WorldWideScience

Sample records for modeling task time

  1. Real-time performance modelling of a Sustained Attention to Response Task.

    Science.gov (United States)

    Larue, Grégoire S; Rakotonirainy, Andry; Pettitt, Anthony N

    2010-10-01

    Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participants' reaction times during a monotonous task. A laboratory-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Relevant parameters are then used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models is compared to detect in real time - minute by minute - the lapses in vigilance during the task. It is shown that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables the detection of vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared with neural networks and generalised linear mixed models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks. STATEMENT OF RELEVANCE: Existing research on monotony is largely entangled with endogenous factors such as sleep deprivation, fatigue and circadian rhythm. This paper uses a Bayesian model to assess the effects of a monotonous task on vigilance in real time. It is shown that the negative effects of monotony on the ability to sustain attention can be mathematically modelled and predicted in real time using surrogate measures, such as reaction times. This allows the modelling of vigilance fluctuations.

  2. The mathematical model of the task of compiling the time-table

    Directory of Open Access Journals (Sweden)

    О.Є. Литвиненко

    2004-01-01

    Full Text Available  The mathematical model of the task of compiling the time-table in High-school has been carried out.  It has been showed, that the task may be reduced to canonical form of extrimal combinatorial tasks with unlinear structure after identical transformations. The algorithm of the task’s decision for realizing the scheme of the directed sorting of variants is indicated.

  3. The mathematical model of the task of compiling the time-table

    OpenAIRE

    Литвиненко, О. Є.; Г.С. Краліна; О.П. Стьопушкіна

    2004-01-01

     The mathematical model of the task of compiling the time-table in High-school has been carried out.  It has been showed, that the task may be reduced to canonical form of extrimal combinatorial tasks with unlinear structure after identical transformations. The algorithm of the task’s decision for realizing the scheme of the directed sorting of variants is indicated.

  4. Modeling Response Times in the Go/No-Go Discrimination Task

    OpenAIRE

    2011-01-01

    The work presented here uses a simple stochastic model as a cognitive psychometric tool for analyzing response time data in the Go/No-Go Discrimination task with motivationally distinct conditions. The parameters of the model inform us of underlying cognitive mechanisms because they have an established psychological meaning and allow us to quantify a subjects ability and response caution. Using these model parameters, we focus on the differences between subjects with varying degrees of substa...

  5. Computational models of the Posner simple and choice reaction time tasks

    Directory of Open Access Journals (Sweden)

    Carolina eFeher Da Silva

    2015-07-01

    Full Text Available The landmark experiments by Posner in the late 1970s have shown thatreaction time (RT is faster when the stimulus appears in an expectedlocation, as indicated by a cue; since then, the so-called Posnertask has been considered a ``gold standard'' test of spatial attention.It is thus fundamental to understand the neural mechanisms involvedin performing it. To this end, we have developed a Bayesian detectionsystem and small integrate-and-fire neural networks, which modeledsensory and motor circuits respectively, and optimized them to perform thePosner task under different cue type proportions and noise levels.In doing so, main findings of experimental research on RT were replicated:the relative frequency effect, suboptimal RTs and significant errorrates due to noise and invalid cues, slower RT for choice RT tasksthan for simple RT tasks, fastest RTs for valid cues and slowest RTsfor invalid cues. Analysis of the optimized systems revealed thatthe employed mechanisms were consistent with related findings in neurophysiology.Our models predict that (1 the results of a Posner task may be affectedby the relative frequency of valid and neutral trials, (2 in simpleRT tasks, input from multiple locations are added together to composea stronger signal, and (3 the cue affects motor circuits more stronglyin choice RT tasks than in simple RT tasks. In discussing the computationaldemands of the Posner task, attention has often been described asa filter that protects the nervous system, whose capacity is limited,from information overload. Our models, however, reveal that the mainproblems that must be overcome to perform the Posner task effectivelyare distinguishing signal from external noise and selectingthe appropriate response in the presence of internal noise.

  6. Modeling Response Times in the Go/No-Go Discrimination Task

    Science.gov (United States)

    Trueblood, Jennifer S.; Endres, Michael J.; Busemeyer, Jerome R.; Finn, Peter R.

    2013-01-01

    The work presented here uses a simple stochastic model as a cognitive psychometric tool for analyzing response time data in the Go/No-Go Discrimination task with motivationally distinct conditions. The parameters of the model inform us of underlying cognitive mechanisms because they have an established psychological meaning and allow us to quantify a subjects ability and response caution. Using these model parameters, we focus on the differences between subjects with varying degrees of substance abuse and antisocial behavioral disorders and show that there are reliable differences between the decision mechanisms of these subjects. Using data from executive working memory tasks, we postulate that these differences in cognitive processes might be due to differences in working memory capacity. Ultimately, we show that formal cognitive modeling has the potential to provide valuable insights into clinical phenomena that cannot be captured by traditional data analysis techniques. PMID:25285326

  7. Modeling Mental Speed: Decomposing Response Time Distributions in Elementary Cognitive Tasks and Correlations with Working Memory Capacity and Fluid Intelligence

    Directory of Open Access Journals (Sweden)

    Florian Schmitz

    2016-10-01

    Full Text Available Previous research has shown an inverse relation between response times in elementary cognitive tasks and intelligence, but findings are inconsistent as to which is the most informative score. We conducted a study (N = 200 using a battery of elementary cognitive tasks, working memory capacity (WMC paradigms, and a test of fluid intelligence (gf. Frequently used candidate scores and model parameters derived from the response time (RT distribution were tested. Results confirmed a clear correlation of mean RT with WMC and to a lesser degree with gf. Highly comparable correlations were obtained for alternative location measures with or without extreme value treatment. Moderate correlations were found as well for scores of RT variability, but they were not as strong as for mean RT. Additionally, there was a trend towards higher correlations for slow RT bands, as compared to faster RT bands. Clearer evidence was obtained in an ex-Gaussian decomposition of the response times: the exponential component was selectively related to WMC and gf in easy tasks, while mean response time was additionally predictive in the most complex tasks. The diffusion model parsimoniously accounted for these effects in terms of individual differences in drift rate. Finally, correlations of model parameters as trait-like dispositions were investigated across different tasks, by correlating parameters of the diffusion and the ex-Gaussian model with conventional RT and accuracy scores.

  8. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis

    Science.gov (United States)

    Gonzalez-Castillo, Javier; Saad, Ziad S.; Handwerker, Daniel A.; Inati, Souheil J.; Brenowitz, Noah; Bandettini, Peter A.

    2012-01-01

    The brain is the body's largest energy consumer, even in the absence of demanding tasks. Electrophysiologists report on-going neuronal firing during stimulation or task in regions beyond those of primary relationship to the perturbation. Although the biological origin of consciousness remains elusive, it is argued that it emerges from complex, continuous whole-brain neuronal collaboration. Despite converging evidence suggesting the whole brain is continuously working and adapting to anticipate and actuate in response to the environment, over the last 20 y, task-based functional MRI (fMRI) have emphasized a localizationist view of brain function, with fMRI showing only a handful of activated regions in response to task/stimulation. Here, we challenge that view with evidence that under optimal noise conditions, fMRI activations extend well beyond areas of primary relationship to the task; and blood-oxygen level-dependent signal changes correlated with task-timing appear in over 95% of the brain for a simple visual stimulation plus attention control task. Moreover, we show that response shape varies substantially across regions, and that whole-brain parcellations based on those differences produce distributed clusters that are anatomically and functionally meaningful, symmetrical across hemispheres, and reproducible across subjects. These findings highlight the exquisite detail lying in fMRI signals beyond what is normally examined, and emphasize both the pervasiveness of false negatives, and how the sparseness of fMRI maps is not a result of localized brain function, but a consequence of high noise and overly strict predictive response models. PMID:22431587

  9. Context effects in a temporal discrimination task" further tests of the Scalar Expectancy Theory and Learning-to-Time models.

    Science.gov (United States)

    Arantes, Joana; Machado, Armando

    2008-07-01

    Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a series of test trials in order to contrast two timing models, Learning-to-Time (LeT) and Scalar Expectancy Theory (SET). The models made substantially different predictions particularly for the test trials in which the sample duration ranged from 1 s to 16 s and the choice keys were Green and Blue, the keys associated with the same 4-s samples: LeT predicted that preference for Green should increase with sample duration, a context effect, but SET predicted that preference for Green should not vary with sample duration. The results were consistent with LeT. The present study adds to the literature the finding that the context effect occurs even when the two basic discriminations are never combined in the same session.

  10. Effects of task complexity and time pressure on activity-travel choices: heteroscedastic logit model and activity-travel simulator experiment

    NARCIS (Netherlands)

    Chen, C.; Chorus, C.G.; Molin, E.J.E.; Van Wee, G.P.

    2015-01-01

    This paper derives, estimates and applies a discrete choice model of activity-travel behaviour that accommodates potential effects of task complexity and time pressure on decision-making. To the best of our knowledge, this is the first time that both factors (task complexity and time pressure) are

  11. Effects of task complexity and time pressure on activity-travel choices: heteroscedastic logit model and activity-travel simulator experiment

    NARCIS (Netherlands)

    Chen, C.; Chorus, C.G.; Molin, E.J.E.; Van Wee, G.P.

    2015-01-01

    This paper derives, estimates and applies a discrete choice model of activity-travel behaviour that accommodates potential effects of task complexity and time pressure on decision-making. To the best of our knowledge, this is the first time that both factors (task complexity and time pressure) are j

  12. Task-focused modeling in automated agriculture

    Science.gov (United States)

    Vriesenga, Mark R.; Peleg, K.; Sklansky, Jack

    1993-01-01

    Machine vision systems analyze image data to carry out automation tasks. Our interest is in machine vision systems that rely on models to achieve their designed task. When the model is interrogated from an a priori menu of questions, the model need not be complete. Instead, the machine vision system can use a partial model that contains a large amount of information in regions of interest and less information elsewhere. We propose an adaptive modeling scheme for machine vision, called task-focused modeling, which constructs a model having just sufficient detail to carry out the specified task. The model is detailed in regions of interest to the task and is less detailed elsewhere. This focusing effect saves time and reduces the computational effort expended by the machine vision system. We illustrate task-focused modeling by an example involving real-time micropropagation of plants in automated agriculture.

  13. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    Science.gov (United States)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  14. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    Science.gov (United States)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  15. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    minimize the operating costs for manufacturing 50 the item. This simple example illustrates the hierarchical structure that can be modeled using...fixed. The resulting model is linearized and the product of the dual variable and the (1−γij) term replaced with βij. This allows certain...the standard network interdiction model based on its tight linear programming relaxation. 2.3.3 Network Disruption. In practice, whenever an object is

  16. Context Effects in a Temporal Discrimination Task: Further Tests of the Scalar Expectancy Theory and Learning-to-Time Models

    Science.gov (United States)

    Arantes, Joana; Machado, Armando

    2008-01-01

    Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a…

  17. DYNAMIC TASK PARTITIONING MODEL IN PARALLEL COMPUTING

    Directory of Open Access Journals (Sweden)

    Javed Ali

    2012-04-01

    Full Text Available Parallel computing systems compose task partitioning strategies in a true multiprocessing manner. Such systems share the algorithm and processing unit as computing resources which leads to highly inter process communications capabilities. The main part of the proposed algorithm is resource management unit which performs task partitioning and co-scheduling .In this paper, we present a technique for integrated task partitioning and co-scheduling on the privately owned network. We focus on real-time and non preemptive systems. A large variety of experiments have been conducted on the proposed algorithm using synthetic and real tasks. Goal of computation model is to provide a realistic representation of the costs of programming The results show the benefit of the task partitioning. The main characteristics of our method are optimal scheduling and strong link between partitioning, scheduling and communication. Some important models for task partitioning are also discussed in the paper. We target the algorithm for task partitioning which improve the inter process communication between the tasks and use the recourses of the system in the efficient manner. The proposed algorithm contributes the inter-process communication cost minimization amongst the executing processes.

  18. Time constraints in the alcohol purchase task.

    Science.gov (United States)

    Kaplan, Brent A; Reed, Derek D; Murphy, James G; Henley, Amy J; Reed, Florence D DiGennaro; Roma, Peter G; Hursh, Steven R

    2017-06-01

    Hypothetical purchase tasks have advanced behavioral economic evaluations of demand by circumventing practical and ethical restrictions associated with delivering drug reinforcers to participants. Numerous studies examining the reliability and validity of purchase task methodology suggest that it is a valuable method for assessing demand that warrants continued use and evaluation. Within the literature examining purchase tasks, the alcohol purchase task (APT) has received the most investigation, and currently represents the most experimentally validated variant. However, inconsistencies in purchase task methodology between studies exist, even within APT studies, and, to date, none have assessed the influence of experimental economic constraints on responding. This study examined changes in Q0 (reported consumption when drinks are free), breakpoint (price that suppresses consumption), and α (rate of change in demand elasticity) in the presence of different hypothetical durations of access to alcohol in an APT. One hundred seventy-nine participants (94 males, 85 females) from Amazon Mechanical Turk completed 3 APTs that varied in the duration of time at a party (i.e., access to alcoholic beverages) as described in the APT instructions (i.e., vignette). The 3 durations included 5-hr (used by Murphy et al., 2013), 1-hr, and 9-hr time frames. We found that hypothetical duration of access was significantly related to Q0 and breakpoint at the individual level. Additionally, group-level mean α decreased significantly with increases in duration of access, thus indicating relatively higher demand for alcohol with longer durations of access. We discuss implications for conducting hypothetical purchase task research and alcohol misuse prevention efforts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Comparison of Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model in a successive temporal bisection task.

    Science.gov (United States)

    Arantes, Joana

    2008-06-01

    The present research tested the generality of the "context effect" previously reported in experiments using temporal double bisection tasks [e.g., Arantes, J., Machado, A. Context effects in a temporal discrimination task: Further tests of the Scalar Expectancy Theory and Learning-to-Time models. J. Exp. Anal. Behav., in press]. Pigeons learned two temporal discriminations in which all the stimuli appear successively: 1s (red) vs. 4s (green) and 4s (blue) vs. 16s (yellow). Then, two tests were conducted to compare predictions of two timing models, Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model. In one test, two psychometric functions were obtained by presenting pigeons with intermediate signal durations (1-4s and 4-16s). Results were mixed. In the critical test, pigeons were exposed to signals ranging from 1 to 16s and followed by the green or the blue key. Whereas SET predicted that the relative response rate to each of these keys should be independent of the signal duration, LeT predicted that the relative response rate to the green key (compared with the blue key) should increase with the signal duration. Results were consistent with LeT's predictions, showing that the context effect is obtained even when subjects do not need to make a choice between two keys presented simultaneously.

  20. Real-Time Task Discrimination for Myoelectric Control Employing Task-Specific Muscle Synergies.

    Science.gov (United States)

    Rasool, Ghulam; Iqbal, Kamran; Bouaynaya, Nidhal; White, Gannon

    2016-01-01

    We present a novel formulation that employs task-specific muscle synergies and state-space representation of neural signals to tackle the challenging myoelectric control problem for lower arm prostheses. The proposed framework incorporates information about muscle configurations, e.g., muscles acting synergistically or in agonist/antagonist pairs, using the hypothesis of muscle synergies. The synergy activation coefficients are modeled as the latent system state and are estimated using a constrained Kalman filter. These task-dependent synergy activation coefficients are estimated in real-time from the electromyogram (EMG) data and are used to discriminate between various tasks. The task discrimination is helped by a post-processing algorithm that uses posterior probabilities. The proposed algorithm is robust as well as computationally efficient, yielding a decision with > 90% discrimination accuracy in approximately 3 ms . The real-time performance and controllability of the algorithm were evaluated using the targeted achievement control (TAC) test. The proposed algorithm outperformed common machine learning algorithms for single- as well as multi-degree-of-freedom (DOF) tasks in both off-line discrimination accuracy and real-time controllability (p < 0.01).

  1. [image omitted] Verbal fluency in Spanish-speaking children: analysis model according to task type, clustering, and switching strategies and performance over time.

    Science.gov (United States)

    Filippetti, Vanessa Aran; Allegri, Ricardo F

    2011-04-01

    Verbal fluency (VF) tasks are extensively used to measure strategic retrieval and executive functioning. Results for total production of words, clustering and switching strategies, and performance over time for Spanish-speaking children are provided. A total of 120 children, ranging in age from 8 to 11, were divided by age into two groups and evaluated. A higher total score for words produced in the semantic compared with the phonological task, a correlation between clustering and switching strategies and total score, and decreased task performance over time were evidenced. These scores were higher in the older group. Moreover, an association was found between verbal fluency tasks, strategies employed, and cognitive executive functions. This indicates that clustering and switching strategies provide indicators of strategic retrieval and executive processes. Together the results suggest that these fluency scores are valuable to measure underlying cognitive processes and retrieval strategies and therefore could be useful to assess executive function deficits in children.

  2. Task modeling for collaborative authoring

    NARCIS (Netherlands)

    Veer, van der Gerrit; Kulyk, Olga; Vyas, Dhaval; Kubbe, Onno; Ebert, Achim; Dittmar, A.; Forbrig, P.

    2011-01-01

    Motivation –Task analysis for designing modern collaborative work needs a more fine grained approach. Especially in a complex task domain, like collaborative scientific authoring, when there is a single overall goal that can only be accomplished only by collaboration between multiple roles, each req

  3. The Instructor as Manager: Time and Task.

    Science.gov (United States)

    Collis, Betty; Nijhuis, Gerard Gervedink

    2000-01-01

    Discusses the use of information and communication technologies at the University of Twente (Netherlands) and considers the management tasks, defined as all tasks outside of content-specific aspects, related to online learning via the World Wide Web that instructors must address. Focuses on handling assignments and feedback. (LRW)

  4. Further tests of the Scalar Expectancy Theory (SET) and the Learning-to-Time (LeT) model in a temporal bisection task.

    Science.gov (United States)

    Machado, Armando; Arantes, Joana

    2006-06-01

    To contrast two models of timing, Scalar Expectancy Theory (SET) and Learning to Time (LeT), pigeons were exposed to a double temporal bisection procedure. On half of the trials, they learned to choose a red key after a 1s signal and a green key after a 4s signal; on the other half of the trials, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. This was Phase A of an ABA design. On Phase B, the pigeons were divided into two groups and exposed to a new bisection task in which the signals ranged from 1 to 16s and the choice keys were blue and green. One group was reinforced for choosing blue after 1-s signals and green after 16-s signals and the other group was reinforced for the opposite mapping (green after 1-s signals and blue after 16-s signals). Whereas SET predicted no differences between the groups, LeT predicted that the former group would learn the new discrimination faster than the latter group. The results were consistent with LeT. Finally, the pigeons returned to Phase A. Only LeT made specific predictions regarding the reacquisition of the four temporal discriminations. These predictions were only partly consistent with the results.

  5. Learning to Model Task-Oriented Attention

    Directory of Open Access Journals (Sweden)

    Xiaochun Zou

    2016-01-01

    Full Text Available For many applications in graphics, design, and human computer interaction, it is essential to understand where humans look in a scene with a particular task. Models of saliency can be used to predict fixation locations, but a large body of previous saliency models focused on free-viewing task. They are based on bottom-up computation that does not consider task-oriented image semantics and often does not match actual eye movements. To address this problem, we collected eye tracking data of 11 subjects when they performed some particular search task in 1307 images and annotation data of 2,511 segmented objects with fine contours and 8 semantic attributes. Using this database as training and testing examples, we learn a model of saliency based on bottom-up image features and target position feature. Experimental results demonstrate the importance of the target information in the prediction of task-oriented visual attention.

  6. Time-integrated position error accounts for sensorimotor behavior in time-constrained tasks.

    Directory of Open Access Journals (Sweden)

    Julian J Tramper

    Full Text Available Several studies have shown that human motor behavior can be successfully described using optimal control theory, which describes behavior by optimizing the trade-off between the subject's effort and performance. This approach predicts that subjects reach the goal exactly at the final time. However, another strategy might be that subjects try to reach the target position well before the final time to avoid the risk of missing the target. To test this, we have investigated whether minimizing the control effort and maximizing the performance is sufficient to describe human motor behavior in time-constrained motor tasks. In addition to the standard model, we postulate a new model which includes an additional cost criterion which penalizes deviations between the position of the effector and the target throughout the trial, forcing arrival on target before the final time. To investigate which model gives the best fit to the data and to see whether that model is generic, we tested both models in two different tasks where subjects used a joystick to steer a ball on a screen to hit a target (first task or one of two targets (second task before a final time. Noise of different amplitudes was superimposed on the ball position to investigate the ability of the models to predict motor behavior for different levels of uncertainty. The results show that a cost function representing only a trade-off between effort and accuracy at the end time is insufficient to describe the observed behavior. The new model correctly predicts that subjects steer the ball to the target position well before the final time is reached, which is in agreement with the observed behavior. This result is consistent for all noise amplitudes and for both tasks.

  7. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.

    Science.gov (United States)

    Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel

    2016-08-30

    Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.

  8. Characterizing and Mitigating Work Time Inflation in Task Parallel Programs

    Directory of Open Access Journals (Sweden)

    Stephen L. Olivier

    2013-01-01

    Full Text Available Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMA systems. Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.

  9. Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Directory of Open Access Journals (Sweden)

    Martin eDinov

    2016-05-01

    Full Text Available Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches and the sum squared error (SSE from a multilayer perceptron (MLP prediction of the EEG timeseries, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach.

  10. The quality of task times: A methods research

    NARCIS (Netherlands)

    Schilden, van der M.

    1996-01-01

    IMAG-DLO is faced with large demands for labor data in spite of limited research capacity. Consequently IMAG-DLO is greatly concerned for the efficiency of the methodology used in task time synthesis, with even greater concern for maintaining the quality of the estimates of task times. Much effort h

  11. Visualization design and verification of Ada tasking using timing diagrams

    Science.gov (United States)

    Vidale, R. F.; Szulewski, P. A.; Weiss, J. B.

    1986-01-01

    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output.

  12. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    Energy Technology Data Exchange (ETDEWEB)

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  13. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2016-08-01

    Full Text Available Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs.

  14. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Science.gov (United States)

    Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel

    2016-01-01

    Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs. PMID:27589753

  15. Dual task performance in normal aging: a comparison of choice reaction time tasks.

    Directory of Open Access Journals (Sweden)

    Eleftheria Vaportzis

    Full Text Available This study examined dual task performance in 28 younger (18-30 years and 28 older (>60 years adults using two sets of choice reaction time (RT tasks paired with digit tasks. Set one paired simple choice RT with digit forward; set two paired complex choice RT with digit backward. Each task within each set had easy and hard conditions. For the simple choice RT, participants viewed single letters and pressed a specified keyboard key if the letter was X or Z or a different key for other letters (easy. For the hard condition, there were 4 target letters (X, Z, O, Y. Digit forward consisted of 4 (easy or 5 (hard digits. For the complex choice RT, participants viewed 4×4 matrices of Xs and Os, and indicated whether four Xs (easy or four Xs or four Os (hard appeared in a row. Digit backward consisted of 3 (easy or 4 (hard digits. Within each set, participants performed every possible combination of tasks. We found that in the simple choice RT tasks older adults were significantly slower than, but as accurate as younger adults. In the complex choice RT tasks, older adults were significantly less accurate, but as fast as younger adults. For both age groups and both dual task sets, RT decreased and error rates increased with greater task difficulty. Older adults had greater dual task costs for error rates in the simple choice RT, whereas in the complex choice RT, it was the younger group that had greater dual task costs. Findings suggest that younger and older adults may adopt differential behavioral strategies depending on complexity and difficulty of dual tasks.

  16. Modeling of Task Planning for Multirobot System Using Reputation Mechanism

    Directory of Open Access Journals (Sweden)

    Zhiguo Shi

    2014-01-01

    Full Text Available Modeling of task planning for multirobot system is developed from two parts: task decomposition and task allocation. In the part of task decomposition, the conditions and processes of decomposition are elaborated. In the part of task allocation, the collaboration strategy, the framework of reputation mechanism, and three types of reputations are defined in detail, which include robot individual reputation, robot group reputation, and robot direct reputation. A time calibration function and a group calibration function are designed to improve the effectiveness of the proposed method and proved that they have the characteristics of time attenuation, historical experience related, and newly joined robot reward. Tasks attempt to be assigned to the robot with higher overall reputation, which can help to increase the success rate of the mandate implementation, thereby reducing the time of task recovery and redistribution. Player/Stage is used as the simulation platform, and three biped-robots are established as the experimental apparatus. The experimental results of task planning are compared with the other allocation methods. Simulation and experiment results illustrate the effectiveness of the proposed method for multi-robot collaboration system.

  17. Task-Driven Evaluation of Aggregation in Time Series Visualization.

    Science.gov (United States)

    Albers, Danielle; Correll, Michael; Gleicher, Michael

    2014-01-01

    Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks.

  18. Dissecting the Clock: Understanding the mechanisms of timing across tasks and temporal intervals

    Science.gov (United States)

    Bangert, Ashley S.; Reuter-Lorenz, Patricia A.; Seidler, Rachael D.

    2010-01-01

    Currently, it is unclear what model of timing best describes temporal processing across millisecond and second timescales in tasks with different response requirements. In the present set of experiments, we assessed whether the popular dedicated scalar model of timing accounts for performance across a restricted timescale surrounding the 1 second duration for different tasks. The first two experiments evaluate whether temporal variability scales proportionally with the timed duration within temporal reproduction. The third experiment compares timing across millisecond and second timescales using temporal reproduction and discrimination tasks designed with parallel structures. The data exhibit violations of the assumptions of a single scalar timekeeper across millisecond and second timescales within temporal reproduction; these violations are less apparent for temporal discrimination. The finding of differences across tasks suggests that task demands influence the mechanisms that are engaged for keeping time. PMID:20955998

  19. Testing the scalar expectancy theory (SET) and the learning-to-time model (LeT) in a double bisection task.

    Science.gov (United States)

    Machado, Armando; Pata, Paulo

    2005-02-01

    Two theories of timing, scalar expectancy theory (SET) and learning-to-time (LeT), make substantially different assumptions about what animals learn in temporal tasks. In a test of these assumptions, pigeons learned two temporal discriminations. On Type 1 trials, they learned to choose a red key after a 1-sec signal and a green key after a 4-sec signal; on Type 2 trials, they learned to choose a blue key after a 4-sec signal and a yellow key after either an 8-sec signal (Group 8) or a 16-sec signal (Group 16). Then, the birds were exposed to signals 1 sec, 4 sec, and 16 sec in length and given a choice between novel key combinations (red or green vs. blue or yellow). The choice between the green key and the blue key was of particular significance because both keys were associated with the same 4-sec signal. Whereas SET predicted no effect of the test signal duration on choice, LeT predicted that preference for green would increase monotonically with the length of the signal but would do so faster for Group 8 than for Group 16. The results were consistent with LeT, but not with SET.

  20. Research on the Time Model of Collaborative Design Task on Vibration Control%面向振动控制协同设计任务的时间模型研究

    Institute of Scientific and Technical Information of China (English)

    李峰; 刘录; 赵晨博

    2011-01-01

    The scheduling of collaborative design task is the key to the cooperative system of compressor pipeline vibration project. The logical scheduling of collaborative design task can optimize the process of compressor pipeline vibration project and improve the project efficiency accordingly. Considering the mutual constraining relationship between the tasks of compressor pipeline vibration project, the present author establish a mathematical model of collaborative design task scheduling. Such a model takes the task scheduling as the design variable, aiming at minimizing the overall time of the project, A genetic algorithm was employed to resolve the mathematical model, achieve the superior scheduling strategy and a Gantt chart of the task scheduling, and verify the result of calculation. The results show that the implementation efficiency of the project is greatly improved, and the overall operating time is shortened by employing the superior scheduling strategy. Therefore, the time model, which is based on the genetic algorithm, can be a good reference for the scheduling of collaborative design task.%在基于压缩机管线振动控制项目的协同系统中,各子任务分配和调度是十分关键的.合理的任务分配和调度可以优化振动控制项目实施进程,提高项目的执行效率.笔者考虑管线振动控制项目中任务之间的相互约束关系,以项目总的持续时间为目标,任务调度为设计变量,建立项目协同任务调度的数学模型,并应用遗传算法对其进行求解,得出任务的最优调度策略和任务调度的甘特图,并进行验算分析.分析结果显示在最优调度策略下,项目执行效率明显提高,总的执行时间大大缩短,这种基于遗传算法的时间模型可为项目任务的合理分配提供一种很好的参考.

  1. A self-organizing model for task allocation via frequent task quitting and random walks in the honeybee.

    Science.gov (United States)

    Johnson, Brian R

    2009-10-01

    Social insect colonies are able to quickly redistribute their thousands of workers between tasks that vary strongly in space and time. How individuals collectively track spatial variability is particularly puzzling because bees have access only to local information. This work presents and tests a model showing how honeybees solve their fundamental within-nest spatial task-allocation problem. The algorithm, which is self-organizing and derived from empirical studies, couples two processes with opposing effects. Frequent task quitting, followed by patrols, during which bees are insensitive to task stimuli, serves to randomize individual location throughout the nest without reference to variation in task demand, while a foraging-for-work-like mechanism provides the opposing force of localizing individuals to areas of high task demand. This simple model is shown to generate sophisticated patterns of task allocation. It allocates bees to tasks in proportion to their demand, independent of their spatial distribution in the nest, and also reallocates labor in response to temporal changes in task demand. Finally, the model shows that task-allocation patterns at the colony level do not reflect colonies allocating particular individuals to tasks. In contrast, they reflect a dynamic equilibrium of workers switching between tasks and locations in the nest.

  2. Real-time mental arithmetic task recognition from EEG signals.

    Science.gov (United States)

    Wang, Qiang; Sourina, Olga

    2013-03-01

    Electroencephalography (EEG)-based monitoring the state of the user's brain functioning and giving her/him the visual/audio/tactile feedback is called neurofeedback technique, and it could allow the user to train the corresponding brain functions. It could provide an alternative way of treatment for some psychological disorders such as attention deficit hyperactivity disorder (ADHD), where concentration function deficit exists, autism spectrum disorder (ASD), or dyscalculia where the difficulty in learning and comprehending the arithmetic exists. In this paper, a novel method for multifractal analysis of EEG signals named generalized Higuchi fractal dimension spectrum (GHFDS) was proposed and applied in mental arithmetic task recognition from EEG signals. Other features such as power spectrum density (PSD), autoregressive model (AR), and statistical features were analyzed as well. The usage of the proposed fractal dimension spectrum of EEG signal in combination with other features improved the mental arithmetic task recognition accuracy in both multi-channel and one-channel subject-dependent algorithms up to 97.87% and 84.15% correspondingly. Based on the channel ranking, four channels were chosen which gave the accuracy up to 97.11%. Reliable real-time neurofeedback system could be implemented based on the algorithms proposed in this paper.

  3. Human task animation from performance models and natural language input

    Science.gov (United States)

    Esakov, Jeffrey; Badler, Norman I.; Jung, Moon

    1989-01-01

    Graphical manipulation of human figures is essential for certain types of human factors analyses such as reach, clearance, fit, and view. In many situations, however, the animation of simulated people performing various tasks may be based on more complicated functions involving multiple simultaneous reaches, critical timing, resource availability, and human performance capabilities. One rather effective means for creating such a simulation is through a natural language description of the tasks to be carried out. Given an anthropometrically-sized figure and a geometric workplace environment, various simple actions such as reach, turn, and view can be effectively controlled from language commands or standard NASA checklist procedures. The commands may also be generated by external simulation tools. Task timing is determined from actual performance models, if available, such as strength models or Fitts' Law. The resulting action specification are animated on a Silicon Graphics Iris workstation in real-time.

  4. Measuring attention in rodents: comparison of a modified signal detection task and the 5-choice serial reaction time task

    Directory of Open Access Journals (Sweden)

    Karly Maree Turner

    2016-01-01

    Full Text Available Neuropsychiatric research has utilised cognitive testing in rodents to improve our understanding of cognitive deficits and for preclinical drug development. However, more sophisticated cognitive tasks have not been as widely exploited due to low throughput and the extensive training time required. We developed a modified signal detection task (SDT based on the growing body of literature aimed at improving cognitive testing in rodents. This study directly compares performance on the modified SDT with the traditional test for measuring attention, the 5-choice serial reaction time task (5CSRTT. Adult male Sprague-Dawley rats were trained on either the 5CSRTT or the SDT. Briefly, the 5CSRTT required rodents to pay attention to a spatial array of 5 apertures and respond with a nose poke when an aperture was illuminated. The SDT required the rat to attend to a light panel and respond either left or right to indicate the presence of a signal. In addition, modifications were made to the reward delivery, timing, control of body positioning and the self-initiation of trials. It was found that less training time was required for the SDT, with both sessions to criteria and daily session duration significantly reduced. Rats performed with a high level of accuracy (>87% on both tasks, however omissions were far more frequent on the 5CSRTT. The signal duration was reduced on both tasks as a manipulation of task difficulty relevant to attention and a similar pattern of decreasing accuracy was observed on both tasks. These results demonstrate some of the advantages of the SDT over the traditional 5CSRTT as being higher throughput with reduced training time, fewer omission responses and their body position at stimulus onset was controlled. In addition, rats performing the SDT had comparable high levels of accuracy. These results highlight the differences and similarities between the 5CSRTT and a modified SDT as tools for assessing attention in preclinical animal

  5. Sleep deprivation and time-on-task performance decrement in the rat psychomotor vigilance task.

    Science.gov (United States)

    Oonk, Marcella; Davis, Christopher J; Krueger, James M; Wisor, Jonathan P; Van Dongen, Hans P A

    2015-03-01

    The rat psychomotor vigilance task (rPVT) was developed as a rodent analog of the human psychomotor vigilance task (hPVT). We examined whether rPVT performance displays time-on-task effects similar to those observed on the hPVT. The rPVT requires rats to respond to a randomly presented light stimulus to obtain a water reward. Rats were water deprived for 22 h prior to each 30-min rPVT session to motivate performance. We analyzed rPVT performance over time on task and as a function of the response-stimulus interval, at baseline and after sleep deprivation. The study was conducted in an academic research vivarium. Male Long-Evans rats were trained to respond to a 0.5 sec stimulus light within 3 sec of stimulus onset. Complete data were available for n = 20 rats. Rats performed the rPVT for 30 min at baseline and after 24 h total sleep deprivation by gentle handling. Compared to baseline, sleep deprived rats displayed increased performance lapses and premature responses, similar to hPVT lapses of attention and false starts. However, in contrast to hPVT performance, the time-on-task performance decrement was not significantly enhanced by sleep deprivation. Moreover, following sleep deprivation, rPVT response times were not consistently increased after short response-stimulus intervals. The rPVT manifests similarities to the hPVT in global performance outcomes, but not in post-sleep deprivation effects of time on task and response-stimulus interval. © 2015 Associated Professional Sleep Societies, LLC.

  6. Stride time synergy in relation to walking during dual task

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    2012-01-01

    with a positive slope going through the mean of the strides, and bad variance with respect to a similar line with a negative slope. The general variance coefficient (CV%) was also computed. The effect of introducing a concurrent cognitive task (dual task: counting backwards in sequences of 7) was evaluated....... RESULTS: The variance coefficient (CV%) increased significantly from 1.59 to 1.90 (pvariance ratio during single task was: 2.53 (CI95%: 2.07-3.00). When shifting to dual task the good/bad ratio was 2.28 (CI95....... Stride time was measured by heel contacts and the stride-to-stride difference (s-t-s) was evaluated. Each s-t-s was plotted against the following s-t-s in a coordinate system. Variability was evaluated in diagonal directions in the plot; i.e. good variance was evaluated with respect to a straight line...

  7. Improving Waiting Time of Tasks Scheduled Under Preemptive Round Robin Using Changeable Time Quantum

    CERN Document Server

    Mostafa, Samih Mohemmed

    2010-01-01

    Minimizing waiting time for tasks waiting in the queue for execution is one of the important scheduling cri-teria which took a wide area in scheduling preemptive tasks. In this paper we present Changeable Time Quan-tum (CTQ) approach combined with the round-robin algorithm, we try to adjust the time quantum according to the burst times of the tasks in the ready queue. There are two important benefits of using (CTQ) approach: minimizing the average waiting time of the tasks, consequently minimizing the average turnaround time, and keeping the number of context switches as low as possible, consequently minimizing the scheduling overhead. In this paper, we consider the scheduling problem for preemptive tasks, where the time costs of these tasks are known a priori. Our experimental results demonstrate that CTQ can provide much lower scheduling overhead and better scheduling criteria.

  8. The Impact of Task Complexity and Strategic Planning Time on EFL Learners’Accuracy and Fluency in Written Task Production

    National Research Council Canada - National Science Library

    Salimi, Asghar; Alavinia, Parviz; Hosseini, Parvin; Shafaei, Ali

    2012-01-01

    ... in the literature on the joint effects of task complexity and types of pre-task planning on L2 learners’ performance. The present study investigates the effects of strategic pre-task planning time and task complexity on a group of L2 learners...

  9. Delays without mistakes: response time and error distributions in dual-task.

    Directory of Open Access Journals (Sweden)

    Juan Esteban Kamienkowski

    Full Text Available BACKGROUND: When two tasks are presented within a short interval, a delay in the execution of the second task has been systematically observed. Psychological theorizing has argued that while sensory and motor operations can proceed in parallel, the coordination between these modules establishes a processing bottleneck. This model predicts that the timing but not the characteristics (duration, precision, variability... of each processing stage are affected by interference. Thus, a critical test to this hypothesis is to explore whether the quality of the decision is unaffected by a concurrent task. METHODOLOGY/PRINCIPAL FINDINGS: In number comparison--as in most decision comparison tasks with a scalar measure of the evidence--the extent to which two stimuli can be discriminated is determined by their ratio, referred as the Weber fraction. We investigated performance in a rapid succession of two non-symbolic comparison tasks (number comparison and tone discrimination in which error rates in both tasks could be manipulated parametrically from chance to almost perfect. We observed that dual-task interference has a massive effect on RT but does not affect the error rates, or the distribution of errors as a function of the evidence. CONCLUSIONS/SIGNIFICANCE: Our results imply that while the decision process itself is delayed during multiple task execution, its workings are unaffected by task interference, providing strong evidence in favor of a sequential model of task execution.

  10. Normative Feedback Effects on Learning a Timing Task

    Science.gov (United States)

    Wulf, Gabriele; Chiviacowsky, Suzete; Lewthwaite, Rebecca

    2010-01-01

    This study investigated the influence of normative feedback on learning a sequential timing task. In addition to feedback about their performance per trial, two groups of participants received bogus normative feedback about a peer group's average block-to-block improvement after each block of 10 trials. Scores indicated either greater (better…

  11. A Mechanism for Error Detection in Speeded Response Time Tasks

    Science.gov (United States)

    Holroyd, Clay B.; Yeung, Nick; Coles, Michael G. H.; Cohen, Jonathan D.

    2005-01-01

    The concept of error detection plays a central role in theories of executive control. In this article, the authors present a mechanism that can rapidly detect errors in speeded response time tasks. This error monitor assigns values to the output of cognitive processes involved in stimulus categorization and response generation and detects errors…

  12. Stride time synergy in relation to walking during dual task

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    2012-01-01

    INTRODUCTION: Increased stride-to-stride time variability has been observed in dual task situations and among elderly fallers [1]. Variability is therefore often regarded as an indicator of poor gait performance. However, some degree of movement variability is perfectly normal. From a synergistic...

  13. Stride time synergy in relation to walking during dual task

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    2012-01-01

    with a positive slope going through the mean of the strides, and bad variance with respect to a similar line with a negative slope. The general variance coefficient (CV%) was also computed. The effect of introducing a concurrent cognitive task (dual task: counting backwards in sequences of 7) was evaluated...... point of view elemental and performance variables may represent good and bad components of variability [2]. In this study we propose that the gait pattern can be seen as an on-going movement synergy in which each stride is corrected by the next stride (elemental variables) to ensure a steady gait...... (performance variable). AIM: The aim of this study was to evaluate stride time synergy and to identify good and bad stride variability in relation to walking during dual task. METHODS: Thirteen healthy young participants walked along a 2x5 meter figure-of-eight track at a self-selected comfortable speed...

  14. Remote Task-level Commanding of Centaur over Time Delay

    Science.gov (United States)

    Schreckenghost, Debra; Ngo, Tam; Burridge, Robert; Wang, Lui; Izygon, Michel

    2008-01-01

    Remote operation of robots on the lunar surface by ground controllers poses unique human-robot interaction challenges due to time delay and constrained bandwidth. One strategy for addressing these challenges is to provide task-level commanding of robots by a ground controller. Decision-support tools are being developed at JSC for remote task-level commanding over time-delay. The approach is to provide ground procedures that guide a controller when executing task-level command sequences and aid awareness of the state of command execution in the robot. This approach is being evaluated using the Centaur robot at JSC. The Centaur Central Commander provides a task-level command interface that executes on the robot side of the delay. Decision support tools have been developed for a human Supervisor in the JSC Cockpit to use when interacting with the Centaur Central Commander. Commands to the Central Commander are defined as instructions in a procedure. Sequences of these instructions are grouped into procedures for the Cockpit Supervisor. When a Supervisor is ready to perform a task, a procedure is loaded into the decision support tool. From this tool, the Supervisor can view command sequences and dispatch individual commands to Centaur. Commands are queued for execution on the robot side of the delay. Reliable command sequences can be dispatched automatically upon approval by the Supervisor. The decision support tool provides the Supervisor with feedback about which commands are waiting for execution and which commands have finished. It also informs the Supervisor when a command fails to have its intended effect. Cockpit procedures are defined using the Procedure Representation Language (PRL) developed at JSC for mission operations. The decision support tool is based on a Procedure Sequencer and multi-agent software developed for human-robot interaction. In this paper the approach for remote task-level commanding of robots is described and the results of the evaluation

  15. Predicting Fluid Intelligence by Components of Reaction Time Distributions from Simple Choice Reaction Time Tasks

    Directory of Open Access Journals (Sweden)

    Yoanna Schulz-Zhecheva

    2016-07-01

    Full Text Available Mean reaction times (RT and the intra-subject variability of RT in simple RT tasks have been shown to predict higher-order cognitive abilities measured with psychometric intelligence tests. To further explore this relationship and to examine its generalizability to a sub-adult-aged sample, we administered different choice RT tasks and Cattell’s Culture Fair Intelligence Test (CFT 20-R to n = 362 participants aged eight to 18 years. The parameters derived from applying Ratcliff’s diffusion model and an ex-Gaussian model to age-residualized RT data were used to predict fluid intelligence using structural equation models. The drift rate parameter of the diffusion model, as well as σ of the ex-Gaussian model, showed substantial predictive validity regarding fluid intelligence. Our findings demonstrate that stability of performance, more than its mere speed, is relevant for fluid intelligence and we challenge the universality of the worst performance rule observed in adult samples.

  16. Recoding low-level simulator data into a record of meaningful task performance: the integrated task modeling environment (ITME).

    Science.gov (United States)

    King, Robert; Parker, Simon; Mouzakis, Kon; Fletcher, Winston; Fitzgerald, Patrick

    2007-11-01

    The Integrated Task Modeling Environment (ITME) is a user-friendly software tool that has been developed to automatically recode low-level data into an empirical record of meaningful task performance. The present research investigated and validated the performance of the ITME software package by conducting complex simulation missions and comparing the task analyses produced by ITME with taskanalyses produced by experienced video analysts. A very high interrater reliability (> or = .94) existed between experienced video analysts and the ITME for the task analyses produced for each mission. The mean session time:analysis time ratio was 1:24 using video analysis techniques and 1:5 using the ITME. It was concluded that the ITME produced task analyses that were as reliable as those produced by experienced video analysts, and significantly reduced the time cost associated with these analyses.

  17. Comparative analysis of cognitive tasks for modeling mental workload with electroencephalogram.

    Science.gov (United States)

    Hwang, Taeho; Kim, Miyoung; Hwangbo, Minsu; Oh, Eunmi

    2014-01-01

    Previous electroencephalogram (EEG) studies have shown that cognitive workload can be estimated by using several types of cognitive tasks. In this study, we attempted to characterize cognitive tasks that have been used to manipulate workload for generating classification models. We carried out a comparative analysis between two representative types of working memory tasks: the n-back task and the mental arithmetic task. Based on experiments with 7 healthy subjects using Emotiv EPOC, we compared the consistency, robustness, and efficiency of each task in determining cognitive workload in a short training session. The mental arithmetic task seems consistent and robust in manipulating clearly separable high and low levels of cognitive workload with less training. In addition, the mental arithmetic task shows consistency despite repeated usage over time and without notable task adaptation in users. The current study successfully quantifies the quality and efficiency of cognitive workload modeling depending on the type and configuration of training tasks.

  18. Time-on-task decrements in "steer clear" performance of patients with sleep apnea and narcolepsy

    Science.gov (United States)

    Findley, L. J.; Suratt, P. M.; Dinges, D. F.

    1999-01-01

    Loss of attention with time-on-task reflects the increasing instability of the waking state during performance in experimentally induced sleepiness. To determine whether patients with disorders of excessive sleepiness also displayed time-on-task decrements indicative of wake state instability, visual sustained attention performance on "Steer Clear," a computerized simple RT driving simulation task, was compared among 31 patients with untreated sleep apnea, 16 patients with narcolepsy, and 14 healthy control subjects. Vigilance decrement functions were generated by analyzing the number of collisions in each of six four-minute periods of Steer Clear task performance in a mixed-model analysis of variance and linear regression equations. As expected, patients had more Steer Clear collisions than control subjects (p=0.006). However, the inter-subject variability in errors among the narcoleptic patients was four-fold that of the apnea patients, and 100-fold that of the controls volunteers; the variance in errors among untreated apnea patients was 27-times that of controls. The results of transformed collision data revealed main effects for group (p=0.006), time-on-task (p=0.001), and a significant interaction (p=0.022). Control subjects showed no clear evidence of increasing collision errors with time-on-task (adjusted R2=0.22), while apnea patients showed a trend toward vigilance decrement (adjusted R2=0.42, p=0.097), and narcolepsy patients evidenced a robust linear vigilance decrement (adjusted R2=0.87, p=0.004). The association of disorders of excessive somnolence with escalating time-on-task decrements makes it imperative that when assessment of neurobehavioral performance is conducted in patients, it involves task durations and analyses that will evaluate the underlying vulnerability of potentially sleepy patients to decrements over time in tasks that require sustained attention and timely responses, both of which are key components in safe driving performance.

