Sample sizes and model comparison metrics for species distribution models
B.B. Hanberry; H.S. He; D.C. Dey
2012-01-01
Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....
Sample Size Determination for Rasch Model Tests
Draxler, Clemens
2010-01-01
This paper is concerned with supplementing statistical tests for the Rasch model so that additionally to the probability of the error of the first kind (Type I probability) the probability of the error of the second kind (Type II probability) can be controlled at a predetermined level by basing the test on the appropriate number of observations.…
Sensitivity of Mantel Haenszel Model and Rasch Model as Viewed From Sample Size
ALWI, IDRUS
2011-01-01
The aims of this research is to study the sensitivity comparison of Mantel Haenszel and Rasch Model for detection differential item functioning, observed from the sample size. These two differential item functioning (DIF) methods were compared using simulate binary item respon data sets of varying sample size, 200 and 400 examinees were used in the analyses, a detection method of differential item functioning (DIF) based on gender difference. These test conditions were replication 4 tim...
The attention-weighted sample-size model of visual short-term memory
DEFF Research Database (Denmark)
Smith, Philip L.; Lilburn, Simon D.; Corbett, Elaine A.
2016-01-01
exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items...
Effects of sample size on estimates of population growth rates calculated with matrix models.
Directory of Open Access Journals (Sweden)
Ian J Fiske
Full Text Available BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5, and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high
Effects of sample size on estimates of population growth rates calculated with matrix models.
Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M
2008-08-28
Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.
Sample size calculation to externally validate scoring systems based on logistic regression models.
Directory of Open Access Journals (Sweden)
Antonio Palazón-Bru
Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.
Desu, M M
2012-01-01
One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Computing Confidence Bounds for Power and Sample Size of the General Linear Univariate Model
Taylor, Douglas J.; Muller, Keith E.
1995-01-01
The power of a test, the probability of rejecting the null hypothesis in favor of an alternative, may be computed using estimates of one or more distributional parameters. Statisticians frequently fix mean values and calculate power or sample size using a variance estimate from an existing study. Hence computed power becomes a random variable for a fixed sample size. Likewise, the sample size necessary to achieve a fixed power varies randomly. Standard statistical practice requires reporting ...
The Effect of Sterilization on Size and Shape of Fat Globules in Model Processed Cheese Samples
Directory of Open Access Journals (Sweden)
B. Tremlová
2006-01-01
Full Text Available Model cheese samples from 4 independent productions were heat sterilized (117 °C, 20 minutes after the melting process and packing with an aim to prolong their durability. The objective of the study was to assess changes in the size and shape of fat globules due to heat sterilization by using image analysis methods. The study included a selection of suitable methods of preparation mounts, taking microphotographs and making overlays for automatic processing of photographs by image analyser, ascertaining parameters to determine the size and shape of fat globules and statistical analysis of results obtained. The results of the experiment suggest that changes in shape of fat globules due to heat sterilization are not unequivocal. We found that the size of fat globules was significantly increased (p < 0.01 due to heat sterilization (117 °C, 20 min, and the shares of small fat globules (up to 500 μm2, or 100 μm2 in the samples of heat sterilized processed cheese were decreased. The results imply that the image analysis method is very useful when assessing the effect of technological process on the quality of processed cheese quality.
A Model Based Approach to Sample Size Estimation in Recent Onset Type 1 Diabetes
Bundy, Brian; Krischer, Jeffrey P.
2016-01-01
The area under the curve C-peptide following a 2-hour mixed meal tolerance test from 481 individuals enrolled on 5 prior TrialNet studies of recent onset type 1 diabetes from baseline to 12 months after enrollment were modelled to produce estimates of its rate of loss and variance. Age at diagnosis and baseline C-peptide were found to be significant predictors and adjusting for these in an ANCOVA resulted in estimates with lower variance. Using these results as planning parameters for new studies results in a nearly 50% reduction in the target sample size. The modelling also produces an expected C-peptide that can be used in Observed vs. Expected calculations to estimate the presumption of benefit in ongoing trials. PMID:26991448
A model-based approach to sample size estimation in recent onset type 1 diabetes.
Bundy, Brian N; Krischer, Jeffrey P
2016-11-01
The area under the curve C-peptide following a 2-h mixed meal tolerance test from 498 individuals enrolled on five prior TrialNet studies of recent onset type 1 diabetes from baseline to 12 months after enrolment were modelled to produce estimates of its rate of loss and variance. Age at diagnosis and baseline C-peptide were found to be significant predictors, and adjusting for these in an ANCOVA resulted in estimates with lower variance. Using these results as planning parameters for new studies results in a nearly 50% reduction in the target sample size. The modelling also produces an expected C-peptide that can be used in observed versus expected calculations to estimate the presumption of benefit in ongoing trials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hedt-Gauthier, Bethany L; Mitsunaga, Tisha; Hund, Lauren; Olives, Casey; Pagano, Marcello
2013-10-26
Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations.The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications. We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.
Sample size determination and power
Ryan, Thomas P, Jr
2013-01-01
THOMAS P. RYAN, PhD, teaches online advanced statistics courses for Northwestern University and The Institute for Statistics Education in sample size determination, design of experiments, engineering statistics, and regression analysis.
The large sample size fallacy.
Lantz, Björn
2013-06-01
Significance in the statistical sense has little to do with significance in the common practical sense. Statistical significance is a necessary but not a sufficient condition for practical significance. Hence, results that are extremely statistically significant may be highly nonsignificant in practice. The degree of practical significance is generally determined by the size of the observed effect, not the p-value. The results of studies based on large samples are often characterized by extreme statistical significance despite small or even trivial effect sizes. Interpreting such results as significant in practice without further analysis is referred to as the large sample size fallacy in this article. The aim of this article is to explore the relevance of the large sample size fallacy in contemporary nursing research. Relatively few nursing articles display explicit measures of observed effect sizes or include a qualitative discussion of observed effect sizes. Statistical significance is often treated as an end in itself. Effect sizes should generally be calculated and presented along with p-values for statistically significant results, and observed effect sizes should be discussed qualitatively through direct and explicit comparisons with the effects in related literature. © 2012 Nordic College of Caring Science.
Hagell, Peter; Westergren, Albert
Sample size is a major factor in statistical null hypothesis testing, which is the basis for many approaches to testing Rasch model fit. Few sample size recommendations for testing fit to the Rasch model concern the Rasch Unidimensional Measurement Models (RUMM) software, which features chi-square and ANOVA/F-ratio based fit statistics, including Bonferroni and algebraic sample size adjustments. This paper explores the occurrence of Type I errors with RUMM fit statistics, and the effects of algebraic sample size adjustments. Data with simulated Rasch model fitting 25-item dichotomous scales and sample sizes ranging from N = 50 to N = 2500 were analysed with and without algebraically adjusted sample sizes. Results suggest the occurrence of Type I errors with N less then or equal to 500, and that Bonferroni correction as well as downward algebraic sample size adjustment are useful to avoid such errors, whereas upward adjustment of smaller samples falsely signal misfit. Our observations suggest that sample sizes around N = 250 to N = 500 may provide a good balance for the statistical interpretation of the RUMM fit statistics studied here with respect to Type I errors and under the assumption of Rasch model fit within the examined frame of reference (i.e., about 25 item parameters well targeted to the sample).
Effect of model choice and sample size on statistical tolerance limits
International Nuclear Information System (INIS)
Duran, B.S.; Campbell, K.
1980-03-01
Statistical tolerance limits are estimates of large (or small) quantiles of a distribution, quantities which are very sensitive to the shape of the tail of the distribution. The exact nature of this tail behavior cannot be ascertained brom small samples, so statistical tolerance limits are frequently computed using a statistical model chosen on the basis of theoretical considerations or prior experience with similar populations. This report illustrates the effects of such choices on the computations
Sampling, testing and modeling particle size distribution in urban catch basins.
Garofalo, G; Carbone, M; Piro, P
2014-01-01
The study analyzed the particle size distribution of particulate matter (PM) retained in two catch basins located, respectively, near a parking lot and a traffic intersection with common high levels of traffic activity. Also, the treatment performance of a filter medium was evaluated by laboratory testing. The experimental treatment results and the field data were then used as inputs to a numerical model which described on a qualitative basis the hydrological response of the two catchments draining into each catch basin, respectively, and the quality of treatment provided by the filter during the measured rainfall. The results show that PM concentrations were on average around 300 mg/L (parking lot site) and 400 mg/L (road site) for the 10 rainfall-runoff events observed. PM with a particle diameter of model showed that a catch basin with a filter unit can remove 30 to 40% of the PM load depending on the storm characteristics.
Concepts in sample size determination
Directory of Open Access Journals (Sweden)
Umadevi K Rao
2012-01-01
Full Text Available Investigators involved in clinical, epidemiological or translational research, have the drive to publish their results so that they can extrapolate their findings to the population. This begins with the preliminary step of deciding the topic to be studied, the subjects and the type of study design. In this context, the researcher must determine how many subjects would be required for the proposed study. Thus, the number of individuals to be included in the study, i.e., the sample size is an important consideration in the design of many clinical studies. The sample size determination should be based on the difference in the outcome between the two groups studied as in an analytical study, as well as on the accepted p value for statistical significance and the required statistical power to test a hypothesis. The accepted risk of type I error or alpha value, which by convention is set at the 0.05 level in biomedical research defines the cutoff point at which the p value obtained in the study is judged as significant or not. The power in clinical research is the likelihood of finding a statistically significant result when it exists and is typically set to >80%. This is necessary since the most rigorously executed studies may fail to answer the research question if the sample size is too small. Alternatively, a study with too large a sample size will be difficult and will result in waste of time and resources. Thus, the goal of sample size planning is to estimate an appropriate number of subjects for a given study design. This article describes the concepts in estimating the sample size.
Decision Support on Small size Passive Samples
Directory of Open Access Journals (Sweden)
Vladimir Popukaylo
2018-05-01
Full Text Available A construction technique of adequate mathematical models for small size passive samples, in conditions when classical probabilistic-statis\\-tical methods do not allow obtaining valid conclusions was developed.
Directory of Open Access Journals (Sweden)
Jamshid Jamali
2017-01-01
Full Text Available Evaluating measurement equivalence (also known as differential item functioning (DIF is an important part of the process of validating psychometric questionnaires. This study aimed at evaluating the multiple indicators multiple causes (MIMIC model for DIF detection when latent construct distribution is nonnormal and the focal group sample size is small. In this simulation-based study, Type I error rates and power of MIMIC model for detecting uniform-DIF were investigated under different combinations of reference to focal group sample size ratio, magnitude of the uniform-DIF effect, scale length, the number of response categories, and latent trait distribution. Moderate and high skewness in the latent trait distribution led to a decrease of 0.33% and 0.47% power of MIMIC model for detecting uniform-DIF, respectively. The findings indicated that, by increasing the scale length, the number of response categories and magnitude DIF improved the power of MIMIC model, by 3.47%, 4.83%, and 20.35%, respectively; it also decreased Type I error of MIMIC approach by 2.81%, 5.66%, and 0.04%, respectively. This study revealed that power of MIMIC model was at an acceptable level when latent trait distributions were skewed. However, empirical Type I error rate was slightly greater than nominal significance level. Consequently, the MIMIC was recommended for detection of uniform-DIF when latent construct distribution is nonnormal and the focal group sample size is small.
