower sliding friction zone and at the cutting tip of the cutting tool. Maximum temperature is developed at the rake face some distance away from the tool nose, however, before the chip lift away.
SiC JFET Transistor Circuit Model for Extreme Temperature Range
Neudeck, Philip G.
2008-01-01
A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.
Energy Technology Data Exchange (ETDEWEB)
Manz, P. [Volkswagen AG, Wolfsburg (Germany); Bargende, M.; Sargenti, R. [Stuttgart Univ. (DE). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)
2004-07-01
Starting from the literature research in the FVV-Project 722, the objective of this project was set on the development of a universally valid model for the calculation of wall temperatures in combustion engines. To reach this target, intensive research work was necessary to improve the simple zero-dimensional modeling of the in-cylinder processes. For this reason, a 2.3 l Otto-engine was fitted with thermocouples in a manner to permit accurate measurements of wall temperatures of both cylinder liner wall and cylinder head. To allow for the calculation of the thermodynamic boundary conditions of the gas phase using a pressure history analysis, the engine was indicated in all four cylinders. The parameters cooling liquid temperature and oil temperature were highly varied to examine their influence on the wall temperature. Simultaneous to the test bench measurements, the components for the numerical calculation of the wall temperature were programmed and analyzed. The modular description of the combustion chamber enables modelling of an arbitrary combustion engine. For the calculation of the influence of the gas phase heat, the working process analyses was performed by an external simulation program. The wall temperature model can be used as an independent tool as well as an integrated part of a coupled simulation. In a pressure history analysis the wall temperatures needed for the calculation of the wall heat can be determined precisely. In case of a coupling with a one-dimensional simulation tool, the wall temperature model is used for an iterative calculation of the wall temperatures and the wall heat fluxes. Due to the possibility of an arbitrary discretisation of the cylinder liner, this model can also be applied to a three-dimensional simulation for the initial calculation of the boundary conditions. (orig.)
Epstein, H. E.; Erler, A.; Frazier, J.; Bhatt, U. S.
2011-12-01
Changes in the seasonality of air temperature will elicit interacting effects on the dynamics of snow cover, nutrient availability, vegetation growth, and other ecosystem properties and processes in arctic tundra. Simulation models often do not have the fine temporal resolution necessary to develop theory and propose hypotheses for the effects of daily and weekly timescale changes on ecosystem dynamics. We therefore developed a daily version of an arctic tundra vegetation dynamics model (ArcVeg) to simulate how changes in the seasonality of air temperatures influences the dynamics of vegetation growth and carbon sequestration across regions of arctic tundra. High temporal-resolution air and soil temperature data collected from field sites across the five arctic tundra bioclimate subzones were used to develop a daily weather generator operable for sites throughout the arctic tundra. Empirical relationships between temperature and soil nitrogen were used to generate daily dynamics of soil nitrogen availability, which drive the daily uptake of nitrogen and growth among twelve tundra plant functional types. Seasonal dynamics of the remotely sensed normalized difference vegetation index (NDVI) and remotely sensed land surface temperature from the Advanced Very High Resolution Radiometer (AVHRR) GIMMS 3g dataset were used to investigate constraints on the start of the growing season, although there was no indication of any spatially consistent temperature or day-length controls on greening onset. Because of the exponential nature of the relationship between soil temperature and nitrogen mineralization, temperature changes during the peak of the growing season had greater effects on vegetation productivity than changes earlier in the growing season. However, early season changes in temperature had a greater effect on the relative productivities of different plant functional types, with potential influences on species composition.