  19. Rats value time differently on equivalent foraging and delay-discounting tasks.

    Science.gov (United States)

    Carter, Evan C; Redish, A David

    2016-09-01

    All organisms have to consider consequences that vary through time. Theories explaining how animals handle intertemporal choice include delay-discounting models, in which the value of future rewards is discounted by the delay until receipt, and foraging models, which predict that decision-makers maximize rate of reward. We measured the behavior of rats on a 2-option delay-discounting task and a stay/go foraging task that were equivalent for rate of reward and physical demand. Despite the highly shared features of the tasks, rats were willing to wait much longer on the foraging task than on the delay-discounting task. Moreover, choice performance by rats was less optimal in terms of total reward received on the foraging task compared to the delay-discounting task. We applied a suite of intertemporal choice models to the data but found that we needed a novel model incorporating interactions of decision-making systems to successfully explain behavior. Our findings (a) highlight the importance of factors that historically have been seen as irrelevant and (b) indicate the inadequacy of current general theories of intertemporal choice. (PsycINFO Database Record

  20. Stride time synergy in relation to walking during dual task

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    2012-01-01

    INTRODUCTION: Increased stride-to-stride time variability has been observed in dual task situations and among elderly fallers [1]. Variability is therefore often regarded as an indicator of poor gait performance. However, some degree of movement variability is perfectly normal. From a synergistic....... Stride time was measured by heel contacts and the stride-to-stride difference (s-t-s) was evaluated. Each s-t-s was plotted against the following s-t-s in a coordinate system. Variability was evaluated in diagonal directions in the plot; i.e. good variance was evaluated with respect to a straight line...

  1. Computation Offloading for Frame-Based Real-Time Tasks under Given Server Response Time Guarantees

    Directory of Open Access Journals (Sweden)

    Anas S. M. Toma

    2014-11-01

    Full Text Available Computation offloading has been adopted to improve the performance of embedded systems by offloading the computation of some tasks, especially computation-intensive tasks, to servers or clouds. This paper explores computation offloading for real-time tasks in embedded systems, provided given response time guarantees from the servers, to decide which tasks should be offloaded to get the results in time. We consider frame-based real-time tasks with the same period and relative deadline. When the execution order of the tasks is given, the problem can be solved in linear time. However, when the execution order is not specified, we prove that the problem is NP-complete. We develop a pseudo-polynomial-time algorithm for deriving feasible schedules, if they exist.  An approximation scheme is also developed to trade the error made from the algorithm and the complexity. Our algorithms are extended to minimize the period/relative deadline of the tasks for performance maximization. The algorithms are evaluated with a case study for a surveillance system and synthesized benchmarks.

  2. Continuous Time Model Estimation

    OpenAIRE

    Carl Chiarella; Shenhuai Gao

    2004-01-01

    This paper introduces an easy to follow method for continuous time model estimation. It serves as an introduction on how to convert a state space model from continuous time to discrete time, how to decompose a hybrid stochastic model into a trend model plus a noise model, how to estimate the trend model by simulation, and how to calculate standard errors from estimation of the noise model. It also discusses the numerical difficulties involved in discrete time models that bring about the unit ...

  3. Multi-Task Collaboration CPS Modeling Based on Immune Feedback

    Directory of Open Access Journals (Sweden)

    Haiying Li

    2013-09-01

    Full Text Available In this paper, a dynamic multi-task collaboration CPS control model based on the self-adaptive immune feedback is proposed and implemented in the smart home environment. First, the internal relations between CPS and the biological immune system are explored via their basic theories. Second, CPS control mechanism is elaborated through the analysis of CPS control structure. Finally, a comprehensive strategy for support is introduced into multi-task collaboration to improve the dynamic cognitive ability. At the same time, the performance of parameters is correspondingly increased by the operator of the antibody concentration and the selective pressure. Furthermore, the model has been put into service in the smart home laboratory. The experimental results show that this model can integrate user’s needs into the environment for properly regulating the home environment.

  4. The Impact of Task Complexity and Strategic Planning Time on EFL Learners’ Accuracy and Fluency in Written Task Production

    Directory of Open Access Journals (Sweden)

    Asghar Salimi

    2012-11-01

    Full Text Available The past twenty years has witnessed a remarkable increase in the number of studies investigating different aspects and features of tasks in the second and foreign language class and their effects on learners’ oral and written task performance. Building up on a review of the studies conducted in the field of task-based language teaching a gap was revealed in the literature on the joint effects of task complexity and types of pre-task planning on L2 learners’ performance. The present study investigates the effects of strategic pre-task planning time and task complexity on a group of L2 learners’ written performance in terms of accuracy and fluency. The means of accuracy and fluency of 50 intermediate English language learners, both male and female, chosen randomly from Iran National Language Institute, Miandoab Branch were compared using T-test as the statistical means of analysis. The findings revealed a positive influence of pre-task strategic planning time in both simple and complex tasks, suggesting significant implications for syllabus and task designers, language teachers, and SLA researchers. Keywords: Task-based language teaching, Planning time, Strategic planning, Task complexity, Accuracy, Fluency

  5. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    Science.gov (United States)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  6. Partitioning of Independent Tasks for Minimizing Completion Time and Total Waiting Time

    Institute of Scientific and Technical Information of China (English)

    章中云; 祝明发; 等

    1991-01-01

    Parallel processors provide fast computing environments for various users.But the real efficiencies of parallel processors intensively depend on the partitioning strategies of tasks over the processors.In this paper,the partitioning problems of independent tasks for homogeneous system of parallel processors are quantitatively studied.We adopt two criteria,minimizing the completion time and the total waiting time, to determine the optimal partitioning strategy.

  7. Hand Interface in Traditional Modeling and Animation Tasks

    Institute of Scientific and Technical Information of China (English)

    孙汉秋

    1996-01-01

    3-D task space in modeling and animation is usually reduced to the separate control dimensions supported by conventional interactive devices.This limitation maps only partial view of the problem to the device space at a time,and results in tedious and unnatural interface of control.This paper uses the DataGlove interface for modeling and animating scene behaviors.The modeling interface selects,scales,rotates,translates,copies and deletes the instances of the primitives.These basic modeling processes are directly performed in the task space,using hand shapes and motions.Hand shapes are recognized as discrete states that trigger the commands,and hand motion are mapped to the movement of a selected instance.The interactions through hand interface place the user as a participant in the process of behavior simulation.Both event triggering and role switching of hand are experimented in simulation.The event mode of hand triggers control signals or commands through a menu interface.The object mode of hand simulates itself as an object whose appearance or motion influences the motions of other objects in scene.The involvement of hand creates a diversity of dynamic situations for testing variable scene behaviors.Our experiments have shown the potential use of this interface directly in the 3-D modeling and animation task space.

  8. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden)

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  9. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    Directory of Open Access Journals (Sweden)

    Charmaine eDemanuele

    2015-10-01

    Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel

  10. Real-time scheduling model of fuzzy itemized tasks for non-traditional safety critical system%非传统安全关键系统中模糊分类调度模型

    Institute of Scientific and Technical Information of China (English)

    彭礼强; 尹俊文; 汪飞

    2011-01-01

    The development of IoT and WSN may take more applications into safety-critical systems.But those applications have different characters with traditional safety-critical systems,such as medical systems,nuclear power systems and aeronautical systems.Study on scheduling characters of non-traditional safety critical systems is carried on in this paper.And great differences are founded between the non-traditional and the traditional, especially on itemization of tasks.lt will cause many problems while applying existing scheduling models to those applications directly.Scheduling characters of non-traditional safety-critical systems are set up.A real-time scheduling model and MSF algorithm to meet those characters, where tasks are fuzzy itemized and the algorithm includes two steps to schedule tasks ordered by sensitity.Finally,a feasibility analysis and a test on the non-taxable system of Changsha city are taken.The result shows that MSF holds better performance and less failure number of tasks than MUF.%物联网及无线传感网的发展将使越来越多的应用成为安全关键系统,而这类应用在性质上区别于医疗、核能和航空航天等领域的传统安全关键系统,研究了非传统安全关键系统的调度特征,发现这类应用与传统安全关键系统存在较大差异,特别是在任务分类上,若直接套用已有的调度模型将产生诸多问题.在特征分析的基础上建立了满足特征需求的实时调度模型并给出了相应的调度算法.模型采取模糊分类的方式划分任务,算法分两个阶段实现了任务按敏感度优先的原则进行调度.最后对算法进行了调度可行性分析,并在长沙市非税系统中进行了实验,结果表明其性能及失效率较MUF更优.

  11. Incentive contract design in project management with serial tasks and uncertain completion times

    Science.gov (United States)

    Yang, Kai; Zhao, Ruiqing; Lan, Yanfei

    2016-04-01

    This article investigates an incentive contract design problem for a project manager who operates a project consisting of multiple tasks performed sequentially by different subcontractors in which all task completion times are uncertain and described by fuzzy variables. On the basis of an expected value criterion and a critical value criterion, two classes of fuzzy bilevel programming models are developed. In the case where the uncertain task completion times are mutually independent, each model can first be decomposed into multiple equivalent sub-models by taking advantage of the structural characteristics, and then a two-step optimization method is employed to derive the optimal incentive contract in each sub-model. In a more general case where the uncertain task completion times are correlative, the approximation approach (AA) technique is adopted first in order to evaluate the objective functions involving fuzzy parameters, which are usually difficult to convert into their crisp equivalents. Then, an AA-based hybrid genetic algorithm integrated with the golden search method and variable neighbourhood search is designed to solve the proposed fuzzy bilevel programming models. Finally, a numerical example of a construction project is conducted to demonstrate the modelling idea and the effectiveness of the proposed methods.

  12. Optimisation of battery operating life considering software tasks and their timing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Lipskoch, Henrik

    2010-02-19

    Users of mobile embedded systems have an interest in long battery operating life. The longer a system can operate without need for recharge or battery replacement, the more will maintenance cost and the number of faults due to insufficient power supply decrease. Operating life is prolonged by saving energy, which may reduce available processing time. Mobile embedded systems communicating with other participants like other mobiles or radio stations are subject to time guarantees ensuring reliable communication. Thus, methods that save energy by reducing processing time are not only subject to available processing time but subject to the embedded system's time guarantees. To perform parameter optimisations offline, decisions can be taken early at design time, avoiding further computations at run-time. Especially, to compute processor shutdown durations offline, no extra circuitry to monitor system behaviour and to wake up the processor needs to be designed, deployed, or power supplied: only a timer is required. In this work, software tasks are considered sharing one processor. The scheduling algorithm earliest deadline first is assumed, and per-task, a relative deadline is assumed. Tasks may be instantiated arbitrarily as long as this occurrence behaviour is given in the notion of event streams. Scaling of the processor's voltage and processor shutdown are taken into account as methods for saving energy. With given per task worst-case execution times and the tasks' event streams, the real-time feasibility of the energy optimised solutions is proven. The decision which energy saving solution provides longest operating life is made with the help of a battery model. The used real-time feasibility test has the advantage that it can be approximated: this yields an adjustable number of linear optimisation constraints. Reducing the processor's voltage reduces processor frequency, therefore, execution times increase. The resulting slowdown becomes the

  13. Task Complexity and Time Pressure: Impacts on Activity-Travel Choices

    NARCIS (Netherlands)

    Chen, C.

    2014-01-01

    Task complexity and time pressure may have impacts on travellers’ choices in the context of highly synchronised mobility networks. However, it is unclear at the moment how these two aspects should be properly modelled simultaneously and what these impacts of the two aspects really are on travellers’

  14. Optimisation of battery operating life considering software tasks and their timing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Lipskoch, Henrik

    2010-02-19

    Users of mobile embedded systems have an interest in long battery operating life. The longer a system can operate without need for recharge or battery replacement, the more will maintenance cost and the number of faults due to insufficient power supply decrease. Operating life is prolonged by saving energy, which may reduce available processing time. Mobile embedded systems communicating with other participants like other mobiles or radio stations are subject to time guarantees ensuring reliable communication. Thus, methods that save energy by reducing processing time are not only subject to available processing time but subject to the embedded system's time guarantees. To perform parameter optimisations offline, decisions can be taken early at design time, avoiding further computations at run-time. Especially, to compute processor shutdown durations offline, no extra circuitry to monitor system behaviour and to wake up the processor needs to be designed, deployed, or power supplied: only a timer is required. In this work, software tasks are considered sharing one processor. The scheduling algorithm earliest deadline first is assumed, and per-task, a relative deadline is assumed. Tasks may be instantiated arbitrarily as long as this occurrence behaviour is given in the notion of event streams. Scaling of the processor's voltage and processor shutdown are taken into account as methods for saving energy. With given per task worst-case execution times and the tasks' event streams, the real-time feasibility of the energy optimised solutions is proven. The decision which energy saving solution provides longest operating life is made with the help of a battery model. The used real-time feasibility test has the advantage that it can be approximated: this yields an adjustable number of linear optimisation constraints. Reducing the processor's voltage reduces processor frequency, therefore, execution times increase. The resulting slowdown becomes the

  15. Exact Feasibility Tests for Real-Time Scheduling of Periodic Tasks upon Multiprocessor Platforms

    CERN Document Server

    Cucu, Liliana

    2008-01-01

    In this paper we study the global scheduling of periodic task systems upon multiprocessor platforms. We first show two very general properties which are well-known for uniprocessor platforms and which remain for multiprocessor platforms: (i) under few and not so restrictive assumptions, we show that feasible schedules of periodic task systems are periodic from some point with a period equal to the least common multiple of task periods and (ii) for the specific case of synchronous periodic task systems, we show that feasible schedules repeat from the origin. We then present our main result: we characterize, for task-level fixed-priority schedulers and for asynchronous constrained or arbitrary deadline periodic task models, upper bounds of the first time instant where the schedule repeats. We show that job-level fixed-priority schedulers are predictable upon unrelated multiprocessor platforms. For task-level fixed-priority schedulers, based on the upper bounds and the predictability property, we provide for asy...

  16. Human Performance in Time-Shared Verbal and Tracking Tasks.

    Science.gov (United States)

    1979-04-01

    performance of both a one-dimensional compensatory tracking task and a continuous absoluzte difference digit- proceseing task. As mentioned above, the... parts : 1) What combination of input and output (I/O) channels for the discrete information processing task provides optimum information transmission

  17. Motor dual-task Timed Up & Go test better identifies prefrailty individuals than single-task Timed Up & Go test.

    Science.gov (United States)

    Tang, Pei-Fang; Yang, Hao-Jan; Peng, Ya-Chi; Chen, Hui-Ya

    2015-02-01

    The present study investigated whether dual-task Timed Up & Go tests (TUG) could identify prefrail individuals more sensitively than the single-task TUG (TUGsingle ) in community-dwelling middle-aged and older adults. This cross-sectional study recruited adults aged 50 years and older who actively participated in local community programs. Time taken to complete single-task TUG and dual-task TUG, carrying a cup of water (TUGmanual ) or carrying out serial-3 subtraction (TUGcognitive ) while executing TUG, was measured. Prefrailty status was defined based on Fried's phenotypic definition. Of the 65 participants (mean age 71.5±8.1 years), 33.3% of the 12 middle-aged (50-64 years) and 62.3% of the 53 older (≥65 years) adults were prefrail, mainly as a result of weak grip strength. The receiver operating characteristic curve analyses for differentiating prefrailty from non-frailty showed that the area under the curve (AUC) for TUGmanual (0.73, 95% CI 0.60-0.86) was better than that for TUGsingle (0.67, 95% CI 0.54-0.80), whereas the AUC value was not significant for TUGcognitive (0.60, 95% CI 0.46-0.74). The optimal cut-off points for detecting prefrailty using TUGsingle , TUGmanual and TUGcognitive were 7.7 s (sensitivity 68%), 8.2 s (sensitivity 83%), and 14.3 s (sensitivity 29%), respectively. After adjusting for age, logistic regression analyses showed that individuals with TUGmanual 8.2 s or slower were 7.2-fold more likely to have prefrailty than those with TUGmanual faster than 8.2 s. TUGmanual is more valid and sensitive than TUGsingle in identifying prefrail individuals. The TUGmanual thus could serve as a screening tool for early detection of individuals with prefrailty in community-dwelling middle-aged and older adults. © 2014 Japan Geriatrics Society.

  18. Multi-Dimensional Scheduling for Real-Time Tasks on Heterogeneous Clusters

    Institute of Scientific and Technical Information of China (English)

    Xiao-Min Zhu; Pei-Zhong Lu

    2009-01-01

    Multiple performance requirements need to be guaranteed in some real-time applications such as multimedia data processing and real-time signal processing in addition to timing constraints. Unfortunately, most conventional scheduling algorithms only take one or two dimensions of them into account. Motivated by this fact, this paper investigates the problem of providing multiple performance guarantees including timeliness, QoS, throughput, QoS fairness and load balancing for a set of independent tasks by dynamic scheduling. We build a scheduler model that can be used for multi-dimensional scheduling. Based on the scheduler model, we propose a heuristic multi-dimensional scheduling strategy,MDSS, consisting of three steps. The first step can be of any existing real-time scheduling algorithm that determines to accept or reject a task. In step 2, we put forward a novel algorithm MQFQ to enhance the QoS levels of accepted tasks, and o make these tasks have fair QoS levels at the same time. Another new algorithm ITLB is proposed and used in step 3.The ITLB algorithm is capable of balancing load and improving throughput of the system. To evaluate the performance of MDSS, we perform extensive simulation experiments to compare MDSS strategy with MDSR strategy, DASAP and DALAP algorithms. Experimental results show that MDSS significantly outperforms MDSR, DASAP and DALAP.

  19. Examining the Impact of Off-Task Multi-Tasking with Technology on Real-Time Classroom Learning

    Science.gov (United States)

    Wood, Eileen; Zivcakova, Lucia; Gentile, Petrice; Archer, Karin; De Pasquale, Domenica; Nosko, Amanda

    2012-01-01

    The purpose of the present study was to examine the impact of multi-tasking with digital technologies while attempting to learn from real-time classroom lectures in a university setting. Four digitally-based multi-tasking activities (texting using a cell-phone, emailing, MSN messaging and Facebook[TM]) were compared to 3 control groups…

  20. Quality of E-Learners’ Time and Learning Performance Beyond Quantitative Time-on-Task

    Directory of Open Access Journals (Sweden)

    Margarida Romero

    2011-06-01

    Full Text Available AbstractAlong with the amount of time spent learning (or time-on-task, the quality of learning time has a real influence on learning performance. Quality of time in online learning depends on students’ time availability and their willingness to devote quality cognitive time to learning activities. However, the quantity and quality of the time spent by adult e-learners on learning activities can be reduced by professional, family, and social commitments. Considering that the main time pattern followed by most adult e-learners is a professional one, it may be beneficial for online education programs to offer a certain degree of flexibility in instructional time that might allow adult learners to adjust their learning times to their professional constraints. However, using the time left over once professional and family requirements have been fulfilled could lead to a reduction in quality time for learning. This paper starts by introducing the concept of quality of learning time from an online student-centred perspective. The impact of students’ time-related variables (working hours, time-on-task engagement, time flexibility, time of day, day of week is then analyzed according to individual and collaborative grades achieved during an online master’s degree program. The data show that both students’ time flexibility (r = .98 and especially their availability to learn in the morning are related to better grades in individual (r = .93 and collaborative activities (r = .46.

  1. Internalizing versus Externalizing Control: Different Ways to Perform a Time-Based Prospective Memory Task

    Science.gov (United States)

    Huang, Tracy; Loft, Shayne; Humphreys, Michael S.

    2014-01-01

    "Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…

  2. Internalizing versus Externalizing Control: Different Ways to Perform a Time-Based Prospective Memory Task

    Science.gov (United States)

    Huang, Tracy; Loft, Shayne; Humphreys, Michael S.

    2014-01-01

    "Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…

  3. Individualized Cognitive Modeling for Close-Loop Task Mitigation

    Science.gov (United States)

    Zhang, Guangfan; Xu, Roger; Wang, Wei; Li, Jiang; Schnell, Tom; Keller, Mike

    2010-01-01

    An accurate real-time operator functional state assessment makes it possible to perform task management, minimize risks, and improve mission performance. In this paper, we discuss the development of an individualized operator functional state assessment model that identifies states likely leading to operational errors. To address large individual variations, we use two different approaches to build a model for each individual using its data as well as data from subjects with similar responses. If a subject's response is similar to that of the individual of interest in a specific functional state, all the training data from this subject will be used to build the individual model. The individualization methods have been successfully verified and validated with a driving test data set provided by University of Iowa. With the individualized models, the mean squared error can be significantly decreased (by around 20%).

  4. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  5. EU Integrated Tokamak Modelling (ITM) Task Force

    Institute of Scientific and Technical Information of China (English)

    A Becoulet

    2007-01-01

    @@ At the end of 2003, the European Fusion Development Agreement (EFDA) structure set-up a long-term European task force (TF) in charge of "co-ordinating the development of a coherent set of validated simulation tools for the purpose of benchmarking on existing tokamak experiments, with the ultimate aim of providing a comprehensive simulation package for ITER plasmas" [http://www.efda-taskforce-itm.org/].

  6. U.S. Marine Corps Study of Establishing Time Criteria for Logistics Tasks

    Science.gov (United States)

    2004-09-30

    external source Study of Establishing Time Criteria for Logistics Tasks – Final Report - Appendix B Page B-55... source ) Study of Establishing Time Criteria for Logistics Tasks – Final Report – Appendix C Page C-29...1.1-External Source Study of Establishing Time Criteria for Logistics Tasks – Final Report – Appendix C

  7. Timing Is Affected by Demands in Memory Search but Not by Task Switching

    Science.gov (United States)

    Fortin, Claudette; Schweickert, Richard; Gaudreault, Remi; Viau-Quesnel, Charles

    2010-01-01

    Recent studies suggest that timing and tasks involving executive control processes might require the same attentional resources. This should lead to interference when timing and executive tasks are executed concurrently. This study examined the interference between timing and task switching, an executive function. In 4 experiments, memory search…

  8. Comparison of inhibition in two timed reaction tasks: the color and emotion Stroop tasks.

    Science.gov (United States)

    Cothran, D Lisa; Larsen, Randy

    2008-07-01

    The authors examined the cross-task consistency of the ability to inhibit the processing of irrelevant information. They compared interference scores on 2 widely used inhibition tasks and found that color word Stroop interference scores correlated with emotion word Stroop interference scores. An examination of physiological reactivity showed that, in general, the color Stroop was more arousing than was the emotion Stroop, most likely due to increased response conflict.

  9. Dynamic Scheduling Real-Time Task Using Primary-Backup Overloading Strategy for Multiprocessor Systems

    Science.gov (United States)

    Sun, Wei; Yu, Chen; Défago, Xavier; Inoguchi, Yasushi

    The scheduling of real-time tasks with fault-tolerant requirements has been an important problem in multiprocessor systems. The primary-backup (PB) approach is often used as a fault-tolerant technique to guarantee the deadlines of tasks despite the presence of faults. In this paper we propose a dynamic PB-based task scheduling approach, wherein an allocation parameter is used to search the available time slots for a newly arriving task, and the previously scheduled tasks can be re-scheduled when there is no available time slot for the newly arriving task. In order to improve the schedulability we also propose an overloading strategy for PB-overloading and Backup-backup (BB) overloading. Our proposed task scheduling algorithm is compared with some existing scheduling algorithms in the literature through simulation studies. The results have shown that the task rejection ratio of our real-time task scheduling algorithm is almost 50% lower than the compared algorithms.

  10. Many-Task Computing Tools for Multiscale Modeling

    OpenAIRE

    Katz, Daniel S.; Ripeanu, Matei; Wilde, Michael

    2011-01-01

    This paper discusses the use of many-task computing tools for multiscale modeling. It defines multiscale modeling and places different examples of it on a coupling spectrum, discusses the Swift parallel scripting language, describes three multiscale modeling applications that could use Swift, and then talks about how the Swift model is being extended to cover more of the multiscale modeling coupling spectrum.

  11. Hybrid Scheduling Model for Independent Grid Tasks

    Directory of Open Access Journals (Sweden)

    J. Shanthini

    2015-01-01

    Full Text Available Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG search and Apparent Tardiness Cost (ATC indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.

  12. Hybrid Scheduling Model for Independent Grid Tasks.

    Science.gov (United States)

    Shanthini, J; Kalaikumaran, T; Karthik, S

    2015-01-01

    Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG) search and Apparent Tardiness Cost (ATC) indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.

  13. SLAM: A Connectionist Model for Attention in Visual Selection Tasks.

    Science.gov (United States)

    Phaf, R. Hans; And Others

    1990-01-01

    The SeLective Attention Model (SLAM) performs visual selective attention tasks and demonstrates that object selection and attribute selection are both necessary and sufficient for visual selection. The SLAM is described, particularly with regard to its ability to represent an individual subject performing filtering tasks. (TJH)

  14. Frontal brain activation during a working memory task: a time-domain fNIRS study

    Science.gov (United States)

    Molteni, E.; Baselli, G.; Bianchi, A. M.; Caffini, M.; Contini, D.; Spinelli, L.; Torricelli, A.; Cerutti, S.; Cubeddu, R.

    2009-02-01

    We evaluated frontal brain activation during a working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-resolved fNIRS technique. Brain activation was computed, and was then separated into a "block-related" and a "tonic" components. Load-related increases of blood oxygenation were studied for the four different levels of task difficulty. Generalized Linear Models were applied to the data in order to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short term memorization. Results attest the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Moreover, a systemic component probably deriving from the extra-cerebral capillary bed was detected.

  15. Selective Maintenance Model Considering Time Uncertainty

    OpenAIRE

    Le Chen; Zhengping Shu; Yuan Li; Xuezhi Lv

    2012-01-01

    This study proposes a selective maintenance model for weapon system during mission interval. First, it gives relevant definitions and operational process of material support system. Then, it introduces current research on selective maintenance modeling. Finally, it establishes numerical model for selecting corrective and preventive maintenance tasks, considering time uncertainty brought by unpredictability of maintenance procedure, indetermination of downtime for spares and difference of skil...

  16. Modelling, Specification and Robustness Issues for Robotic Manipulation Tasks

    Directory of Open Access Journals (Sweden)

    Danica Kragic

    2008-11-01

    Full Text Available In this paper, a system for modeling of service robot tasks is presented. Our work is motivated by the idea that a robotic task may be represented as a set of tractable modules each responsible for a certain part of the task. For general fetch-and-carry robotic applications, there will be varying demands for precision and degrees of freedom involved depending on complexity of the individual module. The particular research problem considered here is the development of a system that supports simple design of complex tasks from a set of basic primitives. The three system levels considered are: i task graph generation which allows the user to easily design or model a task, ii task graph execution which executes the task graph, and iii at the lowest level, the specification and development of primitives required for general fetch-and-carry robotic applications. In terms of robustness, we believe that one way of increasing the robustness of the whole system is by increasing the robustness of individual modules. In particular, we consider a number of different parameters that effect the performance of a model-based tracking system. Parameters such as color channels, feature detection, validation gates, outliers rejection and feature selection are considered here and their affect to the overall system performance is discussed. Experimental evaluation shows how some of these parameters can successfully be evaluated (learned on-line and consequently improve the performance of the system.

  17. Task Delegation Based Access Control Models for Workflow Systems

    Science.gov (United States)

    Gaaloul, Khaled; Charoy, François

    e-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model.

  18. A Theory for the Initial Allocating of Real Time Tasks in Distributed Systems

    Institute of Scientific and Technical Information of China (English)

    鄢勇; 金灿明

    1992-01-01

    Referring to a set of real time tasks with arriving time,executing time and deadline,this paper discusses the problem of polynomial time initial-allocating approximation algorithms in a distributed system and five new results are gained which provide a theory for the designing of initial-allocating algorithms of real time tasks.

  19. Time to task failure and motor cortical activity depend on the type of feedback in visuomotor tasks.

    Directory of Open Access Journals (Sweden)

    Benedikt Lauber

    Full Text Available The present study aimed to elucidate whether the type of feedback influences the performance and the motor cortical activity when executing identical visuomotor tasks. For this purpose, time to task failure was measured during position- and force-controlled muscular contractions. Subjects received either visual feedback about the force produced by pressing a force transducer or about the actual position between thumb and index finger. Participants were instructed to either match the force level of 30% MVC or the finger position corresponding to the thumb and index finger angle at this contraction intensity. Subjects demonstrated a shorter time to task failure when they were provided with feedback about their joint position (11.5 ± 6.2 min instead of force feedback (19.2 ± 12.8 min; P = 0.01. To test differences in motor cortical activity between position- and force-controlled contractions, subthreshold transcranial magnetic stimulation (subTMS was applied while executing submaximal (20% MVC contractions. SubTMS resulted in a suppression of the first dorsal interosseus muscle (FDI EMG in both tasks. However, the mean suppression for the position-controlled task was significantly greater (18.6 ± 9.4% vs. 13.3 ± 7.5%; P = 0.025 and lasted longer (13.9 ± 7.5 ms vs. 9.3 ± 4.3 ms; P = 0.024 compared to the force-controlled task. The FDI background EMG obtained without stimulation was comparable in all conditions. The present results demonstrate that the presentation of different feedback modalities influences the time to task failure as well as the cortical activity. As only the feedback was altered but not the mechanics of the task, the present results add to the body of evidence that suggests that the central nervous system processes force and position information in different ways.

  20. Making the Most of Modeling Tasks

    Science.gov (United States)

    Wernet, Jamie L.; Lawrence, Kevin A.; Gilbertson, Nicholas J.

    2015-01-01

    While there is disagreement among mathematics educators about some aspects of its meaning, mathematical modeling generally involves taking a real-world scenario and translating it into the mathematical world (Niss, Blum, and Galbraith 2007). The complete modeling process involves describing situations posed in problems with mathematical concepts,…

  1. Mathematical Modelling as a Professional Task

    Science.gov (United States)

    Frejd, Peter; Bergsten, Christer

    2016-01-01

    Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…

  2. Modeling Task fMRI Data via Deep Convolutional Autoencoder.

    Science.gov (United States)

    Huang, Heng; Hu, Xintao; Zhao, Yu; Makkie, Milad; Dong, Qinglin; Zhao, Shijie; Guo, Lei; Liu, Tianming

    2017-06-15

    Task-based fMRI (tfMRI) has been widely used to study functional brain networks under task performance. Modeling tfMRI data is challenging due to at least two problems: the lack of the ground truth of underlying neural activity and the highly complex intrinsic structure of tfMRI data. To better understand brain networks based on fMRI data, data-driven approaches have been proposed, for instance, Independent Component Analysis (ICA) and Sparse Dictionary Learning (SDL). However, both ICA and SDL only build shallow models, and they are under the strong assumption that original fMRI signal could be linearly decomposed into time series components with their corresponding spatial maps. As growing evidence shows that human brain function is hierarchically organized, new approaches that can infer and model the hierarchical structure of brain networks are widely called for. Recently, deep convolutional neural network (CNN) has drawn much attention, in that deep CNN has proven to be a powerful method for learning high-level and mid-level abstractions from low-level raw data. Inspired by the power of deep CNN, in this study, we developed a new neural network structure based on CNN, called Deep Convolutional Auto-Encoder (DCAE), in order to take the advantages of both data-driven approach and CNN's hierarchical feature abstraction ability for the purpose of learning mid-level and high-level features from complex, large-scale tfMRI time series in an unsupervised manner. The DCAE has been applied and tested on the publicly available human connectome project (HCP) tfMRI datasets, and promising results are achieved.

  3. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6D, 6E, 6F and 6F2

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkinson, David (Quintessa, Henley-on-Thames (GB))

    2007-09-15

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to modelling solute transport in fractured rock. The objectives of Task 6 are: To assess simplifications used in Performance Assessment (PA) models. To determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models. To support the design of Site Characterisation (SC) programmes to ensure that the results have optimal value for performance assessment calculations. To improve the understanding of site-specific flow and transport behaviour at different scales using site characterisation models. The present report is concerned with Tasks 6D, 6E, 6F and 6F2. It follows on from two previous reviews of Tasks 6A, 6B and 6B2, and Task 6C. In Task 6D the transport of tracers through a fracture network is modelled using the conditions of the C2 TRUE-Block Scale tracer test, based on the synthetic structural model developed in Task 6C. Task 6E extends the Task 6D transport calculations to a reference set of PA time scales and boundary conditions. Task 6F consists of a series of 'benchmark' studies on single features from the Task 6C hydrostructural model in order to improve the understanding of differences between the participating models. Task 6F2 utilises models set up for Tasks 6E and 6F to perform additional sensitivity studies with the aim of increasing the understanding of how models behave, the reason for differences in modelling results, and the sensitivity of models to various assumptions and parameter values. Eight modelling teams representing five organisations participated in this exercise using Discrete Fracture Network (DFN), continuum and channel network concepts implemented in a range of different

  4. Periodic Time Series Models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    2004-01-01

    textabstractThis book considers periodic time series models for seasonal data, characterized by parameters that differ across the seasons, and focuses on their usefulness for out-of-sample forecasting. Providing an up-to-date survey of the recent developments in periodic time series, the book

  5. Support for the Logical Execution Time Model on a Time-predictable Multicore Processor

    DEFF Research Database (Denmark)

    Kluge, Florian; Schoeberl, Martin; Ungerer, Theo

    2016-01-01

    The logical execution time (LET) model increases the compositionality of real-time task sets. Removal or addition of tasks does not influence the communication behavior of other tasks. In this work, we extend a multicore operating system running on a time-predictable multicore processor to support...... the LET model. For communication between tasks we use message passing on a time-predictable network-on-chip to avoid the bottleneck of shared memory. We report our experiences and present results on the costs in terms of memory and execution time....

  6. Age-related changes in attentional selection: quality of task set or degradation of task set across time?

    Science.gov (United States)

    Jackson, Jonathan D; Balota, David A

    2013-09-01

    The present study explores the nature of attentional selection in younger and older adults. Following R. De Jong, E. Berendsen, and R. Cools (1999, Acta Psychologica, Vol. 101, pp. 379-394), we manipulated the response to stimulus interval (RSI) in two attentional selection paradigms to examine if there are age-related differences in the quality of task set and/or the maintenance of task set across time. In Experiment 1, we found that the interference effect in a spatial interference task was (a) overall larger in older adults compared with younger adults, and (b) smaller at the short RSI (200 ms) compared with the long RSI (2000 ms), and (c) not associated with an interaction between age and RSI. The second experiment explored the same variables in a Stroop color interference paradigm. Again, older adults produced a disproportionately larger interference effect than younger adults, the interference effect was smaller at the short RSI compared with the long RSI, and there was no evidence of an interaction between age and RSI. In both experiments, the larger interference effect could not be attributed to age-related general slowing and there was evidence from Vincentile analyses of increasing interference and age effects at the slower response latencies. These results indicate that attentional selection deficits in these two experiments were due to a breakdown in the quality of the task set as opposed to age-related differences in the maintenance of the task set across time.

  7. On the link between mind wandering and task performance over time.

    Science.gov (United States)

    Thomson, David R; Seli, Paul; Besner, Derek; Smilek, Daniel

    2014-07-01

    Here we test the hypothesis that fluctuations in subjective reports of mind wandering over time-on-task are associated with fluctuations in performance over time-on-task. In Study 1, we employed a singleton search task and found that performance did not differ prior to on- and off-task reports, nor did individual differences in mind wandering predict differences in performance (so-called standard analytic methods). Importantly however, we find that fluctuations in mind wandering over time are strongly associated with fluctuations in behavior. In Study 2, we provide a replication of the relation between mind wandering and performance over time found in Study 1, using a Flanker interference task. These data indicate (1) a tight coupling between mind wandering and performance over time and (2) that a temporal-analytic approach can reveal effects of mind wandering on performance in tasks where standard analyses fail to do so. The theoretical and methodological implications of these findings are discussed.

  8. Learning and inference using complex generative models in a spatial localization task.

    Science.gov (United States)

    Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N

    2016-01-01

    A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.

  9. Modelo matemático y algoritmo de solución de un flujo con tiempos dependientes de la secuencia // A mathematical model and solution algorithm to a flow shop task with times depending of the sequence.

    Directory of Open Access Journals (Sweden)

    A. Fiol-Zulueta

    2009-05-01

    Full Text Available El problema de la obtención de secuencias de trabajo en las actividades productivas consiste en ladeterminación de una posible combinación, deseablemente la mejor, de opciones de secuencias detrabajo para cada uno de los elementos que conforman la entidad productiva y por todas ellas, apartir de la elaboración previa de secuencias evaluadas considerando un determinado indicador deeficiencia. En el trabajo se propone un modelo matemático para el caso de un taller de flujo híbridocon tiempos de procesamiento dependientes de la secuencia y de las máquinas, y suimplementación utilizando una meta heurística, con el propósito de ayudar a la toma de decisionescon vistas a mejorar los instrumentos utilizados para lograr la conciliación de las secuencias detrabajo en los talleres de producción, debido a la necesidad de elevar los indicadores de eficienciade dichos talleres.Palabras claves: secuencias de producción en talleres de maquinado, taller de flujo, meta heurística,optimización bajo criterios múltiples.____________________________________________________________________________AbstractThe problem of obtaining work sequences in the productive activities consists on the determinationof a possible combination, desirably the best, of work sequences for each one of the elements ofthe productive entity and for all them starting from the previous elaboration of evaluatedsequences considering a certain efficiency indicator. In the work a mathematical model, for thecase of a hybrid flow shop with times depending of the sequence prosecution and of the machinescharacteristics, and it implementation using a metaheurístic procedure are proposed, with thepurpose of aiding the decisions making process with a view of improving the tools used to achievethe work sequences conciliation of the production shops, due to the necessity of raising theefficiency indicators of these workshops.Key words: work sequences in mechanical industry workshops, flow

  10. Timing analysis by model checking

    Science.gov (United States)

    Naydich, Dimitri; Guaspari, David

    2000-01-01

    The safety of modern avionics relies on high integrity software that can be verified to meet hard real-time requirements. The limits of verification technology therefore determine acceptable engineering practice. To simplify verification problems, safety-critical systems are commonly implemented under the severe constraints of a cyclic executive, which make design an expensive trial-and-error process highly intolerant of change. Important advances in analysis techniques, such as rate monotonic analysis (RMA), have provided a theoretical and practical basis for easing these onerous restrictions. But RMA and its kindred have two limitations: they apply only to verifying the requirement of schedulability (that tasks meet their deadlines) and they cannot be applied to many common programming paradigms. We address both these limitations by applying model checking, a technique with successful industrial applications in hardware design. Model checking algorithms analyze finite state machines, either by explicit state enumeration or by symbolic manipulation. Since quantitative timing properties involve a potentially unbounded state variable (a clock), our first problem is to construct a finite approximation that is conservative for the properties being analyzed-if the approximation satisfies the properties of interest, so does the infinite model. To reduce the potential for state space explosion we must further optimize this finite model. Experiments with some simple optimizations have yielded a hundred-fold efficiency improvement over published techniques.

  11. Task-Difficulty Homeostasis in Car Following Models: Experimental Validation Using Self-Paced Visual Occlusion.

    Science.gov (United States)

    Pekkanen, Jami; Lappi, Otto; Itkonen, Teemu H; Summala, Heikki

    2017-01-01

    Car following (CF) models used in traffic engineering are often criticized for not incorporating "human factors" well known to affect driving. Some recent work has addressed this by augmenting the CF models with the Task-Capability Interface (TCI) model, by dynamically changing driving parameters as function of driver capability. We examined assumptions of these models experimentally using a self-paced visual occlusion paradigm in a simulated car following task. The results show strong, approximately one-to-one, correspondence between occlusion duration and increase in time headway. The correspondence was found between subjects and within subjects, on aggregate and individual sample level. The long time scale aggregate results support TCI-CF models that assume a linear increase in time headway in response to increased distraction. The short time scale individual sample level results suggest that drivers also adapt their visual sampling in response to transient changes in time headway, a mechanism which isn't incorporated in the current models.

  12. A New Scheduling Algorithms For Real Time Tasks

    CERN Document Server

    Yaashuwanth, C

    2009-01-01

    The main objective of this paper is to develop the two different ways in which round robin architecture is modified and made suitable to be implemented in real time and embedded systems. The scheduling algorithm plays a significant role in the design of real time embedded systems. Simple round robin architecture is not efficient to be implemented in embedded systems because of higher context switch rate, larger waiting time and larger response time. Missing of deadlines will degrade the system performance in soft real time systems. The main objective of this paper is to develop the scheduling algorithm which removes the drawbacks in simple round robin architecture. A comparison with round robin architecture to the proposed architectures has been made. It is observed that the proposed architectures solves the problems encountered in round robin architecture in soft real time by decreasing the number of context switches waiting time and response time thereby increasing the system throughput.

  13. The Effects of Time on Task in Response Selection--An ERP Study of Mental Fatigue.

    Science.gov (United States)

    Möckel, Tina; Beste, Christian; Wascher, Edmund

    2015-06-09

    Long lasting involvement in a cognitive task leads to mental fatigue. Substantial efforts have been undertaken to understand this phenomenon. However, it has been demonstrated that some changes with time on task are not only related to mental fatigue. The present study intends to clarify these effects of time on task unrelated to mental fatigue on response selection processes at the behavioural and electrophysiological level (using event-related potentials, ERPs). Participants had to perform a Simon task for more than 3 hours and rated their experienced mental fatigue and motivation to continue with the task at several time points during the experiment. The results show that at the beginning of the experiment some unspecific modulations of training and adaptation are evident. With time on task participants' ability to resolve response conflict appears to become impaired. The results reveal that time on task effects cannot be completely explained by mental fatigue. Instead, it seems that an interplay of adaptation at the beginning and motivational effects in the course of a task modulate performance and neurophysiological parameters. In future studies it will be important to account for the relative contribution of adaptation and motivation parameters when time on task effects are investigated.

  14. Connectionist and diffusion models of reaction time.

    Science.gov (United States)

    Ratcliff, R; Van Zandt, T; McKoon, G

    1999-04-01

    Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.

  15. Task-discriminative space-by-time factorization of muscle activity

    Directory of Open Access Journals (Sweden)

    Ioannis eDelis

    2015-07-01

    Full Text Available Movement generation has been hypothesized to rely on a modular organization of muscle activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor tasks by recruiting a limited set of modules and combining them in a task-dependent manner. Thus far, existing algorithms that extract putative modules of muscle activations, such as Nonnegative Matrix Factorization (NMF, identify modular decompositions that maximize the reconstruction of the recorded EMG data. Typically, the functional role of the decompositions, i.e. task accomplishment, is only assessed a posteriori. However, as motor actions are defined in task space, we suggest that motor modules should be computed in task space too. In this study, we propose a new module extraction algorithm, named DsNM3F, that uses task information during the module identification process. DsNM3F extends our previous space-by-time decomposition method (the so-called sNM3F algorithm, which could assess task performance only after having computed modules to identify modules gauging between two complementary objectives: reconstruction of the original data and reliable discrimination of the performed tasks. We show that DsNM3F recovers the task dependence of module activations more accurately than sNM3F. We also apply it to electromyographic signals recorded during performance of a variety of arm pointing tasks and identify spatial and temporal modules of muscle activity that are highly consistent with previous studies. DsNM3F achieves perfect task categorization without significant loss in data approximation when task information is available and generalizes as well as sNM3F when applied to new data. These findings suggest that the space-by-time decomposition of muscle activity finds robust task-discriminating modular representations of muscle activity and that the insertion of task discrimination objectives is useful for describing the task modulation of module recruitment.

  16. Time on Task in Intensive Modes of Delivery

    Science.gov (United States)

    Kuiper, Alison; Solomonides, Ian; Hardy, Lara

    2015-01-01

    This paper reports on an investigation into how staff teaching in compressed courses can encourage student engagement and enhance student use of learning time, despite significant restraints of time as well as distance. Typically these courses (described here as units) are expected to have comparable learning outcomes to their full-semester…

  17. Efforts - Final technical report on task 4. Physical modelling calidation

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Christensen, T. W.

    The present report is documentation for the work carried out in Task 4 at DTU Physical modelling-validation on the Brite/Euram project No. BE96-3340, contract No. BRPR-CT97-0398, with the title Enhanced Framework for forging design using reliable three-dimensional simulation (EFFORTS). The report...

  18. Large sex difference in adolescents on a timed line judgment task: attentional contributors and task relationship to mathematics.

    Science.gov (United States)

    Collaer, Marcia L; Hill, Erica M

    2006-01-01

    Visuospatial performance, assessed with the new, group-administered Judgment of Line Angle and Position test (JLAP-13), varied with sex and mathematical competence in a group of adolescents. The JLAP-13, a low-level perceptual task, was modeled after a neuropsychological task dependent upon functioning of the posterior region of the right hemisphere [Benton et al, 1994 Contributions to Neuropsychological Assessment: A Clinical Manual (New York: Oxford University Press)]. High-school boys (N = 52) performed better than girls (N = 62), with a large effect for sex (d = 1.11). Performance increased with mathematical competence, but the sex difference did not vary significantly across different levels of mathematics coursework. On the basis of earlier work, it was predicted that male, but not female, performance in line judgment would decline with disruptions to task geometry (page frame), and that the sex difference would disappear with disruptions to geometry. These predictions were supported by a number of univariate and sex-specific analyses, although an omnibus repeated-measures analysis did not detect the predicted interaction, most likely owing to limitations in power. Thus, there is partial support for the notion that attentional predispositions or strategies may contribute to visuospatial sex differences, with males more likely than females to attend to, and rely upon, internal or external representations of task geometry. Additional support for this hypothesis may require development of new measures or experimental manipulations with more powerful geometrical disruptions.

