WorldWideScience

Sample records for modeling techniques based

  1. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...

  2. Model-checking techniques based on cumulative residuals.

    Science.gov (United States)

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.

  3. Validation techniques of agent based modelling for geospatial simulations

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS, biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI’s ArcGIS, OpenMap, GeoTools, etc for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  4. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  5. Demand Management Based on Model Predictive Control Techniques

    Directory of Open Access Journals (Sweden)

    Yasser A. Davizón

    2014-01-01

    Full Text Available Demand management (DM is the process that helps companies to sell the right product to the right customer, at the right time, and for the right price. Therefore the challenge for any company is to determine how much to sell, at what price, and to which market segment while maximizing its profits. DM also helps managers efficiently allocate undifferentiated units of capacity to the available demand with the goal of maximizing revenue. This paper introduces control system approach to demand management with dynamic pricing (DP using the model predictive control (MPC technique. In addition, we present a proper dynamical system analogy based on active suspension and a stability analysis is provided via the Lyapunov direct method.

  6. Plasticity models of material variability based on uncertainty quantification techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Reese E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rizzi, Francesco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Templeton, Jeremy Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

  7. Skin fluorescence model based on the Monte Carlo technique

    Science.gov (United States)

    Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.

    2003-10-01

    The novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account spatial distribution of fluorophores following the collagen fibers packing, whereas in epidermis and stratum corneum the distribution of fluorophores assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the NIR spectral region, while fluorescence of sensor layer embedded in epidermis is localized at the adjusted depth. The model is also able to simulate the skin fluorescence spectra.

  8. Validation techniques of agent based modelling for geospatial simulations

    OpenAIRE

    Darvishi, M.; Ahmadi, G.

    2014-01-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent...

  9. Ionospheric scintillation forecasting model based on NN-PSO technique

    Science.gov (United States)

    Sridhar, M.; Venkata Ratnam, D.; Padma Raju, K.; Sai Praharsha, D.; Saathvika, K.

    2017-09-01

    The forecasting and modeling of ionospheric scintillation effects are crucial for precise satellite positioning and navigation applications. In this paper, a Neural Network model, trained using Particle Swarm Optimization (PSO) algorithm, has been implemented for the prediction of amplitude scintillation index (S4) observations. The Global Positioning System (GPS) and Ionosonde data available at Darwin, Australia (12.4634° S, 130.8456° E) during 2013 has been considered. The correlation analysis between GPS S4 and Ionosonde drift velocities (hmf2 and fof2) data has been conducted for forecasting the S4 values. The results indicate that forecasted S4 values closely follow the measured S4 values for both the quiet and disturbed conditions. The outcome of this work will be useful for understanding the ionospheric scintillation phenomena over low latitude regions.

  10. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    Science.gov (United States)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  11. Development Model of Basic Technique Skills Training Shot-Put Obrien Style Based Biomechanics Review

    Directory of Open Access Journals (Sweden)

    danang rohmat hidayanto

    2018-03-01

    Full Text Available The background of this research is the unavailability of learning model of basic technique technique of O'Brien style force that integrated in skill program based on biomechanics study which is used as a reference to build the basic technique skill of the O'Brien style force among students. The purpose of this study is to develop a model of basic-style technique of rejecting the O'Brien-style shot put based on biomechanical studies for beginner levels, including basic prefix technique, glide, final stage, repulsion, further motion and repulsion performance of O'Brien style, all of which arranged in a medium that is easily accessible whenever, by anyone and anywhere, especially in SMK Negeri 1 Kalijambe Sragen . The research method used is "Reasearch and Developement" approach. "Preliminary studies show that 43.0% of respondents considered that the O'Brien style was very important to be developed with a model of skill-based exercise based on biomechanics, as many as 40.0% ressponden stated that it is important to be developed with biomechanics based learning media. Therefore, it is deemed necessary to develop the learning media of the O'Brien style-based training skills based on biomechanical studies. Development of media starts from the design of the storyboard and script form that will be used as media. The design of this model is called the draft model. Draft models that have been prepared are reviewed by the multimedia expert and the O'Brien style expert to get the product's validity. A total of 78.24% of experts declare a viable product with some input. In small groups with n = 6, earned value 72.2% was obtained or valid enough to be tested in large groups. In the large group test with n = 12,values obtained 70.83% or quite feasible to be tested in the field. In the field test, experimental group was prepared with treatment according to media and control group with free treatment. From result of counting of significance test can be

  12. IMAGE-BASED MODELING TECHNIQUES FOR ARCHITECTURAL HERITAGE 3D DIGITALIZATION: LIMITS AND POTENTIALITIES

    Directory of Open Access Journals (Sweden)

    C. Santagati

    2013-07-01

    Full Text Available 3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS, the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases to large scale buildings for practitioner purpose.

  13. Image-Based Modeling Techniques for Architectural Heritage 3d Digitalization: Limits and Potentialities

    Science.gov (United States)

    Santagati, C.; Inzerillo, L.; Di Paola, F.

    2013-07-01

    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.

  14. Chronology of DIC technique based on the fundamental mathematical modeling and dehydration impact.

    Science.gov (United States)

    Alias, Norma; Saipol, Hafizah Farhah Saipan; Ghani, Asnida Che Abd

    2014-12-01

    A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.

  15. A Dynamic Operation Permission Technique Based on an MFM Model and Numerical Simulation

    International Nuclear Information System (INIS)

    Akio, Gofuku; Masahiro, Yonemura

    2011-01-01

    It is important to support operator activities to an abnormal plant situation where many counter actions are taken in relatively short time. The authors proposed a technique called dynamic operation permission to decrease human errors without eliminating creative idea of operators to cope with an abnormal plant situation by checking if the counter action taken is consistent with emergency operation procedure. If the counter action is inconsistent, a dynamic operation permission system warns it to operators. It also explains how and why the counter action is inconsistent and what influence will appear on the future plant behavior by a qualitative influence inference technique based on a model by the Mf (Multilevel Flow Modeling). However, the previous dynamic operation permission is not able to explain quantitative effects on plant future behavior. Moreover, many possible influence paths are derived because a qualitative reasoning does not give a solution when positive and negative influences are propagated to the same node. This study extends the dynamic operation permission by combining the qualitative reasoning and the numerical simulation technique. The qualitative reasoning based on an Mf model of plant derives all possible influence propagation paths. Then, a numerical simulation gives a prediction of plant future behavior in the case of taking a counter action. The influence propagation that does not coincide with the simulation results is excluded from possible influence paths. The extended technique is implemented in a dynamic operation permission system for an oil refinery plant. An MFM model and a static numerical simulator are developed. The results of dynamic operation permission for some abnormal plant situations show the improvement of the accuracy of dynamic operation permission and the quality of explanation for the effects of the counter action taken

  16. Tsunami Hazard Preventing Based Land Use Planning Model Using GIS Techniques in Muang Krabi, Thailand

    Directory of Open Access Journals (Sweden)

    Abdul Salam Soomro

    2012-10-01

    Full Text Available The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region.

  17. Tsunami hazard preventing based land use planing model using GIS technique in Muang Krabi, Thailand

    International Nuclear Information System (INIS)

    Soormo, A.S.

    2012-01-01

    The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems) based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region. (author)

  18. Mathematical Foundation Based Inter-Connectivity modelling of Thermal Image processing technique for Fire Protection

    Directory of Open Access Journals (Sweden)

    Sayantan Nath

    2015-09-01

    Full Text Available In this paper, integration between multiple functions of image processing and its statistical parameters for intelligent alarming series based fire detection system is presented. The proper inter-connectivity mapping between processing elements of imagery based on classification factor for temperature monitoring and multilevel intelligent alarm sequence is introduced by abstractive canonical approach. The flow of image processing components between core implementation of intelligent alarming system with temperature wise area segmentation as well as boundary detection technique is not yet fully explored in the present era of thermal imaging. In the light of analytical perspective of convolutive functionalism in thermal imaging, the abstract algebra based inter-mapping model between event-calculus supported DAGSVM classification for step-by-step generation of alarm series with gradual monitoring technique and segmentation of regions with its affected boundaries in thermographic image of coal with respect to temperature distinctions is discussed. The connectedness of the multifunctional operations of image processing based compatible fire protection system with proper monitoring sequence is presently investigated here. The mathematical models representing the relation between the temperature affected areas and its boundary in the obtained thermal image defined in partial derivative fashion is the core contribution of this study. The thermal image of coal sample is obtained in real-life scenario by self-assembled thermographic camera in this study. The amalgamation between area segmentation, boundary detection and alarm series are described in abstract algebra. The principal objective of this paper is to understand the dependency pattern and the principles of working of image processing components and structure an inter-connected modelling technique also for those components with the help of mathematical foundation.

  19. Generalized image contrast enhancement technique based on the Heinemann contrast discrimination model

    Science.gov (United States)

    Liu, Hong; Nodine, Calvin F.

    1996-07-01

    This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.

  20. The role of model-based methods in the development of single scan techniques

    International Nuclear Information System (INIS)

    Laruelle, Marc

    2000-01-01

    Single scan techniques are highly desirable for clinical trials involving radiotracers because they increase logistical feasibility, improve patient compliance, and decrease the cost associated with the study. However, the information derived from single scans usually are biased by factors unrelated to the process of interest. Therefore, identification of these factors and evaluation of their impact on the proposed outcome measure is important. In this paper, the impact of confounding factors on single scan measurements is illustrated by discussing the effect of between-subject or between-condition differences in radiotracer plasma clearance on normalized activity ratios (specific to nonspecific ratios) in the tissue of interest. Computer simulation based on kinetic analyses are presented to demonstrate this effect. It is proposed that the presence of this and other confounding factors should not necessarily preclude clinical trials based on single scan techniques. First, knowledge of the distribution of plasma clearance values in a sample of the investigated population allows researchers to assign limits to this potential bias. This information can be integrated in the power analysis. Second, the impact of this problem will vary according to the characteristic of the radiotracer, and this information can be used in the development and selection of the radiotracer. Third, simple modification of the experimental design (such as administration of the radiotracer as a bolus, followed by constant infusion, rather than as a single bolus) might remove this potential confounding factor and allow appropriate quantification within the limits of a single scanning session. In conclusion, model-based kinetic characterization of radiotracer distribution and uptake is critical to the design and interpretation of clinical trials based on single scan techniques

  1. Repositioning the knee joint in human body FE models using a graphics-based technique.

    Science.gov (United States)

    Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh

    2012-01-01

    Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.

  2. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  3. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools

    CERN Document Server

    Ding, Steven X

    2013-01-01

    Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: ·         new material on fault isolation and identification, and fault detection in feedback control loops; ·         extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and ·         enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...

  4. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  5. Coronary artery plaques: Cardiac CT with model-based and adaptive-statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Scheffel, Hans; Stolzmann, Paul; Schlett, Christopher L.; Engel, Leif-Christopher; Major, Gyöngi Petra; Károlyi, Mihály; Do, Synho; Maurovich-Horvat, Pál; Hoffmann, Udo

    2012-01-01

    Objectives: To compare image quality of coronary artery plaque visualization at CT angiography with images reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model based iterative reconstruction (MBIR) techniques. Methods: The coronary arteries of three ex vivo human hearts were imaged by CT and reconstructed with FBP, ASIR and MBIR. Coronary cross-sectional images were co-registered between the different reconstruction techniques and assessed for qualitative and quantitative image quality parameters. Readers were blinded to the reconstruction algorithm. Results: A total of 375 triplets of coronary cross-sectional images were co-registered. Using MBIR, 26% of the images were rated as having excellent overall image quality, which was significantly better as compared to ASIR and FBP (4% and 13%, respectively, all p < 0.001). Qualitative assessment of image noise demonstrated a noise reduction by using ASIR as compared to FBP (p < 0.01) and further noise reduction by using MBIR (p < 0.001). The contrast-to-noise-ratio (CNR) using MBIR was better as compared to ASIR and FBP (44 ± 19, 29 ± 15, 26 ± 9, respectively; all p < 0.001). Conclusions: Using MBIR improved image quality, reduced image noise and increased CNR as compared to the other available reconstruction techniques. This may further improve the visualization of coronary artery plaque and allow radiation reduction.

  6. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    Science.gov (United States)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  7. Learning-based computing techniques in geoid modeling for precise height transformation

    Science.gov (United States)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  8. A novel modular multilevel converter modelling technique based on semi-analytical models for HVDC application

    Directory of Open Access Journals (Sweden)

    Ahmed Zama

    2016-12-01

    Full Text Available Thanks to scalability, performance and efficiency, the Modular Multilevel Converter (MMC, since its invention, becomes an attractive topology in industrial applications such as high voltage direct current (HVDC transmission system. However, modelling challenges related to the high number of switching elements in the MMC are highlighted when such systems are integrated into large simulated networks for stability or protection algorithms testing. In this work, a novel dynamic models for MMC is proposed. The proposed models are intended to simplify modeling challenges related to the high number of switching elements in the MMC. The models can be easily used to simulate the converter for stability analysis or protection algorithms for HVDC grids.

  9. Model-Based Data Integration and Process Standardization Techniques for Fault Management: A Feasibility Study

    Science.gov (United States)

    Haste, Deepak; Ghoshal, Sudipto; Johnson, Stephen B.; Moore, Craig

    2018-01-01

    This paper describes the theory and considerations in the application of model-based techniques to assimilate information from disjoint knowledge sources for performing NASA's Fault Management (FM)-related activities using the TEAMS® toolset. FM consists of the operational mitigation of existing and impending spacecraft failures. NASA's FM directives have both design-phase and operational-phase goals. This paper highlights recent studies by QSI and DST of the capabilities required in the TEAMS® toolset for conducting FM activities with the aim of reducing operating costs, increasing autonomy, and conforming to time schedules. These studies use and extend the analytic capabilities of QSI's TEAMS® toolset to conduct a range of FM activities within a centralized platform.

  10. Assess and Predict Automatic Generation Control Performances for Thermal Power Generation Units Based on Modeling Techniques

    Science.gov (United States)

    Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao

    2018-02-01

    Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.

  11. Constraint-based Student Modelling in Probability Story Problems with Scaffolding Techniques

    Directory of Open Access Journals (Sweden)

    Nabila Khodeir

    2018-01-01

    Full Text Available Constraint-based student modelling (CBM is an important technique employed in intelligent tutoring systems to model student knowledge to provide relevant assistance. This paper introduces the Math Story Problem Tutor (MAST, a Web-based intelligent tutoring system for probability story problems, which is able to generate problems of different contexts, types and difficulty levels for self-paced learning. Constraints in MAST are specified at a low-level of granularity to allow fine-grained diagnosis of the student error. Furthermore, MAST extends CBM to address errors due to misunderstanding of the narrative story. It can locate and highlight keywords that may have been overlooked or misunderstood leading to an error. This is achieved by utilizing the role of sentences and keywords that are defined through the Natural Language Generation (NLG methods deployed in the story problem generation. MAST also integrates CBM with scaffolding questions and feedback to provide various forms of help and guidance to the student. This allows the student to discover and correct any errors in his/her solution. MAST has been preliminary evaluated empirically and the results show the potential effectiveness in tutoring students with a decrease in the percentage of violated constraints along the learning curve. Additionally, there is a significant improvement in the results of the post–test exam in comparison to the pre-test exam of the students using MAST in comparison to those relying on the textbook

  12. Solution Procedure for Transport Modeling in Effluent Recharge Based on Operator-Splitting Techniques

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available The coupling of groundwater movement and reactive transport during groundwater recharge with wastewater leads to a complicated mathematical model, involving terms to describe convection-dispersion, adsorption/desorption and/or biodegradation, and so forth. It has been found very difficult to solve such a coupled model either analytically or numerically. The present study adopts operator-splitting techniques to decompose the coupled model into two submodels with different intrinsic characteristics. By applying an upwind finite difference scheme to the finite volume integral of the convection flux term, an implicit solution procedure is derived to solve the convection-dominant equation. The dispersion term is discretized in a standard central-difference scheme while the dispersion-dominant equation is solved using either the preconditioned Jacobi conjugate gradient (PJCG method or Thomas method based on local-one-dimensional scheme. The solution method proposed in this study is applied to the demonstration project of groundwater recharge with secondary effluent at Gaobeidian sewage treatment plant (STP successfully.

  13. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  14. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  15. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Science.gov (United States)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  16. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  17. Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method

    International Nuclear Information System (INIS)

    Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu

    2007-01-01

    An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented

  18. Coronary stent on coronary CT angiography: Assessment with model-based iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chae; Kim, Yeo Koon; Chun, Eun Ju; Choi, Sang IL [Dept. of of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-05-15

    To assess the performance of model-based iterative reconstruction (MBIR) technique for evaluation of coronary artery stents on coronary CT angiography (CCTA). Twenty-two patients with coronary stent implantation who underwent CCTA were retrospectively enrolled for comparison of image quality between filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and MBIR. In each data set, image noise was measured as the standard deviation of the measured attenuation units within circular regions of interest in the ascending aorta (AA) and left main coronary artery (LM). To objectively assess the noise and blooming artifacts in coronary stent, we additionally measured the standard deviation of the measured attenuation and intra-luminal stent diameters of total 35 stents with dedicated software. All image noise measured in the AA (all p < 0.001), LM (p < 0.001, p = 0.001) and coronary stent (all p < 0.001) were significantly lower with MBIR in comparison to those with FBP or ASIR. Intraluminal stent diameter was significantly higher with MBIR, as compared with ASIR or FBP (p < 0.001, p = 0.001). MBIR can reduce image noise and blooming artifact from the stent, leading to better in-stent assessment in patients with coronary artery stent.

  19. New techniques for subdivision modelling

    OpenAIRE

    BEETS, Koen

    2006-01-01

    In this dissertation, several tools and techniques for modelling with subdivision surfaces are presented. Based on the huge amount of theoretical knowledge about subdivision surfaces, we present techniques to facilitate practical 3D modelling which make subdivision surfaces even more useful. Subdivision surfaces have reclaimed attention several years ago after their application in full-featured 3D animation movies, such as Toy Story. Since then and due to their attractive properties an ever i...

  20. Model-based wear measurements in total knee arthroplasty : development and validation of novel radiographic techniques

    NARCIS (Netherlands)

    IJsseldijk, van E.A.

    2016-01-01

    The primary aim of this work was to develop novel model-based mJSW measurement methods using a 3D reconstruction and compare the accuracy and precision of these methods to conventional mJSW measurement. This thesis contributed to the development, validation and clinical application of model-based

  1. Diffusion of a Sustainable Farming Technique in Sri Lanka: An Agent-Based Modeling Approach

    Science.gov (United States)

    Jacobi, J. H.; Gilligan, J. M.; Carrico, A. R.; Truelove, H. B.; Hornberger, G.

    2012-12-01

    We live in a changing world - anthropogenic climate change is disrupting historic climate patterns and social structures are shifting as large scale population growth and massive migrations place unprecedented strain on natural and social resources. Agriculture in many countries is affected by these changes in the social and natural environments. In Sri Lanka, rice farmers in the Mahaweli River watershed have seen increases in temperature and decreases in precipitation. In addition, a government led resettlement project has altered the demographics and social practices in villages throughout the watershed. These changes have the potential to impact rice yields in a country where self-sufficiency in rice production is a point of national pride. Studies of the climate can elucidate physical effects on rice production, while research on social behaviors can illuminate the influence of community dynamics on agricultural practices. Only an integrated approach, however, can capture the combined and interactive impacts of these global changes on Sri Lankan agricultural. As part of an interdisciplinary team, we present an agent-based modeling (ABM) approach to studying the effects of physical and social changes on farmers in Sri Lanka. In our research, the diffusion of a sustainable farming technique, the system of rice intensification (SRI), throughout a farming community is modeled to identify factors that either inhibit or promote the spread of a more sustainable approach to rice farming. Inputs into the ABM are both physical and social and include temperature, precipitation, the Palmer Drought Severity Index (PDSI), community trust, and social networks. Outputs from the ABM demonstrate the importance of meteorology and social structure on the diffusion of SRI throughout a farming community.

  2. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali

    2016-03-01

    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  3. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    Science.gov (United States)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  4. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  5. Comparison of lung tumor motion measured using a model-based 4DCT technique and a commercial protocol.

    Science.gov (United States)

    O'Connell, Dylan; Shaverdian, Narek; Kishan, Amar U; Thomas, David H; Dou, Tai H; Lewis, John H; Lamb, James M; Cao, Minsong; Tenn, Stephen; Percy, Lee P; Low, Daniel A

    2017-11-11

    To compare lung tumor motion measured with a model-based technique to commercial 4-dimensional computed tomography (4DCT) scans and describe a workflow for using model-based 4DCT as a clinical simulation protocol. Twenty patients were imaged using a model-based technique and commercial 4DCT. Tumor motion was measured on each commercial 4DCT dataset and was calculated on model-based datasets for 3 breathing amplitude percentile intervals: 5th to 85th, 5th to 95th, and 0th to 100th. Internal target volumes (ITVs) were defined on the 4DCT and 5th to 85th interval datasets and compared using Dice similarity. Images were evaluated for noise and rated by 2 radiation oncologists for artifacts. Mean differences in tumor motion magnitude between commercial and model-based images were 0.47 ± 3.0, 1.63 ± 3.17, and 5.16 ± 4.90 mm for the 5th to 85th, 5th to 95th, and 0th to 100th amplitude intervals, respectively. Dice coefficients between ITVs defined on commercial and 5th to 85th model-based images had a mean value of 0.77 ± 0.09. Single standard deviation image noise was 11.6 ± 9.6 HU in the liver and 6.8 ± 4.7 HU in the aorta for the model-based images compared with 57.7 ± 30 and 33.7 ± 15.4 for commercial 4DCT. Mean model error within the ITV regions was 1.71 ± 0.81 mm. Model-based images exhibited reduced presence of artifacts at the tumor compared with commercial images. Tumor motion measured with the model-based technique using the 5th to 85th percentile breathing amplitude interval corresponded more closely to commercial 4DCT than the 5th to 95th or 0th to 100th intervals, which showed greater motion on average. The model-based technique tended to display increased tumor motion when breathing amplitude intervals wider than 5th to 85th were used because of the influence of unusually deep inhalations. These results suggest that care must be taken in selecting the appropriate interval during image generation when using model-based 4DCT methods. Copyright © 2017

  6. Using Web-Based Knowledge Extraction Techniques to Support Cultural Modeling

    Science.gov (United States)

    Smart, Paul R.; Sieck, Winston R.; Shadbolt, Nigel R.

    The World Wide Web is a potentially valuable source of information about the cognitive characteristics of cultural groups. However, attempts to use the Web in the context of cultural modeling activities are hampered by the large-scale nature of the Web and the current dominance of natural language formats. In this paper, we outline an approach to support the exploitation of the Web for cultural modeling activities. The approach begins with the development of qualitative cultural models (which describe the beliefs, concepts and values of cultural groups), and these models are subsequently used to develop an ontology-based information extraction capability. Our approach represents an attempt to combine conventional approaches to information extraction with epidemiological perspectives of culture and network-based approaches to cultural analysis. The approach can be used, we suggest, to support the development of models providing a better understanding of the cognitive characteristics of particular cultural groups.

  7. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao

    2013-01-01

    Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests

  8. Combining variational and model-based techniques to register PET and MR images in hand osteoarthritis

    International Nuclear Information System (INIS)

    Magee, Derek; Tanner, Steven F; Jeavons, Alan P; Waller, Michael; Tan, Ai Lyn; McGonagle, Dennis

    2010-01-01

    Co-registration of clinical images acquired using different imaging modalities and equipment is finding increasing use in patient studies. Here we present a method for registering high-resolution positron emission tomography (PET) data of the hand acquired using high-density avalanche chambers with magnetic resonance (MR) images of the finger obtained using a 'microscopy coil'. This allows the identification of the anatomical location of the PET radiotracer and thereby locates areas of active bone metabolism/'turnover'. Image fusion involving data acquired from the hand is demanding because rigid-body transformations cannot be employed to accurately register the images. The non-rigid registration technique that has been implemented in this study uses a variational approach to maximize the mutual information between images acquired using these different imaging modalities. A piecewise model of the fingers is employed to ensure that the methodology is robust and that it generates an accurate registration. Evaluation of the accuracy of the technique is tested using both synthetic data and PET and MR images acquired from patients with osteoarthritis. The method outperforms some established non-rigid registration techniques and results in a mean registration error that is less than approximately 1.5 mm in the vicinity of the finger joints.

  9. Model-based monitoring techniques for leakage localization in distribution water networks

    OpenAIRE

    Meseguer Amela, Jordi; Mirats Tur, Josep Maria; Cembrano Gennari, Gabriela; Puig Cayuela, Vicenç

    2015-01-01

    This is an open access article under the CC BY-NC-ND license This paper describes an integrated model-based monitoring framework for leakage localization in district-metered areas (DMA) of water distribution networks, which takes advantage of the availability of a hydraulic model of the network. The leakage localization methodology is based on the use of flow and pressure sensors at the DMA inlets and a limited number of pressure sensors deployed inside the DMA. The placement of these sens...

  10. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  11. Improving head and neck CTA with hybrid and model-based iterative reconstruction techniques

    NARCIS (Netherlands)

    Niesten, J. M.; van der Schaaf, I. C.; Vos, P. C.; Willemink, MJ; Velthuis, B. K.

    2015-01-01

    AIM: To compare image quality of head and neck computed tomography angiography (CTA) reconstructed with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and model-based iterative reconstruction (MIR) algorithms. MATERIALS AND METHODS: The raw data of 34 studies were

  12. A Comparative of business process modelling techniques

    Science.gov (United States)

    Tangkawarow, I. R. H. T.; Waworuntu, J.

    2016-04-01

    In this era, there is a lot of business process modeling techniques. This article is the research about differences of business process modeling techniques. For each technique will explain about the definition and the structure. This paper presents a comparative analysis of some popular business process modelling techniques. The comparative framework is based on 2 criteria: notation and how it works when implemented in Somerleyton Animal Park. Each technique will end with the advantages and disadvantages. The final conclusion will give recommend of business process modeling techniques that easy to use and serve the basis for evaluating further modelling techniques.

  13. Suppression of Spiral Waves by Voltage Clamp Techniques in a Conductance-Based Cardiac Tissue Model

    International Nuclear Information System (INIS)

    Lian-Chun, Yu; Guo-Yong, Zhang; Yong, Chen; Jun, Ma

    2008-01-01

    A new control method is proposed to control the spatio-temporal dynamics in excitable media, which is described by the Morris–Lecar cells model. It is confirmed that successful suppression of spiral waves can be obtained by spatially clamping the membrane voltage of the excitable cells. The low voltage clamping induces breakup of spiral waves and the fragments are soon absorbed by low voltage obstacles, whereas the high voltage clamping generates travel waves that annihilate spiral waves through collision with them. However, each method has its shortcomings. Furthermore, a two-step method that combines both low and high voltage clamp techniques is then presented as a possible way of out this predicament. (cross-disciplinary physics and related areas of science and technology)

  14. Model-based fault diagnosis techniques design schemes, algorithms, and tools

    CERN Document Server

    Ding, Steven

    2008-01-01

    The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms, and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers. This is a textbook with extensive examples and references. Most methods are given in the form of an algorithm that enables a direct implementation in a programme. Comparisons among different methods are included when possible.

  15. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.

    Science.gov (United States)

    Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam

    2011-01-01

    One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

  16. A new frequency matching technique for FRF-based model updating

    Science.gov (United States)

    Yang, Xiuming; Guo, Xinglin; Ouyang, Huajiang; Li, Dongsheng

    2017-05-01

    Frequency Response Function (FRF) residues have been widely used to update Finite Element models. They are a kind of original measurement information and have the advantages of rich data and no extraction errors, etc. However, like other sensitivity-based methods, an FRF-based identification method also needs to face the ill-conditioning problem which is even more serious since the sensitivity of the FRF in the vicinity of a resonance is much greater than elsewhere. Furthermore, for a given frequency measurement, directly using a theoretical FRF at a frequency may lead to a huge difference between the theoretical FRF and the corresponding experimental FRF which finally results in larger effects of measurement errors and damping. Hence in the solution process, correct selection of the appropriate frequency to get the theoretical FRF in every iteration in the sensitivity-based approach is an effective way to improve the robustness of an FRF-based algorithm. A primary tool for right frequency selection based on the correlation of FRFs is the Frequency Domain Assurance Criterion. This paper presents a new frequency selection method which directly finds the frequency that minimizes the difference of the order of magnitude between the theoretical and experimental FRFs. A simulated truss structure is used to compare the performance of different frequency selection methods. For the sake of reality, it is assumed that not all the degrees of freedom (DoFs) are available for measurement. The minimum number of DoFs required in each approach to correctly update the analytical model is regarded as the right identification standard.

  17. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  18. Recent developments of the projected shell model based on many-body techniques

    Directory of Open Access Journals (Sweden)

    Sun Yang

    2015-01-01

    Full Text Available Recent developments of the projected shell model (PSM are summarized. Firstly, by using the Pfaffian algorithm, the multi-quasiparticle configuration space is expanded to include 6-quasiparticle states. The yrast band of 166Hf at very high spins is studied as an example, where the observed third back-bending in the moment of inertia is well reproduced and explained. Secondly, an angular-momentum projected generate coordinate method is developed based on PSM. The evolution of the low-lying states, including the second 0+ state, of the soft Gd, Dy, and Er isotopes to the well-deformed ones is calculated, and compared with experimental data.

  19. Replacement Value - Representation of Fair Value in Accounting. Techniques and Modeling Suitable for the Income Based Approach

    OpenAIRE

    Manea Marinela – Daniela

    2011-01-01

    The term fair value is spread within the sphere of international standards without reference to any detailed guidance on how to apply. However, specialized tangible assets, which are rarely sold, the rule IAS 16 "Intangible assets " makes it possible to estimate fair value using an income approach or a replacement cost or depreciation. The following material is intended to identify potential modeling of fair value as an income-based approach, appealing to techniques used by professional evalu...

  20. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

    Science.gov (United States)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-03-01

    As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.

  1. Pre-analysis techniques applied to area-based correlation aiming Digital Terrain Model generation

    Directory of Open Access Journals (Sweden)

    Maurício Galo

    2005-12-01

    Full Text Available Area-based matching is an useful procedure in some photogrammetric processes and its results are of crucial importance in applications such as relative orientation, phototriangulation and Digital Terrain Model generation. The successful determination of correspondence depends on radiometric and geometric factors. Considering these aspects, the use of procedures that previously estimate the quality of the parameters to be computed is a relevant issue. This paper describes these procedures and it is shown that the quality prediction can be computed before performing matching by correlation, trough the analysis of the reference window. This procedure can be incorporated in the correspondence process for Digital Terrain Model generation and Phototriangulation. The proposed approach comprises the estimation of the variance matrix of the translations from the gray levels in the reference window and the reduction of the search space using the knowledge of the epipolar geometry. As a consequence, the correlation process becomes more reliable, avoiding the application of matching procedures in doubtful areas. Some experiments with simulated and real data are presented, evidencing the efficiency of the studied strategy.