Detection and Analysis of High Temperature Sensitivity of TGMS Lines in Rice Using AMMI Model
Institute of Scientific and Technical Information of China (English)
FU Li-zhong; XUE Qing-zhong
2004-01-01
With the AMMI(additive main effects and multiplicative interaction)analysis model,the determination of the sensitivity to temperature among different TGMS(thermo-sensitive genic male sterile)lines was performed. To assess the genetic differences due to high temperature stress at. the fertility-sensitive stage(10- 20 d before heading),seven genotypes(six TGMS lines and the control Pei-Ai64S)were grown from May 4 at seven different stages with 10d intervals. The temperatures at. the fertility-sensitive stages involved twelve levels from ＜ 20 to ＞30℃ under the regime natural conditions in Hangzhou,China. There was considerable variation in pollen fertility among genotypes in response to high temperature. Five genotypes identified as TGMS lines as their percentages of fertile pollens were lower than or close to that. of the. control except for the unstable line RTS19(V6). When the temperatures at. the fertility-sensitive stage were at Ⅰ -Ⅳ,Ⅴ-Ⅵ and Ⅶ-Ⅻ,the percentages of fertile pollens varied in the ranges of 46.46- 48.49%,19.62-22.79% and 3.49- 5.87%,respectively. The critical temperatures of sterility and fertility in the five TGMS lines were 25.1 and 23.0℃,respectively. Considering the amounts and directions of main effect and their IPCA(interaction principal components analysis),we can classify the lines and temperature levels into different groups,and describe the characteristics of genotyPe x temperature interaction,offering the information and tools for the development and utility of thermo-sensitive male sterile lines.Several TGMS rice lines with their reproductive sensitivity to high temperature that can be screened using the AMMI model may add valuable germplasm to the breeding program of hybrid rice.
Lithosphere temperature model and resource assessment for deep geothermal exploration in Hungary
Bekesi, Eszter; van Wees, Jan-Diederik; Vrijlandt, Mark; Lenkey, Laszlo; Horvath, Ferenc
2017-04-01
The demand for deep geothermal energy has increased considerably over the past years. To reveal potential areas for geothermal exploration, it is crucial to have an insight into the subsurface temperature distribution. Hungary is one of the most suitable countries in Europe for geothermal development, as a result of Early and Middle Miocene extension and subsequent thinning of the lithosphere. Hereby we present the results of a new thermal model of Hungary extending from the surface down to the lithosphere-astenosphere boundary (LAB). Subsurface temperatures were calculated through a regular 3D grid with a horizontal resolution of 2.5 km, a vertical resolution of 200 m for the uppermost 7 km, and 3 km down to the depth of the LAB The model solves the heat equation in steady-state, assuming conduction as the main heat transfer mechanism. At the base, it adopts a constant basal temperature or heat flow condition. For the calibration of the model, more than 5000 temperature measurements were collected from the Geothermal Database of Hungary. The model is built up by five sedimentary layers, upper crust, lower crust, and lithospheric mantle, where each layer has its own thermal properties. The prior thermal properties and basal condition of the model is updated through the ensemble smoother with multiple data assimilation technique. The conductive model shows misfits with the observed temperatures, which cannot be explained by neglected transient effects related to lithosphere extension. These anomalies are explained mostly by groundwater flow in Mesozoic carbonates and other porous sedimentary rocks. To account for the effect of heat convection, we use a pseudo-conductive approach by adjusting the thermal conductivity of the layers where fluid flow may occur. After constructing the subsurface temperature model of Hungary, the resource base for EGS (Enhanced Geothermal Systems) is quantified. To this end, we applied a cash-flow model to translate the geological
Directory of Open Access Journals (Sweden)
Ryś Maciej
2014-09-01
Full Text Available In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.
Institute of Scientific and Technical Information of China (English)
ZHU Zhenyang; QIANG Sheng; CHEN Weimin
2014-01-01
Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas constant (Ea/R) have not been well studied yet. From the latest experiments it is shown that Ea/R obviously changes with the hydration degree without fixed form. In this paper, the relationship between hydration degree and Ea/R is studied and a new hydration exothermic model is proposed. With those achievements, the mass concrete temperature field with arbitrary boundary condition can be calculated more precisely.
Standard Model Extension and Casimir effect for fermions at finite temperature
Santos, A. F.; Khanna, Faqir C.
2016-11-01
Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan-Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.
Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries
Pattnayak, K. C.; Kar, S. C.; Dalal, Mamta; Pattnayak, R. K.
2017-05-01
Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project (CMIP5) models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region.
Numerical Modeling of Two-Dimensional Temperature Dynamics Across Ice-Wedge Polygons
Garayshin, Viacheslav V.