Jamali, Jamshid; Ayatollahi, Seyyed Mohammad Taghi; Jafari, Peyman
2017-01-01
Evaluating measurement equivalence (also known as differential item functioning (DIF)) is an important part of the process of validating psychometric questionnaires. This study aimed at evaluating the multiple indicators multiple causes (MIMIC) model for DIF detection when latent construct distribution is nonnormal and the focal group sample size is small. In this simulation-based study, Type I error rates and power of MIMIC model for detecting uniform-DIF were investigated under different combinations of reference to focal group sample size ratio, magnitude of the uniform-DIF effect, scale length, the number of response categories, and latent trait distribution. Moderate and high skewness in the latent trait distribution led to a decrease of 0.33% and 0.47% power of MIMIC model for detecting uniform-DIF, respectively. The findings indicated that, by increasing the scale length, the number of response categories and magnitude DIF improved the power of MIMIC model, by 3.47%, 4.83%, and 20.35%, respectively; it also decreased Type I error of MIMIC approach by 2.81%, 5.66%, and 0.04%, respectively. This study revealed that power of MIMIC model was at an acceptable level when latent trait distributions were skewed. However, empirical Type I error rate was slightly greater than nominal significance level. Consequently, the MIMIC was recommended for detection of uniform-DIF when latent construct distribution is nonnormal and the focal group sample size is small.
Reliable calculation in probabilistic logic: Accounting for small sample size and model uncertainty
Energy Technology Data Exchange (ETDEWEB)
Ferson, S. [Applied Biomathematics, Setauket, NY (United States)
1996-12-31
A variety of practical computational problems arise in risk and safety assessments, forensic statistics and decision analyses in which the probability of some event or proposition E is to be estimated from the probabilities of a finite list of related subevents or propositions F,G,H,.... In practice, the analyst`s knowledge may be incomplete in two ways. First, the probabilities of the subevents may be imprecisely known from statistical estimations, perhaps based on very small sample sizes. Second, relationships among the subevents may be known imprecisely. For instance, there may be only limited information about their stochastic dependencies. Representing probability estimates as interval ranges on has been suggested as a way to address the first source of imprecision. A suite of AND, OR and NOT operators defined with reference to the classical Frochet inequalities permit these probability intervals to be used in calculations that address the second source of imprecision, in many cases, in a best possible way. Using statistical confidence intervals as inputs unravels the closure properties of this approach however, requiring that probability estimates be characterized by a nested stack of intervals for all possible levels of statistical confidence, from a point estimate (0% confidence) to the entire unit interval (100% confidence). The corresponding logical operations implied by convolutive application of the logical operators for every possible pair of confidence intervals reduces by symmetry to a manageably simple level-wise iteration. The resulting calculus can be implemented in software that allows users to compute comprehensive and often level-wise best possible bounds on probabilities for logical functions of events.
International Nuclear Information System (INIS)
Tai, Bee-Choo; Grundy, Richard; Machin, David
2011-01-01
Purpose: To accurately model the cumulative need for radiotherapy in trials designed to delay or avoid irradiation among children with malignant brain tumor, it is crucial to account for competing events and evaluate how each contributes to the timing of irradiation. An appropriate choice of statistical model is also important for adequate determination of sample size. Methods and Materials: We describe the statistical modeling of competing events (A, radiotherapy after progression; B, no radiotherapy after progression; and C, elective radiotherapy) using proportional cause-specific and subdistribution hazard functions. The procedures of sample size estimation based on each method are outlined. These are illustrated by use of data comparing children with ependymoma and other malignant brain tumors. The results from these two approaches are compared. Results: The cause-specific hazard analysis showed a reduction in hazards among infants with ependymoma for all event types, including Event A (adjusted cause-specific hazard ratio, 0.76; 95% confidence interval, 0.45-1.28). Conversely, the subdistribution hazard analysis suggested an increase in hazard for Event A (adjusted subdistribution hazard ratio, 1.35; 95% confidence interval, 0.80-2.30), but the reduction in hazards for Events B and C remained. Analysis based on subdistribution hazard requires a larger sample size than the cause-specific hazard approach. Conclusions: Notable differences in effect estimates and anticipated sample size were observed between methods when the main event showed a beneficial effect whereas the competing events showed an adverse effect on the cumulative incidence. The subdistribution hazard is the most appropriate for modeling treatment when its effects on both the main and competing events are of interest.
Estimating Sample Size for Usability Testing
Directory of Open Access Journals (Sweden)
Alex Cazañas
2017-02-01
Full Text Available One strategy used to assure that an interface meets user requirements is to conduct usability testing. When conducting such testing one of the unknowns is sample size. Since extensive testing is costly, minimizing the number of participants can contribute greatly to successful resource management of a project. Even though a significant number of models have been proposed to estimate sample size in usability testing, there is still not consensus on the optimal size. Several studies claim that 3 to 5 users suffice to uncover 80% of problems in a software interface. However, many other studies challenge this assertion. This study analyzed data collected from the user testing of a web application to verify the rule of thumb, commonly known as the “magic number 5”. The outcomes of the analysis showed that the 5-user rule significantly underestimates the required sample size to achieve reasonable levels of problem detection.
How Sample Size Affects a Sampling Distribution
Mulekar, Madhuri S.; Siegel, Murray H.
2009-01-01
If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…
Predicting sample size required for classification performance
Directory of Open Access Journals (Sweden)
Figueroa Rosa L
2012-02-01
Full Text Available Abstract Background Supervised learning methods need annotated data in order to generate efficient models. Annotated data, however, is a relatively scarce resource and can be expensive to obtain. For both passive and active learning methods, there is a need to estimate the size of the annotated sample required to reach a performance target. Methods We designed and implemented a method that fits an inverse power law model to points of a given learning curve created using a small annotated training set. Fitting is carried out using nonlinear weighted least squares optimization. The fitted model is then used to predict the classifier's performance and confidence interval for larger sample sizes. For evaluation, the nonlinear weighted curve fitting method was applied to a set of learning curves generated using clinical text and waveform classification tasks with active and passive sampling methods, and predictions were validated using standard goodness of fit measures. As control we used an un-weighted fitting method. Results A total of 568 models were fitted and the model predictions were compared with the observed performances. Depending on the data set and sampling method, it took between 80 to 560 annotated samples to achieve mean average and root mean squared error below 0.01. Results also show that our weighted fitting method outperformed the baseline un-weighted method (p Conclusions This paper describes a simple and effective sample size prediction algorithm that conducts weighted fitting of learning curves. The algorithm outperformed an un-weighted algorithm described in previous literature. It can help researchers determine annotation sample size for supervised machine learning.
Directory of Open Access Journals (Sweden)
H Mohamadi Monavar
2017-10-01
Full Text Available Introduction Precision agriculture (PA is a technology that measures and manages within-field variability, such as physical and chemical properties of soil. The nondestructive and rapid VIS-NIR technology detected a significant correlation between reflectance spectra and the physical and chemical properties of soil. On the other hand, quantitatively predict of soil factors such as nitrogen, carbon, cation exchange capacity and the amount of clay in precision farming is very important. The emphasis of this paper is comparing different techniques of choosing calibration samples such as randomly selected method, chemical data and also based on PCA. Since increasing the number of samples is usually time-consuming and costly, then in this study, the best sampling way -in available methods- was predicted for calibration models. In addition, the effect of sample size on the accuracy of the calibration and validation models was analyzed. Materials and Methods Two hundred and ten soil samples were collected from cultivated farm located in Avarzaman in Hamedan province, Iran. The crop rotation was mostly potato and wheat. Samples were collected from a depth of 20 cm above ground and passed through a 2 mm sieve and air dried at room temperature. Chemical analysis was performed in the soil science laboratory, faculty of agriculture engineering, Bu-ali Sina University, Hamadan, Iran. Two Spectrometer (AvaSpec-ULS 2048- UV-VIS and (FT-NIR100N were used to measure the spectral bands which cover the UV-Vis and NIR region (220-2200 nm. Each soil sample was uniformly tiled in a petri dish and was scanned 20 times. Then the pre-processing methods of multivariate scatter correction (MSC and base line correction (BC were applied on the raw signals using Unscrambler software. The samples were divided into two groups: one group for calibration 105 and the second group was used for validation. Each time, 15 samples were selected randomly and tested the accuracy of
Smith, Philip L; Lilburn, Simon D; Corbett, Elaine A; Sewell, David K; Kyllingsbæk, Søren
2016-09-01
We investigated the capacity of visual short-term memory (VSTM) in a phase discrimination task that required judgments about the configural relations between pairs of black and white features. Sewell et al. (2014) previously showed that VSTM capacity in an orientation discrimination task was well described by a sample-size model, which views VSTM as a resource comprised of a finite number of noisy stimulus samples. The model predicts the invariance of [Formula: see text] , the sum of squared sensitivities across items, for displays of different sizes. For phase discrimination, the set-size effect significantly exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items in the display captures attention and receives a disproportionate share of resources. The choice probabilities and response time distributions from the task were well described by a diffusion decision model in which the drift rates embodied the assumptions of the attention-weighted sample-size model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sample size in qualitative interview studies
DEFF Research Database (Denmark)
Malterud, Kirsti; Siersma, Volkert Dirk; Guassora, Ann Dorrit Kristiane
2016-01-01
Sample sizes must be ascertained in qualitative studies like in quantitative studies but not by the same means. The prevailing concept for sample size in qualitative studies is “saturation.” Saturation is closely tied to a specific methodology, and the term is inconsistently applied. We propose...... the concept “information power” to guide adequate sample size for qualitative studies. Information power indicates that the more information the sample holds, relevant for the actual study, the lower amount of participants is needed. We suggest that the size of a sample with sufficient information power...... and during data collection of a qualitative study is discussed....
Choosing a suitable sample size in descriptive sampling
International Nuclear Information System (INIS)
Lee, Yong Kyun; Choi, Dong Hoon; Cha, Kyung Joon
2010-01-01
Descriptive sampling (DS) is an alternative to crude Monte Carlo sampling (CMCS) in finding solutions to structural reliability problems. It is known to be an effective sampling method in approximating the distribution of a random variable because it uses the deterministic selection of sample values and their random permutation,. However, because this method is difficult to apply to complex simulations, the sample size is occasionally determined without thorough consideration. Input sample variability may cause the sample size to change between runs, leading to poor simulation results. This paper proposes a numerical method for choosing a suitable sample size for use in DS. Using this method, one can estimate a more accurate probability of failure in a reliability problem while running a minimal number of simulations. The method is then applied to several examples and compared with CMCS and conventional DS to validate its usefulness and efficiency
Experimental determination of size distributions: analyzing proper sample sizes
International Nuclear Information System (INIS)
Buffo, A; Alopaeus, V
2016-01-01
The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used. (paper)
Sample size calculations for case-control studies
This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.
International Nuclear Information System (INIS)
Reiser, I; Lu, Z
2014-01-01
Purpose: Recently, task-based assessment of diagnostic CT systems has attracted much attention. Detection task performance can be estimated using human observers, or mathematical observer models. While most models are well established, considerable bias can be introduced when performance is estimated from a limited number of image samples. Thus, the purpose of this work was to assess the effect of sample size on bias and uncertainty of two channelized Hotelling observers and a template-matching observer. Methods: The image data used for this study consisted of 100 signal-present and 100 signal-absent regions-of-interest, which were extracted from CT slices. The experimental conditions included two signal sizes and five different x-ray beam current settings (mAs). Human observer performance for these images was determined in 2-alternative forced choice experiments. These data were provided by the Mayo clinic in Rochester, MN. Detection performance was estimated from three observer models, including channelized Hotelling observers (CHO) with Gabor or Laguerre-Gauss (LG) channels, and a template-matching observer (TM). Different sample sizes were generated by randomly selecting a subset of image pairs, (N=20,40,60,80). Observer performance was quantified as proportion of correct responses (PC). Bias was quantified as the relative difference of PC for 20 and 80 image pairs. Results: For n=100, all observer models predicted human performance across mAs and signal sizes. Bias was 23% for CHO (Gabor), 7% for CHO (LG), and 3% for TM. The relative standard deviation, σ(PC)/PC at N=20 was highest for the TM observer (11%) and lowest for the CHO (Gabor) observer (5%). Conclusion: In order to make image quality assessment feasible in the clinical practice, a statistically efficient observer model, that can predict performance from few samples, is needed. Our results identified two observer models that may be suited for this task
Sample size calculation in metabolic phenotyping studies.