  2. Modeling Protein Structures in Feed and Seed Tissues Using Novel Synchrotron-Based Analytical Technique

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    Traditional 'wet' chemical analyses usually looks for a specific known component (such as protein) through homogenization and separation of the components of interest from the complex tissue matrix. Traditional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, therefore altering the native feed protein structures and possibly generating artifacts. The objective of this study was to introduce a novel and non-destructive method to estimate protein structures in feed and seeds within intact tissues using advanced synchrotron-based infrared microspectroscopy (SFTIRM). The experiments were performed at the National Synchrotron Light Source in Brookhaven National Laboratory (US Dept. of Energy, NY). The results show that with synchrotron-based SFTIRM, we are able to localize relatively 'pure' protein without destructions of the feed and seed tissues and qualify protein internal structures in terms of the proportions and ratios of a-helix, β-sheet, random coil and β-turns on a relative basis using multi-peak modeling procedures. These protein structure profile (a-helix, β-sheet, etc.) may influence protein quality and availability in animals. Several examples of feed and seeds were provided. The implications of this study are that we can use this new method to compare internal protein structures between feeds and between seed verities. We can also use this method to detect heat-induced the structural changes of protein in feeds.

  3. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  4. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    Science.gov (United States)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  5. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  6. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  7. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging and investigational cell-based therapies

    Directory of Open Access Journals (Sweden)

    Alessandra eCanazza

    2014-02-01

    Full Text Available Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies.

  8. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  9. REVIEW OF ADVANCES IN COBB ANGLE CALCULATION AND IMAGE-BASED MODELLING TECHNIQUES FOR SPINAL DEFORMITIES

    Directory of Open Access Journals (Sweden)

    V. Giannoglou

    2016-06-01

    Full Text Available Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.

  10. A medium term bulk production cost model based on decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.; Munoz, L. [Univ. Pontificia Comillas, Madrid (Spain). Inst. de Investigacion Tecnologica; Martinez-Corcoles, F.; Martin-Corrochano, V. [IBERDROLA, Madrid (Spain)

    1995-11-01

    This model provides the minimum variable cost subject to operating constraints (generation, transmission and fuel constraints). Generation constraints include power reserve margin with respect to the system peak load, first Kirchhoff`s law at each node, hydro energy scheduling, maintenance scheduling, and generation limitations. Transmission constraints cover the second Kirchhoff`s law and transmission limitations. The generation and transmission economic dispatch is approximated by the linearized (also called DC) load flow. Network losses are included as a non linear approximation. Fuel constraints include minimum consumption quotas and fuel scheduling for domestic coal thermal plants. This production costing problem is formulated as a large-scale non linear optimization problem solved by generalized Benders decomposition method. Master problem determines the inter-period decisions, i.e., maintenance, fuel and hydro scheduling, and each subproblem solves the intra-period decisions, i.e., generation and transmission economic dispatch for one period. The model has been implemented in GAMS, a mathematical programming language. An application to the large-scale Spanish electric power system is presented. 11 refs

  11. Model Checking Markov Chains: Techniques and Tools

    NARCIS (Netherlands)

    Zapreev, I.S.

    2008-01-01

    This dissertation deals with four important aspects of model checking Markov chains: the development of efficient model-checking tools, the improvement of model-checking algorithms, the efficiency of the state-space reduction techniques, and the development of simulation-based model-checking

  12. Properties of hypothesis testing techniques and (Bayesian) model selection for exploration-based and theory-based (order-restricted) hypotheses.

    Science.gov (United States)

    Kuiper, Rebecca M; Nederhoff, Tim; Klugkist, Irene

    2015-05-01

    In this paper, the performance of six types of techniques for comparisons of means is examined. These six emerge from the distinction between the method employed (hypothesis testing, model selection using information criteria, or Bayesian model selection) and the set of hypotheses that is investigated (a classical, exploration-based set of hypotheses containing equality constraints on the means, or a theory-based limited set of hypotheses with equality and/or order restrictions). A simulation study is conducted to examine the performance of these techniques. We demonstrate that, if one has specific, a priori specified hypotheses, confirmation (i.e., investigating theory-based hypotheses) has advantages over exploration (i.e., examining all possible equality-constrained hypotheses). Furthermore, examining reasonable order-restricted hypotheses has more power to detect the true effect/non-null hypothesis than evaluating only equality restrictions. Additionally, when investigating more than one theory-based hypothesis, model selection is preferred over hypothesis testing. Because of the first two results, we further examine the techniques that are able to evaluate order restrictions in a confirmatory fashion by examining their performance when the homogeneity of variance assumption is violated. Results show that the techniques are robust to heterogeneity when the sample sizes are equal. When the sample sizes are unequal, the performance is affected by heterogeneity. The size and direction of the deviations from the baseline, where there is no heterogeneity, depend on the effect size (of the means) and on the trend in the group variances with respect to the ordering of the group sizes. Importantly, the deviations are less pronounced when the group variances and sizes exhibit the same trend (e.g., are both increasing with group number). © 2014 The British Psychological Society.

  13. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    Science.gov (United States)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of

  14. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm

    International Nuclear Information System (INIS)

    Guo, Zhenhai; Chi, Dezhong; Wu, Jie; Zhang, Wenyu

    2014-01-01

    Highlights: • Impact of meteorological factors on wind speed forecasting is taken into account. • Forecasted wind speed results are corrected by the associated rules. • Forecasting accuracy is improved by the new wind speed forecasting strategy. • Robust of the proposed model is validated by data sampled from different sites. - Abstract: Wind energy has been the fastest growing renewable energy resource in recent years. Because of the intermittent nature of wind, wind power is a fluctuating source of electrical energy. Therefore, to minimize the impact of wind power on the electrical grid, accurate and reliable wind power forecasting is mandatory. In this paper, a new wind speed forecasting approach based on based on the chaotic time series modelling technique and the Apriori algorithm has been developed. The new approach consists of four procedures: (I) Clustering by using the k-means clustering approach; (II) Employing the Apriori algorithm to discover the association rules; (III) Forecasting the wind speed according to the chaotic time series forecasting model; and (IV) Correcting the forecasted wind speed data using the associated rules discovered previously. This procedure has been verified by 31-day-ahead daily average wind speed forecasting case studies, which employed the wind speed and other meteorological data collected from four meteorological stations located in the Hexi Corridor area of China. The results of these case studies reveal that the chaotic forecasting model can efficiently improve the accuracy of the wind speed forecasting, and the Apriori algorithm can effectively discover the association rules between the wind speed and other meteorological factors. In addition, the correction results demonstrate that the association rules discovered by the Apriori algorithm have powerful capacities in handling the forecasted wind speed values correction when the forecasted values do not match the classification discovered by the association rules

  15. TL Dating Technique Based on a Trap Model and its Application as a Geochronometer for Granitic Quartz

    International Nuclear Information System (INIS)

    Han, Y.; Li, H.; Tso, Y.W.

    1999-01-01

    A trap model is introduced to describe the behaviours of both thermally sensitive and radiation sensitive TL traps. The former are relatively shallow traps. The latter are deep traps, in which population increases with exposure to alpha dose. Thermal decay of both types of traps at ambient temperature is dependent on the trap lifetimes. A trap's population can be measured as TL sensitivity to a laboratory test dose. The trap model has been supported by observations of age dependent TL signals from granitic quartz samples with different crystallisation ages. The trap lifetimes are from 1.98 x 10 9 to 5.36 x 10 15 years estimated using the isothermal decay experiment with the assumption of first order kinetics. Dating techniques are proposed based on the trap model. For old granites (>400 Ma), ages can be obtained by measuring the total exposed alpha dose using the additive alpha dose method, whereas for young granites (<400 Ma), ages can also be obtained by interpolating the TL sensitivity to a curve of TL sensitivities for known ages. (author)

  16. Survey of semantic modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.L.

    1975-07-01

    The analysis of the semantics of programing languages was attempted with numerous modeling techniques. By providing a brief survey of these techniques together with an analysis of their applicability for answering semantic issues, this report attempts to illuminate the state-of-the-art in this area. The intent is to be illustrative rather than thorough in the coverage of semantic models. A bibliography is included for the reader who is interested in pursuing this area of research in more detail.

  17. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  18. Current control design for three-phase grid-connected inverters using a pole placement technique based on numerical models

    OpenAIRE

    Citro, Costantino; Gavriluta, Catalin; Nizak Md, H. K.; Beltran, H.

    2012-01-01

    This paper presents a design procedure for linear current controllers of three-phase grid-connected inverters. The proposed method consists in deriving a numerical model of the converter by using software simulations and applying the pole placement technique to design the controller with the desired performances. A clear example on how to apply the technique is provided. The effectiveness of the proposed design procedure has been verified through the experimental results obtained with ...

  19. SEM-based characterization techniques

    International Nuclear Information System (INIS)

    Russell, P.E.

    1986-01-01

    The scanning electron microscope is now a common instrument in materials characterization laboratories. The basic role of the SEM as a topographic imaging system has steadily been expanding to include a variety of SEM-based analytical techniques. These techniques cover the range of basic semiconductor materials characterization to live-time device characterization of operating LSI or VLSI devices. This paper introduces many of the more commonly used techniques, describes the modifications or additions to a conventional SEM required to utilize the techniques, and gives examples of the use of such techniques. First, the types of signals available from a sample being irradiated by an electron beam are reviewed. Then, where applicable, the type of spectroscopy or microscopy which has evolved to utilize the various signal types are described. This is followed by specific examples of the use of such techniques to solve problems related to semiconductor technology. Techniques emphasized include: x-ray fluorescence spectroscopy, electron beam induced current (EBIC), stroboscopic voltage analysis, cathodoluminescnece and electron beam IC metrology. Current and future trends of some of the these techniques, as related to the semiconductor industry are discussed

  20. Teaching Floating and Sinking Concepts with Different Methods and Techniques Based on the 5E Instructional Model

    Science.gov (United States)

    Cepni, Salih; Sahin, Cigdem; Ipek, Hava

    2010-01-01

    The purpose of this study was to test the influences of prepared instructional material based on the 5E instructional model combined with CCT, CC, animations, worksheets and POE on conceptual changes about floating and sinking concepts. The experimental group was taught with teaching material based on the 5E instructional model enriched with…

  1. A Strategy Modelling Technique for Financial Services

    OpenAIRE

    Heinrich, Bernd; Winter, Robert

    2004-01-01

    Strategy planning processes often suffer from a lack of conceptual models that can be used to represent business strategies in a structured and standardized form. If natural language is replaced by an at least semi-formal model, the completeness, consistency, and clarity of strategy descriptions can be drastically improved. A strategy modelling technique is proposed that is based on an analysis of modelling requirements, a discussion of related work and a critical analysis of generic approach...

  2. Feasibility Study on Tension Estimation Technique for Hanger Cables Using the FE Model-Based System Identification Method

    Directory of Open Access Journals (Sweden)

    Kyu-Sik Park

    2015-01-01

    Full Text Available Hanger cables in suspension bridges are partly constrained by horizontal clamps. So, existing tension estimation methods based on a single cable model are prone to higher errors as the cable gets shorter, making it more sensitive to flexural rigidity. Therefore, inverse analysis and system identification methods based on finite element models are suggested recently. In this paper, the applicability of system identification methods is investigated using the hanger cables of Gwang-An bridge. The test results show that the inverse analysis and systemic identification methods based on finite element models are more reliable than the existing string theory and linear regression method for calculating the tension in terms of natural frequency errors. However, the estimation error of tension can be varied according to the accuracy of finite element model in model based methods. In particular, the boundary conditions affect the results more profoundly when the cable gets shorter. Therefore, it is important to identify the boundary conditions through experiment if it is possible. The FE model-based tension estimation method using system identification method can take various boundary conditions into account. Also, since it is not sensitive to the number of natural frequency inputs, the availability of this system is high.

  3. Bases of technique of sprinting

    Directory of Open Access Journals (Sweden)

    Valeriy Druz

    2015-06-01

    Full Text Available Purpose: to determine the biomechanical consistent patterns of a movement of a body providing the highest speed of sprinting. Material and Methods: the analysis of scientific and methodical literature on the considered problem, the anthropometrical characteristics of the surveyed contingent of sportsmen, the analysis of high-speed shootings of the leading runners of the world. Results: the biomechanical bases of technique of sprinting make dispersal and movement of the general center of body weight of the sportsman on a parabolic curve in a start phase taking into account the initial height of its stay in a pose of a low start. Its further movement happens on a cycloidal trajectory which is formed due to a pendulum movement of the extremities creating the lifting power which provides flight duration more in a running step, than duration of a basic phase. Conclusions: the received biomechanical regularities of technique of sprinting allow increasing the efficiency of training of sportsmen in sprinting.

  4. Quantification of intervertebral displacement with a novel MRI-based modeling technique: Assessing measurement bias and reliability with a porcine spine model.

    Science.gov (United States)

    Mahato, Niladri K; Montuelle, Stephane; Goubeaux, Craig; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian C

    2017-05-01

    The purpose of this study was to develop a novel magnetic resonance imaging (MRI)-based modeling technique for measuring intervertebral displacements. Here, we present the measurement bias and reliability of the developmental work using a porcine spine model. Porcine lumbar vertebral segments were fitted in a custom-built apparatus placed within an externally calibrated imaging volume of an open-MRI scanner. The apparatus allowed movement of the vertebrae through pre-assigned magnitudes of sagittal and coronal translation and rotation. The induced displacements were imaged with static (T 1 ) and fast dynamic (2D HYCE S) pulse sequences. These images were imported into animation software, in which these images formed a background 'scene'. Three-dimensional models of vertebrae were created using static axial scans from the specimen and then transferred into the animation environment. In the animation environment, the user manually moved the models (rotoscoping) to perform model-to-'scene' matching to fit the models to their image silhouettes and assigned anatomical joint axes to the motion-segments. The animation protocol quantified the experimental translation and rotation displacements between the vertebral models. Accuracy of the technique was calculated as 'bias' using a linear mixed effects model, average percentage error and root mean square errors. Between-session reliability was examined by computing intra-class correlation coefficients (ICC) and the coefficient of variations (CV). For translation trials, a constant bias (β 0 ) of 0.35 (±0.11) mm was detected for the 2D HYCE S sequence (p=0.01). The model did not demonstrate significant additional bias with each mm increase in experimental translation (β 1 Displacement=0.01mm; p=0.69). Using the T 1 sequence for the same assessments did not significantly change the bias (p>0.05). ICC values for the T 1 and 2D HYCE S pulse sequences were 0.98 and 0.97, respectively. For rotation trials, a constant bias (

  5. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Polynomial fuzzy model-based control systems stability analysis and control synthesis using membership function dependent techniques

    CERN Document Server

    Lam, Hak-Keung

    2016-01-01

    This book presents recent research on the stability analysis of polynomial-fuzzy-model-based control systems where the concept of partially/imperfectly matched premises and membership-function dependent analysis are considered. The membership-function-dependent analysis offers a new research direction for fuzzy-model-based control systems by taking into account the characteristic and information of the membership functions in the stability analysis. The book presents on a research level the most recent and advanced research results, promotes the research of polynomial-fuzzy-model-based control systems, and provides theoretical support and point a research direction to postgraduate students and fellow researchers. Each chapter provides numerical examples to verify the analysis results, demonstrate the effectiveness of the proposed polynomial fuzzy control schemes, and explain the design procedure. The book is comprehensively written enclosing detailed derivation steps and mathematical derivations also for read...

  7. Properties of hypothesis testing techniques and (Bayesian) model selection for exploration-based and theory-based (order-restricted) hypotheses

    NARCIS (Netherlands)

    Kuiper, Rebecca M.; Nederhoff, Tim; Klugkist, Irene

    2015-01-01

    In this paper, the performance of six types of techniques for comparisons of means is examined. These six emerge from the distinction between the method employed (hypothesis testing, model selection using information criteria, or Bayesian model selection) and the set of hypotheses that is

  8. Probabilistic hydrological nowcasting using radar based nowcasting techniques and distributed hydrological models: application in the Mediterranean area

    Science.gov (United States)

    Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2017-04-01

    The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.

  9. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 ± 3.00) than low-dose ASIR (49.24 ± 9.11, P < 0.01) and reference-dose ASIR images (24.93 ± 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  10. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2012-08-15

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 {+-} 3.00) than low-dose ASIR (49.24 {+-} 9.11, P < 0.01) and reference-dose ASIR images (24.93 {+-} 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  11. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  12. A Simulation Based Analysis of Motor Unit Number Index (MUNIX) Technique Using Motoneuron Pool and Surface Electromyogram Models

    Science.gov (United States)

    Li, Xiaoyan; Rymer, William Zev; Zhou, Ping

    2013-01-01

    Motor unit number index (MUNIX) measurement has recently achieved increasing attention as a tool to evaluate the progression of motoneuron diseases. In our current study, the sensitivity of the MUNIX technique to changes in motoneuron and muscle properties was explored by a simulation approach utilizing variations on published motoneuron pool and surface electromyogram (EMG) models. Our simulation results indicate that, when keeping motoneuron pool and muscle parameters unchanged and varying the input motor unit numbers to the model, then MUNIX estimates can appropriately characterize changes in motor unit numbers. Such MUNIX estimates are not sensitive to different motor unit recruitment and rate coding strategies used in the model. Furthermore, alterations in motor unit control properties do not have a significant effect on the MUNIX estimates. Neither adjustment of the motor unit recruitment range nor reduction of the motor unit firing rates jeopardizes the MUNIX estimates. The MUNIX estimates closely correlate with the maximum M wave amplitude. However, if we reduce the amplitude of each motor unit action potential rather than simply reduce motor unit number, then MUNIX estimates substantially underestimate the motor unit numbers in the muscle. These findings suggest that the current MUNIX definition is most suitable for motoneuron diseases that demonstrate secondary evidence of muscle fiber reinnervation. In this regard, when MUNIX is applied, it is of much importance to examine a parallel measurement of motor unit size index (MUSIX), defined as the ratio of the maximum M wave amplitude to the MUNIX. However, there are potential limitations in the application of the MUNIX methods in atrophied muscle, where it is unclear whether the atrophy is accompanied by loss of motor units or loss of muscle fiber size. PMID:22514208

  13. Identifying and prioritizing the tools/techniques of knowledge management based on the Asian Productivity Organization Model (APO) to use in hospitals.

    Science.gov (United States)

    Khajouei, Hamid; Khajouei, Reza

    2017-12-01

    Appropriate knowledge, correct information, and relevant data are vital in medical diagnosis and treatment systems. Knowledge Management (KM) through its tools/techniques provides a pertinent framework for decision-making in healthcare systems. The objective of this study was to identify and prioritize the KM tools/techniques that apply to hospital setting. This is a descriptive-survey study. Data were collected using a -researcher-made questionnaire that was developed based on experts' opinions to select the appropriate tools/techniques from 26 tools/techniques of the Asian Productivity Organization (APO) model. Questions were categorized into five steps of KM (identifying, creating, storing, sharing, and applying the knowledge) according to this model. The study population consisted of middle and senior managers of hospitals and managing directors of Vice-Chancellor for Curative Affairs in Kerman University of Medical Sciences in Kerman, Iran. The data were analyzed in SPSS v.19 using one-sample t-test. Twelve out of 26 tools/techniques of the APO model were identified as the tools applicable in hospitals. "Knowledge café" and "APO knowledge management assessment tool" with respective means of 4.23 and 3.7 were the most and the least applicable tools in the knowledge identification step. "Mentor-mentee scheme", as well as "voice and Voice over Internet Protocol (VOIP)" with respective means of 4.20 and 3.52 were the most and the least applicable tools/techniques in the knowledge creation step. "Knowledge café" and "voice and VOIP" with respective means of 3.85 and 3.42 were the most and the least applicable tools/techniques in the knowledge storage step. "Peer assist and 'voice and VOIP' with respective means of 4.14 and 3.38 were the most and the least applicable tools/techniques in the knowledge sharing step. Finally, "knowledge worker competency plan" and "knowledge portal" with respective means of 4.38 and 3.85 were the most and the least applicable tools/techniques

  14. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique

    Directory of Open Access Journals (Sweden)

    Bartosz Jachimczyk

    2017-01-01

    Full Text Available The increased potential and effectiveness of Real-time Locating Systems (RTLSs substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system’s configuration and LS’s relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS’ localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision.

  15. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique.

    Science.gov (United States)

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J

    2017-01-25

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system's configuration and LS's relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS' localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision.

  16. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment

    International Nuclear Information System (INIS)

    Mahato, Niladri K.; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-01-01

    Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T 1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Between-session reliability was high for both the T 1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4

  17. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment.

    Science.gov (United States)

    Mahato, Niladri K; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-05-18

    Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Between-session reliability was high for both the T1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4

  18. Structural Modeling Using "Scanning and Mapping" Technique

    Science.gov (United States)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  19. Optimization-based human motion prediction using an inverse-inverse dynamics technique implemented in the AnyBody Modeling System

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi; Andersen, Michael Skipper; de Zee, Mark

    2012-01-01

    derived from the detailed musculoskeletal analysis. The technique is demonstrated on a human model pedaling a bicycle. We use a physiology-based cost function expressing the mean square of all muscle activities over the cycle to predict a realistic motion pattern. Posture and motion prediction...... on a physics model including dynamic effects and a high level of anatomical realism. First, a musculoskeletal model comprising several hundred muscles is built in AMS. The movement is then parameterized by means of time functions controlling selected degrees of freedom of the model. Subsequently......, the parameters of these functions are optimized to produce an optimum posture or movement according to a user-defined cost function and constraints. The cost function and the constraints are typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties...

  20. A laplace transform-based technique for solving multiscale and multidomain problems: Application to a countercurrent hemodialyzer model.

    Science.gov (United States)

    Simon, Laurent

    2017-08-01

    An integral-based method was employed to evaluate the behavior of a countercurrent hemodialyzer model. Solute transfer from the blood into the dialysate was described by writing mass balance equations over a section of the device. The approach provided Laplace transform concentration profiles on both sides of the membrane. Applications of the final value theorem led to the development of the effective time constants and steady-state concentrations in the exit streams. Transient responses were derived by a numerical inversion algorithm. Simulations show that the period elapsed, before reaching equilibrium in the effluents, decreased when the blood flow rate increased from 0.25 to 0.30 ml/s. The performance index decreased from 0.80 to 0.71 when the blood-to-dialysate flow ratio increased by 20% and increased from 0.80 to 0.85 when this fraction was reduced by 17%. The analytical solution predicted methadone removal in patients undergoing dialysis. Clinicians can use these findings to predict the time required to achieve a target extraction ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Performability Modelling Tools, Evaluation Techniques and Applications

    NARCIS (Netherlands)

    Haverkort, Boudewijn R.H.M.

    1990-01-01

    This thesis deals with three aspects of quantitative evaluation of fault-tolerant and distributed computer and communication systems: performability evaluation techniques, performability modelling tools, and performability modelling applications. Performability modelling is a relatively new

  2. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    Science.gov (United States)

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    Science.gov (United States)

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  4. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Ani Shabri

    2014-01-01

    Full Text Available Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI, has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  5. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    Science.gov (United States)

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  6. Microprocessor based techniques at CESR

    International Nuclear Information System (INIS)

    Giannini, G.; Cornell Univ., Ithaca, NY

    1981-01-01

    Microprocessor based systems succesfully used in connection with the High Energy Physics experimental program at the Cornell Electron Storage Ring are described. The multiprocessor calibration system for the CUSB calorimeter is analyzed in view of present and future applications. (orig.)

  7. Modeling techniques for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  8. Modeling techniques for quantum cascade lasers

    Science.gov (United States)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  9. Bases en technique du vide

    CERN Document Server

    Rommel, Guy

    2017-01-01

    Cette seconde édition, 20 ans après la première, devrait continuer à aider les techniciens pour la réalisation de leur système de vide. La technologie du vide est utilisée, à présent, dans de nombreux domaines très différents les uns des autres et avec des matériels très fiables. Or, elle est souvent bien peu étudiée, de plus, c'est une discipline où le savoir-faire prend tout son sens. Malheureusement la transmission par des ingénieurs et techniciens expérimentés ne se fait plus ou trop rapidement. La technologie du vide fait appel à la physique, à la chimie, à la mécanique, à la métallurgie, au dessin industriel, à l'électronique, à la thermique, etc. Cette discipline demande donc de maîtriser des techniques de domaines très divers, et ce n'est pas chose facile. Chaque installation est en soi un cas particulier avec ses besoins, sa façon de traiter les matériaux et celle d'utiliser les matériels. Les systèmes de vide sont parfois copiés d'un laboratoire à un autre et le...

  10. Validation Techniques of network harmonic models based on switching of a series linear component and measuring resultant harmonic increments

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    In this paper two methods of validation of transmission network harmonic models are introduced. The methods were developed as a result of the work presented in [1]. The first method allows calculating the transfer harmonic impedance between two nodes of a network. Switching a linear, series network......, as for example a transmission line. Both methods require that harmonic measurements performed at two ends of the disconnected element are precisely synchronized....... are used for calculation of the transfer harmonic impedance between the nodes. The determined transfer harmonic impedance can be used to validate a computer model of the network. The second method is an extension of the fist one. It allows switching a series element that contains a shunt branch...

  11. Study of factors affecting the productivity of nurses based on the ACHIEVE model and prioritizing them using analytic hierarchy process technique, 2012

    Directory of Open Access Journals (Sweden)

    Payam Farhadi

    2013-01-01

    Full Text Available Objective: Improving productivity is one of the most important strategies for social-economic development. Human resources are known as the most important resources in the organizations′ survival and success. Aims: To determine the factors affecting the human resource productivity using the ACHIEVEa model from the nurses′ perspective and then prioritize them from the perspective of head nurses using Analytic Hierarchy Process (AHP technique. Settings and Design: Iran, Shiraz University of Medical Sciences teaching hospitals in 2012. Materials and Methods: This was an applied, cross-sectional and analytical-descriptive study conducted in two phases. In the first phase, to determine the factors affecting the human resource productivity from nurses′ perspective, 110 nurses were selected using a two-stage cluster sampling method. Required data were collected using the Persian version of Hersey and Goldsmith′s Human Resource Productivity Questionnaire. In the second phase, in order to prioritize the factors affecting human resource productivity based on the ACHIEVE model using AHP technique, pairwise comparisons matrices were given to the 19 randomly selected head nurses to express their opinions about those factors relative priorities or importance. Statistical Analysis Used: Collected data and matrices in two mentioned phases were analyzed using SPSS 15.0 and some statistical tests including Independent-Samples T-Test and Pearson Correlation coefficient, as well as, Super Decisions software (Latest Beta. Results: The human resource productivity had significant relationships with nurses′ sex (P = 0.008, marital status (P < 0.001, education level (P < 0.001, and all questionnaire factors (P < 0.05. Nurses′ productivity from their perspective was below average (44.97 ΁ 7.43. Also, the priorities of factors affecting the productivity of nurses based on the ACHIEVE model from the head nurses′ perspective using AHP technique, from the

  12. System-Level Modeling and Synthesis Techniques for Flow-Based Microfluidic Very Large Scale Integration Biochips

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan

    Microfluidic biochips integrate different biochemical analysis functionalities on-chip and offer several advantages over the conventional biochemical laboratories. In this thesis, we focus on the flow-based biochips. The basic building block of such a chip is a valve which can be fabricated at very...... propose a framework for mapping the biochemical applications onto the mVLSI biochips, binding and scheduling the operations and performing fluid routing. A control synthesis framework for determining the exact valve activation sequence required to execute the application is also proposed. In order...... to reduce the macro-assembly around the chip and enhance chip scalability, we propose an approach for the biochip pin count minimization. We also propose a throughput maximization scheme for the cell culture mVLSI biochips, saving time and reducing costs. We have extensively evaluated the proposed...

  13. Towards elicitation of users requirements for hospital information system: from a care process modelling technique to a web based collaborative tool.

    Science.gov (United States)

    Staccini, Pascal M; Joubert, Michel; Quaranta, Jean-Francois; Fieschi, Marius

    2002-01-01

    Growing attention is being given to the use of process modeling methodology for user requirements elicitation. In the analysis phase of hospital information systems, the usefulness of care-process models has been investigated to evaluate the conceptual applicability and practical understandability by clinical staff and members of users teams. Nevertheless, there still remains a gap between users and analysts in their mutual ability to share conceptual views and vocabulary, keeping the meaning of clinical context while providing elements for analysis. One of the solutions for filling this gap is to consider the process model itself in the role of a hub as a centralized means of facilitating communication between team members. Starting with a robust and descriptive technique for process modeling called IDEF0/SADT, we refined the basic data model by extracting concepts from ISO 9000 process analysis and from enterprise ontology. We defined a web-based architecture to serve as a collaborative tool and implemented it using an object-oriented database. The prospects of such a tool are discussed notably regarding to its ability to generate data dictionaries and to be used as a navigation tool through the medium of hospital-wide documentation.

  14. Probabilistic evaluation of process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2016-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  15. Mechanistic model to predict colostrum intake based on deuterium oxide dilution technique data and impact of gestation and prefarrowing diets on piglet intake and sow yield of colostrum

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Flummer, Christine; Hurley, W L

    2014-01-01

    The aims of the present study were to quantify colostrum intake (CI) of piglets using the D2O dilution technique, to develop a mechanistic model to predict CI, to compare these data with CI predicted by a previous empirical predictive model developed for bottle-fed piglets, and to study how...... composition of diets fed to gestating sows affected piglet CI, sow colostrum yield (CY), and colostrum composition. In total, 240 piglets from 40 litters were enriched with D2O. The CI measured by D2O from birth until 24 h after the birth of first-born piglet was on average 443 g (SD 151). Based on measured...... CI, a mechanistic model to predict CI was developed using piglet characteristics (24-h weight gain [WG; g], BW at birth [BWB; kg], and duration of CI [D; min]: CI, g = –106 + 2.26 WG + 200 BWB + 0.111 D – 1,414 WG/D + 0.0182 WG/BWB (R2 = 0.944). This model was used to predict the CI for all colostrum...

  16. Base Oils Biodegradability Prediction with Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Malika Trabelsi

    2010-02-01

    Full Text Available In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classification prediction. However, the technique of Decision Trees helped uncover the most significant predictors. A simple classification rule derived based on this predictor resulted in good classification accuracy. The application of this rule enables efficient classification of base oils into either low or high biodegradability classes with high accuracy. For the latter, a higher precision biodegradability prediction can be obtained using continuous modeling techniques.

  17. Mechanistic model to predict colostrum intake based on deuterium oxide dilution technique data and impact of gestation and prefarrowing diets on piglet intake and sow yield of colostrum.