The ice wedges on the North Slope of Alaska have been forming for many millennia, when the ground cracked and the cracks were filled with snowmelt water. The infiltrated water then became frozen and turned into ice. When the annual and summer air temperatures become higher, the depth of the active layer increases. A deeper seasonal thawing may cause melting of ice wedges from their tops. Consequently, the ground starts to settle and a trough begins to form above the ice wedge. The forming trough creates a local temperature anomaly in the surrounding ground, and the permafrost located immediately under the trough starts degrading further. Once the trough is formed, the winter snow cover becomes deeper at the trough area further degrading the permafrost. In this thesis we present a computational approach to study the seasonal temperature dynamics of the ground surrounding an ice wedge and ground subsidence associated with ice wedge degradation. A thermo-mechanical model of the ice wedge based on principles of macroscopic thermodynamics and continuum mechanics was developed and will be presented. The model includes heat conduction and quasi-static mechanical equilibrium equations, a visco-elastic rheology for ground deformation, and an empirical formula which relates unfrozen water content to temperature. The complete system is reduced to a computationally convenient set of coupled equations for temperature, ground displacement and ground porosity in a two-dimensional domain. A finite element method and an implicit scheme in time were utilized to construct a non-linear system of equations, which was solved iteratively. The model employs temperature and moisture content data collected from a field experiment at the Next-Generation Ecosystem Experiments (NGEE) sites in Barrow, Alaska. The model describes seasonal dynamics of temperature and the long-term ground motion near the ice wedges and helps to explain destabilization of the ice wedges north of Alaska's Brooks
Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR
Energy Technology Data Exchange (ETDEWEB)
Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui
2017-03-15
Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.
Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.
2017-05-01
The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected
Directory of Open Access Journals (Sweden)
S. Sippel
2017-05-01
Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand
Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.
2015-01-01
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~ 275 to ~ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~ 190 to ~ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in
Influence of Air Temperature Difference on the Snow Melting Simulation of SWAT Model
YAN, Y.; Onishi, T.
2013-12-01
The temperature-index models are commonly used to simulate the snowmelt process in mountain areas because of its good performance, low data requirements, and computational simplicity. Widely used distributed hydrological model: Soil and Water Assessment Tool (SWAT) model is also using a temperature-index module. However, the lack of monitoring air temperature data still involves uncertainties and errors in its simulation performance especially in data sparse area. Thus, to evaluate the different air temperature data influence on the snow melt of the SWAT model, five different air temperature data are applied in two different Russia basins (Birobidjan basin and Malinovka basin). The data include the monitoring air temperature data (TM), NCEP reanalysis data (TNCEP), the dataset created by inverse distance weighted interpolation (IDW) method (TIDW), the dataset created by improved IDW method considering the elevation influence (TIDWEle), and the dataset created by using linear regression and MODIS Land Surface Temperature (LST) data (TLST). Among these data, the TLST , the TIDW and TIDWEle data have the higher spatial density, while the TNCEP and TM DATA have the most valid monitoring value for daily scale. The daily simulation results during the snow melting seasons (March, April and May) showed reasonable results in both test basins for all air temperature data. While R2 and NSE in Birobidjan basin are around 0.6, these values in Malinovka basin are over 0.75. Two methods: Generalized Likelihood Uncertainty Estimation (GLUE) and Sequential Uncertainty Fitting, version. 2 (SUFI-2) were used for model calibration and uncertainty analysis. The evolution index is p-factor which means the percentage of measured data bracketed by the 95% Prediction Uncertainty (95PPU). The TLST dataset always obtained the best results in both basins compared with other datasets. On the other hand, the two IDW based method get the worst results among all the scenarios. Totally, the
Baran, Sándor; Möller, Annette
2017-02-01
Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.
Test Mass Temperature Field and Laser Aberration Modeling in Advanced LIGO
Ramette, Joshua; Kasprzack, Marie; Gonzalez, Gabriela; Brooks, Aidan; Blair, Carl; Kandhasamy, Shivaraj; Wang, Haoyu; LIGO Collaboration
2017-01-01
Advanced LIGO uses high laser power in the main interferometer arm cavities to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses. Actuation by ``ring heaters,'' additional heater elements aimed to reduce the temperature gradients in the mirrors, minimizes aberrations in the main laser beam due to thermal lensing. We derive the first analytical model of the temperature field contribution in the mirrors generated by an ideal ring heater. In addition, we simulate the test mass temperature field using finite element analysis software and find agreement with the prediction of our ring heater analytical model and existing models for self-heating of the test mass by the main laser beam. From our ring heater temperature field models, we then express the resulting optical aberration contribution in the main laser and compare to Hartmann wavefront sensor measurements of the aberration. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in Advanced LIGO. We thank the National Science Foundation for supporting this work (NSF grant #1262890 and #1205882).