Billoir, Elise; Navratil, Vincent; Blaise, Benjamin J
2015-09-01
The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at http://www.prabi.fr/redmine/projects/dsd/wiki. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Improved sample size determination for attributes and variables sampling
International Nuclear Information System (INIS)
Stirpe, D.; Picard, R.R.
1985-01-01
Earlier INMM papers have addressed the attributes/variables problem and, under conservative/limiting approximations, have reported analytical solutions for the attributes and variables sample sizes. Through computer simulation of this problem, we have calculated attributes and variables sample sizes as a function of falsification, measurement uncertainties, and required detection probability without using approximations. Using realistic assumptions for uncertainty parameters of measurement, the simulation results support the conclusions: (1) previously used conservative approximations can be expensive because they lead to larger sample sizes than needed; and (2) the optimal verification strategy, as well as the falsification strategy, are highly dependent on the underlying uncertainty parameters of the measurement instruments. 1 ref., 3 figs
Sample size calculation for comparing two negative binomial rates.
Zhu, Haiyuan; Lakkis, Hassan
2014-02-10
Negative binomial model has been increasingly used to model the count data in recent clinical trials. It is frequently chosen over Poisson model in cases of overdispersed count data that are commonly seen in clinical trials. One of the challenges of applying negative binomial model in clinical trial design is the sample size estimation. In practice, simulation methods have been frequently used for sample size estimation. In this paper, an explicit formula is developed to calculate sample size based on the negative binomial model. Depending on different approaches to estimate the variance under null hypothesis, three variations of the sample size formula are proposed and discussed. Important characteristics of the formula include its accuracy and its ability to explicitly incorporate dispersion parameter and exposure time. The performance of the formula with each variation is assessed using simulations. Copyright © 2013 John Wiley & Sons, Ltd.
Sample Size in Qualitative Interview Studies: Guided by Information Power.
Malterud, Kirsti; Siersma, Volkert Dirk; Guassora, Ann Dorrit
2015-11-27
Sample sizes must be ascertained in qualitative studies like in quantitative studies but not by the same means. The prevailing concept for sample size in qualitative studies is "saturation." Saturation is closely tied to a specific methodology, and the term is inconsistently applied. We propose the concept "information power" to guide adequate sample size for qualitative studies. Information power indicates that the more information the sample holds, relevant for the actual study, the lower amount of participants is needed. We suggest that the size of a sample with sufficient information power depends on (a) the aim of the study, (b) sample specificity, (c) use of established theory, (d) quality of dialogue, and (e) analysis strategy. We present a model where these elements of information and their relevant dimensions are related to information power. Application of this model in the planning and during data collection of a qualitative study is discussed. © The Author(s) 2015.
Sample size for morphological traits of pigeonpea
Directory of Open Access Journals (Sweden)
Giovani Facco
2015-12-01
Full Text Available The objectives of this study were to determine the sample size (i.e., number of plants required to accurately estimate the average of morphological traits of pigeonpea (Cajanus cajan L. and to check for variability in sample size between evaluation periods and seasons. Two uniformity trials (i.e., experiments without treatment were conducted for two growing seasons. In the first season (2011/2012, the seeds were sown by broadcast seeding, and in the second season (2012/2013, the seeds were sown in rows spaced 0.50 m apart. The ground area in each experiment was 1,848 m2, and 360 plants were marked in the central area, in a 2 m × 2 m grid. Three morphological traits (e.g., number of nodes, plant height and stem diameter were evaluated 13 times during the first season and 22 times in the second season. Measurements for all three morphological traits were normally distributed and confirmed through the Kolmogorov-Smirnov test. Randomness was confirmed using the Run Test, and the descriptive statistics were calculated. For each trait, the sample size (n was calculated for the semiamplitudes of the confidence interval (i.e., estimation error equal to 2, 4, 6, ..., 20% of the estimated mean with a confidence coefficient (1-? of 95%. Subsequently, n was fixed at 360 plants, and the estimation error of the estimated percentage of the average for each trait was calculated. Variability of the sample size for the pigeonpea culture was observed between the morphological traits evaluated, among the evaluation periods and between seasons. Therefore, to assess with an accuracy of 6% of the estimated average, at least 136 plants must be evaluated throughout the pigeonpea crop cycle to determine the sample size for the traits (e.g., number of nodes, plant height and stem diameter in the different evaluation periods and between seasons.
Sample size determination for mediation analysis of longitudinal data.
Pan, Haitao; Liu, Suyu; Miao, Danmin; Yuan, Ying
2018-03-27
Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.
Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.
2015-01-01
Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.
Sample size allocation in multiregional equivalence studies.
Liao, Jason J Z; Yu, Ziji; Li, Yulan
2018-06-17
With the increasing globalization of drug development, the multiregional clinical trial (MRCT) has gained extensive use. The data from MRCTs could be accepted by regulatory authorities across regions and countries as the primary sources of evidence to support global marketing drug approval simultaneously. The MRCT can speed up patient enrollment and drug approval, and it makes the effective therapies available to patients all over the world simultaneously. However, there are many challenges both operationally and scientifically in conducting a drug development globally. One of many important questions to answer for the design of a multiregional study is how to partition sample size into each individual region. In this paper, two systematic approaches are proposed for the sample size allocation in a multiregional equivalence trial. A numerical evaluation and a biosimilar trial are used to illustrate the characteristics of the proposed approaches. Copyright © 2018 John Wiley & Sons, Ltd.
White, Simon R; Muniz-Terrera, Graciela; Matthews, Fiona E
2018-05-01
Many medical (and ecological) processes involve the change of shape, whereby one trajectory changes into another trajectory at a specific time point. There has been little investigation into the study design needed to investigate these models. We consider the class of fixed effect change-point models with an underlying shape comprised two joined linear segments, also known as broken-stick models. We extend this model to include two sub-groups with different trajectories at the change-point, a change and no change class, and also include a missingness model to account for individuals with incomplete follow-up. Through a simulation study, we consider the relationship of sample size to the estimates of the underlying shape, the existence of a change-point, and the classification-error of sub-group labels. We use a Bayesian framework to account for the missing labels, and the analysis of each simulation is performed using standard Markov chain Monte Carlo techniques. Our simulation study is inspired by cognitive decline as measured by the Mini-Mental State Examination, where our extended model is appropriate due to the commonly observed mixture of individuals within studies who do or do not exhibit accelerated decline. We find that even for studies of modest size ( n = 500, with 50 individuals observed past the change-point) in the fixed effect setting, a change-point can be detected and reliably estimated across a range of observation-errors.
A flexible method for multi-level sample size determination
International Nuclear Information System (INIS)
Lu, Ming-Shih; Sanborn, J.B.; Teichmann, T.
1997-01-01
This paper gives a flexible method to determine sample sizes for both systematic and random error models (this pertains to sampling problems in nuclear safeguard questions). In addition, the method allows different attribute rejection limits. The new method could assist achieving a higher detection probability and enhance inspection effectiveness
Christensen, Jette; Stryhn, Henrik; Vallières, André; El Allaki, Farouk
2011-05-01
In 2008, Canada designed and implemented the Canadian Notifiable Avian Influenza Surveillance System (CanNAISS) with six surveillance activities in a phased-in approach. CanNAISS was a surveillance system because it had more than one surveillance activity or component in 2008: passive surveillance; pre-slaughter surveillance; and voluntary enhanced notifiable avian influenza surveillance. Our objectives were to give a short overview of two active surveillance components in CanNAISS; describe the CanNAISS scenario tree model and its application to estimation of probability of populations being free of NAI virus infection and sample size determination. Our data from the pre-slaughter surveillance component included diagnostic test results from 6296 serum samples representing 601 commercial chicken and turkey farms collected from 25 August 2008 to 29 January 2009. In addition, we included data from a sub-population of farms with high biosecurity standards: 36,164 samples from 55 farms sampled repeatedly over the 24 months study period from January 2007 to December 2008. All submissions were negative for Notifiable Avian Influenza (NAI) virus infection. We developed the CanNAISS scenario tree model, so that it will estimate the surveillance component sensitivity and the probability of a population being free of NAI at the 0.01 farm-level and 0.3 within-farm-level prevalences. We propose that a general model, such as the CanNAISS scenario tree model, may have a broader application than more detailed models that require disease specific input parameters, such as relative risk estimates. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Sample size estimation and sampling techniques for selecting a representative sample
Directory of Open Access Journals (Sweden)
Aamir Omair
2014-01-01
Full Text Available Introduction: The purpose of this article is to provide a general understanding of the concepts of sampling as applied to health-related research. Sample Size Estimation: It is important to select a representative sample in quantitative research in order to be able to generalize the results to the target population. The sample should be of the required sample size and must be selected using an appropriate probability sampling technique. There are many hidden biases which can adversely affect the outcome of the study. Important factors to consider for estimating the sample size include the size of the study population, confidence level, expected proportion of the outcome variable (for categorical variables/standard deviation of the outcome variable (for numerical variables, and the required precision (margin of accuracy from the study. The more the precision required, the greater is the required sample size. Sampling Techniques: The probability sampling techniques applied for health related research include simple random sampling, systematic random sampling, stratified random sampling, cluster sampling, and multistage sampling. These are more recommended than the nonprobability sampling techniques, because the results of the study can be generalized to the target population.
Sample size in psychological research over the past 30 years.
Marszalek, Jacob M; Barber, Carolyn; Kohlhart, Julie; Holmes, Cooper B
2011-04-01
The American Psychological Association (APA) Task Force on Statistical Inference was formed in 1996 in response to a growing body of research demonstrating methodological issues that threatened the credibility of psychological research, and made recommendations to address them. One issue was the small, even dramatically inadequate, size of samples used in studies published by leading journals. The present study assessed the progress made since the Task Force's final report in 1999. Sample sizes reported in four leading APA journals in 1955, 1977, 1995, and 2006 were compared using nonparametric statistics, while data from the last two waves were fit to a hierarchical generalized linear growth model for more in-depth analysis. Overall, results indicate that the recommendations for increasing sample sizes have not been integrated in core psychological research, although results slightly vary by field. This and other implications are discussed in the context of current methodological critique and practice.
Preeminence and prerequisites of sample size calculations in clinical trials
Richa Singhal; Rakesh Rana
2015-01-01
The key components while planning a clinical study are the study design, study duration, and sample size. These features are an integral part of planning a clinical trial efficiently, ethically, and cost-effectively. This article describes some of the prerequisites for sample size calculation. It also explains that sample size calculation is different for different study designs. The article in detail describes the sample size calculation for a randomized controlled trial when the primary out...
Optimal sample size for probability of detection curves
International Nuclear Information System (INIS)
Annis, Charles; Gandossi, Luca; Martin, Oliver
2013-01-01
Highlights: • We investigate sample size requirement to develop probability of detection curves. • We develop simulations to determine effective inspection target sizes, number and distribution. • We summarize these findings and provide guidelines for the NDE practitioner. -- Abstract: The use of probability of detection curves to quantify the reliability of non-destructive examination (NDE) systems is common in the aeronautical industry, but relatively less so in the nuclear industry, at least in European countries. Due to the nature of the components being inspected, sample sizes tend to be much lower. This makes the manufacturing of test pieces with representative flaws, in sufficient numbers, so to draw statistical conclusions on the reliability of the NDT system under investigation, quite costly. The European Network for Inspection and Qualification (ENIQ) has developed an inspection qualification methodology, referred to as the ENIQ Methodology. It has become widely used in many European countries and provides assurance on the reliability of NDE systems, but only qualitatively. The need to quantify the output of inspection qualification has become more important as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. A measure of the NDE reliability is necessary to quantify risk reduction after inspection and probability of detection (POD) curves provide such a metric. The Joint Research Centre, Petten, The Netherlands supported ENIQ by investigating the question of the sample size required to determine a reliable POD curve. As mentioned earlier manufacturing of test pieces with defects that are typically found in nuclear power plants (NPPs) is usually quite expensive. Thus there is a tendency to reduce sample sizes, which in turn increases the uncertainty associated with the resulting POD curve. The main question in conjunction with POS curves is the appropriate sample size. Not
Decision-making and sampling size effect
Ismariah Ahmad; Rohana Abd Rahman; Roda Jean-Marc; Lim Hin Fui; Mohd Parid Mamat
2010-01-01
Sound decision-making requires quality information. Poor information does not help in decision making. Among the sources of low quality information, an important cause is inadequate and inappropriate sampling. In this paper we illustrate the case of information collected on timber prices.