    Science.gov (United States)

    Theil, P K; Flummer, C; Hurley, W L; Kristensen, N B; Labouriau, R L; Sørensen, M T

    2014-12-01

    The aims of the present study were to quantify colostrum intake (CI) of piglets using the D2O dilution technique, to develop a mechanistic model to predict CI, to compare these data with CI predicted by a previous empirical predictive model developed for bottle-fed piglets, and to study how composition of diets fed to gestating sows affected piglet CI, sow colostrum yield (CY), and colostrum composition. In total, 240 piglets from 40 litters were enriched with D2O. The CI measured by D2O from birth until 24 h after the birth of first-born piglet was on average 443 g (SD 151). Based on measured CI, a mechanistic model to predict CI was developed using piglet characteristics (24-h weight gain [WG; g], BW at birth [BWB; kg], and duration of CI [D; min]: CI, g=-106+2.26 WG+200 BWB+0.111 D-1,414 WG/D+0.0182 WG/BWB (R2=0.944). This model was used to predict the CI for all colostrum suckling piglets within the 40 litters (n=500, mean=437 g, SD=153 g) and was compared with the CI predicted by a previous empirical predictive model (mean=305 g, SD=140 g). The previous empirical model underestimated the CI by 30% compared with that obtained by the new mechanistic model. The sows were fed 1 of 4 gestation diets (n=10 per diet) based on different fiber sources (low fiber [17%] or potato pulp, pectin residue, or sugarbeet pulp [32 to 40%]) from mating until d 108 of gestation. From d 108 of gestation until parturition, sows were fed 1 of 5 prefarrowing diets (n=8 per diet) varying in supplemented fat (3% animal fat, 8% coconut oil, 8% sunflower oil, 8% fish oil, or 4% fish oil+4% octanoic acid). Sows fed diets with pectin residue or sugarbeet pulp during gestation produced colostrum with lower protein, fat, DM, and energy concentrations and higher lactose concentrations, and their piglets had greater CI as compared with sows fed potato pulp or the low-fiber diet (Pcoconut oil decreased lactose and increased DM concentrations of colostrum compared with other prefarrowing diets (P

  18. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  19. Cells, Agents, and Support Vectors in Interaction - Modeling Urban Sprawl based on Machine Learning and Artificial Intelligence Techniques in a Post-Industrial Region

    Science.gov (United States)

    Rienow, A.; Menz, G.

    2015-12-01

    Since the beginning of the millennium, artificial intelligence techniques as cellular automata (CA) and multi-agent systems (MAS) have been incorporated into land-system simulations to address the complex challenges of transitions in urban areas as open, dynamic systems. The study presents a hybrid modeling approach for modeling the two antagonistic processes of urban sprawl and urban decline at once. The simulation power of support vector machines (SVM), cellular automata (CA) and multi-agent systems (MAS) are integrated into one modeling framework and applied to the largest agglomeration of Central Europe: the Ruhr. A modified version of SLEUTH (short for Slope, Land-use, Exclusion, Urban, Transport, and Hillshade) functions as the CA component. SLEUTH makes use of historic urban land-use data sets and growth coefficients for the purpose of modeling physical urban expansion. The machine learning algorithm of SVM is applied in order to enhance SLEUTH. Thus, the stochastic variability of the CA is reduced and information about the human and ecological forces driving the local suitability of urban sprawl is incorporated. Subsequently, the supported CA is coupled with the MAS ReHoSh (Residential Mobility and the Housing Market of Shrinking City Systems). The MAS models population patterns, housing prices, and housing demand in shrinking regions based on interactions between household and city agents. Semi-explicit urban weights are introduced as a possibility of modeling from and to the pixel simultaneously. Three scenarios of changing housing preferences reveal the urban development of the region in terms of quantity and location. They reflect the dissemination of sustainable thinking among stakeholders versus the steady dream of owning a house in sub- and exurban areas. Additionally, the outcomes are transferred into a digital petri dish reflecting a synthetic environment with perfect conditions of growth. Hence, the generic growth elements affecting the future

  20. Verification of Orthogrid Finite Element Modeling Techniques

    Science.gov (United States)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  1. Matlab-Based Modeling and Simulations to Study the Performance of Different MPPT Techniques Used for Photovoltaic Systems under Partially Shaded Conditions

    Directory of Open Access Journals (Sweden)

    Jehun Hahm

    2015-01-01

    Full Text Available A pulse-width-modulator- (PWM- based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT used in photovoltaic (PV systems. Under partially shaded conditions and temperature, PV array characteristics become more complex, with multiple power-voltage maxima. MPPT is an automatic control technique to adjust power interfaces and deliver power for a diverse range of insolation values, temperatures, and partially shaded modules. The PV system is tested using two conventional algorithms: the Perturb and Observe (P&O algorithm and the Incremental Conductance (IncCond algorithm, which are simple to implement for a PV array. The proposed method applied a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under nonuniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The PWM-based sliding mode controller successfully overcomes the issues presented by nonuniform conditions and tracks the global MPP. In this paper, the PV system consists of a solar module under shade connected to a boost converter that is controlled by three different algorithms and is generated using Matlab/Simulink.

  2. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    Science.gov (United States)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  3. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  4. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study.

    Science.gov (United States)

    Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V

    2015-02-01

    OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid

  5. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  6. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  7. Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.

    Science.gov (United States)

    Stimpson, B.

    1979-01-01

    Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)

  8. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  9. Ultra-low dose abdominal MDCT: Using a knowledge-based Iterative Model Reconstruction technique for substantial dose reduction in a prospective clinical study

    International Nuclear Information System (INIS)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Blake, Michael; Harisinghani, Mukesh; Choy, Gary; Karosmangulu, Ali; Padole, Atul; Do, Synho; Brown, Kevin; Thompson, Richard; Morton, Thomas; Raihani, Nilgoun; Koehler, Thomas; Kalra, Mannudeep K.

    2015-01-01

    Highlights: • Limited abdominal CT indications can be performed at a size specific dose estimate of (SSDE) 1.5 mGy (∼0.9 mSv) in smaller patients (BMI less than or equal to 25 kg/m 2 ) using a knowledge based Iterative Model Reconstruction (IMR) technique. • Evaluation of liver tumors and pathologies is unacceptable at this reduced dose with IMR technique especially in patients with a BMI greater than 25 kg/m 2 . • IMR body soft tissue and routine settings perform substantially better than IMR sharp plus setting in reduced dose CT images. • At SSDE of 1.5 mGy, objective image noise in reduced dose IMR images is 8–56% less than compared to standard dose FBP images, with lowest image noise in IMR body-soft tissue images. - Abstract: Purpose: To assess lesion detection and image quality parameters of a knowledge-based Iterative Model Reconstruction (IMR) in reduced dose (RD) abdominal CT examinations. Materials and methods: This IRB-approved prospective study included 82 abdominal CT examinations performed for 41 consecutive patients (mean age, 62 ± 12 years; F:M 28:13) who underwent a RD CT (SSDE, 1.5 mGy ± 0.4 [∼0.9 mSv] at 120 kV with 17–20 mAs/slice) immediately after their standard dose (SD) CT exam (10 mGy ± 3 [∼6 mSv] at 120 kV with automatic exposure control) on 256 MDCT (iCT, Philips Healthcare). SD data were reconstructed using filtered back projection (FBP). RD data were reconstructed with FBP and IMR. Four radiologists used a five-point scale (1 = image quality better than SD CT to 5 = image quality unacceptable) to assess both subjective image quality and artifacts. Lesions were first detected on RD FBP images. RD IMR and RD FBP images were then compared side-by-side to SD-FBP images in an independent, randomized and blinded fashion. Friedman's test and intraclass correlation coefficient were used for data analysis. Objective measurements included image noise and attenuation as well as noise spectral density (NSD) curves to

  10. Ultra-low dose abdominal MDCT: Using a knowledge-based Iterative Model Reconstruction technique for substantial dose reduction in a prospective clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali, E-mail: rkhawaja@mgh.harvard.edu [MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Singh, Sarabjeet; Blake, Michael; Harisinghani, Mukesh; Choy, Gary; Karosmangulu, Ali; Padole, Atul; Do, Synho [MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Brown, Kevin; Thompson, Richard; Morton, Thomas; Raihani, Nilgoun [CT Research and Advanced Development, Philips Healthcare, Cleveland, OH (United States); Koehler, Thomas [Philips Technologie GmbH, Innovative Technologies, Hamburg (Germany); Kalra, Mannudeep K. [MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2015-01-15

    Highlights: • Limited abdominal CT indications can be performed at a size specific dose estimate of (SSDE) 1.5 mGy (∼0.9 mSv) in smaller patients (BMI less than or equal to 25 kg/m{sup 2}) using a knowledge based Iterative Model Reconstruction (IMR) technique. • Evaluation of liver tumors and pathologies is unacceptable at this reduced dose with IMR technique especially in patients with a BMI greater than 25 kg/m{sup 2}. • IMR body soft tissue and routine settings perform substantially better than IMR sharp plus setting in reduced dose CT images. • At SSDE of 1.5 mGy, objective image noise in reduced dose IMR images is 8–56% less than compared to standard dose FBP images, with lowest image noise in IMR body-soft tissue images. - Abstract: Purpose: To assess lesion detection and image quality parameters of a knowledge-based Iterative Model Reconstruction (IMR) in reduced dose (RD) abdominal CT examinations. Materials and methods: This IRB-approved prospective study included 82 abdominal CT examinations performed for 41 consecutive patients (mean age, 62 ± 12 years; F:M 28:13) who underwent a RD CT (SSDE, 1.5 mGy ± 0.4 [∼0.9 mSv] at 120 kV with 17–20 mAs/slice) immediately after their standard dose (SD) CT exam (10 mGy ± 3 [∼6 mSv] at 120 kV with automatic exposure control) on 256 MDCT (iCT, Philips Healthcare). SD data were reconstructed using filtered back projection (FBP). RD data were reconstructed with FBP and IMR. Four radiologists used a five-point scale (1 = image quality better than SD CT to 5 = image quality unacceptable) to assess both subjective image quality and artifacts. Lesions were first detected on RD FBP images. RD IMR and RD FBP images were then compared side-by-side to SD-FBP images in an independent, randomized and blinded fashion. Friedman's test and intraclass correlation coefficient were used for data analysis. Objective measurements included image noise and attenuation as well as noise spectral density (NSD) curves

  11. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  12. Graph based techniques for tag cloud generation

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...... or citation counts for improved measurement of relevance of tag clouds. We show, that on the given data sets, our approach outperforms the state of the art baseline methods with respect to such relevance by 41 % on Movielens dataset and by 11 % on Bibsonomy data set....

  13. Power system stabilizers based on modern control techniques

    Energy Technology Data Exchange (ETDEWEB)

    Malik, O P; Chen, G P; Zhang, Y; El-Metwally, K [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering

    1994-12-31

    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  14. A New ABCD Technique to Analyze Business Models & Concepts

    OpenAIRE

    Aithal P. S.; Shailasri V. T.; Suresh Kumar P. M.

    2015-01-01

    Various techniques are used to analyze individual characteristics or organizational effectiveness like SWOT analysis, SWOC analysis, PEST analysis etc. These techniques provide an easy and systematic way of identifying various issues affecting a system and provides an opportunity for further development. Whereas these provide a broad-based assessment of individual institutions and systems, it suffers limitations while applying to business context. The success of any business model depends on ...

  15. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  16. Rabbit tissue model (RTM) harvesting technique.

    Science.gov (United States)

    Medina, Marelyn

    2002-01-01

    A method for creating a tissue model using a female rabbit for laparoscopic simulation exercises is described. The specimen is called a Rabbit Tissue Model (RTM). Dissection techniques are described for transforming the rabbit carcass into a small, compact unit that can be used for multiple training sessions. Preservation is accomplished by using saline and refrigeration. Only the animal trunk is used, with the rest of the animal carcass being discarded. Practice exercises are provided for using the preserved organs. Basic surgical skills, such as dissection, suturing, and knot tying, can be practiced on this model. In addition, the RTM can be used with any pelvic trainer that permits placement of larger practice specimens within its confines.

  17. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  18. Artificial Intelligence based technique for BTS placement

    International Nuclear Information System (INIS)

    Alenoghena, C O; Emagbetere, J O; 1 Minna (Nigeria))" data-affiliation=" (Department of Telecommunications Engineering, Federal University of Techn.1 Minna (Nigeria))" >Aibinu, A M

    2013-01-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  19. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    Science.gov (United States)

    2016-02-26

    bandwidths, and with it receiver noise floors , are unavoidable. Figure 1. SNR of a thermally limited receiver based on Friis equation showing the...techniques for RF and photonic integration based on liquid crystal polymer substrates were pursued that would aid in the realization of potential imaging...These models assumed that sufficient LNA gain was used on the antenna to set the noise floor of the imaging receiver, which necessitated physical

  20. Towards Model Validation and Verification with SAT Techniques

    OpenAIRE

    Gogolla, Martin

    2010-01-01

    After sketching how system development and the UML (Unified Modeling Language) and the OCL (Object Constraint Language) are related, validation and verification with the tool USE (UML-based Specification Environment) is demonstrated. As a more efficient alternative for verification tasks, two approaches using SAT-based techniques are put forward: First, a direct encoding of UML and OCL with Boolean variables and propositional formulas, and second, an encoding employing an...

  1. A novel model-free data analysis technique based on clustering in a mutual information space: application to resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Simon Benjaminsson

    2010-08-01

    Full Text Available Non-parametric data-driven analysis techniques can be used to study datasets with few assumptions about the data and underlying experiment. Variations of Independent Component Analysis (ICA have been the methods mostly used on fMRI data, e.g. in finding resting-state networks thought to reflect the connectivity of the brain. Here we present a novel data analysis technique and demonstrate it on resting-state fMRI data. It is a generic method with few underlying assumptions about the data. The results are built from the statistical relations between all input voxels, resulting in a whole-brain analysis on a voxel level. It has good scalability properties and the parallel implementation is capable of handling large datasets and databases. From the mutual information between the activities of the voxels over time, a distance matrix is created for all voxels in the input space. Multidimensional scaling is used to put the voxels in a lower-dimensional space reflecting the dependency relations based on the distance matrix. By performing clustering in this space we can find the strong statistical regularities in the data, which for the resting-state data turns out to be the resting-state networks. The decomposition is performed in the last step of the algorithm and is computationally simple. This opens up for rapid analysis and visualization of the data on different spatial levels, as well as automatically finding a suitable number of decomposition components.

  2. Laser-based direct-write techniques for cell printing

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Nathan R; Corr, David T [Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States); Huang Yong [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Raof, Nurazhani Abdul; Xie Yubing [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY (United States); Chrisey, Douglas B, E-mail: schien@rpi.ed, E-mail: chrisd@rpi.ed [Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2010-09-15

    Fabrication of cellular constructs with spatial control of cell location ({+-}5 {mu}m) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  3. Laser-based direct-write techniques for cell printing

    International Nuclear Information System (INIS)

    Schiele, Nathan R; Corr, David T; Huang Yong; Raof, Nurazhani Abdul; Xie Yubing; Chrisey, Douglas B

    2010-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  4. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  5. Exploring a physico-chemical multi-array explanatory model with a new multiple covariance-based technique: structural equation exploratory regression.

    Science.gov (United States)

    Bry, X; Verron, T; Cazes, P

    2009-05-29

    In this work, we consider chemical and physical variable groups describing a common set of observations (cigarettes). One of the groups, minor smoke compounds (minSC), is assumed to depend on the others (minSC predictors). PLS regression (PLSR) of m inSC on the set of all predictors appears not to lead to a satisfactory analytic model, because it does not take into account the expert's knowledge. PLS path modeling (PLSPM) does not use the multidimensional structure of predictor groups. Indeed, the expert needs to separate the influence of several pre-designed predictor groups on minSC, in order to see what dimensions this influence involves. To meet these needs, we consider a multi-group component-regression model, and propose a method to extract from each group several strong uncorrelated components that fit the model. Estimation is based on a global multiple covariance criterion, used in combination with an appropriate nesting approach. Compared to PLSR and PLSPM, the structural equation exploratory regression (SEER) we propose fully uses predictor group complementarity, both conceptually and statistically, to predict the dependent group.

  6. IoT Security Techniques Based on Machine Learning

    OpenAIRE

    Xiao, Liang; Wan, Xiaoyue; Lu, Xiaozhen; Zhang, Yanyong; Wu, Di

    2018-01-01

    Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques including supervised learning, unsupervised learning and reinforcement learning. We focus on the machine le...

  7. Flat-Panel Detector—Based Volume Computed Tomography: A Novel 3D Imaging Technique to Monitor Osteolytic Bone Lesions in a Mouse Tumor Metastasis Model

    Directory of Open Access Journals (Sweden)

    Jeannine Missbach-Guentner

    2007-09-01

    Full Text Available Skeletal metastasis is an important cause of mortality in patients with breast cancer. Hence, animal models, in combination with various imaging techniques, are in high demand for preclinical assessment of novel therapies. We evaluated the applicability of flat-panel volume computed tomography (fpVCT to noninvasive detection of osteolytic bone metastases that develop in severe immunodeficient mice after intracardial injection of MDA-MB-231 breast cancer cells. A single fpVCT scan at 200-wm isotropic resolution was employed to detect osteolysis within the entire skeleton. Osteolytic lesions identified by fpVCT correlated with Faxitron X-ray analysis and were subsequently confirmed by histopathological examination. Isotropic three-dimensional image data sets obtained by fpVCT were the basis for the precise visualization of the extent of the lesion within the cortical bone and for the measurement of bone loss. Furthermore, fpVCT imaging allows continuous monitoring of growth kinetics for each metastatic site and visualization of lesions in more complex regions of the skeleton, such as the skull. Our findings suggest that fpVCT is a powerful tool that can be used to monitor the occurrence and progression of osteolytic lesions in vivo and can be further developed to monitor responses to antimetastatic therapies over the course of the disease.

  8. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  9. AN OVERVIEW OF REDUCED ORDER MODELING TECHNIQUES FOR SAFETY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, D.; Alfonsi, A.; Talbot, P.; Wang, C.; Maljovec, D.; Smith, C.; Rabiti, C.; Cogliati, J.

    2016-10-01

    The RISMC project is developing new advanced simulation-based tools to perform Computational Risk Analysis (CRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermal-hydraulic behavior of the reactors primary and secondary systems, but also external event temporal evolution and component/system ageing. Thus, this is not only a multi-physics problem being addressed, but also a multi-scale problem (both spatial, µm-mm-m, and temporal, seconds-hours-years). As part of the RISMC CRA approach, a large amount of computationally-expensive simulation runs may be required. An important aspect is that even though computational power is growing, the overall computational cost of a RISMC analysis using brute-force methods may be not viable for certain cases. A solution that is being evaluated to assist the computational issue is the use of reduced order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RISMC analysis computational cost by decreasing the number of simulation runs; for this analysis improvement we used surrogate models instead of the actual simulation codes. This article focuses on the use of reduced order modeling techniques that can be applied to RISMC analyses in order to generate, analyze, and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (microseconds instead of hours/days).

  10. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    Science.gov (United States)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  11. Knowledge-based iterative model reconstruction technique in computed tomography of lumbar spine lowers radiation dose and improves tissue differentiation for patients with lower back pain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng Hui [Department of Medical Imaging, Pojen General Hopsital, Taipei, Taiwan (China); School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Lin, Chung-Jung, E-mail: bcjlin@me.com [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chiou, Yi-You; Chen, Ying-Chou; Sheu, Ming-Huei; Guo, Wan-Yuo; Chiu, Chen Fen [School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2016-10-15

    Highlights: • Knowledge-based IMR improves tissue differentiation in CT of L-spine better than hybrid IR (iDose{sup 4}). • Higher strength IMR improves image qualities of the IVD and IVF in spinal stenosis. • IMR provides diagnostic lower dose CT of L-spine. - Abstract: Purpose: To evaluate the image quality and diagnostic confidence of reduced-dose computed tomography (CT) of the lumbar spine (L-spine) reconstructed with knowledge-based iterative model reconstruction (IMR). Materials and methods: Prospectively, group A consisted of 55 patients imaged with standard acquisition reconstructed with filtered back-projection. Group B consisted of 58 patients imaged with half tube current, reconstructed with hybrid iterative reconstruction (iDose{sup 4}) in Group B1 and knowledge-based IMR in Group B2. Signal-to-noise ratio (SNR) of different regions, the contrast-to-noise ratio between the intervetebral disc (IVD) and dural sac (D-D CNR), and subjective image quality of different regions were compared. Higher strength IMR was also compared in spinal stenosis cases. Results: The SNR of the psoas muscle and D-D CNR were significantly higher in the IMR group. Except for the facet joint, subjective image quality of other regions including IVD, intervertebral foramen (IVF), dural sac, peridural fat, ligmentum flavum, and overall diagnostic acceptability were best for the IMR group. Diagnostic confidence of narrowing IVF and IVD was good (kappa = 0.58–0.85). Higher strength IMR delineated IVD better in spinal stenosis cases. Conclusion: Lower dose CT of L-spine reconstructed with IMR demonstrates better tissue differentiation than iDose{sup 4} and standard dose CT with FBP.

  12. Knowledge-based iterative model reconstruction technique in computed tomography of lumbar spine lowers radiation dose and improves tissue differentiation for patients with lower back pain

    International Nuclear Information System (INIS)

    Yang, Cheng Hui; Wu, Tung-Hsin; Lin, Chung-Jung; Chiou, Yi-You; Chen, Ying-Chou; Sheu, Ming-Huei; Guo, Wan-Yuo; Chiu, Chen Fen

    2016-01-01

    Highlights: • Knowledge-based IMR improves tissue differentiation in CT of L-spine better than hybrid IR (iDose 4 ). • Higher strength IMR improves image qualities of the IVD and IVF in spinal stenosis. • IMR provides diagnostic lower dose CT of L-spine. - Abstract: Purpose: To evaluate the image quality and diagnostic confidence of reduced-dose computed tomography (CT) of the lumbar spine (L-spine) reconstructed with knowledge-based iterative model reconstruction (IMR). Materials and methods: Prospectively, group A consisted of 55 patients imaged with standard acquisition reconstructed with filtered back-projection. Group B consisted of 58 patients imaged with half tube current, reconstructed with hybrid iterative reconstruction (iDose 4 ) in Group B1 and knowledge-based IMR in Group B2. Signal-to-noise ratio (SNR) of different regions, the contrast-to-noise ratio between the intervetebral disc (IVD) and dural sac (D-D CNR), and subjective image quality of different regions were compared. Higher strength IMR was also compared in spinal stenosis cases. Results: The SNR of the psoas muscle and D-D CNR were significantly higher in the IMR group. Except for the facet joint, subjective image quality of other regions including IVD, intervertebral foramen (IVF), dural sac, peridural fat, ligmentum flavum, and overall diagnostic acceptability were best for the IMR group. Diagnostic confidence of narrowing IVF and IVD was good (kappa = 0.58–0.85). Higher strength IMR delineated IVD better in spinal stenosis cases. Conclusion: Lower dose CT of L-spine reconstructed with IMR demonstrates better tissue differentiation than iDose 4 and standard dose CT with FBP.

  13. DCT-based cyber defense techniques

    Science.gov (United States)

    Amsalem, Yaron; Puzanov, Anton; Bedinerman, Anton; Kutcher, Maxim; Hadar, Ofer

    2015-09-01

    With the increasing popularity of video streaming services and multimedia sharing via social networks, there is a need to protect the multimedia from malicious use. An attacker may use steganography and watermarking techniques to embed malicious content, in order to attack the end user. Most of the attack algorithms are robust to basic image processing techniques such as filtering, compression, noise addition, etc. Hence, in this article two novel, real-time, defense techniques are proposed: Smart threshold and anomaly correction. Both techniques operate at the DCT domain, and are applicable for JPEG images and H.264 I-Frames. The defense performance was evaluated against a highly robust attack, and the perceptual quality degradation was measured by the well-known PSNR and SSIM quality assessment metrics. A set of defense techniques is suggested for improving the defense efficiency. For the most aggressive attack configuration, the combination of all the defense techniques results in 80% protection against cyber-attacks with PSNR of 25.74 db.

  14. Failure Mechanism of Rock Bridge Based on Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2015-01-01

    Full Text Available Acoustic emission (AE technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1 small scale direct shear tests of rock bridge with different lengths and (2 large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.

  15. Nasal base narrowing: the combined alar base excision technique.

    Science.gov (United States)

    Foda, Hossam M T

    2007-01-01

    To evaluate the role of the combined alar base excision technique in narrowing the nasal base and correcting excessive alar flare. The study included 60 cases presenting with a wide nasal base and excessive alar flaring. The surgical procedure combined an external alar wedge resection with an internal vestibular floor excision. All cases were followed up for a mean of 32 (range, 12-144) months. Nasal tip modification and correction of any preexisting caudal septal deformities were always completed before the nasal base narrowing. The mean width of the external alar wedge excised was 7.2 (range, 4-11) mm, whereas the mean width of the sill excision was 3.1 (range, 2-7) mm. Completing the internal excision first resulted in a more conservative external resection, thus avoiding any blunting of the alar-facial crease. No cases of postoperative bleeding, infection, or keloid formation were encountered, and the external alar wedge excision healed with an inconspicuous scar that was well hidden in the depth of the alar-facial crease. Finally, the risk of notching of the alar rim, which can occur at the junction of the external and internal excisions, was significantly reduced by adopting a 2-layered closure of the vestibular floor (P = .01). The combined alar base excision resulted in effective narrowing of the nasal base with elimination of excessive alar flare. Commonly feared complications, such as blunting of the alar-facial crease or notching of the alar rim, were avoided by using simple modifications in the technique of excision and closure.

  16. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    Science.gov (United States)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river

  17. Power system dynamic state estimation using prediction based evolutionary technique

    International Nuclear Information System (INIS)

    Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan

    2016-01-01

    In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.

  18. Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation technique based on a fully developed flow model

    International Nuclear Information System (INIS)

    Smolentsev, Sergey; Morley, Neil; Abdou, Mohamed

    2005-01-01

    The paper presents details of a new numerical code for analysis of a fully developed MHD flow in a channel of a liquid metal blanket using various insulation techniques. The code has specially been designed for channels with a 'sandwich' structure of several materials with different physical properties. The code includes a finite-volume formulation, automatically generated Hartmann number sensitive meshes, and effective convergence acceleration technique. Tests performed at Ha ∼ 10 4 have showed very good accuracy. As an illustration, two blanket flows have been considered: Pb-17Li flow in a channel with a silicon carbide flow channel insert, and Li flow in a channel with insulating coating

  19. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  20. FDTD technique based crosstalk analysis of bundled SWCNT interconnects

    International Nuclear Information System (INIS)

    Duksh, Yograj Singh; Kaushik, Brajesh Kumar; Agarwal, Rajendra P.

    2015-01-01

    The equivalent electrical circuit model of a bundled single-walled carbon nanotube based distributed RLC interconnects is employed for the crosstalk analysis. The accurate time domain analysis and crosstalk effect in the VLSI interconnect has emerged as an essential design criteria. This paper presents a brief description of the numerical method based finite difference time domain (FDTD) technique that is intended for estimation of voltages and currents on coupled transmission lines. For the FDTD implementation, the stability of the proposed model is strictly restricted by the Courant condition. This method is used for the estimation of crosstalk induced propagation delay and peak voltage in lossy RLC interconnects. Both functional and dynamic crosstalk effects are analyzed in the coupled transmission line. The effect of line resistance on crosstalk induced delay, and peak voltage under dynamic and functional crosstalk is also evaluated. The FDTD analysis and the SPICE simulations are carried out at 32 nm technology node for the global interconnects. It is observed that the analytical results obtained using the FDTD technique are in good agreement with the SPICE simulation results. The crosstalk induced delay, propagation delay, and peak voltage obtained using the FDTD technique shows average errors of 4.9%, 3.4% and 0.46%, respectively, in comparison to SPICE. (paper)

  1. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  2. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    Science.gov (United States)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  3. Tannin quantification in red grapes and wine: comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency.

    Science.gov (United States)

    Mercurio, Meagan D; Smith, Paul A

    2008-07-23

    Quantification of red grape tannin and red wine tannin using the methyl cellulose precipitable (MCP) tannin assay and the Adams-Harbertson (A-H) tannin assay were investigated. The study allowed for direct comparison between the repeatability of the assays and for the assessment of other practical considerations such as time efficiency, ease of practice, and throughput, and assessed the relationships between tannin quantification by both analytical techniques. A strong correlation between the two analytical techniques was observed when quantifying grape tannin (r(2) = 0.96), and a good correlation was observed for wine tannins (r(2) = 0.80). However, significant differences in the reported tannin values for the analytical techniques were observed (approximately 3-fold). To explore potential reasons for the difference, investigations were undertaken to determine how several variables influenced the final tannin quantification for both assays. These variables included differences in the amount of tannin precipitated (monitored by HPLC), assay matrix variables, and the monomers used to report the final values. The relationship between tannin quantification and wine astringency was assessed for the MCP and A-H tannin assays, and both showed strong correlations with perceived wine astringency (r(2) = 0.83 and r(2) = 0.90, respectively). The work described here gives guidance to those wanting to understand how the values between the two assays relate; however, a conclusive explanation for the differences in values between the MCP and A-H tannin assays remains unclear, and further work in this area is required.

  4. System health monitoring using multiple-model adaptive estimation techniques

    Science.gov (United States)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary

  5. BIOMEHANICAL MODEL OF THE GOLF SWING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Milan Čoh

    2011-08-01

    Full Text Available Golf is an extremely complex game which depends on a number of interconnected factors. One of the most important elements is undoubtedly the golf swing technique. High performance of the golf swing technique is generated by: the level of motor abilities, high degree of movement control, the level of movement structure stabilisation, morphological characteristics, inter- and intro-muscular coordination, motivation, and concentration. The golf swing technique was investigated using the biomechanical analysis method. Kinematic parameters were registered using two synchronised high-speed cameras at a frequency of 2,000 Hz. The sample of subjects consisted of three professional golf players. The study results showed a relatively high variability of the swing technique. The maximum velocity of the ball after a wood swing ranged from 233 to 227 km/h. The velocity of the ball after an iron swing was lower by 10 km/h on average. The elevation angle of the ball ranged from 11.7 to 15.3 degrees. In the final phase of the golf swing, i.e. downswing, the trunk rotators play the key role.

  6. A DIFFERENT WEB-BASED GEOCODING SERVICE USING FUZZY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    P. Pahlavani

    2015-12-01

    Full Text Available Geocoding – the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.

  7. Respirometry techniques and activated sludge models

    NARCIS (Netherlands)

    Benes, O.; Spanjers, H.; Holba, M.

    2002-01-01

    This paper aims to explain results of respirometry experiments using Activated Sludge Model No. 1. In cases of insufficient fit of ASM No. 1, further modifications to the model were carried out and the so-called "Enzymatic model" was developed. The best-fit method was used to determine the effect of

  8. Enhancing photogrammetric 3d city models with procedural modeling techniques for urban planning support

    International Nuclear Information System (INIS)

    Schubiger-Banz, S; Arisona, S M; Zhong, C

    2014-01-01

    This paper presents a workflow to increase the level of detail of reality-based 3D urban models. It combines the established workflows from photogrammetry and procedural modeling in order to exploit distinct advantages of both approaches. The combination has advantages over purely automatic acquisition in terms of visual quality, accuracy and model semantics. Compared to manual modeling, procedural techniques can be much more time effective while maintaining the qualitative properties of the modeled environment. In addition, our method includes processes for procedurally adding additional features such as road and rail networks. The resulting models meet the increasing needs in urban environments for planning, inventory, and analysis

  9. Towards elicitation of users requirements for hospital information system: from a care process modelling technique to a web based collaborative tool.