  19. On the Optimal Scheduling of Independent, Symmetric and Time-Sensitive Tasks

    CERN Document Server

    Iannello, Fabio; Spagnolini, Umberto

    2011-01-01

    Consider a discrete-time system in which a centralized controller (CC) is tasked with assigning at each time interval (or slot) K resources (or servers) to K out of M>=K nodes. The M nodes execute tasks that are independently generated at each node by stochastically symmetric and memoryless random processes. The tasks are stored by each node in a finite-capacity task queue, and they are time-sensitive in the sense that within each slot there is a non-zero probability that a task expires before being scheduled. The scheduling problem is tackled with the aim of maximizing the number of tasks completed over time (or task-throughput) under the assumption that the CC has no direct access to the state of the task queues. The scheduling decisions at the CC are based on the outcomes of previous scheduling commands, and on the known statistical properties of the task generation and expiration processes. Overall, the scheduling problem considered herein is general. Practical applications include the scheduling of packe...

  20. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task

    DEFF Research Database (Denmark)

    Fitzpatrick, Ciarán Martin; Woldbye, David Paul Drucker; Andreasen T., Jesper

    2017-01-01

    RATIONALE: The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds...... and other parameters of attentional capacity. OBJECTIVES: We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. METHODS: C57BL/6 mice were tested in two 1-h sessions...... thresholds and motor response baselines. CONCLUSIONS: This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies....

  1. Short Vigilance Tasks are Hard Work Even If Time Flies

    Science.gov (United States)

    2016-10-21

    1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and...are Hard Work Even If Time Flies 5a. CONTRACT NUMBER FA8650-14-D-6501-0009 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...NUMBER 5f. WORK UNIT NUMBER H0HJ (53290813) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 1United States

  2. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    Full Text Available Current powered prosthetic legs require switching control modes according to the task the user is performing (e.g. level-ground walking, stair climbing, walking on slopes, etc.. To allow prosthesis users safely and seamlessly transition between tasks, it is critical to determine when to switch the prosthesis control mode during task transitions. Our previous study defined critical timings for different types of task transitions in ambulation; however, it is unknown whether it is the unique timing that allows safe and seamless transitions. The goals of this study were to (1 systematically investigate the effects of mode switch timing on the prosthesis user's performance in task transitions, and (2 identify appropriate timing to switch the prosthesis control mode so that the users can seamlessly transition between different locomotion tasks. Five able-bodied (AB and two transfemoral (TF amputee subjects were tested as they wore a powered knee prosthesis. The prosthesis control mode was switched manually at various times while the subjects performed different types of task transitions. The subjects' task transition performances were evaluated by their walking balance and success in performing seamless task transitions. The results demonstrated that there existed a time window within which switching the prosthesis control mode neither interrupted the subjects' task transitions nor disturbed their walking balance. Therefore, the results suggested the control mode switching of a lower limb prosthesis can be triggered within an appropriate time window instead of a specific timing or an individual phase. In addition, a generalized criterion to determine the appropriate mode switch timing was proposed. The outcomes of this study could provide important guidance for future designs of neurally controlled powered knee prostheses that are safe and reliable to use.

  3. An Improved Model for Computing-Intensive Tasks on Heterogeneous Workstations

    Institute of Scientific and Technical Information of China (English)

    邬延辉; 陆鑫达

    2004-01-01

    An improved algorithm, which solves cooperative concurrent computing tasks using the idle cycles of a number of high performance heterogeneous workstations interconnected through a high-speed network, was proposed. In order to get better parallel computation performance, this paper gave a model and an algorithm of task scheduling among heterogeneous workstations, in which the costs of loading data, computing, communication and collecting results are considered. Using this efficient algorithm, an optimal subset of heterogeneous workstations with the shortest parallel executing time of tasks can be selected.

  4. Additional technician tasks and turnaround time in the clinical Stat laboratory.

    OpenAIRE

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Maria; Lillo, Rosa; Leiva-Salinas, Carlos

    2016-01-01

    Introduction: Many additional tasks in the Stat laboratory (SL) increase the workload. It is necessary to control them because they can affect the service provided by the laboratory. Our aim is to calculate these tasks, study their evolution over a 10 year period, and compare turnaround times (TAT) in summer period to the rest of the year. Materials and methods: Additional tasks were classified as “additional test request” and “additional sample”. We collected those incidences from the lab...

  5. Gap timing and the spectral timing model.

    Science.gov (United States)

    Hopson, J W

    1999-04-01

    A hypothesized mechanism underlying gap timing was implemented in the Spectral Timing Model [Grossberg, S., Schmajuk, N., 1989. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 2, 79-102] , a neural network timing model. The activation of the network nodes was made to decay in the absence of the timed signal, causing the model to shift its peak response time in a fashion similar to that shown in animal subjects. The model was then able to accurately simulate a parametric study of gap timing [Cabeza de Vaca, S., Brown, B., Hemmes, N., 1994. Internal clock and memory processes in aminal timing. J. Exp. Psychol.: Anim. Behav. Process. 20 (2), 184-198]. The addition of a memory decay process appears to produce the correct pattern of results in both Scalar Expectancy Theory models and in the Spectral Timing Model, and the fact that the same process should be effective in two such disparate models argues strongly that process reflects a true aspect of animal cognition.

  6. Assessment Engineering Task Model Maps, Task Models and Templates as a New Way to Develop and Implement Test Specifications

    Science.gov (United States)

    Luecht, Richard M.

    2013-01-01

    Assessment engineering is a new way to design and implement scalable, sustainable and ideally lower-cost solutions to the complexities of designing and developing tests. It represents a merger of sorts between cognitive task modeling and engineering design principles--a merger that requires some new thinking about the nature of score scales, item…

  7. Time for actions in lucid dreams: Effects of task modality, length, and complexity

    Directory of Open Access Journals (Sweden)

    Daniel eErlacher

    2014-01-01

    Full Text Available The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (Erlacher & Schredl, 2004; LaBerge, 1985, but Erlacher and Schredl (2004 found that performing squats required about 40 % more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted.In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20 and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for the second condition where eight lucid dreamers had to walk 10, 20 or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps.Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics. However, no difference was found for relative times (no disproportional time effects and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations.

  8. Time for actions in lucid dreams: effects of task modality, length, and complexity.

    Science.gov (United States)

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2013-01-01

    The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schredl (2004) found that performing squats required about 40% more time in lucid dreams than in the waking state. To find out if the task modality, the task length, or the task complexity results in prolonged times in lucid dreams, an experiment with three different conditions was conducted. In the first condition, five proficient lucid dreamers spent one to three non-consecutive nights in the sleep laboratory. Participants counted to 10, 20, and 30 in wakefulness and in their lucid dreams. Lucidity and task intervals were time stamped with left-right-left-right eye movements. The same procedure was used for the second condition where eight lucid dreamers had to walk 10, 20, or 30 steps. In the third condition, eight lucid dreamers performed a gymnastics routine, which in the waking state lasted the same time as walking 10 steps. Again, we found that performing a motor task in a lucid dream requires more time than in wakefulness. Longer durations in the dream state were present for all three tasks, but significant differences were found only for the tasks with motor activity (walking and gymnastics). However, no difference was found for relative times (no disproportional time effects) and a more complex motor task did not result in more prolonged times. Longer durations in lucid dreams might be related to the lack of muscular feedback or slower neural processing during REM sleep. Future studies should explore factors that might be associated with prolonged durations.

  9. Repeatability of the timing of eye-hand coordinated movements across different cognitive tasks.

    Science.gov (United States)

    de Boer, C; van der Steen, J; Schol, R J; Pel, J J M

    2013-08-15

    Quantification of eye-hand coordinated behaviour is a relatively new tool to study neurodegeneration in humans. Its sensitivity depends on the assessment of different behavioural strategies, multiple task testing and repeating tasks within one session. However, large numbers of repetition trials pose a significant burden on subjects. To introduce this method in large-scale population studies, it is necessary to determine whether reducing the number of task repetitions, which will lower subject burden, still leads to acceptable measurement accuracy. The objective of this study was to investigate the validity and reliability of eye-hand coordination outcome parameters in eight healthy volunteers using a test-retest approach. Subjects were assessed during a shortened test procedure consisting of eight repetitions of three behavioural tasks: a reflex-based tapping task, a planning-based tapping task and a memory-based tapping task. Eye-hand coordination was quantified in terms of timing (eye and hand latencies), kinematics and accuracy. Eye and hand latencies were found within a normal range (between 150 and 450ms). A paired samples t-test revealed no differences in timing parameters between the first and second measurements. It was concluded that eight trial repetitions are sufficient for quantifying eye-hand coordination in terms of timing, kinematics and accuracy. This approach demonstrates the testing of multiple visuomotor behaviours within a reasonable time span of a few minutes per task.

  10. Visual-search models for location-known detection tasks

    Science.gov (United States)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  11. Homology Priority Task Scheduling in μC/OS-Ⅱ Real-Time Kernel

    Institute of Scientific and Technical Information of China (English)

    WANG Xibo; ZHOU Benhai; YU Ge; LI Qian

    2007-01-01

    μC/OS- Ⅱ is an open source real-time kernel adopting priority preemptive schedule strategy. Aiming at the problem of μC/OS-Ⅱ failing to support homology priority tasks scheduling,an approach for solution is proposed. The basic idea is adding round-robin scheduling strategy in its original scheduler in order to schedule homology priority tasks through time slice roundrobin. Implementation approach is given in detail. Firstly, the Task Control Block (TCB) is extended. And then, a new priority index table is created, in which each index pointer points to a set of homology priority tasks. Eventually, on the basis of reconstructing μC/OS-Ⅱ real-time kernel, task scheduling module is rewritten.Otherwise, schedulability of homology task supported by modified kernel had been analyzed, and deadline formula of created homology tasks is given. By theoretical analysis and experiment verification, the modified kernel can support homology priority tasks scheduling, meanwhile, it also remains preemptive property of original μC/OS- Ⅱ.

  12. Time-on-task, technology and mathematics achievement.

    Science.gov (United States)

    Louw, Johann; Muller, Johan; Tredoux, Colin

    2008-02-01

    Information and communication technologies hold much promise for use in education in developing countries. This study reports on an evaluation conducted on the introduction of computers in the delivery of the mathematics curriculum in one of the provinces of South Africa. Although the request was for an outcome evaluation very early in the implementation of the program, it was tailored in such a way as to fulfill a more formative role. Despite substantial variability in implementation, and in most cases with very weak exposure of the learners to the intervention, sufficient evidence emerged to indicate that this mode of curriculum delivery may be effective. Improvement in mathematics performance was related to a range of variables: some concerned classroom teaching practices, some referred to social differences between the learners, and some to the specific intervention. The strongest of these predictors in the sample was the strength of the intervention: the more time learners spent on using the software to study mathematics, the more improvement they showed from 1 year to the next in their performance in the subject.

  13. Time-varying priority queuing models for human dynamics.

    Science.gov (United States)

    Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo

    2012-06-01

    Queuing models provide insight into the temporal inhomogeneity of human dynamics, characterized by the broad distribution of waiting times of individuals performing tasks. We theoretically study the queuing model of an agent trying to execute a task of interest, the priority of which may vary with time due to the agent's "state of mind." However, its execution is disrupted by other tasks of random priorities. By considering the priority of the task of interest either decreasing or increasing algebraically in time, we analytically obtain and numerically confirm the bimodal and unimodal waiting time distributions with power-law decaying tails, respectively. These results are also compared to the updating time distribution of papers in arXiv.org and the processing time distribution of papers in Physical Review journals. Our analysis helps to understand human task execution in a more realistic scenario.

  14. Time-Varying Priority Queuing Models for Human Dynamics

    CERN Document Server

    Jo, Hang-Hyun; Kaski, Kimmo

    2011-01-01

    Queuing models provide insight into the temporal inhomogeneity of human dynamics, characterized by the broad distribution of waiting times of individuals performing tasks. We study the queuing model of an agent trying to execute a task of interest, the priority of which may vary with time due to the agent's "state of mind." However, its execution can be disrupted by other tasks of random priorities. By considering the priority of the task of interest either decreasing or increasing algebraically in time, we analytically obtain and numerically confirm the bimodal and unimodal waiting time distributions with power-law decaying tails, respectively. These results are also compared to the updating time distribution of papers in the arXiv and the processing time distribution of papers in Physical Review journals. Our analysis helps to understand the human task execution behavior in a more realistic scenario.

  15. Task, Team and Time to structure online collaboration in learning environments

    Directory of Open Access Journals (Sweden)

    Donatella Persico, Francesca Pozzi

    2011-04-01

    Full Text Available The debate on whether and how to structure collaboration in online learning environments is quite active. In this paper the authors identify Task, Team and Time as the main components of an online collaborative activity, through which the overall structure of the activity can be determined to scaffold learners’ interactions. Based on five examples of real-life online learning activities featuring different degrees of structure as to Task, Team and Time, the authors reflect on the extent to which the way these three dimensions are structured may affect the overall learning process. Method of the study is interaction analysis of the students messages, exchanged in asynchronous mode during the activity. The analysis was carried out according to a quantitative and qualitative model that distinguishes among the participative, social, cognitive and teaching dimensions. The results of the study seem to support the hypothesis that the three Ts well represent the structure of CSCL activities and that, in many cases, it is the lack of structure in one or more of them that is associated to a higher frequency of some indicators, as if the missing guidance causes an enhanced effort on the side of the learners to compensate the deficit

  16. Sex differences in time to task failure during early pubertal development.

    Science.gov (United States)

    Rudroff, Thorsten; Holmes, Matthew R; Melanson, Edward L; Kelsey, Megan M

    2014-06-01

    We compared fatigability and activation of elbow flexor muscles in children at 3 pubertal stages during a sustained submaximal contraction. In 72 healthy children (39 boys) aged 11 ± 3 years (range, 8-14 years), differences in fatigability (time to task failure) and muscle activation were compared at 3 Tanner stages (T1-T3). Time to task failure and muscle activation were similar between boys and girls at prepubertal Tanner stage 1. Time to task failure was briefer for girls than boys at Tanner stages 2 and 3 and was predicted by the coactivation indices and percent body fat in girls. Muscle torque was the only predictor for the time to task failure in boys. Differences in fatigability and muscle coactivation were evident during the initial pubertal stages (T2 and T3), but not before the onset of puberty (T1). Copyright © 2013 Wiley Periodicals, Inc.

  17. Time-resolved detection of stimulus/task-related networks, via clustering of transient intersubject synchronization.

    Science.gov (United States)

    Bordier, Cécile; Macaluso, Emiliano

    2015-09-01

    Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time-series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time-series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task-dependent changes of connectivity). We present a fully data-driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time-windows was used to identify if/when any area showed stimulus/task-related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time-series (stimulus/task-related networks). Finally, for each network, a second clustering step grouped together all the time-windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task-related activity at specific time-points during the fMRI time-series. We label these configurations: "brain modes" (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli.

  18. The Effects of Art History-Enriched Art Therapy on Anxiety, Time on Task, and Art Product Quality.

    Science.gov (United States)

    Miller, Carol L.

    1993-01-01

    Investigated effects of art history enrichment of art therapy task on anxiety, time on task, and art product quality among 13 chronic adult psychiatric day hospital patients. Results indicated art history enrichment task reduced anxiety and increased time on task. Art organization level tended toward significant increase compared with control…

  19. Introduction to the IWA task group on biofilm modeling.

    Science.gov (United States)

    Noguera, D R; Morgenroth, E

    2004-01-01

    An International Water Association (IWA) Task Group on Biofilm Modeling was created with the purpose of comparatively evaluating different biofilm modeling approaches. The task group developed three benchmark problems for this comparison, and used a diversity of modeling techniques that included analytical, pseudo-analytical, and numerical solutions to the biofilm problems. Models in one, two, and three dimensional domains were also compared. The first benchmark problem (BM1) described a monospecies biofilm growing in a completely mixed reactor environment and had the purpose of comparing the ability of the models to predict substrate fluxes and concentrations for a biofilm system of fixed total biomass and fixed biomass density. The second problem (BM2) represented a situation in which substrate mass transport by convection was influenced by the hydrodynamic conditions of the liquid in contact with the biofilm. The third problem (BM3) was designed to compare the ability of the models to simulate multispecies and multisubstrate biofilms. These three benchmark problems allowed identification of the specific advantages and disadvantages of each modeling approach. A detailed presentation of the comparative analyses for each problem is provided elsewhere in these proceedings.

  20. Aespoe modelling task force - experiences of the site specific flow and transport modelling (in detailed and site scale)

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Stroem, A.; Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co. , Stockholm (Sweden)

    1998-09-01

    The Aespoe Task Force on modelling of groundwater flow and transport of solutes was initiated in 1992. The Task Force shall be a forum for the organisations supporting the Aespoe Hard Rock Laboratory Project to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Much emphasis is put on building of confidence in the approaches and methods in use for modelling of groundwater flow and nuclide migration in order to demonstrate their use for performance and safety assessment. The modelling work within the Task Force is linked to the experiments performed at the Aespoe Laboratory. As the first Modelling Task, a large scale pumping and tracer experiment called LPT2 was chosen. This was the final part of the characterisation work for the Aespoe site before the construction of the laboratory in 1990. The construction of the Aespoe HRL access tunnel caused an even larger hydraulic disturbance on a much larger scale than that caused by the LPT2 pumping test. This was regarded as an interesting test case for the conceptual and numerical models of the Aespoe site developed during Task No 1, and was chosen as the third Modelling Task. The aim of Task 3 can be seen from two different perspectives. The Aespoe HRL project saw it as a test of their ability to define a conceptual and structural model of the site that can be utilised by independent modelling groups and be transformed to a predictive groundwater flow model. The modelling groups saw it as a means of understanding groundwater flow in a large fractured rock volume and of testing their computational tools. A general conclusion is that Task 3 has served these purposes well. Non-sorbing tracers tests, made as a part of the TRUE-experiments were chosen as the next predictive modelling task. A preliminary comparison between model predictions made by the Aespoe Task Force and the experimental results, shows that most modelling teams predicted breakthrough from

  1. Alternative time representation in dopamine models.

    Science.gov (United States)

    Rivest, François; Kalaska, John F; Bengio, Yoshua

    2010-02-01

    Dopaminergic neuron activity has been modeled during learning and appetitive behavior, most commonly using the temporal-difference (TD) algorithm. However, a proper representation of elapsed time and of the exact task is usually required for the model to work. Most models use timing elements such as delay-line representations of time that are not biologically realistic for intervals in the range of seconds. The interval-timing literature provides several alternatives. One of them is that timing could emerge from general network dynamics, instead of coming from a dedicated circuit. Here, we present a general rate-based learning model based on long short-term memory (LSTM) networks that learns a time representation when needed. Using a naïve network learning its environment in conjunction with TD, we reproduce dopamine activity in appetitive trace conditioning with a constant CS-US interval, including probe trials with unexpected delays. The proposed model learns a representation of the environment dynamics in an adaptive biologically plausible framework, without recourse to delay lines or other special-purpose circuits. Instead, the model predicts that the task-dependent representation of time is learned by experience, is encoded in ramp-like changes in single-neuron activity distributed across small neural networks, and reflects a temporal integration mechanism resulting from the inherent dynamics of recurrent loops within the network. The model also reproduces the known finding that trace conditioning is more difficult than delay conditioning and that the learned representation of the task can be highly dependent on the types of trials experienced during training. Finally, it suggests that the phasic dopaminergic signal could facilitate learning in the cortex.

  2. A Novel Connectionist Network for Solving Long Time-Lag Prediction Tasks

    Science.gov (United States)

    Johnson, Keith; MacNish, Cara

    Traditional Recurrent Neural Networks (RNNs) perform poorly on learning tasks involving long time-lag dependencies. More recent approaches such as LSTM and its variants significantly improve on RNNs ability to learn this type of problem. We present an alternative approach to encoding temporal dependencies that associates temporal features with nodes rather than state values, where the nodes explicitly encode dependencies over variable time delays. We show promising results comparing the network's performance to LSTM variants on an extended Reber grammar task.

  3. The performance of college students on piaget-type tasks dealing with distance, time, and speed

    Science.gov (United States)

    Poduska, Ervin; Phillips, Darrell G.

    Research was done to probe and extend Piaget's theory of the conception of speed. Specifically tested was the hypothesis that there is no hierarchical relationship in performance on the following Piaget-type tasks: conservation of distance, asymmetric series of speeds, one-to-many (circular) speeds, symmetric speeds, time, and proportional reasoning. The research also tested the gender-related performance on these six tasks. One hundred freshman and sophomore college students were shown demonstrations of equipment individually for each of the six tasks. A set of open-ended questions based on the demonstrations was administered to each subject in a 45-minute interview. Subjects were scored as pass on a given task if they manipulated objects in certain ways and gave specific types of explanations. A scalogram analysis of the data yielded a z-score of - 3.7 which indicated that subjects passed the task in a certain sequence. The tasks were found to form a unidimensional scale and to be increasingly difficult in the order listed above. A chi-square test for two independent samples showed a significant difference (alpha = 0.05) in performance between males and females on all speed tasks. No significant differences in performance between males and females were found for the distance and time tasks.

  4. Combined Task and Physical Demands Analyses towards a Comprehensive Human Work Model

    Science.gov (United States)

    2014-09-01

    velocities, and accelerations over time for each postural sequence. Neck strain measures derived from biomechanical analyses of these postural...and whole missions. The result is a comprehensive model of tasks and associated physical demands from which one can estimate the accumulative neck ...Griffon Helicopter aircrew (Pilots and Flight Engineers) reported neck pain particularly when wearing Night Vision Goggles (NVGs) (Forde et al. , 2011

  5. Measuring teaching ability with the Rasch model by scaling a series of product and performance tasks.

    Science.gov (United States)

    Wilkerson, Judy R; Lang, William Steve

    2006-01-01

    Rasch measurement can provide a much needed solution to scaling teacher ability. Typically, decisions about teacher ability are based on dichotomously scored certification tests focused on knowledge of content or pedagogy. This paper presents early developmental work of a partial-credit teacher-ability scale of 42 tasks (performances and products) with 348 rated items or criteria. The tasks and criteria are aligned with national and state standards for expected teacher knowledge and skills. These tasks are being used in about two-thirds of Florida school districts and are spreading to colleges of education. Over time there will be many variations in both tasks and criteria, but here we focus on the initial system and the Rasch model as part of the plan for development of the system.

  6. Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Andrea Acquaviva

    2008-01-01

    Full Text Available Multiprocessor systems on chips (MPSoCs are envisioned as the future of embedded platforms such as game-engines, smart-phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been recently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact, these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its impact on multimedia soft real-time applications using a software FM Radio benchmark.

  7. Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Alimonda Andrea

    2008-01-01

    Full Text Available Abstract Multiprocessor systems on chips (MPSoCs are envisioned as the future of embedded platforms such as game-engines, smart-phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been recently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact, these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its impact on multimedia soft real-time applications using a software FM Radio benchmark.

  8. An Adaptive Genetic Algorithm for Multiprocessor Real-time Task Scheduling

    Institute of Scientific and Technical Information of China (English)

    LI Ya-jun; YANG Yu-hang

    2009-01-01

    Real-time task scheduling is of primary significance in multiprocessor systems. Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems. In this paper,we represent those two goals as the minimization of the average response time and the average task laxity. To achieve this, we propose a genetic-based algorithm with problem-specific and efficient genetic operators. Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency. The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.

  9. Random walk models for top-N recommendation task

    Institute of Scientific and Technical Information of China (English)

    Yin ZHANG; Jiang-qin WU; Yue-ting ZHUANG

    2009-01-01

    Recently there has been an increasing interest in applying random walk based methods to recommender systems.We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning problem.taking into account the degree of each node on the user-item bipartite graph,and induce an effective absorbing random walk (ARW) algorithm for the top-N recommendation task.Our random walk approach directly generates the top-N recommendations for individuals,rather than predicting the ratings of the recommendations.Experimental results on the two real data sets show that our random walk algorithm significantly outperforms the state-of-the-art random walk based personalized ranking algorithm as well as the popular item-based collaborative filtering method.

  10. Selective Influence of Circadian Modulation and Task Characteristics on Motor Imagery Time

    Science.gov (United States)

    Debarnot, Ursula; Sahraoui, Djafar; Champely, Stephane; Collet, Christian; Guillot, Aymeric

    2012-01-01

    In this study, we examined the effect of circadian modulation on motor imagery (MI) time while also considering the effects of task complexity and duration. The ability to imagine in real time was influenced by circadian modulation in a simple walking condition, with longer MI times in the morning and evening sessions. By contrast, there was no…

  11. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain tr

  12. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain

  13. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain tr

  14. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    Directory of Open Access Journals (Sweden)

    Roumen eKirov

    2015-09-01

    Full Text Available Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM and REM sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.

  15. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task.

    Science.gov (United States)

    Kirov, Roumen; Kolev, Vasil; Verleger, Rolf; Yordanova, Juliana

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT) in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.

  16. Entropy of space-time outcome in a movement speed-accuracy task.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy.

  17. Introduction to Time Series Modeling

    CERN Document Server

    Kitagawa, Genshiro

    2010-01-01

    In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, "Introduction to Time Series Modeling" covers numerous time series models and the various tools f

  18. Learning the Task Management Space of an Aircraft Approach Model

    Science.gov (United States)

    Krall, Joseph; Menzies, Tim; Davies, Misty

    2014-01-01

    Validating models of airspace operations is a particular challenge. These models are often aimed at finding and exploring safety violations, and aim to be accurate representations of real-world behavior. However, the rules governing the behavior are quite complex: nonlinear physics, operational modes, human behavior, and stochastic environmental concerns all determine the responses of the system. In this paper, we present a study on aircraft runway approaches as modeled in Georgia Tech's Work Models that Compute (WMC) simulation. We use a new learner, Genetic-Active Learning for Search-Based Software Engineering (GALE) to discover the Pareto frontiers defined by cognitive structures. These cognitive structures organize the prioritization and assignment of tasks of each pilot during approaches. We discuss the benefits of our approach, and also discuss future work necessary to enable uncertainty quantification.

  19. Observer analysis and its impact on task performance modeling

    Science.gov (United States)

    Jacobs, Eddie L.; Brown, Jeremy B.

    2014-05-01

    Fire fighters use relatively low cost thermal imaging cameras to locate hot spots and fire hazards in buildings. This research describes the analyses performed to study the impact of thermal image quality on fire fighter fire hazard detection task performance. Using human perception data collected by the National Institute of Standards and Technology (NIST) for fire fighters detecting hazards in a thermal image, an observer analysis was performed to quantify the sensitivity and bias of each observer. Using this analysis, the subjects were divided into three groups representing three different levels of performance. The top-performing group was used for the remainder of the modeling. Models were developed which related image quality factors such as contrast, brightness, spatial resolution, and noise to task performance probabilities. The models were fitted to the human perception data using logistic regression, as well as probit regression. Probit regression was found to yield superior fits and showed that models with not only 2nd order parameter interactions, but also 3rd order parameter interactions performed the best.

  20. The Use of Video Self-Modeling to Increase On-Task Behavior in Children with High-Functioning Autism

    Science.gov (United States)

    Schatz, Rochelle B.; Peterson, Rachel K.; Bellini, Scott

    2016-01-01

    In the present study, the researchers implemented a video self-modeling intervention for increasing on-task classroom behavior for three elementary school students diagnosed with an autism spectrum disorder. The researchers observed the students' on-task engagement three times a week during their respective math classes. A multiple baseline design…

  1. Critical Task Re-assignment under Hybrid Scheduling Approach in Multiprocessor Real-Time Systems

    CERN Document Server

    Nair, Gopalakrishnan T R

    2012-01-01

    Embedded hard real time systems require substantial amount of emergency processing power for the management of large scale systems like a nuclear power plant under the threat of an earth quake or a future transport systems under a peril. In order to meet a fully coordinated supervisory control of multiple domains of a large scale system, it requires the scenario of engaging multiprocessor real time design. There are various types of scheduling schemes existing for meeting the critical task assignment in multiple processor environments and it requires the tracking of faulty conditions of the subsystem to avoid system underperformance from failure patterns. Hybrid scheduling usually engages a combined scheduling philosophy comprising of a static scheduling of a set of tasks and a highly pre-emptive scheduling for another set of tasks in different situations of process control. There are instances where highly critical tasks need to be introduced at a least expected catastrophe and it cannot be ensured to meet a...

  2. A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks.

    Science.gov (United States)

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach-Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest.

  3. Scaling Task Management in Space and Time: Reducing User Overhead in Ubiquitous-Computing Environments

    Science.gov (United States)

    2005-03-28

    limitation of this approach is that it does not easily scale to large numbers of tasks over extended periods. Busy users may intermittently touch on...RETSINA framework, with applications in domains such as financial portfolio management, ecommerce and military logistics [88]; and more recently Carnegie...complex tasks. Examples can be found in the workflow modeling of business processes, and in some agent-based systems, where the description of the

  4. The cortisol awakening response is associated with performance of a serial sequence reaction time task.

    Science.gov (United States)

    Hodyl, Nicolette A; Schneider, Luke; Vallence, Ann-Maree; Clow, Angela; Ridding, Michael C; Pitcher, Julia B

    2016-02-01

    There is emerging evidence of a relationship between the cortisol awakening response (CAR) and the neural mechanisms underlying learning and memory. The aim of this study was to determine whether the CAR is associated with acquisition, retention and overnight consolidation or improvement of a serial sequence reaction time task. Salivary samples were collected at 0, 15, 30 and 45 min after awakening in 39 healthy adults on 2 consecutive days. The serial sequence reaction time task was repeated each afternoon. Participants completed the perceived stress scale and provided salivary samples prior to testing for cortisol assessment. While the magnitude of the CAR (Z score) was not associated with either baseline performance or the timed improvement during task acquisition of the serial sequence task, a positive correlation was observed with reaction times during the stable performance phase on day 1 (r=0.373, p=0.019). Residuals derived from the relationship between baseline and stable phase reaction times on day 1 were used as a surrogate for the degree of learning: these residuals were also correlated with the CAR mean increase on day 1 (r=0.357, p=0.048). Task performance on day 2 was not associated with the CAR obtained on this same day. No association was observed between the perceived stress score, cortisol at testing or task performance. These data indicate that a smaller CAR in healthy adults is associated with a greater degree of learning and faster performance of a serial sequence reaction time task. These results support recognition of the CAR as an important factor contributing to cognitive performance throughout the day.

  5. The effect of task and pitch structure on pitch-time interactions in music.

    Science.gov (United States)

    Prince, Jon B; Schmuckler, Mark A; Thompson, William F

    2009-04-01

    Musical pitch-time relations were explored by investigating the effect of temporal variation on pitch perception. In Experiment 1, trained musicians heard a standard tone followed by a tonal context and then a comparison tone. They then performed one of two tasks. In the cognitive task, they indicated whether the comparison tone was in the key of the context. In the perceptual task, they judged whether the comparison tone was higher or lower than the standard tone. For both tasks, the comparison tone occurred early, on time, or late with respect to temporal expectancies established by the context. Temporal variation did not affect accuracy in either task. Experiment 2 used the perceptual task and varied the pitch structure by employing either a tonal or an atonal context. Temporal variation did not affect accuracy for tonal contexts, but did for atonal contexts. Experiment 3 replicated these results and controlled potential confounds. We argue that tonal contexts bias attention toward pitch and eliminate effects of temporal variation, whereas atonal contexts do not, thus fostering pitch-time interactions.

  6. Overcoming duality: the fused bousfieldian function for modeling word production in verbal fluency tasks.

    Science.gov (United States)

    Ehlen, Felicitas; Fromm, Ortwin; Vonberg, Isabelle; Klostermann, Fabian

    2016-10-01

    Word production is generally assumed to occur as a function of a broadly interconnected language system. In terms of verbal fluency tasks, word production dynamics can be assessed by analyzing respective time courses via curve fitting. Here, a new generalized fitting function is presented by merging the two dichotomous classical Bousfieldian functions into one overarching power function with an adjustable shape parameter. When applied to empirical data from verbal fluency tasks, the error of approximation was significantly reduced while also fulfilling the Bayesian information criterion, suggesting a superior overall application value. Moreover, the approach identified a previously unknown logarithmic time course, providing further evidence of an underlying lexical network structure. In view of theories on lexical access, the corresponding modeling differentiates task-immanent lexical suppression from automatic lexical coactivation. In conclusion, our approach indicates that process dynamics result from an increasing cognitive effort to suppress automatic network functions.

  7. Towards a new metamodel for the Task Flow Model of the Discovery Method

    CERN Document Server

    Fernandez-y-Fernandez, Carlos Alberto

    2012-01-01

    This paper presents our proposal for the evolution of the metamodel for the Task Algebra in the Task Flow model for the Discovery Method. The original Task Algebra is based on simple and compound tasks structured using operators such as sequence, selection, and parallel composition. Recursion and encapsulation were also considered. We propose additional characteristics to improve the capabilities of the metamodel to represent accurately the Task Flow Model.

  8. Sustained attention in adult ADHD : time-on-task effects of various measures of attention

    NARCIS (Netherlands)

    Tucha, Lara; Fuermaier, Anselm B.M.; Koerts, Janneke; Buggenthin, Rieka; Aschenbrenner, Steffen; Weisbrod, Matthias; Thome, Johannes; Lange, Klaus W.; Tucha, Oliver

    Neuropsychological research on adults with ADHD showed deficits in various aspects of attention. However, the majority of studies failed to explore the change of performance over time, so-called time-on-task effects. As a consequence, little is known about sustained attention performance of adults

  9. Sustained attention in adult ADHD : time-on-task effects of various measures of attention

    NARCIS (Netherlands)

    Tucha, Lara; Fuermaier, Anselm B.M.; Koerts, Janneke; Buggenthin, Rieka; Aschenbrenner, Steffen; Weisbrod, Matthias; Thome, Johannes; Lange, Klaus W.; Tucha, Oliver

    2017-01-01

    Neuropsychological research on adults with ADHD showed deficits in various aspects of attention. However, the majority of studies failed to explore the change of performance over time, so-called time-on-task effects. As a consequence, little is known about sustained attention performance of adults w

  10. Does Time-on-Task Estimation Matter? Implications for the Validity of Learning Analytics Findings

    Science.gov (United States)

    Kovanovic, Vitomir; Gaševic, Dragan; Dawson, Shane; Joksimovic, Srecko; Baker, Ryan S.; Hatala, Marek

    2015-01-01

    With\twidespread adoption of Learning Management Systems (LMS) and other learning technology, large amounts of data--commonly known as trace data--are readily accessible to researchers. Trace data has been extensively used to calculate time that students spend on different learning activities--typically referred to as time-on-task. These measures…

  11. Task- and time-dependent memory enhancement by dehydroepiandosterone in day-old chicks.

    Science.gov (United States)

    Johnston, A N; Migues, P V

    2001-01-01

    We have previously reported the presence of dehydroepiandosterone (DHEA) in the day-old-chick brain, and a role for it in enhanced memory formation. Here we confirm that intracerebral injections of DHEA 5 min before training on the weak passive avoidance task enhanced recall 24 hours after training. Recall per se on an appetitive visual categorization task was not altered by administration of DHEA 5 min before training. However administration of DHEA 5 min before limited or very limited training on a visual categorization task (20 or 10 pecks only) appeared to enhance consolidation of this task at test 24 h after training; reducing the latency and total time taken to complete the test (60 pecks), while not detrimentally altering accuracy. Moreover, DHEA is unlikely to induce this effect via possible anxiolytic effects because it did not alter behavior in the open field test. We also examined diffusion of DHEA throughout the brain at various stages following intracerebral injection.

  12. Spatial memory tasks in rodents: what do they model?

    Science.gov (United States)

    Morellini, Fabio

    2013-10-01

    The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.

  13. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions.

  14. Additional technician tasks and turnaround time in the clinical Stat laboratory.

    Science.gov (United States)

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Maria; Lillo, Rosa; Leiva-Salinas, Carlos

    2016-01-01

    Many additional tasks in the Stat laboratory (SL) increase the workload. It is necessary to control them because they can affect the service provided by the laboratory. Our aim is to calculate these tasks, study their evolution over a 10 year period, and compare turnaround times (TAT) in summer period to the rest of the year. Additional tasks were classified as "additional test request" and "additional sample". We collected those incidences from the laboratory information system (LIS), and calculated their evolution over time. We also calculated the monthly TAT for troponin for Emergency department (ED) patients, as the difference between the verification and LIS registration time. A median time of 30 minutes was our indicator target. TAT results and tests workload in summer were compared to the rest of the year. Over a 10-year period, the technologists in the SL performed 51,385 additional tasks, a median of 475 per month. The workload was significantly higher during the summer (45,496 tests) than the rest of the year (44,555 tests) (P = 0.019). The troponin TAT did not show this variation between summer and the rest of the year, complying always with our 30 minutes indicator target. The technicians accomplished a significant number of additional tasks, and the workload kept increasing over the period of 10 years. That did not affect the TAT results.

  15. Leakage-Aware Reallocation for Periodic Real-Time Tasks on Multicore Processors

    CERN Document Server

    Huang, Hongtao; Wang, Jijie; Lei, Siyu; Wu, Guowei

    2010-01-01

    It is an increasingly important issue to reduce the energy consumption of computing systems. In this paper, we consider partition based energy-aware scheduling of periodic real-time tasks on multicore processors. The scheduling exploits dynamic voltage scaling (DVS) and core sleep scheduling to reduce both dynamic and leakage energy consumption. If the overhead of core state switching is non-negligible, however, the performance of this scheduling strategy in terms of energy efficiency might degrade. To achieve further energy saving, we extend the static task scheduling with run-time task reallocation. The basic idea is to aggregate idle time among cores so that as many cores as possible could be put into sleep in a way that the overall energy consumption is reduced. Simulation results show that the proposed approach results in up to 20% energy saving over traditional leakage-aware DVS.

  16. Minimum Time Path Planning for Robotic Manipulator in Drilling/ Spot Welding Tasks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-04-01

    Full Text Available In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

  17. Cerebellar potentiation and learning a whisker-based object localization task with a time response window.

    Science.gov (United States)

    Rahmati, Negah; Owens, Cullen B; Bosman, Laurens W J; Spanke, Jochen K; Lindeman, Sander; Gong, Wei; Potters, Jan-Willem; Romano, Vincenzo; Voges, Kai; Moscato, Letizia; Koekkoek, Sebastiaan K E; Negrello, Mario; De Zeeuw, Chris I

    2014-01-29

    Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.

  18. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an

  19. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an o

  20. A real-time human-perception interface for task-level control of a robot in unfamiliar environments

    Science.gov (United States)

    Miles, Eric Scott

    Recent advances in the development of semi-autonomous robotic systems offer numerous potential advantages in many engineering and science endeavors. Significant reductions in cost, time and risk, as well as increased capability, can be obtained by utilizing intelligent machines to assist humans. However, the use of robots also introduces many challenging issues, including the need for high-bandwidth stable control despite communication delays and operator fatigue. In response to these challenges, the Stanford Aerospace Robotics Laboratory has pioneered the Task-Level Control architecture, which enables humans to direct, from a strategic level, sophisticated tasks that a robot then executes autonomously. The research reported here is intended to extend the Task-Level Control architecture significantly--by using human perception in a natural way--to work well in unfamiliar environments. An unfamiliar environment is defined to be one about which it is impossible to have perfect and complete knowledge before developing and deploying a robotic system. Clearly, every work environment is, to some extent, unfamiliar. This research has shown that drawing intimately, in real time, upon a human's deep visual perception is extremely effective in overcoming such unfamiliarity. A novel interactive vision-based operator interface for directing a highly autonomous robot operating in an unfamiliar environment is presented. Intuitive interaction with a live-video display from cameras on board the robot is used in combination with stereo-vision algorithms to maintain the operator's attention at the overall object-level during the modeling process. With this interface, the human's remarkable ability to discern entire object-level constructs is utilized to produce quick, cogent and robust models of unexpected and unknown objects in the environment. Once unfamiliar objects have been suitably modeled, tasks involving those objects can be directed via the Task-Level Control architecture

  1. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task.

    Science.gov (United States)

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  2. Brain activations related to saccadic response conflict are not sensitive to time on task

    Directory of Open Access Journals (Sweden)

    Ewa eBeldzik

    2015-12-01

    Full Text Available Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e. a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect.

  3. Flexibility of orthographic and graphomotor coordination during a handwritten copy task: effect of time pressure

    Directory of Open Access Journals (Sweden)

    Solen eSausset

    2013-11-01

    Full Text Available The coordination of the various processes involved in language production is a subject of keen debate in writing research. Some authors hold that writing processes can be flexibly coordinated according to task demands, whereas others claim that process coordination is entirely inflexible. For instance, orthographic planning has been shown to be resource-dependent during handwriting, but inflexible in typing, even under time pressure. The present study therefore went one step further in studying flexibility in the coordination of orthographic processing and graphomotor execution, by measuring the impact of time pressure during a handwritten copy task. Orthographic and graphomotor processes were observed via syllable processing. Writers copied out two- and three-syllable words three times in a row, with and without time pressure. Latencies and letter measures at syllable boundaries were analyzed. We hypothesized that if coordination is flexible and varies according to task demands, it should be modified by time pressure, affecting both latency before execution and duration of execution. We therefore predicted that the extent of syllable processing before execution would be reduced under time pressure and, as a consequence, syllable effects during execution would be more salient. Results showed, however, that time pressure interacted neither with syllable number nor with syllable structure. Accordingly, syllable processing appears to remain the same regardless of time pressure. The flexibility of process coordination during handwriting is discussed, as is the operationalization of time pressure constraints.

  4. It takes time to prime: semantic priming in the ocular lexical decision task.

    Science.gov (United States)

    Hoedemaker, Renske S; Gordon, Peter C

    2014-12-01

    Two eye-tracking experiments were conducted in which the manual response mode typically used in lexical decision tasks (LDTs) was replaced with an eye-movement response through a sequence of 3 words. This ocular LDT combines the explicit control of task goals found in LDTs with the highly practiced ocular response used in reading text. In Experiment 1, forward saccades indicated an affirmative lexical decision (LD) on each word in the triplet. In Experiment 2, LD responses were delayed until all 3 letter strings had been read. The goal of the study was to evaluate the contribution of task goals and response mode to semantic priming. Semantic priming is very robust in tasks that involve recognition of words in isolation, such as LDT, but limited during text reading, as measured using eye movements. Gaze durations in both experiments showed robust semantic priming even though ocular response times were much shorter than manual LDs for the same words in the English Lexicon Project. Ex-Gaussian distribution fits revealed that the priming effect was concentrated in estimates of tau (τ), meaning that priming was most pronounced in the slow tail of the distribution. This pattern shows differential use of the prime information, which may be more heavily recruited in cases in which the LD is difficult, as indicated by longer response times. Compared with the manual LD responses, ocular LDs provide a more sensitive measure of this task-related influence on word recognition as measured by the LDT.

  5. Simultaneous measurement of time-domain fNIRS and physiological signals during a cognitive task

    Science.gov (United States)

    Jelzow, A.; Tachtsidis, I.; Kirilina, E.; Niessing, M.; Brühl, R.; Wabnitz, H.; Heine, A.; Ittermann, B.; Macdonald, R.

    2011-07-01

    Functional near-infrared spectroscopy (fNIRS) is a commonly used technique to measure the cerebral vascular response related to brain activation. It is known that systemic physiological processes, either independent or correlated with the stimulation task, can influence the optical signal making its interpretation challenging. The aim of the present work is to investigate the impact of task-evoked changes in the systemic physiology on fNIRS measurements for a cognitive paradigm. For this purpose we carried out simultaneous measurements of time-domain fNIRS on the forehead and systemic physiological signals, i.e. mean blood pressure, heart rate, respiration, galvanic skin response, scalp blood flow (flux) and red blood cell (RBC) concentration changes. We performed measurements on 15 healthy volunteers during a semantic continuous performance task (CPT). The optical data was analyzed in terms of depth-selective moments of distributions of times of flight of photons through the tissue. In addition, cerebral activation was localized by a subsequent fMRI experiment on the same subject population using the same task. We observed strong non-cerebral task-evoked changes in concentration changes of oxygenated hemoglobin in the forehead. We investigated the temporal behavior and mutual correlations between hemoglobin changes and the systemic processes. Mean blood pressure (BP), galvanic skin response (GSR) and heart rate exhibited significant changes during the activation period, whereby BP and GSR showed the highest correlation with optical measurements.

  6. Generating efficient belief models for task-oriented dialogues

    CERN Document Server

    Taylor, J

    1995-01-01

    We have shown that belief modelling for dialogue can be simplified if the assumption is made that the participants are cooperating, i.e., they are not committed to any goals requiring deception. In such domains, there is no need to maintain individual representations of deeply nested beliefs; instead, three specific types of belief can be used to summarize all the states of nested belief that can exist about a domain entity. Here, we set out to design a ``compiler'' for belief models. This system will accept as input a description of agents' interactions with a task domain expressed in a fully-expressive belief logic with non-monotonic and temporal extensions. It generates an operational belief model for use in that domain, sufficient for the requirements of cooperative dialogue, including the negotiation of complex domain plans. The compiled model incorporates the belief simplification mentioned above, and also uses a simplified temporal logic of belief based on the restricted circumstances under which belie...

  7. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task

    NARCIS (Netherlands)

    van der Graaf, FHCE; Maguire, RP; Leenders, KL; de Jong, BM

    2006-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the distribution of cerebral activations related to implicitly learning a series of fixed stimulus-response combinations. In a novel - bimanual - variant of the Serial Reaction Time task (SRT), simultaneous finger movements of the two h

  8. Visual Attention During Brand Choice : The Impact of Time Pressure and Task Motivation

    NARCIS (Netherlands)

    Pieters, R.; Warlop, L.