A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures
Directory of Open Access Journals (Sweden)
Li-Na Zhang
2016-01-01
Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.
Geller, M. A.; Zhou, T.; Martin, W. G. K.; Song, H.; Wang, S.; Nazarenko, L.; Lo, K. W. K.
2014-12-01
It has been suggested that state-of-the-art climate models, both with interactive chemistry and without interactive chemistry (CCMVal-2 and CMIP5) do not reproduce the observed lower stratosphere temperature anomalies that are observed by satellite microwave sounding instruments. We find that making two changes in the analysis can eliminate this disagreement. One is a change in the definition of the temperature anomalies as being zero for the 4-year mean (1979-1982) at the beginning of the data and modeling analysis period. Such a definition of the zero temperature anomaly does not take into proper account that observations over a relatively short period represent a single realization of several possible climate states, and thus this zero anomaly definition can be misleading when comparing anomalies from observations and models. The other change is our taking into account all CMIP-5 and CCMVal-2 model runs that ran realistic scenarios for the period 1979-2005. With these two changes in the analysis, we conclude that temperature changes from both CMIP-5 and CCMVal-2 models agree well with MSU-4 observations over the period 1979-2005.
Integrated modeling of temperature profiles in L-mode tokamak discharges
Rafiq, T.; Kritz, A. H.; Tangri, V.; Pankin, A. Y.; Voitsekhovitch, I.; Budny, R. V.
2014-12-01
Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.
Integrated modeling of temperature profiles in L-mode tokamak discharges
Energy Technology Data Exchange (ETDEWEB)
Rafiq, T.; Kritz, A. H.; Tangri, V. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Voitsekhovitch, I. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-12-15
Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.
Kinetic model of force-free current sheets with non-uniform temperature
Kolotkov, D. Y.; Vasko, I. Y.; Nakariakov, V. M.
2015-11-01
The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.
Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon
Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.
2007-01-01
Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.
A p-version embedded model for simulation of concrete temperature fields with cooling pipes
Directory of Open Access Journals (Sweden)
Sheng Qiang
2015-07-01
Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.
Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model
Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-P.; McCord, T. B.; Li, J.-Y.; Russell, C. T.; Ryamond, C. A.; Mittlefehldt, D.; Toplis, M.; Forni, O.; Sykes, M. V.
2012-01-01
In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.
Wang, Xia; Tang, Sanyi; Cheke, Robert A
2016-12-21
An outbreak of dengue fever in Guangdong province in 2014 was the most serious outbreak ever recorded in China. Given the known positive correlation between the abundance of mosquitoes and the number of dengue fever cases, a stage structured mosquito model was developed to investigate the cause of the large abundance of mosquitoes in 2014 and its implications for outbreaks of the disease. Data on the Breteau index (number of containers positive for larvae per 100 premises investigated), temperature and precipitation were used for model fitting. The egg laying rate, the development rate and the mortality rates of immatures and adults were obtained from the estimated parameters. Moreover, effects of daily fluctuations of temperature on these parameters were obtained and the effects of temperature and precipitation were analyzed by simulations. Our results indicated that the abundance of mosquitoes depended not only on the total annual precipitation but also on the distribution of the precipitation. The daily mean temperature had a nonlinear relationship with the abundance of mosquitoes, and large diurnal temperature differences can reduce the abundance of mosquitoes. In addition, effects of increasing precipitation and temperature were interdependent. Our findings suggest that the large abundance of mosquitoes in 2014 was mainly caused by the distribution of the precipitation. In the perspective of mosquito control, our results reveal that it is better to clear water early and spray insecticide between April and August in case of limited resources.