    OpenAIRE

    Staccini, Pascal M.; Joubert, Michel; Quaranta, Jean-Francois; Fieschi, Marius

    2002-01-01

    Growing attention is being given to the use of process modeling methodology for user requirements elicitation. In the analysis phase of hospital information systems, the usefulness of care-process models has been investigated to evaluate the conceptual applicability and practical understandability by clinical staff and members of users teams. Nevertheless, there still remains a gap between users and analysts in their mutual ability to share conceptual views and vocabulary, keeping the meaning...

  10. UAV State Estimation Modeling Techniques in AHRS

    Science.gov (United States)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  11. Synchrotron radiation based analytical techniques (XAS and XRF)

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2014-01-01

    A brief description of the principles of X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) techniques is given in this article with emphasis on the advantages of using synchrotron radiation-based instrumentation/beamline. XAS technique is described in more detail to emphasize the strength of the technique as a local structural probe. (author)

  12. Level-set techniques for facies identification in reservoir modeling

    Science.gov (United States)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  13. Level-set techniques for facies identification in reservoir modeling

    International Nuclear Information System (INIS)

    Iglesias, Marco A; McLaughlin, Dennis

    2011-01-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil–water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301–29; 2004 Inverse Problems 20 259–82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg–Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush–Kuhn–Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies

  14. Base Station Performance Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  15. Moving objects management models, techniques and applications

    CERN Document Server

    Meng, Xiaofeng; Xu, Jiajie

    2014-01-01

    This book describes the topics of moving objects modeling and location tracking, indexing and querying, clustering, location uncertainty, traffic aware navigation and privacy issues as well as the application to intelligent transportation systems.

  16. Materials and techniques for model construction

    Science.gov (United States)

    Wigley, D. A.

    1985-01-01

    The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.

  17. Accelerator based techniques for contraband detection

    Science.gov (United States)

    Vourvopoulos, George

    1994-05-01

    It has been shown that narcotics, explosives, and other contraband materials, contain various chemical elements such as H, C, N, O, P, S, and Cl in quantities and ratios that differentiate them from each other and from other innocuous substances. Neutrons and γ-rays have the ability to penetrate through various materials at large depths. They are thus able, in a non-intrusive way, to interrogate volumes ranging from suitcases to Sea-Land containers, and have the ability to image the object with an appreciable degree of reliability. Neutron induced reactions such as (n, γ), (n, n') (n, p) or proton induced γ-resonance absorption are some of the reactions currently investigated for the identification of the chemical elements mentioned above. Various DC and pulsed techniques are discussed and their advantages, characteristics, and current progress are shown. Areas where use of these methods is currently under evaluation are detection of hidden explosives, illicit drug interdiction, chemical war agents identification, nuclear waste assay, nuclear weapons destruction and others.

  18. Language Based Techniques for Systems Biology

    DEFF Research Database (Denmark)

    Pilegaard, Henrik

    ), is context insensitive, while the other, a poly-variant analysis (2CFA), is context-sensitive. These analyses compute safe approximations to the set of spatial configurations that are reachable according to a given model. This is useful in the qualitative study of cellular self-organisation and, e...... development, where one is interested in frequent quick estimates, verification, and prediction, where one is willing to wait longer for more precise estimates....

  19. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X

    2014-01-01

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  20. Model-based security testing

    OpenAIRE

    Schieferdecker, Ina; Großmann, Jürgen; Schneider, Martin

    2012-01-01

    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security...

  1. An Authentication Technique Based on Classification

    Institute of Scientific and Technical Information of China (English)

    李钢; 杨杰

    2004-01-01

    We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.

  2. Laser-based techniques for combustion diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, N.

    1997-04-01

    Two-photon-induced Degenerate Four-Wave Mixing, DFWM, was applied for the first time to the detection of CO, and NH{sub 3} molecules. Measurements were performed in a cell, and in atmospheric-pressure flames. In the cell measurements, the signal dependence on the pressure and on the laser beam intensity was studied. The possibility of simultaneous detection of NH{sub 3} and OH was investigated. Carbon monoxide and ammonia were also detected employing two-photon-induced Polarization Spectroscopy, PS. In the measurements performed in a cold gas flow, the signal strength dependence on the laser intensity, and on the polarization of the pump beam, was investigated. An approach to improve the spatial resolution of the Amplified Stimulated Emission, ASE, was developed. In this approach, two laser beams at different frequencies were crossed in the sample. If the sum of the frequencies of the two laser beams matches a two photon resonance of the investigated species, only the molecules in the intersection volume will be excited. NH{sub 3} molecules and C atoms were studied. The potential of using two-photon LIF for two-dimensional imaging of combustion species was investigated. Although LIF is species specific, several species can be detected simultaneously by utilizing spectral coincidences. Combining one- and two-photon process, OH, NO, and O were detected simultaneously, as well as OH, NO, and NH{sub 3}. Collisional quenching is the major source of uncertainty in quantitative applications of LIF. A technique for two-dimensional, absolute species concentration measurements, circumventing the problems associated with collisional quenching, was developed. By applying simple mathematics to the ratio of two LIF signals generated from two counterpropagating laser beams, the absolute species concentration could be obtained. 41 refs

  3. D Models for All: Low-Cost Acquisition Through Mobile Devices in Comparison with Image Based Techniques. Potentialities and Weaknesses in Cultural Heritage Domain

    Science.gov (United States)

    Santagati, C.; Lo Turco, M.; Bocconcino, M. M.; Donato, V.; Galizia, M.

    2017-11-01

    Nowadays, 3D digital imaging proposes effective solutions for preserving the expression of human creativity across the centuries, as well as is a great tool to guarantee global dissemination of knowledge and wide access to these invaluable resources of the past. Nevertheless, in several cases, a massive digitalisation of cultural heritage items (from the archaeological site up to the monument and museum collections) could be unworkable due to the still high costs in terms of equipment and human resources: 3D acquisition technologies and the need of skilled team within cultural institutions. Therefore, it is necessary to explore new possibilities offered by growing technologies: the lower costs of these technologies as well as their attractive visual quality constitute a challenge for researchers. Besides these possibilities, it is also important to consider how information is spread through graphic representation of knowledge. The focus of this study is to explore the potentialities and weaknesses of a newly released low cost device in the cultural heritage domain, trying to understand its effective usability in museum collections. The aim of the research is to test their usability, critically analysing the final outcomes of this entry level technology in relation to the other better assessed low cost technologies for 3D scanning, such as Structure from Motion (SfM) techniques (also produced by the same device) combined with dataset generated by a professional digital camera. The final outcomes were compared in terms of quality definition, time processing and file size. The specimens of the collections of the Civic Museum Castello Ursino in Catania have been chosen as the site of experimentation.

  4. 3D MODELS FOR ALL: LOW-COST ACQUISITION THROUGH MOBILE DEVICES IN COMPARISON WITH IMAGE BASED TECHNIQUES. POTENTIALITIES AND WEAKNESSES IN CULTURAL HERITAGE DOMAIN

    Directory of Open Access Journals (Sweden)

    C. Santagati

    2017-11-01

    Full Text Available Nowadays, 3D digital imaging proposes effective solutions for preserving the expression of human creativity across the centuries, as well as is a great tool to guarantee global dissemination of knowledge and wide access to these invaluable resources of the past. Nevertheless, in several cases, a massive digitalisation of cultural heritage items (from the archaeological site up to the monument and museum collections could be unworkable due to the still high costs in terms of equipment and human resources: 3D acquisition technologies and the need of skilled team within cultural institutions. Therefore, it is necessary to explore new possibilities offered by growing technologies: the lower costs of these technologies as well as their attractive visual quality constitute a challenge for researchers. Besides these possibilities, it is also important to consider how information is spread through graphic representation of knowledge. The focus of this study is to explore the potentialities and weaknesses of a newly released low cost device in the cultural heritage domain, trying to understand its effective usability in museum collections. The aim of the research is to test their usability, critically analysing the final outcomes of this entry level technology in relation to the other better assessed low cost technologies for 3D scanning, such as Structure from Motion (SfM techniques (also produced by the same device combined with dataset generated by a professional digital camera. The final outcomes were compared in terms of quality definition, time processing and file size. The specimens of the collections of the Civic Museum Castello Ursino in Catania have been chosen as the site of experimentation.

  5. Model measurements for new accelerating techniques

    International Nuclear Information System (INIS)

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs

  6. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  7. Radiation synthesized protein-based nanoparticles: A technique overview

    International Nuclear Information System (INIS)

    Varca, Gustavo H.C.; Perossi, Gabriela G.; Grasselli, Mariano; Lugão, Ademar B.

    2014-01-01

    Seeking for alternative routes for protein engineering a novel technique – radiation induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity has been recently reported. This work aimed to evaluate different process conditions to optimize and provide an overview of the technique using γ-irradiation. Papain was used as model protease and the samples were irradiated in a gamma cell irradiator in phosphate buffer (pH=7.0) containing ethanol (0–35%). The dose effect was evaluated by exposure to distinct γ-irradiation doses (2.5, 5, 7.5 and 10 kGy) and scale up experiments involving distinct protein concentrations (12.5–50 mg mL −1 ) were also performed. Characterization involved size monitoring using dynamic light scattering. Bityrosine detection was performed using fluorescence measurements in order to provide experimental evidence of the mechanism involved. Best dose effects were achieved at 10 kGy with regard to size and no relevant changes were observed as a function of papain concentration, highlighting very broad operational concentration range. Bityrosine changes were identified for the samples as a function of the process confirming that such linkages play an important role in the nanoparticle formation. - Highlights: • Synthesis of protein-based nanoparticles by γ-irradiation. • Optimization of the technique. • Overview of mechanism involved in the nanoparticle formation. • Engineered papain nanoparticles for biomedical applications

  8. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal

    2010-09-01

    The size of embedded software is increasing at a rapid pace. It is often challenging and time consuming to fit an amount of required software functionality within a given hardware resource budget. Code compression is a means to alleviate the problem by providing substantial savings in terms of code size. In this article we introduce a novel and efficient hardware-supported compression technique that is based on Huffman Coding. Our technique reduces the size of the generated decoding table, which takes a large portion of the memory. It combines our previous techniques, Instruction Splitting Technique and Instruction Re-encoding Technique into new one called Combined Compression Technique to improve the final compression ratio by taking advantage of both previous techniques. The instruction Splitting Technique is instruction set architecture (ISA)-independent. It splits the instructions into portions of varying size (called patterns) before Huffman coding is applied. This technique improves the final compression ratio by more than 20% compared to other known schemes based on Huffman Coding. The average compression ratios achieved using this technique are 48% and 50% for ARM and MIPS, respectively. The Instruction Re-encoding Technique is ISA-dependent. It investigates the benefits of reencoding unused bits (we call them reencodable bits) in the instruction format for a specific application to improve the compression ratio. Reencoding those bits can reduce the size of decoding tables by up to 40%. Using this technique, we improve the final compression ratios in comparison to the first technique to 46% and 45% for ARM and MIPS, respectively (including all overhead that incurs). The Combined Compression Technique improves the compression ratio to 45% and 42% for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures

  9. A probabilistic evaluation procedure for process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2018-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  10. Web Based VRML Modelling

    NARCIS (Netherlands)

    Kiss, S.; Sarfraz, M.

    2004-01-01

    Presents a method to connect VRML (Virtual Reality Modeling Language) and Java components in a Web page using EAI (External Authoring Interface), which makes it possible to interactively generate and edit VRML meshes. The meshes used are based on regular grids, to provide an interaction and modeling

  11. Model order reduction techniques with applications in finite element analysis

    CERN Document Server

    Qu, Zu-Qing

    2004-01-01

    Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order mo...

  12. Risk based modelling

    International Nuclear Information System (INIS)

    Chapman, O.J.V.; Baker, A.E.

    1993-01-01

    Risk based analysis is a tool becoming available to both engineers and managers to aid decision making concerning plant matters such as In-Service Inspection (ISI). In order to develop a risk based method, some form of Structural Reliability Risk Assessment (SRRA) needs to be performed to provide a probability of failure ranking for all sites around the plant. A Probabilistic Risk Assessment (PRA) can then be carried out to combine these possible events with the capability of plant safety systems and procedures, to establish the consequences of failure for the sites. In this way the probability of failures are converted into a risk based ranking which can be used to assist the process of deciding which sites should be included in an ISI programme. This paper reviews the technique and typical results of a risk based ranking assessment carried out for nuclear power plant pipework. (author)

  13. Orientation of student entrepreneurial practices based on administrative techniques

    Directory of Open Access Journals (Sweden)

    Héctor Horacio Murcia Cabra

    2005-07-01

    Full Text Available As part of the second phase of the research project «Application of a creativity model to update the teaching of the administration in Colombian agricultural entrepreneurial systems» it was decided to re-enforce student planning and execution of the students of the Agricultural business Administration Faculty of La Salle University. Those finishing their studies were given special attention. The plan of action was initiated in the second semester of 2003. It was initially defined as a model of entrepreneurial strengthening based on a coherent methodology that included the most recent administration and management techniques. Later, the applicability of this model was tested in some organizations of the agricultural sector that had asked for support in their planning processes. Through an investigation-action process the methodology was redefined in order to arrive at a final model that could be used by faculty students and graduates. The results obtained were applied to the teaching of Entrepreneurial Laboratory of ninth semester students with the hope of improving administrative support to agricultural enterprises. Following this procedure more than 100 students and 200 agricultural producers have applied this procedure between June 2003 and July 2005. The methodology used and the results obtained are presented in this article.

  14. Array-based techniques for fingerprinting medicinal herbs

    Directory of Open Access Journals (Sweden)

    Xue Charlie

    2011-05-01

    Full Text Available Abstract Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH-based arrays, Diversity Array Technology (DArT and Subtracted Diversity Array (SDA. We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.

  15. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  16. The impact of applying product-modelling techniques in configurator projects

    DEFF Research Database (Denmark)

    Hvam, Lars; Kristjansdottir, Katrin; Shafiee, Sara

    2018-01-01

    This paper aims to increase understanding of the impact of using product-modelling techniques to structure and formalise knowledge in configurator projects. Companies that provide customised products increasingly apply configurators in support of sales and design activities, reaping benefits...... that include shorter lead times, improved quality of specifications and products, and lower overall product costs. The design and implementation of configurators are a challenging task that calls for scientifically based modelling techniques to support the formal representation of configurator knowledge. Even...... the phenomenon model and information model are considered visually, (2) non-UML-based modelling techniques, in which only the phenomenon model is considered and (3) non-formal modelling techniques. This study analyses the impact to companies from increased availability of product knowledge and improved control...

  17. A Comparative Analysis of Transmission Control Protocol Improvement Techniques over Space-Based Transmission Media

    National Research Council Canada - National Science Library

    Lawson, Joseph M

    2006-01-01

    ... justification for the implementation of a given enhancement technique. The research questions were answered through model and simulation of a satellite transmission system via a Linux-based network topology...

  18. Agent-Based Modeling in Systems Pharmacology.

    Science.gov (United States)

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  19. Determination of rock fragmentation based on a photographic technique

    International Nuclear Information System (INIS)

    Dehgan Banadaki, M.M.; Majdi, A.; Raessi Gahrooei, D.

    2002-01-01

    The paper represents a physical blasting model in laboratory scale along with a photographic approach to describe the distribution of blasted rock materials. For this purpose, based on wobble probability distribution function, eight samples each weighted 100 kg,were obtained. Four pictures from four different section of each sample were taken. Then, pictures were converted into graphic files with characterizing boundary of each piece of rocks in the samples. Error caused due to perspective were eliminated. Volume of each piece of the blasted rock materials and hence the required sieve size, each piece of rock to pass through, were calculated. Finally, original blasted rock size distribution was compared with that obtained from the photographic method. The paper concludes with presenting an approach to convert the results of photographic technique into size distribution obtained by seine analysis with sufficient verification

  20. Clustering economies based on multiple criteria decision making techniques

    Directory of Open Access Journals (Sweden)

    Mansour Momeni

    2011-10-01

    Full Text Available One of the primary concerns on many countries is to determine different important factors affecting economic growth. In this paper, we study some factors such as unemployment rate, inflation ratio, population growth, average annual income, etc to cluster different countries. The proposed model of this paper uses analytical hierarchy process (AHP to prioritize the criteria and then uses a K-mean technique to cluster 59 countries based on the ranked criteria into four groups. The first group includes countries with high standards such as Germany and Japan. In the second cluster, there are some developing countries with relatively good economic growth such as Saudi Arabia and Iran. The third cluster belongs to countries with faster rates of growth compared with the countries located in the second group such as China, India and Mexico. Finally, the fourth cluster includes countries with relatively very low rates of growth such as Jordan, Mali, Niger, etc.

  1. On a Graphical Technique for Evaluating Some Rational Expectations Models

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders R.

    2011-01-01

    Campbell and Shiller (1987) proposed a graphical technique for the present value model, which consists of plotting estimates of the spread and theoretical spread as calculated from the cointegrated vector autoregressive model without imposing the restrictions implied by the present value model....... In addition to getting a visual impression of the fit of the model, the purpose is to see if the two spreads are nevertheless similar as measured by correlation, variance ratio, and noise ratio. We extend these techniques to a number of rational expectation models and give a general definition of spread...

  2. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    International Nuclear Information System (INIS)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-01-01

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  3. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  4. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide

  5. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  6. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    Science.gov (United States)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo

  7. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  8. Nitrous oxide-based techniques versus nitrous oxide-free techniques for general anaesthesia.

    Science.gov (United States)

    Sun, Rao; Jia, Wen Qin; Zhang, Peng; Yang, KeHu; Tian, Jin Hui; Ma, Bin; Liu, Yali; Jia, Run H; Luo, Xiao F; Kuriyama, Akira

    2015-11-06

    anaesthesia (or both) with any general anaesthesia using a volatile anaesthetic or propofol-based maintenance of anaesthesia but no nitrous oxide for adults undergoing surgery. Our primary outcome was inhospital case fatality rate. Secondary outcomes were complications and length of stay. Two review authors independently assessed trial quality and extracted the outcome data. We used meta-analysis for data synthesis. Heterogeneity was examined with the Chi² test and by calculating the I² statistic. We used a fixed-effect model if the measure of inconsistency was low for all comparisons (I² statistic nitrous oxide-based techniques increased the incidence of pulmonary atelectasis (odds ratio (OR) 1.57, 95% confidence interval (CI) 1.18 to 2.10, P = 0.002), but had no effects on the inhospital case fatality rate, the incidence of pneumonia, myocardial infarction, stroke, severe nausea and vomiting, venous thromboembolism, wound infection, or the length of hospital stay. The sensitivity analyses suggested that the results of the meta-analyses were all robust except for the outcomes of pneumonia, and severe nausea and vomiting. Two trials reported length of intensive care unit (ICU) stay but the data were skewed so were not pooled. Both trials reported that nitrous oxide-based techniques had no effects on the length of ICU stay. We rated the quality of evidence for two outcomes (pulmonary atelectasis, myocardial infarction) as high, four outcomes (inhospital case fatality rate, stroke, venous thromboembolism, length of hospital stay) as moderate, and three (pneumonia, severe nausea and vomiting, wound infection rate) as low. Given the evidence from this Cochrane review, the avoidance of nitrous oxide may be reasonable in participants with pre-existing poor pulmonary function or at high risk of postoperative nausea and vomiting. Since there are eight studies awaiting classification, selection bias may exist in our systematic review.

  9. improvement of digital image watermarking techniques based on FPGA implementation

    International Nuclear Information System (INIS)

    EL-Hadedy, M.E

    2006-01-01

    digital watermarking provides the ownership of a piece of digital data by marking the considered data invisibly or visibly. this can be used to protect several types of multimedia objects such as audio, text, image and video. this thesis demonstrates the different types of watermarking techniques such as (discrete cosine transform (DCT) and discrete wavelet transform (DWT) and their characteristics. then, it classifies these techniques declaring their advantages and disadvantages. an improved technique with distinguished features, such as peak signal to noise ratio ( PSNR) and similarity ratio (SR) has been introduced. the modified technique has been compared with the other techniques by measuring heir robustness against differ attacks. finally, field programmable gate arrays (FPGA) based implementation and comparison, for the proposed watermarking technique have been presented and discussed

  10. Rapid analysis of steels using laser-based techniques

    International Nuclear Information System (INIS)

    Cremers, D.A.; Archuleta, F.L.; Dilworth, H.C.

    1985-01-01

    Based on the data obtained by this study, we conclude that laser-based techniques can be used to provide at least semi-quantitative information about the elemental composition of molten steel. Of the two techniques investigated here, the Sample-Only method appears preferable to the LIBS (laser-induced breakdown spectroscopy) method because of its superior analytical performance. In addition, the Sample-Only method would probably be easier to incorporate into a steel plant environment. However, before either technique can be applied to steel monitoring, additional research is needed

  11. Circuit oriented electromagnetic modeling using the PEEC techniques

    CERN Document Server

    Ruehli, Albert; Jiang, Lijun

    2017-01-01

    This book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements.

  12. [Intestinal lengthening techniques: an experimental model in dogs].

    Science.gov (United States)

    Garibay González, Francisco; Díaz Martínez, Daniel Alberto; Valencia Flores, Alejandro; González Hernández, Miguel Angel

    2005-01-01

    To compare two intestinal lengthening procedures in an experimental dog model. Intestinal lengthening is one of the methods for gastrointestinal reconstruction used for treatment of short bowel syndrome. The modification to the Bianchi's technique is an alternative. The modified technique decreases the number of anastomoses to a single one, thus reducing the risk of leaks and strictures. To our knowledge there is not any clinical or experimental report that studied both techniques, so we realized the present report. Twelve creole dogs were operated with the Bianchi technique for intestinal lengthening (group A) and other 12 creole dogs from the same race and weight were operated by the modified technique (Group B). Both groups were compared in relation to operating time, difficulties in technique, cost, intestinal lengthening and anastomoses diameter. There were no statistical difference in the anastomoses diameter (A = 9.0 mm vs. B = 8.5 mm, p = 0.3846). Operating time (142 min vs. 63 min) cost and technique difficulties were lower in group B (p anastomoses (of Group B) and intestinal segments had good blood supply and were patent along their full length. Bianchi technique and the modified technique offer two good reliable alternatives for the treatment of short bowel syndrome. The modified technique improved operating time, cost and technical issues.

  13. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  14. Structural design systems using knowledge-based techniques

    International Nuclear Information System (INIS)

    Orsborn, K.

    1993-01-01

    Engineering information management and the corresponding information systems are of a strategic importance for industrial enterprises. This thesis treats the interdisciplinary field of designing computing systems for structural design and analysis using knowledge-based techniques. Specific conceptual models have been designed for representing the structure and the process of objects and activities in a structural design and analysis domain. In this thesis, it is shown how domain knowledge can be structured along several classification principles in order to reduce complexity and increase flexibility. By increasing the conceptual level of the problem description and representation of the domain knowledge in a declarative form, it is possible to enhance the development, maintenance and use of software for mechanical engineering. This will result in a corresponding increase of the efficiency of the mechanical engineering design process. These ideas together with the rule-based control point out the leverage of declarative knowledge representation within this domain. Used appropriately, a declarative knowledge representation preserves information better, is more problem-oriented and change-tolerant than procedural representations. 74 refs

  15. A pilot modeling technique for handling-qualities research

    Science.gov (United States)

    Hess, R. A.

    1980-01-01

    A brief survey of the more dominant analysis techniques used in closed-loop handling-qualities research is presented. These techniques are shown to rely on so-called classical and modern analytical models of the human pilot which have their foundation in the analysis and design principles of feedback control. The optimal control model of the human pilot is discussed in some detail and a novel approach to the a priori selection of pertinent model parameters is discussed. Frequency domain and tracking performance data from 10 pilot-in-the-loop simulation experiments involving 3 different tasks are used to demonstrate the parameter selection technique. Finally, the utility of this modeling approach in handling-qualities research is discussed.

  16. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  17. Skull base tumor model.

    Science.gov (United States)

    Gragnaniello, Cristian; Nader, Remi; van Doormaal, Tristan; Kamel, Mahmoud; Voormolen, Eduard H J; Lasio, Giovanni; Aboud, Emad; Regli, Luca; Tulleken, Cornelius A F; Al-Mefty, Ossama

    2010-11-01

    Resident duty-hours restrictions have now been instituted in many countries worldwide. Shortened training times and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. The development of educational models for brain anatomy is a fascinating innovation allowing neurosurgeons to train without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period. The authors describe the use of Stratathane resin ST-504 polymer (SRSP), which is inserted at different intracranial locations to closely mimic meningiomas and other pathological entities of the skull base, in a cadaveric model, for use in neurosurgical training. Silicone-injected and pressurized cadaveric heads were used for studying the SRSP model. The SRSP presents unique intrinsic metamorphic characteristics: liquid at first, it expands and foams when injected into the desired area of the brain, forming a solid tumorlike structure. The authors injected SRSP via different passages that did not influence routes used for the surgical approach for resection of the simulated lesion. For example, SRSP injection routes included endonasal transsphenoidal or transoral approaches if lesions were to be removed through standard skull base approach, or, alternatively, SRSP was injected via a cranial approach if the removal was planned to be via the transsphenoidal or transoral route. The model was set in place in 3 countries (US, Italy, and The Netherlands), and a pool of 13 physicians from 4 different institutions (all surgeons and surgeons in training) participated in evaluating it and provided feedback. All 13 evaluating physicians had overall positive impressions of the model. The overall score on 9 components evaluated--including comparison between the tumor model and real tumor cases, perioperative requirements, general impression, and applicability--was 88% (100% being the best possible

  18. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  19. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  20. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  1. The Research of Histogram Enhancement Technique Based on Matlab Software

    Directory of Open Access Journals (Sweden)

    Li Kai

    2014-08-01

    Full Text Available Histogram enhancement technique has been widely applied as a typical pattern in digital image processing. The paper is based on Matlab software, through the two ways of histogram equalization and histogram specification technologies to deal with the darker images, using two methods of partial equilibrium and mapping histogram to transform the original histograms, thereby enhanced the image information. The results show that these two kinds of techniques both can significantly improve the image quality and enhance the image feature.

  2. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  3. A Method to Test Model Calibration Techniques: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    2016-09-01

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then the calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.

  4. Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model

    Directory of Open Access Journals (Sweden)

    Rory A. Roberts

    2014-01-01

    Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.

  5. Numerical model updating technique for structures using firefly algorithm

    Science.gov (United States)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  6. Models and Techniques for Proving Data Structure Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green

    In this dissertation, we present a number of new techniques and tools for proving lower bounds on the operational time of data structures. These techniques provide new lines of attack for proving lower bounds in both the cell probe model, the group model, the pointer machine model and the I...... bound of tutq = (lgd􀀀1 n). For ball range searching, we get a lower bound of tutq = (n1􀀀1=d). The highest previous lower bound proved in the group model does not exceed ((lg n= lg lg n)2) on the maximum of tu and tq. Finally, we present a new technique for proving lower bounds....../O-model. In all cases, we push the frontiers further by proving lower bounds higher than what could possibly be proved using previously known techniques. For the cell probe model, our results have the following consequences: The rst (lg n) query time lower bound for linear space static data structures...

  7. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  8. EVE: Explainable Vector Based Embedding Technique Using Wikipedia

    OpenAIRE

    Qureshi, M. Atif; Greene, Derek

    2017-01-01

    We present an unsupervised explainable word embedding technique, called EVE, which is built upon the structure of Wikipedia. The proposed model defines the dimensions of a semantic vector representing a word using human-readable labels, thereby it readily interpretable. Specifically, each vector is constructed using the Wikipedia category graph structure together with the Wikipedia article link structure. To test the effectiveness of the proposed word embedding model, we consider its usefulne...

  9. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  10. Microgrids Real-Time Pricing Based on Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2018-05-01

    Full Text Available Microgrids are widely spreading in electricity markets worldwide. Besides the security and reliability concerns for these microgrids, their operators need to address consumers’ pricing. Considering the growth of smart grids and smart meter facilities, it is expected that microgrids will have some level of flexibility to determine real-time pricing for at least some consumers. As such, the key challenge is finding an optimal pricing model for consumers. This paper, accordingly, proposes a new pricing scheme in which microgrids are able to deploy clustering techniques in order to understand their consumers’ load profiles and then assign real-time prices based on their load profile patterns. An improved weighted fuzzy average k-means is proposed to cluster load curve of consumers in an optimal number of clusters, through which the load profile of each cluster is determined. Having obtained the load profile of each cluster, real-time prices are given to each cluster, which is the best price given to all consumers in that cluster.

  11. A new methodology based on the two-region model and microscopic noise analysis techniques for absolute measurements of betaeff, Λ and betaeff/Λ of the IPEN-MB-01 reactor

    International Nuclear Information System (INIS)

    Kuramoto, Renato Yoichi Ribeiro

    2007-01-01

    A new method for absolute measurement of the effective delayed neutron fraction, beta eff based on microscopic noise experiments and the Two-Region Model was developed at the IPEN/MB-01 Research Reactor facility. In contrast with other techniques like the Modified Bennett Method, Nelson-Number Method and 252 Cf-Source Method, the main advantage of this new methodology is to obtain the effective delayed neutron parameters in a purely experimental way, eliminating all parameters that are difficult to measure or calculate. In this way, Rossi-a and Feynman-a experiments for validation of this method were performed at the IPEN/MB-01 facility, and adopting the present approach, beta eff was measured with a 0.67% uncertainty. In addition, the prompt neutron generation time, A, and other parameters were also obtained in an absolute experimental way. In general, the final results agree well with values from frequency analysis experiments. The theory-experiment comparison reveals that JENDL-3.3 shows deviation for beta eff lower than 1% which meets the desired accuracy for the theoretical determination of this parameter. This work supports the reduction of the 235 U thermal yield as proposed by Okajima and Sakurai. (author)

  12. Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea

    International Nuclear Information System (INIS)

    Palit, Mousumi; Tudu, Bipan; Bhattacharyya, Nabarun; Dutta, Ankur; Dutta, Pallab Kumar; Jana, Arun; Bandyopadhyay, Rajib; Chatterjee, Anutosh

    2010-01-01

    In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.

  13. Plants status monitor: Modelling techniques and inherent benefits

    International Nuclear Information System (INIS)

    Breeding, R.J.; Lainoff, S.M.; Rees, D.C.; Prather, W.A.; Fickiessen, K.O.E.

    1987-01-01

    The Plant Status Monitor (PSM) is designed to provide plant personnel with information on the operational status of the plant and compliance with the plant technical specifications. The PSM software evaluates system models using a 'distributed processing' technique in which detailed models of individual systems are processed rather than by evaluating a single, plant-level model. In addition, development of the system models for PSM provides inherent benefits to the plant by forcing detailed reviews of the technical specifications, system design and operating procedures, and plant documentation. (orig.)

  14. Sensitivity analysis technique for application to deterministic models

    International Nuclear Information System (INIS)

    Ishigami, T.; Cazzoli, E.; Khatib-Rahbar, M.; Unwin, S.D.

    1987-01-01

    The characterization of sever accident source terms for light water reactors should include consideration of uncertainties. An important element of any uncertainty analysis is an evaluation of the sensitivity of the output probability distributions reflecting source term uncertainties to assumptions regarding the input probability distributions. Historically, response surface methods (RSMs) were developed to replace physical models using, for example, regression techniques, with simplified models for example, regression techniques, with simplified models for extensive calculations. The purpose of this paper is to present a new method for sensitivity analysis that does not utilize RSM, but instead relies directly on the results obtained from the original computer code calculations. The merits of this approach are demonstrated by application of the proposed method to the suppression pool aerosol removal code (SPARC), and the results are compared with those obtained by sensitivity analysis with (a) the code itself, (b) a regression model, and (c) Iman's method

  15. Selection of productivity improvement techniques via mathematical modeling

    Directory of Open Access Journals (Sweden)

    Mahassan M. Khater

    2011-07-01

    Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.