Effects of sample size on the second magnetization peak in ...
Indian Academy of Sciences (India)
the sample size decreases – a result that could be interpreted as a size effect in the order– disorder vortex matter phase transition. However, local magnetic measurements trace this effect to metastable disordered vortex states, revealing the same order–disorder transition induction in samples of different size. Keywords.
Sample size determination in clinical trials with multiple endpoints
Sozu, Takashi; Hamasaki, Toshimitsu; Evans, Scott R
2015-01-01
This book integrates recent methodological developments for calculating the sample size and power in trials with more than one endpoint considered as multiple primary or co-primary, offering an important reference work for statisticians working in this area. The determination of sample size and the evaluation of power are fundamental and critical elements in the design of clinical trials. If the sample size is too small, important effects may go unnoticed; if the sample size is too large, it represents a waste of resources and unethically puts more participants at risk than necessary. Recently many clinical trials have been designed with more than one endpoint considered as multiple primary or co-primary, creating a need for new approaches to the design and analysis of these clinical trials. The book focuses on the evaluation of power and sample size determination when comparing the effects of two interventions in superiority clinical trials with multiple endpoints. Methods for sample size calculation in clin...
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright Â© 2016 Elsevier Inc. All rights reserved.
An integrated approach for multi-level sample size determination
International Nuclear Information System (INIS)
Lu, M.S.; Teichmann, T.; Sanborn, J.B.
1997-01-01
Inspection procedures involving the sampling of items in a population often require steps of increasingly sensitive measurements, with correspondingly smaller sample sizes; these are referred to as multilevel sampling schemes. In the case of nuclear safeguards inspections verifying that there has been no diversion of Special Nuclear Material (SNM), these procedures have been examined often and increasingly complex algorithms have been developed to implement them. The aim in this paper is to provide an integrated approach, and, in so doing, to describe a systematic, consistent method that proceeds logically from level to level with increasing accuracy. The authors emphasize that the methods discussed are generally consistent with those presented in the references mentioned, and yield comparable results when the error models are the same. However, because of its systematic, integrated approach the proposed method elucidates the conceptual understanding of what goes on, and, in many cases, simplifies the calculations. In nuclear safeguards inspections, an important aspect of verifying nuclear items to detect any possible diversion of nuclear fissile materials is the sampling of such items at various levels of sensitivity. The first step usually is sampling by ''attributes'' involving measurements of relatively low accuracy, followed by further levels of sampling involving greater accuracy. This process is discussed in some detail in the references given; also, the nomenclature is described. Here, the authors outline a coordinated step-by-step procedure for achieving such multilevel sampling, and they develop the relationships between the accuracy of measurement and the sample size required at each stage, i.e., at the various levels. The logic of the underlying procedures is carefully elucidated; the calculations involved and their implications, are clearly described, and the process is put in a form that allows systematic generalization
Preeminence and prerequisites of sample size calculations in clinical trials
Directory of Open Access Journals (Sweden)
Richa Singhal
2015-01-01
Full Text Available The key components while planning a clinical study are the study design, study duration, and sample size. These features are an integral part of planning a clinical trial efficiently, ethically, and cost-effectively. This article describes some of the prerequisites for sample size calculation. It also explains that sample size calculation is different for different study designs. The article in detail describes the sample size calculation for a randomized controlled trial when the primary outcome is a continuous variable and when it is a proportion or a qualitative variable.
Estimation of sample size and testing power (Part 4).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2012-01-01
Sample size estimation is necessary for any experimental or survey research. An appropriate estimation of sample size based on known information and statistical knowledge is of great significance. This article introduces methods of sample size estimation of difference test for data with the design of one factor with two levels, including sample size estimation formulas and realization based on the formulas and the POWER procedure of SAS software for quantitative data and qualitative data with the design of one factor with two levels. In addition, this article presents examples for analysis, which will play a leading role for researchers to implement the repetition principle during the research design phase.
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357
40 CFR 80.127 - Sample size guidelines.
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Sample size guidelines. 80.127 Section 80.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Attest Engagements § 80.127 Sample size guidelines. In performing the...
Optimal Sample Size for Probability of Detection Curves
International Nuclear Information System (INIS)
Annis, Charles; Gandossi, Luca; Martin, Oliver
2012-01-01
The use of Probability of Detection (POD) curves to quantify NDT reliability is common in the aeronautical industry, but relatively less so in the nuclear industry. The European Network for Inspection Qualification's (ENIQ) Inspection Qualification Methodology is based on the concept of Technical Justification, a document assembling all the evidence to assure that the NDT system in focus is indeed capable of finding the flaws for which it was designed. This methodology has become widely used in many countries, but the assurance it provides is usually of qualitative nature. The need to quantify the output of inspection qualification has become more important, especially as structural reliability modelling and quantitative risk-informed in-service inspection methodologies become more widely used. To credit the inspections in structural reliability evaluations, a measure of the NDT reliability is necessary. A POD curve provides such metric. In 2010 ENIQ developed a technical report on POD curves, reviewing the statistical models used to quantify inspection reliability. Further work was subsequently carried out to investigate the issue of optimal sample size for deriving a POD curve, so that adequate guidance could be given to the practitioners of inspection reliability. Manufacturing of test pieces with cracks that are representative of real defects found in nuclear power plants (NPP) can be very expensive. Thus there is a tendency to reduce sample sizes and in turn reduce the conservatism associated with the POD curve derived. Not much guidance on the correct sample size can be found in the published literature, where often qualitative statements are given with no further justification. The aim of this paper is to summarise the findings of such work. (author)
Valente, Mariana; Araújo, Ana; Esteves, Tiago; Laundos, Tiago L; Freire, Ana G; Quelhas, Pedro; Pinto-do-Ó, Perpétua; Nascimento, Diana S
2015-12-02
Cardiac therapies are commonly tested preclinically in small-animal models of myocardial infarction. Following functional evaluation, post-mortem histological analysis is essential to assess morphological and molecular alterations underlying the effectiveness of treatment. However, non-methodical and inadequate sampling of the left ventricle often leads to misinterpretations and variability, making direct study comparisons unreliable. Protocols are provided for representative sampling of the ischemic mouse heart followed by morphometric analysis of the left ventricle. Extending the use of this sampling to other types of in situ analysis is also illustrated through the assessment of neovascularization and cellular engraftment in a cell-based therapy setting. This is of interest to the general cardiovascular research community as it details methods for standardization and simplification of histo-morphometric evaluation of emergent heart therapies. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.
[Effect sizes, statistical power and sample sizes in "the Japanese Journal of Psychology"].
Suzukawa, Yumi; Toyoda, Hideki
2012-04-01
This study analyzed the statistical power of research studies published in the "Japanese Journal of Psychology" in 2008 and 2009. Sample effect sizes and sample statistical powers were calculated for each statistical test and analyzed with respect to the analytical methods and the fields of the studies. The results show that in the fields like perception, cognition or learning, the effect sizes were relatively large, although the sample sizes were small. At the same time, because of the small sample sizes, some meaningful effects could not be detected. In the other fields, because of the large sample sizes, meaningless effects could be detected. This implies that researchers who could not get large enough effect sizes would use larger samples to obtain significant results.
Analysis of time series and size of equivalent sample
International Nuclear Information System (INIS)
Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge
2004-01-01
In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions
Effect of sample size on bias correction performance
Reiter, Philipp; Gutjahr, Oliver; Schefczyk, Lukas; Heinemann, Günther; Casper, Markus C.
2014-05-01
The output of climate models often shows a bias when compared to observed data, so that a preprocessing is necessary before using it as climate forcing in impact modeling (e.g. hydrology, species distribution). A common bias correction method is the quantile matching approach, which adapts the cumulative distribution function of the model output to the one of the observed data by means of a transfer function. Especially for precipitation we expect the bias correction performance to strongly depend on sample size, i.e. the length of the period used for calibration of the transfer function. We carry out experiments using the precipitation output of ten regional climate model (RCM) hindcast runs from the EU-ENSEMBLES project and the E-OBS observational dataset for the period 1961 to 2000. The 40 years are split into a 30 year calibration period and a 10 year validation period. In the first step, for each RCM transfer functions are set up cell-by-cell, using the complete 30 year calibration period. The derived transfer functions are applied to the validation period of the respective RCM precipitation output and the mean absolute errors in reference to the observational dataset are calculated. These values are treated as "best fit" for the respective RCM. In the next step, this procedure is redone using subperiods out of the 30 year calibration period. The lengths of these subperiods are reduced from 29 years down to a minimum of 1 year, only considering subperiods of consecutive years. This leads to an increasing number of repetitions for smaller sample sizes (e.g. 2 for a length of 29 years). In the last step, the mean absolute errors are statistically tested against the "best fit" of the respective RCM to compare the performances. In order to analyze if the intensity of the effect of sample size depends on the chosen correction method, four variations of the quantile matching approach (PTF, QUANT/eQM, gQM, GQM) are applied in this study. The experiments are further
Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R
2017-09-14
While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.
Sampling strategies for estimating brook trout effective population size
Andrew R. Whiteley; Jason A. Coombs; Mark Hudy; Zachary Robinson; Keith H. Nislow; Benjamin H. Letcher
2012-01-01
The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from...
Estimation of sample size and testing power (part 5).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2012-02-01
Estimation of sample size and testing power is an important component of research design. This article introduced methods for sample size and testing power estimation of difference test for quantitative and qualitative data with the single-group design, the paired design or the crossover design. To be specific, this article introduced formulas for sample size and testing power estimation of difference test for quantitative and qualitative data with the above three designs, the realization based on the formulas and the POWER procedure of SAS software and elaborated it with examples, which will benefit researchers for implementing the repetition principle.
Ferrari, Ulisse
2016-08-01
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.
Modeling and Sizing of Supercapacitors
Directory of Open Access Journals (Sweden)
PETREUS, D.
2008-06-01
Full Text Available Faced with numerous challenges raised by the requirements of the modern industries for higher power and higher energy, supercapacitors study started playing an important role in offering viable solutions for some of these requirements. This paper presents the surface redox reactions based modeling in order to study the origin of high capacity of EDLC (electrical double-layer capacitor for better understanding the working principles of supercapacitors. Some application-dependent sizing methods are also presented since proper sizing can increase the efficiency and the life cycle of the supercapacitor based systems.
Determination of the optimal sample size for a clinical trial accounting for the population size.
Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin
2017-07-01
The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuromuscular dose-response studies: determining sample size.
Kopman, A F; Lien, C A; Naguib, M
2011-02-01
Investigators planning dose-response studies of neuromuscular blockers have rarely used a priori power analysis to determine the minimal sample size their protocols require. Institutional Review Boards and peer-reviewed journals now generally ask for this information. This study outlines a proposed method for meeting these requirements. The slopes of the dose-response relationships of eight neuromuscular blocking agents were determined using regression analysis. These values were substituted for γ in the Hill equation. When this is done, the coefficient of variation (COV) around the mean value of the ED₅₀ for each drug is easily calculated. Using these values, we performed an a priori one-sample two-tailed t-test of the means to determine the required sample size when the allowable error in the ED₅₀ was varied from ±10-20%. The COV averaged 22% (range 15-27%). We used a COV value of 25% in determining the sample size. If the allowable error in finding the mean ED₅₀ is ±15%, a sample size of 24 is needed to achieve a power of 80%. Increasing 'accuracy' beyond this point requires increasing greater sample sizes (e.g. an 'n' of 37 for a ±12% error). On the basis of the results of this retrospective analysis, a total sample size of not less than 24 subjects should be adequate for determining a neuromuscular blocking drug's clinical potency with a reasonable degree of assurance.
Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael
2013-12-01
Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.
Sample size optimization in nuclear material control. 1
International Nuclear Information System (INIS)
Gladitz, J.
1982-01-01
Equations have been derived and exemplified which allow the determination of the minimum variables sample size for given false alarm and detection probabilities of nuclear material losses and diversions, respectively. (author)
[Practical aspects regarding sample size in clinical research].
Vega Ramos, B; Peraza Yanes, O; Herrera Correa, G; Saldívar Toraya, S
1996-01-01
The knowledge of the right sample size let us to be sure if the published results in medical papers had a suitable design and a proper conclusion according to the statistics analysis. To estimate the sample size we must consider the type I error, type II error, variance, the size of the effect, significance and power of the test. To decide what kind of mathematics formula will be used, we must define what kind of study we have, it means if its a prevalence study, a means values one or a comparative one. In this paper we explain some basic topics of statistics and we describe four simple samples of estimation of sample size.
Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.
You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary
2011-02-01
The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure
Effects of sample size on the second magnetization peak in ...
Indian Academy of Sciences (India)
8+ crystals are observed at low temperatures, above the temperature where the SMP totally disappears. In particular, the onset of the SMP shifts to lower fields as the sample size decreases - a result that could be interpreted as a size effect in ...
Sample size computation for association studies using case–parents ...
Indian Academy of Sciences (India)
ple size needed to reach a given power (Knapp 1999; Schaid. 1999; Chen and Deng 2001; Brown 2004). In their seminal paper, Risch and Merikangas (1996) showed that for a mul- tiplicative mode of inheritance (MOI) for the susceptibility gene, sample size depends on two parameters: the frequency of the risk allele at the ...
Sample size determination for equivalence assessment with multiple endpoints.
Sun, Anna; Dong, Xiaoyu; Tsong, Yi
2014-01-01
Equivalence assessment between a reference and test treatment is often conducted by two one-sided tests (TOST). The corresponding power function and sample size determination can be derived from a joint distribution of the sample mean and sample variance. When an equivalence trial is designed with multiple endpoints, it often involves several sets of two one-sided tests. A naive approach for sample size determination in this case would select the largest sample size required for each endpoint. However, such a method ignores the correlation among endpoints. With the objective to reject all endpoints and when the endpoints are uncorrelated, the power function is the production of all power functions for individual endpoints. With correlated endpoints, the sample size and power should be adjusted for such a correlation. In this article, we propose the exact power function for the equivalence test with multiple endpoints adjusted for correlation under both crossover and parallel designs. We further discuss the differences in sample size for the naive method without and with correlation adjusted methods and illustrate with an in vivo bioequivalence crossover study with area under the curve (AUC) and maximum concentration (Cmax) as the two endpoints.
Bergtold, Jason S.; Yeager, Elizabeth A.; Featherstone, Allen M.
2011-01-01
The logistic regression models has been widely used in the social and natural sciences and results from studies using this model can have significant impact. Thus, confidence in the reliability of inferences drawn from these models is essential. The robustness of such inferences is dependent on sample size. The purpose of this study is to examine the impact of sample size on the mean estimated bias and efficiency of parameter estimation and inference for the logistic regression model. A numbe...
The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.
Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S
2016-10-01
The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.
Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.
Morgan, Timothy M; Case, L Douglas
2013-07-05
In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.
Directory of Open Access Journals (Sweden)
R. Eric Heidel
2016-01-01
Full Text Available Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power.
Sample Size Determination for One- and Two-Sample Trimmed Mean Tests
Luh, Wei-Ming; Olejnik, Stephen; Guo, Jiin-Huarng
2008-01-01
Formulas to determine the necessary sample sizes for parametric tests of group comparisons are available from several sources and appropriate when population distributions are normal. However, in the context of nonnormal population distributions, researchers recommend Yuen's trimmed mean test, but formulas to determine sample sizes have not been…
Revisiting sample size: are big trials the answer?
Lurati Buse, Giovanna A L; Botto, Fernando; Devereaux, P J
2012-07-18
The superiority of the evidence generated in randomized controlled trials over observational data is not only conditional to randomization. Randomized controlled trials require proper design and implementation to provide a reliable effect estimate. Adequate random sequence generation, allocation implementation, analyses based on the intention-to-treat principle, and sufficient power are crucial to the quality of a randomized controlled trial. Power, or the probability of the trial to detect a difference when a real difference between treatments exists, strongly depends on sample size. The quality of orthopaedic randomized controlled trials is frequently threatened by a limited sample size. This paper reviews basic concepts and pitfalls in sample-size estimation and focuses on the importance of large trials in the generation of valid evidence.
Impact of shoe size in a sample of elderly individuals
Directory of Open Access Journals (Sweden)
Daniel López-López
Full Text Available Summary Introduction: The use of an improper shoe size is common in older people and is believed to have a detrimental effect on the quality of life related to foot health. The objective is to describe and compare, in a sample of participants, the impact of shoes that fit properly or improperly, as well as analyze the scores related to foot health and health overall. Method: A sample of 64 participants, with a mean age of 75.3±7.9 years, attended an outpatient center where self-report data was recorded, the measurements of the size of the feet and footwear were determined and the scores compared between the group that wears the correct size of shoes and another group of individuals who do not wear the correct size of shoes, using the Spanish version of the Foot Health Status Questionnaire. Results: The group wearing an improper shoe size showed poorer quality of life regarding overall health and specifically foot health. Differences between groups were evaluated using a t-test for independent samples resulting statistically significant (p<0.05 for the dimension of pain, function, footwear, overall foot health, and social function. Conclusion: Inadequate shoe size has a significant negative impact on quality of life related to foot health. The degree of negative impact seems to be associated with age, sex, and body mass index (BMI.
Determining sample size for assessing species composition in ...
African Journals Online (AJOL)
Species composition is measured in grasslands for a variety of reasons. Commonly, observations are made using the wheel-point apparatus, but the problem of determining optimum sample size has not yet been satisfactorily resolved. In this study the wheel-point apparatus was used to record 2 000 observations in each of ...
Research Note Pilot survey to assess sample size for herbaceous ...
African Journals Online (AJOL)
A pilot survey to determine sub-sample size (number of point observations per plot) for herbaceous species composition assessments, using a wheel-point apparatus applying the nearest-plant method, was conducted. Three plots differing in species composition on the Zululand coastal plain were selected, and on each plot ...
Test of a sample container for shipment of small size plutonium samples with PAT-2
International Nuclear Information System (INIS)
Kuhn, E.; Aigner, H.; Deron, S.
1981-11-01
A light-weight container for the air transport of plutonium, to be designated PAT-2, has been developed in the USA and is presently undergoing licensing. The very limited effective space for bearing plutonium required the design of small size sample canisters to meet the needs of international safeguards for the shipment of plutonium samples. The applicability of a small canister for the sampling of small size powder and solution samples has been tested in an intralaboratory experiment. The results of the experiment, based on the concept of pre-weighed samples, show that the tested canister can successfully be used for the sampling of small size PuO 2 -powder samples of homogeneous source material, as well as for dried aliquands of plutonium nitrate solutions. (author)
Rock sampling. [method for controlling particle size distribution
Blum, P. (Inventor)
1971-01-01
A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin
2014-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the
Development of sample size allocation program using hypergeometric distribution
International Nuclear Information System (INIS)
Kim, Hyun Tae; Kwack, Eun Ho; Park, Wan Soo; Min, Kyung Soo; Park, Chan Sik
1996-01-01
The objective of this research is the development of sample allocation program using hypergeometric distribution with objected-oriented method. When IAEA(International Atomic Energy Agency) performs inspection, it simply applies a standard binomial distribution which describes sampling with replacement instead of a hypergeometric distribution which describes sampling without replacement in sample allocation to up to three verification methods. The objective of the IAEA inspection is the timely detection of diversion of significant quantities of nuclear material, therefore game theory is applied to its sampling plan. It is necessary to use hypergeometric distribution directly or approximate distribution to secure statistical accuracy. Improved binomial approximation developed by Mr. J. L. Jaech and correctly applied binomial approximation are more closer to hypergeometric distribution in sample size calculation than the simply applied binomial approximation of the IAEA. Object-oriented programs of 1. sample approximate-allocation with correctly applied standard binomial approximation, 2. sample approximate-allocation with improved binomial approximation, and 3. sample approximate-allocation with hypergeometric distribution were developed with Visual C ++ and corresponding programs were developed with EXCEL(using Visual Basic for Application). 8 tabs., 15 refs. (Author)
Wynants, L.; Bouwmeester, W.; Moons, K. G. M.; Moerbeek, M.; Timmerman, D.; Van Huffel, S.; Van Calster, B.; Vergouwe, Y.
2015-01-01
Objectives: This study aims to investigate the influence of the amount of clustering [intraclass correlation (ICC) = 0%, 5%, or 20%], the number of events per variable (EPV) or candidate predictor (EPV = 5, 10, 20, or 50), and backward variable selection on the performance of prediction models.
Estimation of sample size and testing power (Part 3).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2011-12-01
This article introduces the definition and sample size estimation of three special tests (namely, non-inferiority test, equivalence test and superiority test) for qualitative data with the design of one factor with two levels having a binary response variable. Non-inferiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is not clinically inferior to that of the positive control drug. Equivalence test refers to the research design of which the objective is to verify that the experimental drug and the control drug have clinically equivalent efficacy. Superiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is clinically superior to that of the control drug. By specific examples, this article introduces formulas of sample size estimation for the three special tests, and their SAS realization in detail.
Sample Size Calculation for Controlling False Discovery Proportion
Directory of Open Access Journals (Sweden)
Shulian Shang
2012-01-01
Full Text Available The false discovery proportion (FDP, the proportion of incorrect rejections among all rejections, is a direct measure of abundance of false positive findings in multiple testing. Many methods have been proposed to control FDP, but they are too conservative to be useful for power analysis. Study designs for controlling the mean of FDP, which is false discovery rate, have been commonly used. However, there has been little attempt to design study with direct FDP control to achieve certain level of efficiency. We provide a sample size calculation method using the variance formula of the FDP under weak-dependence assumptions to achieve the desired overall power. The relationship between design parameters and sample size is explored. The adequacy of the procedure is assessed by simulation. We illustrate the method using estimated correlations from a prostate cancer dataset.
Estimation of sample size and testing power (part 6).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2012-03-01
The design of one factor with k levels (k ≥ 3) refers to the research that only involves one experimental factor with k levels (k ≥ 3), and there is no arrangement for other important non-experimental factors. This paper introduces the estimation of sample size and testing power for quantitative data and qualitative data having a binary response variable with the design of one factor with k levels (k ≥ 3).
Sample size of the reference sample in a case-augmented study.
Ghosh, Palash; Dewanji, Anup
2017-05-01
The case-augmented study, in which a case sample is augmented with a reference (random) sample from the source population with only covariates information known, is becoming popular in different areas of applied science such as pharmacovigilance, ecology, and econometrics. In general, the case sample is available from some source (for example, hospital database, case registry, etc.); however, the reference sample is required to be drawn from the corresponding source population. The required minimum size of the reference sample is an important issue in this regard. In this work, we address the minimum sample size calculation and discuss related issues. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Sample size for monitoring sirex populations and their natural enemies
Directory of Open Access Journals (Sweden)
Susete do Rocio Chiarello Penteado
2016-09-01
Full Text Available The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae was introduced in Brazil in 1988 and became the main pest in pine plantations. It has spread to about 1.000.000 ha, at different population levels, in the states of Rio Grande do Sul, Santa Catarina, Paraná, São Paulo and Minas Gerais. Control is done mainly by using a nematode, Deladenus siricidicola Bedding (Nematoda: Neothylenchidae. The evaluation of the efficiency of natural enemies has been difficult because there are no appropriate sampling systems. This study tested a hierarchical sampling system to define the sample size to monitor the S. noctilio population and the efficiency of their natural enemies, which was found to be perfectly adequate.
Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization
Trevelin, Leonardo Carreira; Novaes, Roberto Leonan Morim; Colas-Rosas, Paul François; Benathar, Thayse Cristhina Melo; Peres, Carlos A.
2017-01-01
The advantages of mist-netting, the main technique used in Neotropical bat community studies to date, include logistical implementation, standardization and sampling representativeness. Nonetheless, study designs still have to deal with issues of detectability related to how different species behave and use the environment. Yet there is considerable sampling heterogeneity across available studies in the literature. Here, we approach the problem of sample size optimization. We evaluated the co...
Hierarchical modeling of cluster size in wildlife surveys
Royle, J. Andrew
2008-01-01
Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).
Size effects in foams : Experiments and modeling
Tekoglu, C.; Gibson, L. J.; Pardoen, T.; Onck, P. R.
Mechanical properties of cellular solids depend on the ratio of the sample size to the cell size at length scales where the two are of the same order of magnitude. Considering that the cell size of many cellular solids used in engineering applications is between 1 and 10 mm, it is not uncommon to
Nomogram for sample size calculation on a straightforward basis for the kappa statistic.
Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo
2014-09-01
Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.
Modelling of Size Effect with Regularised Continua
Directory of Open Access Journals (Sweden)
H. Askes
2004-01-01
Full Text Available A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature.
Comparing Server Energy Use and Efficiency Using Small Sample Sizes
Energy Technology Data Exchange (ETDEWEB)
Coles, Henry C.; Qin, Yong; Price, Phillip N.
2014-11-01
This report documents a demonstration that compared the energy consumption and efficiency of a limited sample size of server-type IT equipment from different manufacturers by measuring power at the server power supply power cords. The results are specific to the equipment and methods used. However, it is hoped that those responsible for IT equipment selection can used the methods described to choose models that optimize energy use efficiency. The demonstration was conducted in a data center at Lawrence Berkeley National Laboratory in Berkeley, California. It was performed with five servers of similar mechanical and electronic specifications; three from Intel and one each from Dell and Supermicro. Server IT equipment is constructed using commodity components, server manufacturer-designed assemblies, and control systems. Server compute efficiency is constrained by the commodity component specifications and integration requirements. The design freedom, outside of the commodity component constraints, provides room for the manufacturer to offer a product with competitive efficiency that meets market needs at a compelling price. A goal of the demonstration was to compare and quantify the server efficiency for three different brands. The efficiency is defined as the average compute rate (computations per unit of time) divided by the average energy consumption rate. The research team used an industry standard benchmark software package to provide a repeatable software load to obtain the compute rate and provide a variety of power consumption levels. Energy use when the servers were in an idle state (not providing computing work) were also measured. At high server compute loads, all brands, using the same key components (processors and memory), had similar results; therefore, from these results, it could not be concluded that one brand is more efficient than the other brands. The test results show that the power consumption variability caused by the key components as a
On sample size and different interpretations of snow stability datasets
Schirmer, M.; Mitterer, C.; Schweizer, J.
2009-04-01
Interpretations of snow stability variations need an assessment of the stability itself, independent of the scale investigated in the study. Studies on stability variations at a regional scale have often chosen stability tests such as the Rutschblock test or combinations of various tests in order to detect differences in aspect and elevation. The question arose: ‘how capable are such stability interpretations in drawing conclusions'. There are at least three possible errors sources: (i) the variance of the stability test itself; (ii) the stability variance at an underlying slope scale, and (iii) that the stability interpretation might not be directly related to the probability of skier triggering. Various stability interpretations have been proposed in the past that provide partly different results. We compared a subjective one based on expert knowledge with a more objective one based on a measure derived from comparing skier-triggered slopes vs. slopes that have been skied but not triggered. In this study, the uncertainties are discussed and their effects on regional scale stability variations will be quantified in a pragmatic way. An existing dataset with very large sample sizes was revisited. This dataset contained the variance of stability at a regional scale for several situations. The stability in this dataset was determined using the subjective interpretation scheme based on expert knowledge. The question to be answered was how many measurements were needed to obtain similar results (mainly stability differences in aspect or elevation) as with the complete dataset. The optimal sample size was obtained in several ways: (i) assuming a nominal data scale the sample size was determined with a given test, significance level and power, and by calculating the mean and standard deviation of the complete dataset. With this method it can also be determined if the complete dataset consists of an appropriate sample size. (ii) Smaller subsets were created with similar
Sample size reduction in groundwater surveys via sparse data assimilation
Hussain, Z.
2013-04-01
In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.
Sample size reduction in groundwater surveys via sparse data assimilation
Hussain, Z.; Muhammad, A.
2013-01-01
In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.
Regional climate model sensitivity to domain size
Energy Technology Data Exchange (ETDEWEB)
Leduc, Martin [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics (CRCMD) Network, ESCER Centre, Montreal (Canada); UQAM/Ouranos, Montreal, QC (Canada); Laprise, Rene [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics (CRCMD) Network, ESCER Centre, Montreal (Canada)
2009-05-15
Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the ''perfect model'' approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 x 100 grid points). The permanent ''spatial spin-up'' corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere. (orig.)
Estimation of individual reference intervals in small sample sizes
DEFF Research Database (Denmark)
Hansen, Ase Marie; Garde, Anne Helene; Eller, Nanna Hurwitz
2007-01-01
In occupational health studies, the study groups most often comprise healthy subjects performing their work. Sampling is often planned in the most practical way, e.g., sampling of blood in the morning at the work site just after the work starts. Optimal use of reference intervals requires...... from various variables such as gender, age, BMI, alcohol, smoking, and menopause. The reference intervals were compared to reference intervals calculated using IFCC recommendations. Where comparable, the IFCC calculated reference intervals had a wider range compared to the variance component models...
Regional climate model sensitivity to domain size
Leduc, Martin; Laprise, René
2009-05-01
Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.
Bayesian sample size determination for cost-effectiveness studies with censored data.
Directory of Open Access Journals (Sweden)
Daniel P Beavers
Full Text Available Cost-effectiveness models are commonly utilized to determine the combined clinical and economic impact of one treatment compared to another. However, most methods for sample size determination of cost-effectiveness studies assume fully observed costs and effectiveness outcomes, which presents challenges for survival-based studies in which censoring exists. We propose a Bayesian method for the design and analysis of cost-effectiveness data in which costs and effectiveness may be censored, and the sample size is approximated for both power and assurance. We explore two parametric models and demonstrate the flexibility of the approach to accommodate a variety of modifications to study assumptions.
A normative inference approach for optimal sample sizes in decisions from experience
Ostwald, Dirk; Starke, Ludger; Hertwig, Ralph
2015-01-01
“Decisions from experience” (DFE) refers to a body of work that emerged in research on behavioral decision making over the last decade. One of the major experimental paradigms employed to study experience-based choice is the “sampling paradigm,” which serves as a model of decision making under limited knowledge about the statistical structure of the world. In this paradigm respondents are presented with two payoff distributions, which, in contrast to standard approaches in behavioral economics, are specified not in terms of explicit outcome-probability information, but by the opportunity to sample outcomes from each distribution without economic consequences. Participants are encouraged to explore the distributions until they feel confident enough to decide from which they would prefer to draw from in a final trial involving real monetary payoffs. One commonly employed measure to characterize the behavior of participants in the sampling paradigm is the sample size, that is, the number of outcome draws which participants choose to obtain from each distribution prior to terminating sampling. A natural question that arises in this context concerns the “optimal” sample size, which could be used as a normative benchmark to evaluate human sampling behavior in DFE. In this theoretical study, we relate the DFE sampling paradigm to the classical statistical decision theoretic literature and, under a probabilistic inference assumption, evaluate optimal sample sizes for DFE. In our treatment we go beyond analytically established results by showing how the classical statistical decision theoretic framework can be used to derive optimal sample sizes under arbitrary, but numerically evaluable, constraints. Finally, we critically evaluate the value of deriving optimal sample sizes under this framework as testable predictions for the experimental study of sampling behavior in DFE. PMID:26441720
Sample Size of One: Operational Qualitative Analysis in the Classroom
Directory of Open Access Journals (Sweden)
John Hoven
2015-10-01
Full Text Available Qualitative analysis has two extraordinary capabilities: first, finding answers to questions we are too clueless to ask; and second, causal inference – hypothesis testing and assessment – within a single unique context (sample size of one. These capabilities are broadly useful, and they are critically important in village-level civil-military operations. Company commanders need to learn quickly, "What are the problems and possibilities here and now, in this specific village? What happens if we do A, B, and C?" – and that is an ill-defined, one-of-a-kind problem. The U.S. Army's Eighty-Third Civil Affairs Battalion is our "first user" innovation partner in a new project to adapt qualitative research methods to an operational tempo and purpose. Our aim is to develop a simple, low-cost methodology and training program for local civil-military operations conducted by non-specialist conventional forces. Complementary to that, this paper focuses on some essential basics that can be implemented by college professors without significant cost, effort, or disruption.
Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions
Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.
2013-01-01
Mechanistic crop growth models are becoming increasingly important in agricultural research and are extensively used in climate change impact assessments. In such studies, statistics of crop yields are usually evaluated without the explicit consideration of sample size requirements. The purpose of
The Effects of Test Length and Sample Size on Item Parameters in Item Response Theory
Sahin, Alper; Anil, Duygu
2017-01-01
This study investigates the effects of sample size and test length on item-parameter estimation in test development utilizing three unidimensional dichotomous models of item response theory (IRT). For this purpose, a real language test comprised of 50 items was administered to 6,288 students. Data from this test was used to obtain data sets of…
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
Constrained statistical inference: sample-size tables for ANOVA and regression
Directory of Open Access Journals (Sweden)
Leonard eVanbrabant
2015-01-01
Full Text Available Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient beta1 is larger than beta2 and beta3. The corresponding hypothesis is H: beta1 > {beta2, beta3} and this is known as an (order constrained hypothesis. A major advantage of testing such a hypothesis is that power can be gained and inherently a smaller sample size is needed. This article discusses this gain in sample size reduction, when an increasing number of constraints is included into the hypothesis. The main goal is to present sample-size tables for constrained hypotheses. A sample-size table contains the necessary sample-size at a prespecified power (say, 0.80 for an increasing number of constraints. To obtain sample-size tables, two Monte Carlo simulations were performed, one for ANOVA and one for multiple regression. Three results are salient. First, in an ANOVA the needed sample-size decreases with 30% to 50% when complete ordering of the parameters is taken into account. Second, small deviations from the imposed order have only a minor impact on the power. Third, at the maximum number of constraints, the linear regression results are comparable with the ANOVA results. However, in the case of fewer constraints, ordering the parameters (e.g., beta1 > beta2 results in a higher power than assigning a positive or a negative sign to the parameters (e.g., beta1 > 0.
Tissue Sampling Guides for Porcine Biomedical Models.
Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas
2016-04-01
This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. © The Author(s) 2016.
14CO2 analysis of soil gas: Evaluation of sample size limits and sampling devices
Wotte, Anja; Wischhöfer, Philipp; Wacker, Lukas; Rethemeyer, Janet
2017-12-01
Radiocarbon (14C) analysis of CO2 respired from soils or sediments is a valuable tool to identify different carbon sources. The collection and processing of the CO2, however, is challenging and prone to contamination. We thus continuously improve our handling procedures and present a refined method for the collection of even small amounts of CO2 in molecular sieve cartridges (MSCs) for accelerator mass spectrometry 14C analysis. Using a modified vacuum rig and an improved desorption procedure, we were able to increase the CO2 recovery from the MSC (95%) as well as the sample throughput compared to our previous study. By processing series of different sample size, we show that our MSCs can be used for CO2 samples of as small as 50 μg C. The contamination by exogenous carbon determined in these laboratory tests, was less than 2.0 μg C from fossil and less than 3.0 μg C from modern sources. Additionally, we tested two sampling devices for the collection of CO2 samples released from soils or sediments, including a respiration chamber and a depth sampler, which are connected to the MSC. We obtained a very promising, low process blank for the entire CO2 sampling and purification procedure of ∼0.004 F14C (equal to 44,000 yrs BP) and ∼0.003 F14C (equal to 47,000 yrs BP). In contrast to previous studies, we observed no isotopic fractionation towards lighter δ13C values during the passive sampling with the depth samplers.