    1998-01-01

    Measures derived from eye-movement data reveal that during brand choice consumers adapt to time pressure by accelerating the visual scanning sequence, by filtering information and by changing their scanning strategy. In addition, consumers with high task motivation filter brand information less and

  9. Task Mapping and Partition Allocation for Mixed-Criticality Real-Time Systems

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul

    2012-01-01

    are scheduled using static-cyclic scheduling. We are interested to determine the task mapping to processors, and the sequence and size of the time slots within the Major Frame on each processor, such that the applications are schedulable. We have proposed a Tabu Search-based approach to solve this optimization...

  10. Visual Attention During Brand Choice : The Impact of Time Pressure and Task Motivation

    NARCIS (Netherlands)

    Pieters, R.; Warlop, L.

    1998-01-01

    Measures derived from eye-movement data reveal that during brand choice consumers adapt to time pressure by accelerating the visual scanning sequence, by filtering information and by changing their scanning strategy. In addition, consumers with high task motivation filter brand information less and

  11. An Investigation of the Effectiveness and Validity of Planning Time in Speaking Test Tasks

    Science.gov (United States)

    Wigglesworth, Gillian; Elder, Cathie

    2010-01-01

    The study described in this article investigated the relationship between three variables in the IELTS oral module--planning, proficiency, and task--and was designed to enhance our understanding of how or whether these variables interact. The study aimed to determine whether differences in performance resulted from 1 or 2 min of planning time. It…

  12. Biogeography-Based Combinatorial Strategy for Efficient Autonomous Underwater Vehicle Motion Planning and Task-Time Management

    Institute of Scientific and Technical Information of China (English)

    S.M.Zadeh; D.M.W Powers; K. Sammut; A.M. Yazdani

    2016-01-01

    Autonomous Underwater Vehicles (AUVs) are capable of conducting various underwater missions and marine tasks over long periods of time. In this study, a novel conflict-free motion-planning framework is introduced. This framework enhances AUV mission performance by completing the maximum number of highest priority tasks in a limited time through a large-scale waypoint cluttered operating field and ensuring safe deployment during the mission. The proposed combinatorial route-path-planner model takes advantage of the Biogeography- Based Optimization (BBO) algorithm to satisfy the objectives of both higher- and lower-level motion planners and guarantee the maximization of mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios, including cost constraints in time-varying operating fields. To demonstrate the reliability of the proposed model, the performance of each motion planner is separately assessed and statistical analysis is conducted to evaluate the total performance of the entire model. The simulation results indicate the stability of the proposed model and the feasibility of its application to real-time experiments.

  13. On the use of shared task models in knowledge acquistion, strategic user interaction and clarification agents

    NARCIS (Netherlands)

    Brazier, F.M.T.; Jonker, C.M.; Treur, J.; Wijngaards, N.J.E.

    2000-01-01

    In this paper, three different roles of a shared task model as an intermediate representation of a task are presented and illustrated by applications developed in cooperation with industry. First the role of a shared task model in knowledge acquisition is discussed. In one of the two applications, d

  14. Fault recovery for real-time, multi-tasking computer system

    Science.gov (United States)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  15. Degree of Schedulability of Mixed-Criticality Real-time Systems with Probabilistic Sporadic Tasks

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; David, Alexandre; Kim, Jin Hyun

    2014-01-01

    We present the concept of degree of schedulability for mixed-criticality scheduling systems. This concept is given in terms of the two factors 1) Percentage of Missed Deadlines (PoMD), and 2) Degradation of the Quality of Service (DoQoS). The novel aspect is that we consider task arrival patterns...... that follow user-defined continuous probability distributions. We determine the degree of schedulability of a single scheduling component which can contain both periodic and sporadic tasks using statistical model checking in the form of UPPAAL SMC. We support uniform, exponential, Gaussian and any user......-defined probability distribution....

  16. Direction of an approaching stimulus on coincident timing performance of a ballistic striking task.

    Science.gov (United States)

    Coker, Cheryl A

    2005-06-01

    The purpose of this study was to explore the influence of stimulus direction and velocity on the coincident timing performance of a ballistic striking task. 26 subjects randomly performed 20 trials at each of two stimulus velocities (4 and 8 mph) and two striking variations (moving with an approaching stimulus or in opposition to it). Analysis indicated the direction of an approaching stimulus does not appear to influence the coincident timing of a ballistic striking action.

  17. Changing behavior and accuracy with time on task in mammography screening

    Science.gov (United States)

    Taylor-Phillips, Sian; Jenkinson, David; Stinton, Chris; Wallis, Matthew G.; Clarke, Aileen

    2017-03-01

    Background: The vigilance decrement and prevalence effect both describe changes to speed and accuracy with time on task. Whilst there is much laboratory based research on these effects, little is known about whether they occur in real world mammography practice. Methods: The Changing Case Order to Optimise Patterns of Performance in Screening (CO-OPS) trial randomised 37,724 batches containing 1.2 million women attending breast screening to intervention or control (222,208 from the Midlands of England). In the control arm the batch was examined in the same order by both readers, in the intervention arm it was examined in a different order by both readers. Time taken, recall decision by both readers, and cancers detected were recorded for each case, and used to examine patterns of performance with time on task. Results: 49,575 women were recalled and 10,484 had cancer detected. Median time taken to examine each case was 35 seconds (out of cases where time taken was 10 minutes or less). The intervention did not affect overall cancer detection rates or recall rates. A more detailed analysis of the Midlands data indicates cancer detection rate did not change when reading up to 60 cases in a batch, but recall rate reduced. Time taken per case reduced with time on task, from a median 41 seconds when examining the second case in the batch to 28.5 seconds examining the 60th case. Conclusion: Reader behavior and performance systematically changes with time on task in breast screening.

  18. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task.

    Science.gov (United States)

    Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie

    2016-01-01

    Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided "in the air" (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no

  19. Time- and task-dependent non-neural effects of real and sham TMS.

    Directory of Open Access Journals (Sweden)

    Felix Duecker

    Full Text Available Transcranial magnetic stimulation (TMS is widely used in experimental brain research to manipulate brain activity in humans. Next to the intended neural effects, every TMS pulse produces a distinct clicking sound and sensation on the head which can also influence task performance. This necessitates careful consideration of control conditions in order to ensure that behavioral effects of interest can be attributed to the neural consequences of TMS and not to non-neural effects of a TMS pulse. Surprisingly, even though these non-neural effects of TMS are largely unknown, they are often assumed to be unspecific, i.e. not dependent on TMS parameters. This assumption is inherent to many control strategies in TMS research but has recently been challenged on empirical grounds. Here, we further develop the empirical basis of control strategies in TMS research. We investigated the time-dependence and task-dependence of the non-neural effects of TMS and compared real and sham TMS over vertex. Critically, we show that non-neural TMS effects depend on a complex interplay of these factors. Although TMS had no direct neural effects, both pre- and post-stimulus TMS time windows modulated task performance on both a sensory detection task and a cognitive angle judgment task. For the most part, these effects were quantitatively similar across tasks but effect sizes were clearly different. Moreover, the effects of real and sham TMS were almost identical with interesting exceptions that shed light on the relative contribution of auditory and somato-sensory aspects of a TMS pulse. Knowledge of such effects is of critical importance for the interpretation of TMS experiments and helps deciding what constitutes an appropriate control condition. Our results broaden the empirical basis of control strategies in TMS research and point at potential pitfalls that should be avoided.

  20. Time- and task-dependent non-neural effects of real and sham TMS.

    Science.gov (United States)

    Duecker, Felix; de Graaf, Tom A; Jacobs, Christianne; Sack, Alexander T

    2013-01-01

    Transcranial magnetic stimulation (TMS) is widely used in experimental brain research to manipulate brain activity in humans. Next to the intended neural effects, every TMS pulse produces a distinct clicking sound and sensation on the head which can also influence task performance. This necessitates careful consideration of control conditions in order to ensure that behavioral effects of interest can be attributed to the neural consequences of TMS and not to non-neural effects of a TMS pulse. Surprisingly, even though these non-neural effects of TMS are largely unknown, they are often assumed to be unspecific, i.e. not dependent on TMS parameters. This assumption is inherent to many control strategies in TMS research but has recently been challenged on empirical grounds. Here, we further develop the empirical basis of control strategies in TMS research. We investigated the time-dependence and task-dependence of the non-neural effects of TMS and compared real and sham TMS over vertex. Critically, we show that non-neural TMS effects depend on a complex interplay of these factors. Although TMS had no direct neural effects, both pre- and post-stimulus TMS time windows modulated task performance on both a sensory detection task and a cognitive angle judgment task. For the most part, these effects were quantitatively similar across tasks but effect sizes were clearly different. Moreover, the effects of real and sham TMS were almost identical with interesting exceptions that shed light on the relative contribution of auditory and somato-sensory aspects of a TMS pulse. Knowledge of such effects is of critical importance for the interpretation of TMS experiments and helps deciding what constitutes an appropriate control condition. Our results broaden the empirical basis of control strategies in TMS research and point at potential pitfalls that should be avoided.

  1. A mathematical modeling proposal for a Multiple Tasks Periodic Capacitated Arc Routing Problem

    Directory of Open Access Journals (Sweden)

    Cleverson Gonçalves dos Santos

    2015-12-01

    Full Text Available The countless accidents and incidents occurred at dams at the last years, propelled the development of politics related with dams safety. One of the strategies is related to the plan for instrumentation and monitoring of dams. The monitoring demands from the technical team the reading of the auscultation data, in order to periodically monitor the dam. The monitoring plan of the dam can be modeled as a problem of mathematical program of the periodical capacitated arcs routing program (PCARP. The PCARP is considered as a generalization of the classic problem of routing in capacitated arcs (CARP due to two characteristics: 1 Planning period larger than a time unity, as that vehicle make several travels and; 2 frequency of associated visits to the arcs to be serviced over the planning horizon. For the dam's monitoring problem studied in this work, the frequent visits, along the time horizon, it is not associated to the arc, but to the instrument with which is intended to collect the data. Shows a new problem of Multiple tasks Periodic Capacitated Arc Routing Problem and its elaboration as an exact mathematical model. The new main characteristics presented are: multiple tasks to be performed on each edge or edges; different frequencies to accomplish each of the tasks; heterogeneous fleet; and flexibility for more than one vehicle passing through the same edge at the same day. The mathematical model was implemented and examples were generated randomly for the proposed model's validation.

  2. Real-time changes in corticospinal excitability related to motor imagery of a force control task.

    Science.gov (United States)

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi

    2017-09-29

    To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cognitive Modeling for Closed-Loop Task Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As flightdeck equipment becomes more sophisticated and complex, operations become significantly more cognitively demanding. When tasks demands exceed the operator's...

  4. Embedding task-based neural models into a connectome-based model of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Antonio Ulloa

    2016-08-01

    Full Text Available A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal , and prefrontal cortex. Some neural elements in the original model were 'non task-specific' (NS neurons that served as noise generators to 'task-specific' neurons that processed shapes during a delayed match-to-sample (DMS task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the

  5. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    Science.gov (United States)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  6. DOF Decoupling Task Graph Model: Reducing the Complexity of Touch-Based Active Sensing

    Directory of Open Access Journals (Sweden)

    Niccoló Tosi

    2015-05-01

    Full Text Available This article presents: (i a formal, generic model for active sensing tasks; (ii the insight that active sensing actions can very often be searched on less than six-dimensional configuration spaces (bringing an exponential reduction in the computational costs involved in the search; (iii an algorithm for selecting actions explicitly trading off information gain, execution time and computational cost; and (iv experimental results of touch-based localization in an industrial setting. Generalizing from prior work, the formal model represents an active sensing task by six primitives: configuration space, information space, object model, action space, inference scheme and action-selection scheme; prior work applications conform to the model as illustrated by four concrete examples. On top of the mentioned primitives, the task graph is then introduced as the relationship to represent an active sensing task as a sequence of low-complexity actions defined over different configuration spaces of the object. The presented act-reason algorithm is an action selection scheme to maximize the expected information gain of each action, explicitly constraining the time allocated to compute and execute the actions. The experimental contributions include localization of objects with: (1 a force-controlled robot equipped with a spherical touch probe; (2 a geometric complexity of the to-be-localized objects up to industrial relevance; (3 an initial uncertainty of (0.4 m, 0.4 m, 2Π; and (4 a configuration of act-reason to constrain the allocated time to compute and execute the next action as a function of the current uncertainty. Localization is accomplished when the probability mass within a 5-mm tolerance reaches a specified threshold of 80%. Four objects are localized with final {mean; standard-deviation} error spanning from {0.0043 m; 0.0034 m} to {0.0073 m; 0.0048 m}.

  7. Living in the Fast Lane: Evidence for a Global Perceptual Timing Deficit in Childhood ADHD Caused by Distinct but Partially Overlapping Task-Dependent Cognitive Mechanisms

    Science.gov (United States)

    Marx, Ivo; Weirich, Steffen; Berger, Christoph; Herpertz, Sabine C.; Cohrs, Stefan; Wandschneider, Roland; Höppner, Jacqueline; Häßler, Frank

    2017-01-01

    Dysfunctions in perceptual timing have been reported in children with ADHD, but so far only from studies that have not used the whole set of timing paradigms available from the literature, with the diversity of findings complicating the development of a unified model of timing dysfunctions and its determinants in ADHD. Therefore, we employed a comprehensive set of paradigms (time discrimination, time estimation, time production, and time reproduction) in order to explore the perceptual timing deficit profile in our ADHD sample. Moreover, we aimed to detect predictors responsible for timing task performance deficits in children with ADHD and how the timing deficits might be positively affected by methylphenidate. Male children with ADHD and healthy control children, all aged between 8 and 13 years, participated in this longitudinal study with three experimental sessions, where children with ADHD were medicated with methylphenidate at the second session but discontinued their medication at the remaining sessions. The results of our study reveal that children with ADHD were impaired in all timing tasks, arguing for a general perceptual timing deficit in ADHD. In doing so, our predictor analyses support the notion that distinct but partially overlapping cognitive mechanisms might exist for discriminating, estimating/producing, and reproducing time intervals. In this sense, working memory deficits in terms of an abnormally fast internal counting process might be common to dysfunctions in the time estimation/time production tasks and in the time reproduction task, with attention deficits (e.g., in terms of disruptions of the counting process) additionally contributing to time estimation/time production deficits and motivational alterations additionally contributing to time reproduction deficits. Methylphenidate did not significantly alter performance of the ADHD sample, presumably due to limited statistical power of our study. The findings of our study demonstrate a

  8. Providing surgical care in Somalia: A model of task shifting

    Directory of Open Access Journals (Sweden)

    Ford Nathan P

    2011-07-01

    Full Text Available Abstract Background Somalia is one of the most political unstable countries in the world. Ongoing insecurity has forced an inconsistent medical response by the international community, with little data collection. This paper describes the "remote" model of surgical care by Medecins Sans Frontieres, in Guri-El, Somalia. The challenges of providing the necessary prerequisites for safe surgery are discussed as well as the successes and limitations of task shifting in this resource-limited context. Methods In January 2006, MSF opened a project in Guri-El located between Mogadishu and Galcayo. The objectives were to reduce mortality due to complications of pregnancy and childbirth and from violent and non-violent trauma. At the start of the program, expatriate surgeons and anesthesiologists established safe surgical practices and performed surgical procedures. After January 2008, expatriates were evacuated due to insecurity and surgical care has been provided by local Somalian doctors and nurses with periodic supervisory visits from expatriate staff. Results Between October 2006 and December 2009, 2086 operations were performed on 1602 patients. The majority (1049, 65% were male and the median age was 22 (interquartile range, 17-30. 1460 (70% of interventions were emergent. Trauma accounted for 76% (1585 of all surgical pathology; gunshot wounds accounted for 89% (584 of violent injuries. Operative mortality (0.5% of all surgical interventions was not higher when Somalian staff provided care compared to when expatriate surgeons and anesthesiologists. Conclusions The delivery of surgical care in any conflict-settings is difficult, but in situations where international support is limited, the challenges are more extreme. In this model, task shifting, or the provision of services by less trained cadres, was utilized and peri-operative mortality remained low demonstrating that safe surgical practices can be accomplished even without the presence of fully

  9. Modeling Cognitive Strategies during Complex Task Performing Process

    Science.gov (United States)

    Mazman, Sacide Guzin; Altun, Arif

    2012-01-01

    The purpose of this study is to examine individuals' computer based complex task performing processes and strategies in order to determine the reasons of failure by cognitive task analysis method and cued retrospective think aloud with eye movement data. Study group was five senior students from Computer Education and Instructional Technologies…

  10. Force time-history affects fatigue accumulation during repetitive handgrip tasks.

    Science.gov (United States)

    Sonne, Michael W; Hodder, Joanne N; Wells, Ryan; Potvin, Jim R

    2015-02-01

    Muscle fatigue is associated with a higher risk of workplace injury, in particular during repetitive tasks. This study aimed to identify the effect of a complex force-time history (a task with multiple different submaximal effort levels) on fatigue accumulation and recovery during a handgrip task. We measured surface electromyography of the brachioradialis (BRD) and flexor carpi ulnaris (FCU) of ten right hand dominant females with no history of upper limb injury while they performed a complex submaximal visually targeted gripping task. The task consisted of 15%, 30%, 45%, 30%, and 15% maximum voluntary contraction (MVC) plateaus. Each plateau was held for 15s, followed by a 3s MVC and 3s of rest. The "pyramid" was repeated until fatigue criteria were met. Grip force, average EMG and mean power frequency (MnPF) for first cycle and fatigued last cycle, were compared. Post-plateau peak grip force was on average 20.5% MVC lower during the last cycle (pMVC after the first 15% MVC plateau (from baseline), by 5.3% MVC after the 30% MVC plateau and 6.8% MVC after the 45% MVC plateau. Further accumulation of fatigue after the second 30% MVC plateau however was minimal, only decreasing by 1.6% MVC. Recovery appeared to occur during the last 15% MVC plateau with an increase in post plateau grip force of 1.6% MVC. Interestingly, MnPF parameters confirmed significant fatigue accumulation during the back end of a force pyramid. We conclude that in a pattern of contractions with ascending, then descending force intensity, voluntary force recovery was present when the preceding force was of a lower intensity. These findings indicate preceding demands play a role in fatigue accumulation during complex tasks.

  11. Dynamic Scheduling of Skippable Periodic Tasks With Energy Efficiency In Weakly Hard Real-Time System

    Directory of Open Access Journals (Sweden)

    Santhi Baskaran

    2010-12-01

    Full Text Available Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. Maintaining high performance, while extending the battery life between charges is an interesting challenge for system designers. Dynamic Voltage Scaling (DVS allows a processor to dynamically change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time.Knowing when to use full power and when not, requires the cooperation of the operating system scheduler. Usually, higher processor voltage and frequency leads to higher system throughput whileenergy reduction can be obtained using lower voltage and frequency. Instead of lowering processorvoltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage andfrequency according to some optimization criteria, such as low energy consumption or high throughput,while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity ofbattery powered portable devices continues to raise, energy efficient design of such devices has becomeincreasingly important. Many real-time scheduling algorithms have been developed recently to reduceenergy consumption in the portable devices that use DVS capable processors. Extensive power awarescheduling techniques have been published for energy reduction, but most of them have been focusedsolely on reducing the processor energy consumption. While the processor is one of the major powerhungry units in the system, other peripherals such as network interface card, memory banks, disks alsoconsume significant amount of power. Dynamic Power Down (DPD technique is used to reduce energyconsumption by shutting down the processing unit and peripheral devices, when the system is idle. Threealgorithms namely Red Tasks Only (RTO, Blue When Possible (BWP and Red as Late as Possible (RLPare proposed in the literature to schedule the real-time tasks in Weakly-hard real-time

  12. Aging-related decrements during specific phases of the dual-task Timed Up-and-Go test.

    Science.gov (United States)

    Porciuncula, Franchino S; Rao, Ashwini K; McIsaac, Tara L

    2016-02-01

    It is unclear how young and older adults modulate dual-task mobility under changing postural challenges. To examine age-related changes in dual-task processing during specific phases of dual-task Timed Up-and-Go (TUGdual-task). Healthy young and older adults performed the Timed Up-and-Go (TUG) with the following dual-task conditions: (1) serial-three subtractions, (2) carrying cup of water, (3) combined subtraction and carrying water, and (4) dialing cell phone. The primary outcome was the dual-task cost on performance of TUG (percent change from single- to dual-task) based on duration and peak trunk velocity of each phase: (a) straight-walk, (b) sit-to-stand, (c) turn, (d) turn-to-sit. Mixed-design univariate analysis of variance was performed for each type of task. Older adults had more pronounced mobility decrements than young adults during straight-ahead walking and turns when the secondary task engaged both cognitive and manual modalities. Simple cognitive or manual tasks during TUGdual-task did not differentiate young from older participants. Subtraction performance during simple and complex cognitive conditions differed by phase of the TUG. Manual task performance of carrying water did not vary by phase or age. Our findings suggest that dual-task processing is dynamic across phases of TUGdual-task. Aging-related dual-task decrements are demonstrated during straight-ahead walking and turning, particularly when the secondary task is more complex. Older adults are susceptible to reduced dual-task mobility during straight-ahead walking and turning particularly when attentional loading was increased.

  13. Models for dependent time series

    CERN Document Server

    Tunnicliffe Wilson, Granville; Haywood, John

    2015-01-01

    Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater

  14. Workflow Modelling and Analysis Based on the Construction of Task Models

    Directory of Open Access Journals (Sweden)

    Glória Cravo

    2015-01-01

    Full Text Available We describe the structure of a workflow as a graph whose vertices represent tasks and the arcs are associated to workflow transitions in this paper. To each task an input/output logic operator is associated. Furthermore, we associate a Boolean term to each transition present in the workflow. We still identify the structure of workflows and describe their dynamism through the construction of new task models. This construction is very simple and intuitive since it is based on the analysis of all tasks present on the workflow that allows us to describe the dynamism of the workflow very easily. So, our approach has the advantage of being very intuitive, which is an important highlight of our work. We also introduce the concept of logical termination of workflows and provide conditions under which this property is valid. Finally, we provide a counter-example which shows that a conjecture presented in a previous article is false.

  15. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    Directory of Open Access Journals (Sweden)

    Claire eWardak

    2012-06-01

    Full Text Available The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP and of the frontal eye field (FEF in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF.In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: 1 different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; 2 LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioural strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future

  16. Applications of hydrogeological modelling methodology using NAMMU and CONNECTFLOW. Task 1, 2, 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden); Hartley, Lee; Holton, David [Serco Assurance Ltd, Risley (United Kingdom)

    2004-11-01

    concept, show the work flow from data to model, and create generic though realistic models that can be adapted for later studies. Models for Task 1, 2, 3 and 4 have been set up. In all cases nested models have been created using CONNECTFLOW. Task 1 and 2 consider the case of a repository-scale DFN model nested within an embedded CPM model that includes both the site-scale and regional scales. Task 1 demonstrates how such models can be constructed. Task 2 shows what results can be obtained using such a model by applying the model to Beberg and comparing the results for canister flux and transport statistics with results from pure CPM models as used in SR 97. Several realisations of the model were performed and analysed to obtain statistics of repository performance measures such as groundwater travel time and flux at starting positions. The results show good consistency in the mean values when compared to SR 97, but the variance is increased in the new nested model. This is to be expected since a DFN model offers much greater resolution in local-scale variability since it represents individual fractures on a few metres scale rather than the CPM approach where flows are effectively averaged out over a larger volume (e.g. 35 m cuboid elements). Task 2 gave also an opportunity to test the recently developed method to calculate F-quotients directly in CONNECTFLOW. For Task 3 the converse arrangement of nesting was used where a rather complex CPM model was nested within a DFN model. The CPM model represents a tunnel system with an access tunnel, six deposition tunnels and 162 deposition holes. A generic DFN model serves as a framework and makes it possible to study fracture and repository intersections. The goal is to obtain detailed near-field flow rates and possibility to address design issues. In Task 4, the CONNECTFLOW concept is used to calculate more realistic input to a near field model since it models explicitly the flow in the fracture system around the canisters

  17. Using Task Clarification, Goal Setting, and Feedback to Decrease Table Busing Times in a Franchise Pizza Restaurant

    Science.gov (United States)

    Amigo, Seth; Smith, Andrew; Ludwig, Timothy

    2008-01-01

    The current study investigated the effects of task-clarification, and manager verbal and graphic feedback on employee busing times at a pizza restaurant. Using an ABC design, task-clarification was provided in a memo, which described the process, priority, and goal time of busing. The busing time decreased slightly, from an average of 315 seconds…

  18. A Demands-Resources Model of Work Pressure in IT Student Task Groups

    Science.gov (United States)

    Wilson, E. Vance; Sheetz, Steven D.

    2010-01-01

    This paper presents an initial test of the group task demands-resources (GTD-R) model of group task performance among IT students. We theorize that demands and resources in group work influence formation of perceived group work pressure (GWP) and that heightened levels of GWP inhibit group task performance. A prior study identified 11 factors…

  19. Asymmetric cross-domain interference between two working memory tasks : Implications for models of working memory

    NARCIS (Netherlands)

    Morey, Candice C.; Morey, Richard D.; van der Reijden, Madeleine; Holweg, Margot

    2013-01-01

    Observations of higher dual-task costs for within-domain than cross-domain task combinations constitute classic evidence for multi-component models of working memory (e.g., Baddeley, 1986; Logie, 2011). However, we report an asymmetric pattern of interference between verbal and visual-spatial tasks,

  20. Asymmetric cross-domain interference between two working memory tasks : Implications for models of working memory

    NARCIS (Netherlands)

    Morey, Candice C.; Morey, Richard D.; van der Reijden, Madeleine; Holweg, Margot

    2013-01-01

    Observations of higher dual-task costs for within-domain than cross-domain task combinations constitute classic evidence for multi-component models of working memory (e.g., Baddeley, 1986; Logie, 2011). However, we report an asymmetric pattern of interference between verbal and visual-spatial tasks,

  1. CHARACTERIZING HABITUATION USING THE TIME-ON-TASK METRIC IN AN IRIS RECOGNITION SYSTEM

    OpenAIRE

    Hasselgren, Jacob A.

    2014-01-01

    This thesis presents a characterization of biometric habituation in an iris recognition study using qualitative analysis of a distributed habituation survey and quantitative analysis of iris images collected in 2010 and 2012. The performed analyses answered the following two questions: a) How consistently does the biometric community define habituation?; and b) Does the time-on-task variable provide enough evidence to indicate the existence of habituation in an iris recognition system? The qu...

  2. Simulated Annealing Algorithm Combined with Chaos for Task Allocation in Real-Time Distributed Systems

    OpenAIRE

    Wenbo Wu; Jiahong Liang; Xinyu Yao; Baohong Liu

    2014-01-01

    This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then propose an algorithm called chaotic adaptive simulated annealing (XASA) to solve the problem. Firstly, XASA begins with chaotic optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improv...

  3. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    OpenAIRE

    Kirov, Roumen; Kolev, Vasil; Verleger, Rolf; Yordanova, Juliana

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the rol...

  4. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    OpenAIRE

    Roumen eKirov; Vasil eKolev; Rolf eVerleger; Juliana eYordanova

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and REM sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dy...

  5. Automating Routine Tasks in AmI Systems by Using Models at Runtime

    Science.gov (United States)

    Serral, Estefanía; Valderas, Pedro; Pelechano, Vicente

    One of the most important challenges to be confronted in Ambient Intelligent (AmI) systems is to automate routine tasks on behalf of users. In this work, we confront this challenge presenting a novel approach based on models at runtime. This approach proposes a context-adaptive task model that allows routine tasks to be specified in an understandable way for users, facilitating their participation in the specification. These tasks are described according to context, which is specified in an ontology-based context model. Both the context model and the task model are also used at runtime. The approach provides a software infrastructure capable of automating the routine tasks as they were specified in these models by interpreting them at runtime.

  6. The effect of pain on task switching: pain reduces accuracy and increases reaction times across multiple switching paradigms.

    Science.gov (United States)

    Attridge, Nina; Keogh, Edmund; Eccleston, Christopher

    2016-10-01

    Pain disrupts attention, which may have negative consequences for daily life for people with acute or chronic pain. It has been suggested that switching between tasks may leave us particularly susceptible to pain-related attentional disruption, because we need to disengage our attention from one task before shifting it onto another. Switching tasks typically elicit lower accuracies and/or longer reaction times when participants switch to a new task compared with repeating the same task, and pain may exacerbate this effect. We present 3 studies to test this hypothesis. In study 1, participants completed 2 versions of an alternating runs switching task under pain-free and thermal pain-induction conditions. Pain did not affect performance on either task. In studies 2 and 3, we examined 7 versions of the switching task using large general population samples, experiencing a variety of naturally occurring pain conditions, recruited and tested on the internet. On all tasks, participants with pain had longer reaction times on both switch and repeat trials compared with participants without pain, but pain did not increase switch costs. In studies 2 and 3, we also investigated the effects of type of pain, duration of pain, and analgesics on task performance. We conclude that pain has a small dampening effect on performance overall on switching tasks. This suggests that pain interrupts attention even when participants are engaged in a trial, not only when attention has been disengaged for shifting to a new task set.

  7. Real-time segmentation and recognition of surgical tasks in cataract surgery videos.

    Science.gov (United States)

    Quellec, Gwénolé; Lamard, Mathieu; Cochener, Béatrice; Cazuguel, Guy

    2014-12-01

    In ophthalmology, it is now common practice to record every surgical procedure and to archive the resulting videos for documentation purposes. In this paper, we present a solution to automatically segment and categorize surgical tasks in real-time during the surgery, using the video recording. The goal would be to communicate information to the surgeon in due time, such as recommendations to the less experienced surgeons. The proposed solution relies on the content-based video retrieval paradigm: it reuses previously archived videos to automatically analyze the current surgery, by analogy reasoning. Each video is segmented, in real-time, into an alternating sequence of idle phases, during which no clinically-relevant motions are visible, and action phases. As soon as an idle phase is detected, the previous action phase is categorized and the next action phase is predicted. A conditional random field is used for categorization and prediction. The proposed system was applied to the automatic segmentation and categorization of cataract surgery tasks. A dataset of 186 surgeries, performed by ten different surgeons, was manually annotated: ten possibly overlapping surgical tasks were delimited in each surgery. Using the content of action phases and the duration of idle phases as sources of evidence, an average recognition performance of Az = 0.832 ± 0.070 was achieved.

  8. The congruency effect in the posterior medial frontal cortex is more consistent with time on task than with response conflict.

    Directory of Open Access Journals (Sweden)

    Daniel H Weissman

    Full Text Available The posterior medial frontal cortex (pMFC is thought to play a pivotal role in enabling the control of attention during periods of distraction. In line with this view, pMFC activity is ubiquitously greater in incongruent trials of response-interference (e.g., Stroop tasks than in congruent trials. Nonetheless, the process underlying this congruency effect remains highly controversial. We therefore sought to distinguish between two competing accounts of the congruency effect. The conflict monitoring account posits the effect indexes a process that detects conflict between competing response alternatives, which is indexed by trial-specific reaction time (RT. The time on task account posits the effect indexes a process whose recruitment increases with time on task independent of response conflict (e.g., sustained attention, arousal, effort, etc.. To distinguish between these accounts, we used functional MRI to record brain activity in twenty-four healthy adults while they performed two tasks: a response-interference task and a simple RT task with only one possible response. We reasoned that demands on a process that detects response conflict should increase with RT in the response-interference task but not in the simple RT task. In contrast, demands on a process whose recruitment increases with time on task independent of response conflict should increase with RT in both tasks. Trial-by-trial analyses revealed that pMFC activity increased with RT in both tasks. Moreover, pMFC activity increased with RT in the simple RT task enough to fully account for the congruency effect in the response-interference task. These findings appear more consistent with the time on task account of the congruency effect than with the conflict monitoring account.

  9. Task Allocation Model for Rescue Disabled Persons in Disaster Area with Help of Volunteers

    OpenAIRE

    Kohei Arai; Tran Xuan Sang; Nguyen Thi Uyen

    2012-01-01

    In this paper, we present a task allocation model for search and rescue persons with disabilities in case of disaster. The multi agent-based simulation model is used to simulate the rescue process. Volunteers and disabled persons are modeled as agents, which each have their own attributes and behaviors. The task of volunteers is to help disabled persons in emergency situations. This task allocation problem is solved by using combinatorial auction mechanism to decide which volunteers should he...

  10. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    Science.gov (United States)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  11. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    Science.gov (United States)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  12. On the Interpretation of Response Time vs Onset Asynchrony Functions: Application to Dual-Task and Precue-Utilization Paradigms.

    Science.gov (United States)

    Schwarz, Wolfgang; Ischebeck, Anja

    2001-06-01

    The central bottleneck model of dual-task performance (H. Pashler and J. C. Johnston, 1998, Quarterly Journal of Experimental Psychology, 46A, 51-82) and the serial processing model of precue utilization (R. Gottsdanker, 1992, Acta Psychologica, 79, 21-43) are based on a common formal structure: They both represent response time as RT(tau)=max(X-tau, Y)+Z, where X, Y, Z denote the duration of certain processing stages specified by the models and tau denotes the onset asynchrony (SOA) between two stimuli. We consider this model within a stochastic framework in which the stage durations are random variables following an arbitrary joint distribution and derive properties of the function relating E[RT(tau)] to SOA. We present a distribution-free result which relates the slope of this function to the distribution of the random durations of the assumed processing stages. Our results allow for a direct, model-based interpretation of data from related experiments; specifically, they show how the slope of the SOA-function depends on experimental factors which selectively influence individual processing stages. We explain the implications of our results for models of dual-task performance and precue utilization and illustrate their application to data obtained by M. C. Smith (1969, Acta Psychologica, 30, 220-231) and R. Gottsdanker (1992, loc. cit.) Copyright 2001 Academic Press.

  13. The influence of time management skill on the curvilinear relationship between organizational citizenship behavior and task performance.

    Science.gov (United States)

    Rapp, Adam A; Bachrach, Daniel G; Rapp, Tammy L

    2013-07-01

    In this research we integrate resource allocation and social exchange perspectives to build and test theory focusing on the moderating role of time management skill in the nonmonotonic relationship between organizational citizenship behavior (OCB) and task performance. Results from matching survey data collected from 212 employees and 41 supervisors and from task performance metrics collected several months later indicate that the curvilinear association between OCB and task performance is significantly moderated by employees' time management skill. Implications for theory and practice are discussed.

  14. Control of a Braitenberg Lizard in a Phonotaxis Task with Decision Models

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    2009-01-01

    a Braitenberg vehicle–like mobile robot without any decision model in a phonotaxis task. In this paper we extend the Braitenberg vehicle model to include two separate decision models in the control and recreate the phonotaxis task. We compare the performance of the robot, in terms of successful phonotaxis...

  15. The impact of cognitive control on children's goal monitoring in a time-based prospective memory task.

    Science.gov (United States)

    Mahy, Caitlin E V; Voigt, Babett; Ballhausen, Nicola; Schnitzspahn, Katharina; Ellis, Judi; Kliegel, Matthias

    2015-01-01

    The present study investigated whether developmental changes in cognitive control may underlie improvements of time-based prospective memory. Five-, 7-, 9-, and 11-year-olds (N = 166) completed a driving simulation task (ongoing task) in which they had to refuel their vehicle at specific points in time (PM task). The availability of cognitive control resources was experimentally manipulated by imposing a secondary task that required divided attention. Children completed the driving simulation task both in a full-attention condition and a divided-attention condition where they had to carry out a secondary task. Results revealed that older children performed better than younger children on the ongoing task and PM task. Children performed worse on the ongoing and PM tasks in the divided-attention condition compared to the full-attention condition. With respect to time monitoring in the final interval prior to the PM target, divided attention interacted with age such that older children's time monitoring was more negatively affected by the secondary task compared to younger children. Results are discussed in terms of developmental shifts from reactive to proactive monitoring strategies.

  16. Time-perception network and default mode network are associated with temporal prediction in a periodic motion task

    Directory of Open Access Journals (Sweden)

    Fabiana Mesquita Carvalho

    2016-06-01

    Full Text Available The updating of prospective internal models is necessary to accurately predict future observations. Uncertainty-driven internal model updating has been studied using a variety of perceptual paradigms, and have revealed engagement of frontal and parietal areas. In a distinct literature, studies on temporal expectations have also characterized a time-perception network, which relies on temporal orienting of attention. However, the updating of prospective internal models is highly dependent on temporal attention, since temporal attention must be reoriented according to the current environmental demands. In this study we used fMRI to evaluate to what extend the continuous manipulation of temporal prediction would recruit update-related areas and the time-perception network areas. We developed an exogenous temporal task that combines rhythm cueing and time-to-contact principles to generate implicit temporal expectation. Two patterns of motion were created: periodic (simple harmonic oscillation and non-periodic (harmonic oscillation with variable acceleration. We found that non-periodic motion engaged the exogenous temporal orienting network, which includes the ventral premotor and inferior parietal cortices, and the cerebellum, as well as the presupplementary motor area, which has previously been implicated in internal model updating, and the motion-sensitive area MT+. Interestingly, we found a right-hemisphere preponderance suggesting the engagement of explicit timing mechanisms. We also show that the periodic motion condition, when compared to the non-periodic motion, activated a particular subset of the default-mode network (DMN midline areas, including the left dorsomedial prefrontal cortex, anterior cingulate cortex, and bilateral posterior cingulate cortex/precuneus. It suggests that the DMN plays a role in processing contextually expected information and supports recent evidence that the DMN may reflect the validation of prospective internal

  17. A model of hippocampal spiking responses to items during learning of a context-dependent task

    Directory of Open Access Journals (Sweden)

    Florian eRaudies

    2014-09-01

    Full Text Available Single unit recordings in the rat hippocampus have demonstrated shifts in the specificity of spiking activity during learning of a contextual item-reward association task. In this task, rats received reward for responding to different items dependent upon the context an item appeared in, but not dependent upon the location an item appears at. Initially, neurons in the rat hippocampus primarily show firing based on place, but as the rat learns the task this firing became more selective for items. We simulated this effect using a simple circuit model with discrete inputs driving spiking activity representing place and item followed sequentially by a discrete representation of the motor actions involving a response to an item (digging for food or the movement to a different item (movement to a different pot for food. We implemented spiking replay in the network representing neural activity observed during sharp-wave ripple events, and modified synaptic connections based on a simple representation of spike-timing dependent synaptic plasticity. This simple network was able to consistently learn the context-dependent responses, and transitioned from dominant coding of place to a gradual increase in specificity to items consistent with analysis of the experimental data. In addition, the model showed an increase in specificity toward context. The increase of selectivity in the model is accompanied by an increase in binariness of the synaptic weights for cells that are part of the functional network.

  18. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task

    Science.gov (United States)

    Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie

    2016-01-01

    Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided “in the air” (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly

  19. Task-driven equipment inspection system based on safe workflow model

    Science.gov (United States)

    Guo, Xinyou; Liu, Yangguang

    2010-12-01

    An equipment inspection system is one that contains a number of equipment queues served in cyclic order. In order to satisfy multi-task scheduling and multi-task combination requirements for equipment inspection system, we propose a model based on inspection workflow in this paper. On the one hand, the model organizes all kinds of equipments according to inspection workflow, elemental work units according to inspection tasks, combination elements according to the task defined by users. We proposed a 3-dimensional workflow model for equipments inspection system including organization sub-model, process sub-model and data sub-model. On the other hand, the model is based on the security authorization which defined by relation between roles, tasks, pre-defined business workflows and inspection data. The system based on proposed framework is safe and efficient. Our implement shows that the system is easy to operate and manage according to the basic performance.

  20. Extraversion differentiates between model-based and model-free strategies in a reinforcement learning task.

    Science.gov (United States)

    Skatova, Anya; Chan, Patricia A; Daw, Nathaniel D

    2013-01-01

    Prominent computational models describe a neural mechanism for learning from reward prediction errors, and it has been suggested that variations in this mechanism are reflected in personality factors such as trait extraversion. However, although trait extraversion has been linked to improved reward learning, it is not yet known whether this relationship is selective for the particular computational strategy associated with error-driven learning, known as model-free reinforcement learning, vs. another strategy, model-based learning, which the brain is also known to employ. In the present study we test this relationship by examining whether humans' scores on an extraversion scale predict individual differences in the balance between model-based and model-free learning strategies in a sequentially structured decision task designed to distinguish between them. In previous studies with this task, participants have shown a combination of both types of learning, but with substantial individual variation in the balance between them. In the current study, extraversion predicted worse behavior across both sorts of learning. However, the hypothesis that extraverts would be selectively better at model-free reinforcement learning held up among a subset of the more engaged participants, and overall, higher task engagement was associated with a more selective pattern by which extraversion predicted better model-free learning. The findings indicate a relationship between a broad personality orientation and detailed computational learning mechanisms. Results like those in the present study suggest an intriguing and rich relationship between core neuro-computational mechanisms and broader life orientations and outcomes.

  1. Evaluation of the Cost Estimation Models: Case Study of Task Manager Application

    Directory of Open Access Journals (Sweden)

    Mohammed Mugahed Al Qmase

    2013-10-01

    Full Text Available The need to accurately estimate time and cost for effective planning of software projects is becoming crucial driven by the escalating demands of the software market. Several models proposed in the history of Software Engineering discipline to estimate time, costs associated with planning and managing software projects as Line of Code (LOC, Function Point (FP and Constructive Cost Model (COCOMO. This paper focuses upon the COCOMO Model. It is further consisted of its two sub models called COCOMO I and COCOMO II. The primary objective of this research is to use an appropriate case study to evaluate the accuracy of the sub models COCOMO I and II and ascertain the variation of the realistic resource effort, staff and time. The findings to date show that the Application Composition Model of COCOMO II is more accurate in determining time and cost for the successful conclusion of a software project than the other two COCOMO I and II Models for a similar application for example Task Manager.

  2. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    Directory of Open Access Journals (Sweden)

    Manuel Blanco Abello

    2014-01-01

    Full Text Available In resource-constrained project scheduling (RCPS problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA. As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature.

  3. Task-Level Data Model for Hardware Synthesis Based on Concurrent Collections

    Directory of Open Access Journals (Sweden)

    Jason Cong

    2012-01-01

    Full Text Available The ever-increasing design complexity of modern digital systems makes it necessary to develop electronic system-level (ESL methodologies with automation and optimization in the higher abstraction level. How the concurrency is modeled in the application specification plays a significant role in ESL design frameworks. The state-of-art concurrent specification models are not suitable for modeling task-level concurrent behavior for the hardware synthesis design flow. Based on the concurrent collection (CnC model, which provides the maximum freedom of task rescheduling, we propose task-level data model (TLDM, targeted at the task-level optimization in hardware synthesis for data processing applications. Polyhedral models are embedded in TLDM for concise expression of task instances, array accesses, and dependencies. Examples are shown to illustrate the advantages of our TLDM specification compared to other widely used concurrency specifications.

  4. Learning the opportunity cost of time in a patch-foraging task.

    Science.gov (United States)

    Constantino, Sara M; Daw, Nathaniel D

    2015-12-01

    Although most decision research concerns choice between simultaneously presented options, in many situations options are encountered serially, and the decision is whether to exploit an option or search for a better one. Such problems have a rich history in animal foraging, but we know little about the psychological processes involved. In particular, it is unknown whether learning in these problems is supported by the well-studied neurocomputational mechanisms involved in more conventional tasks. We investigated how humans learn in a foraging task, which requires deciding whether to harvest a depleting resource or switch to a replenished one. The optimal choice (given by the marginal value theorem; MVT) requires comparing the immediate return from harvesting to the opportunity cost of time, which is given by the long-run average reward. In two experiments, we varied opportunity cost across blocks, and subjects adjusted their behavior to blockwise changes in environmental characteristics. We examined how subjects learned their choice strategies by comparing choice adjustments to a learning rule suggested by the MVT (in which the opportunity cost threshold is estimated as an average over previous rewards) and to the predominant incremental-learning theory in neuroscience, temporal-difference learning (TD). Trial-by-trial decisions were explained better by the MVT threshold-learning rule. These findings expand on the foraging literature, which has focused on steady-state behavior, by elucidating a computational mechanism for learning in switching tasks that is distinct from those used in traditional tasks, and suggest connections to research on average reward rates in other domains of neuroscience.