  16. Constructing canine carotid artery stenosis model by endovascular technique

    International Nuclear Information System (INIS)

    Cheng Guangsen; Liu Yizhi

    2005-01-01

    Objective: To establish a carotid artery stenosis model by endovascular technique suitable for neuro-interventional therapy. Methods: Twelve dogs were anesthetized, the unilateral segments of the carotid arteries' tunica media and intima were damaged by a corneous guiding wire of home made. Twenty-four carotid artery stenosis models were thus created. DSA examination was performed on postprocedural weeks 2, 4, 8, 10 to estimate the changes of those stenotic carotid arteries. Results: Twenty-four carotid artery stenosis models were successfully created in twelve dogs. Conclusions: Canine carotid artery stenosis models can be created with the endovascular method having variation of pathologic characters and hemodynamic changes similar to human being. It is useful for further research involving the new technique and new material for interventional treatment. (authors)

  17. Estimate-Merge-Technique-based algorithms to track an underwater ...

    Indian Academy of Sciences (India)

    D V A N Ravi Kumar

    2017-07-04

    Jul 4, 2017 ... In this paper, two novel methods based on the Estimate Merge Technique ... mentioned advantages of the proposed novel methods is shown by carrying out Monte Carlo simulation in .... equations are converted to sequential equations to make ... estimation error and low convergence time) at feasibly high.

  18. GIS-Based bivariate statistical techniques for groundwater potential ...

    Indian Academy of Sciences (India)

    24

    This study shows the potency of two GIS-based data driven bivariate techniques namely ... In the view of these weaknesses , there is a strong requirement for reassessment of .... Font color: Text 1, Not Expanded by / Condensed by , ...... West Bengal (India) using remote sensing, geographical information system and multi-.

  19. Learning Physics through Project-Based Learning Game Techniques

    Science.gov (United States)

    Baran, Medine; Maskan, Abdulkadir; Yasar, Seyma

    2018-01-01

    The aim of the present study, in which Project and game techniques are used together, is to examine the impact of project-based learning games on students' physics achievement. Participants of the study consist of 34 9th grade students (N = 34). The data were collected using achievement tests and a questionnaire. Throughout the applications, the…

  20. Modeling and Simulation Techniques for Large-Scale Communications Modeling

    National Research Council Canada - National Science Library

    Webb, Steve

    1997-01-01

    .... Tests of random number generators were also developed and applied to CECOM models. It was found that synchronization of random number strings in simulations is easy to implement and can provide significant savings for making comparative studies. If synchronization is in place, then statistical experiment design can be used to provide information on the sensitivity of the output to input parameters. The report concludes with recommendations and an implementation plan.

  1. Light based techniques for improving health care: studies at RRCAT

    International Nuclear Information System (INIS)

    Gupta, P.K.; Patel, H.S.; Ahlawat, S.

    2015-01-01

    The invention of Lasers in 1960, the phenomenal advances in photonics as well as the information processing capability of the computers has given a major boost to the R and D activity on the use of light for high resolution biomedical imaging, sensitive, non-invasive diagnosis and precision therapy. The effort has resulted in remarkable progress and it is widely believed that light based techniques hold great potential to offer simpler, portable systems which can help provide diagnostics and therapy in a low resource setting. At Raja Ramanna Centre for Advanced Technology (RRCAT) extensive studies have been carried out on fluorescence spectroscopy of native tissue. This work led to two important outcomes. First, a better understanding of tissue fluorescence and insights on the possible use of fluorescence spectroscopy for screening of cancer and second development of diagnostic systems that can serve as standalone tool for non-invasive screening of the cancer of oral cavity. The optical coherence tomography setups and their functional extensions (polarization sensitive, Doppler) have also been developed and used for high resolution (∼10 µm) biomedical imaging applications, in particular for non-invasive monitoring of the healing of wounds. Chlorophyll based photo-sensitisers and their derivatives have been synthesized in house and used for photodynamic therapy of tumors in animal models and for antimicrobial applications. Various variants of optical tweezers (holographic, Raman etc.) have also been developed and utilised for different applications notably Raman spectroscopy of optically trapped red blood cells. An overview of these activities carried out at RRCAT is presented in this article. (author)

  2. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  3. Experimental evaluation of optimal Vehicle Dynamic Control based on the State Dependent Riccati Equation technique

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    Development and experimentally evaluation of an optimal Vehicle Dynamic Control (VDC) strategy based on the State Dependent Riccati Equation (SDRE) control technique is presented. The proposed nonlinear controller is based on a nonlinear vehicle model with nonlinear tire characteristics. A novel

  4. Traceability in Model-Based Testing

    Directory of Open Access Journals (Sweden)

    Mathew George

    2012-11-01

    Full Text Available The growing complexities of software and the demand for shorter time to market are two important challenges that face today’s IT industry. These challenges demand the increase of both productivity and quality of software. Model-based testing is a promising technique for meeting these challenges. Traceability modeling is a key issue and challenge in model-based testing. Relationships between the different models will help to navigate from one model to another, and trace back to the respective requirements and the design model when the test fails. In this paper, we present an approach for bridging the gaps between the different models in model-based testing. We propose relation definition markup language (RDML for defining the relationships between models.

  5. Techniques for discrimination-free predictive models (Chapter 12)

    NARCIS (Netherlands)

    Kamiran, F.; Calders, T.G.K.; Pechenizkiy, M.; Custers, B.H.M.; Calders, T.G.K.; Schermer, B.W.; Zarsky, T.Z.

    2013-01-01

    In this chapter, we give an overview of the techniques developed ourselves for constructing discrimination-free classifiers. In discrimination-free classification the goal is to learn a predictive model that classifies future data objects as accurately as possible, yet the predicted labels should be

  6. Using of Structural Equation Modeling Techniques in Cognitive Levels Validation

    Directory of Open Access Journals (Sweden)

    Natalija Curkovic

    2012-10-01

    Full Text Available When constructing knowledge tests, cognitive level is usually one of the dimensions comprising the test specifications with each item assigned to measure a particular level. Recently used taxonomies of the cognitive levels most often represent some modification of the original Bloom’s taxonomy. There are many concerns in current literature about existence of predefined cognitive levels. The aim of this article is to investigate can structural equation modeling techniques confirm existence of different cognitive levels. For the purpose of the research, a Croatian final high-school Mathematics exam was used (N = 9626. Confirmatory factor analysis and structural regression modeling were used to test three different models. Structural equation modeling techniques did not support existence of different cognitive levels in this case. There is more than one possible explanation for that finding. Some other techniques that take into account nonlinear behaviour of the items as well as qualitative techniques might be more useful for the purpose of the cognitive levels validation. Furthermore, it seems that cognitive levels were not efficient descriptors of the items and so improvements are needed in describing the cognitive skills measured by items.

  7. NMR and modelling techniques in structural and conformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, R J [Liverpool Univ. (United Kingdom)

    1994-12-31

    The use of Lanthanide Induced Shifts (L.I.S.) and modelling techniques in conformational analysis is presented. The use of Co{sup III} porphyrins as shift reagents is discussed, with examples of their use in the conformational analysis of some heterocyclic amines. (author) 13 refs., 9 figs.

  8. Air quality modelling using chemometric techniques | Azid | Journal ...

    African Journals Online (AJOL)

    This study presents that the chemometric techniques and modelling become an excellent tool in API assessment, air pollution source identification, apportionment and can be setbacks in designing an API monitoring network for effective air pollution resources management. Keywords: air pollutant index; chemometric; ANN; ...

  9. Optical supervised filtering technique based on Hopfield neural network

    Science.gov (United States)

    Bal, Abdullah

    2004-11-01

    Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.

  10. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-01-01

    Full Text Available Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  11. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  12. Biometric image enhancement using decision rule based image fusion techniques

    Science.gov (United States)

    Sagayee, G. Mary Amirtha; Arumugam, S.

    2010-02-01

    Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.

  13. Electromagnetism based atmospheric ice sensing technique - A conceptual review

    Directory of Open Access Journals (Sweden)

    U Mughal

    2016-09-01

    Full Text Available Electromagnetic and vibrational properties of ice can be used to measure certain parameters such as ice thickness, type and icing rate. In this paper we present a review of the dielectric based measurement techniques for matter and the dielectric/spectroscopic properties of ice. Atmospheric Ice is a complex material with a variable dielectric constant, but precise calculation of this constant may form the basis for measurement of its other properties such as thickness and strength using some electromagnetic methods. Using time domain or frequency domain spectroscopic techniques, by measuring both the reflection and transmission characteristics of atmospheric ice in a particular frequency range, the desired parameters can be determined.

  14. Proposing a Wiki-Based Technique for Collaborative Essay Writing

    Directory of Open Access Journals (Sweden)

    Mabel Ortiz Navarrete

    2014-10-01

    Full Text Available This paper aims at proposing a technique for students learning English as a foreign language when they collaboratively write an argumentative essay in a wiki environment. A wiki environment and collaborative work play an important role within the academic writing task. Nevertheless, an appropriate and systematic work assignment is required in order to make use of both. In this paper the proposed technique when writing a collaborative essay mainly attempts to provide the most effective way to enhance equal participation among group members by taking as a base computer mediated collaboration. Within this context, the students’ role is clearly defined and individual and collaborative tasks are explained.

  15. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  16. Case-based reasoning diagnostic technique based on multi-attribute similarity

    Energy Technology Data Exchange (ETDEWEB)

    Makoto, Takahashi [Tohoku University, Miyagi (Japan); Akio, Gofuku [Okayama University, Okayamaa (Japan)

    2014-08-15

    Case-based diagnostic technique has been developed based on the multi-attribute similarity. Specific feature of the developed system is to use multiple attributes of process signals for similarity evaluation to retrieve a similar case stored in a case base. The present technique has been applied to the measurement data from Monju with some simulated anomalies. The results of numerical experiments showed that the present technique can be utilizes as one of the methods for a hybrid-type diagnosis system.

  17. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  18. An Observed Voting System Based On Biometric Technique

    Directory of Open Access Journals (Sweden)

    B. Devikiruba

    2015-08-01

    Full Text Available ABSTRACT This article describes a computational framework which can run almost on every computer connected to an IP based network to study biometric techniques. This paper discusses with a system protecting confidential information puts strong security demands on the identification. Biometry provides us with a user-friendly method for this identification and is becoming a competitor for current identification mechanisms. The experimentation section focuses on biometric verification specifically based on fingerprints. This article should be read as a warning to those thinking of using methods of identification without first examine the technical opportunities for compromising mechanisms and the associated legal consequences. The development is based on the java language that easily improves software packages that is useful to test new control techniques.

  19. Application of integrated modeling technique for data services ...

    African Journals Online (AJOL)

    This paper, therefore, describes the application of the integrated simulation technique for deriving the optimum resources required for data services in an asynchronous transfer mode (ATM) based private wide area network (WAN) to guarantee specific QoS requirement. The simulation tool drastically cuts the simulation ...

  20. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca [University of Alberta, School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering (Canada); Palmer, Kevin [Teck Resources Limited (Canada); Deutsch, Clayton V.; Szymanski, Jozef [University of Alberta, School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering (Canada); Etsell, Thomas H. [University of Alberta, Department of Chemical and Materials Engineering (Canada)

    2016-06-15

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit in South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.

  1. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  2. Current STR-based techniques in forensic science

    Directory of Open Access Journals (Sweden)

    Phuvadol Thanakiatkrai

    2013-01-01

    Full Text Available DNA analysis in forensic science is mainly based on short tandem repeat (STR genotyping. The conventional analysis is a three-step process of DNA extraction, amplification and detection. An overview of various techniques that are currently in use and are being actively researched for STR typing is presented. The techniques are separated into STR amplification and detection. New techniques for forensic STR analysis focus on increasing sensitivity, resolution and discrimination power for suboptimal samples. These are achieved by shifting primer-binding sites, using high-fidelity and tolerant polymerases and applying novel methods to STR detection. Examples in which STRs are used in criminal investigations are provided and future research directions are discussed.

  3. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  4. MEMS-based power generation techniques for implantable biosensing applications.

    Science.gov (United States)

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  5. The Integrated Use of Enterprise and System Dynamics Modelling Techniques in Support of Business Decisions

    Directory of Open Access Journals (Sweden)

    K. Agyapong-Kodua

    2012-01-01

    Full Text Available Enterprise modelling techniques support business process (reengineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulation modelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink.

  6. Under-Frequency Load Shedding Technique Considering Event-Based for an Islanded Distribution Network

    Directory of Open Access Journals (Sweden)

    Hasmaini Mohamad

    2016-06-01

    Full Text Available One of the biggest challenge for an islanding operation is to sustain the frequency stability. A large power imbalance following islanding would cause under-frequency, hence an appropriate control is required to shed certain amount of load. The main objective of this research is to develop an adaptive under-frequency load shedding (UFLS technique for an islanding system. The technique is designed considering an event-based which includes the moment system is islanded and a tripping of any DG unit during islanding operation. A disturbance magnitude is calculated to determine the amount of load to be shed. The technique is modeled by using PSCAD simulation tool. A simulation studies on a distribution network with mini hydro generation is carried out to evaluate the UFLS model. It is performed under different load condition: peak and base load. Results show that the load shedding technique have successfully shed certain amount of load and stabilized the system frequency.

  7. Improved mesh based photon sampling techniques for neutron activation analysis

    International Nuclear Information System (INIS)

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-01-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  8. Fractal Image Compression Based on High Entropy Values Technique

    Directory of Open Access Journals (Sweden)

    Douaa Younis Abbaas

    2018-04-01

    Full Text Available There are many attempts tried to improve the encoding stage of FIC because it consumed time. These attempts worked by reducing size of the search pool for pair range-domain matching but most of them led to get a bad quality, or a lower compression ratio of reconstructed image. This paper aims to present a method to improve performance of the full search algorithm by combining FIC (lossy compression and another lossless technique (in this case entropy coding is used. The entropy technique will reduce size of the domain pool (i. e., number of domain blocks based on the entropy value of each range block and domain block and then comparing the results of full search algorithm and proposed algorithm based on entropy technique to see each of which give best results (such as reduced the encoding time with acceptable values in both compression quali-ty parameters which are C. R (Compression Ratio and PSNR (Image Quality. The experimental results of the proposed algorithm proven that using the proposed entropy technique reduces the encoding time while keeping compression rates and reconstruction image quality good as soon as possible.

  9. Characterization techniques for graphene-based materials in catalysis

    Directory of Open Access Journals (Sweden)

    Maocong Hu

    2017-06-01

    Full Text Available Graphene-based materials have been studied in a wide range of applications including catalysis due to the outstanding electronic, thermal, and mechanical properties. The unprecedented features of graphene-based catalysts, which are believed to be responsible for their superior performance, have been characterized by many techniques. In this article, we comprehensively summarized the characterization methods covering bulk and surface structure analysis, chemisorption ability determination, and reaction mechanism investigation. We reviewed the advantages/disadvantages of different techniques including Raman spectroscopy, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR and Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS, X-Ray diffraction (XRD, X-ray absorption near edge structure (XANES and X-ray absorption fine structure (XAFS, atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, ultraviolet-visible spectroscopy (UV-vis, X-ray fluorescence (XRF, inductively coupled plasma mass spectrometry (ICP, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET, and scanning tunneling microscopy (STM. The application of temperature-programmed reduction (TPR, CO chemisorption, and NH3/CO2-temperature-programmed desorption (TPD was also briefly introduced. Finally, we discussed the challenges and provided possible suggestions on choosing characterization techniques. This review provides key information to catalysis community to adopt suitable characterization techniques for their research.

  10. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  11. Use of hydrological modelling and isotope techniques in Guvenc basin

    International Nuclear Information System (INIS)

    Altinbilek, D.

    1991-07-01

    The study covers the work performed under Project No. 335-RC-TUR-5145 entitled ''Use of Hydrologic Modelling and Isotope Techniques in Guvenc Basin'' and is an initial part of a program for estimating runoff from Central Anatolia Watersheds. The study presented herein consists of mainly three parts: 1) the acquisition of a library of rainfall excess, direct runoff and isotope data for Guvenc basin; 2) the modification of SCS model to be applied to Guvenc basin first and then to other basins of Central Anatolia for predicting the surface runoff from gaged and ungaged watersheds; and 3) the use of environmental isotope technique in order to define the basin components of streamflow of Guvenc basin. 31 refs, figs and tabs

  12. Construct canine intracranial aneurysm model by endovascular technique

    International Nuclear Information System (INIS)

    Liang Xiaodong; Liu Yizhi; Ni Caifang; Ding Yi

    2004-01-01

    Objective: To construct canine bifurcation aneurysms suitable for evaluating the exploration of endovascular devices for interventional therapy by endovascular technique. Methods: The right common carotid artery of six dogs was expanded with a pliable balloon by means of endovascular technique, then embolization with detached balloon was taken at their originations DAS examination were performed on 1, 2, 3 d after the procedurse. Results: 6 aneurysm models were created in six dogs successfully with the mean width and height of the aneurysms decreasing in 3 days. Conclusions: This canine aneurysm model presents the virtue in the size and shape of human cerebral bifurcation saccular aneurysms on DSA image, suitable for developing the exploration of endovascular devices for aneurismal therapy. The procedure is quick, reliable and reproducible. (authors)

  13. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  14. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  15. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.

    2015-01-01

    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off,

  16. [Preparation of simulate craniocerebral models via three dimensional printing technique].

    Science.gov (United States)

    Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T

    2016-08-09

    Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.

  17. Application of object modeling technique to medical image retrieval system

    International Nuclear Information System (INIS)

    Teshima, Fumiaki; Abe, Takeshi

    1993-01-01

    This report describes the results of discussions on the object-oriented analysis methodology, which is one of the object-oriented paradigms. In particular, we considered application of the object modeling technique (OMT) to the analysis of a medical image retrieval system. The object-oriented methodology places emphasis on the construction of an abstract model from real-world entities. The effectiveness of and future improvements to OMT are discussed from the standpoint of the system's expandability. These discussions have elucidated that the methodology is sufficiently well-organized and practical to be applied to commercial products, provided that it is applied to the appropriate problem domain. (author)

  18. SKILLS-BASED ECLECTIC TECHNIQUES MATRIX FOR ELT MICROTEACHINGS

    Directory of Open Access Journals (Sweden)

    İskender Hakkı Sarıgöz

    2016-10-01

    Full Text Available Foreign language teaching undergoes constant changes due to the methodological improvement. This progress may be examined in two parts. They are the methods era and the post-methods era. It is not pragmatic today to propose a particular language teaching method and its techniques for all purposes. The holistic inflexibility of mid-century methods has long gone. In the present day, constructivist foreign language teaching trends attempt to see the learner as a whole person and an individual who may be different from the other students in many respects. At the same time, the individual differences should not keep the learners away from group harmony. For this reason, current teacher training programs require eclectic teaching matrixes for unit design considering the mixed ability student groups. These matrixes can be prepared in a multidimensional fashion because there are many functional techniques in different methods and other new techniques to be created by instructors freely in accordance with the teaching aims. The hypothesis in this argument is that the collection of foreign language teaching techniques compiled in ELT microteachings for a particular group of learners has to be arranged eclectically in order to update the teaching process. Nevertheless, designing a teaching format of this sort is a demanding and highly criticized task. This study briefly argues eclecticism in language-skills based methodological struggle from the perspective of ELT teacher education.

  19. Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement

    Directory of Open Access Journals (Sweden)

    Esmail Mahmoodi

    2015-10-01

    Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.

  20. Validation of transport models using additive flux minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y.; Kruger, S. E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States); Hakim, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Kritz, A. H.; Rafiq, T. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2013-10-15

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile.

  1. Validation of transport models using additive flux minimization technique

    International Nuclear Information System (INIS)

    Pankin, A. Y.; Kruger, S. E.; Groebner, R. J.; Hakim, A.; Kritz, A. H.; Rafiq, T.

    2013-01-01

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile

  2. CEAI: CCM based Email Authorship Identification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah

    2013-01-01

    In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some...... more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based...... reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10...

  3. Adaptive differential correspondence imaging based on sorting technique

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2017-04-01

    Full Text Available We develop an adaptive differential correspondence imaging (CI method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS are first processed by a differential technique, and then sorted in a descending (or ascending order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.

  4. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  5. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  6. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling

    DEFF Research Database (Denmark)

    Dotto, C. B.; Mannina, G.; Kleidorfer, M.

    2012-01-01

    -UA), an approach based on a multi-objective auto-calibration (a multialgorithm, genetically adaptive multiobjective method, AMALGAM) and a Bayesian approach based on a simplified Markov Chain Monte Carlo method (implemented in the software MICA). To allow a meaningful comparison among the different uncertainty...... techniques, common criteria have been set for the likelihood formulation, defining the number of simulations, and the measure of uncertainty bounds. Moreover, all the uncertainty techniques were implemented for the same case study, in which the same stormwater quantity and quality model was used alongside...... the same dataset. The comparison results for a well-posed rainfall/runoff model showed that the four methods provide similar probability distributions of model parameters, and model prediction intervals. For ill-posed water quality model the differences between the results were much wider; and the paper...

  7. A fast image reconstruction technique based on ART

    International Nuclear Information System (INIS)

    Zhang Shunli; Zhang Dinghua; Wang Kai; Huang Kuidong; Li Weibin

    2007-01-01

    Algebraic Reconstruction Technique (ART) is an iterative method for image reconstruction. Improving its reconstruction speed has been one of the important researching aspects of ART. For the simplified weight coefficients reconstruction model of ART, a fast grid traverse algorithm is proposed, which can determine the grid index by simple operations such as addition, subtraction and comparison. Since the weight coefficients are calculated at real time during iteration, large amount of storage is saved and the reconstruction speed is greatly increased. Experimental results show that the new algorithm is very effective and the reconstruction speed is improved about 10 times compared with the traditional algorithm. (authors)

  8. Mobile Augmented Reality Support for Architects based on feature Tracking Techniques

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Nielsen, Mikkel Bang; Kramp, Gunnar

    2004-01-01

    This paper presents a mobile Augmented Reality (AR) system called the SitePack supporting architects in visualizing 3D models in real-time on site. We describe how vision based feature tracking techniques can help architects making decisions on site concerning visual impact assessment. The AR sys...

  9. Vision based techniques for rotorcraft low altitude flight

    Science.gov (United States)

    Sridhar, Banavar; Suorsa, Ray; Smith, Philip

    1991-01-01

    An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.

  10. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  11. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  12. Modelling of ground penetrating radar data in stratified media using the reflectivity technique

    International Nuclear Information System (INIS)

    Sena, Armando R; Sen, Mrinal K; Stoffa, Paul L

    2008-01-01

    Horizontally layered media are often encountered in shallow exploration geophysics. Ground penetrating radar (GPR) data in these environments can be modelled by techniques that are more efficient than finite difference (FD) or finite element (FE) schemes because the lateral homogeneity of the media allows us to reduce the dependence on the horizontal spatial variables through Fourier transforms on these coordinates. We adapt and implement the invariant embedding or reflectivity technique used to model elastic waves in layered media to model GPR data. The results obtained with the reflectivity and FDTD modelling techniques are in excellent agreement and the effects of the air–soil interface on the radiation pattern are correctly taken into account by the reflectivity technique. Comparison with real wide-angle GPR data shows that the reflectivity technique can satisfactorily reproduce the real GPR data. These results and the computationally efficient characteristics of the reflectivity technique (compared to FD or FE) demonstrate its usefulness in interpretation and possible model-based inversion schemes of GPR data in stratified media

  13. A Multiagent Based Model for Tactical Planning

    Science.gov (United States)

    2002-10-01

    Pub. Co. 1985. [10] Castillo, J.M. Aproximación mediante procedimientos de Inteligencia Artificial al planeamiento táctico. Doctoral Thesis...been developed under the same conceptual model and using similar Artificial Intelligence Tools. We use four different stimulus/response agents in...The conceptual model is built on base of the Agents theory. To implement the different agents we have used Artificial Intelligence techniques such

  14. Numerical and modeling techniques used in the EPIC code

    International Nuclear Information System (INIS)

    Pizzica, P.A.; Abramson, P.B.

    1977-01-01

    EPIC models fuel and coolant motion which result from internal fuel pin pressure (from fission gas or fuel vapor) and/or from the generation of sodium vapor pressures in the coolant channel subsequent to pin failure in an LMFBR. The modeling includes the ejection of molten fuel from the pin into a coolant channel with any amount of voiding through a clad rip which may be of any length or which may expand with time. One-dimensional Eulerian hydrodynamics is used to model both the motion of fuel and fission gas inside a molten fuel cavity and the mixture of two-phase sodium and fission gas in the channel. Motion of molten fuel particles in the coolant channel is tracked with a particle-in-cell technique

  15. Soft computing techniques toward modeling the water supplies of Cyprus.

    Science.gov (United States)

    Iliadis, L; Maris, F; Tachos, S

    2011-10-01

    This research effort aims in the application of soft computing techniques toward water resources management. More specifically, the target is the development of reliable soft computing models capable of estimating the water supply for the case of "Germasogeia" mountainous watersheds in Cyprus. Initially, ε-Regression Support Vector Machines (ε-RSVM) and fuzzy weighted ε-RSVMR models have been developed that accept five input parameters. At the same time, reliable artificial neural networks have been developed to perform the same job. The 5-fold cross validation approach has been employed in order to eliminate bad local behaviors and to produce a more representative training data set. Thus, the fuzzy weighted Support Vector Regression (SVR) combined with the fuzzy partition has been employed in an effort to enhance the quality of the results. Several rational and reliable models have been produced that can enhance the efficiency of water policy designers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  17. [Hierarchy structuring for mammography technique by interpretive structural modeling method].

    Science.gov (United States)

    Kudo, Nozomi; Kurowarabi, Kunio; Terashita, Takayoshi; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2009-10-20

    Participation in screening mammography is currently desired in Japan because of the increase in breast cancer morbidity. However, the pain and discomfort of mammography is recognized as a significant deterrent for women considering this examination. Thus quick procedures, sufficient experience, and advanced skills are required for radiologic technologists. The aim of this study was to make the point of imaging techniques explicit and to help understand the complicated procedure. We interviewed 3 technologists who were highly skilled in mammography, and 14 factors were retrieved by using brainstorming and the KJ method. We then applied Interpretive Structural Modeling (ISM) to the factors and developed a hierarchical concept structure. The result showed a six-layer hierarchy whose top node was explanation of the entire procedure on mammography. Male technologists were related to as a negative factor. Factors concerned with explanation were at the upper node. We gave attention to X-ray techniques and considerations. The findings will help beginners improve their skills.

  18. Teaching scientific concepts through simple models and social communication techniques

    International Nuclear Information System (INIS)

    Tilakaratne, K.

    2011-01-01

    For science education, it is important to demonstrate to students the relevance of scientific concepts in every-day life experiences. Although there are methods available for achieving this goal, it is more effective if cultural flavor is also added to the teaching techniques and thereby the teacher and students can easily relate the subject matter to their surroundings. Furthermore, this would bridge the gap between science and day-to-day experiences in an effective manner. It could also help students to use science as a tool to solve problems faced by them and consequently they would feel science is a part of their lives. In this paper, it has been described how simple models and cultural communication techniques can be used effectively in demonstrating important scientific concepts to the students of secondary and higher secondary levels by using two consecutive activities carried out at the Institute of Fundamental Studies (IFS), Sri Lanka. (author)

  19. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques

    Science.gov (United States)

    Jain, Ashu; Srinivasulu, Sanaga

    2006-02-01

    This paper presents the findings of a study aimed at decomposing a flow hydrograph into different segments based on physical concepts in a catchment, and modelling different segments using different technique viz. conceptual and artificial neural networks (ANNs). An integrated modelling framework is proposed capable of modelling infiltration, base flow, evapotranspiration, soil moisture accounting, and certain segments of the decomposed flow hydrograph using conceptual techniques and the complex, non-linear, and dynamic rainfall-runoff process using ANN technique. Specifically, five different multi-layer perceptron (MLP) and two self-organizing map (SOM) models have been developed. The rainfall and streamflow data derived from the Kentucky River catchment were employed to test the proposed methodology and develop all the models. The performance of all the models was evaluated using seven different standard statistical measures. The results obtained in this study indicate that (a) the rainfall-runoff relationship in a large catchment consists of at least three or four different mappings corresponding to different dynamics of the underlying physical processes, (b) an integrated approach that models the different segments of the decomposed flow hydrograph using different techniques is better than a single ANN in modelling the complex, dynamic, non-linear, and fragmented rainfall runoff process, (c) a simple model based on the concept of flow recession is better than an ANN to model the falling limb of a flow hydrograph, and (d) decomposing a flow hydrograph into the different segments corresponding to the different dynamics based on the physical concepts is better than using the soft decomposition employed using SOM.

  20. Artificial intelligence techniques for modeling database user behavior

    Science.gov (United States)

    Tanner, Steve; Graves, Sara J.

    1990-01-01

    The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model.

  1. Combination Base64 Algorithm and EOF Technique for Steganography

    Science.gov (United States)

    Rahim, Robbi; Nurdiyanto, Heri; Hidayat, Rahmat; Saleh Ahmar, Ansari; Siregar, Dodi; Putera Utama Siahaan, Andysah; Faisal, Ilham; Rahman, Sayuti; Suita, Diana; Zamsuri, Ahmad; Abdullah, Dahlan; Napitupulu, Darmawan; Ikhsan Setiawan, Muhammad; Sriadhi, S.

    2018-04-01

    The steganography process combines mathematics and computer science. Steganography consists of a set of methods and techniques to embed the data into another media so that the contents are unreadable to anyone who does not have the authority to read these data. The main objective of the use of base64 method is to convert any file in order to achieve privacy. This paper discusses a steganography and encoding method using base64, which is a set of encoding schemes that convert the same binary data to the form of a series of ASCII code. Also, the EoF technique is used to embed encoding text performed by Base64. As an example, for the mechanisms a file is used to represent the texts, and by using the two methods together will increase the security level for protecting the data, this research aims to secure many types of files in a particular media with a good security and not to damage the stored files and coverage media that used.

  2. Automated Techniques for the Qualitative Analysis of Ecological Models: Continuous Models

    Directory of Open Access Journals (Sweden)

    Lynn van Coller

    1997-06-01

    Full Text Available The mathematics required for a detailed analysis of the behavior of a model can be formidable. In this paper, I demonstrate how various computer packages can aid qualitative analyses by implementing techniques from dynamical systems theory. Because computer software is used to obtain the results, the techniques can be used by nonmathematicians as well as mathematicians. In-depth analyses of complicated models that were previously very difficult to study can now be done. Because the paper is intended as an introduction to applying the techniques to ecological models, I have included an appendix describing some of the ideas and terminology. A second appendix shows how the techniques can be applied to a fairly simple predator-prey model and establishes the reliability of the computer software. The main body of the paper discusses a ratio-dependent model. The new techniques highlight some limitations of isocline analyses in this three-dimensional setting and show that the model is structurally unstable. Another appendix describes a larger model of a sheep-pasture-hyrax-lynx system. Dynamical systems techniques are compared with a traditional sensitivity analysis and are found to give more information. As a result, an incomplete relationship in the model is highlighted. I also discuss the resilience of these models to both parameter and population perturbations.