Guo, Jiin-Huarng; Luh, Wei-Ming
2009-05-01
When planning a study, sample size determination is one of the most important tasks facing the researcher. The size will depend on the purpose of the study, the cost limitations, and the nature of the data. By specifying the standard deviation ratio and/or the sample size ratio, the present study considers the problem of heterogeneous variances and non-normality for Yuen's two-group test and develops sample size formulas to minimize the total cost or maximize the power of the test. For a given power, the sample size allocation ratio can be manipulated so that the proposed formulas can minimize the total cost, the total sample size, or the sum of total sample size and total cost. On the other hand, for a given total cost, the optimum sample size allocation ratio can maximize the statistical power of the test. After the sample size is determined, the present simulation applies Yuen's test to the sample generated, and then the procedure is validated in terms of Type I errors and power. Simulation results show that the proposed formulas can control Type I errors and achieve the desired power under the various conditions specified. Finally, the implications for determining sample sizes in experimental studies and future research are discussed.
Support vector regression to predict porosity and permeability: Effect of sample size
Al-Anazi, A. F.; Gates, I. D.
2012-02-01
Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function
Shieh, Gwowen
2013-01-01
The a priori determination of a proper sample size necessary to achieve some specified power is an important problem encountered frequently in practical studies. To establish the needed sample size for a two-sample "t" test, researchers may conduct the power analysis by specifying scientifically important values as the underlying population means…
Effects of sample size and sampling frequency on studies of brown bear home ranges and habitat use
Arthur, Steve M.; Schwartz, Charles C.
1999-01-01
We equipped 9 brown bears (Ursus arctos) on the Kenai Peninsula, Alaska, with collars containing both conventional very-high-frequency (VHF) transmitters and global positioning system (GPS) receivers programmed to determine an animal's position at 5.75-hr intervals. We calculated minimum convex polygon (MCP) and fixed and adaptive kernel home ranges for randomly-selected subsets of the GPS data to examine the effects of sample size on accuracy and precision of home range estimates. We also compared results obtained by weekly aerial radiotracking versus more frequent GPS locations to test for biases in conventional radiotracking data. Home ranges based on the MCP were 20-606 km2 (x = 201) for aerial radiotracking data (n = 12-16 locations/bear) and 116-1,505 km2 (x = 522) for the complete GPS data sets (n = 245-466 locations/bear). Fixed kernel home ranges were 34-955 km2 (x = 224) for radiotracking data and 16-130 km2 (x = 60) for the GPS data. Differences between means for radiotracking and GPS data were due primarily to the larger samples provided by the GPS data. Means did not differ between radiotracking data and equivalent-sized subsets of GPS data (P > 0.10). For the MCP, home range area increased and variability decreased asymptotically with number of locations. For the kernel models, both area and variability decreased with increasing sample size. Simulations suggested that the MCP and kernel models required >60 and >80 locations, respectively, for estimates to be both accurate (change in area bears. Our results suggest that the usefulness of conventional radiotracking data may be limited by potential biases and variability due to small samples. Investigators that use home range estimates in statistical tests should consider the effects of variability of those estimates. Use of GPS-equipped collars can facilitate obtaining larger samples of unbiased data and improve accuracy and precision of home range estimates.
Threshold-dependent sample sizes for selenium assessment with stream fish tissue
Hitt, Nathaniel P.; Smith, David R.
2015-01-01
Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased
A contemporary decennial global sample of changing agricultural field sizes
White, E.; Roy, D. P.
2011-12-01
In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.
Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.
Algina, James; Olejnik, Stephen
2000-01-01
Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)
DEFF Research Database (Denmark)
Ravn-Jonsen, Lars
Ecosystem Management requires models that can link the ecosystem level to the operation level. This link can be created by an ecosystem production model. Because the function of the individual fish in the marine ecosystem, seen in trophic context, is closely related to its size, the model groups...... fish according to size. The model summarises individual predation events into ecosystem level properties, and thereby uses the law of conversation of mass as a framework. This paper provides the background, the conceptual model, basic assumptions, integration of fishing activities, mathematical...... the predator--prey interaction, (ii) mass balance in the predator--prey allocation, and (iii) mortality and somatic growth as a consequence of the predator--prey allocation. By incorporating additional assumptions, the model can be extended to other dimensions of the ecosystem, for example, space or species...
Directory of Open Access Journals (Sweden)
Esther Wong
Full Text Available We have developed a modified FlowCAM procedure for efficiently quantifying the size distribution of zooplankton. The modified method offers the following new features: 1 prevents animals from settling and clogging with constant bubbling in the sample container; 2 prevents damage to sample animals and facilitates recycling by replacing the built-in peristaltic pump with an external syringe pump, in order to generate negative pressure, creates a steady flow by drawing air from the receiving conical flask (i.e. vacuum pump, and transfers plankton from the sample container toward the main flowcell of the imaging system and finally into the receiving flask; 3 aligns samples in advance of imaging and prevents clogging with an additional flowcell placed ahead of the main flowcell. These modifications were designed to overcome the difficulties applying the standard FlowCAM procedure to studies where the number of individuals per sample is small, and since the FlowCAM can only image a subset of a sample. Our effective recycling procedure allows users to pass the same sample through the FlowCAM many times (i.e. bootstrapping the sample in order to generate a good size distribution. Although more advanced FlowCAM models are equipped with syringe pump and Field of View (FOV flowcells which can image all particles passing through the flow field; we note that these advanced setups are very expensive, offer limited syringe and flowcell sizes, and do not guarantee recycling. In contrast, our modifications are inexpensive and flexible. Finally, we compared the biovolumes estimated by automated FlowCAM image analysis versus conventional manual measurements, and found that the size of an individual zooplankter can be estimated by the FlowCAM image system after ground truthing.
Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen
2017-01-01
Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.
Modeling and optimization of wet sizing process
International Nuclear Information System (INIS)
Thai Ba Cau; Vu Thanh Quang and Nguyen Ba Tien
2004-01-01
Mathematical simulation on basis of Stock law has been done for wet sizing process on cylinder equipment of laboratory and semi-industrial scale. The model consists of mathematical equations describing relations between variables, such as: - Resident time distribution function of emulsion particles in the separating zone of the equipment depending on flow-rate, height, diameter and structure of the equipment. - Size-distribution function in the fine and coarse parts depending on resident time distribution function of emulsion particles, characteristics of the material being processed, such as specific density, shapes, and characteristics of the environment of classification, such as specific density, viscosity. - Experimental model was developed on data collected from an experimental cylindrical equipment with diameter x height of sedimentation chamber equal to 50 x 40 cm for an emulsion of zirconium silicate in water. - Using this experimental model allows to determine optimal flow-rate in order to obtain product with desired grain size in term of average size or size distribution function. (author)
7 CFR 52.775 - Sample unit size.
2010-01-01
... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... extraneous material—The total contents of each container in the sample. Factors of Quality ...
7 CFR 201.43 - Size of sample.
2010-01-01
... units. Coated seed for germination test only shall consist of at least 1,000 seed units. [10 FR 9950... of samples of agricultural seed, vegetable seed and screenings to be submitted for analysis, test, or..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT...
Exact sampling hardness of Ising spin models
Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.
2017-09-01
We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.
Soetaert, K.; Heip, C.H.R.
1990-01-01
Diversity indices, although designed for comparative purposes, often cannot be used as such, due to their sample-size dependence. It is argued here that this dependence is more pronounced in high diversity than in low diversity assemblages and that indices more sensitive to rarer species require larger sample sizes to estimate diversity with reasonable precision than indices which put more weight on commoner species. This was tested for Hill's diversity number N sub(0) to N sub( proportional ...
A Descriptive Evaluation of Software Sizing Models
1987-09-01
2-22 2.3.2 SPQR Sizer/FP ............................... 2-25 2.3.3 QSM Size Planner: Function Points .......... 2-26 2.3.4 Feature...Characteristics ............................. 4-20 4.5.3 Results and Conclusions ..................... 4-20 4.6 Application of the SPQR SIZER/FP Approach...4-19 4-7 SPQR Function Point Estimate for the CATSS Sensitivity Model .................................................. 4-23 4-8 ASSET-R
Evaluation of Approaches to Analyzing Continuous Correlated Eye Data When Sample Size Is Small.
Huang, Jing; Huang, Jiayan; Chen, Yong; Ying, Gui-Shuang
2018-02-01
To evaluate the performance of commonly used statistical methods for analyzing continuous correlated eye data when sample size is small. We simulated correlated continuous data from two designs: (1) two eyes of a subject in two comparison groups; (2) two eyes of a subject in the same comparison group, under various sample size (5-50), inter-eye correlation (0-0.75) and effect size (0-0.8). Simulated data were analyzed using paired t-test, two sample t-test, Wald test and score test using the generalized estimating equations (GEE) and F-test using linear mixed effects model (LMM). We compared type I error rates and statistical powers, and demonstrated analysis approaches through analyzing two real datasets. In design 1, paired t-test and LMM perform better than GEE, with nominal type 1 error rate and higher statistical power. In design 2, no test performs uniformly well: two sample t-test (average of two eyes or a random eye) achieves better control of type I error but yields lower statistical power. In both designs, the GEE Wald test inflates type I error rate and GEE score test has lower power. When sample size is small, some commonly used statistical methods do not perform well. Paired t-test and LMM perform best when two eyes of a subject are in two different comparison groups, and t-test using the average of two eyes performs best when the two eyes are in the same comparison group. When selecting the appropriate analysis approach the study design should be considered.
On sampling and modeling complex systems
International Nuclear Information System (INIS)
Marsili, Matteo; Mastromatteo, Iacopo; Roudi, Yasser
2013-01-01
The study of complex systems is limited by the fact that only a few variables are accessible for modeling and sampling, which are not necessarily the most relevant ones to explain the system behavior. In addition, empirical data typically undersample the space of possible states. We study a generic framework where a complex system is seen as a system of many interacting degrees of freedom, which are known only in part, that optimize a given function. We show that the underlying distribution with respect to the known variables has the Boltzmann form, with a temperature that depends on the number of unknown variables. In particular, when the influence of the unknown degrees of freedom on the known variables is not too irregular, the temperature decreases as the number of variables increases. This suggests that models can be predictable only when the number of relevant variables is less than a critical threshold. Concerning sampling, we argue that the information that a sample contains on the behavior of the system is quantified by the entropy of the frequency with which different states occur. This allows us to characterize the properties of maximally informative samples: within a simple approximation, the most informative frequency size distributions have power law behavior and Zipf’s law emerges at the crossover between the under sampled regime and the regime where the sample contains enough statistics to make inferences on the behavior of the system. These ideas are illustrated in some applications, showing that they can be used to identify relevant variables or to select the most informative representations of data, e.g. in data clustering. (paper)
Sample size reassessment for a two-stage design controlling the false discovery rate.
Zehetmayer, Sonja; Graf, Alexandra C; Posch, Martin
2015-11-01
Sample size calculations for gene expression microarray and NGS-RNA-Seq experiments are challenging because the overall power depends on unknown quantities as the proportion of true null hypotheses and the distribution of the effect sizes under the alternative. We propose a two-stage design with an adaptive interim analysis where these quantities are estimated from the interim data. The second stage sample size is chosen based on these estimates to achieve a specific overall power. The proposed procedure controls the power in all considered scenarios except for very low first stage sample sizes. The false discovery rate (FDR) is controlled despite of the data dependent choice of sample size. The two-stage design can be a useful tool to determine the sample size of high-dimensional studies if in the planning phase there is high uncertainty regarding the expected effect sizes and variability.