  5. Exhaustive Exercise Alters Thinking Times in a Tower of London Task in a Time-Dependent Manner

    Science.gov (United States)

    Zimmer, Philipp; Binnebößel, Stephan; Bloch, Wilhelm; Hübner, Sven T.; Schenk, Alexander; Predel, Hans-Georg; Wright, Peter; Stritt, Christian; Oberste, Max

    2017-01-01

    Purpose: In contrast to other aspects of executive functions, acute exercise-induced alterations in planning are poorly investigated. While only few studies report improved planning performances after exercise, even less is known about their time course after exhaustive exercise. Methods: One hundred and nineteen healthy adults performed the Tower of London (ToL) task at baseline, followed by a graded exercise test (GXT). Participants were subsequently randomized into one of four groups (immediately, 30, 60, and 90 min after the GXT) to repeat the ToL. Main outcomes of the ToL were planning (number of tasks completed in the minimum number of moves), solutions (correct responses independent of the given number of moves) as well as thinking times (time between presentation of each problem and first action) for tasks with varying difficulty (four-, five,- and six-move problems). Blood lactate levels were analyzed as a potential mediator. Results: No effect of exercise on planning could be detected. In contrast to complex problem conditions, median thinking times deteriorated significantly in the immediately after GXT tested group in less challenging problem conditions (four-move problems: p = 0.001, F = 5.933, df = 3; five-move problems: p = 0.005, F = 4.548, df = 3). Decreased lactate elimination rates were associated with impaired median thinking times across all groups ΔMTT4-6 (p = 0.001, r = −0.309), ΔMTT4 (p < 0.001, r = −0.367), and ΔMTT5 (p = 0.001, r = −0.290). Conclusion: These results suggest that planning does not improve within 90 min after exhaustive exercise. In line with previous research, revealing a negative impact of exhaustive exercise on memory and attention, our study extends this knowledge of exercise-induced alterations in cognitive functioning as thinking times as subcomponents of planning are negatively affected immediately after exercise. This is further associated with peripheral lactate levels. PMID:28127289

  6. Mother Tongue Use in Task-Based Language Teaching Model

    Science.gov (United States)

    Hung, Nguyen Viet

    2012-01-01

    Researches of English language teaching (ELT) have focused on using mother tongue (L1) for years. The proliferation of task-based language teaching (TBLT) has been also occurred. Considerable findings have been made in the existing literature of the two fields; however, no mentions have been made in the combination of these two ELT aspects, i.e.,…

  7. Trayectorias: A New Model for Online Task-Based Learning

    Science.gov (United States)

    Ros i Sole, Cristina; Mardomingo, Raquel

    2004-01-01

    This paper discusses a framework for designing online tasks that capitalizes on the possibilities that the Internet and the Web offer for language learning. To present such a framework, we draw from constructivist theories (Brooks and Brooks, 1993) and their application to educational technology (Newby, Stepich, Lehman and Russell, 1996; Jonassen,…

  8. Cognitive Process Modeling of Spatial Ability: The Assembling Objects Task

    Science.gov (United States)

    Ivie, Jennifer L.; Embretson, Susan E.

    2010-01-01

    Spatial ability tasks appear on many intelligence and aptitude tests. Although the construct validity of spatial ability tests has often been studied through traditional correlational methods, such as factor analysis, less is known about the cognitive processes involved in solving test items. This study examines the cognitive processes involved in…

  9. A queueing model of pilot decision making in a multi-task flight management situation

    Science.gov (United States)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  10. 77 FR 27814 - Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force...

    Science.gov (United States)

    2012-05-11

    ... COMMISSION Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force... availability. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is announcing the availability of the model safety evaluation (SE) for plant-specific adoption of Technical Specifications (TSs) Task Force...

  11. A Comparison of Reinforcement Learning Models for the Iowa Gambling Task Using Parameter Space Partitioning

    Science.gov (United States)

    Steingroever, Helen; Wetzels, Ruud; Wagenmakers, Eric-Jan

    2013-01-01

    The Iowa gambling task (IGT) is one of the most popular tasks used to study decision-making deficits in clinical populations. In order to decompose performance on the IGT in its constituent psychological processes, several cognitive models have been proposed (e.g., the Expectancy Valence (EV) and Prospect Valence Learning (PVL) models). Here we…

  12. MORA: an Energy-Aware Slack Reclamation Scheme for Scheduling Sporadic Real-Time Tasks upon Multiprocessor Platforms

    OpenAIRE

    Nelis, Vincent; Goossens, Joel

    2009-01-01

    In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrat...

  13. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task.

    Science.gov (United States)

    Perfetti, Bernardo; Moisello, Clara; Landsness, Eric C; Kvint, Svetlana; Pruski, April; Onofrj, Marco; Tononi, Giulio; Ghilardi, M Felice

    2011-01-01

    In this study, we characterized the patterns and timing of cortical activation of visually guided movements in a task with critical temporal demands. In particular, we investigated the neural correlates of motor planning and on-line adjustments of reaching movements in a choice-reaction time task. High-density electroencephalography (EEG, 256 electrodes) was recorded in 13 subjects performing reaching movements. The topography of the movement-related spectral perturbation was established across five 250-ms temporal windows (from prestimulus to postmovement) and five frequency bands (from theta to beta). Nine regions of interest were then identified on the scalp, and their activity was correlated with specific behavioral outcomes reflecting motor planning and on-line adjustments. Phase coherence analysis was performed between selected sites. We found that motor planning and on-line adjustments share similar topography in a fronto-parietal network, involving mostly low frequency bands. In addition, activities in the high and low frequency ranges have differential function in the modulation of attention with the former reflecting the prestimulus, top-down processes needed to promote timely responses, and the latter the planning and control of sensory-motor processes.

  14. Energy-Aware Real-Time Task Scheduling for Heterogeneous Multiprocessors with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2014-01-01

    Full Text Available Energy consumption in computer systems has become a more and more important issue. High energy consumption has already damaged the environment to some extent, especially in heterogeneous multiprocessors. In this paper, we first formulate and describe the energy-aware real-time task scheduling problem in heterogeneous multiprocessors. Then we propose a particle swarm optimization (PSO based algorithm, which can successfully reduce the energy cost and the time for searching feasible solutions. Experimental results show that the PSO-based energy-aware metaheuristic uses 40%–50% less energy than the GA-based and SFLA-based algorithms and spends 10% less time than the SFLA-based algorithm in finding the solutions. Besides, it can also find 19% more feasible solutions than the SFLA-based algorithm.

  15. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task

    Science.gov (United States)

    Crouch, Dustin L.; (Helen Huang, He

    2017-06-01

    Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r  =  0.25, p  motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.

  16. A leaky-integrator model as a control mechanism underlying flexible decision making during task switching.

    Science.gov (United States)

    Mitani, Akinori; Sasaki, Ryo; Oizumi, Masafumi; Uka, Takanori

    2013-01-01

    The ability to switch between tasks is critical for animals to behave according to context. Although the association between the prefrontal cortex and task switching has been well documented, the ultimate modulation of sensory-motor associations has yet to be determined. Here, we modeled the results of a previous study showing that task switching can be accomplished by communication from distinct populations of sensory neurons. We proposed a leaky-integrator model where relevant and irrelevant information were stored separately in two integrators and task switching was achieved by leaking information from the irrelevant integrator. The model successfully explained both the behavioral and neuronal data. Additionally, the leaky-integrator model showed better performance than an alternative model, where irrelevant information was discarded by decreasing the weight on irrelevant information, when animals initially failed to commit to a task. Overall, we propose that flexible switching is, in part, achieved by actively controlling the amount of leak of relevant and irrelevant information.

  17. An investigation of fMRI time series stationarity during motor sequence learning foot tapping tasks.

    Science.gov (United States)

    Muhei-aldin, Othman; VanSwearingen, Jessie; Karim, Helmet; Huppert, Theodore; Sparto, Patrick J; Erickson, Kirk I; Sejdić, Ervin

    2014-04-30

    Understanding complex brain networks using functional magnetic resonance imaging (fMRI) is of great interest to clinical and scientific communities. To utilize advanced analysis methods such as graph theory for these investigations, the stationarity of fMRI time series needs to be understood as it has important implications on the choice of appropriate approaches for the analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time series acquired from twelve healthy participants while they performed a motor (foot tapping sequence) learning task. Since prior studies have documented that learning is associated with systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted that brain regions involved in a "learning network" would demonstrate non-stationarity and may violate assumptions associated with some advanced analysis approaches. Six blocks of learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The reverse arrangement test was utilized to investigate the time series stationarity. Our analysis showed some non-stationary signals with a time varying first moment as a major source of non-stationarity. We also demonstrated a decreased number of non-stationarities in the third block as a result of priming and repetition. Most of the current literature does not examine stationarity prior to processing. The implication of our findings is that future investigations analyzing complex brain networks should utilize approaches robust to non-stationarities, as graph-theoretical approaches can be sensitive to non-stationarities present in data. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Cross-cultural differences in mental representations of time: evidence from an implicit nonlinguistic task.

    Science.gov (United States)

    Fuhrman, Orly; Boroditsky, Lera

    2010-11-01

    Across cultures people construct spatial representations of time. However, the particular spatial layouts created to represent time may differ across cultures. This paper examines whether people automatically access and use culturally specific spatial representations when reasoning about time. In Experiment 1, we asked Hebrew and English speakers to arrange pictures depicting temporal sequences of natural events, and to point to the hypothesized location of events relative to a reference point. In both tasks, English speakers (who read left to right) arranged temporal sequences to progress from left to right, whereas Hebrew speakers (who read right to left) arranged them from right to left, replicating previous work. In Experiments 2 and 3, we asked the participants to make rapid temporal order judgments about pairs of pictures presented one after the other (i.e., to decide whether the second picture showed a conceptually earlier or later time-point of an event than the first picture). Participants made responses using two adjacent keyboard keys. English speakers were faster to make "earlier" judgments when the "earlier" response needed to be made with the left response key than with the right response key. Hebrew speakers showed exactly the reverse pattern. Asking participants to use a space-time mapping inconsistent with the one suggested by writing direction in their language created interference, suggesting that participants were automatically creating writing-direction consistent spatial representations in the course of their normal temporal reasoning. It appears that people automatically access culturally specific spatial representations when making temporal judgments even in nonlinguistic tasks. Copyright © 2010 Cognitive Science Society, Inc.

  19. Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model

    Science.gov (United States)

    2008-07-01

    Shepard & Metzler, 1971) and vision (e.g., Tarr & Pinker , 1989). Although orientation tasks are a class of problem that share important features, there...experimental literature (Hirtle & Jonides, 1985; McNamara, 1986; McNamara, Hardy, & Hirtle 1989; Stevens & Coupe, 1978). However, the operations that are...J. (1971). Mental rotation of three dimensional objects. Science, 171, 701–703. Stevens , A., & Coupe, P. (1978). Distortions in judged spatial

  20. The timing of primary orthostatic tremor bursts has a task-specific plasticity.

    Science.gov (United States)

    McAuley, J H; Britton, T C; Rothwell, J C; Findley, L J; Marsden, C D

    2000-02-01

    Primary orthostatic tremor is characterized by unsteadiness and shakiness of the legs while standing. It is due to a remarkably strong and regular EMG modulation at approximately 16 Hz that is thought to be of CNS origin. Previous studies have shown that the tremor frequency is the same in all involved muscles and that the time relation between bursts of activity in different muscles may be fixed (e.g. always co-contracting or always contracting in an alternating pattern). Here we have used frequency domain analysis of postural muscle EMG signals in five primary orthostatic tremor patients and in two normal controls to explore the nature of such fixed timing patterns. The timing is found not to relate simply to the relative conduction times for passage of rhythmic bursts from a central oscillation to different muscles. Indeed, although the timing pattern (expressed as phase) of the 16-Hz EMG bursts in different postural muscles remains constant while the subject adopts a certain steady posture, it is different for different subjects and also changes when the same subject adopts a different posture. It seems unlikely that such complex task-dependent timing relations of rhythmic postural muscle activity are due to the primary pathology of primary orthostatic tremor. Instead, we suggest that the abnormally strong peripheral manifestation of a 16-Hz CNS oscillation merely unmasks normal central processes so that the timing patterns may provide a clue to the nature of postural motor control.

  1. Response-time evidence for mixed memory states in a sequential-presentation change-detection task.

    Science.gov (United States)

    Nosofsky, Robert M; Donkin, Chris

    2016-02-01

    Response-time (RT) and choice-probability data were obtained in a rapid visual sequential-presentation change-detection task in which memory set size, study-test lag, and objective change probabilities were manipulated. False "change" judgments increased dramatically with increasing lag, consistent with the idea that study items with long lags were ejected from a discrete-slots buffer. Error RTs were nearly invariant with set size and lag, consistent with the idea that the errors were produced by a stimulus-independent guessing process. The patterns of error and RT data could not be explained in terms of encoding limitations, but were consistent with the hypothesis that long retention lags produced a zero-stimulus-information state that required guessing. Formal modeling of the change-detection RT and error data pointed toward a hybrid model of visual working memory. The hybrid model assumed mixed states involving a combination of memory and guessing, but with higher memory resolution for items with shorter retention lags. The work raises new questions concerning the nature of the memory representations that are produced across the closely related tasks of change detection and visual memory search.

  2. Review of Recent Research Using Constant Time Delay to Teach Chained Tasks to Persons with Developmental Disabilities

    Science.gov (United States)

    Dogoe, Maud; Banda, Devender R.

    2009-01-01

    We reviewed twelve studies that used the constant time delay (CTD) procedure to teach chained tasks to individuals with developmental disabilities from years 1996-2006. Variables analyzed include types of tasks that have been taught with the procedure, how effective CTD has been in teaching participants, and whether researchers have investigated…

  3. General model of wood in typical coupled tasks. Part I. – Phenomenological approach

    Directory of Open Access Journals (Sweden)

    Petr Koňas

    2008-01-01

    Full Text Available The main aim of this work is focused on FE modeling of wood structure. This task is conditioned mainly by different organized structures/regions (tissues, anomalies... and leads to homogenization process of multiphysics declaration of common scientific and engineering problems. The crucial role in this paper is played by derivation of coefficient form of general PDE which is solvable by nowadays numerical solvers. Generality of supposed model is given by wide range of coupled physical fields included in the model. Used approach summarizes and brings together models for various fields of matter and energy common in wood material in wood drying process, but is also suitable for a lot of different tasks of similar materials. Namely microwave drying of wood with orthotropic, visco-elastic material properties together with time, moisture and temperature dependency of structural strains by modified mechanical properties were included. Specific matrixes of elasticity for in­di­vi­dual fields were derived. Thermal field in wood was described by conduction type of spreading. Coupling of physical fields is based on diffusive character of temperature, moisture, static pressure fields movement.

  4. Application of predictive control scheduling method to real-time periodic control tasks overrun

    Institute of Scientific and Technical Information of China (English)

    SHEN Qing; GUI Wei-hua; YANG Chun-hua; YANG Tie-jun

    2007-01-01

    Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.

  5. Elapsed decision time affects the weighting of prior probability in a perceptual decision task

    Science.gov (United States)

    Hanks, Timothy D.; Mazurek, Mark E.; Kiani, Roozbeh; Hopp, Elizabeth; Shadlen, Michael N.

    2012-01-01

    Decisions are often based on a combination of new evidence with prior knowledge of the probable best choice. Optimal combination requires knowledge about the reliability of evidence, but in many realistic situations, this is unknown. Here we propose and test a novel theory: the brain exploits elapsed time during decision formation to combine sensory evidence with prior probability. Elapsed time is useful because (i) decisions that linger tend to arise from less reliable evidence, and (ii) the expected accuracy at a given decision time depends on the reliability of the evidence gathered up to that point. These regularities allow the brain to combine prior information with sensory evidence by weighting the latter in accordance with reliability. To test this theory, we manipulated the prior probability of the rewarded choice while subjects performed a reaction-time discrimination of motion direction using a range of stimulus reliabilities that varied from trial to trial. The theory explains the effect of prior probability on choice and reaction time over a wide range of stimulus strengths. We found that prior probability was incorporated into the decision process as a dynamic bias signal that increases as a function of decision time. This bias signal depends on the speed-accuracy setting of human subjects, and it is reflected in the firing rates of neurons in the lateral intraparietal cortex (LIP) of rhesus monkeys performing this task. PMID:21525274

  6. How much time do nurses have for patients? a longitudinal study quantifying hospital nurses' patterns of task time distribution and interactions with health professionals

    Directory of Open Access Journals (Sweden)

    Westbrook Johanna I

    2011-11-01

    Full Text Available Abstract Background Time nurses spend with patients is associated with improved patient outcomes, reduced errors, and patient and nurse satisfaction. Few studies have measured how nurses distribute their time across tasks. We aimed to quantify how nurses distribute their time across tasks, with patients, in individual tasks, and engagement with other health care providers; and how work patterns changed over a two year period. Methods Prospective observational study of 57 nurses for 191.3 hours (109.8 hours in 2005/2006 and 81.5 in 2008, on two wards in a teaching hospital in Australia. The validated Work Observation Method by Activity Timing (WOMBAT method was applied. Proportions of time in 10 categories of work, average time per task, time with patients and others, information tools used, and rates of interruptions and multi-tasking were calculated. Results Nurses spent 37.0%[95%CI: 34.5, 39.3] of their time with patients, which did not change in year 3 [35.7%; 95%CI: 33.3, 38.0]. Direct care, indirect care, medication tasks and professional communication together consumed 76.4% of nurses' time in year 1 and 81.0% in year 3. Time on direct and indirect care increased significantly (respectively 20.4% to 24.8%, P Conclusions Nurses spent around 37% of their time with patients which did not change. Work patterns were increasingly fragmented with rapid changes between tasks of short length. Interruptions were modest but their substantial over-representation among medication tasks raises potential safety concerns. There was no evidence of an increase in team-based, multi-disciplinary care. Over time nurses spent significantly less time talking with colleagues and more time alone.

  7. The importance of object geometric properties for trajectory modeling of functional reach-to-grasp robotic therapy tasks - biomed 2009.

    Science.gov (United States)

    Nathan, Dominic; Jeutter, Dean C

    2009-01-01

    Reaching-to-grasp is essential for the performance of activities of daily living. Pathologies such as stroke, spinal cord injury, cerebral palsy, etc. limit individuals from being able to perform meaningful upper extremity movements, leading to a reduced quality of life. Robotic aided therapy is gaining prevalence as a rehabilitation tool because it can provide consistent and quantitative therapy. Such systems are dependent upon models to generate trajectories that dictate their movements. Time scaled polynomial techniques have been extensively used for robotic model development and trajectory generation. However, this approach is limited because it cannot support functional therapy tasks. This is largely due to the influence of cognitive complexity not completely considered with regards to the activity performed. We examine the influence of task cognitive complexity as manifested through the geometric properties of each object on the movement trajectories and kinematic dependent variables tasks through a motion analysis study using healthy subjects (N=8). We then compare the predicted results from several robotic trajectory models with the actual motion analysis data. Our results show that there are differences present, between the trajectory data and kinematic properties for each task, that are specific to the geometric properties of each object. In addition, the predicted results from the robotic trajectory models do not fully correlate with the actual movement information. This study is important as it will help provide some insight with regards to factors that need to be considered during the development of future robotic trajectory models and controllers for upper extremity functional rehabilitation tasks.

  8. To Pass or Not to Pass: Modeling the Movement and Affordance Dynamics of a Pick and Place Task

    Directory of Open Access Journals (Sweden)

    Maurice Lamb

    2017-06-01

    Full Text Available Humans commonly engage in tasks that require or are made more efficient by coordinating with other humans. In this paper we introduce a task dynamics approach for modeling multi-agent interaction and decision making in a pick and place task where an agent must move an object from one location to another and decide whether to act alone or with a partner. Our aims were to identify and model (1 the affordance related dynamics that define an actor's choice to move an object alone or to pass it to their co-actor and (2 the trajectory dynamics of an actor's hand movements when moving to grasp, relocate, or pass the object. Using a virtual reality pick and place task, we demonstrate that both the decision to pass or not pass an object and the movement trajectories of the participants can be characterized in terms of a behavioral dynamics model. Simulations suggest that the proposed behavioral dynamics model exhibits features observed in human participants including hysteresis in decision making, non-straight line trajectories, and non-constant velocity profiles. The proposed model highlights how the same low-dimensional behavioral dynamics can operate to constrain multiple (and often nested levels of human activity and suggests that knowledge of what, when, where and how to move or act during pick and place behavior may be defined by these low dimensional task dynamics and, thus, can emerge spontaneously and in real-time with little a priori planning.

  9. Model-Checking Real-Time Control Programs

    DEFF Research Database (Denmark)

    Iversen, T. K.; Kristoffersen, K. J.; Larsen, Kim Guldstrand

    2000-01-01

    In this paper, we present a method for automatic verification of real-time control programs running on LEGO(R) RCX(TM) bricks using the verification tool UPPALL. The control programs, consisting of a number of tasks running concurrently, are automatically translated into the mixed automata model...

  10. Climate model boundary conditions for four Cretaceous time slices

    NARCIS (Netherlands)

    Sewall, J.O.; Wal, R.S.W. van de; Zwan, C.J. van der; Oosterhout, C. van; Dijkstra, H.A.; Scotese, C.R.

    2007-01-01

    General circulation models (GCMs) are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth’s climate system. One of the most time consuming, and often daunting, tasks facing th

  11. Anatomy of an Error: A Bidirectional State Model of Task Engagement/Disengagement and Attention-Related Errors

    Science.gov (United States)

    Cheyne, J. Allan; Solman, Grayden J. F.; Carriere, Jonathan S. A.; Smilek, Daniel

    2009-01-01

    We present arguments and evidence for a three-state attentional model of task engagement/disengagement. The model postulates three states of mind-wandering: occurrent task inattention, generic task inattention, and response disengagement. We hypothesize that all three states are both causes and consequences of task performance outcomes and apply…

  12. Extraversion differentiates between model-based and model-free strategies in a reinforcement learning task

    Directory of Open Access Journals (Sweden)

    Anya eSkatova

    2013-09-01

    Full Text Available Prominent computational models describe a neural mechanism for learning from reward prediction errors, and it has been suggested that variations in this mechanism are reflected in personality factors such as trait extraversion. However, although trait extraversion has been linked to improved reward learning, it is not yet known whether this relationship is selective for the particular computational strategy associated with error-driven learning, known as model-free reinforcement learning, versus another strategy, model-based learning, which the brain is also known to employ. In the present study we test this relationship by examining whether humans’ scores on an extraversion scale predict individual differences in the balance between model-based and model-free learning strategies in a sequentially structured decision task designed to distinguish between them. In previous studies with this task, participants have shown a combination of both types of learning, but with substantial individual variation in the balance between them. In the current study, extraversion predicted worse behavior across both sorts of learning. However, the hypothesis that extraverts would be selectively better at model-free reinforcement learning held up among a subset of the more engaged participants, and overall, higher task engagement was associated with a more selective pattern by which extraversion predicted better model-free learning. The findings indicate a relationship between a broad personality orientation and detailed computational learning mechanisms. Results like those in the present study suggest an intriguing and rich relationship between core neuro-computational mechanisms and broader life orientations and outcomes.

  13. Slushy weightings for the optimal pilot model. [considering visual tracking task

    Science.gov (United States)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  14. Model-based estimation and prediction of task-imposed mental workload

    Science.gov (United States)

    Madni, A. M.; Lyman, J.

    1983-01-01

    Mental workload has been an area of intensive research for better than a decade. One specific area of interest in aircrew related workload research is concerned with the development of quantitative indices of workload in aircraft piloting tasks. This paper presents a model-based approach for quantifying mental workload in operational terms. The suggested modeling framework is based on an interpreted Petri net characterization of a task in which 'places' are equated to specific task-related activities and 'transitions' are viewed as internal or external forcing events. It is shown that within this framework quantitative assessments can be made of both cumulative and instantaneous workload associated with the performance of a task and its individual component subtasks. It is suggested that insights gained from analyzing task-specific workload within this modeling paradigm can suggest plausible explanations for reconciling discrepancies between subjectively elicited workload estimates and behavioral/performance measures.

  15. Sensorimotor synchronization and perception of timing: effects of music training and task experience.

    Science.gov (United States)

    Repp, Bruno H

    2010-04-01

    To assess individual differences in basic synchronization skills and in perceptual sensitivity to timing deviations, brief tests made up of isochronous auditory sequences containing phase shifts or tempo changes were administered to 31 college students (most of them with little or no music training) and nine highly trained musicians (graduate students of music performance). Musicians showed smaller asynchronies, lower tapping variability, and greater perceptual sensitivity than college students, on average. They also showed faster phase correction following a tempo change in the pacing sequence. Unexpectedly, however, phase correction following a simple phase shift was unusually quick in both groups, especially in college students. It emerged that some of the musicians, who had previous experience with laboratory synchronization tasks, showed a much slower corrective response to phase shifts than did the other musicians. When these others were retested after having gained some task experience, their phase correction was slower than previously. These results show (1) that instantaneous phase correction in response to phase perturbations is more common than was previously believed, and suggest that (2) gradual phase correction is not a shortcoming but reflects a reduction in the strength of sensorimotor coupling afforded by practice.

  16. Eye movements discriminate fatigue due to chronotypical factors and time spent on task--a double dissociation.

    Directory of Open Access Journals (Sweden)

    Dario Cazzoli

    Full Text Available Systematic differences in circadian rhythmicity are thought to be a substantial factor determining inter-individual differences in fatigue and cognitive performance. The synchronicity effect (when time of testing coincides with the respective circadian peak period seems to play an important role. Eye movements have been shown to be a reliable indicator of fatigue due to sleep deprivation or time spent on cognitive tasks. However, eye movements have not been used so far to investigate the circadian synchronicity effect and the resulting differences in fatigue. The aim of the present study was to assess how different oculomotor parameters in a free visual exploration task are influenced by: a fatigue due to chronotypical factors (being a 'morning type' or an 'evening type'; b fatigue due to the time spent on task. Eighteen healthy participants performed a free visual exploration task of naturalistic pictures while their eye movements were recorded. The task was performed twice, once at their optimal and once at their non-optimal time of the day. Moreover, participants rated their subjective fatigue. The non-optimal time of the day triggered a significant and stable increase in the mean visual fixation duration during the free visual exploration task for both chronotypes. The increase in the mean visual fixation duration correlated with the difference in subjectively perceived fatigue at optimal and non-optimal times of the day. Conversely, the mean saccadic speed significantly and progressively decreased throughout the duration of the task, but was not influenced by the optimal or non-optimal time of the day for both chronotypes. The results suggest that different oculomotor parameters are discriminative for fatigue due to different sources. A decrease in saccadic speed seems to reflect fatigue due to time spent on task, whereas an increase in mean fixation duration a lack of synchronicity between chronotype and time of the day.

  17. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    Directory of Open Access Journals (Sweden)

    Michael A Schwemmer

    Full Text Available Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  18. A Predictive Task Network Model for Estimating the Effectiveness of Decision Aids for Sonar Operators

    Science.gov (United States)

    2006-01-01

    METHOD 2.1 Building the model Using existing task analyses of navy sonar systems (Matthews, Greenley and Webb, 1991) and with the assistance of...Critical Operator Tasks. DRDC Toronto Report # CR-2003-131 Matthews, M.L., Greenley , M. and Webb, R.D.G (1991). Presentation of Information from Towed

  19. Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval

    Science.gov (United States)

    Schneider, Darryl W.; Logan, Gordon D.

    2009-01-01

    How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…

  20. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  1. Following the time course of face gender and expression processing: a task-dependent ERP study.

    Science.gov (United States)

    Valdés-Conroy, Berenice; Aguado, Luis; Fernández-Cahill, María; Romero-Ferreiro, Verónica; Diéguez-Risco, Teresa

    2014-05-01

    The effects of task demands and the interaction between gender and expression in face perception were studied using event-related potentials (ERPs). Participants performed three different tasks with male and female faces that were emotionally inexpressive or that showed happy or angry expressions. In two of the tasks (gender and expression categorization) facial properties were task-relevant while in a third task (symbol discrimination) facial information was irrelevant. Effects of expression were observed on the visual P100 component under all task conditions, suggesting the operation of an automatic process that is not influenced by task demands. The earliest interaction between expression and gender was observed later in the face-sensitive N170 component. This component showed differential modulations by specific combinations of gender and expression (e.g., angry male vs. angry female faces). Main effects of expression and task were observed in a later occipito-temporal component peaking around 230 ms post-stimulus onset (EPN or early posterior negativity). Less positive amplitudes in the presence of angry faces and during performance of the gender and expression tasks were observed. Finally, task demands also modulated a positive component peaking around 400 ms (LPC, or late positive complex) that showed enhanced amplitude for the gender task. The pattern of results obtained here adds new evidence about the sequence of operations involved in face processing and the interaction of facial properties (gender and expression) in response to different task demands. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Utilizing Gaze Behavior for Inferring Task Transitions Using Abstract Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2016-12-01

    Full Text Available We demonstrate an improved method for utilizing observed gaze behavior and show that it is useful in inferring hand movement intent during goal directed tasks. The task dynamics and the relationship between hand and gaze behavior are learned using an Abstract Hidden Markov Model (AHMM. We show that the predicted hand movement transitions occur consistently earlier in AHMM models with gaze than those models that do not include gaze observations.

  3. Cognitive Elements of Empowerment: An "Interpretive" Model of Intrinsic Task Motivation

    OpenAIRE

    Thomas, Kenneth W.; Velthouse, Betty A.

    1990-01-01

    This article presents a cognitive model of empowerment. Here, empowerment is defined as increased intrinsic task motivation, and our subsequent model identifies four cognitions (task assessments) as the basis for worker empowerment: sense of impact, competence, meaningfulness, and choice. Adopting an interpretive perspective, we have used the model also to describe cognitive processes through which workers reach these conclusions. Central to the processes we describe are ...

  4. Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task

    National Research Council Canada - National Science Library

    Xiao, Yi; Ma, Feng; Lv, Yixuan; Cai, Gui; Teng, Peng; Xu, FengGang; Chen, Shanguang

    2015-01-01

    .... In this study, we examined how error-related negativity (ERN) of a four-choice reaction time task was reduced in the mental fatigue condition and investigated the role of sustained attention in error processing...

  5. A one-week 5-choice serial reaction time task to measure impulsivity and attention in adult and adolescent mice

    National Research Council Canada - National Science Library

    Esther Remmelink; Uyen Chau; August B Smit; Matthijs Verhage; Maarten Loos

    2017-01-01

    .... Here, a novel 5-choice serial reaction time task (5-CSRTT) protocol is presented, to measure attention and impulsivity within one week, without scheduled food deprivation and with little animal handling...

  6. Real-Time Hand Posture Recognition for Human-Robot Interaction Tasks.

    Science.gov (United States)

    Hernandez-Belmonte, Uriel Haile; Ayala-Ramirez, Victor

    2016-01-04

    In this work, we present a multiclass hand posture classifier useful for human-robot interaction tasks. The proposed system is based exclusively on visual sensors, and it achieves a real-time performance, whilst detecting and recognizing an alphabet of four hand postures. The proposed approach is based on the real-time deformable detector, a boosting trained classifier. We describe a methodology to design the ensemble of real-time deformable detectors (one for each hand posture that can be classified). Given the lack of standard procedures for performance evaluation, we also propose the use of full image evaluation for this purpose. Such an evaluation methodology provides us with a more realistic estimation of the performance of the method. We have measured the performance of the proposed system and compared it to the one obtained by using only the sampled window approach. We present detailed results of such tests using a benchmark dataset. Our results show that the system can operate in real time at about a 10-fps frame rate.

  7. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.

    2011-01-01

    In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow

  8. Hardware And Software Architectures For Reconfigurable Time-Critical Control Tasks

    Directory of Open Access Journals (Sweden)

    Adam Piłat

    2007-01-01

    Full Text Available The most popular configuration of the controlled laboratory test-rigs is the personalcomputer (PC equipped with the I/O board. The dedicated software components allowsto conduct a wide range of user-defined tasks. The typical configuration functionality canbe customized by PC hardware components and their programmable reconfiguration. Thenext step in the automatic control system design is the embedded solution. Usually, thedesign process of the embedded control system is supported by the high-level software. Thededicated programming tools support multitasking property of the microcontroller by selectionof different sampling frequencies of algorithm blocks. In this case the multi-layer andmultitasking control strategy can be realized on the chip. The proposed solutions implementrapid prototyping approach. The available toolkits and device drivers integrate system-leveldesign environment and the real-time application software, transferring the functionality ofMATLAB/Simulink programs to PCs or microcontrolers application environment.

  9. Experience-dependent effects in unimanual and bimanual reaction time tasks in musicians.

    Science.gov (United States)

    Hughes, C M; Franz, E A

    2007-01-01

    Engaging in musical training has been shown to result in long-term cognitive benefits. The authors examined whether basic cognitive-motor processes differ in people with extensive musical training and in nonmusicians. Musicians (n = 20) and nonmusicians (n = 20) performed a simple reaction time (RT) task under unimanual and bimanual conditions. Musicians' RTs were faster overall than were those of nonmusicians, and those who began their musical training at an earlier age (around age 7-8 years, on average) exhibited a larger bimanual cost than did those who began later (around 12 years, on average). The authors conclude that experience-dependent changes associated with musical training can result in greater efficacy of interhemispheric connections if those changes occur during certain critical periods of brain development.

  10. A Serial Reaction Time (SRT) task with symmetrical joystick responding for nonhuman primates.

    Science.gov (United States)

    Heimbauer, Lisa A; Conway, Christopher M; Christiansen, Morten H; Beran, Michael J; Owren, Michael J

    2012-09-01

    The serial reaction time (SRT) task is a simple procedure in which participants produce differentiated responses to each of a series of stimuli presented at varying locations. Learning about stimulus order is revealed through decreased latencies for structured versus randomized sequences. Although widely used with humans and well suited to nonhumans, this paradigm is little used in comparative research. In the present article, we describe an SRT procedure that uses colored circles as stimuli, a circular layout of locations, and symmetrical joystick deflections as responses. In two experiments, we showed that four rhesus macaques (Macaca mulatta) learned to track sequences up to eight items long, with three animals showing faster responding to repeating sequences than to randomized versions. After extended training, these participants also showed evidence of faster responding at all positions within repeating sequences. This method minimizes response effort, equates effort and travel distance across stimulus locations, and is applicable to any joystick-capable species.

  11. Simulated Annealing Algorithm Combined with Chaos for Task Allocation in Real-Time Distributed Systems

    Directory of Open Access Journals (Sweden)

    Wenbo Wu

    2014-01-01

    Full Text Available This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then propose an algorithm called chaotic adaptive simulated annealing (XASA to solve the problem. Firstly, XASA begins with chaotic optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improves SA algorithm via several adaptive schemes and continues to search the optimal based on the results of chaotic optimization. The effectiveness of XASA is evaluated by comparing with traditional SA algorithm and improved SA algorithm. The results show that XASA can achieve a satisfactory performance of speedup without loss of solution quality.

  12. Task-and-role-based access-control model for computational grid

    Institute of Scientific and Technical Information of China (English)

    LONG Tao; HONG Fan; WU Chi; SUN Ling-li

    2007-01-01

    Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.

  13. A continuous-time neural model for sequential action.

    Science.gov (United States)

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-01

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions.

  14. Modelling of Attentional Dwell Time

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    into the temporal domain. In the neural interpretation of TVA (NTVA; Bundesen, Habekost and Kyllingsbæk, 2005), processing resources are implemented as allocation of cortical cells to objects in the visual field. A feedback mechanism is then used to keep encoded objects in VSTM alive. The proposed model...... of attentional dwell time extends these mechanisms by proposing that the processing resources (cells) already engaged in a feedback loop (i.e. allocated to an object) are locked in VSTM and therefore cannot be allocated to other objects in the visual field before the encoded object has been released...

  15. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)

    2011-01-01

    In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.

  16. Evaluation of modelling of the TRUE-1 radially converging tests with sorbing tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4E and 4F

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Svensson, Haakan [Kemakta Konsult AB, Stockholm (Sweden)

    2001-05-01

    The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4E and 4F is evaluated, which comprised predictive modelling of the tracer tests (STT-1, STT-1b and STT-2) performed within the TRUE-1 project using sorbing and non-sorbing tracers. The tests were made between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). Nine modelling teams representing eight organisations have performed predictive modelling of the tracer tests using different modelling approaches and models. The modelling groups were initially given data from the site characterisation, data from preliminary tracer tests performed with non-sorbing tracers and data on the experimental set-up of the sorbing tracer tests. Based on this information, model predictions were made of drawdown, tracer mass recovery and tracer breakthrough. For the predictions of the STT-1b and STT-2 tests results from previous tracer tests with sorbing tracer were also available. The predictions of the sorbing tracer breakthrough in the initial tracer test (STT-1) generally underestimated the breakthrough time, suggesting the need to include additional processes and evaluate the application of the laboratory data. As a result of model calibration and modification the predictions were considerably improved for the latter tracer tests (STT-1b and STT-2). Task 4E and 4F have proved to be very valuable in increasing the understanding of non-sorbing tracer transport in fractured rock. There is a general consensus on the major processes responsible for

  17. Mediated priming in the lexical decision task : Evidence from event-related potentials and reaction time

    NARCIS (Netherlands)

    Chwilla, DJ; Kolk, HHJ; Mulder, G

    Mediated priming (e.g., from LION to STRIPES vis TIGER) is predicted by spreading activation models hut only by some integration model. The goal of the present research was to localize mediated priming by assessing two-step priming effects on N400 and reaction times (RT). We propose that the N400

  18. Mediated priming in the lexical decision task : Evidence from event-related potentials and reaction time

    NARCIS (Netherlands)

    Chwilla, DJ; Kolk, HHJ; Mulder, G

    2000-01-01

    Mediated priming (e.g., from LION to STRIPES vis TIGER) is predicted by spreading activation models hut only by some integration model. The goal of the present research was to localize mediated priming by assessing two-step priming effects on N400 and reaction times (RT). We propose that the N400 pr

  19. Inferring multi-target QSAR models with taxonomy-based multi-task learning.

    Science.gov (United States)

    Rosenbaum, Lars; Dörr, Alexander; Bauer, Matthias R; Boeckler, Frank M; Zell, Andreas

    2013-07-11

    A plethora of studies indicate that the development of multi-target drugs is beneficial for complex diseases like cancer. Accurate QSAR models for each of the desired targets assist the optimization of a lead candidate by the prediction of affinity profiles. Often, the targets of a multi-target drug are sufficiently similar such that, in principle, knowledge can be transferred between the QSAR models to improve the model accuracy. In this study, we present two different multi-task algorithms from the field of transfer learning that can exploit the similarity between several targets to transfer knowledge between the target specific QSAR models. We evaluated the two methods on simulated data and a data set of 112 human kinases assembled from the public database ChEMBL. The relatedness between the kinase targets was derived from the taxonomy of the humane kinome. The experiments show that multi-task learning increases the performance compared to training separate models on both types of data given a sufficient similarity between the tasks. On the kinase data, the best multi-task approach improved the mean squared error of the QSAR models of 58 kinase targets. Multi-task learning is a valuable approach for inferring multi-target QSAR models for lead optimization. The application of multi-task learning is most beneficial if knowledge can be transferred from a similar task with a lot of in-domain knowledge to a task with little in-domain knowledge. Furthermore, the benefit increases with a decreasing overlap between the chemical space spanned by the tasks.

  20. An automation of design and modelling tasks in NX Siemens environment with original software - generator module

    Science.gov (United States)

    Zbiciak, M.; Grabowik, C.; Janik, W.

    2015-11-01

    Nowadays the design constructional process is almost exclusively aided with CAD/CAE/CAM systems. It is evaluated that nearly 80% of design activities have a routine nature. These design routine tasks are highly susceptible to automation. Design automation is usually made with API tools which allow building original software responsible for adding different engineering activities. In this paper the original software worked out in order to automate engineering tasks at the stage of a product geometrical shape design is presented. The elaborated software works exclusively in NX Siemens CAD/CAM/CAE environment and was prepared in Microsoft Visual Studio with application of the .NET technology and NX SNAP library. The software functionality allows designing and modelling of spur and helicoidal involute gears. Moreover, it is possible to estimate relative manufacturing costs. With the Generator module it is possible to design and model both standard and non-standard gear wheels. The main advantage of the model generated in such a way is its better representation of an involute curve in comparison to those which are drawn in specialized standard CAD systems tools. It comes from fact that usually in CAD systems an involute curve is drawn by 3 points that respond to points located on the addendum circle, the reference diameter of a gear and the base circle respectively. In the Generator module the involute curve is drawn by 11 involute points which are located on and upper the base and the addendum circles therefore 3D gear wheels models are highly accurate. Application of the Generator module makes the modelling process very rapid so that the gear wheel modelling time is reduced to several seconds. During the conducted research the analysis of differences between standard 3 points and 11 points involutes was made. The results and conclusions drawn upon analysis are shown in details.

  1. Sometimes More Is Better, and Sometimes Less Is Better: Task Complexity Moderates the Response Time Accuracy Correlation

    Directory of Open Access Journals (Sweden)

    Nicolas Becker

    2016-08-01

    Full Text Available This study addresses the relationship between item response time and item accuracy (i.e., the response time accuracy correlation, RTAC in figural matrices tests. The dual processing account of response time effects predicts negative RTACs in tasks that allow for relatively automatic processing and positive RTACs in tasks that require controlled processing. Contrary to these predictions, several studies found negative RTACs for reasoning tests. Nevertheless, it was demonstrated that the RTAC is moderated by task complexity (i.e., the interaction between person ability and item difficulty and that under conditions of high complexity (i.e., low ability and high difficulty the RTAC was even slightly positive. The goal of this study was to demonstrate that with respect to task complexity the direction of the RTAC (positive vs. negative can change substantially even within a single task paradigm (i.e., figural matrices. These predictions were tested using a figural matrices test that employs a constructed response format and has a broad range of item difficulties in a sample with a broad range of ability. Confirming predictions, strongly negative RTACs were observed when task complexity was low (i.e., fast responses tended to be correct. With increasing task complexity, the RTAC flipped to be strongly positive (i.e., slow responses tended to be correct. This flip occurred earlier for people with lower ability, and later for people with higher ability. Cognitive load of the items is suggested as an explanation for this phenomenon.

  2. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  3. Pre-Dispatching of Tasks in Workflow: the Concept and the Model

    Institute of Scientific and Technical Information of China (English)

    LIUJianxun; YAOYinxiong; TANGXinhuai

    2004-01-01

    In order to make the execution of workflow in an enterprise more efficient, this paper introduces the concept of task pre-dispatching into Workflow management systems (WfMS). A formalized workflow model is presented to support such a concept. This workflow model is built based on the fact that a task's lifecycle can be partitioned into two parts: preparation phase and actual execution phase in workflow model. So when a task is processed, its' successor will be informed to prepare. Therefore, the actual execution of a task and the preparation of its' successor can be done concurrently. As a result, the whole lifecycle of the process can be shortened and the efficiency will be improved. The presented model is analyzed quantitatively at last.

  4. Computational models of upper-limb motion during functional reaching tasks for application in FES-based stroke rehabilitation.

    Science.gov (United States)

    Freeman, Chris; Exell, Tim; Meadmore, Katie; Hallewell, Emma; Hughes, Ann-Marie

    2015-06-01

    Functional electrical stimulation (FES) has been shown to be an effective approach to upper-limb stroke rehabilitation, where it is used to assist arm and shoulder motion. Model-based FES controllers have recently confirmed significant potential to improve accuracy of functional reaching tasks, but they typically require a reference trajectory to track. Few upper-limb FES control schemes embed a computational model of the task; however, this is critical to ensure the controller reinforces the intended movement with high accuracy. This paper derives computational motor control models of functional tasks that can be directly embedded in real-time FES control schemes, removing the need for a predefined reference trajectory. Dynamic models of the electrically stimulated arm are first derived, and constrained optimisation problems are formulated to encapsulate common activities of daily living. These are solved using iterative algorithms, and results are compared with kinematic data from 12 subjects and found to fit closely (mean fitting between 63.2% and 84.0%). The optimisation is performed iteratively using kinematic variables and hence can be transformed into an iterative learning control algorithm by replacing simulation signals with experimental data. The approach is therefore capable of controlling FES in real time to assist tasks in a manner corresponding to unimpaired natural movement. By ensuring that assistance is aligned with voluntary intention, the controller hence maximises the potential effectiveness of future stroke rehabilitation trials.

  5. A Signal Detection Model of Compound Decision Tasks

    Science.gov (United States)

    2006-12-01

    strict isolation (for many examples of such models see Egan, 1975; Macmillan & Creelman , 1991). The result has been twofold: A rich corpus of decision...Macmillan & Creelman , 1991). It is important to point out that SDT models are primarily decision models. They specify the rules and procedures for how...Broadbent, 1958; Macmillan & Creelman , 1991; Nolte & Jaarsma, 1967; Swensson & Judy, 1981; Tanner & Norman, 1954). To better understand how these two

  6. Modeling and Learning of Complex Motor Tasks: A Case Study with Robot Table Tennis

    OpenAIRE

    Muelling, Katharina

    2013-01-01

    Most tasks that humans need to accomplished in their everyday life require certain motor skills. Although most motor skills seem to rely on the same elementary movements, humans are able to accomplish many different tasks. Robots, on the other hand, are still limited to a small number of skills and depend on well-defined environments. Modeling new motor behaviors is therefore an important research area in robotics. Computational models of human motor control are an essential step to con...

  7. CSIR at TREC 2008 Expert Search Task: Modeling Expert Evidence in Expert Search

    Science.gov (United States)

    2008-11-01

    CSIR at TREC 2008 Expert Search Task: Modeling Expert Evidence in Expert Search Jiepu Jiang1, Wei Lu1, Haozhen Zhao2 1 Center for Studies of...AND SUBTITLE CSIR at TREC 2008 Expert Search Task: Modeling Expert Evidence in Expert Search 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...15. J. Jiang, W. Lu, D. Liu. CSIR at TREC 2007. In Proceedings of the 16th Text REtrieval Conference (TREC 2007), 2007. 16. J. Jiang, W. Lu. IR

  8. Preschoolers´ Physical Activity and Time on Task During a Mastery Motivational Climate and Free Play

    Directory of Open Access Journals (Sweden)

    Danielle D. Wadsworth

    2014-08-01

    Full Text Available The purpose of the present study was to determine the effect of a structured, mastery motivation physical education climate and an unstructured physical activity climate on time spent on task in a small sample of preschool children. Children enrolled in a public, federal-subsidized childcare center (N= 12 participated in two 45 minute physical activity programs within the school day. The structured climate consisted of a biweekly program of motor skill instruction that was based upon the key principles of a mastery motivational climate. The unstructured program was a daily 45 minute free play environment. Actigraph accelerometers monitored children’s participation in physical activity and time-on task was observed by a momentary time sampling technique. Results showed that time on-task significantly improved following a mastery motivational climate, and children spent 36% of their time in moderate-to-vigorous activity in this climate. In contrast, time on-task did not significantly improve following participation in a free play environment and participants spent a majority of their time in sedentary behavior and accumulated no vigorous physical activity. Our results indicate that participation in physical activity impacts a preschooler’s ability to stay on task and the amount of physical activity accumulated during physical activity programming is dependent upon the climate delivered.