  3. Estimating monthly temperature using point based interpolation techniques

    Science.gov (United States)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  4. Model-Based Reasoning

    Science.gov (United States)

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  5. Full-duplex MIMO system based on antenna cancellation technique

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru

    2014-01-01

    The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual......-polarized patch antennas operating at 2.4 GHz is described. The measurement results show an average of 60 dB self-interference cancellation over 200 MHz bandwidth. Moreover, a decoupling level of up to 22 dB is achieved for MIMO multiplexing using antenna polarization diversity. The performance evaluation...

  6. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    ISLAM, M. R.

    2009-02-01

    Full Text Available An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs are used to form a Multiple Input Single Output (MISO structure wirelessly connected with a Network Capable Application Processor (NCAP. Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for evaluating derived parameters. The results show that the selected MISO structure outperforms the unselected MISO structure and it shows energy efficient performance than SISO structure after a certain distance.

  7. A new cerebral vasospasm model established with endovascular puncture technique

    International Nuclear Information System (INIS)

    Tu Jianfei; Liu Yizhi; Ji Jiansong; Zhao Zhongwei

    2011-01-01

    Objective: To investigate the method of establishing cerebral vasospasm (CVS) models in rabbits by using endovascular puncture technique. Methods: Endovascular puncture procedure was performed in 78 New Zealand white rabbits to produce subarachnoid hemorrhage (SAH). The survival rabbits were randomly divided into seven groups (3 h, 12 h, 1 d, 2 d, 3 d, 7 d and 14 d), with five rabbits in each group for both study group (SAH group) and control group. Cerebral CT scanning was carried out in all rabbits both before and after the operation. The inner diameter and the thickness of vascular wall of both posterior communicating artery (PcoA) and basilar artery (BA) were determined after the animals were sacrificed, and the results were analyzed. Results: Of 78 experimental rabbits, CVS model was successfully established in 45, including 35 of SAH group and 10 control subgroup. The technical success rate was 57.7%. Twelve hours after the procedure, the inner diameter of PcoA and BA in SAH group was decreased by 45.6% and 52.3%, respectively, when compared with these in control group. The vascular narrowing showed biphasic changes, the inner diameter markedly decreased again at the 7th day when the decrease reached its peak to 31.2% and 48.6%, respectively. Conclusion: Endovascular puncture technique is an effective method to establish CVS models in rabbits. The death rate of experimental animals can be decreased if new interventional material is used and the manipulation is carefully performed. (authors)

  8. Agent-based Modeling Methodology for Analyzing Weapons Systems

    Science.gov (United States)

    2015-03-26

    technique involve model structure, system representation and the degree of validity, coupled with the simplicity, of the overall model. ABM is best suited... system representation of the air combat system . We feel that a simulation model that combines ABM with equation-based representation of weapons and...AGENT-BASED MODELING METHODOLOGY FOR ANALYZING WEAPONS SYSTEMS THESIS Casey D. Connors, Major, USA

  9. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    Science.gov (United States)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  10. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow

  11. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  12. Monte Carlo technique for very large ising models

    Science.gov (United States)

    Kalle, C.; Winkelmann, V.

    1982-08-01

    Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.

  13. Application of Soft Computing Techniques and Multiple Regression Models for CBR prediction of Soils

    Directory of Open Access Journals (Sweden)

    Fatimah Khaleel Ibrahim

    2017-08-01

    Full Text Available The techniques of soft computing technique such as Artificial Neutral Network (ANN have improved the predicting capability and have actually discovered application in Geotechnical engineering. The aim of this research is to utilize the soft computing technique and Multiple Regression Models (MLR for forecasting the California bearing ratio CBR( of soil from its index properties. The indicator of CBR for soil could be predicted from various soils characterizing parameters with the assist of MLR and ANN methods. The data base that collected from the laboratory by conducting tests on 86 soil samples that gathered from different projects in Basrah districts. Data gained from the experimental result were used in the regression models and soft computing techniques by using artificial neural network. The liquid limit, plastic index , modified compaction test and the CBR test have been determined. In this work, different ANN and MLR models were formulated with the different collection of inputs to be able to recognize their significance in the prediction of CBR. The strengths of the models that were developed been examined in terms of regression coefficient (R2, relative error (RE% and mean square error (MSE values. From the results of this paper, it absolutely was noticed that all the proposed ANN models perform better than that of MLR model. In a specific ANN model with all input parameters reveals better outcomes than other ANN models.

  14. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  15. Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization

    Directory of Open Access Journals (Sweden)

    José R. Casar

    2011-09-01

    Full Text Available The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network. The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.

  16. On HTML and XML based web design and implementation techniques

    International Nuclear Information System (INIS)

    Bezboruah, B.; Kalita, M.

    2006-05-01

    Web implementation is truly a multidisciplinary field with influences from programming, choosing of scripting languages, graphic design, user interface design, and database design. The challenge of a Web designer/implementer is his ability to create an attractive and informative Web. To work with the universal framework and link diagrams from the design process as well as the Web specifications and domain information, it is essential to create Hypertext Markup Language (HTML) or other software and multimedia to accomplish the Web's objective. In this article we will discuss Web design standards and the techniques involved in Web implementation based on HTML and Extensible Markup Language (XML). We will also discuss the advantages and disadvantages of HTML over its successor XML in designing and implementing a Web. We have developed two Web pages, one utilizing the features of HTML and the other based on the features of XML to carry out the present investigation. (author)

  17. Efficient Identification Using a Prime-Feature-Based Technique

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Haq, Shaiq A.; Valente, Andrea

    2011-01-01

    . Fingerprint identification system, implemented on PC/104 based real-time systems, can accurately identify the operator. Traditionally, the uniqueness of a fingerprint is determined by the overall pattern of ridges and valleys as well as the local ridge anomalies e.g., a ridge bifurcation or a ridge ending......, which are called minutiae points. Designing a reliable automatic fingerprint matching algorithm for minimal platform is quite challenging. In real-time systems, efficiency of the matching algorithm is of utmost importance. To achieve this goal, a prime-feature-based indexing algorithm is proposed......Identification of authorized train drivers through biometrics is a growing area of interest in locomotive radio remote control systems. The existing technique of password authentication is not very reliable and potentially unauthorized personnel may also operate the system on behalf of the operator...

  18. Designing on ICT reconstruction software based on DSP techniques

    International Nuclear Information System (INIS)

    Liu Jinhui; Xiang Xincheng

    2006-01-01

    The convolution back project (CBP) algorithm is used to realize the CT image's reconstruction in ICT generally, which is finished by using PC or workstation. In order to add the ability of multi-platform operation of CT reconstruction software, a CT reconstruction method based on modern digital signal processor (DSP) technique is proposed and realized in this paper. The hardware system based on TI's C6701 DSP processor is selected to support the CT software construction. The CT reconstruction software is compiled only using assembly language related to the DSP hardware. The CT software can be run on TI's C6701 EVM board by inputting the CT data, and can get the CT Images that satisfy the real demands. (authors)

  19. New calibration technique for KCD-based megavoltage imaging

    Science.gov (United States)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The

  20. Laparoscopic anterior resection: new anastomosis technique in a pig model.

    Science.gov (United States)

    Bedirli, Abdulkadir; Yucel, Deniz; Ekim, Burcu

    2014-01-01

    Bowel anastomosis after anterior resection is one of the most difficult tasks to perform during laparoscopic colorectal surgery. This study aims to evaluate a new feasible and safe intracorporeal anastomosis technique after laparoscopic left-sided colon or rectum resection in a pig model. The technique was evaluated in 5 pigs. The OrVil device (Covidien, Mansfield, Massachusetts) was inserted into the anus and advanced proximally to the rectum. A 0.5-cm incision was made in the sigmoid colon, and the 2 sutures attached to its delivery tube were cut. After the delivery tube was evacuated through the anus, the tip of the anvil was removed through the perforation. The sigmoid colon was transected just distal to the perforation with an endoscopic linear stapler. The rectosigmoid segment to be resected was removed through the anus with a grasper, and distal transection was performed. A 25-mm circular stapler was inserted and combined with the anvil, and end-to-side intracorporeal anastomosis was then performed. We performed the technique in 5 pigs. Anastomosis required an average of 12 minutes. We observed that the proximal and distal donuts were completely removed in all pigs. No anastomotic air leakage was observed in any of the animals. This study shows the efficacy and safety of intracorporeal anastomosis with the OrVil device after laparoscopic anterior resection.

  1. Risk-based maintenance-Techniques and applications

    International Nuclear Information System (INIS)

    Arunraj, N.S.; Maiti, J.

    2007-01-01

    Plant and equipment, however well designed, will not remain safe or reliable if it is not maintained. The general objective of the maintenance process is to make use of the knowledge of failures and accidents to achieve the possible safety with the lowest possible cost. The concept of risk-based maintenance was developed to inspect the high-risk components usually with greater frequency and thoroughness and to maintain in a greater manner, to achieve tolerable risk criteria. Risk-based maintenance methodology provides a tool for maintenance planning and decision making to reduce the probability of failure of equipment and the consequences of failure. In this paper, the risk analysis and risk-based maintenance methodologies were identified and classified into suitable classes. The factors affecting the quality of risk analysis were identified and analyzed. The applications, input data and output data were studied to understand their functioning and efficiency. The review showed that there is no unique way to perform risk analysis and risk-based maintenance. The use of suitable techniques and methodologies, careful investigation during the risk analysis phase, and its detailed and structured results are necessary to make proper risk-based maintenance decisions

  2. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  3. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  4. Modeling and Control of Multivariable Process Using Intelligent Techniques

    Directory of Open Access Journals (Sweden)

    Subathra Balasubramanian

    2010-10-01

    Full Text Available For nonlinear dynamic systems, the first principles based modeling and control is difficult to implement. In this study, a fuzzy controller and recurrent fuzzy controller are developed for MIMO process. Fuzzy logic controller is a model free controller designed based on the knowledge about the process. In fuzzy controller there are two types of rule-based fuzzy models are available: one the linguistic (Mamdani model and the other is Takagi–Sugeno model. Of these two, Takagi-Sugeno model (TS has attracted most attention. The fuzzy controller application is limited to static processes due to their feedforward structure. But, most of the real-time processes are dynamic and they require the history of input/output data. In order to store the past values a memory unit is needed, which is introduced by the recurrent structure. The proposed recurrent fuzzy structure is used to develop a controller for the two tank heating process. Both controllers are designed and implemented in a real time environment and their performance is compared.

  5. A Continuous Dynamic Traffic Assignment Model From Plate Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, A.; Gallego, I.; Sanchez-Cambronero, S.; Ruiz-Ripoll, L.; Barba, R.M.

    2016-07-01

    This paper presents a methodology for the dynamic estimation of traffic flows on all links of a network from observable field data assuming the first-in-first-out (FIFO) hypothesis. The traffic flow intensities recorded at the exit of the scanned links are propagated to obtain the flow waves on unscanned links. For that, the model calculates the flow-cost functions through information registered with the plate scanning technique. The model also responds to the concern about the parameter quality of flow-cost functions to replicate the real traffic flow behaviour. It includes a new algorithm for the adjustment of the parameter values to link characteristics when its quality is questionable. For that, it is necessary the a priori study of the location of the scanning devices to identify all path flows and to measure travel times in all links. A synthetic network is used to illustrate the proposed method and to prove its usefulness and feasibility. (Author)

  6. Experimental evaluation of a quasi-modal parameter based rotor foundation identification technique

    Science.gov (United States)

    Yu, Minli; Liu, Jike; Feng, Ningsheng; Hahn, Eric J.

    2017-12-01

    Correct modelling of the foundation of rotating machinery is an invaluable asset in model-based rotor dynamic study. One attractive approach for such purpose is to identify the relevant modal parameters of an equivalent foundation using the motion measurements of rotor and foundation at the bearing supports. Previous research showed that, a complex quasi-modal parameter based system identification technique could be feasible for this purpose; however, the technique was only validated by identifying simple structures under harmonic excitation. In this paper, such identification technique is further extended and evaluated by identifying the foundation of a numerical rotor-bearing-foundation system and an experimental rotor rig respectively. In the identification of rotor foundation with multiple bearing supports, all application points of excitation forces transmitted through bearings need to be included; however the assumed vibration modes far outside the rotor operating speed cannot or not necessary to be identified. The extended identification technique allows one to identify correctly an equivalent foundation with fewer modes than the assumed number of degrees of freedom, essentially by generalising the technique to be able to handle rectangular complex modal matrices. The extended technique is robust in numerical and experimental validation and is therefore likely to be applicable in the field.

  7. Model-Based Methods for Fault Diagnosis: Some Guide-Lines

    DEFF Research Database (Denmark)

    Patton, R.J.; Chen, J.; Nielsen, S.B.

    1995-01-01

    This paper provides a review of model-based fault diagnosis techniques. Starting from basic principles, the properties.......This paper provides a review of model-based fault diagnosis techniques. Starting from basic principles, the properties....

  8. Refractive index sensor based on optical fiber end face using pulse reference-based compensation technique

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong

    2018-03-01

    We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.

  9. Dynamic model reduction: An overview of available techniques with application to power systems

    Directory of Open Access Journals (Sweden)

    Đukić Savo D.

    2012-01-01

    Full Text Available This paper summarises the model reduction techniques used for the reduction of large-scale linear and nonlinear dynamic models, described by the differential and algebraic equations that are commonly used in control theory. The groups of methods discussed in this paper for reduction of the linear dynamic model are based on singular perturbation analysis, modal analysis, singular value decomposition, moment matching and methods based on a combination of singular value decomposition and moment matching. Among the nonlinear dynamic model reduction methods, proper orthogonal decomposition, the trajectory piecewise linear method, balancing-based methods, reduction by optimising system matrices and projection from a linearised model, are described. Part of the paper is devoted to the techniques commonly used for reduction (equivalencing of large-scale power systems, which are based on coherency, synchrony, singular perturbation analysis, modal analysis and identification. Two (most interesting of the described techniques are applied to the reduction of the commonly used New England 10-generator, 39-bus test power system.

  10. Enhancing the effectiveness of IST through risk-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, S.D.

    1996-12-01

    Current IST requirements were developed mainly through deterministic-based methods. While this approach has resulted in an adequate level of safety and reliability for pumps and valves, insights from probabilistic safety assessments suggest a better safety focus can be achieved at lower costs. That is, some high safety impact pumps and valves are currently not tested under the IST program and should be added, while low safety impact valves could be tested at significantly greater intervals than allowed by the current IST program. The nuclear utility industry, through the Nuclear Energy Institute (NEI), has developed a draft guideline for applying risk-based techniques to focus testing on those pumps and valves with a high safety impact while reducing test frequencies on low safety impact pumps and valves. The guideline is being validated through an industry pilot application program that is being reviewed by the U.S. Nuclear Regulatory Commission. NEI and the ASME maintain a dialogue on the two groups` activities related to risk-based IST. The presenter will provide an overview of the NEI guideline, discuss the methodological approach for applying risk-based technology to IST and provide the status of the industry pilot plant effort.

  11. Increasing the Intelligence of Virtual Sales Assistants through Knowledge Modeling Techniques

    OpenAIRE

    Molina, Martin

    2001-01-01

    Shopping agents are web-based applications that help consumers to find appropriate products in the context of e-commerce. In this paper we argue about the utility of advanced model-based techniques that recently have been proposed in the fields of Artificial Intelligence and Knowledge Engineering, in order to increase the level of support provided by this type of applications. We illustrate this approach with a virtual sales assistant that dynamically configures a product according to the nee...

  12. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available In this second part of the two-part paper, the data driven modeling (DDM experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs, genetic programming (GP, evolutionary polynomial regression (EPR, Support vector machines (SVM, M5 model trees (M5, K-nearest neighbors (K-nn, and multiple linear regression (MLR techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it

  13. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Science.gov (United States)

    Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D. P.

    2010-10-01

    In this second part of the two-part paper, the data driven modeling (DDM) experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets) are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations) were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs), genetic programming (GP), evolutionary polynomial regression (EPR), Support vector machines (SVM), M5 model trees (M5), K-nearest neighbors (K-nn), and multiple linear regression (MLR) techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it should

  14. Optimizing Availability of a Framework in Series Configuration Utilizing Markov Model and Monte Carlo Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Mansoor Ahmed Siddiqui

    2017-06-01

    Full Text Available This research work is aimed at optimizing the availability of a framework comprising of two units linked together in series configuration utilizing Markov Model and Monte Carlo (MC Simulation techniques. In this article, effort has been made to develop a maintenance model that incorporates three distinct states for each unit, while taking into account their different levels of deterioration. Calculations are carried out using the proposed model for two distinct cases of corrective repair, namely perfect and imperfect repairs, with as well as without opportunistic maintenance. Initially, results are accomplished using an analytical technique i.e., Markov Model. Validation of the results achieved is later carried out with the help of MC Simulation. In addition, MC Simulation based codes also work well for the frameworks that follow non-exponential failure and repair rates, and thus overcome the limitations offered by the Markov Model.

  15. Model-based consensus

    NARCIS (Netherlands)

    Boumans, M.; Martini, C.; Boumans, M.

    2014-01-01

    The aim of the rational-consensus method is to produce "rational consensus", that is, "mathematical aggregation", by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  16. Model-based consensus

    NARCIS (Netherlands)

    Boumans, Marcel

    2014-01-01

    The aim of the rational-consensus method is to produce “rational consensus”, that is, “mathematical aggregation”, by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  17. Improving default risk prediction using Bayesian model uncertainty techniques.

    Science.gov (United States)

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.

  18. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  19. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  20. Leveraging model-based study designs and serial micro-sampling techniques to understand the oral pharmacokinetics of the potent LTB4 inhibitor, CP-105696, for mouse pharmacology studies.

    Science.gov (United States)

    Spilker, Mary E; Chung, Heekyung; Visswanathan, Ravi; Bagrodia, Shubha; Gernhardt, Steven; Fantin, Valeria R; Ellies, Lesley G

    2017-07-01

    1. Leukotriene B4 (LTB4) is a proinflammatory mediator important in the progression of a number of inflammatory diseases. Preclinical models can explore the role of LTB4 in pathophysiology using tool compounds, such as CP-105696, that modulate its activity. To support preclinical pharmacology studies, micro-sampling techniques and mathematical modeling were used to determine the pharmacokinetics of CP-105696 in mice within the context of systemic inflammation induced by a high-fat diet (HFD). 2. Following oral administration of doses > 35 mg/kg, CP-105696 kinetics can be described by a one-compartment model with first order absorption. The compound's half-life is 44-62 h with an apparent volume of distribution of 0.51-0.72 L/kg. Exposures in animals fed an HFD are within 2-fold of those fed a normal chow diet. Daily dosing at 100 mg/kg was not tolerated and resulted in a >20% weight loss in the mice. 3. CP-105696's long half-life has the potential to support a twice weekly dosing schedule. Given that most chronic inflammatory diseases will require long-term therapies, these results are useful in determining the optimal dosing schedules for preclinical studies using CP-105696.

  1. An Automated Sorting System Based on Virtual Instrumentation Techniques

    Directory of Open Access Journals (Sweden)

    Rodica Holonec

    2008-07-01

    Full Text Available The application presented in this paper represents an experimental model and it refers to the implementing of an automated sorting system for pieces of same shape but different sizes and/or colors. The classification is made according to two features: the color and weight of these pieces. The system is a complex combination of NI Vision hardware and software tools, strain gauges transducers, signal conditioning connected to data acquisition boards, motion and control elements. The system is very useful for students to learn and experiment different virtual instrumentation techniques in order to be able to develop a large field of applications from inspection and process control to sorting and assembly

  2. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  3. GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique

    Science.gov (United States)

    Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.

    2015-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).

  4. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  5. Activity-based DEVS modeling

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2018-01-01

    architecture and the UML concepts. In this paper, we further this work by grounding Activity-based DEVS modeling and developing a fully-fledged modeling engine to demonstrate applicability. We also detail the relevant aspects of the created metamodel in terms of modeling and simulation. A significant number......Use of model-driven approaches has been increasing to significantly benefit the process of building complex systems. Recently, an approach for specifying model behavior using UML activities has been devised to support the creation of DEVS models in a disciplined manner based on the model driven...... of the artifacts of the UML 2.5 activities and actions, from the vantage point of DEVS behavioral modeling, is covered in details. Their semantics are discussed to the extent of time-accurate requirements for simulation. We characterize them in correspondence with the specification of the atomic model behavior. We...

  6. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  9. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    Science.gov (United States)

    Parkash, Om; Hanim Shueb, Rafidah

    2015-01-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  10. An RSS based location estimation technique for cognitive relay networks

    KAUST Repository

    Qaraqe, Khalid A.

    2010-11-01

    In this paper, a received signal strength (RSS) based location estimation method is proposed for a cooperative wireless relay network where the relay is a cognitive radio. We propose a method for the considered cognitive relay network to determine the location of the source using the direct and the relayed signal at the destination. We derive the Cramer-Rao lower bound (CRLB) expressions separately for x and y coordinates of the location estimate. We analyze the effects of cognitive behaviour of the relay on the performance of the proposed method. We also discuss and quantify the reliability of the location estimate using the proposed technique if the source is not stationary. The overall performance of the proposed method is presented through simulations. ©2010 IEEE.

  11. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  12. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel

    2017-01-01

    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  13. An investigation of a video-based patient repositioning technique

    International Nuclear Information System (INIS)

    Yan Yulong; Song Yulin; Boyer, Arthur L.

    2002-01-01

    Purpose: We have investigated a video-based patient repositioning technique designed to use skin features for radiotherapy repositioning. We investigated the feasibility of the clinical application of this system by quantitative evaluation of performance characteristics of the methodology. Methods and Materials: Multiple regions of interest (ROI) were specified in the field of view of video cameras. We used a normalized correlation pattern-matching algorithm to compute the translations of each ROI pattern in a target image. These translations were compared against trial translations using a quadratic cost function for an optimization process in which the patient rotation and translational parameters were calculated. Results: A hierarchical search technique achieved high-speed (compute correlation for 128x128 ROI in 512x512 target image within 0.005 s) and subpixel spatial accuracy (as high as 0.2 pixel). By treating the observed translations as movements of points on the surfaces of a hypothetical cube, we were able to estimate accurately the actual translations and rotations of the test phantoms used in our experiments to less than 1 mm and 0.2 deg. with a standard deviation of 0.3 mm and 0.5 deg. respectively. For human volunteer cases, we estimated the translations and rotations to have an accuracy of 2 mm and 1.2 deg. Conclusion: A personal computer-based video system is suitable for routine patient setup of fractionated conformal radiotherapy. It is expected to achieve high-precision repositioning of the skin surface with high efficiency

  14. Model assessment using a multi-metric ranking technique

    Science.gov (United States)

    Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.

    2017-12-01

    Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.

  15. Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan J. Zhang

    2012-12-01

    Full Text Available Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this

  16. VLF surface-impedance modelling techniques for coal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.; Thiel, D.; O' Keefe, S. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Engineering and Physical Systems

    2000-10-01

    New and efficient computational techniques are required for geophysical investigations of coal. This will allow automated inverse analysis procedures to be used for interpretation of field data. In this paper, a number of methods of modelling electromagnetic surface impedance measurements are reviewed, particularly as applied to typical coal seam geology found in the Bowen Basin. At present, the Impedance method and the finite-difference time-domain (FDTD) method appear to offer viable solutions although both have problems. The Impedance method is currently slightly inaccurate, and the FDTD method has large computational demands. In this paper both methods are described and results are presented for a number of geological targets. 17 refs., 14 figs.

  17. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal; Henkel, Jö rg

    2010-01-01

    % for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures, namely ARM and MIPS. © 2010 ACM.

  18. Skull base tumours part I: Imaging technique, anatomy and anterior skull base tumours

    International Nuclear Information System (INIS)

    Borges, Alexandra

    2008-01-01

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed

  19. Comparative assessment of PIV-based pressure evaluation techniques applied to a transonic base flow

    NARCIS (Netherlands)

    Blinde, P; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N.; Rival, D.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2016-01-01

    A test case for PIV-based pressure evaluation techniques has been developed by constructing a simulated experiment from a ZDES simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences of four subsequent particle images (representing multi-pulse data) as well as

  20. Analysis on the Metrics used in Optimizing Electronic Business based on Learning Techniques

    Directory of Open Access Journals (Sweden)

    Irina-Steliana STAN

    2014-09-01

    Full Text Available The present paper proposes a methodology of analyzing the metrics related to electronic business. The drafts of the optimizing models include KPIs that can highlight the business specific, if only they are integrated by using learning-based techniques. Having set the most important and high-impact elements of the business, the models should get in the end the link between them, by automating business flows. The human resource will be found in the situation of collaborating more and more with the optimizing models which will translate into high quality decisions followed by profitability increase.

  1. A novel technique for active vibration control, based on optimal

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  2. Fuzzy modeling and control of rotary inverted pendulum system using LQR technique

    International Nuclear Information System (INIS)

    Fairus, M A; Mohamed, Z; Ahmad, M N

    2013-01-01

    Rotary inverted pendulum (RIP) system is a nonlinear, non-minimum phase, unstable and underactuated system. Controlling such system can be a challenge and is considered a benchmark in control theory problem. Prior to designing a controller, equations that represent the behaviour of the RIP system must be developed as accurately as possible without compromising the complexity of the equations. Through Takagi-Sugeno (T-S) fuzzy modeling technique, the nonlinear system model is then transformed into several local linear time-invariant models which are then blended together to reproduce, or approximate, the nonlinear system model within local region. A parallel distributed compensation (PDC) based fuzzy controller using linear quadratic regulator (LQR) technique is designed to control the RIP system. The results show that the designed controller able to balance the RIP system

  3. An improved visualization-based force-measurement technique for short-duration hypersonic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Stuart J.; Karl, Sebastian [Institute of Aerodynamics and Flow Technology, Spacecraft Section, German Aerospace Center (DLR), Goettingen (Germany)

    2010-06-15

    This article is concerned with describing and exploring the limitations of an improved version of a recently proposed visualization-based technique for the measurement of forces and moments in short-duration hypersonic wind tunnels. The technique is based on tracking the motion of a free-flying body over a sequence of high-speed visualizations; while this idea is not new in itself, the use of high-speed digital cinematography combined with a highly accurate least-squares tracking algorithm allows improved results over what have been previously possible with such techniques. The technique precision is estimated through the analysis of artificially constructed and experimental test images, and the resulting error in acceleration measurements is characterized. For wind-tunnel scale models, position measurements to within a few microns are shown to be readily attainable. Image data from two previous experimental studies in the T5 hypervelocity shock tunnel are then reanalyzed with the improved technique: the uncertainty in the mean drag acceleration is shown to be reduced to the order of the flow unsteadiness, 2-3%, and time-resolved acceleration measurements are also shown to be possible. The response time of the technique for the configurations studied is estimated to be {proportional_to}0.5 ms. Comparisons with computations using the DLR TAU code also yield agreement to within the overall experimental uncertainty. Measurement of the pitching moment for blunt geometries still appears challenging, however. (orig.)

  4. Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique

    Directory of Open Access Journals (Sweden)

    Hejun Yang

    2018-03-01

    Full Text Available The electrical system of a wind farm has a significant influence on the wind farm reliability and electrical energy yield. The disconnect switch installed in an electrical system cannot only improve the operating flexibility, but also enhance the reliability for a wind farm. Therefore, this paper develops a probabilistic transfer technique for integrating the electrical topology structure, the isolation operation of disconnect switch, and stochastic failure of electrical equipment into the reliability assessment of wind farm electrical system. Firstly, as the traditional two-state reliability model of electrical equipment cannot consider the isolation operation, so the paper develops a three-state reliability model to replace the two-state model for incorporating the isolation operation. In addition, a proportion apportion technique is presented to evaluate the state probability. Secondly, this paper develops a probabilistic transfer technique based on the thoughts that through transfer the unreliability of electrical system to the energy transmission interruption of wind turbine generators (WTGs. Finally, some novel indices for describing the reliability of wind farm electrical system are designed, and the variance coefficient of the designed indices is used as a convergence criterion to determine the termination of the assessment process. The proposed technique is applied to the reliability assessment of a wind farm with the different topologies. The simulation results show that the proposed techniques are effective in practical applications.

  5. Acellular dermal matrix based nipple reconstruction: A modified technique

    Directory of Open Access Journals (Sweden)

    Raghavan Vidya

    2017-09-01

    Full Text Available Nipple areolar reconstruction (NAR has evolved with the advancement in breast reconstruction and can improve self-esteem and, consequently, patient satisfaction. Although a variety of reconstruction techniques have been described in the literature varying from nipple sharing, local flaps to alloplastic and allograft augmentation, over time, loss of nipple projection remains a major problem. Acellular dermal matrices (ADM have revolutionised breast reconstruction more recently. We discuss the use of ADM to act as a base plate and strut to give support to the base and offer nipple bulk and projection in a primary procedure of NAR with a local clover shaped dermal flap in 5 breasts (4 patients. We used 5-point Likert scales (1 = highly unsatisfied, 5 = highly satisfied to assess patient satisfaction. Median age was 46 years (range: 38–55 years. Nipple projection of 8 mm, 7 mm, and 7 mms were achieved in the unilateral cases and 6 mm in the bilateral case over a median 18 month period. All patients reported at least a 4 on the Likert scale. We had no post-operative complications. It seems that nipple areolar reconstruction [NAR] using ADM can achieve nipple projection which is considered aesthetically pleasing for patients.

  6. Crack identification based on synthetic artificial intelligent technique

    International Nuclear Information System (INIS)

    Shim, Mun Bo; Suh, Myung Won

    2001-01-01

    It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a Continuous Evolutionary Algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising

  7. Positron emission tomography, physical bases and comparaison with other techniques

    International Nuclear Information System (INIS)

    Guermazi, Fadhel; Hamza, F; Amouri, W.; Charfeddine, S.; Kallel, S.; Jardak, I.

    2013-01-01

    Positron emission tomography (PET) is a medical imaging technique that measures the three-dimensional distribution of molecules marked by a positron-emitting particle. PET has grown significantly in clinical fields, particularly in oncology for diagnosis and therapeutic follow purposes. The technical evolutions of this technique are fast. Among the technical improvements, is the coupling of the PET scan with computed tomography (CT). PET is obtained by intravenous injection of a radioactive tracer. The marker is usually fluorine ( 18 F) embedded in a glucose molecule forming the 18-fluorodeoxyglucose (FDG-18). This tracer, similar to glucose, binds to tissues that consume large quantities of the sugar such cancerous tissue, cardiac muscle or brain. Detection using scintillation crystals (BGO, LSO, LYSO) suitable for high energy (511keV) recognizes the lines of the gamma photons originating from the annihilation of a positron with an electron. The electronics of detection or coincidence circuit is based on two criteria: a time window, of about 6 to 15 ns, and an energy window. This system measures the true coincidences that correspond to the detection of two photons of 511 kV from the same annihilation. Most PET devices are constituted by a series of elementary detectors distributed annularly around the patient. Each detector comprises a scintillation crystal matrix coupled to a finite number (4 or 6) of photomultipliers. The electronic circuit, or the coincidence circuit, determines the projection point of annihilation by means of two elementary detectors. The processing of such information must be extremely fast, considering the count rates encountered in practice. The information measured by the coincidence circuit is then positioned in a matrix or sinogram, which contains a set of elements of a projection section of the object. Images are obtained by tomographic reconstruction by powerful computer stations equipped with a software tools allowing the analysis and

  8. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  9. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  10. HMM-based Trust Model

    DEFF Research Database (Denmark)

    ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro

    2010-01-01

    Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope...... with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the behaviours of principals, we introduce the HMM-based trust model as a new approach to evaluating trust in systems exhibiting dynamic behaviour. This model avoids the fixed behaviour assumption which is considered...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....