Directory of Open Access Journals (Sweden)
W. Terink
2009-08-01
Full Text Available In many climate impact studies hydrological models are forced with meteorological forcing data without an attempt to assess the quality of these forcing data. The objective of this study is to compare downscaled ERA15 (ECMWF-reanalysis data precipitation and temperature with observed precipitation and temperature and apply a bias correction to these forcing variables. The bias-corrected precipitation and temperature data will be used in another study as input for the Variable Infiltration Capacity (VIC model. Observations were available for 134 sub-basins throughout the Rhine basin at a temporal resolution of one day from the International Commission for the Hydrology of the Rhine basin (CHR. Precipitation is corrected by fitting the mean and coefficient of variation (CV of the observations. Temperature is corrected by fitting the mean and standard deviation of the observations. It seems that the uncorrected ERA15 is too warm and too wet for most of the Rhine basin. The bias correction leads to satisfactory results, precipitation and temperature differences decreased significantly. Corrections were largest during summer for both precipitation and temperature, and for September and October for precipitation only. Besides the statistics the correction method was intended to correct for, it is also found to improve the correlations for the fraction of wet days and lag-1 autocorrelations between ERA15 and the observations.
Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether.
Rodriguez, Anne; Frottier, Ophélie; Herbinet, Olivier; Fournet, René; Bounaceur, Roda; Fittschen, Christa; Battin-Leclerc, Frédérique
2015-07-16
The oxidation of dimethyl ether (DME) was studied using a jet-stirred reactor over a wide range of conditions: temperatures from 500 to 1100 K; equivalence ratios of 0.25, 1, and 2; residence time of 2 s; pressure of 106.7 kPa (close to the atmospheric pressure); and an inlet fuel mole fraction of 0.02 (with high dilution in helium). Reaction products were quantified using two analysis methods: gas chromatography and continuous wave cavity ring-down spectroscopy (cw-CRDS). cw-CRDS enabled the quantification of formaldehyde, which is one of the major products from DME oxidation, as well as that of hydrogen peroxide, which is an important branching agent in low-temperature oxidation chemistry. Experimental data were compared with data computed using models from the literature with important deviations being observed for the reactivity at low-temperature. A new detailed kinetic model for the oxidation of DME was developed in this study. Kinetic parameters used in this model were taken from literature or calculated in the present work using quantum calculations. This new model enables a better prediction of the reactivity in the low-temperature region. Under the present JSR conditions, error bars on predictions were given. Simulations were also successfully compared with experimental flow reactor, jet-stirred reactor, shock tube, rapid compression machine, and flame data from literature. The kinetic analysis of the model enabled the highlighting of some specificities of the oxidation chemistry of DME: (1) the early reactivity which is observed at very low-temperature (e.g., compared to propane) is explained by the absence of inhibiting reaction of the radical directly obtained from the fuel (by H atom abstraction) with oxygen yielding an olefin + HO2·; (2) the low-temperature reactivity is driven by the relative importance of the second addition to O2 (promoting the reactivity through branching chain) and the competitive decomposition reactions with an inhibiting
Directory of Open Access Journals (Sweden)
Sheng-Qi Yang
2017-05-01
Full Text Available Thermally induced damage has an important influence on rock mechanics and engineering, especially for high-level radioactive waste repositories, geological carbon storage, underground coal gasification, and hydrothermal systems. Additionally, the wide application of geothermal heat requires knowledge of the geothermal conditions of reservoir rocks at elevated temperature. However, few methods to date have been reported for investigating the micro-mechanics of specimens at elevated temperatures. Therefore, this paper uses a cluster model in particle flow code in two dimensions (PFC2D to simulate the uniaxial compressive testing of Australian Strathbogie granite at various elevated temperatures. The peak strength and ultimate failure mode of the granite specimens at different elevated temperatures obtained by the numerical methods are consistent with those obtained by experimentation. Since the tensile force is always concentrated around the boundary of the crystal, cracks easily occur at the intergranular contacts, especially between the b-b and b-k boundaries where less intragranular contact is observed. The intergranular and intragranular cracking of the specimens is almost constant with increasing temperature at low temperature, and then it rapidly and linearly increases. However, the inflection point of intergranular micro-cracking is less than that of intragranular cracking. Intergranular cracking is more easily induced by a high temperature than intragranular cracking. At an elevated temperature, the cumulative micro-crack counts curve propagates in a stable way during the active period, and it has no unstable crack propagation stage. The micro-