  9. Implicit learning in aphasia: Evidence from serial reaction time and artificial grammar tasks

    Directory of Open Access Journals (Sweden)

    Julia Schuchard

    2014-04-01

    Full Text Available Introduction. Implicit learning involves extracting patterns through repeated exposure to stimuli. Little is known about this learning process in individuals with aphasia, although evidence suggests that implicit learning mechanisms remain intact in aphasia (Goschke et al., 2001; Schuchard & Thompson, 2014. The purpose of the present research was to test implicit learning in aphasia in two experiments. Method. Nine individuals with stroke-induced agrammatic aphasia and 21 age-matched healthy adults served as participants for both experiments. Experiment 1 examined nonverbal sequence learning, which required participants to perform a visuomotor serial reaction time task by pressing buttons corresponding to the location of an asterisk that appeared on a computer monitor. Unknown to participants, the location of the asterisk followed a repeating sequence until the final block of the experiment, in which the locations were randomized. Experiment 2 tested grammar learning. Participants were exposed to pseudowords ordered in short sentences according to the rules of an artificial phrase structure grammar (Saffran, 2002. On the first day of the study, all aphasic participants and twelve of the healthy participants received grammar training by listening to grammatical sentences in the artificial language for 30 minutes, followed by completion of a grammaticality judgment test. These participants returned the next day, during which they completed the grammaticality judgment test again, participated in a second session of training (i.e., listening to sentences, and completed a final administration of the judgment test. Untrained healthy control participants completed the three tests but did not receive the two training sessions. Results. Results from the serial reaction time task showed a significant increase in reaction time during the final randomized block compared to the preceding sequenced block, indicating implicit learning of the sequence, for both

  10. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  11. Underground Test Area Subproject Phase I Data Analysis Task. Volume VI - Groundwater Flow Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-11-01

    Volume VI of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the groundwater flow model data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  12. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.

    Science.gov (United States)

    Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter

    2016-03-11

    The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention.

  13. Experimental evaluation of a simple lesion detection task with time-of-flight PET

    Energy Technology Data Exchange (ETDEWEB)

    Surti, S; Karp, J S [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: surti@mail.med.upenn.edu, E-mail: joelkarp@mail.med.upenn.edu

    2009-01-21

    A new generation of high-performance, time-of-flight (TOF) PET scanners have recently been developed. In earlier works, the gain with TOF information was derived as a reduction of noise in the reconstructed image, or essentially a gain in scanner sensitivity. These derivations were applicable to analytical reconstruction techniques and 2D PET imaging. In this work, we evaluate the gain measured in the clinically relevant task of lesion detection with TOF information in fully 3D PET scanners using iterative reconstruction algorithms. We performed measurements in a fully 3D TOF PET scanner using spherical lesions in uniform, cylindrical phantom. Lesion detectability was estimated for 10 mm diameter lesions using a non-prewhitening matched filter signal-to-noise-ratio (NPW SNR) as the metric. Our results show that the use of TOF information leads to increased lesion detectability, which is achieved with less number of iterations of the reconstruction algorithm. These phantom results indicate that clinically, TOF PET will allow reduced scan times and improved lesion detectability, especially in large patients.

  14. Switching between hands in a serial reaction time task: A comparison between young and old adults

    Directory of Open Access Journals (Sweden)

    Maike eHoff

    2015-09-01

    Full Text Available Healthy aging is associated with a variety of functional and structural brain alterations. These age-related brain alterations have been assumed to negatively impact cognitive and motor performance. Especially important for the execution of everyday activities in older adults (OA is the ability to perform movements that depend on both hands working together. However, bimanual coordination is typically deteriorated with increasing age. Hence, a deeper understanding of such age-related brain-behavior alterations might offer the opportunity to design future interventional studies in order to delay or even prevent the decline in cognitive and/ or motor performance over the lifespan. Here we examined to what extent the capability to acquire and maintain a novel bimanual motor skill is still preserved in healthy OA as compared to their younger peers (YA. For this purpose, we investigated performance of OA (n=26 and YA (n=26 in a bimanual serial reaction time task (B-SRTT, on two experimental sessions, separated by one week. We found that even though OA were generally slower in global response times, they showed preserved learning capabilities in the B-SRTT. However, sequence specific learning was more pronounced in YA as compared to OA. Furthermore, we found that switching between hands during B-SRTT learning trials resulted in increased response times (hand switch costs, a phenomenon that was more pronounced in OA. These hand switch costs were reduced in both groups over the time course of learning. More interestingly, there were no group differences in hand switch costs on the second training session. These results provide novel evidence that bimanual motor skill learning is capable of reducing age-related deficits in hand switch costs, a finding that might have important implications to prevent the age-related decline in sensorimotor function.

  15. The Impact of Planning Time on Children's Task-Based Interactions

    Science.gov (United States)

    Philp, Jenefer; Oliver, Rhonda; Mackey, Alison

    2006-01-01

    Recently, tasks have been advocated for their role in promoting participation in L2 interaction and the provision and use of feedback by language learners (Bygate, M., Skehan, P., Swain, M. (Eds.), 2001. "Researching Pedagogical Tasks: Second Language Learning, Teaching and Testing." Pearson Education, Harlow). The relationship between various…

  16. Puzzle task ERP response: time-frequency and source localization analysis

    Science.gov (United States)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-01-01

    Perceptual decision making depends on the choices available for the presented task. Most event-related potential (ERP) experiments are designed with two options, such as YES or NO. In some cases, however, subjects may become confused about the presented task in such a way that they cannot provide a behavioral response. This study aims to put subjects into such a puzzled state in order to address the following questions: How does the brain respond during puzzling moments? And what is the brain’s response to a non-answerable task? To address these questions, ERP were acquired from the brain during a scintillation grid illusion task. The subjects were required to count the number of illusory dots, a task that was impossible to perform. The results showed the presence of N130 over the parietal area during the puzzling task. Coherency among the brain hemispheres was enhanced with the complexity of the task. The neural generators’ source localizations were projected to a multimodal complex covering the left postcentral gyrus, supramarginal gyrus, and angular gyrus. This study concludes that the brain component N130 is strongly related to perception in a puzzling task network but not the visual processing network. PMID:28123804

  17. 77 FR 15399 - Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force...

    Science.gov (United States)

    2012-03-15

    ... COMMISSION Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force... Regulatory Commission (NRC) is announcing the availability of the model safety evaluation (SE) for plant..., Revision 1, is available in ADAMS under Accession No. ML111650552; the model application is available...

  18. 77 FR 58421 - Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force...

    Science.gov (United States)

    2012-09-20

    ... COMMISSION Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force...-415- 4737, or by email to pdr.resource@nrc.gov . TSTF-522, Revision 0, includes a model application and is available in ADAMS under Accession No. ML100890316. The model safety evaluation (SE) of...

  19. Bayes factors for reinforcement-learning models of the Iowa Gambling Task

    NARCIS (Netherlands)

    Steingroever, H.; Wetzels, R.; Wagenmakers, E.-J.

    2016-01-01

    The psychological processes that underlie performance on the Iowa gambling task (IGT) are often isolated with the help of reinforcement-learning (RL) models. The most popular method to compare RL models is the BIC post hoc fit criterion—a criterion that considers goodness-of-fit relative to model co

  20. Attentional switching in the sequential flanker task: age, location, and time course effects.

    Science.gov (United States)

    Li, Karen Z H; Dupuis, Kate

    2008-02-01

    The sequential flanker task was developed to study sequential performance using methodology borrowed from studies of task switching. We investigated age differences in backward inhibition [BI: Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4-26] during a sequential category search task. Participants learned four animal categories in a fixed order, and then searched for exemplars from those categories in runs of mis-ordered exemplars. Across three experiments, we observed robust BI facilitation effects. However, the magnitude of BI effects did not differ across age groups. This age-invariance held despite manipulations of distractibility (Experiment 2), and interstimulus interval (Experiment 3), suggesting that BI processes may be relatively automatic and obligatory in the context of sequential tasks. The findings are discussed in terms of the attentional mechanisms that underlie task set switching and sequential performance.

  1. Construction of a Planning and Dispatching Model Based on Cellular Manufacturing and Time Task Bus%一种基于单元化制造及时间任务总线的计划调度模式构建

    Institute of Scientific and Technical Information of China (English)

    王献红; 史国权

    2015-01-01

    为解决目前大多数离散制造型企业的计划调度模式存在计划调度多层级、生产管理结构呈金字塔型、生产管理复杂且对市场需求反应能力不强、难以满足市场需要等问题,针对普遍存在的典型制造过程提出了一种新型的基于时间任务总线概念的计划调度模型及计划调度集成优化模型。模型在企业实际应用后的数据统计分析充分验证了该方法先进可行。%Nowadays,a large amount of problems existing in most of the discrete manufacturers cannot be solved,such as redundant multiple planning and dispatching in each levels,pyramid produc-tion management structure,even more complex production management,weak capacity of reaction to the market demands and difficulty in meeting the market demands,etc.In order to resolve the prob-lems existing in the typical manufacturing process above,a new planning and dispatching model and an integration and optimization model based on the concept of time task bus were creatively presented herein.The statistics data analyzed from the applications in the enterprises validated the feasibility of the method.

  2. Predicting falls with the cognitive timed up-and-go dual task in frail older patients.

    Science.gov (United States)

    Cardon-Verbecq, Charlotte; Loustau, Marine; Guitard, Emilie; Bonduelle, Marie; Delahaye, Emmanuelle; Koskas, Pierre; Raynaud-Simon, Agathe

    2017-04-01

    The cognitive timed up-and-go dual task (CogTUG) has been proposed to improve the performance of the timed up-and-go (TUG) test for predicting falls in older patients and as a screening tool for early detection of frailty. We aimed to determine whether the CogTUG score is associated with a history of falls in frail older outpatients with gait disorders. This retrospective study involved outpatients >75 years old with or without previous falls who were admitted from 2012 to 2014 to a geriatric day hospital for gait disorders. Patients took the TUG and CogTUG tests on the day of comprehensive geriatric assessment. Among the 161 patients included (157 analyzed; mean age 84.4±6.2 years; 72% women), 84 (53.5%) had fallen in the previous year: 105 (66.9%) were considered pre-frail and 52 (33.1%) frail. As compared with non-fallers, fallers had lower Tinetti balance scores (P=0.0004) and handgrip strength (P=0.03), more lost weight (P=0.04), and they took longer to perform the TUG test (P=0.04). Fallers and non-fallers did not differ in time taken to perform the CogTUG test (30.7±11.2 vs. 28.5±10.2s, P=0.20). History of falls was associated with only weight loss (odds ratio 3.43; 95% CI 1.13-11.30, P=0.03) and handgrip strength (0.88; 0.78-0.97, P=0.02) on multivariate analysis. Unlike TUG scores, the CogTUG score was not associated a history of falls in frail older outpatients with gait disorders. Our results underline that weight loss and low muscle strength are related to falls. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Reaction time and movement duration influence on end point accuracy in a fast reaching task.

    Science.gov (United States)

    Skurvidas, A; Mickevichiene, D; Cesnavichiene, V; Gutnik, B; Nash, D

    2012-01-01

    In labor and sport physiology a great deal of interest concerns the conceptual model of governance of both rapid and precise target-directed movements. Widely known in the theory of motor control, Fitts' paradigm determines the time of motion, calculated from the distance to the target and the diameter of the target. However this paradigm does not take into account the time of preparation for movement, which can have a significant impact on accuracy. In addition, the literature highlights little evidence of temporal and spatial asymmetry in the production of fast and accurate movements. The aim of our work was to investigate the influence of the duration of the preparatory phase (reaction time - T(R)) and duration of protractile motion of the arm (T(M)) on the speed and accuracy of movement. Also, the in-dividual asymmetry of the temporal characteristics and accuracy of performance of movements were studied. We measured three aspects of translational motion of the arm to the computerized target: reaction time (T(R), s), time of motion of the arm (T(M), s), and error in the achievement of the target (deltaL, mm). The group of participants consisted of 12 healthy, right-handed, untrained girls, each of whom completed 5 series of 10 discrete movements by each of the left and right arms. Mathematical analysis of the results revealed the existence of five models of performance. Each model was represented in the participant's performance with different probability. The combination of high speed and high precision when the arm moved towards the target was found only in model 5, which combines a long period of preparation for the movement (T(R)) and a short time of motion (T(M)). The probability of its occurrence in the untrained subjects was very low (2-3%). We suggest that it may be possible to develop special methods of training, geared towards the ability to increase the probability of appearance of this model. Asymmetry of motor action appeared clearly evident only in

  4. Impaired motor inhibition in adults who stutter - evidence from speech-free stop-signal reaction time tasks.

    Science.gov (United States)

    Markett, Sebastian; Bleek, Benjamin; Reuter, Martin; Prüss, Holger; Richardt, Kirsten; Müller, Thilo; Yaruss, J Scott; Montag, Christian

    2016-10-01

    Idiopathic stuttering is a fluency disorder characterized by impairments during speech production. Deficits in the motor control circuits of the basal ganglia have been implicated in idiopathic stuttering but it is unclear how these impairments relate to the disorder. Previous work has indicated a possible deficiency in motor inhibition in children who stutter. To extend these findings to adults, we designed two experiments to probe executive motor control in people who stutter using manual reaction time tasks that do not rely on speech production. We used two versions of the stop-signal reaction time task, a measure for inhibitory motor control that has been shown to rely on the basal ganglia circuits. We show increased stop-signal reaction times in two independent samples of adults who stutter compared to age- and sex-matched control groups. Additional measures involved simple reaction time measurements and a task-switching task where no group difference was detected. Results indicate a deficiency in inhibitory motor control in people who stutter in a task that does not rely on overt speech production and cannot be explained by general deficits in executive control or speeded motor execution. This finding establishes the stop-signal reaction time as a possible target for future experimental and neuroimaging studies on fluency disorders and is a further step towards unraveling the contribution of motor control deficits to idiopathic stuttering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Predicting Individual Action Switching in Passively Experienced and Continuous Interactive Tasks Using the Fluid Events Model

    Directory of Open Access Journals (Sweden)

    Gabriel A. Radvansky

    2016-01-01

    Full Text Available The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.

  6. Predicting Individual Action Switching in Covert and Continuous Interactive Tasks Using the Fluid Events Model.

    Science.gov (United States)

    Radvansky, Gabriel A; D'Mello, Sidney K; Abbott, Robert G; Bixler, Robert E

    2016-01-01

    The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant's current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person's prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.

  7. EEG-Based Brain-Computer Interface for Decoding Motor Imagery Tasks within the Same Hand Using Choi-Williams Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Rami Alazrai

    2017-08-01

    Full Text Available This paper presents an EEG-based brain-computer interface system for classifying eleven motor imagery (MI tasks within the same hand. The proposed system utilizes the Choi-Williams time-frequency distribution (CWD to construct a time-frequency representation (TFR of the EEG signals. The constructed TFR is used to extract five categories of time-frequency features (TFFs. The TFFs are processed using a hierarchical classification model to identify the MI task encapsulated within the EEG signals. To evaluate the performance of the proposed approach, EEG data were recorded for eighteen intact subjects and four amputated subjects while imagining to perform each of the eleven hand MI tasks. Two performance evaluation analyses, namely channel- and TFF-based analyses, are conducted to identify the best subset of EEG channels and the TFFs category, respectively, that enable the highest classification accuracy between the MI tasks. In each evaluation analysis, the hierarchical classification model is trained using two training procedures, namely subject-dependent and subject-independent procedures. These two training procedures quantify the capability of the proposed approach to capture both intra- and inter-personal variations in the EEG signals for different MI tasks within the same hand. The results demonstrate the efficacy of the approach for classifying the MI tasks within the same hand. In particular, the classification accuracies obtained for the intact and amputated subjects are as high as 88 . 8 % and 90 . 2 % , respectively, for the subject-dependent training procedure, and 80 . 8 % and 87 . 8 % , respectively, for the subject-independent training procedure. These results suggest the feasibility of applying the proposed approach to control dexterous prosthetic hands, which can be of great benefit for individuals suffering from hand amputations.

  8. EEG-Based Brain-Computer Interface for Decoding Motor Imagery Tasks within the Same Hand Using Choi-Williams Time-Frequency Distribution

    Science.gov (United States)

    Alwanni, Hisham; Baslan, Yara; Alnuman, Nasim; Daoud, Mohammad I.

    2017-01-01

    This paper presents an EEG-based brain-computer interface system for classifying eleven motor imagery (MI) tasks within the same hand. The proposed system utilizes the Choi-Williams time-frequency distribution (CWD) to construct a time-frequency representation (TFR) of the EEG signals. The constructed TFR is used to extract five categories of time-frequency features (TFFs). The TFFs are processed using a hierarchical classification model to identify the MI task encapsulated within the EEG signals. To evaluate the performance of the proposed approach, EEG data were recorded for eighteen intact subjects and four amputated subjects while imagining to perform each of the eleven hand MI tasks. Two performance evaluation analyses, namely channel- and TFF-based analyses, are conducted to identify the best subset of EEG channels and the TFFs category, respectively, that enable the highest classification accuracy between the MI tasks. In each evaluation analysis, the hierarchical classification model is trained using two training procedures, namely subject-dependent and subject-independent procedures. These two training procedures quantify the capability of the proposed approach to capture both intra- and inter-personal variations in the EEG signals for different MI tasks within the same hand. The results demonstrate the efficacy of the approach for classifying the MI tasks within the same hand. In particular, the classification accuracies obtained for the intact and amputated subjects are as high as 88.8% and 90.2%, respectively, for the subject-dependent training procedure, and 80.8% and 87.8%, respectively, for the subject-independent training procedure. These results suggest the feasibility of applying the proposed approach to control dexterous prosthetic hands, which can be of great benefit for individuals suffering from hand amputations. PMID:28832513

  9. Analysis and Modeling of Control Tasks in Dynamic Systems

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær; Krink, Thiemo; Jensen, Mikkel Thomas

    2002-01-01

    Most applications of evolutionary algorithms deal with static optimization problems. However, in recent years, there has been a growing interest in time-varying (dynamic) problems, which are typically found in real-world scenarios. One major challenge in this field is the design of realistic test...

  10. Task-based dermal exposure models for regulatory risk assessment

    NARCIS (Netherlands)

    Warren, N.D.; Marquart, H.; Christopher, Y.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of ne

  11. Task-based dermal exposure models for regulatory risk assessment

    NARCIS (Netherlands)

    Warren, N.D.; Marquart, H.; Christopher, Y.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of

  12. DECOVALEX III PROJECT. Modelling of FEBEX In-Situ Test. Task1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E.E.; Alcoverro, J. [Univ. Politecnica de Catalunya, Barcelona (Spain)] (comps.)

    2005-02-15

    Task 1 of DECOVALEX III was conceived as a benchmark exercise supported by all field and laboratory data generated during the performance of the FEBEX experiment designed to study thermo-hydro-mechanical and thermo-hydro-geochemical processes of the buffer and rock in the near field. The task was defined as a series of three successive blind prediction exercises (Parts A, B and C), which cover the behaviour of both the rock and bentonite barrier. Research teams participating in the FEBEX task were given, for each of the three parts, a set of field and laboratory data theoretically sufficient to generate a proper model and were asked to submit predictions, at given locations and time, for some of the measured variables. The merits and limitations of different modeling approaches were therefore established. The teams could perform additional calculations, once the actual 'solution' was disclosed. Final calculations represented the best approximation that a given team could provide, always within the general time constraints imposed by the General DECOVALEX III Organization. This report presents the works performed for Task 1. It contains the case definitions and evaluations of modelling results for Part A, B and C, and the overall evaluation of the works performed. The report is completed by a CD-ROM containing a set of final reports provided by the modeling teams participating in each of the three parts defined. These reports provide the necessary details to better understand the nature of the blind or final predictions included in this report. The report closes with a set of conclusions, which provides a summary of the main findings and highlights the lessons learned, some of which were summarized below. The best predictions of the water inflow into the excavated tunnel are found when the hydro geological model is properly calibrated on the basis of other known flow measurements in the same area. The particular idealization of the rock mass (equivalent

  13. That's close enough--a threshold effect of time headway on the experience of risk, task difficulty, effort, and comfort.

    Science.gov (United States)

    Lewis-Evans, Ben; De Waard, Dick; Brookhuis, Karel A

    2010-11-01

    Subjective impressions of task difficulty, risk, effort, and comfort are key variables of several theories of driver behaviour. A point of difference between many of these theories is not only the importance of these variables, but also whether they are continuously present and monitored or only experienced by individuals at certain critical points in the driving task. Both a threshold relationship and evidence of constant monitoring of risk and task difficulty have been found for speed choice. In light of these conflicting findings this study seeks to examine a different part of the driving task, the choice of time headway. Participants (N=40, aged 19 to 30) drove in a simulator behind a vehicle travelling at 50 km/h at set time headways ranging from 0.5 seconds to 4.0 seconds. After each drive ratings of task difficulty, risk, comfort, and effort were collected. In addition participants were asked to drive at the time headway they preferred. In order to assess familiarity participants also drove on both the left and right hand side of the road and the role of driving experience was also examined. The results show support for a threshold awareness of task difficulty, risk, effort, and comfort in relation to time headway. Participant's ratings of these variables tended to be low or nil at large time headways, but then around the 2.0 second mark began to noticeably increase. Feelings of task difficulty, risk, and effort were also found to be highly correlated with each other. No effect of driving experience or side of the road was found. 2010 Elsevier Ltd. All rights reserved.

  14. Children’s head motion during fMRI tasks is heritable and stable over time

    Directory of Open Access Journals (Sweden)

    Laura E. Engelhardt

    2017-06-01

    Full Text Available Head motion during fMRI scans negatively impacts data quality, and as post-acquisition techniques for addressing motion become increasingly stringent, data retention decreases. Studies conducted with adult participants suggest that movement acts as a relatively stable, heritable phenotype that serves as a marker for other genetically influenced phenotypes. Whether these patterns extend downward to childhood has critical implications for the interpretation and generalizability of fMRI data acquired from children. We examined factors affecting scanner motion in two samples: a population-based twin sample of 73 participants (ages 7–12 years and a case-control sample of 32 non-struggling and 78 struggling readers (ages 8–11 years, 30 of whom were scanned multiple times. Age, but not ADHD symptoms, was significantly related to scanner movement. Movement also varied as a function of task type, run length, and session length. Twin pair concordance for head motion was high for monozygotic twins and moderate for dizygotic twins. Cross-session test-retest reliability was high. Together, these findings suggest that children’s head motion is a genetically influenced trait that has the potential to systematically affect individual differences in BOLD changes within and across groups. We discuss recommendations for future work and best practices for pediatric neuroimaging.

  15. CP Methods for Scheduling and Routing with Time-Dependent Task Costs

    DEFF Research Database (Denmark)

    Tierney, Kevin; Kelareva, Elena; Kilby, Philip

    2013-01-01

    A particularly difficult class of scheduling and routing problems in- volves an objective that is a sum of time-varying action costs, which increases the size and complexity of the problem. Solve-and-improve approaches, which find an initial solution for a simplified model and improve it using...... a cost function, and Mixed Integer Programming (MIP) are often used for solving such problems. However, Constraint Programming (CP), particularly with Lazy Clause Genera- tion (LCG), has been found to be faster than MIP for some scheduling problems with time-varying action costs. In this paper, we...... compare CP and LCG against a solve-and-improve approach for two recently introduced problems in maritime logistics with time-varying action costs: the Liner Shipping Fleet Repositioning Problem (LSFRP) and the Bulk Port Cargo Throughput Optimisation Problem (BPCTOP). We present a novel CP model...

  16. Chaos Generation Managed Through Design Thinking: a Task Model for the Design Professional

    DEFF Research Database (Denmark)

    Knudsen, Christina; Møllenbach, Emilie

    2016-01-01

    standard processes, but rather focus on developing a set of design tasks for each unique project, where design thinking and methods are implemented in unique ways. Chaos generation through chaos management as job to be done by the design professional is the main argument of this paper.......The task model presented here is a working vision for the design professional redirecting focus from the application of predefined project structures to a process of complex evaluation. The task model is developed through a hermeneutic analysis of the discourse applied by design professionals...... to their practice. The tasks identified provide both a new focus and direction to the value creation process, in which the design professional is engaged. The intention of this paper is to provide the professional practitioner with deeper insights into own design role and design agenda. It is suggested not to use...

  17. Logic Model Checking of Time-Periodic Real-Time Systems

    Science.gov (United States)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  18. WDAC Task Team on Observations for Model Evaluation: Facilitating the use of observations for CMIP

    Science.gov (United States)

    Waliser, D. E.; Gleckler, P. J.; Ferraro, R.; Eyring, V.; Bosilovich, M. G.; Schulz, J.; Thepaut, J. N.; Taylor, K. E.; Chepfer, H.; Bony, S.; Lee, T. J.; Joseph, R.; Mathieu, P. P.; Saunders, R.

    2015-12-01

    Observations are essential for the development and evaluation of climate models. Satellite and in-situ measurements as well as reanalysis products provide crucial resources for these purposes. Over the last two decades, the climate modeling community has become adept at developing model intercomparison projects (MIPs) that provide the basis for more systematic comparisons of climate models under common experimental conditions. A prominent example among these is the coupled MIP (CMIP). Due to its growing importance in providing input to the IPCC, the framework for CMIP, now planning CMIP6, has expanded to include a very comprehensive and precise set of experimental protocols, with an advanced data archive and dissemination system. While the number, types and sophistication of observations over the same time period have kept pace, their systematic application to the evaluation of climate models has yet to be fully exploited due to a lack of coordinated protocols for identifying, archiving, documenting and applying observational resources. This presentation will discuss activities and plans of the World Climate Research Program (WCRP) Data Advisory Council's (WDAC) Task Team on Observations for Model Evaluation for facilitating the use of observations for model evaluation. The presentation will include an update on the status of the obs4MIPs and ana4MIPs projects, whose purpose is to provide a limited collection of well-established and documented observation and reanalysis datasets for comparison with Earth system models, targeting CMIP in particular. The presentation will also describe the role these activities and datasets play in the development of a set of community standard observation-based climate model performance metrics by the Working Group on Numerical Experimentation (WGNE)'s Performance Metrics Panel, as well as which CMIP6 experiments these activities are targeting, and where additional community input and contributions to these activities are needed.

  19. Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect.

    Science.gov (United States)

    Lim, Julian; Wu, Wen-Chau; Wang, Jiongjiong; Detre, John A; Dinges, David F; Rao, Hengyi

    2010-02-15

    During sustained periods of a taxing cognitive workload, humans typically display time-on-task (TOT) effects, in which performance gets steadily worse over the period of task engagement. Arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) was used in this study to investigate the neural correlates of TOT effects in a group of 15 subjects as they performed a 20-min continuous psychomotor vigilance test (PVT). Subjects displayed significant TOT effects, as seen in progressively slower reaction times and significantly increased mental fatigue ratings after the task. Perfusion data showed that the PVT activates a right lateralized fronto-parietal attentional network in addition to the basal ganglia and sensorimotor cortices. The fronto-parietal network was less active during post-task rest compared to pre-task rest, and regional CBF decrease in this network correlated with performance decline. These results demonstrate the persistent effects of cognitive fatigue in the fronto-parietal network after a period of heavy mental work and indicate the critical role of this attentional network in mediating TOT effects. Furthermore, resting regional CBF in the thalamus and right middle frontal gyrus prior to task onset was predictive of subjects' subsequent performance decline, suggesting that resting CBF quantified by ASL perfusion fMRI may be a useful indicator of performance potential and a marker of the level of fatigue in the neural attentional system.

  20. Quantitative evaluation of muscle synergy models: a single-trial task decoding approach

    Directory of Open Access Journals (Sweden)

    Ioannis eDelis

    2013-02-01

    Full Text Available Muscle synergies, i.e. invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the variance accounted for (VAF. Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics, our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task

  1. Effects Of Age and Task Load On Drivers’ Response Accuracy and Reaction Time When Responding To Traffic Lights.

    Directory of Open Access Journals (Sweden)

    Emilie Salvia

    2016-07-01

    Full Text Available Due to population aging, elderly drivers nowadays represent a significant rate of car drivers. Yet, we do not know exactly how aging may alter sensorimotor functions and therefore, its actual impact on safety. This paper aimed to assess to which extent elderly drivers are sensitive to various task loads and how this could impact reaction time with application to driving. Old and middle-aged people completed reaction time tasks (RT close to those drivers usually have to manage while driving. We requested the participants to detect and respond to traffic lights or a traffic light arrows as quickly as possible during three experimental conditions of increasing difficulty. We expected that decision-making should be impacted through RT by manipulating the number of cues to be processed in both groups. The first test was a simple RT-task. The second and third tests were choice reaction time tasks requiring the processing of three or five information respectively. Responses had to occur within a 2s time-window, otherwise the result was considered a no-response. We showed that RT, error rate and no-response rate increased as a function of task difficulty, in both groups. However, the middle-aged people group outperformed the elderly group. RT difference between the two groups increased drastically with task difficulty. In the third test, the rate of no-response suggested that old drivers need more than 2s to process complex information and respond accurately. Both prolonged RT and no-response rate, especially for difficult tasks, may attest impairment of cognitive abilities, related to aging. Therefore, usual driving conditions for young drivers could be complex and stressful for the elderly who should thus be informed about the effects of normal aging upon driving with simple recommendations and advices.

  2. Simplified Physics Based Models Research Topical Report on Task #2

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Ganesh, Priya

    2014-10-31

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.

  3. Sequential Learning Models for the Wisconsin Card Sort Task: Assessing Processes in Substance Dependent Individuals

    Science.gov (United States)

    Bishara, Anthony J.; Kruschke, John K.; Stout, Julie C.; Bechara, Antoine; McCabe, David P.; Busemeyer, Jerome R.

    2010-01-01

    The Wisconsin Card Sort Task (WCST) is a commonly used neuropsychological test of executive or frontal lobe functioning. Traditional behavioral measures from the task (e.g., perseverative errors) distinguish healthy controls from clinical populations, but such measures can be difficult to interpret. In an attempt to supplement traditional measures, we developed and tested a family of sequential learning models that allowed for estimation of processes at the individual subject level in the WCST. Testing the model with substance dependent individuals and healthy controls, the model parameters significantly predicted group membership even when controlling for traditional behavioral measures from the task. Substance dependence was associated with a) slower attention shifting following punished trials and b) reduced decision consistency. Results suggest that model parameters may offer both incremental content validity and incremental predictive validity. PMID:20495607

  4. Task Allocation Model for Rescue Disabled Persons in Disaster Area with Help of Volunteers

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-07-01

    Full Text Available In this paper, we present a task allocation model for search and rescue persons with disabilities in case of disaster. The multi agent-based simulation model is used to simulate the rescue process. Volunteers and disabled persons are modeled as agents, which each have their own attributes and behaviors. The task of volunteers is to help disabled persons in emergency situations. This task allocation problem is solved by using combinatorial auction mechanism to decide which volunteers should help which disabled persons. The disaster space, road network, and rescue process are also described in detail. The RoboCup Rescue simulation platform is used to present proposed model with different scenarios.

  5. Task- and Time-Dependent Memory Enhancement by Dehydroepiandosterone in Day-Old Chicks

    OpenAIRE

    Johnston, A. N. B.; Migues, P. V.

    2001-01-01

    We have previously reported the presence of dehydroepiandosterone (DHEA) in the dayold- chick brain, and a role for it in enhanced memory formation. Here we confirm that intracerebral injections of DHEA 5 min before training on the weak passive avoidance task enhanced recall 24 hours after training. Recall per se on an appetitive visual categorization task was not altered by administration of DHEA 5 min before training. However administration of DHEA 5 min before limited or very limited train...

  6. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    Science.gov (United States)

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.

  7. Increased Delay Discounting on a Novel Real-Time Task among Girls, but not Boys, with ADHD

    Science.gov (United States)

    Rosch, Keri S.; Mostofsky, Stewart H.

    2016-01-01

    The aim of this study was to examine delay discounting in girls and boys with ADHD-Combined type (ADHD-C) relative to typically developing (TD) children on two tasks that differ in the extent to which the rewards and delays were experienced by participants. Children ages 8–12 years with ADHD-C (n = 65; 19 girls) and TD controls (n = 55; 15 girls) completed two delay discounting tasks involving a series of choices between smaller, immediate and larger, delayed rewards. The classic delay discounting task involved choices about money at delays of 1–90 days and only some of the outcomes were actually experienced by the participants. The novel real-time discounting task involved choices about an immediately consumable reward (playing a preferred game) at delays of 25–100 s, all of which were actually experienced by participants. Participants also provided subjective ratings of how much they liked playing the game and waiting to play. Girls with ADHD-C displayed greater delay discounting compared to boys with ADHD-C and TD girls and boys on the real-time discounting task. Diagnostic group differences were not evident on the classic discounting task. In addition, children with ADHD-C reported wanting to play the game more and liking waiting to play the game less than TD children. This novel demonstration of greater delay discounting among girls with ADHD-C on a discounting task in which the rewards are immediately consumable and the delays are experienced in real-time informs our understanding of sex differences and motivational processes in children with ADHD. PMID:26549118

  8. Continuous Video Modeling to Assist with Completion of Multi-Step Home Living Tasks by Young Adults with Moderate Intellectual Disability

    Science.gov (United States)

    Mechling, Linda C.; Ayres, Kevin M.; Bryant, Kathryn J.; Foster, Ashley L.

    2014-01-01

    The current study evaluated a relatively new video-based procedure, continuous video modeling (CVM), to teach multi-step cleaning tasks to high school students with moderate intellectual disability. CVM in contrast to video modeling and video prompting allows repetition of the video model (looping) as many times as needed while the user completes…

  9. Goal relevance as a quantitative model of human task relevance.

    Science.gov (United States)

    Tanner, James; Itti, Laurent

    2017-03-01

    The concept of relevance is used ubiquitously in everyday life. However, a general quantitative definition of relevance has been lacking, especially as pertains to quantifying the relevance of sensory observations to one's goals. We propose a theoretical definition for the information value of data observations with respect to a goal, which we call "goal relevance." We consider the probability distribution of an agent's subjective beliefs over how a goal can be achieved. When new data are observed, its goal relevance is measured as the Kullback-Leibler divergence between belief distributions before and after the observation. Theoretical predictions about the relevance of different obstacles in simulated environments agreed with the majority response of 38 human participants in 83.5% of trials, beating multiple machine-learning models. Our new definition of goal relevance is general, quantitative, explicit, and allows one to put a number onto the previously elusive notion of relevance of observations to a goal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Task-oriented quality assessment and adaptation in real-time mission critical video streaming applications

    Science.gov (United States)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2015-02-01

    In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class

  11. Relating Adler's Life Tasks to Schutz's Interpersonal Model and the FIRO-B.

    Science.gov (United States)

    Prendergast, Kathleen; Stone, Mark

    This paper integrates the interpersonal model of Schutz (1966) and Schutz's (1978) instrument for evaluating interpersonal relationships, FIRO-B (Fundamental Interpersonal Relationship Orientation-Behavior), with Adler's life tasks and typology. The paper begins with a description of Schutz's Interpersonal model in which Schutz, like Adler, views…

  12. Emergence of Tables as First-Graders Cope with Modelling Tasks

    Science.gov (United States)

    Peled, Irit; Keisar, Einav

    2015-01-01

    In this action research, first-graders were challenged to cope with a sequence of modelling tasks involving an analysis of given situations and choices of mathematical tools. In the course of the sequence, they underwent a change in the nature of their problem-solving processes and developed modelling competencies. Moreover, during the task…

  13. A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

    Science.gov (United States)

    French, B; Leathley, M; Sutton, C; McAdam, J; Thomas, L; Forster, A; Langhorne, P; Price, C; Walker, A; Watkins, C

    2008-07-01

    To determine whether repetitive functional task practice (RFTP) after stroke improves limb-specific or global function or activities of daily living and whether treatment effects are dependent on the amount of practice, or the type or timing of the intervention. Also to provide estimates of the cost-effectiveness of RFTP. The main electronic databases were searched from inception to week 4, September 2006. Searches were also carried out on non-English-language databases and for unpublished trials up to May 2006. Standard quantitative methods were used to conduct the systematic review. The measures of efficacy of RFTP from the data synthesis were used to inform an economic model. The model used a pre-existing data set and tested the potential impact of RFTP on cost. An incremental cost per quality-adjusted life-year (QALY) gained for RFTP was estimated from the model. Sensitivity analyses around the assumptions made for the model were used to test the robustness of the estimates. Thirty-one trials with 34 intervention-control pairs and 1078 participants were included. Overall, it was found that some forms of RFTP resulted in improvement in global function, and in both arm and lower limb function. Overall standardised mean difference in data suitable for pooling was 0.38 [95% confidence interval (CI) 0.09 to 0.68] for global motor function, 0.24 (95% CI 0.06 to 0.42) for arm function and 0.28 (95% CI 0.05 to 0.51) for functional ambulation. Results suggest that training may be sufficient to have an impact on activities of daily living. Retention effects of training persist for up to 6 months, but whether they persist beyond this is unclear. There was little or no evidence that treatment effects overall were modified by time since stroke or dosage of task practice, but results for upper limb function were modified by type of intervention. The economic modelling suggested that RFTP was cost-effective. Given a threshold for cost-effectiveness of 20,000 pounds per QALY

  14. Age differences in reaction time and attention in a national telephone sample of adults: education, sex, and task complexity matter.

    Science.gov (United States)

    Tun, Patricia A; Lachman, Margie E

    2008-09-01

    This study demonstrated effects of age, education, and sex on complex reaction time in a large national sample (N = 3,616) with a wide range in age (32-85) and education. Participants completed speeded auditory tasks (from the MIDUS [Midlife in the U.S.] Stop and Go Switch Task) by telephone. Complexity ranged from a simple repeated task to an alternating task that involved central executive processes including attention switching and inhibitory control. Increased complexity was associated with slower responses in older adults, those with lower education, and women, even after controlling for differences in health status. Higher levels of education were associated with greater central executive efficiency across adulthood: Overall, adults with college degrees performed on complex tasks like less educated individuals who were 10 years younger, up to age 75. These findings suggest that advanced education can moderate age differences on complex speeded tasks that require central executive processes, at least up to the point in old age at which biological declines predominate. The approach demonstrates the utility of combining laboratory paradigms with survey methods to enable the study of larger, more diverse and representative samples across the lifespan.

  15. Evaluation of some Information Retrieval models for Gujarati Ad hoc Monolingual Tasks

    OpenAIRE

    J., Joshi Hardik; Jyoti, Pareek

    2012-01-01

    This paper describes the work towards Gujarati Ad hoc Monolingual Retrieval task for widely used Information Retrieval (IR) models. We present an indexing baseline for the Gujarati Language represented by Mean Average Precision (MAP) values. Our objective is to obtain a relative picture of a better IR model for Gujarati Language. Results show that Classical IR models like Term Frequency Inverse Document Frequency (TF_IDF) performs better when compared to few recent probabilistic IR models. Th...

  16. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte C...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....

  17. Operator function modeling: Cognitive task analysis, modeling and intelligent aiding in supervisory control systems

    Science.gov (United States)

    Mitchell, Christine M.

    1990-01-01

    The design, implementation, and empirical evaluation of task-analytic models and intelligent aids for operators in the control of complex dynamic systems, specifically aerospace systems, are studied. Three related activities are included: (1) the models of operator decision making in complex and predominantly automated space systems were used and developed; (2) the Operator Function Model (OFM) was used to represent operator activities; and (3) Operator Function Model Expert System (OFMspert), a stand-alone knowledge-based system was developed, that interacts with a human operator in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an architecture for an operator's assistant that uses the OFM as its system and operator knowledge base and a blackboard paradigm of problem solving to dynamically generate expectations about upcoming operator activities and interpreting actual operator actions. An experiment validated the OFMspert's intent inferencing capability and showed that it inferred the intentions of operators in ways comparable to both a human expert and operators themselves. OFMspert was also augmented with control capabilities. An interface allowed the operator to interact with OFMspert, delegating as much or as little control responsibility as the operator chose. With its design based on the OFM, OFMspert's control capabilities were available at multiple levels of abstraction and allowed the operator a great deal of discretion over the amount and level of delegated control. An experiment showed that overall system performance was comparable for teams consisting of two human operators versus a human operator and OFMspert team.

  18. Modeling of Task Establishment and Allocation for Collaborative Virtual Maintenance Training of Complex Equipment

    Directory of Open Access Journals (Sweden)

    Xiangyang Li

    2012-09-01

    Full Text Available In this study, we propose the maintenance task establishment method based on fault simulation models. Maintenance task allocation model based on Multi-Agent System and High Level Architecture is presented to manage and coordinate the dynamic task allocating process of multi operators and it can make the intelligent decision for their collaborative maintenance operation at each step. Object information template is designed with the Extensible Markup Language to perform interactive communication of the heterogeneous data and information in the different models of collaborative virtual maintenance training system, which ensures the efficient share of the data resource for the collaborative maintenance operations. Finally, the simulation research on a mechanical-electronic-hydraulic integrated subsystem in complex equipment is done and the simulation execution and results show the effectiveness of the proposed methods.

  19. No Critical Peripheral Fatigue Threshold during Intermittent Isometric Time to Task Failure Test with the Knee Extensors

    Science.gov (United States)

    Froyd, Christian; Beltrami, Fernando G.; Millet, Guillaume Y.; Noakes, Timothy D.

    2016-01-01

    It has been proposed that group III and IV muscle afferents provide inhibitory feedback from locomotor muscles to the central nervous system, setting an absolute threshold for the development of peripheral fatigue during exercise. The aim of this study was to test the validity of this theory. Thus, we asked whether the level of developed peripheral fatigue would differ when two consecutive exercise trials were completed to task failure. Ten trained sport students performed two exercise trials to task failure on an isometric dynamometer, allowing peripheral fatigue to be assessed 2 s after maximal voluntary contraction (MVC) post task failure. The trials, separated by 8 min, consisted of repeated sets of 10 × 5-s isometric knee extension followed by 5-s rest between contractions. In each set, the first nine contractions were performed at a target force at 60% of the pre-exercise MVC, while the 10th contraction was a MVC. MVC and evoked force responses to supramaximal electrical femoral nerve stimulation on relaxed muscles were assessed during the trials and at task failure. Stimulations at task failure consisted of single stimulus (SS), paired stimuli at 10 Hz (PS10), paired stimuli at 100 Hz (PS100), and 50 stimuli at 100 Hz (tetanus). Time to task failure for the first trial (12.84 ± 5.60 min) was longer (P < 0.001) than for the second (5.74 ± 1.77 min). MVC force was significantly lower at task failure for both trials compared with the pre-exercise values (both P < 0.001), but there were no differences in MVC at task failure in the first and second trials (P = 1.00). However, evoked peak force for SS, PS100, and tetanus were all reduced more at task failure in the second compared to the first trial (P = 0.014 for SS, P < 0.001 for PS100 and tetanus). These results demonstrate that subjects do not terminate exercise at task failure because they have reached a critical threshold in peripheral fatigue. The present data therefore question the existence of a

  20. Reduction of client waiting time using task shifting in an antiretroviral clinic at Specialist Hospital Bauchi, Nigeria

    Directory of Open Access Journals (Sweden)

    Nisser A. Umar

    2011-02-01

    Full Text Available Aiming to assess the impact of the intervention in reducing the patients’ waiting time in the clinic, two surveys were conducted before and after task shifting intervention in an anti-retroviral (ARV clinic at the Specialist Hospital, Bauchi, Nigeria in November 2008 and April 2009, respectively. Before the task shifting, six nurses from the clinic were trained on integrated management of adolescent and adult illness, as well as on the principle and guidelines for the anti-retroviral therapy, after which their schedule in the clinic was broadened to include seeing HIV patients presenting for routine refill and follow-up visits. In this study, fifty-six and sixty patients, respectively out of 186 and 202 who attended the clinic on the days of the pre- and post-intervention surveys, were randomly sampled. Data on patients’ sex, age and marital status, whether patient a first timer or follow up visitor and the time spent in the clinic on that day as well as the number and composition of staff and equipment in the clinic was collected. The difference in waiting time spent between the first group before task shifting and second group after task shifting was statistically analyzed and significance tested using unpaired t- test. There was a reduction in the average waiting time for patients attending the clinic from 6.48 h before task shifting to 4.35 h after task shifting. The difference of mean was -2.13 h, with 95% CI: -2.44:-1.82 hours and the test of significance by unpaired t-test P<0.0001.

  1. An exemplar model of performance in the artificial grammar task: holographic representation.

    Science.gov (United States)

    Jamieson, Randall K; Hauri, Brian R

    2012-06-01

    We apply a multitrace model of memory to explain performance in the artificial grammar task. The model blends the convolution method for representation from Jones and Mewhort's BEAGLE model (Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 1-37) of semantic memory with the multitrace storage and retrieval model from Hintzman's MINERVA 2 model (Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace memory model. Psychological Review, 93, 411-428) of episodic memory. We report an artificial grammar experiment, and we fit the model to those data at the level of individual items. We argue that performance in the artificial grammar task is best understood as a process of retrospective inference from memory.

  2. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    Science.gov (United States)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  3. Optimal SSN Tasking to Enhance Real-time Space Situational Awareness

    Science.gov (United States)

    Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.

    2016-09-01

    Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.

  4. Testing whether humans have an accurate model of their own motor uncertainty in a speeded reaching task.

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    Full Text Available In many motor tasks, optimal performance presupposes that human movement planning is based on an accurate internal model of the subject's own motor error. We developed a motor choice task that allowed us to test whether the internal model implicit in a subject's choices differed from the actual in isotropy (elongation and variance. Subjects were first trained to hit a circular target on a touch screen within a time limit. After training, subjects were repeatedly shown pairs of targets differing in size and shape and asked to choose the target that was easier to hit. On each trial they simply chose a target - they did not attempt to hit the chosen target. For each subject, we tested whether the internal model implicit in her target choices was consistent with her true error distribution in isotropy and variance. For all subjects, movement end points were anisotropic, distributed as vertically elongated bivariate Gaussians. However, in choosing targets, almost all subjects effectively assumed an isotropic distribution rather than their actual anisotropic distribution. Roughly half of the subjects chose as though they correctly estimated their own variance and the other half effectively assumed a variance that was more than four times larger than the actual, essentially basing their choices merely on the areas of the targets. The task and analyses we developed allowed us to characterize the internal model of motor error implicit in how humans plan reaching movements. In this task, human movement planning - even after extensive training - is based on an internal model of human motor error that includes substantial and qualitative inaccuracies.