  11. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  12. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    Science.gov (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  13. Comparing modelling techniques when designing VPH gratings for BigBOSS

    Science.gov (United States)

    Poppett, Claire; Edelstein, Jerry; Lampton, Michael; Jelinsky, Patrick; Arns, James

    2012-09-01

    BigBOSS is a Stage IV Dark Energy instrument based on the Baryon Acoustic Oscillations (BAO) and Red Shift Distortions (RSD) techniques using spectroscopic data of 20 million ELG and LRG galaxies at 0.5VPH) gratings have been identified as a key technology which will enable the efficiency requirement to be met, however it is important to be able to accurately predict their performance. In this paper we quantitatively compare different modelling techniques in order to assess the parameter space over which they are more capable of accurately predicting measured performance. Finally we present baseline parameters for grating designs that are most suitable for the BigBOSS instrument.

  14. A linac-based stereotactic irradiation technique of uveal melanoma

    International Nuclear Information System (INIS)

    Dieckmann, Karin; Bogner, Joachim; Georg, Dietmar; Zehetmayer, Martin; Kren, Gerhard; Poetter, Richard

    2001-01-01

    Purpose: To describe a stereotactic irradiation technique for uveal melanomas performed at a linac, based on a non-invasive eye fixation and eye monitoring system. Methods: For eye immobilization a light source system is integrated in a standard stereotactic mask system in front of the healthy eye: During treatment preparation (computed tomography/magnetic resonance imaging) as well as for treatment delivery, patients are instructed to gaze at the fixation light source. A mini-video camera monitors the pupil center position of the diseased eye. For treatment planning and beam delivery standard stereotactic radiotherapy equipment is used. If the pupil center deviation from a predefined 'zero-position' exceeds 1 mm (for more than 2 s), treatment delivery is interrupted. Between 1996 and 1999 60 patients with uveal melanomas, where (i) tumor height exceeded 7 mm, or (ii) tumor height was more than 3 mm, and the central tumor distance to the optic disc and/or the macula was less than 3 mm, have been treated. A total dose of 60 or 70 Gy has been given in 5 fractions within 10 days. Results: The repositioning accuracy in the mask system is 0.47±0.36 mm in rostral-occipital direction, 0.75±0.52 mm laterally, and 1.12±0.96 mm in vertical direction. An eye movement analysis performed for 23 patients shows a pupil center deviation from the 'zero' position<1 mm in 91% of all cases investigated. In a theoretical analysis, pupil center deviations are correlated with GTV 'movements'. For a pupil center deviation of 1 mm (rotation of the globe of 5 degree sign ) the GTV is still encompassed by the 80% isodose in 94%. Conclusion: For treatments of uveal melanomas, linac-based stereotactic radiotherapy combined with a non-invasive eye immobilization and monitoring system represents a feasible, accurate and reproducible method. Besides considerable technical requirements, the complexity of the treatment technique demands an interdisciplinary team continuously dedicated to this

  15. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  16. A characteristic study of CCF modeling techniques and optimization of CCF defense strategies

    International Nuclear Information System (INIS)

    Kim, Min Chull

    2000-02-01

    Common Cause Failures (CCFs ) are among the major contributors to risk and core damage frequency (CDF ) from operating nuclear power plants (NPPs ). Our study on CCF focused on the following aspects : 1) a characteristic study on the CCF modeling techniques and 2) development of the optimal CCF defense strategy. Firstly, the characteristics of CCF modeling techniques were studied through sensitivity study of CCF occurrence probability upon system redundancy. The modeling techniques considered in this study include those most widely used worldwide, i.e., beta factor, MGL, alpha factor, and binomial failure rate models. We found that MGL and alpha factor models are essentially identical in terms of the CCF probability. Secondly, in the study for CCF defense, the various methods identified in the previous studies for defending against CCF were classified into five different categories. Based on these categories, we developed a generic method by which the optimal CCF defense strategy can be selected. The method is not only qualitative but also quantitative in nature: the selection of the optimal strategy among candidates is based on the use of analytic hierarchical process (AHP). We applied this method to two motor-driven valves for containment sump isolation in Ulchin 3 and 4 nuclear power plants. The result indicates that the method for developing an optimal CCF defense strategy is effective

  17. The phase field technique for modeling multiphase materials

    Science.gov (United States)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  18. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  19. Active Vibration damping of Smart composite beams based on system identification technique

    Science.gov (United States)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  20. Model-based accelerator controls: What, why and how

    International Nuclear Information System (INIS)

    Sidhu, S.S.

    1987-01-01

    Model-based control is defined as a gamut of techniques whose aim is to improve the reliability of an accelerator and enhance the capabilities of the operator, and therefore of the whole control system. The aim of model-based control is seen as gradually moving the function of model-reference from the operator to the computer. The role of the operator in accelerator control and the need for and application of model-based control are briefly summarized

  1. Least-squares model-based halftoning

    Science.gov (United States)

    Pappas, Thrasyvoulos N.; Neuhoff, David L.

    1992-08-01

    A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach

  2. Computational modelling of the HyperVapotron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, Joseph, E-mail: Joe.Milnes@ccfe.ac.uk [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Burns, Alan [School of Process Material and Environmental Engineering, CFD Centre, University of Leeds, Leeds, LS2 9JT (United Kingdom); ANSYS UK, Milton Park, Oxfordshire (United Kingdom); Drikakis, Dimitris [Department of Engineering Physics, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The heat transfer mechanisms within a HyperVapotron are examined. Black-Right-Pointing-Pointer A multiphase, CFD model is developed. Black-Right-Pointing-Pointer Modelling choices for turbulence and wall boiling are evaluated. Black-Right-Pointing-Pointer Considerable improvements in accuracy are found compared to standard boiling models. Black-Right-Pointing-Pointer The model should enable significant virtual prototyping to be performed. - Abstract: Efficient heat transfer technologies are essential for magnetically confined fusion reactors; this applies to both the current generation of experimental reactors as well as future power plants. A number of High Heat Flux devices have therefore been developed specifically for this application. One of the most promising candidates is the HyperVapotron, a water cooled device which relies on internal fins and boiling heat transfer to maximise the heat transfer capability. Over the past 30 years, numerous variations of the HyperVapotron have been built and tested at fusion research centres around the globe resulting in devices that can now sustain heat fluxes in the region of 20-30 MW/m{sup 2} in steady state. Until recently, there had been few attempts to model or understand the internal heat transfer mechanisms responsible for this exceptional performance with the result that design improvements have been traditionally sought experimentally which is both inefficient and costly. This paper presents the successful attempt to develop an engineering model of the HyperVapotron device using customisation of commercial Computational Fluid Dynamics software. To establish the most appropriate modelling choices, in-depth studies were performed examining the turbulence models (within the Reynolds Averaged Navier Stokes framework), near wall methods, grid resolution and boiling submodels. Comparing the CFD solutions with HyperVapotron experimental data suggests that a RANS-based, multiphase

  3. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  4. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  5. A Search Technique for Weak and Long-Duration Gamma-Ray Bursts from Background Model Residuals

    Science.gov (United States)

    Skelton, R. T.; Mahoney, W. A.

    1993-01-01

    We report on a planned search technique for Gamma-Ray Bursts too weak to trigger the on-board threshold. The technique is to search residuals from a physically based background model used for analysis of point sources by the Earth occultation method.

  6. Establishment of reproducible osteosarcoma rat model using orthotopic implantation technique.

    Science.gov (United States)

    Yu, Zhe; Sun, Honghui; Fan, Qingyu; Long, Hua; Yang, Tongtao; Ma, Bao'an

    2009-05-01

    In experimental musculoskeletal oncology, there remains a need for animal models that can be used to assess the efficacy of new and innovative treatment methodologies for bone tumors. Rat plays a very important role in the bone field especially in the evaluation of metabolic bone diseases. The objective of this study was to develop a rat osteosarcoma model for evaluation of new surgical and molecular methods of treatment for extremity sarcoma. One hundred male SD rats weighing 125.45+/-8.19 g were divided into 5 groups and anesthetized intraperitoneally with 10% chloral hydrate. Orthotopic implantation models of rat osteosarcoma were performed by injecting directly into the SD rat femur with a needle for inoculation with SD tumor cells. In the first step of the experiment, 2x10(5) to 1x10(6) UMR106 cells in 50 microl were injected intraosseously into median or distal part of the femoral shaft and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from ultrasound with findings from necropsia and determining time of survival. In the third stage, the orthotopically implanted tumors and lung nodules were resected entirely, sectioned, and then counter stained with hematoxylin and eosin for histopathologic evaluation. The tumor take rate was 100% for implants with 8x10(5) tumor cells or more, which was much less than the amount required for subcutaneous implantation, with a high lung metastasis rate of 93.0%. Ultrasound and necropsia findings matched closely (r=0.942; p<0.01), which demonstrated that Doppler ultrasonography is a convenient and reliable technique for measuring cancer at any stage. Tumor growth curve showed that orthotopically implanted tumors expanded vigorously with time-lapse, especially in the first 3 weeks. The median time of survival was 38 days and surgical mortality was 0%. The UMR106 cell line has strong carcinogenic capability and high lung metastasis frequency. The present rat

  7. Concepts and techniques for conducting performance-based audits

    International Nuclear Information System (INIS)

    Espy, I.J.

    1990-01-01

    Quality assurance (QA) audits have historically varied in purpose and approach and have earned labels that attempt to name each type of audit. Some more common labels for QA audits include compliance, program, product, and performance-based. While documentation and methodologies are important and hence controlled, an organizations product has ultimate impact on the user. Product quality then must be of more concern to the user than documentation and methodologies of the provider. Performance-based auditing (PBA) provides for assessing product quality by evaluating the suppliers activities that produce and affect product quality. PBA is defined as auditing that evaluates the ability of an activity to regularly produce and release only acceptable product, where product refers to the output of the activity. The output may be hardware, software, or a service, and acceptability includes suitability to the users needs. To satisfy this definition, PBA should focus on the activities that produce and affect product and should evaluate the systematics of each activity in terms of its ability to produce acceptable product. The activity evaluation model provides a framework for evaluating the systematicness of any activity. Elements of the activity evaluation model are described

  8. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  9. Using Neutron-based techniques to investigate battery behaviour

    International Nuclear Information System (INIS)

    Pramudita, James C.; Goonetilleke, Damien; Sharma, Neeraj; Peterson, Vanessa K.

    2016-01-01

    The extensive use of portable electronic devices has given rise to increasing demand for reliable high energy density storage in the form of batteries. Today, lithium-ion batteries (LIBs) are the leading technology as they offer high energy density and relatively long lifetimes. Despite their widespread adoption, Li-ion batteries still suffer from significant degradation in their performance over time. The most obvious degradation in lithium-ion battery performance is capacity fade – where the capacity of the battery reduces after extended cycling. This talk will focus on how in situ time-resolved neutron powder diffraction (NPD) can be used to gain a better understanding of the structural changes which contribute to the observed capacity fade. The commercial batteries studied each feature different electrochemical and storage histories that are precisely known, allowing us to elucidate the tell-tale signs of battery degradation using NPD and relate these to battery history. Moreover, this talk will also showcase the diverse use of other neutron-based techniques such as neutron imaging to study electrolyte concentrations in lead-acid batteries, and the use of quasi-elastic neutron scattering to study Na-ion dynamics in sodium-ion batteries.

  10. Weighted graph based ordering techniques for preconditioned conjugate gradient methods

    Science.gov (United States)

    Clift, Simon S.; Tang, Wei-Pai

    1994-01-01

    We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.

  11. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Multiscale agent-based cancer modeling.

    Science.gov (United States)

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  13. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  14. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  15. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  16. Agent Based Modeling Applications for Geosciences

    Science.gov (United States)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  17. Knowledge-based geometric modeling in construction

    DEFF Research Database (Denmark)

    Bonev, Martin; Hvam, Lars

    2012-01-01

    a considerably high amount of their recourses is required for designing and specifying the majority of their product assortment. As design decisions are hereby based on knowledge and experience about behaviour and applicability of construction techniques and materials for a predefined design situation, smart......A wider application of IT-based solutions, such as configuration systems and the implementation of modeling standards, has facilitated the trend to produce mass customized products to support inter alia the specification process of the increasing product variety. However, not all industries have...

  18. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    Science.gov (United States)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  19. PELE:  Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique.

    Science.gov (United States)

    Borrelli, Kenneth W; Vitalis, Andreas; Alcantara, Raul; Guallar, Victor

    2005-11-01

    Combining protein structure prediction algorithms and Metropolis Monte Carlo techniques, we provide a novel method to explore all-atom energy landscapes. The core of the technique is based on a steered localized perturbation followed by side-chain sampling as well as minimization cycles. The algorithm and its application to ligand diffusion are presented here. Ligand exit pathways are successfully modeled for different systems containing ligands of various sizes:  carbon monoxide in myoglobin, camphor in cytochrome P450cam, and palmitic acid in the intestinal fatty-acid-binding protein. These initial applications reveal the potential of this new technique in mapping millisecond-time-scale processes. The computational cost associated with the exploration is significantly less than that of conventional MD simulations.

  20. A new slit lamp-based technique for anterior chamber angle estimation.

    Science.gov (United States)

    Gispets, Joan; Cardona, Genís; Tomàs, Núria; Fusté, Cèlia; Binns, Alison; Fortes, Miguel A

    2014-06-01

    To design and test a new noninvasive method for anterior chamber angle (ACA) estimation based on the slit lamp that is accessible to all eye-care professionals. A new technique (slit lamp anterior chamber estimation [SLACE]) that aims to overcome some of the limitations of the van Herick procedure was designed. The technique, which only requires a slit lamp, was applied to estimate the ACA of 50 participants (100 eyes) using two different slit lamp models, and results were compared with gonioscopy as the clinical standard. The Spearman nonparametric correlation between ACA values as determined by gonioscopy and SLACE were 0.81 (p gonioscopy (Spaeth classification). The SLACE technique, when compared with gonioscopy, displayed good accuracy in the detection of narrow angles, and it may be useful for eye-care clinicians without access to expensive alternative equipment or those who cannot perform gonioscopy because of legal constraints regarding the use of diagnostic drugs.

  1. Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.

    Directory of Open Access Journals (Sweden)

    Nikolaos Gkantidis

    Full Text Available To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data.Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch were tested using eight pairs of pre-existing CT data (pre- and post-treatment. These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses.There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05. The AC + F technique was the most accurate (D0.05, the detected structural changes differed significantly between different techniques (p<0.05. Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error.Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

  2. Evaluation of 3-dimensional superimposition techniques on various skeletal structures of the head using surface models.

    Science.gov (United States)

    Gkantidis, Nikolaos; Schauseil, Michael; Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D0.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

  3. DEVELOPMENT MODEL OF PATISSERIE PROJECT-BASED LEARNING

    OpenAIRE

    Ana Ana; Lutfhiyah Nurlaela

    2013-01-01

    The study aims to find a model of patisserie project-based learning with production approach that can improve effectiveness of patisserie learning. Delphi Technique, Cohen's Kappa and percentages of agreements were used to assess model of patisserie project based learning. Data collection techniques employed in the study were questionnaire, check list worksheet, observation, and interview sheets. Subjects were 13 lectures of expertise food and nutrition and 91 students of Food and Nutrition ...

  4. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  5. Identifying and quantifying energy savings on fired plant using low cost modelling techniques

    International Nuclear Information System (INIS)

    Tucker, Robert; Ward, John

    2012-01-01

    Research highlights: → Furnace models based on the zone method for radiation calculation are described. → Validated steady-state and transient models have been developed. → We show how these simple models can identify the best options for saving energy. → High emissivity coatings predicted to give performance enhancement on a fired heater. → Optimal heat recovery strategies on a steel reheating furnace are predicted. -- Abstract: Combustion in fired heaters, boilers and furnaces often accounts for the major energy consumption on industrial processes. Small improvements in efficiency can result in large reductions in energy consumption, CO 2 emissions, and operating costs. This paper will describe some useful low cost modelling techniques based on the zone method to help identify energy saving opportunities on high temperature fuel-fired process plant. The zone method has for many decades, been successfully applied to small batch furnaces through to large steel-reheating furnaces, glass tanks, boilers and fired heaters on petrochemical plant. Zone models can simulate both steady-state furnace operation and more complex transient operation typical of a production environment. These models can be used to predict thermal efficiency and performance, and more importantly, to assist in identifying and predicting energy saving opportunities from such measures as: ·Improving air/fuel ratio and temperature controls. ·Improved insulation. ·Use of oxygen or oxygen enrichment. ·Air preheating via flue gas heat recovery. ·Modification to furnace geometry and hearth loading. There is also increasing interest in the application of refractory coatings for increasing surface radiation in fired plant. All of the techniques can yield savings ranging from a few percent upwards and can deliver rapid financial payback, but their evaluation often requires robust and reliable models in order to increase confidence in making financial investment decisions. This paper gives

  6. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  7. Modeling of an Aged Porous Silicon Humidity Sensor Using ANN Technique

    Directory of Open Access Journals (Sweden)

    Tarikul ISLAM

    2006-10-01

    Full Text Available Porous silicon (PS sensor based on capacitive technique used for measuring relative humidity has the advantages of low cost, ease of fabrication with controlled structure and CMOS compatibility. But the response of the sensor is nonlinear function of humidity and suffers from errors due to aging and stability. One adaptive linear (ADALINE ANN model has been developed to model the behavior of the sensor with a view to estimate these errors and compensate them. The response of the sensor is represented by third order polynomial basis function whose coefficients are determined by the ANN technique. The drift in sensor output due to aging of PS layer is also modeled by adapting the weights of the polynomial function. ANN based modeling is found to be more suitable than conventional physical modeling of PS humidity sensor in changing environment and drift due to aging. It helps online estimation of nonlinearity as well as monitoring of the fault of the PS humidity sensor using the coefficients of the model.

  8. Gravity Matching Aided Inertial Navigation Technique Based on Marginal Robust Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2015-01-01

    Full Text Available This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation. The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model. Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.

  9. Multi-disciplinary techniques for understanding time-varying space-based imagery

    Science.gov (United States)

    Casasent, D.; Sanderson, A.; Kanade, T.

    1984-06-01

    A multidisciplinary program for space-based image processing is reported. This project combines optical and digital processing techniques and pattern recognition, image understanding and artificial intelligence methodologies. Time change image processing was recognized as the key issue to be addressed. Three time change scenarios were defined based on the frame rate of the data change. This report details the recent research on: various statistical and deterministic image features, recognition of sub-pixel targets in time varying imagery, and 3-D object modeling and recognition.

  10. Spectral-based features ranking for gamelan instruments identification using filter techniques

    Directory of Open Access Journals (Sweden)

    Diah P Wulandari

    2013-03-01

    Full Text Available In this paper, we describe an approach of spectral-based features ranking for Javanese gamelaninstruments identification using filter techniques. The model extracted spectral-based features set of thesignal using Short Time Fourier Transform (STFT. The rank of the features was determined using the fivealgorithms; namely ReliefF, Chi-Squared, Information Gain, Gain Ratio, and Symmetric Uncertainty. Then,we tested the ranked features by cross validation using Support Vector Machine (SVM. The experimentshowed that Gain Ratio algorithm gave the best result, it yielded accuracy of 98.93%.

  11. HIGHLY-ACCURATE MODEL ORDER REDUCTION TECHNIQUE ON A DISCRETE DOMAIN

    Directory of Open Access Journals (Sweden)

    L. D. Ribeiro

    2015-09-01

    Full Text Available AbstractIn this work, we present a highly-accurate technique of model order reduction applied to staged processes. The proposed method reduces the dimension of the original system based on null values of moment-weighted sums of heat and mass balance residuals on real stages. To compute these sums of weighted residuals, a discrete form of Gauss-Lobatto quadrature was developed, allowing a high degree of accuracy in these calculations. The locations where the residuals are cancelled vary with time and operating conditions, characterizing a desirable adaptive nature of this technique. Balances related to upstream and downstream devices (such as condenser, reboiler, and feed tray of a distillation column are considered as boundary conditions of the corresponding difference-differential equations system. The chosen number of moments is the dimension of the reduced model being much lower than the dimension of the complete model and does not depend on the size of the original model. Scaling of the discrete independent variable related with the stages was crucial for the computational implementation of the proposed method, avoiding accumulation of round-off errors present even in low-degree polynomial approximations in the original discrete variable. Dynamical simulations of distillation columns were carried out to check the performance of the proposed model order reduction technique. The obtained results show the superiority of the proposed procedure in comparison with the orthogonal collocation method.

  12. Proposal of a congestion control technique in LAN networks using an econometric model ARIMA

    Directory of Open Access Journals (Sweden)

    Joaquín F Sánchez

    2017-01-01

    Full Text Available Hasty software development can produce immediate implementations with source code unnecessarily complex and hardly readable. These small kinds of software decay generate a technical debt that could be big enough to seriously affect future maintenance activities. This work presents an analysis technique for identifying architectural technical debt related to non-uniformity of naming patterns; the technique is based on term frequency over package hierarchies. The proposal has been evaluated on projects of two popular organizations, Apache and Eclipse. The results have shown that most of the projects have frequent occurrences of the proposed naming patterns, and using a graph model and aggregated data could enable the elaboration of simple queries for debt identification. The technique has features that favor its applicability on emergent architectures and agile software development.

  13. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim; Muller, Hendrik; Adam, Frederick M.; Panda, Saroj K.; Witt, Matthias; Al-Hajji, Adnan A.; Sarathy, Mani

    2015-01-01

    cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated

  14. Contests versus Norms: Implications of Contest-Based and Norm-Based Intervention Techniques.

    Science.gov (United States)

    Bergquist, Magnus; Nilsson, Andreas; Hansla, André

    2017-01-01

    Interventions using either contests or norms can promote environmental behavioral change. Yet research on the implications of contest-based and norm-based interventions is lacking. Based on Goal-framing theory, we suggest that a contest-based intervention frames a gain goal promoting intensive but instrumental behavioral engagement. In contrast, the norm-based intervention was expected to frame a normative goal activating normative obligations for targeted and non-targeted behavior and motivation to engage in pro-environmental behaviors in the future. In two studies participants ( n = 347) were randomly assigned to either a contest- or a norm-based intervention technique. Participants in the contest showed more intensive engagement in both studies. Participants in the norm-based intervention tended to report higher intentions for future energy conservation (Study 1) and higher personal norms for non-targeted pro-environmental behaviors (Study 2). These findings suggest that contest-based intervention technique frames a gain goal, while norm-based intervention frames a normative goal.

  15. Contests versus Norms: Implications of Contest-Based and Norm-Based Intervention Techniques

    Directory of Open Access Journals (Sweden)

    Magnus Bergquist

    2017-11-01

    Full Text Available Interventions using either contests or norms can promote environmental behavioral change. Yet research on the implications of contest-based and norm-based interventions is lacking. Based on Goal-framing theory, we suggest that a contest-based intervention frames a gain goal promoting intensive but instrumental behavioral engagement. In contrast, the norm-based intervention was expected to frame a normative goal activating normative obligations for targeted and non-targeted behavior and motivation to engage in pro-environmental behaviors in the future. In two studies participants (n = 347 were randomly assigned to either a contest- or a norm-based intervention technique. Participants in the contest showed more intensive engagement in both studies. Participants in the norm-based intervention tended to report higher intentions for future energy conservation (Study 1 and higher personal norms for non-targeted pro-environmental behaviors (Study 2. These findings suggest that contest-based intervention technique frames a gain goal, while norm-based intervention frames a normative goal.

  16. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  17. FPGA based mixed-signal circuit novel testing techniques

    International Nuclear Information System (INIS)

    Pouros, Sotirios; Vassios, Vassilios; Papakostas, Dimitrios; Hristov, Valentin

    2013-01-01

    Electronic circuits fault detection techniques, especially on modern mixed-signal circuits, are evolved and customized around the world to meet the industry needs. The paper presents techniques used on fault detection in mixed signal circuits. Moreover, the paper involves standardized methods, along with current innovations for external testing like Design for Testability (DfT) and Built In Self Test (BIST) systems. Finally, the research team introduces a circuit implementation scheme using FPGA

  18. The Effect of Group Investigation Learning Model with Brainstroming Technique on Students Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Astiti Kade kAyu

    2018-01-01

    Full Text Available This study aims to determine the effect of group investigation (GI learning model with brainstorming technique on student physics learning outcomes (PLO compared to jigsaw learning model with brainstroming technique. The learning outcome in this research are the results of learning in the cognitive domain. The method used in this research is experiment with Randomised Postest Only Control Group Design. Population in this research is all students of class XI IPA SMA Negeri 9 Kupang year lesson 2015/2016. The selected sample are 40 students of class XI IPA 1 as the experimental class and 38 students of class XI IPA 2 as the control class using simple random sampling technique. The instrument used is 13 items description test. The first hypothesis was tested by using two tailed t-test. From that, it is obtained that H0 rejected which means there are differences of students physics learning outcome. The second hypothesis was tested using one tailed t-test. It is obtained that H0 rejected which means the students PLO in experiment class were higher than control class. Based on the results of this study, researchers recommend the use of GI learning models with brainstorming techniques to improve PLO, especially in the cognitive domain.

  19. A Technique for Estimating Intensity of Emotional Expressions and Speaking Styles in Speech Based on Multiple-Regression HSMM

    Science.gov (United States)

    Nose, Takashi; Kobayashi, Takao

    In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.

  20. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    Science.gov (United States)

    Batukaev, Abdulmalik

    2016-04-01

    The world water strategy is to be changed because the current imitational gravitational frontal isotropic-continual paradigm of irrigation is not sustainable. This paradigm causes excessive consumption of fresh water - global deficit - up to 4-15 times, adverse effects on soils and landscapes. Current methods of irrigation does not control the water spread throughout the soil continuum. The preferable downward fluxes of irrigation water are forming, up to 70% and more of water supply loses into vadose zone. The moisture of irrigated soil is high, soil loses structure in the process of granulometric fractions flotation decomposition, the stomatal apparatus of plant leaf is fully open, transpiration rate is maximal. We propose the Biogeosystem technique - the transcendental, uncommon and non-imitating methods for Sustainable Natural Resources Management. New paradigm of irrigation is based on the intra-soil pulse discrete method of water supply into the soil continuum by injection in small discrete portions. Individual volume of water is supplied as a vertical cylinder of soil preliminary watering. The cylinder position in soil is at depth form 10 to 30 cm. Diameter of cylinder is 1-2 cm. Within 5-10 min after injection the water spreads from the cylinder of preliminary watering into surrounding soil by capillary, film and vapor transfer. Small amount of water is transferred gravitationally to the depth of 35-40 cm. The soil watering cylinder position in soil profile is at depth of 5-50 cm, diameter of the cylinder is 2-4 cm. Lateral distance between next cylinders along the plant raw is 10-15 cm. The soil carcass which is surrounding the cylinder of non-watered soil remains relatively dry and mechanically stable. After water injection the structure of soil in cylinder restores quickly because of no compression from the stable adjoining volume of soil and soil structure memory. The mean soil thermodynamic water potential of watered zone is -0.2 MPa. At this potential

  1. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    Science.gov (United States)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  2. Data-driven techniques to estimate parameters in a rate-dependent ferromagnetic hysteresis model

    International Nuclear Information System (INIS)

    Hu Zhengzheng; Smith, Ralph C.; Ernstberger, Jon M.

    2012-01-01

    The quantification of rate-dependent ferromagnetic hysteresis is important in a range of applications including high speed milling using Terfenol-D actuators. There exist a variety of frameworks for characterizing rate-dependent hysteresis including the magnetic model in Ref. , the homogenized energy framework, Preisach formulations that accommodate after-effects, and Prandtl-Ishlinskii models. A critical issue when using any of these models to characterize physical devices concerns the efficient estimation of model parameters through least squares data fits. A crux of this issue is the determination of initial parameter estimates based on easily measured attributes of the data. In this paper, we present data-driven techniques to efficiently and robustly estimate parameters in the homogenized energy model. This framework was chosen due to its physical basis and its applicability to ferroelectric, ferromagnetic and ferroelastic materials.

  3. Modelling of 3D fractured geological systems - technique and application

    Science.gov (United States)

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related

  4. The Effectiveness of Song Technique in Teaching Paper Based TOEFL (PBT’S Listening Comprehension Section

    Directory of Open Access Journals (Sweden)

    Heri Kuswoyo

    2013-07-01

    Full Text Available Among three sections that follow the Paper-Based TOEFL (PBT, many test takers find listening comprehension section is the most difficult. Thus, in this research the researcher aims to explore how students learn PBT’s listening comprehension section effectively through song technique. This sounds like a more interesting and engaging way to learn language because music is a very powerful motivational tool for learning language. To reach the goal of this study, the researcher applied the grammar approach. It is an appropriate approach since the main idea of grammar-based listening exercises is to analyze the language by its components and reconstruct an incomplete text. Besides, the researcher employed an English song as the media the researcher uses the top- down model for the Listening Process.  In this research, the writer tries to share his experience in teaching listening in English department of Teknokrat College by implementing song technique.

  5. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2000-10-01

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  6. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  7. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance

    Directory of Open Access Journals (Sweden)

    Dansheng Wang

    2016-10-01

    Full Text Available In the electromechanical impedance (EMI method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.

  8. A titration model for evaluating calcium hydroxide removal techniques

    Directory of Open Access Journals (Sweden)

    Mark PHILLIPS

    2015-02-01

    Full Text Available Objective Calcium hydroxide (Ca(OH2 has been used in endodontics as an intracanal medicament due to its antimicrobial effects and its ability to inactivate bacterial endotoxin. The inability to totally remove this intracanal medicament from the root canal system, however, may interfere with the setting of eugenol-based sealers or inhibit bonding of resin to dentin, thus presenting clinical challenges with endodontic treatment. This study used a chemical titration method to measure residual Ca(OH2 left after different endodontic irrigation methods. Material and Methods Eighty-six human canine roots were prepared for obturation. Thirty teeth were filled with known but different amounts of Ca(OH2 for 7 days, which were dissolved out and titrated to quantitate the residual Ca(OH2 recovered from each root to produce a standard curve. Forty-eight of the remaining teeth were filled with equal amounts of Ca(OH2 followed by gross Ca(OH2 removal using hand files and randomized treatment of either: 1 Syringe irrigation; 2 Syringe irrigation with use of an apical file; 3 Syringe irrigation with added 30 s of passive ultrasonic irrigation (PUI, or 4 Syringe irrigation with apical file and PUI (n=12/group. Residual Ca(OH2 was dissolved with glycerin and titrated to measure residual Ca(OH2 left in the root. Results No method completely removed all residual Ca(OH2. The addition of 30 s PUI with or without apical file use removed Ca(OH2 significantly better than irrigation alone. Conclusions This technique allowed quantification of residual Ca(OH2. The use of PUI (with or without apical file resulted in significantly lower Ca(OH2 residue compared to irrigation alone.