  5. Mathematical Models of Waiting Time.

    Science.gov (United States)

    Gordon, Sheldon P.; Gordon, Florence S.

    1990-01-01

    Considered are several mathematical models that can be used to study different waiting situations. Problems involving waiting at a red light, bank, restaurant, and supermarket are discussed. A computer program which may be used with these problems is provided. (CW)

  6. Do Participants Differ in Their Cognitive Abilities, Task Motivation, or Personality Characteristics as a Function of Time of Participation?

    Science.gov (United States)

    Robison, Matthew K.; Unsworth, Nash

    2016-01-01

    Four experiments tested the conventional wisdom in experimental psychology that participants who complete laboratory tasks systematically differ in their cognitive abilities, motivational levels, and personality characteristics as a function of the time at which they participate during an academic term. Across 4 experiments with over 2,900…

  7. Development of information-movement couplings in a rhythmical ball-bouncing task: from space- to time-related information.

    Science.gov (United States)

    Bazile, C; Benguigui, N; Siegler, I A

    2016-01-01

    We studied the development of information-movement couplings in a ball-bouncing task with a special interest in how space- and time-related information is used by people of different ages. Participants from four age groups (children aged 7-8, 9-10 and 11-12 years, and adults) performed a virtual ball-bouncing task in which space- and time-related information were independently manipulated. Task performance and information-movement couplings were analyzed. Our results confirm a clear use of time-related information in adults, while children demonstrated a predominant relationship between space-related information and the period of movement. In the course of development, however, the children become progressively more capable of using time-related information in order to control the rhythmic ball-bouncing task. A second and weaker coupling, between ball height information and racket velocity at impact, also appears in the course of development. The data seem to show that the development of children follows the freezing-freeing-exploiting sequence proposed by Savelsbergh and Van der Kamp (Int J Sport Psychol 31:467-484, 2000), with a significant change in how information is used to control movement related to age.

  8. Effects of age and timing of augmented feedback on learning muscle relaxation while performing a gross motor task

    NARCIS (Netherlands)

    van Dijk, H; Hermens, Hermanus J.

    Objective: To examine the combined effect of age and timing of augmented feedback on learning muscle relaxation. Performing a gross motor task, subjects had to lower their trapezius muscle activity using the electromyographic signal as visual myofeedback. Design: Healthy subjects (16 young adults:

  9. Effects of task complexity in young and old adults : Reaction time and P300 latency are not always dissociated

    NARCIS (Netherlands)

    Smulders, F.T.Y.; Kenemans, J.L.; Schmidt, W.F.; Albert, K.

    1999-01-01

    Twelve young and 11 elderly men (mean ages 21.1 and 70.1) performed a choice-reaction time (RT) task in which stimulus degradation and stimulus- response (S-R) compatibility were manipulated. The extant literature has suggested that the effects of age on RT are usually augmented (multiplicative) in

  10. Upper Extremity Motor Learning among Individuals with Parkinson's Disease: A Meta-Analysis Evaluating Movement Time in Simple Tasks

    Directory of Open Access Journals (Sweden)

    K. Felix

    2012-01-01

    Full Text Available Motor learning has been found to occur in the rehabilitation of individuals with Parkinson's disease (PD. Through repetitive structured practice of motor tasks, individuals show improved performance, confirming that motor learning has probably taken place. Although a number of studies have been completed evaluating motor learning in people with PD, the sample sizes were small and the improvements were variable. The purpose of this meta-analysis was to determine the ability of people with PD to learn motor tasks. Studies which measured movement time in upper extremity reaching tasks and met the inclusion criteria were included in the analysis. Results of the meta-analysis indicated that people with PD and neurologically healthy controls both demonstrated motor learning, characterized by a decrease in movement time during upper extremity movements. Movement time improvements were greater in the control group than in individuals with PD. These results support the findings that the practice of upper extremity reaching tasks is beneficial in reducing movement time in persons with PD and has important implications for rehabilitation.

  11. Task-role-based Access Control Model in Smart Health-care System

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2015-01-01

    Full Text Available As the development of computer science and smart health-care technology, there is a trend for patients to enjoy medical care at home. Taking enormous users in the Smart Health-care System into consideration, access control is an important issue. Traditional access control models, discretionary access control, mandatory access control, and role-based access control, do not properly reflect the characteristics of Smart Health-care System. This paper proposes an advanced access control model for the medical health-care environment, task-role-based access control model, which overcomes the disadvantages of traditional access control models. The task-role-based access control (T-RBAC model introduces a task concept, dividing tasks into four categories. It also supports supervision role hierarchy. T-RBAC is a proper access control model for Smart Health-care System, and it improves the management of access rights. This paper also proposes an implementation of T-RBAC, a binary two-key-lock pair access control scheme using prime factorization.

  12. Factors Contributing to Single- and Dual-Task Timed "Up & Go" Test Performance in Middle-Aged and Older Adults Who Are Active and Dwell in the Community.

    Science.gov (United States)

    Chen, Hui-Ya; Tang, Pei-Fang

    2016-03-01

    Dual-task Timed "Up & Go" (TUG) tests are likely to have applications different from those of a single-task TUG test and may have different contributing factors. The purpose of this study was to compare factors contributing to performance on single- and dual-task TUG tests. This investigation was a cross-sectional study. Sixty-four adults who were more than 50 years of age and dwelled in the community were recruited. Interviews and physical examinations were performed to identify potential contributors to TUG test performance. The time to complete the single-task TUG test (TUGsingle) or the dual-task TUG test, which consisted of completing the TUG test while performing a serial subtraction task (TUGcognitive) or while carrying water (TUGmanual), was measured. Age, hip extensor strength, walking speed, general mental function, and Stroop scores for word and color were significantly associated with performance on all TUG tests. Hierarchical multiple regression models, without the input of walking speed, revealed different independent factors contributing to TUGsingle performance (Mini-Mental Status Examination score, β=-0.32), TUGmanual performance (age, β=0.35), and TUGcognitive performance (Stroop word score, β=-0.40; Mini-Mental Status Examination score, β=-0.31). At least 40% of the variance in the performance on the 3 TUG tests was not explained by common clinical measures, even when the factor of walking speed was considered. However, this study successfully identified some important factors contributing to performance on different TUG tests, and other studies have reported similar findings for single-task TUG test and dual-task gait performance. Although the TUGsingle and the TUGcognitive shared general mental function as a common factor, the TUGmanual was uniquely influenced by age and the TUGcognitive was uniquely influenced by focused attention. These results suggest that both common and unique factors contribute to performance on single- and dual-task

  13. Ruin Probability in Linear Time Series Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lihong

    2005-01-01

    This paper analyzes a continuous time risk model with a linear model used to model the claim process. The time is discretized stochastically using the times when claims occur, using Doob's stopping time theorem and martingale inequalities to obtain expressions for the ruin probability as well as both exponential and non-exponential upper bounds for the ruin probability for an infinite time horizon. Numerical results are included to illustrate the accuracy of the non-exponential bound.

  14. The systematic variation of task characteristics facilitates the understanding of task difficulty: A cognitive diagnostic modeling approach to complex problem solving

    Directory of Open Access Journals (Sweden)

    Samuel Greiff

    2014-03-01

    Full Text Available Since the 1960ies, when pioneering research on Item Response Theory (IRT was published, considerable progress has been made with regard to the psychometrical quality of psychological assessment tools. One recent development building upon IRT is the introduction of Cognitive Diagnostic Modeling (CDM. The major goal of introducing CDM was to develop methods that allow for examining which cognitive processes are involved when a person is working on a specific assessment task. More precisely, CDM enables researchers to investigate whether assumed task characteristics drive item difficulty and, thus, person ability parameters. This may – at least according to the assumption inherent in CDM - allow conclusions about cognitive processes involved in assessment tasks. In this study, out of the numerous CDMs available the Least Square Distance Method (LSDM; Dimitrov, 2012 was applied to investigate psychometrical qualities of an assessment instrument measuring Complex Problem Solving (CPS skills. For the purpose of the study, two task characteristics essential for mastering CPS tasks were identified ex-ante – degree of connectivity and presence of indirect effects by adding eigendynamics to the task. The study examined whether and how the two hypothesized task characteristics drive item difficulty of two CPS dimensions, knowledge acquisition and knowledge application. The sample consisted of 490 German high school students, who completed the computer-based CPS assessment instrument MicroDYN. The two task characteristics in MicroDYN items were varied systematically. Results obtained in LSDM indicated that the two hypothesized task characteristics, degree of connectivity and introducing indirect effects, drove item difficulty only for knowledge acquisition. Hence, other task characteristics that may determine item difficulty of knowledge application need to be investigated in future studies in order to provide a sound measurement of CPS.

  15. Time Savings and Surgery Task Load Reduction in Open Intraperitoneal Onlay Mesh Fixation Procedure

    Directory of Open Access Journals (Sweden)

    Sanjoy Roy

    2015-01-01

    Full Text Available Background. This study assessed the reduction in surgeon stress associated with savings in procedure time for mechanical fixation of an intraperitoneal onlay mesh (IPOM compared to a traditional suture fixation in open ventral hernia repair. Study Design. Nine general surgeons performed 36 open IPOM fixation procedures in porcine model. Each surgeon conducted two mechanical (using ETHICON SECURESTRAPTM Open and two suture fixation procedures. Fixation time was measured using a stopwatch, and related surgeon stress was assessed using the validated SURG-TLX questionnaire. T-tests were used to compare between-group differences, and a two-sided 95% confidence interval for the difference in stress levels was established using nonparametric methodology. Results. The mechanical fixation group demonstrated an 89.1% mean reduction in fixation time, as compared to the suture group (p<0.00001. Surgeon stress scores measured using SURG-TLX were 55.5% lower in the mechanical compared to the suture fixation group (p<0.001. Scores in five of the six sources of stress were significantly lower for mechanical fixation. Conclusions. Mechanical fixation with ETHICON SECURESTRAPTM Open demonstrated a significant reduction in fixation time and surgeon stress, which may translate into improved operating efficiency, improved performance, improved surgeon quality of life, and reduced overall costs of the procedure.

  16. Dynamic models in space and time

    NARCIS (Netherlands)

    Elhorst, J.P.

    2001-01-01

    This paper presents a first-order autoregressive distributed lag model in both space and time. It is shown that this model encompasses a wide series of simpler models frequently used in the analysis of space-time data as well as models that better fit the data and have never been used before. A fram

  17. A time estimation task as a possible measure of emotions: difference depending on the nature of the stimulus used.

    Directory of Open Access Journals (Sweden)

    Auriane eGros

    2015-06-01

    Full Text Available Objective: Time perception is fundamental for human experience. A topic which has attracted the attention of researchers since long time is how the stimulus sensory modality (e.g., images vs. sounds affects time judgments. However, so far, no study has directly compared the effect of two sensory modalities using emotional stimuli on time judgments.Methods: In the present two studies, healthy participants were asked to estimate the duration of a pure sound preceded by the presentation of odors vs. emotional videos as priming stimuli (implicit emotion-eliciting task. During the task, skin conductance (SC was measured as an index of arousal. Results: Olfactory stimuli resulted in an increase in SC and in a constant time overestimation. Video stimuli resulted in an increase SC (emotional arousal, which decreased linearly overtime. Critically, video stimuli resulted in an initial time underestimation, which shifted progressively towards a time overestimation. These results suggest that video stimuli recruited both arousal-related and attention-related mechanisms, and that the role played by these mechanisms changed overtime. Conclusions: These pilot studies highlight the importance of comparing the effect of different kinds on temporal estimation tasks, and suggests that odors are well suited to investigate arousal-related temporal distortions, while videos are ideal to investigate both arousal-related and attention-related mechanisms.

  18. Examining Alphabet Writing Fluency in Kindergarten: Exploring the Issue of Time on Task

    Science.gov (United States)

    Puranik, Cynthia S.; Patchan, Melissa M.; Sears, Mary M.; McMaster, Kristen L.

    2017-01-01

    Curriculum-based measures (CBMs) are necessary for educators to quickly assess student skill levels and monitor progress. This study examined the use of the alphabet writing fluency task, a CBM of writing, to assess handwriting fluency--that is, how well children access, retrieve, and write letter forms automatically. In the current study, the…

  19. Real-time task recognition based on knowledge workers’ computer activities

    NARCIS (Netherlands)

    Koldijk, S.J.; Staalduinen, M. van; Neerincx, M.A.; Kraaij, W.

    2012-01-01

    Motivation – Supporting knowledge workers in their self-management by providing them overviews of performed tasks. Research approach – Computer interaction data of knowledge workers was logged during their work. For each user different classifiers were trained and compared on their performance on re

  20. A Time To Sow: Report from the Task Force on Learning Technologies.

    Science.gov (United States)

    Council of Ontario Universities, Toronto.

    Information technology and telecommunications advances affect universities in addition to business. Ontario universities need to address the importance of incorporating learning technologies (LTs) into their teaching. The Task Force on Learning Technologies was established to address Ontario universities' need to utilize learning technologies and…

  1. In a daily time-place learning task, time is only used as a discriminative stimulus if each daily session is associated with a distinct spatial location.

    Science.gov (United States)

    Deibel, Scott H; Ingram, Matthew L; Lehr, Andrew B; Martin, Hiliary C; Skinner, Darlene M; Martin, Gerard M; Hughes, Isaac M W; Thorpe, Christina M

    2014-09-01

    It is difficult for rats to acquire daily time-place (TP) learning tasks. One theory suggests that rats do not use time of day as a stimulus signaling a specific response. In the present study, we tested rats' ability to use time of day as a discriminative stimulus. A fixed-interval procedure was used in which one lever provided reinforcement on a FI-5-s schedule in morning sessions, and the same lever provided reinforcement on a FI-30-s schedule in afternoon sessions. Because only one place was used in this paradigm, the rats could only use time of day to acquire the task. Mean responses during the first 5 s of the first trial in each session indicated that the rats did not discriminate between the two sessions. In Phase II, a different lever location was used for each of the two daily sessions, which meant that both spatial and temporal information could be used to acquire the task. The rats readily acquired the task in this phase, and probe trials indicated that the rats were using a combination of spatial and temporal information to discriminate between the two different trial types. When the spatial cue was removed in Phase III, rats no longer discriminated the two sessions, suggesting that time can only be used as a discriminative stimulus when each daily session is associated with a distinct spatial location.

  2. Human cortical rhythms during visual delayed choice reaction time tasks. A high-resolution EEG study on normal aging.

    Science.gov (United States)

    Babiloni, Claudio; Babiloni, Fabio; Carducci, Filippo; Cappa, Stefano F; Cincotti, Febo; Del Percio, Claudio; Miniussi, Carlo; Vito Moretti, Davide; Rossi, Simone; Sosta, Katiuscia; Rossini, Paolo Maria

    2004-08-12

    Neuroimaging cognitive study of aging requires simple tasks ensuring a high rate of correct performances even in stressful neurophysiological settings. Here two simple delayed choice reaction time tasks were used to unveil event-related desynchronization (ERD) of theta (4-6 Hz) and alpha (6-12 Hz) electroencephalographic rhythms across normal aging. In the first condition, a cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). The explicit demand was visuo-spatial, but the retention could be also based on phonological and somatomotor coding. In the second condition, the cue stimulus remained available along the delay period. Correct performances were higher than 95% in both groups and tasks, although they were significantly better in young than elderly subjects (P < 0.03). During the delay period, theta and alpha ERD accompanying correct responses were recognized in the two groups, the alpha ERD being stronger and prolonged during the memory than non-memory task. On the other hand, the fronto-parietal theta and parietal alpha ERD were stronger in young than elderly subjects during both tasks. Notably, the frontal alpha ERD was negligible in elderly subjects. In conclusion, the present simple tasks unveiled in elderly compared to young subjects (i) a weaker involvement of (para)hippocampal-cortical circuits as revealed by theta ERD and (ii) a weaker involvement of "executive" thalamo-cortical circuits as revealed by frontal alpha ERD. These effects might worsen behavioral performances to the simple cognitive tasks with age. The present protocol is promising for the neuroimaging study of pathological aging.

  3. Time lags in biological models

    CERN Document Server

    MacDonald, Norman

    1978-01-01

    In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these...

  4. Time course of information representation of macaque AIP neurons in hand manipulation task revealed by information analysis.

    Science.gov (United States)

    Sakaguchi, Yutaka; Ishida, Fumihiko; Shimizu, Takashi; Murata, Akira

    2010-12-01

    We used mutual information analysis of neuronal activity in the macaque anterior intraparietal area (AIP) to examine information processing during a hand manipulation task. The task was to reach-to-grasp a three-dimensional (3D) object after presentation of a go signal. Mutual information was calculated between the spike counts of individual neurons in 50-ms-wide time bins and six unique shape classifications or 15 one-versus-one classifications of these shapes. The spatiotemporal distribution of mutual information was visualized as a two-dimensional image ("information map") to better observe global profiles of information representation. In addition, a nonnegative matrix factorization technique was applied for extracting its structure. Our major finding was that the time course of mutual information differed significantly according to different classes of task-related neurons. This strongly suggests that different classes of neurons were engaged in different information processing stages in executing the hand manipulation task. On the other hand, our analysis revealed the heterogeneous nature of information representation of AIP neurons. For example, "information latency" (or information onset) varied among individual neurons even in the same neuron class and the same shape classification. Further, some neurons changed "information preference" (i.e., shape classification with the largest amount of information) across different task periods. These suggest that neurons encode different information in the different task periods. Taking the present result together with previous findings, we used a Gantt chart to propose a hypothetical scheme of the dynamic interactions between different types of AIP neurons.

  5. CUFE at SemEval-2016 Task 4: A Gated Recurrent Model for Sentiment Classification

    KAUST Repository

    Nabil, Mahmoud

    2016-06-16

    In this paper we describe a deep learning system that has been built for SemEval 2016 Task4 (Subtask A and B). In this work we trained a Gated Recurrent Unit (GRU) neural network model on top of two sets of word embeddings: (a) general word embeddings generated from unsupervised neural language model; and (b) task specific word embeddings generated from supervised neural language model that was trained to classify tweets into positive and negative categories. We also added a method for analyzing and splitting multi-words hashtags and appending them to the tweet body before feeding it to our model. Our models achieved 0.58 F1-measure for Subtask A (ranked 12/34) and 0.679 Recall for Subtask B (ranked 12/19).

  6. The cardiac cycle time effect revisited: Temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks.

    NARCIS (Netherlands)

    Somsen, R.J.M.; Jennings, J.R.; van der Molen, M.W.

    2004-01-01

    Lacey and Lacey (1974) suggested that during reaction time tasks higher brain centers dynamically adjust efferent vagal nerve pulses to the sino-atrial node of the heart, inducing phase-dependent heart rate changes. Since then, animal and human neuro-physiological results have provided evidence for

  7. The cardiac cycle time effect revisited: Temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks.

    NARCIS (Netherlands)

    R.J.M. Somsen; J.R. Jennings; M.W. van der Molen

    2004-01-01

    Lacey and Lacey (1974) suggested that during reaction time tasks higher brain centers dynamically adjust efferent vagal nerve pulses to the sino-atrial node of the heart, inducing phase-dependent heart rate changes. Since then, animal and human neuro-physiological results have provided evidence for

  8. The influence of a concurrent cognitive task on lower limb reaction time among stroke survivors with right- or left-hemiplegia.

    Science.gov (United States)

    Pauley, Tim; Phadke, Chetan P; Kassam, Adam; Ismail, Farooq; Boulias, Chris; Devlin, Michael

    2015-10-01

    To determine the impact of cognitive interference on foot pedal reaction time among stroke survivors with right- (RH) or left-hemiplegia (LH). Cross-sectional comparison without randomization. 10 patients post-stroke with RH, 10 with LH; 10 age-matched controls. Foot pedal response times were measured using three different reaction time (RT) paradigms: simple RT, dual-task RT (counting backward by serial 3 seconds), and choice RT (correct response contingent on stimuli to eliminate pre-programing). RH and LH used the non-paretic leg for all trials. Three 3 (RT task) × 3 (group) mixed-model factorial ANOVAs were used to compare RT, movement time (MT), total response time (TRT). Overall controls demonstrated faster RT than RH (332 ± 73 versus 474 ± 144 ms, P < 0.001) or LH (402 ± 127 ms, P < 0.05); LH group demonstrated faster RT than those with RH (P < 0.05). Control subjects demonstrated significantly faster RT than RH for all RT conditions (P < 0.05 for all). In contrast, controls achieved significantly faster RT than LH for the choice RT condition only (P < 0.05), but not for the simple (P = 0.12) or dual-task RT conditions (P = 0.25). Compared to controls, response time was significantly impaired among LH and RH when the response could not be pre-programmed. While current simple RT testing commonly employed by driver rehab specialists may be sufficient for detecting RT deficits in patients with RH, simple or dual-task RT tests alone may fail to detect RT deficiencies among LH, even when testing the non-paretic limb. Choice RT should be added to post-stroke driver fitness assessment, particularly for patients with LH.

  9. Neural mechanisms of cognitive control: an integrative model of stroop task performance and FMRI data.

    Science.gov (United States)

    Herd, Seth A; Banich, Marie T; O'Reilly, Randall C

    2006-01-01

    We address the connection between conceptual knowledge and cognitive control using a neural network model. This model extends a widely held theory of cognitive control [Cohen, J. D., Dunbar, K., & McClelland, J. L. On the control of automatic processes: A parallel distributed processing model of the Stroop effect. Psychological Review, 97, 332-361, 1990] so that it can explain new empirical findings. Leveraging other computational modeling work, we hypothesize that representations used for task control are recruited from preexisting representations for categories, such as the concept of color relevant to the Stroop task we model here. This hypothesis allows the model to account for otherwise puzzling fMRI results, such as increased activity in brain regions processing to-be-ignored information. In addition, biologically motivated changes in the model's pattern of connectivity show how global competition can arise when inhibition is strictly local, as it seems to be in the cortex. We also discuss the potential for this theory to unify models of task control with other forms of attention.

  10. Prototype Task Network Model to Simulate the Analysis of Narrow Band Sonar Data and the Effects of Automation on Critical Operator Tasks

    Science.gov (United States)

    2016-06-07

    will include the tasks of log data entry and look-up as part of the automation model . Although we refer to the technology solution in this section...for the Environmental Model Values that are different from the default model are shown with a gray background. Variable Acceptable Values Units...analysis Page D-1 Annex D. The Crew Model Trait Variables Acceptable Values Units Value Default Initial Value Agility None, High, Medium, Low

  11. Validating the PVL-Delta model for the Iowa gambling task

    Directory of Open Access Journals (Sweden)

    Helen eSteingroever

    2013-12-01

    Full Text Available Decision-making deficits in clinical populations are often assessed with the Iowa gambling task (IGT. Performance on this task is driven by latent psychological processes, the assessment of which requires an analysis using cognitive models. Two popular examples of such models are the Expectancy Valence (EV and Prospect Valence Learning (PVL models. These models have recently been subjected to sophisticated procedures of model checking, spawning a hybrid version of the EV and PVL models—the PVL-Delta model. In order to test the validity of the PVL-Delta model we present a parameter space partitioning (PSP study and a test of selective influence. The PSP study allows one to assess the choice patterns that the PVL-Delta model generates across its entire parameter space. The PSP study revealed that the model accounts for empirical choice patterns featuring a preference for the good decks or the decks with infrequent losses; however, the model fails to account for empirical choice patterns featuring a preference for the bad decks. The test of selective influence investigates the effectiveness of experimental manipulations designed to target only a single model parameter. This test showed that the manipulations were successful for all but one parameter. To conclude, despite a few shortcomings, the PVL-Delta model seems to be a better IGT model than the popular EV and PVL models.

  12. A Bayesian hierarchical diffusion model decomposition of performance in Approach-Avoidance Tasks

    NARCIS (Netherlands)

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated

  13. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    Science.gov (United States)

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  14. Multilevel Flow Modeling Based Decision Support System and Its Task Organization

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Ravn, Ole

    2013-01-01

    Flow Modeling (MFM) represents complex system in multiple levels of means-end and part-whole decompositions, which is considered suitable for plant supervi-sion tasks. The aim of this paper is to explore the different possible functionali-ties by applying MFM to DSS, where both currently available...

  15. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using contempora

  16. Combining experimental observation and modelling in investigating feedback and emotions in repeated selection tasks

    NARCIS (Netherlands)

    Fischer, A.R.H.; Blommaert, F.J.J.; Midden, C.J.H.

    2005-01-01

    People seem to learn tasks even without formal training. This can be modelled as the outcome of a feedback system that accumulates experience. In this paper we investigate such a feedback system, following an iterative research approach. A feedback loop is specified that is detailed using

  17. Modeling Human Dynamics in Combined Ramp-Following and Disturbance-Rejection Tasks

    NARCIS (Netherlands)

    Pool, D.M.; Van Paassen, M.M.; Mulder, M.

    2010-01-01

    This paper investigates the modeling of humanmanual control behavior for pursuit tracking tasks in which target forcing functions consisting of multiple ramp-like changes in target attitude are used. Due to the use of a pursuit display and the predictability of such forcing function signals, it can

  18. Canonical Correlational Models of Students' Perceptions of Assessment Tasks, Motivational Orientations, and Learning Strategies

    Science.gov (United States)

    Alkharusi, Hussain

    2013-01-01

    The present study aims at deriving correlational models of students' perceptions of assessment tasks, motivational orientations, and learning strategies using canonical analyses. Data were collected from 198 Omani tenth grade students. Results showed that high degrees of authenticity and transparency in assessment were associated with positive…

  19. Meaning-Based Scoring: A Systemic Functional Linguistics Model for Automated Test Tasks

    Science.gov (United States)

    Gleason, Jesse

    2014-01-01

    Communicative approaches to language teaching that emphasize the importance of speaking (e.g., task-based language teaching) require innovative and evidence-based means of assessing oral language. Nonetheless, research has yet to produce an adequate assessment model for oral language (Chun 2006; Downey et al. 2008). Limited by automatic speech…

  20. Bayesian parameter estimation in the Expectancy Valence model of the Iowa gamblling task

    NARCIS (Netherlands)

    Wetzels, R.; Vandekerckhove, J.; Tuerlinckx, F.; Wagenmakers, E.-J.

    2010-01-01

    The purpose of the popular Iowa gambling task is to study decision making deficits in clinical populations by mimicking real-life decision making in an experimental context. Busemeyer and Stout [Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessme

  1. Comparing Three Methods to Create Multilingual Phone Models for Vocabulary Independent Speech Recognition Tasks

    Science.gov (United States)

    2000-08-01

    Glass, et al.: Multilingual Spoken Language Under- ( multilingual clusters) and 5280 monolingual clusters. This standing in the MIT VOYAGER System...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010392 TITLE: Comparing Three Methods to Create Multilingual Phone...METHODS TO CREATE MULTILINGUAL PHONE MODELS FOR VOCABULARY INDEPENDENT SPEECH RECOGNITION TASKS Joachim Kdhler German National Research Center for

  2. An Agent-Based Model of Status Construction in Task Focused Groups

    NARCIS (Netherlands)

    Grow, André; Flache, Andreas; Wittek, Rafael

    2015-01-01

    Status beliefs link social distinctions, such as gender and race, to assumptions about competence and social worth. Recent modeling work in status construction theory suggests that interactions in small, task focused groups can lead to the spontaneous emergence and diffusion of such beliefs in large

  3. Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty

    Science.gov (United States)

    Molteni, Erika; Contini, Davide; Caffini, Matteo; Baselli, Giuseppe; Spinelli, Lorenzo; Cubeddu, Rinaldo; Cerutti, Sergio; Bianchi, Anna Maria; Torricelli, Alessandro

    2012-05-01

    We evaluated frontal brain activation during a mixed attentional/working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-domain functional near-infrared spectroscopy (fNIRS). Brain activation was assessed, and load-related oxy- and deoxy-hemoglobin changes were studied. Generalized linear model (GLM) was applied to the data to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short-term memorization. GLM was applied to the data twice: for modeling the task as a whole and for specifically investigating brain activation at each cognitive load. This twofold employment of GLM allowed (1) the extraction and isolation of different information from the same signals, obtained through the modeling of different cognitive categories (sustained attention and working memory), and (2) the evaluation of model fitness, by inspection and comparison of residuals (i.e., unmodeled part of the signal) obtained in the two different cases. Results attest to the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Some hemispherical differences have also been highlighted frontally: deoxy-hemoglobin changes manifested a strong right lateralization, whereas modifications in oxy- and total hemoglobin showed a medial localization. The present work successfully explored the capability of fNIRS to detect the two neurophysiological categories under investigation and distinguish their activation patterns.

  4. Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks.

    Science.gov (United States)

    Caywood, Matthew S; Roberts, Daniel M; Colombe, Jeffrey B; Greenwald, Hal S; Weiland, Monica Z

    2016-01-01

    There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as "black boxes" that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model's predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy.

  5. Effects of task modality, length and complexity on time for activities in lucid dreams

    OpenAIRE

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2013-01-01

    Introduction: Nocturnal dreams can be considered as a kind of simulation of the real world on a higher cognitive level (Erlacher & Schredl, 2008). Within lucid dreams, the dreamer is aware of the dream state and thus able to control the ongoing dream content. Previous studies could demonstrate that it is possible to practice motor tasks during lucid dreams and doing so improved performance while awake (Erlacher & Schredl, 2010). Even though lucid dream practice might be a promising kind o...

  6. Effects of task modality, length and complexity on time for activities in lucid dreams

    OpenAIRE

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2013-01-01

    Introduction: Nocturnal dreams can be considered as a kind of simulation of the real world on a higher cognitive level (Erlacher & Schredl, 2008). Within lucid dreams, the dreamer is aware of the dream state and thus able to control the ongoing dream content. Previous studies could demonstrate that it is possible to practice motor tasks during lucid dreams and doing so improved performance while awake (Erlacher & Schredl, 2010). Even though lucid dream practice might be a promising kind o...

  7. Learning Effects on Strategy Selection in a Dynamic Task Environment as a Function of Time Pressure

    Science.gov (United States)

    1994-06-01

    MANAGEMENT UI1TREKSEL Previous research on strategy selection in dynamic task environments indicated that subjects preferred to request information first...I febwari 1994 is de naam Instituut voor Zintuigfysiologie TNO gewijzigd in TNO Technische Menskunde. 2 CONTENTS Page SUMMARY 3 SAMENVAITING 4 I...waarin men gebruik maakt van de continue feedback over de toestand van het systeem . Proefpersonen moesten het veranderende conditieniveau van een atleet

  8. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  9. The respiratory tract deposition model proposed by the ICRP Task Group

    Energy Technology Data Exchange (ETDEWEB)

    James, A.C.; Briant, J.K. (Pacific Northwest Lab., Richland, WA (USA)); Stahlhofen, W.; Rudolf, G. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Frankfurt am Main (Germany, F.R.). Abt. fuer Biophysikalische Strahlenforschung); Egan, M.J.; Nixon, W. (AEA Safety and Reliability, Culcheth (UK)); Gehr, P. (Bern Univ. (Switzerland). Anatomisches Inst.)

    1990-11-01

    The Task Group has developed a new model of the deposition of inhaled aerosols in each anatomical region of the respiratory tract. The model is used to evaluate the fraction of airborne activity that is deposited in respiratory regions having distinct retention characteristics and clearance pathways: the anterior nares, the extrathoracic airways of the naso- and oropharynx and larynx, the bronchi, the bronchioles, and the alveolated airways of the lung. Drawn from experimental data on total and regional deposition in human subjects, the model is based on extrapolation of these data by means of a detailed theoretical model of aerosol transport and deposition within the lung. The Task Group model applies to all practical conditions, and for aerosol particles and vapors from atomic size up to very coarse aerosols with an activity median aerodynamic diameter of 100 {mu}m. The model is designed to predict regional deposition in different subjects, including adults of either sex, children of various ages, and infants, and also to account for anatomical differences among Caucasian and non-Caucasian subjects. The Task Group model represents aerosol inhalability and regional deposition in different subjects by algebraic expressions of aerosol size, breathing rates, standard lung volumes, and scaling factors for airway dimensions. 35 refs., 13 figs., 2 tabs.

  10. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation.

    Science.gov (United States)

    Maire, Micheline; Reichert, Carolin F; Gabel, Virginie; Viola, Antoine U; Krebs, Julia; Strobel, Werner; Landolt, Hans-Peter; Bachmann, Valérie; Cajochen, Christian; Schmidt, Christina

    2014-01-01

    Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER3 (5/5) ) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER3 (4/4) ). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability.

  11. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation

    Directory of Open Access Journals (Sweden)

    Micheline eMaire

    2014-03-01

    Full Text Available Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e. state instability in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3. By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5 experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4. These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioural vulnerability.

  12. Time-Weighted Balanced Stochastic Model Reduction

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2011-01-01

    A new relative error model reduction technique for linear time invariant (LTI) systems is proposed in this paper. Both continuous and discrete time systems can be reduced within this framework. The proposed model reduction method is mainly based upon time-weighted balanced truncation and a recent...

  13. Model checking timed automata : techniques and applications

    NARCIS (Netherlands)

    Hendriks, Martijn.

    2006-01-01

    Model checking is a technique to automatically analyse systems that have been modeled in a formal language. The timed automaton framework is such a formal language. It is suitable to model many realistic problems in which time plays a central role. Examples are distributed algorithms, protocols, emb

  14. Lag space estimation in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...

  15. Hemispheric specialization of abacus experts in mental calculation: evidence from the results of time-sharing tasks.

    Science.gov (United States)

    Hatta, T; Ikeda, K

    1988-01-01

    Hemispheric specialization for mental calculation and verbal tasks in abacus (Soroban in Japanese) experts and control subjects was tested using time-sharing tasks. In Experiment 1, the effects of auditorily presented mental calculation and news-listening tasks on sequential finger tappings were examined. The results revealed that in the mental calculation condition, abacus experts showed greater interference effects on left hand tapping, whereas control subjects showed greater interference effects on right hand tapping (as compared to left hand). In the news-listening condition, abacus experts showed no hand difference while the controls showed greater interference effects on the right hand. In Experiment 2, the effects of visually presented mental calculation and word-reading tasks on sequential finger tapping were examined. The results revealed that in the mental calculation condition, abacus experts showed a non-significant tendency towards greater interference in the left hand whereas the controls showed no hand difference. In the word-reading condition, both abacus experts and controls showed greater interference in the right hand than in the left hand. In Experiment 3, intermediate and upper-rank abacus experts performed a similar task to Experiment 1 under two instruction conditions. The results of this control experiment confirmed that a greater left hand reduction in calculation of abacus experts is not due to subject's cognitive mode but due to the amount of abacus learning experience. These data suggest that (1) learning experiences can affect the pattern of cerebral specialization through the change of approaches to perform cognitive tasks, and (2) the right hemisphere engages in mental calculation for the abacus experts whereas the left hemisphere contributes to mental calculation in ordinary people having no experience of abacus learning.

  16. Task decomposition: a framework for comparing diverse training models in human brain plasticity studies

    Directory of Open Access Journals (Sweden)

    Emily B. J. Coffey

    2013-10-01

    Full Text Available Training studies, in which the structural or functional neurophysiology is compared before and after expertise is acquired, are increasingly being used as models for understanding the human brain’s potential for reorganization. It is proving difficult to use these results to answer basic and important questions like how task training leads to both specific and general changes in behaviour and how these changes correspond with modifications in the brain. The main culprit is the diversity of paradigms used as complex task models. An assortment of activities ranging from juggling to deciphering Morse code has been reported. Even when working in the same general domain, few researchers use similar training models. New ways to meaningfully compare complex tasks are needed. We propose a method for characterizing and deconstructing the task requirements of complex training paradigms, which is suitable for application to both structural and functional neuroimaging studies. We believe this approach will aid brain plasticity research by making it easier to compare training paradigms, identify ‘missing puzzle pieces’, and encourage researchers to design training protocols to bridge these gaps.

  17. Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks

    Science.gov (United States)

    Caywood, Matthew S.; Roberts, Daniel M.; Colombe, Jeffrey B.; Greenwald, Hal S.; Weiland, Monica Z.

    2017-01-01

    There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as “black boxes” that are difficult to analyze or interpret. In an effort toward more interpretable BCIs, we studied a family of N-back working memory tasks using a machine learning model, Gaussian Process Regression (GPR), which was both powerful and amenable to analysis. Participants performed the N-back task with three stimulus variants, auditory-verbal, visual-spatial, and visual-numeric, each at three working memory loads. GPR models were trained and tested on EEG data from all three task variants combined, in an effort to identify a model that could be predictive of mental workload demand regardless of stimulus modality. To provide a comparison for GPR performance, a model was additionally trained using multiple linear regression (MLR). The GPR model was effective when trained on individual participant EEG data, resulting in an average standardized mean squared error (sMSE) between true and predicted N-back levels of 0.44. In comparison, the MLR model using the same data resulted in an average sMSE of 0.55. We additionally demonstrate how GPR can be used to identify which EEG features are relevant for prediction of cognitive workload in an individual participant. A fraction of EEG features accounted for the majority of the model’s predictive power; using only the top 25% of features performed nearly as well as using 100% of features. Subsets of features identified by linear models (ANOVA) were not as efficient as subsets identified by GPR. This raises the possibility of BCIs that require fewer model features while capturing all of the information needed to achieve high predictive accuracy. PMID:28123359

  18. Research on safety evaluation model for in-vehicle secondary task driving.

    Science.gov (United States)

    Jin, Lisheng; Xian, Huacai; Niu, Qingning; Bie, Jing

    2015-08-01

    This paper presents a new method for evaluating in-vehicle secondary task driving safety. There are five in-vehicle distracter tasks: tuning the radio to a local station, touching the touch-screen telephone menu to a certain song, talking with laboratory assistant, answering a telephone via Bluetooth headset, and finding the navigation system from Ipad4 computer. Forty young drivers completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks are collected and analyzed. Based on the measures of driver eye movements which have significant difference between the baseline and secondary task driving conditions, the evaluation index system is built. The Analytic Network Process (ANP) theory is applied for determining the importance weight of the evaluation index in a fuzzy environment. On the basis of the importance weight of the evaluation index, Fuzzy Comprehensive Evaluation (FCE) method is utilized to evaluate the secondary task driving safety. Results show that driving with secondary tasks greatly distracts the driver's attention from road and the evaluation model built in this study could estimate driving safety effectively under different driving conditions.

  19. Temporal sensitivity changes with extended training in a bisection task in a transgenic rat model

    Directory of Open Access Journals (Sweden)

    Bruce L Brown

    2011-09-01

    Full Text Available The present study investigated temporal perception in a Huntington Disease transgenic rat model using a temporal bisection procedure. After initial discrimination training in which animals learned to press one lever after a 2-s tone duration, and the other lever after a 8-s tone duration for food reward, the bisection procedure was implemented in which intermediate durations with no available reinforcement were interspersed with trials with the anchor durations. Bisection tests were repeated in a longitudinal design from 4 to 8 months of age. The results showed that response latencies evolved from a monotonic step-function to an inverted U-shaped function with repeated testing, a precursor of nonresponding on trials with intermediate durations. We inferred that temporal sensitivity and incentive motivation combined to control the transformation of the bisection task from a two-choice task at the outset of testing to a three-choice task with repeated testing. Changes in the structure of the task and/or continued training were accompanied by improvement in temporal sensitivity. In sum, the present data highlight the possible joint roles of temporal and non-temporal factors in the temporal bisection task, and suggested that non-temporal factors may compensate for deficits in temporal processing.

  20. Temporal dynamics of interference in Simon and Eriksen tasks considered within the context of a dual-process model.

    Science.gov (United States)

    Mansfield, Karen L; van der Molen, Maurits W; Falkenstein, Michael; van Boxtel, Geert J M

    2013-08-01

    Behavioral and brain potential measures were employed to compare interference in Eriksen and Simon tasks. Assuming a dual-process model of interference elicited in speeded response tasks, we hypothesized that only lateralized stimuli in the Simon task induce fast S-R priming via direct unconditional processes, while Eriksen interference effects are induced later via indirect conditional processes. Delays to responses for incongruent trials were indeed larger in the Eriksen than in the Simon task. Only lateralized stimuli in the Simon task elicited early S-R priming, maximal at parietal areas. Incongruent flankers in the Eriksen task elicited interference later, visible as a lateralized N2. Eriksen interference also elicited an additional component (N350), which accounted for the larger behavioral interference effects in the Eriksen task. The findings suggest that interference and its resolution involve different processes for Simon and Eriksen tasks.

  1. The Use Of Computational Human Performance Modeling As Task Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Jacuqes Hugo; David Gertman

    2012-07-01

    During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employed to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.

  2. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    Science.gov (United States)

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Optimal task mapping in safety-critical real-time parallel systems; Placement optimal de taches pour les systemes paralleles temps-reel critiques

    Energy Technology Data Exchange (ETDEWEB)

    Aussagues, Ch

    1998-12-11

    This PhD thesis is dealing with the correct design of safety-critical real-time parallel systems. Such systems constitutes a fundamental part of high-performance systems for command and control that can be found in the nuclear domain or more generally in parallel embedded systems. The verification of their temporal correctness is the core of this thesis. our contribution is mainly in the following three points: the analysis and extension of a programming model for such real-time parallel systems; the proposal of an original method based on a new operator of synchronized product of state machines task-graphs; the validation of the approach by its implementation and evaluation. The work addresses particularly the main problem of optimal task mapping on a parallel architecture, such that the temporal constraints are globally guaranteed, i.e. the timeliness property is valid. The results incorporate also optimally criteria for the sizing and correct dimensioning of a parallel system, for instance in the number of processing elements. These criteria are connected with operational constraints of the application domain. Our approach is based on the off-line analysis of the feasibility of the deadline-driven dynamic scheduling that is used to schedule tasks inside one processor. This leads us to define the synchronized-product, a system of linear, constraints is automatically generated and then allows to calculate a maximum load of a group of tasks and then to verify their timeliness constraints. The communications, their timeliness verification and incorporation to the mapping problem is the second main contribution of this thesis. FInally, the global solving technique dealing with both task and communication aspects has been implemented and evaluated in the framework of the OASIS project in the LETI research center at the CEA/Saclay. (author) 96 refs.

  4. Clinical complexity in medicine: A measurement model of task and patient complexity

    Science.gov (United States)

    Islam, R.; Weir, C.; Fiol, G. Del

    2016-01-01

    Summary Background Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. Objective The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on infectious disease domain. The measurement model was adapted and modified to healthcare domain. Methods Three clinical Infectious Disease teams were observed, audio-recorded and transcribed. Each team included an Infectious Diseases expert, one Infectious Diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding process and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen’s kappa. Results The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. Conclusion The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare. PMID:26404626

  5. Association between dual task-related decrease in walking speed and real versus imagined Timed Up and Go test performance.

    Science.gov (United States)

    Bridenbaugh, Stephanie A; Beauchet, Olivier; Annweiler, Cédric; Allali, Gilles; Herrmann, François; Kressig, Reto W

    2013-06-01

    To examine whether older people with markedly dual task-related decreases in walking speed - a marker of disturbed higher-level gait control and falls - have a larger discrepancy between real and imagined Timed Up and Go (TUG) test times than those with less dual task-related decreases in walking speed. Based on a prospective cross-sectional study, 193 older adults (mean age 77.4 ± 5.9 years; 44.0 % women) referred to and consecutively assessed at a Swiss university clinic for a gait analysis to assess either gait disorders, fall risk or memory disorders were included. For all participants, walking speed was measured using a GAITRite(®) electronic walkway system during usual walking at self-selected pace and while dual tasking (i.e., usual walking and simultaneously counting backwards out loud). In addition, real Timed Up and Go (TUGr) and imagined Timed Up and Go (TUGi) (i.e., the time needed to imagine performing the TUGr) times were measured with a stopwatch. Differences between both walking conditions for walking speed (delta of walking speed) and both TUG conditions (delta of TUG time) were calculated. Age, gender, height, total number drugs taken per day, daily use of psychoactive drugs, use of walking aid, history of falls, Mini-Mental State Examination score, near vision and education level were used as covariables in this analysis. Participants were categorized into two groups based on being in the lowest tertian (i.e., times were similar (P = .169 and P = .839). In both groups, TUGi was faster than TUGr (P time was significantly greater in group B compared to group A (P time (P = time, whereas an increased MMSE score (P = .030) was associated with a decrease in delta of TUG time. These findings show that a large discrepancy between real and imagined TUG performances is significantly correlated with a decrease in walking speed while dual tasking, and thus may also be a surrogate marker of disturbed higher-level gait control. The

  6. Time-frequency distribution properties of event-related potentials in mental fatigue induced by visual memory tasks.

    Science.gov (United States)

    Liu, Xinyang; Liu, Juntao; Gai, Shuping; Meyer, Kristina; Xu, Shengwei; Cai, Xinxia

    2016-09-28

    Prolonged periods of demanding cognitive tasks lead to an exhausted feeling known as mental fatigue. The neural underpinnings of mental fatigue are still under exploration. In the present study, we aimed to identify neurophysiological indicators of mental fatigue by studying the time-frequency distribution of the event-related potentials (ERPs) measured in N=26 adults in nonfatigued versus fatigued states. We were interested in the frontal theta and occipital alpha variations, which have shown consistent relationships with mental fatigue in previous studies. Furthermore, we expected differential changes in left and right electrodes, in line with previously detected lateralization effects in cognitive tasks. Mental fatigue was induced by a sustained two-back verbal visual memory task for 125 min and assessed using the Chalder Fatigue Scale. We applied a high-resolution time-frequency analysis method called smoothed pseudo Wigner Ville distribution and used regional integrals as indicators for changing trends of signal energy. Results showed an increase in ERP frontal theta energy (P=0.03) and a decrease in occipital alpha energy (P=0.028) when participants became mentally fatigued. The change in frontal theta was more pronounced in left electrode sites (P=0.032), hinting toward a differential fatigue effect in the two hemispheres. The results were discussed on the basis of previous lateralization studies with memory tasks and interpreted as an indicator of a causal relationship between the sustained task execution and the physiological changes. Our findings also suggest that the ERP signal energy variations in frontal theta and occipital alpha might be used as neural biomarkers to assess mental fatigue.