  9. Nuclear power plant monitoring and fault diagnosis methods based on the artificial intelligence technique

    International Nuclear Information System (INIS)

    Yoshikawa, S.; Saiki, A.; Ugolini, D.; Ozawa, K.

    1996-01-01

    The main objective of this paper is to develop an advanced diagnosis system based on the artificial intelligence technique to monitor the operation and to improve the operational safety of nuclear power plants. Three different methods have been elaborated in this study: an artificial neural network local diagnosis (NN ds ) scheme that acting at the component level discriminates between normal and abnormal transients, a model-based diagnostic reasoning mechanism that combines a physical causal network model-based knowledge compiler (KC) that generates applicable diagnostic rules from widely accepted physical knowledge compiler (KC) that generates applicable diagnostic rules from widely accepted physical knowledge. Although the three methods have been developed and verified independently, they are highly correlated and, when connected together, form a effective and robust diagnosis and monitoring tool. (authors)

  10. Applications of soft computing in time series forecasting simulation and modeling techniques

    CERN Document Server

    Singh, Pritpal

    2016-01-01

    This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and governmen...

  11. Data-driven remaining useful life prognosis techniques stochastic models, methods and applications

    CERN Document Server

    Si, Xiao-Sheng; Hu, Chang-Hua

    2017-01-01

    This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic data-driven remaining useful life prognosis theory systematically and in detail. The emphasis of the book is on the stochastic models, methods and applications employed in remaining useful life prognosis. It includes a wealth of degradation monitoring experiment data, practical prognosis methods for remaining useful life in various cases, and a series of applications incorporated into prognostic information in decision-making, such as maintenance-related decisions and ordering spare parts. It also highlights the latest advances in data-driven remaining useful life prognosis techniques, especially in the contexts of adaptive prognosis for linear stochastic degrading systems, nonlinear degradation modeling based pro...

  12. PERFORMANCE ANALYSIS OF PILOT BASED CHANNEL ESTIMATION TECHNIQUES IN MB OFDM SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2011-12-01

    Full Text Available Ultra wideband (UWB communication is mainly used for short range of communication in wireless personal area networks. Orthogonal Frequency Division Multiplexing (OFDM is being used as a key physical layer technology for Fourth Generation (4G wireless communication. OFDM based communication gives high spectral efficiency and mitigates Inter-symbol Interference (ISI in a wireless medium. In this paper the IEEE 802.15.3a based Multiband OFDM (MB OFDM system is considered. The pilot based channel estimation techniques are considered to analyze the performance of MB OFDM systems over Liner Time Invariant (LTI Channel models. In this paper, pilot based Least Square (LS and Least Minimum Mean Square Error (LMMSE channel estimation technique has been considered for UWB OFDM system. In the proposed method, the estimated Channel Impulse Responses (CIRs are filtered in the time domain for the consideration of the channel delay spread. Also the performance of proposed system has been analyzed for different modulation techniques for various pilot density patterns.

  13. A Review of Financial Accounting Fraud Detection based on Data Mining Techniques

    Science.gov (United States)

    Sharma, Anuj; Kumar Panigrahi, Prabin

    2012-02-01

    With an upsurge in financial accounting fraud in the current economic scenario experienced, financial accounting fraud detection (FAFD) has become an emerging topic of great importance for academic, research and industries. The failure of internal auditing system of the organization in identifying the accounting frauds has lead to use of specialized procedures to detect financial accounting fraud, collective known as forensic accounting. Data mining techniques are providing great aid in financial accounting fraud detection, since dealing with the large data volumes and complexities of financial data are big challenges for forensic accounting. This paper presents a comprehensive review of the literature on the application of data mining techniques for the detection of financial accounting fraud and proposes a framework for data mining techniques based accounting fraud detection. The systematic and comprehensive literature review of the data mining techniques applicable to financial accounting fraud detection may provide a foundation to future research in this field. The findings of this review show that data mining techniques like logistic models, neural networks, Bayesian belief network, and decision trees have been applied most extensively to provide primary solutions to the problems inherent in the detection and classification of fraudulent data.

  14. Automatic video segmentation employing object/camera modeling techniques

    NARCIS (Netherlands)

    Farin, D.S.

    2005-01-01

    Practically established video compression and storage techniques still process video sequences as rectangular images without further semantic structure. However, humans watching a video sequence immediately recognize acting objects as semantic units. This semantic object separation is currently not

  15. A Titration Technique for Demonstrating a Magma Replenishment Model.

    Science.gov (United States)

    Hodder, A. P. W.

    1983-01-01

    Conductiometric titrations can be used to simulate subduction-setting volcanism. Suggestions are made as to the use of this technique in teaching volcanic mechanisms and geochemical indications of tectonic settings. (JN)

  16. Modelling skin penetration using the Laplace transform technique.

    Science.gov (United States)

    Anissimov, Y G; Watkinson, A

    2013-01-01

    The Laplace transform is a convenient mathematical tool for solving ordinary and partial differential equations. The application of this technique to problems arising in drug penetration through the skin is reviewed in this paper. © 2013 S. Karger AG, Basel.

  17. A compressed sensing based approach on Discrete Algebraic Reconstruction Technique.

    Science.gov (United States)

    Demircan-Tureyen, Ezgi; Kamasak, Mustafa E

    2015-01-01

    Discrete tomography (DT) techniques are capable of computing better results, even using less number of projections than the continuous tomography techniques. Discrete Algebraic Reconstruction Technique (DART) is an iterative reconstruction method proposed to achieve this goal by exploiting a prior knowledge on the gray levels and assuming that the scanned object is composed from a few different densities. In this paper, DART method is combined with an initial total variation minimization (TvMin) phase to ensure a better initial guess and extended with a segmentation procedure in which the threshold values are estimated from a finite set of candidates to minimize both the projection error and the total variation (TV) simultaneously. The accuracy and the robustness of the algorithm is compared with the original DART by the simulation experiments which are done under (1) limited number of projections, (2) limited view problem and (3) noisy projections conditions.

  18. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  19. Skull base tumours part I: Imaging technique, anatomy and anterior skull base tumours

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Servico de Radiologia, Rua Professor Lima Basto, 1093 Lisboa Codex (Portugal)], E-mail: borgesalexandra@clix.pt

    2008-06-15

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed.

  20. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  1. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-05-01

    Full Text Available Abstract Background Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. In that approach, key sensitivity indices were estimated by Monte Carlo sampling, which is computationally very demanding and impractical for large biochemical reaction systems. Computationally efficient algorithms are needed to make variance-based sensitivity analysis applicable to realistic cellular networks, modeled by biochemical reaction systems that consist of a large number of reactions and molecular species. Results We present four techniques, derivative approximation (DA, polynomial approximation (PA, Gauss-Hermite integration (GHI, and orthonormal Hermite approximation (OHA, for analytically approximating the variance-based sensitivity indices associated with a biochemical reaction system. By using a well-known model of the mitogen-activated protein kinase signaling cascade as a case study, we numerically compare the approximation quality of these techniques against traditional Monte Carlo sampling. Our results indicate that, although DA is computationally the most attractive technique, special care should be exercised when using it for sensitivity analysis, since it may only be accurate at low levels of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than DA but can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more difficult to implement. OHA produces the most accurate approximation results and can be implemented in a straightforward manner. It turns out that the computational cost of the

  2. Integration of computational modeling and experimental techniques to design fuel surrogates

    DEFF Research Database (Denmark)

    Choudhury, H.A.; Intikhab, S.; Kalakul, Sawitree

    2017-01-01

    performance. A simplified alternative is to develop surrogate fuels that have fewer compounds and emulate certain important desired physical properties of the target fuels. Six gasoline blends were formulated through a computer aided model based technique “Mixed Integer Non-Linear Programming” (MINLP...... Virtual Process-Product Design Laboratory (VPPD-Lab) are applied onto the defined compositions of the surrogate gasoline. The aim is to primarily verify the defined composition of gasoline by means of VPPD-Lab. ρ, η and RVP are calculated with more accuracy and constraints such as distillation curve...... and flash point on the blend design are also considered. A post-design experiment-based verification step is proposed to further improve and fine-tune the “best” selected gasoline blends following the computation work. Here, advanced experimental techniques are used to measure the RVP, ρ, η, RON...

  3. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    Science.gov (United States)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  4. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    Science.gov (United States)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  5. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  6. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Emil

    2004-09-15

    This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the

  7. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  8. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  9. An experimental evaluation of the generalizing capabilities of process discovery techniques and black-box sequence models

    NARCIS (Netherlands)

    Tax, N.; van Zelst, S.J.; Teinemaa, I.; Gulden, Jens; Reinhartz-Berger, Iris; Schmidt, Rainer; Guerreiro, Sérgio; Guédria, Wided; Bera, Palash

    2018-01-01

    A plethora of automated process discovery techniques have been developed which aim to discover a process model based on event data originating from the execution of business processes. The aim of the discovered process models is to describe the control-flow of the underlying business process. At the

  10. MySQL based selection of appropriate indexing technique in ...

    African Journals Online (AJOL)

    This paper deals with selection of appropriate indexing technique applied on MySQL Database for a health care system and related performance issues using multiclass support vector machine (SVM). The patient database is generally huge and contains lot of variations. For the quick search or fast retrieval of the desired ...

  11. Techniques for Scaling Up Analyses Based on Pre-interpretations

    DEFF Research Database (Denmark)

    Gallagher, John Patrick; Henriksen, Kim Steen; Banda, Gourinath

    2005-01-01

    a variety of analyses, both generic (such as mode analysis) and program-specific (with respect to a type describing some particular property of interest). Previous work demonstrated the approach using pre-interpretations over small domains. In this paper we present techniques that allow the method...

  12. an architecture-based technique to mobile contact recommendation

    African Journals Online (AJOL)

    user

    Aside being able to store the name of contacts and their phone numbers, there are ... the artificial neural network technique [21], along with ... Recommendation is part of everyday life. This concept ... However, to use RSs some level of intelligence must be ...... [3] Min J.-K. & Cho S.-B.Mobile Human Network Management.

  13. MRA Based Efficient Database Storing and Fast Querying Technique

    Directory of Open Access Journals (Sweden)

    Mitko Kostov

    2017-02-01

    Full Text Available In this paper we consider a specific way of organizing 1D signals or 2D image databases, such that a more efficient storage and faster querying is achieved. A multiresolution technique of data processing is used in order of saving the most significant processed data.

  14. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  15. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2015-12-01

    Full Text Available Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  16. Review of air quality modeling techniques. Volume 8

    International Nuclear Information System (INIS)

    Rosen, L.C.

    1977-01-01

    Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each

  17. Using ecosystem modelling techniques in exposure assessments of radionuclides - an overview

    International Nuclear Information System (INIS)

    Kumblad, L.

    2005-01-01

    The risk to humans from potential releases from nuclear facilities is evaluated in safety assessments. Essential components of these assessments are exposure models, which estimate the transport of radionuclides in the environment, the uptake in biota, and transfer to humans. Recently, there has been a growing concern for radiological protection of the whole environment, not only humans, and a first attempt has been to employ model approaches based on stylized environments and transfer functions to biota based exclusively on bioconcentration factors (BCF). They are generally of a non-mechanistic nature and involve no knowledge of the actual processes involved, which is a severe limitation when assessing real ecosystems. in this paper, the possibility of using an ecological modelling approach as a complement or an alternative to the use of BCF-based models is discussed. The paper gives an overview of ecological and ecosystem modelling and examples of studies where ecosystem models have been used in association to ecological risk assessment studies for other pollutants than radionuclides. It also discusses the potential to use this technique in exposure assessments of radionuclides with a few examples from the safety assessment work performed by the Swedish nuclear fuel and waste management company (SKB). Finally there is a comparison of the characteristics of ecosystem models and traditionally exposure models for radionuclides used to estimate the radionuclide exposure of biota. The evaluation of ecosystem models already applied in safety assessments has shown that the ecosystem approach is possible to use to assess exposure to biota, and that it can handle many of the modelling problems identified related to BCF-models. The findings in this paper suggest that both national and international assessment frameworks for protection of the environment from ionising radiation would benefit from striving to adopt methodologies based on ecologically sound principles and

  18. Exact and Direct Modeling Technique for Rotor-Bearing Systems with Arbitrary Selected Degrees-of-Freedom

    Directory of Open Access Journals (Sweden)

    Shilin Chen

    1994-01-01

    Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.

  19. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    Science.gov (United States)

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  20. Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model

    KAUST Repository

    Khaki, M.

    2017-07-06

    The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.

  1. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  2. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  3. Comparison of acrylamide intake from Western and guideline based diets using probabilistic techniques and linear programming.

    Science.gov (United States)

    Katz, Josh M; Winter, Carl K; Buttrey, Samuel E; Fadel, James G

    2012-03-01

    Western and guideline based diets were compared to determine if dietary improvements resulting from following dietary guidelines reduce acrylamide intake. Acrylamide forms in heat treated foods and is a human neurotoxin and animal carcinogen. Acrylamide intake from the Western diet was estimated with probabilistic techniques using teenage (13-19 years) National Health and Nutrition Examination Survey (NHANES) food consumption estimates combined with FDA data on the levels of acrylamide in a large number of foods. Guideline based diets were derived from NHANES data using linear programming techniques to comport to recommendations from the Dietary Guidelines for Americans, 2005. Whereas the guideline based diets were more properly balanced and rich in consumption of fruits, vegetables, and other dietary components than the Western diets, acrylamide intake (mean±SE) was significantly greater (Plinear programming and results demonstrate that linear programming techniques can be used to model specific diets for the assessment of toxicological and nutritional dietary components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Remediation of textile effluents by membrane based treatment techniques: a state of the art review.

    Science.gov (United States)

    Dasgupta, Jhilly; Sikder, Jaya; Chakraborty, Sudip; Curcio, Stefano; Drioli, Enrico

    2015-01-01

    The textile industries hold an important position in the global industrial arena because of their undeniable contributions to basic human needs satisfaction and to the world economy. These industries are however major consumers of water, dyes and other toxic chemicals. The effluents generated from each processing step comprise substantial quantities of unutilized resources. The effluents if discharged without prior treatment become potential sources of pollution due to their several deleterious effects on the environment. The treatment of heterogeneous textile effluents therefore demands the application of environmentally benign technology with appreciable quality water reclamation potential. These features can be observed in various innovative membrane based techniques. The present review paper thus elucidates the contributions of membrane technology towards textile effluent treatment and unexhausted raw materials recovery. The reuse possibilities of water recovered through membrane based techniques, such as ultrafiltration and nanofiltration in primary dye houses or auxiliary rinse vats have also been explored. Advantages and bottlenecks, such as membrane fouling associated with each of these techniques have also been highlighted. Additionally, several pragmatic models simulating transport mechanism across membranes have been documented. Finally, various accounts dealing with techno-economic evaluation of these membrane based textile wastewater treatment processes have been provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A New Three Dimensional Based Key Generation Technique in AVK

    Science.gov (United States)

    Banerjee, Subhasish; Dutta, Manash Pratim; Bhunia, Chandan Tilak

    2017-08-01

    In modern era, ensuring high order security becomes one and only objective of computer networks. From the last few decades, many researchers have given their contributions to achieve the secrecy over the communication channel. In achieving perfect security, Shannon had done the pioneer work on perfect secret theorem and illustrated that secrecy of the shared information can be maintained if the key becomes variable in nature instead of static one. In this regard, a key generation technique has been proposed where the key can be changed every time whenever a new block of data needs to be exchanged. In our scheme, the keys not only vary in bit sequences but also in size. The experimental study is also included in this article to prove the correctness and effectiveness of our proposed technique.

  6. A Review On Segmentation Based Image Compression Techniques

    Directory of Open Access Journals (Sweden)

    S.Thayammal

    2013-11-01

    Full Text Available Abstract -The storage and transmission of imagery become more challenging task in the current scenario of multimedia applications. Hence, an efficient compression scheme is highly essential for imagery, which reduces the requirement of storage medium and transmission bandwidth. Not only improvement in performance and also the compression techniques must converge quickly in order to apply them for real time applications. There are various algorithms have been done in image compression, but everyone has its own pros and cons. Here, an extensive analysis between existing methods is performed. Also, the use of existing works is highlighted, for developing the novel techniques which face the challenging task of image storage and transmission in multimedia applications.

  7. Brain tumor segmentation based on a hybrid clustering technique

    Directory of Open Access Journals (Sweden)

    Eman Abdel-Maksoud

    2015-03-01

    This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.

  8. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  9. New technique for producing the alloys based on transition metals

    International Nuclear Information System (INIS)

    Dolukhanyan, S.K.; Aleksanyan, A.G.; Shekhtman, V.Sh.; Mantashyan, A.A.; Mayilyan, D.G.; Ter-Galstyan, O.P.

    2007-01-01

    In principle new technique was elaborated for obtaining the alloys of refractory metals by their hydrides compacting and following dehydrogenation. The elaborated technique is described. The conditions of alloys formation from different hydrides of appropriate metals was investigated in detail. The influence of the process parameters such as: chemical peculiarities, composition of source hydrides, phase transformation during dehydrogenation, etc. on the alloys formation were established. The binary and tertiary alloys of α and ω phases: Ti 0 .8Zr 0 .8; Ti 0 .66Zr 0 .33; Ti 0 .3Zr 0 .8; Ti 0 .2Zr 0 .8; Ti 0 .8Hf 0 .2; Ti 0 .6Hf 0 .4Ti 0 .66Zr 0 .23Hf 0 .11; etc were recieved. Using elaborated special hydride cycle, an earlier unknown effective process for formation of alloys of transition metals was realized. The dependence of final alloy structure on the composition of initial mixture and hydrogen content in source hydrides was established

  10. Voltage Stabilizer Based on SPWM technique Using Microcontroller

    OpenAIRE

    K. N. Tarchanidis; J. N. Lygouras; P. Botsaris

    2013-01-01

    This paper presents an application of the well known SPWM technique on a voltage stabilizer, using a microcontroller. The stabilizer is AC/DC/AC type. So, the system rectifies the input AC voltage to a suitable DC level and the intelligent control of an embedded microcontroller regulates the pulse width of the output voltage in order to produce through a filter a perfect sinusoidal AC voltage. The control program on the microcontroller has the ability to change the FET transistor ...

  11. Propositions for a PDF model based on fluid particle acceleration

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    This paper describes theoretical propositions to model the acceleration of a fluid particle in a turbulent flow. Such a model is useful for the PDF approach to turbulent reactive flows as well as for the Lagrangian modelling of two-phase flows. The model developed here draws from ideas already put forward by Sawford but which are generalized to the case of non-homogeneous flows. The model is built so as to revert continuously to Pope's model, which uses a Langevin equation for particle velocities, when the Reynolds number becomes very high. The derivation is based on the technique of fast variable elimination. This technique allow a careful analysis of the relations between different levels of modelling. It also allows to address certain problems in a more rigorous way. In particular, application of this technique shows that models presently used can in principle simulate bubbly flows including the pressure-gradient and added-mass forces. (author)

  12. ONTOLOGY BASED MEANINGFUL SEARCH USING SEMANTIC WEB AND NATURAL LANGUAGE PROCESSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    K. Palaniammal

    2013-10-01

    Full Text Available The semantic web extends the current World Wide Web by adding facilities for the machine understood description of meaning. The ontology based search model is used to enhance efficiency and accuracy of information retrieval. Ontology is the core technology for the semantic web and this mechanism for representing formal and shared domain descriptions. In this paper, we proposed ontology based meaningful search using semantic web and Natural Language Processing (NLP techniques in the educational domain. First we build the educational ontology then we present the semantic search system. The search model consisting three parts which are embedding spell-check, finding synonyms using WordNet API and querying ontology using SPARQL language. The results are both sensitive to spell check and synonymous context. This paper provides more accurate results and the complete details for the selected field in a single page.

  13. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    Science.gov (United States)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  14. Prescribed wind shear modelling with the actuator line technique

    DEFF Research Database (Denmark)

    Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Troldborg, Niels

    2007-01-01

    A method for prescribing arbitrary steady atmospheric wind shear profiles combined with CFD is presented. The method is furthermore combined with the actuator line technique governing the aerodynamic loads on a wind turbine. Computation are carried out on a wind turbine exposed to a representative...

  15. On a Numerical and Graphical Technique for Evaluating some Models Involving Rational Expectations

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...

  16. On a numerical and graphical technique for evaluating some models involving rational expectations

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...

  17. A model evaluation checklist for process-based environmental models

    Science.gov (United States)

    Jackson-Blake, Leah

    2015-04-01

    the conceptual model on which it is based. In this study, a number of model structural shortcomings were identified, such as a lack of dissolved phosphorus transport via infiltration excess overland flow, potential discrepancies in the particulate phosphorus simulation and a lack of spatial granularity. (4) Conceptual challenges, as conceptual models on which predictive models are built are often outdated, having not kept up with new insights from monitoring and experiments. For example, soil solution dissolved phosphorus concentration in INCA-P is determined by the Freundlich adsorption isotherm, which could potentially be replaced using more recently-developed adsorption models that take additional soil properties into account. This checklist could be used to assist in identifying why model performance may be poor or unreliable. By providing a model evaluation framework, it could help prioritise which areas should be targeted to improve model performance or model credibility, whether that be through using alternative calibration techniques and statistics, improved data collection, improving or simplifying the model structure or updating the model to better represent current understanding of catchment processes.

  18. “In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes

    Science.gov (United States)

    Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.

    2018-06-01

    In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.

  19. A Novel Technique for Steganography Method Based on Improved Genetic Algorithm Optimization in Spatial Domain

    Directory of Open Access Journals (Sweden)

    M. Soleimanpour-moghadam

    2013-06-01

    Full Text Available This paper devotes itself to the study of secret message delivery using cover image and introduces a novel steganographic technique based on genetic algorithm to find a near-optimum structure for the pair-wise least-significant-bit (LSB matching scheme. A survey of the related literatures shows that the LSB matching method developed by Mielikainen, employs a binary function to reduce the number of changes of LSB values. This method verifiably reduces the probability of detection and also improves the visual quality of stego images. So, our proposal draws on the Mielikainen's technique to present an enhanced dual-state scoring model, structured upon genetic algorithm which assesses the performance of different orders for LSB matching and searches for a near-optimum solution among all the permutation orders. Experimental results confirm superiority of the new approach compared to the Mielikainen’s pair-wise LSB matching scheme.

  20. Modelling, analysis and validation of microwave techniques for the characterisation of metallic nanoparticles

    Science.gov (United States)

    Sulaimalebbe, Aslam

    High Frequency Structure Simulator (HFSS), followed by the electrical characterisation of synthesised Pt NP films using the novel miniature fabricated OCP technique. The results obtained from this technique provided the inspiration to synthesise and evaluate the microwave properties of Au NPs. The findings from this technique provided the motivation to characterise both the Pt and Au NP films using the DR technique. Unlike the OCP technique, the DR method is highly sensitive but the achievable measurement accuracy is limited since this technique does not have broadband frequency capability like the OCP method. The results obtained from the DR technique show a good agreement with the theoretical prediction. In the last phase of this research, a further validation of the aperture admittance models on different types OCP (i.e. RG-405 and RG-402 cables and SMA connector) have been carried out on the developed 3D full wave models using HFSS software, followed by the development of universal models for the aforementioned OCPs based on the same 3D full wave models.

  1. A Survey of Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis; Jeung, Hoyoung; Aberer, Karl

    2013-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  2. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

    Science.gov (United States)

    Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.

    2007-05-01

    During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by

  3. Research and development of LANDSAT-based crop inventory techniques

    Science.gov (United States)

    Horvath, R.; Cicone, R. C.; Malila, W. A. (Principal Investigator)

    1982-01-01

    A wide spectrum of technology pertaining to the inventory of crops using LANDSAT without in situ training data is addressed. Methods considered include Bayesian based through-the-season methods, estimation technology based on analytical profile fitting methods, and expert-based computer aided methods. Although the research was conducted using U.S. data, the adaptation of the technology to the Southern Hemisphere, especially Argentina was considered.

  4. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    Science.gov (United States)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  5. Using an inverse modelling approach to evaluate the water retention in a simple water harvesting technique

    Directory of Open Access Journals (Sweden)

    K. Verbist

    2009-10-01

    Full Text Available In arid and semi-arid zones, runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study, a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat independently. The tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between the observed soil water content and the simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. The model results indicate that the infiltration trench has a

  6. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  7. Hiding Techniques for Dynamic Encryption Text based on Corner Point

    Science.gov (United States)

    Abdullatif, Firas A.; Abdullatif, Alaa A.; al-Saffar, Amna

    2018-05-01

    Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.

  8. A Computer Based Moire Technique To Measure Very Small Displacements

    Science.gov (United States)

    Sciammarella, Cesar A.; Amadshahi, Mansour A.; Subbaraman, B.

    1987-02-01

    The accuracy that can be achieved in the measurement of very small displacements in techniques such as moire, holography and speckle is limited by the noise inherent to the utilized optical devices. To reduce the noise to signal ratio, the moire method can be utilized. Two system of carrier fringes are introduced, an initial system before the load is applied and a final system when the load is applied. The moire pattern of these two systems contains the sought displacement information and the noise common to the two patterns is eliminated. The whole process is performed by a computer on digitized versions of the patterns. Examples of application are given.

  9. Indirect Fluorescent Antibody Technique based Prevalence of Surra in Equines

    Directory of Open Access Journals (Sweden)

    Ahsan Nadeem, Asim Aslam*, Zafar Iqbal Chaudhary, Kamran Ashraf1, Khalid Saeed1, Nisar Ahmad1, Ishtiaq Ahmed and Habib ur Rehman2

    2011-04-01

    Full Text Available This project was carried out to find the prevalence of trypanosomiasis in equine in District Gujranwala by using indirect fluorescent antibody technique and thin smear method. Blood samples were collected from a total of 200 horses and donkeys of different ages and either sex. Duplicate thin blood smears were prepared from each sample and remaining blood samples were centrifuged to separate the serum. Smears from each animal were processed for giemsa staining and indirect fluorescent antibody test (IFAT. Giemsa stained smears revealed Trypanosome infection in 4/200 (2.0% samples and IFAT in 12/200 (6.0% animals.

  10. Multimedia-Based Integration of Cross-Layer Techniques

    Science.gov (United States)

    2014-06-01

    Wireless Commun. Mag., vol. 12, no. 4, pp. 50–58, August 2005. 11. E. Setton, T. Yoo, X. Zhu, A. Goldsmith , and B. Girod, “Cross-layer design of ad-hoc...Overview,” DARPA Presentation by Preston Marshall and Todd Martin, WAND Industry Day Workshop, Feb. 27, 2007. 17. S. Chan, “Shared spectrum access for DOD...Lavery, A. Goldsmith , and D. J. Goodman, “Throughput optimization using adaptive techniques,” IEEE Commun. Lett., pp. 1–7, 2006. 32. S. Choudhury and J

  11. GPU-Based Techniques for Global Illumination Effects

    CERN Document Server

    Szirmay-Kalos, László; Sbert, Mateu

    2008-01-01

    This book presents techniques to render photo-realistic images by programming the Graphics Processing Unit (GPU). We discuss effects such as mirror reflections, refractions, caustics, diffuse or glossy indirect illumination, radiosity, single or multiple scattering in participating media, tone reproduction, glow, and depth of field. This book targets game developers, graphics programmers, and also students with some basic understanding of computer graphics algorithms, rendering APIs like Direct3D or OpenGL, and shader programming. In order to make this book self-contained, the most important c

  12. Fuzzy model-based control of a nuclear reactor

    International Nuclear Information System (INIS)

    Van Den Durpel, L.; Ruan, D.

    1994-01-01

    The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project

  13. Satellite-based technique for nowcasting of thunderstorms over ...

    Indian Academy of Sciences (India)

    Suman Goyal

    2017-08-31

    Aug 31, 2017 ... Due to inadequate radar network, satellite plays the dominant role for nowcast of these thunderstorms. In this study, a nowcast based algorithm ForTracc developed by Vila ... of actual development of cumulonimbus clouds, ... MCS over Indian region using Infrared Channel ... (2016) based on case study of.

  14. An eigenexpansion technique for modelling plasma start-up

    International Nuclear Information System (INIS)

    Pillsbury, R.D.

    1989-01-01

    An algorithm has been developed and implemented in a computer program that allows the estimation of PF coil voltages required to start-up an axisymmetric plasma in a tokamak in the presence of eddy currents in toroidally continuous conducting structures. The algorithm makes use of an eigen-expansion technique to solve the lumped parameter circuit loop voltage equations associated with the PF coils and passive (conducting) structures. An example of start-up for CIT (Compact Ignition Tokamak) is included

  15. Wave propagation in fluids models and numerical techniques

    CERN Document Server

    Guinot, Vincent

    2012-01-01

    This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite

  16. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    Science.gov (United States)

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  17. Identifying content-based and relational techniques to change behaviour in motivational interviewing.

    Science.gov (United States)

    Hardcastle, Sarah J; Fortier, Michelle; Blake, Nicola; Hagger, Martin S

    2017-03-01

    Motivational interviewing (MI) is a complex intervention comprising multiple techniques aimed at changing health-related motivation and behaviour. However, MI techniques have not been systematically isolated and classified. This study aimed to identify the techniques unique to MI, classify them as content-related or relational, and evaluate the extent to which they overlap with techniques from the behaviour change technique taxonomy version 1 [BCTTv1; Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., … Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine, 46, 81-95]. Behaviour change experts (n = 3) content-analysed MI techniques based on Miller and Rollnick's [(2013). Motivational interviewing: Preparing people for change (3rd ed.). New York: Guildford Press] conceptualisation. Each technique was then coded for independence and uniqueness by independent experts (n = 10). The experts also compared each MI technique to those from the BCTTv1. Experts identified 38 distinct MI techniques with high agreement on clarity, uniqueness, preciseness, and distinctiveness ratings. Of the identified techniques, 16 were classified as relational techniques. The remaining 22 techniques were classified as content based. Sixteen of the MI techniques were identified as having substantial overlap with techniques from the BCTTv1. The isolation and classification of MI techniques will provide researchers with the necessary tools to clearly specify MI interventions and test the main and interactive effects of the techniques on health behaviour. The distinction between relational and content-based techniques within MI is also an important advance, recognising that changes in motivation and behaviour in MI is a function of both intervention content and the interpersonal style

  18. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    International Nuclear Information System (INIS)

    Livesay, Jake

    2012-01-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  19. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI

    2017-07-11

    Jul 11, 2017 ... damper system is considered as a test system. The mathematical model of the ... finite actuator dynamics for flexible structures to over- come instability. ... These equations can be converted into a state-space for- mat by taking.

  20. A vortex model for Darrieus turbine using finite element techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)

    2001-09-01

    Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)