  7. A model for dynamic allocation of human attention among multiple tasks

    Science.gov (United States)

    Sheridan, T. B.; Tulga, M. K.

    1978-01-01

    The problem of multi-task attention allocation with special reference to aircraft piloting is discussed with the experimental paradigm used to characterize this situation and the experimental results obtained in the first phase of the research. A qualitative description of an approach to mathematical modeling, and some results obtained with it are also presented to indicate what aspects of the model are most promising. Two appendices are given which (1) discuss the model in relation to graph theory and optimization and (2) specify the optimization algorithm of the model.

  8. Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    CERN Document Server

    Bae, Kyungmin; 10.4204/EPTCS.36.3

    2010-01-01

    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.

  9. Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed Up-and-Go Test.

    Science.gov (United States)

    Beyea, James; McGibbon, Chris A; Sexton, Andrew; Noble, Jeremy; O'Connell, Colleen

    2017-04-23

    The timed-up-and-go test (TUG) is one of the most commonly used tests of physical function in clinical practice and for research outcomes. Inertial sensors have been used to parse the TUG test into its composite phases (rising, walking, turning, etc.), but have not validated this approach against an optoelectronic gold-standard, and to our knowledge no studies have published the minimal detectable change of these measurements. Eleven adults performed the TUG three times each under normal and slow walking conditions, and 3 m and 5 m walking distances, in a 12-camera motion analysis laboratory. An inertial measurement unit (IMU) with tri-axial accelerometers and gyroscopes was worn on the upper-torso. Motion analysis marker data and IMU signals were analyzed separately to identify the six main TUG phases: sit-to-stand, 1st walk, 1st turn, 2nd walk, 2nd turn, and stand-to-sit, and the absolute agreement between two systems analyzed using intra-class correlation (ICC, model 2) analysis. The minimal detectable change (MDC) within subjects was also calculated for each TUG phase. The overall difference between TUG sub-tasks determined using 3D motion capture data and the IMU sensor data was time and walk times (ICC > 0.90), but less for chair activity (ICC range 0.5-0.9) and typically poor for the turn time (ICC time ranged between 2-4 s or 12-22% of the TUG time measurement. MDC of the sub-task times were higher proportionally, being 20-60% of the sub-task duration. We conclude that a commercial IMU can be used for quantifying the TUG phases with accuracy sufficient for clinical applications; however, the MDC when using inertial sensors is not necessarily improved over less sophisticated measurement tools.

  10. Nonlinear time series modelling: an introduction

    OpenAIRE

    Simon M. Potter

    1999-01-01

    Recent developments in nonlinear time series modelling are reviewed. Three main types of nonlinear models are discussed: Markov Switching, Threshold Autoregression and Smooth Transition Autoregression. Classical and Bayesian estimation techniques are described for each model. Parametric tests for nonlinearity are reviewed with examples from the three types of models. Finally, forecasting and impulse response analysis is developed.

  11. A task force model for statewide change in nursing education: building quality and safety.

    Science.gov (United States)

    Mundt, Mary H; Clark, Margherita Procaccini; Klemczak, Jeanette Wrona

    2013-01-01

    The purpose of this article was to describe a statewide planning process to transform nursing education in Michigan to improve quality and safety of patient care. A task force model was used to engage diverse partners in issue identification, consensus building, and recommendations. An example of a statewide intervention in nursing education and practice that was executed was the Michigan Quality and Safety in Nursing Education Institute, which was held using an integrated approach to academic-practice partners from all state regions. This paper describes the unique advantage of leadership by the Michigan Chief Nurse Executive, the existence of a nursing strategic plan, and a funding model. An overview of the Task Force on Nursing Education is presented with a focus on the model's 10 process steps and resulting seven recommendations. The Michigan Nurse Education Council was established to implement the recommendations that included quality and safety.

  12. Measuring and modeling physics students' conceptual knowledge structures through term association times

    CERN Document Server

    Beatty, I D; Gerace, W J; Beatty, Ian D.; Dufresne, Robert J.; Gerace, William J.

    2007-01-01

    Traditional problem-based exams are not efficient instruments for assessing the "structure" of physics students' conceptual knowledge or for providing diagnostically detailed feedback to students and teachers. We present the Free Term Entry task, a candidate assessment instrument for exploring the connections between concepts in a student's understanding of a subject. In this task, a student is given a general topic area and asked to respond with as many terms from the topic area as possible in a given time; the "thinking time" between each term-entry event is recorded along with the response terms. The task was given to students from two different introductory physics classes. Response term thinking times were found to correlate with the strength of the association between two concepts. In addition, sets of thinking times from the task show distinct, characteristic patterns which might prove valuable for student assessment. We propose a quantitative dynamical model named the Matrix Walk Model which is able t...

  13. Using Task Analytic Models and Phenotypes of Erroneous Human Behavior to Discover System Failures Using Model Checking.

    Science.gov (United States)

    Bolton, Matthew L; Bass, Ellen J

    2010-09-01

    Breakdowns in complex systems often occur as a result of system elements interacting in ways unanticipated by analysts or designers. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. This paper presents a method for automatically generating task analytic models encompassing both erroneous and normative human behavior from normative task models. The resulting model can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human automation-interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. This method is illustrated with a case study: the operation of a radiation therapy machine. In this example, a problem resulting from a generated erroneous human action is discovered. Future extensions of our method are discussed.

  14. A Formal Cognitive Model of the Go/No-Go Discrimination Task: Evaluation and Implications

    Science.gov (United States)

    Yechiam, Eldad; Goodnight, Jackson; Bates, John E.; Busemeyer, Jerome R.; Dodge, Kenneth A.; Pettit, Gregory S.; Newman, Joseph P.

    2009-01-01

    This article proposes and tests a formal cognitive model for the go/no-go discrimination task. In this task, the performer chooses whether to respond to stimuli and receives rewards for responding to certain stimuli and punishments for responding to others. Three cognitive models were evaluated on the basis of data from a longitudinal study involving 400 adolescents. The results show that a cue-dependent model presupposing that participants can differentiate between cues was the most accurate and parsimonious. This model has 3 parameters denoting the relative impact of rewards and punishments on evaluations, the rate that contingent payoffs are learned, and the consistency between learning and responding. Commission errors were associated with increased attention to rewards; omission errors were associated with increased attention to punishments. Both error types were associated with low choice consistency. The parameters were also shown to have external validity: Attention to rewards was associated with externalizing behavior problems on the Achenbach scale, and choice consistency was associated with low Welsh anxiety. The present model can thus potentially improve the sensitivity of the task to differences between clinical populations. PMID:16953727

  15. A Simple Fuzzy Time Series Forecasting Model

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2016-01-01

    In this paper we describe a new first order fuzzy time series forecasting model. We show that our automatic fuzzy partitioning method provides an accurate approximation to the time series that when combined with rule forecasting and an OWA operator improves forecasting accuracy. Our model does...... not attempt to provide the best results in comparison with other forecasting methods but to show how to improve first order models using simple techniques. However, we show that our first order model is still capable of outperforming some more complex higher order fuzzy time series models....

  16. Time series modeling, computation, and inference

    CERN Document Server

    Prado, Raquel

    2010-01-01

    The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit

  17. A model of interval timing by neural integration.

    Science.gov (United States)

    Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip

    2011-06-22

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.

  18. Human alpha rhythms during visual delayed choice reaction time tasks: a magnetoencephalography study.

    Science.gov (United States)

    Babiloni, Claudio; Babiloni, Fabio; Carducci, Filippo; Cincotti, Febo; Del Percio, Claudio; Della Penna, Stefania; Franciotti, Raffaella; Pignotti, Sandro; Pizzella, Vittorio; Rossini, Paolo Maria; Sabatini, Elisabetta; Torquati, Kathya; Romani, Gian Luca

    2005-03-01

    Magnetoencephalography (MEG) includes fast and comfortable recording procedures very suitable for the neurophysiological study of cognitive functions in aged people. In this exploratory MEG study in normal young adults, we tested whether very simple short-term memory (STM) demands induce visible changes in amplitude and latency of surface alpha rhythms. Two delayed response tasks were used. In the STM condition, a simple cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). In the control (no short-term memory; NSTM) condition, the cue stimulus remained available along the delay period. To make extremely simple the tasks, the explicit demand was visuospatial but the retention could be also based on phonological and somatomotor coding. Compared to the control condition, the amplitude of the alpha 1 (6-8 Hz) ERD decreased in the left hemisphere, whereas the amplitude of the alpha 2 (8-10 Hz) and alpha 3 (10-12 Hz) event-related desynchronization (ERD) increased in right and left parietal areas, respectively. Furthermore, the latency of the alpha ERD peak was slightly but significantly (P rhythms in normal young adults. Copyright 2004 Wiley-Liss, Inc.

  19. The relationship between amygdala activation and passive exposure time to an aversive cue during a continuous performance task.

    Directory of Open Access Journals (Sweden)

    Irina A Strigo

    Full Text Available The allocation of attention modulates negative emotional processing in the amygdala. However, the role of passive exposure time to emotional signals in the modulation of amygdala activity during active task performance has not been examined. In two functional Magnetic Resonance Imaging (fMRI experiments conducted in two different groups of healthy human subjects, we examined activation in the amygdala due to cued anticipation of painful stimuli while subjects performed a simple continuous performance task (CPT with either a fixed or a parametrically varied trial duration. In the first experiment (N = 16, engagement in the CPT during a task with fixed trial duration produced the expected attenuation of amygdala activation, but close analysis suggested that the attenuation occurred during the period of active engagement in CPT, and that amygdala activity increased proportionately during the remainder of each trial, when subjects were passively exposed to the pain cue. In the second experiment (N = 12, the duration of each trial was parametrically varied, and we found that amygdala activation was linearly related to the time of passive exposure to the anticipatory cue. We suggest that amygdala activation during negative anticipatory processing depends directly on the passive exposure time to the negative cue.

  20. Time for actions in lucid dreams: effects of task modality, length, and complexity

    OpenAIRE

    Daniel eErlacher; Melanie eSchädlich; Tadas eStumbrys; Michael eSchredl

    2014-01-01

    The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (Erlacher & Schredl, 2004; LaBerge, 1985), but Erlacher and Schred...

  1. Time for actions in lucid dreams: effects of task modality, length, and complexity

    OpenAIRE

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2014-01-01

    The relationship between time in dreams and real time has intrigued scientists for centuries. The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can be objectively identified in EOG recordings. Previous research showed an equivalence of time for counting in lucid dreams and in wakefulness (LaBerge, 1985; Erlacher and Schredl, 2004), but Erlacher and Schr...

  2. DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection.

    Science.gov (United States)

    Li, Xi; Zhao, Liming; Wei, Lina; Yang, Ming-Hsuan; Wu, Fei; Zhuang, Yueting; Ling, Haibin; Wang, Jingdong

    2016-08-01

    A key problem in salient object detection is how to effectively model the semantic properties of salient objects in a data-driven manner. In this paper, we propose a multi-task deep saliency model based on a fully convolutional neural network with global input (whole raw images) and global output (whole saliency maps). In principle, the proposed saliency model takes a data-driven strategy for encoding the underlying saliency prior information, and then sets up a multi-task learning scheme for exploring the intrinsic correlations between saliency detection and semantic image segmentation. Through collaborative feature learning from such two correlated tasks, the shared fully convolutional layers produce effective features for object perception. Moreover, it is capable of capturing the semantic information on salient objects across different levels using the fully convolutional layers, which investigate the feature-sharing properties of salient object detection with a great reduction of feature redundancy. Finally, we present a graph Laplacian regularized nonlinear regression model for saliency refinement. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.

  3. Designers Workbench: Towards Real-Time Immersive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Ma, K L

    2001-10-03

    This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technology or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.

  4. Designers workbench: toward real-time immersive modeling

    Science.gov (United States)

    Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu

    2000-05-01

    This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.

  5. Designers Workbench: Towards Real-Time Immersive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Ma, K L

    2001-10-03

    This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technology or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.

  6. Delivery Time Reliability Model of Logistics Network

    OpenAIRE

    Liusan Wu; Qingmei Tan; Yuehui Zhang

    2013-01-01

    Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assum...

  7. Continuous-Time Modeling with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.; Patuelli, R.; Nijkamp, P.

    2012-01-01

    (Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete

  8. Continuous-Time Modeling with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.; Folmer, H.; Patuelli, R.; Nijkamp, P.

    (Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete

  9. Searching for strategies to reduce the mechanical demands of the sit-to-stand task with a muscle-actuated optimal control model.

    Science.gov (United States)

    Bobbert, Maarten F; Kistemaker, Dinant A; Vaz, Marco Aurélio; Ackermann, Marko

    2016-08-01

    The sit-to-stand task, which involves rising unassisted from sitting on a chair to standing, is important in daily life. Many people with muscle weakness, reduced range of motion or loading-related pain in a particular joint have difficulty performing the task. How should a person suffering from such impairment best perform the sit-to-stand task and, in the case of pain in a particular joint, with reduced loading of that joint? We developed a musculoskeletal model with reference parameter values based on properties of healthy strong subjects. The model's muscle stimulation-time input was optimized using direct collocation to find strategies that yielded successful sit-to-stand task performance with minimum 'control effort' for the reference set and modified sets of parameter values, and with constraints on tibiofemoral compression force. The sit-to-stand task could be performed successfully and realistically by the reference model, by a model with isometric knee extensor forces reduced to 40% of reference, by a model with isometric forces of all muscles reduced to 45% of reference, and by the reference model with the tibiofemoral compression force constrained during optimization to 65% of the peak value in the reference condition. The strategies found by the model in conditions other than reference could be interpreted well on the basis of cost function and task biomechanics. The question remains whether it is feasible to teach patients with musculoskeletal impairments or joint pain to perform the sit-to-stand task according to strategies that are optimal according to the simulation model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Time for actions in lucid dreams: effects of task modality, length, and complexity

    National Research Council Canada - National Science Library

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2014-01-01

    .... The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can...

  11. Time for actions in lucid dreams: effects of task modality, length, and complexity

    National Research Council Canada - National Science Library

    Erlacher, Daniel; Schädlich, Melanie; Stumbrys, Tadas; Schredl, Michael

    2013-01-01

    .... The question if actions in dreams take the same time as in wakefulness can be tested by using lucid dreams where the dreamer is able to mark time intervals with prearranged eye movements that can...

  12. Simulation of a real-time brain computer interface for detecting a self-paced hitting task

    DEFF Research Database (Denmark)

    Hammad, Sofyan H.; Kamavuako, Ernest N.; Farina, Dario;

    2016-01-01

    on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). CONCLUSION: Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research......OBJECTIVES: An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our...

  13. The use of mixed models in a modified Iowa Gambling Task and a prisoner's dilemma game

    Directory of Open Access Journals (Sweden)

    Jean Stockard

    2007-02-01

    Full Text Available Researchers in the decision making tradition usually analyze multiple decisions within experiments by aggregating choices across individuals and using the individual subject as the unit of analysis. This approach can mask important variations and patterns within the data. Specifically, it ignores variations in decisions across a task or game and possible influences of characteristics of the subject or the experiment on these variations. We demonstrate, by reanalyzing data from two previously published articles, how a mixed model analysis addresses these limitations. Our results, with a modified Iowa gambling task and a prisoner's dilemma game, illustrate the ways in which such an analysis can test hypotheses not possible with other techniques, is more parsimonious, and is more likely to be faithful to theoretical models.

  14. Bayesian inference for pulsar timing models

    CERN Document Server

    Vigeland, Sarah J

    2013-01-01

    The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...

  15. Learning what to learn: the effects of task experience on strategy shifts in the allocation of study time.

    Science.gov (United States)

    Ariel, Robert

    2013-11-01

    Learners typically allocate more resources to learning items that are higher in value than they do to items lower in value. For instance, when items vary in point value for learning, participants allocate more study time to the higher point items than they do to the lower point items. The current experiments extend this research to a context where the value of items is not explicitly labeled by evaluating whether learners' study decisions are sensitive to statistical regularities in the testing environment that signal which items are valuable to learn. In 4 experiments, participants studied English-English and Swahili-English paired associates across 4 study-test trials. On each trial, they were tested on only 1 type of item (e.g., only Swahili-English pairs), and, hence, only 1 type of item was valuable for performance. Some participants were cued to which information was valuable, and other participants had to learn from task experience. Experiment 2 examined the effect of performance incentives on study decisions, and Experiment 3 examined how the organization of the task environment influences learners' decisions. Finally, Experiment 4 examined the role of working memory span, fluid intelligence, and need for cognition on decisions. Findings indicated that some people can learn from task experience which items are important to study. However, many learners fail to do so (in particular, learners with low working memory spans); as a consequence, they dysregulate their study by allocating time to items that are not valuable to performance.

  16. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real-time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten-Maru. Additionally, we have developed a user-friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  17. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten‐Maru. Additionally, we have developed a user‐ friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  18. Reducing Response Time Bounds for DAG-Based Task Systems on Heterogeneous Multicore Platforms

    Science.gov (United States)

    2016-01-01

    Har- tig. Response-time analysis of parallel fork-join workloads with real- time constraints. In 25th ECRTS, 2013. [2] R. Bajaj and D. Agrawal...University of North Carolina, Chapel Hill, NC, 2006. [11] G. Elliott, N. Kim, J. Erickson, C. Liu, and J. Anderson. Minimizing response times of automotive

  19. Mixed continuous/discrete time modelling with exact time adjustments

    NARCIS (Netherlands)

    Rovers, K.C.; Kuper, Jan; van de Burgwal, M.D.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2011-01-01

    Many systems interact with their physical environment. Design of such systems need a modelling and simulation tool which can deal with both the continuous and discrete aspects. However, most current tools are not adequately able to do so, as they implement both continuous and discrete time signals

  20. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.

    Science.gov (United States)

    Pinto, Joana; Jorge, João; Sousa, Inês; Vilela, Pedro; Figueiredo, Patrícia

    2016-07-15

    Cerebrovascular reactivity (CVR) reflects the capacity of blood vessels to adjust their caliber in order to maintain a steady supply of brain perfusion, and it may provide a sensitive disease biomarker. Measurement of the blood oxygen level dependent (BOLD) response to a hypercapnia-inducing breath-hold (BH) task has been frequently used to map CVR noninvasively using functional magnetic resonance imaging (fMRI). However, the best modeling approach for the accurate quantification of CVR maps remains an open issue. Here, we compare and optimize Fourier models of the BOLD response to a BH task with a preparatory inspiration, and assess the test-retest reproducibility of the associated CVR measurements, in a group of 10 healthy volunteers studied over two fMRI sessions. Linear combinations of sine-cosine pairs at the BH task frequency and its successive harmonics were added sequentially in a nested models approach, and were compared in terms of the adjusted coefficient of determination and corresponding variance explained (VE) of the BOLD signal, as well as the number of voxels exhibiting significant BOLD responses, the estimated CVR values, and their test-retest reproducibility. The brain average VE increased significantly with the Fourier model order, up to the 3rd order. However, the number of responsive voxels increased significantly only up to the 2nd order, and started to decrease from the 3rd order onwards. Moreover, no significant relative underestimation of CVR values was observed beyond the 2nd order. Hence, the 2nd order model was concluded to be the optimal choice for the studied paradigm. This model also yielded the best test-retest reproducibility results, with intra-subject coefficients of variation of 12 and 16% and an intra-class correlation coefficient of 0.74. In conclusion, our results indicate that a Fourier series set consisting of a sine-cosine pair at the BH task frequency and its two harmonics is a suitable model for BOLD-fMRI CVR measurements

  1. Computer-mediated communication and time pressure induce higher cardiovascular responses in the preparatory and execution phases of cooperative tasks.

    Science.gov (United States)

    Costa Ferrer, Raquel; Serrano Rosa, Miguel Ángel; Zornoza Abad, Ana; Salvador Fernández-Montejo, Alicia

    2010-11-01

    The cardiovascular (CV) response to social challenge and stress is associated with the etiology of cardiovascular diseases. New ways of communication, time pressure and different types of information are common in our society. In this study, the cardiovascular response to two different tasks (open vs. closed information) was examined employing different communication channels (computer-mediated vs. face-to-face) and with different pace control (self vs. external). Our results indicate that there was a higher CV response in the computer-mediated condition, on the closed information task and in the externally paced condition. These role of these factors should be considered when studying the consequences of social stress and their underlying mechanisms.

  2. Modeling Search Behaviors during the Acquisition of Expertise in a Sequential Decision-Making Task

    Science.gov (United States)

    Moënne-Loccoz, Cristóbal; Vergara, Rodrigo C.; López, Vladimir; Mery, Domingo; Cosmelli, Diego

    2017-01-01

    Our daily interaction with the world is plagued of situations in which we develop expertise through self-motivated repetition of the same task. In many of these interactions, and especially when dealing with computer and machine interfaces, we must deal with sequences of decisions and actions. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion and a specific sequence of choices must be performed in order to produce the expected outcome. But, as we become experts in the use of such interfaces, is it possible to identify specific search and learning strategies? And if so, can we use this information to predict future actions? In addition to better understanding the cognitive processes underlying sequential decision making, this could allow building adaptive interfaces that can facilitate interaction at different moments of the learning curve. Here we tackle the question of modeling sequential decision-making behavior in a simple human-computer interface that instantiates a 4-level binary decision tree (BDT) task. We record behavioral data from voluntary participants while they attempt to solve the task. Using a Hidden Markov Model-based approach that capitalizes on the hierarchical structure of behavior, we then model their performance during the interaction. Our results show that partitioning the problem space into a small set of hierarchically related stereotyped strategies can potentially capture a host of individual decision making policies. This allows us to follow how participants learn and develop expertise in the use of the interface. Moreover, using a Mixture of Experts based on these stereotyped strategies, the model is able to predict the behavior of participants that master the task. PMID:28943847

  3. Social Influences on Task Satisfaction: Model Competence and Observer Field Dependence.

    Science.gov (United States)

    1980-06-01

    settings. Second, an effect for co-worker task per- formance can be predicted from two different theoretical perspectives, Social Learning Theory and...information on the process by which social factors influence work attitudes. Social Learning Theory In this study subjects were exposed to either a high or...34 Unpublished manuscript. References Bandura, A. Social Learning Theory . Morritown, N.J.: General Learning Press, 1971. Baron, R. A. Attraction toward the model

  4. Discounting Models for Outcomes over Continuous Time

    DEFF Research Database (Denmark)

    Harvey, Charles M.; Østerdal, Lars Peter

    Events that occur over a period of time can be described either as sequences of outcomes at discrete times or as functions of outcomes in an interval of time. This paper presents discounting models for events of the latter type. Conditions on preferences are shown to be satisfied if and only if t...

  5. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    Science.gov (United States)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  6. Survey of time preference, delay discounting models

    Directory of Open Access Journals (Sweden)

    John R. Doyle

    2013-03-01

    Full Text Available The paper surveys over twenty models of delay discounting (also known as temporal discounting, time preference, time discounting, that psychologists and economists have put forward to explain the way people actually trade off time and money. Using little more than the basic algebra of powers and logarithms, I show how the models are derived, what assumptions they are based upon, and how different models relate to each other. Rather than concentrate only on discount functions themselves, I show how discount functions may be manipulated to isolate rate parameters for each model. This approach, consistently applied, helps focus attention on the three main components in any discounting model: subjectively perceived money; subjectively perceived time; and how these elements are combined. We group models by the number of parameters that have to be estimated, which means our exposition follows a trajectory of increasing complexity to the models. However, as the story unfolds it becomes clear that most models fall into a smaller number of families. We also show how new models may be constructed by combining elements of different models. The surveyed models are: Exponential; Hyperbolic; Arithmetic; Hyperboloid (Green and Myerson, Rachlin; Loewenstein and Prelec Generalized Hyperboloid; quasi-Hyperbolic (also known as beta-delta discounting; Benhabib et al's fixed cost; Benhabib et al's Exponential / Hyperbolic / quasi-Hyperbolic; Read's discounting fractions; Roelofsma's exponential time; Scholten and Read's discounting-by-intervals (DBI; Ebert and Prelec's constant sensitivity (CS; Bleichrodt et al.'s constant absolute decreasing impatience (CADI; Bleichrodt et al.'s constant relative decreasing impatience (CRDI; Green, Myerson, and Macaux's hyperboloid over intervals models; Killeen's additive utility; size-sensitive additive utility; Yi, Landes, and Bickel's memory trace models; McClure et al.'s two exponentials; and Scholten and Read's trade

  7. Changes in brain activation patterns according to cross-training effect in serial reaction time task An functional MRI study

    Institute of Scientific and Technical Information of China (English)

    Yong Hyun Kwon; Jung Won Kwon; Ji Won Park

    2013-01-01

    Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the

  8. Effective part-task training as evidence of distinct adaptive processes with different time scales.

    Directory of Open Access Journals (Sweden)

    Sandra Sülzenbrück

    Full Text Available For some types of visuo-motor transformations like large visuo-motor rotations or the complex transformation of a sliding first-order lever, distinct adaptive processes have been hypothesized that produce a rapid, discrete approximation of the transformation and a slow, graded fine tuning, respectively. Here we investigate whether part-task training of only the second of these processes, namely the fine tuning, transfers to the subsequent performance in a condition with the full transformation of the sliding first-order lever. Therefore, we compared performance of three groups with different practice conditions during transfer to the full transformation. While two groups only practiced the fine tuning without the right-left inversion of the lever prior to transfer, a third group practiced the full lever transformation. Our results show a positive, but less than perfect transfer of the isolated practice of the fine tuning on performance with the full transformation. For the fine tuning itself, transfer was not reliably different from being perfect. The observation that the fine tuning can be acquired separately and added to the later adaptation to the left-right inversion of the lever supports the notion that these slow and fast processes progress rather independently. The additional finding that the preceding acquisition of the fine tuning also facilitates the subsequent rapid process could be due to generalized learning-to-learn or to a more precise assignment of movement errors to the process from which they originate.

  9. Beyond Time-on-Task: The Relationship between Spaced Study and Certification in MOOCs

    Science.gov (United States)

    Miyamoto, Yohsuke R.; Coleman, Cody A.; Williams, Joseph Jay; Whitehill, Jacob; Nesterko, Sergiy; Reich, Justin

    2015-01-01

    A long history of laboratory and field experiments have demonstrated that dividing study time into many sessions is often superior to massing study time into few sessions, a phenomenon known as the "spacing effect." We use this well-established finding from the psychology literature as inspiration for investigating how students…

  10. Time Conservation: A Comparison of Performance on Piagetian Tasks by Selected Students.

    Science.gov (United States)

    Davis, John Chester, III

    This study investigated the development of time concepts, comparing children of Afro-American and Anglo-American ethnic groups with each other and with results obtained by Piaget. A sample of 120 children aged seven, nine, and eleven years from one school were individually administered four time conservation tests (two on simultaneity and two on…

  11. Corticostriatal field potentials are modulated at delta and theta frequencies during interval-timing task in rodents

    Directory of Open Access Journals (Sweden)

    Eric B Emmons

    2016-04-01

    Full Text Available Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording local field potentials in medial frontal cortex or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1-4 Hz and theta activity (4-8 Hz primarily in rodent medial frontal cortex. We observed delta activity across temporal intervals in medial frontal cortex and dorsomedial striatum. Rewarded responses were associated with increased delta activity in medial frontal cortex. Activity in theta bands in medial frontal cortex and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.

  12. Model Epidemi Sirs Dengan Time Delay

    OpenAIRE

    Sinuhaji, Ferdinand

    2016-01-01

    The epidemic is an outbreak of an infectious disease situation in the population at a place that exceeds the normal approximation in a short period. When the disease is always contained in any place as well as with the causes, it is called endemic. This study discusses decrease SIRS epidemic models with time delay through a mathematical model based on the model of SIRS epidemic (Susceptible, Infective, Recovered, Susceptible). SIRS models used in this study with the assumption ...

  13. A survey of time management and particular tasks undertaken by consultant microbiologists in the UK

    Science.gov (United States)

    Riordan, Terry; Cartwright, Keith; Cunningham, Richard; Logan, Margaret; Wright, Paul

    2007-01-01

    Background Medical microbiology practice encompasses a diverse range of activities. Consultant medical microbiologists (CMMs) attribute widely differing priorities to, and spend differing proportions of time on various components of the job. Aim To obtain a professional consensus on what are high‐priority and low‐priority activities, and to identify the time spent on low‐priority activities. Method National survey. Results Many respondents felt that time spent on report authorisation and telephoning of results was excessive, whereas time spent on ward‐based work was inadequate. Timesaving could also be achieved through better prioritisation of infection‐control activities. Conclusion CMMs should apportion their time at work focusing on high‐priority activities identified through professional consensus. PMID:16714398

  14. Time-of-day effect on a food-induced conditioned place preference task in monkeys.

    Science.gov (United States)

    Monclaro, Antonielle V; Sampaio, Ana Cristhina; Ribeiro, Natália B; Barros, Marilia

    2014-02-01

    Time can be an important contextual cue for cognitive performance, with implications for reward-associated learned behaviors such as (drug and food) addiction. So, we analyzed: (1) if marmoset monkeys develop a place preference that is conditioned to previous pairings with a highly-palatable food reward; (2) if the response is strongest when training and testing times match - time stamp effect; and (3) if there is an optimal time of the day (morning vs. afternoon) when this preference occurs - time-of-day effect. Subjects were first habituated to a two-compartment conditioned-place-preference (CPP) box. Then, during six training sessions held either in the morning or afternoon, a mixture of jellybeans and live mealworms was made available in a specific compartment. Marmosets were subsequently tested for preferring the food-paired context at the circadian time that either matched or was different from that of training. Compared to baseline levels, only subjects trained and tested in the afternoon made significantly longer and more frequent visits to the food-paired context and with a shorter latency to first entry. Thus, highly-palatable food rewards induced a CPP response. This behavior was exhibited only when training and testing times overlapped and during a restricted circadian timeframe (afternoon), consistent with a time-stamp and time-of-day effect, respectively. In this case, time may have been an internal circadian contextual cue. Whether due to circadian-mediated oscillations in memory and/or reward processes, such findings may be applied to addiction and other learned behaviors. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Performance deficits of NK1 receptor knockout mice in the 5-choice serial reaction-time task: effects of d-amphetamine, stress and time of day.

    Directory of Open Access Journals (Sweden)

    Ting Carrie Yan

    Full Text Available BACKGROUND: The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/- resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD. Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. METHODS AND RESULTS: The 5-Choice Serial Reaction-Time Task (5-CSRTT was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI and a variable (VITI inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.. NK1R-/- mice expressed greater omissions (inattentiveness, perseveration and premature responses (impulsivity in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning. CONCLUSION: In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally

  16. Delivery Time Reliability Model of Logistics Network

    Directory of Open Access Journals (Sweden)

    Liusan Wu

    2013-01-01

    Full Text Available Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assumptions. If a path is concerned without capacity restriction, the shortest delivery time is positively related to the length of the shortest path, and if a path is concerned with capacity restriction, a minimax programming model is built to figure up the shortest delivery time. Finally, an example is utilized to confirm the validity and practicality of the proposed approach.

  17. Building Chaotic Model From Incomplete Time Series

    Science.gov (United States)

    Siek, Michael; Solomatine, Dimitri

    2010-05-01

    This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual

  18. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    Science.gov (United States)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  19. Adaptive Effort Investment in Cognitive and Physical Tasks: A Neurocomputational Model

    Directory of Open Access Journals (Sweden)

    Tom eVerguts

    2015-03-01

    Full Text Available Despite its importance in everyday life, the computational nature of effort investment remains poorly understood. We propose an effort model obtained from optimality considerations, and a neurocomputational approximation to the optimal model. Both are couched in the framework of reinforcement learning. It is shown that choosing when or when not to exert effort can be adaptively learned, depending on rewards, costs, and task difficulty. In the neurocomputational model, the limbic loop comprising anterior cingulate cortex and ventral striatum in the basal ganglia allocates effort to cortical stimulus-action pathways whenever this is valuable. We demonstrate that the model approximates optimality. Next, we consider two hallmark effects from the cognitive control literature, namely proportion congruency and sequential congruency effects. It is shown that the model exerts both proactive and reactive cognitive control. Then, we simulate two physical effort tasks. In line with empirical work, impairing the model’s dopaminergic pathway leads to apathetic behavior. Thus, we conceptually unify the exertion of cognitive and physical effort, studied across a variety of literatures (e.g., motivation and cognitive control and animal species.

  20. Multi-model Cross Pollination in Time

    CERN Document Server

    Du, Hailiang

    2016-01-01

    Predictive skill of complex models is often not uniform in model-state space; in weather forecasting models, for example, the skill of the model can be greater in populated regions of interest than in "remote" regions of the globe. Given a collection of models, a multi-model forecast system using the cross pollination in time approach can be generalised to take advantage of instances where some models produce systematically more accurate forecast of some components of the model-state. This generalisation is stated and then successfully demonstrated in a moderate ~40 dimensional nonlinear dynamical system suggested by Lorenz. In this demonstration four imperfect models, each with similar global forecast skill, are used. Future applications in weather forecasting and in economic forecasting are discussed. The demonstration establishes that cross pollinating forecast trajectories to enrich the collection of simulations upon which the forecast is built can yield a new forecast system with significantly more skill...

  1. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  2. Time of day does not modulate improvements in motor performance following a repetitive ballistic motor training task.

    Science.gov (United States)

    Sale, Martin V; Ridding, Michael C; Nordstrom, Michael A

    2013-01-01

    Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS) paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM) and once in the evening (8 PM) on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.

  3. Time of Day Does Not Modulate Improvements in Motor Performance following a Repetitive Ballistic Motor Training Task

    Directory of Open Access Journals (Sweden)

    Martin V. Sale

    2013-01-01

    Full Text Available Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM and once in the evening (8 PM on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.

  4. Task Space Angular Velocity Blending for Real-Time Trajectory Generation

    Science.gov (United States)

    Volpe, Richard A. (Inventor)

    1997-01-01

    The invention is embodied in a method of controlling a robot manipulator moving toward a target frame F(sub 0) with a target velocity v(sub 0) including a linear target velocity v and an angular target velocity omega(sub 0) to smoothly and continuously divert the robot manipulator to a subsequent frame F(sub 1) by determining a global transition velocity v(sub 1), the global transition velocity including a linear transition velocity v(sub 1) and an angular transition velocity omega(sub 1), defining a blend time interval 2(tau)(sub 0) within which the global velocity of the robot manipulator is to be changed from a global target velocity v(sub 0) to the global transition velocity v(sub 1) and dividing the blend time interval 2(tau)(sub 0) into discrete time segments (delta)t. During each one of the discrete time segments delta t of the blend interval 2(tau)(sub 0), a blended global velocity v of the manipulator is computed as a blend of the global target velocity v(sub 0) and the global transition velocity v(sub 1), the blended global velocity v including a blended angular velocity omega and a blended linear velocity v, and then, the manipulator is rotated by an incremental rotation corresponding to an integration of the blended angular velocity omega over one discrete time segment (delta)t.

  5. Rejection Positivity Predicts Trial-to-Trial Reaction Times in an Auditory Selective Attention Task: A Computational Analysis of Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Sufen eChen

    2014-08-01

    Full Text Available A series of computer simulations using variants of a formal model of attention (Melara & Algom, 2003 probed the role of rejection positivity (RP, a slow-wave electroencephalographic (EEG component, in the inhibitory control of distraction. Behavioral and EEG data were recorded as participants performed auditory selective attention tasks. Simulations that modulated processes of distractor inhibition accounted well for reaction-time (RT performance, whereas those that modulated target excitation did not. A model that incorporated RP from actual EEG recordings in estimating distractor inhibition was superior in predicting changes in RT as a function of distractor salience across conditions. A model that additionally incorporated momentary fluctuations in EEG as the source of trial-to-trial variation in performance precisely predicted individual RTs within each condition. The results lend support to the linking proposition that RP controls the speed of responding to targets through the inhibitory control of distractors.

  6. The effect of repeated nicotine administration on the performance of drug-naive rats in a five-choice serial reaction time task.

    Science.gov (United States)

    Blondel, A; Simon, H; Sanger, D J; Moser, P

    1999-11-01

    Nicotine improves cognitive performance both in animals and in humans, particularly in tests involving attentional processes. The five-choice serial reaction time task (5-CSRTT) is widely used as a model of attentional performance in rats, and previous studies have demonstrated effects of nicotine in this task on measures such as improved reaction time. Using a modified version of this task (in which rats were required to respond to the disappearance of one of five stimulus lights), we evaluated the effects of repeated nicotine administration (0.3 mg/kg, intraperitoneally, on three occasions over 7 days) in drug-naive rats. After the first administration, nicotine increased accuracy and reduced inappropriate responding (anticipatory responses and responses during time-out) compared to performance following vehicle administration on the preceding day. However, with repeated administration the improvement in accuracy disappeared, and other effects became apparent. Thus, after the third administration the main effects of nicotine were to increase inappropriate responding and to reduce reaction times. A fourth administration 1-2 weeks later produced similar results to the third administration, suggesting that the effects of nicotine were now constant. Despite the general increase in inappropriate responding, there was no impairment in accuracy. In contrast to the response to repeated nicotine, the performance of the rats on the 3 vehicle days remained constant. These data demonstrate that the administration of nicotine to drug-naive subjects improves performance in the 5-CSRTT but that with repeated administration this effect disappears and is replaced by a profile in which inappropriate and impulsive responding predominate.

  7. Keeping an eye on the violinist: motor experts show superior timing consistency in a visual perception task.

    Science.gov (United States)

    Wöllner, Clemens; Cañal-Bruland, Rouwen

    2010-11-01

    Common coding theory states that perception and action may reciprocally induce each other. Consequently, motor expertise should map onto perceptual consistency in specific tasks such as predicting the exact timing of a musical entry. To test this hypothesis, ten string musicians (motor experts), ten non-string musicians (visual experts), and ten non-musicians were asked to watch progressively occluded video recordings of a first violinist indicating entries to fellow members of a string quartet. Participants synchronised with the perceived timing of the musical entries. Results revealed significant effects of motor expertise on perception. Compared to visual experts and non-musicians, string players not only responded more accurately, but also with less timing variability. These findings provide evidence that motor experts' consistency in movement execution-a key characteristic of expert motor performance-is mirrored in lower variability in perceptual judgements, indicating close links between action competence and perception.

  8. Age and education influence the performance of elderly women on the dual-task Timed Up and Go test

    Directory of Open Access Journals (Sweden)

    Gisele de Cássia Gomes

    2015-03-01

    Full Text Available Gait variability is related to functional decline in the elderly. The dual-task Timed Up and Go Test (TUG-DT reflects the performance in daily activities. Objective To evaluate the differences in time to perform the TUG with and without DT in elderly women with different ages and levels of education and physical activity. Method Ninety-two elderly women perfomed the TUG at usual and fast speeds, with and without motor and cognitive DT. Results Increases in the time to perform the TUG-DT were observed at older ages and lower educational levels, but not at different levels of physical activity. More educated women performed the test faster with and without DT at both speeds. When age was considered, significant differences were found only for the TUG-DT at both speeds. Conclusion Younger women with higher education levels demonstrated better performances on the TUG-DT.

  9. Age and education influence the performance of elderly women on the dual-task Timed Up and Go test.

    Science.gov (United States)

    Gomes, Gisele de Cássia; Teixeira-Salmela, Luci Fuscaldi; Fonseca, Bruna Espeschit; Freitas, Flávia Alexandra Silveira de; Fonseca, Maria Luísa Morais; Pacheco, Bruna Débora; Gonçalves, Marisa Rocha; Caramelli, Paulo

    2015-03-01

    Gait variability is related to functional decline in the elderly. The dual-task Timed Up and Go Test (TUG-DT) reflects the performance in daily activities. Objective To evaluate the differences in time to perform the TUG with and without DT in elderly women with different ages and levels of education and physical activity. Method Ninety-two elderly women perfomed the TUG at usual and fast speeds, with and without motor and cognitive DT. Results Increases in the time to perform the TUG-DT were observed at older ages and lower educational levels, but not at different levels of physical activity. More educated women performed the test faster with and without DT at both speeds. When age was considered, significant differences were found only for the TUG-DT at both speeds. Conclusion Younger women with higher education levels demonstrated better performances on the TUG-DT.

  10. Experimental evaluation of a simple lesion detection task with Time-of-Flight PET

    Science.gov (United States)

    Surti, S.; Karp, J. S.

    2009-02-01

    Parts (a) and (b) of figure 8 in this article were in error not included in the published article. The correct figure is reproduced below. figure 8 Figure 8. Plots of CRC (a) and (b) and Noise (c) and (d) as a function of iteration number for varying scan times in the 35 cm lesion detectability phantom. Left column (a and c) shows result from TOF reconstructions while the right column (b) and (d) has the non-TOF reconstruction results. The curves within each plot are for varying scan times of 2 (circle), 3 (dtri), 4 ◊, and 5 minutes squ.

  11. Feature Matching in Time Series Modelling

    CERN Document Server

    Xia, Yingcun

    2011-01-01

    Using a time series model to mimic an observed time series has a long history. However, with regard to this objective, conventional estimation methods for discrete-time dynamical models are frequently found to be wanting. In the absence of a true model, we prefer an alternative approach to conventional model fitting that typically involves one-step-ahead prediction errors. Our primary aim is to match the joint probability distribution of the observable time series, including long-term features of the dynamics that underpin the data, such as cycles, long memory and others, rather than short-term prediction. For want of a better name, we call this specific aim {\\it feature matching}. The challenges of model mis-specification, measurement errors and the scarcity of data are forever present in real time series modelling. In this paper, by synthesizing earlier attempts into an extended-likelihood, we develop a systematic approach to empirical time series analysis to address these challenges and to aim at achieving...

  12. Modeling noisy time series Physiological tremor

    CERN Document Server

    Timmer, J

    1998-01-01

    Empirical time series often contain observational noise. We investigate the effect of this noise on the estimated parameters of models fitted to the data. For data of physiological tremor, i.e. a small amplitude oscillation of the outstretched hand of healthy subjects, we compare the results for a linear model that explicitly includes additional observational noise to one that ignores this noise. We discuss problems and possible solutions for nonlinear deterministic as well as nonlinear stochastic processes. Especially we discuss the state space model applicable for modeling noisy stochastic systems and Bock's algorithm capable for modeling noisy deterministic systems.

  13. The role of time on task performance in modifying the effects of gum chewing on attention

    NARCIS (Netherlands)

    Tucha, Lara; Simpson, William

    2011-01-01

    Recent research examined the effects of chewing gum on attention and reported a significant interaction of gum chewing with time. Using a crossover within-subject design, the present study examined the effect of gum chewing on sustained attention in healthy adults over a period of 30 min. The result

  14. Reconstructed Task Orientation and Local Time Governance in Compulsory Schools: The Swedish Case

    Science.gov (United States)

    Westlund, Ingrid

    2007-01-01

    Recently, a five-year trial period without a set timetable for compulsory school education in 79 municipalities was concluded in Sweden. The overall idea of the trial was to facilitate local participation, local time governance and flexible learning. Within the pilot trial, each individual pupil's school activities were supposed to be designed to…

  15. The role of time on task performance in modifying the effects of gum chewing on attention

    NARCIS (Netherlands)

    Tucha, Lara; Simpson, William

    2011-01-01

    Recent research examined the effects of chewing gum on attention and reported a significant interaction of gum chewing with time. Using a crossover within-subject design, the present study examined the effect of gum chewing on sustained attention in healthy adults over a period of 30 min. The result

  16. Differences in Motor Imagery Time when Predicting Task Duration in Alpine Skiers and Equestrian Riders

    Science.gov (United States)

    Louis, Magali; Collet, Christian; Champely, Stephane; Guillot, Aymeric

    2012-01-01

    Athletes' ability to use motor imagery (MI) to predict the speed at which they could perform a motor sequence has received little attention. In this study, 21 alpine skiers and 16 equestrian riders performed MI based on a prediction of actual performance time (a) after the course inspection, (b) before the start, and (c) after the actual…

  17. Visual Object Detection, Categorization, and Identification Tasks Are Associated with Different Time Courses and Sensitivities

    Science.gov (United States)

    de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros

    2011-01-01

    Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…

  18. A Measure of Inspection Time in 4-Year-Old Children: The Benny Bee IT Task

    Science.gov (United States)

    Williams, Sarah E.; Turley, Christopher; Nettelbeck, Ted; Burns, Nicholas R.

    2009-01-01

    Inspection time (IT) measures speed of information processing without the confounding influence of motor speed. While IT has been found to relate to cognitive abilities in adults and older children, no measure of IT has been validated for use with children younger than 6 years. This study examined the validity of a new measure of IT for preschool…

  19. Pedagogy in Catastrophic Times: Giroux and the Tasks of Critical Public Intellectuals

    Science.gov (United States)

    Morris, Doug

    2012-01-01

    This article reflects on Henry Giroux's work as a critical public intellectual and the important role his work plays in fostering educated hope and insurgent possibilities during our present times of daily and longer term catastrophes. In addition to attempting to capture the experience of what it means and how it feels to read Giroux along with…

  20. Self-organising mixture autoregressive model for non-stationary time series modelling.

    Science.gov (United States)

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.