Evaluation of design flood estimates with respect to sample size
Kobierska, Florian; Engeland, Kolbjorn
2016-04-01
Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.
Chen, Henian; Zhang, Nanhua; Lu, Xiaosun; Chen, Sophie
2013-08-01
The method used to determine choice of standard deviation (SD) is inadequately reported in clinical trials. Underestimations of the population SD may result in underpowered clinical trials. This study demonstrates how using the wrong method to determine population SD can lead to inaccurate sample sizes and underpowered studies, and offers recommendations to maximize the likelihood of achieving adequate statistical power. We review the practice of reporting sample size and its effect on the power of trials published in major journals. Simulated clinical trials were used to compare the effects of different methods of determining SD on power and sample size calculations. Prior to 1996, sample size calculations were reported in just 1%-42% of clinical trials. This proportion increased from 38% to 54% after the initial Consolidated Standards of Reporting Trials (CONSORT) was published in 1996, and from 64% to 95% after the revised CONSORT was published in 2001. Nevertheless, underpowered clinical trials are still common. Our simulated data showed that all minimal and 25th-percentile SDs fell below 44 (the population SD), regardless of sample size (from 5 to 50). For sample sizes 5 and 50, the minimum sample SDs underestimated the population SD by 90.7% and 29.3%, respectively. If only one sample was available, there was less than 50% chance that the actual power equaled or exceeded the planned power of 80% for detecting a median effect size (Cohen's d = 0.5) when using the sample SD to calculate the sample size. The proportions of studies with actual power of at least 80% were about 95%, 90%, 85%, and 80% when we used the larger SD, 80% upper confidence limit (UCL) of SD, 70% UCL of SD, and 60% UCL of SD to calculate the sample size, respectively. When more than one sample was available, the weighted average SD resulted in about 50% of trials being underpowered; the proportion of trials with power of 80% increased from 90% to 100% when the 75th percentile and the
A Web-based Simulator for Sample Size and Power Estimation in Animal Carcinogenicity Studies
Directory of Open Access Journals (Sweden)
Hojin Moon
2002-12-01
Full Text Available A Web-based statistical tool for sample size and power estimation in animal carcinogenicity studies is presented in this paper. It can be used to provide a design with sufficient power for detecting a dose-related trend in the occurrence of a tumor of interest when competing risks are present. The tumors of interest typically are occult tumors for which the time to tumor onset is not directly observable. It is applicable to rodent tumorigenicity assays that have either a single terminal sacrifice or multiple (interval sacrifices. The design is achieved by varying sample size per group, number of sacrifices, number of sacrificed animals at each interval, if any, and scheduled time points for sacrifice. Monte Carlo simulation is carried out in this tool to simulate experiments of rodent bioassays because no closed-form solution is available. It takes design parameters for sample size and power estimation as inputs through the World Wide Web. The core program is written in C and executed in the background. It communicates with the Web front end via a Component Object Model interface passing an Extensible Markup Language string. The proposed statistical tool is illustrated with an animal study in lung cancer prevention research.
Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride
2015-08-01
ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Breaking Free of Sample Size Dogma to Perform Innovative Translational Research
Bacchetti, Peter; Deeks, Steven G.; McCune, Joseph M.
2011-01-01
Innovative clinical and translational research is often delayed or prevented by reviewers’ expectations that any study performed in humans must be shown in advance to have high statistical power. This supposed requirement is not justifiable and is contradicted by the reality that increasing sample size produces diminishing marginal returns. Studies of new ideas often must start small (sometimes even with an N of 1) because of cost and feasibility concerns, and recent statistical work shows that small sample sizes for such research can produce more projected scientific value per dollar spent than larger sample sizes. Renouncing false dogma about sample size would remove a serious barrier to innovation and translation. PMID:21677197
Mayer, B; Muche, R
2013-01-01
Animal studies are highly relevant for basic medical research, although their usage is discussed controversially in public. Thus, an optimal sample size for these projects should be aimed at from a biometrical point of view. Statistical sample size calculation is usually the appropriate methodology in planning medical research projects. However, required information is often not valid or only available during the course of an animal experiment. This article critically discusses the validity of formal sample size calculation for animal studies. Within the discussion, some requirements are formulated to fundamentally regulate the process of sample size determination for animal experiments.
Sampling bee communities using pan traps: alternative methods increase sample size
Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...
Eisenberg, Sarita L.; Guo, Ling-Yu
2015-01-01
Purpose: The purpose of this study was to investigate whether a shorter language sample elicited with fewer pictures (i.e., 7) would yield a percent grammatical utterances (PGU) score similar to that computed from a longer language sample elicited with 15 pictures for 3-year-old children. Method: Language samples were elicited by asking forty…
On sample size of the kruskal-wallis test with application to a mouse peritoneal cavity study.
Fan, Chunpeng; Zhang, Donghui; Zhang, Cun-Hui
2011-03-01
As the nonparametric generalization of the one-way analysis of variance model, the Kruskal-Wallis test applies when the goal is to test the difference between multiple samples and the underlying population distributions are nonnormal or unknown. Although the Kruskal-Wallis test has been widely used for data analysis, power and sample size methods for this test have been investigated to a much lesser extent. This article proposes new power and sample size calculation methods for the Kruskal-Wallis test based on the pilot study in either a completely nonparametric model or a semiparametric location model. No assumption is made on the shape of the underlying population distributions. Simulation results show that, in terms of sample size calculation for the Kruskal-Wallis test, the proposed methods are more reliable and preferable to some more traditional methods. A mouse peritoneal cavity study is used to demonstrate the application of the methods. © 2010, The International Biometric Society.
Autoregressive Prediction with Rolling Mechanism for Time Series Forecasting with Small Sample Size
Directory of Open Access Journals (Sweden)
Zhihua Wang
2014-01-01
Full Text Available Reasonable prediction makes significant practical sense to stochastic and unstable time series analysis with small or limited sample size. Motivated by the rolling idea in grey theory and the practical relevance of very short-term forecasting or 1-step-ahead prediction, a novel autoregressive (AR prediction approach with rolling mechanism is proposed. In the modeling procedure, a new developed AR equation, which can be used to model nonstationary time series, is constructed in each prediction step. Meanwhile, the data window, for the next step ahead forecasting, rolls on by adding the most recent derived prediction result while deleting the first value of the former used sample data set. This rolling mechanism is an efficient technique for its advantages of improved forecasting accuracy, applicability in the case of limited and unstable data situations, and requirement of little computational effort. The general performance, influence of sample size, nonlinearity dynamic mechanism, and significance of the observed trends, as well as innovation variance, are illustrated and verified with Monte Carlo simulations. The proposed methodology is then applied to several practical data sets, including multiple building settlement sequences and two economic series.
CT dose survey in adults: what sample size for what precision?
International Nuclear Information System (INIS)
Taylor, Stephen; Muylem, Alain van; Howarth, Nigel; Gevenois, Pierre Alain; Tack, Denis
2017-01-01
To determine variability of volume computed tomographic dose index (CTDIvol) and dose-length product (DLP) data, and propose a minimum sample size to achieve an expected precision. CTDIvol and DLP values of 19,875 consecutive CT acquisitions of abdomen (7268), thorax (3805), lumbar spine (3161), cervical spine (1515) and head (4106) were collected in two centers. Their variabilities were investigated according to sample size (10 to 1000 acquisitions) and patient body weight categories (no weight selection, 67-73 kg and 60-80 kg). The 95 % confidence interval in percentage of their median (CI95/med) value was calculated for increasing sample sizes. We deduced the sample size that set a 95 % CI lower than 10 % of the median (CI95/med ≤ 10 %). Sample size ensuring CI95/med ≤ 10 %, ranged from 15 to 900 depending on the body region and the dose descriptor considered. In sample sizes recommended by regulatory authorities (i.e., from 10-20 patients), mean CTDIvol and DLP of one sample ranged from 0.50 to 2.00 times its actual value extracted from 2000 samples. The sampling error in CTDIvol and DLP means is high in dose surveys based on small samples of patients. Sample size should be increased at least tenfold to decrease this variability. (orig.)
CT dose survey in adults: what sample size for what precision?
Energy Technology Data Exchange (ETDEWEB)
Taylor, Stephen [Hopital Ambroise Pare, Department of Radiology, Mons (Belgium); Muylem, Alain van [Hopital Erasme, Department of Pneumology, Brussels (Belgium); Howarth, Nigel [Clinique des Grangettes, Department of Radiology, Chene-Bougeries (Switzerland); Gevenois, Pierre Alain [Hopital Erasme, Department of Radiology, Brussels (Belgium); Tack, Denis [EpiCURA, Clinique Louis Caty, Department of Radiology, Baudour (Belgium)
2017-01-15
To determine variability of volume computed tomographic dose index (CTDIvol) and dose-length product (DLP) data, and propose a minimum sample size to achieve an expected precision. CTDIvol and DLP values of 19,875 consecutive CT acquisitions of abdomen (7268), thorax (3805), lumbar spine (3161), cervical spine (1515) and head (4106) were collected in two centers. Their variabilities were investigated according to sample size (10 to 1000 acquisitions) and patient body weight categories (no weight selection, 67-73 kg and 60-80 kg). The 95 % confidence interval in percentage of their median (CI95/med) value was calculated for increasing sample sizes. We deduced the sample size that set a 95 % CI lower than 10 % of the median (CI95/med ≤ 10 %). Sample size ensuring CI95/med ≤ 10 %, ranged from 15 to 900 depending on the body region and the dose descriptor considered. In sample sizes recommended by regulatory authorities (i.e., from 10-20 patients), mean CTDIvol and DLP of one sample ranged from 0.50 to 2.00 times its actual value extracted from 2000 samples. The sampling error in CTDIvol and DLP means is high in dose surveys based on small samples of patients. Sample size should be increased at least tenfold to decrease this variability. (orig.)
International Nuclear Information System (INIS)
Baron, Jorge H.; Nunez Mac Leod, J.E.
2000-01-01
The present paper deals with the utilization of advanced sampling statistical methods to perform uncertainty and sensitivity analysis on numerical models. Such models may represent physical phenomena, logical structures (such as boolean expressions) or other systems, and various of their intrinsic parameters and/or input variables are usually treated as random variables simultaneously. In the present paper a simple method to scale-up Latin Hypercube Sampling (LHS) samples is presented, starting with a small sample and duplicating its size at each step, making it possible to use the already run numerical model results with the smaller sample. The method does not distort the statistical properties of the random variables and does not add any bias to the samples. The results is a significant reduction in numerical models running time can be achieved (by re-using the previously run samples), keeping all the advantages of LHS, until an acceptable representation level is achieved in the output variables. (author)
Model catalysis by size-selected cluster deposition
Energy Technology Data Exchange (ETDEWEB)
Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)
2015-11-20
This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.
Ports: Definition and study of types, sizes and business models
Ivan Roa; Yessica Peña; Beatriz Amante; María Goretti
2013-01-01
Purpose: In the world today there are thousands of port facilities of different types and sizes, competing to capture some market share of freight by sea, mainly. This article aims to determine the type of port and the most common size, in order to find out which business model is applied in that segment and what is the legal status of the companies of such infrastructure.Design/methodology/approach: To achieve this goal, we develop a research on a representative sample of 800 ports worldwide...
Mandava, Pitchaiah; Krumpelman, Chase S; Shah, Jharna N; White, Donna L; Kent, Thomas A
2013-01-01
Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores ("Shift") is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall pdecrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.
Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.
Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe
2015-08-01
The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Uijlenhoet, R.; Porrà, J.M.; Sempere Torres, D.; Creutin, J.D.
2006-01-01
A stochastic model of the microstructure of rainfall is used to derive explicit expressions for the magnitude of the sampling fluctuations in rainfall properties estimated from raindrop size measurements in stationary rainfall. The model is a marked point process, in which the points represent the
Lusiana, Evellin Dewi
2017-12-01
The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.
Sample size for estimation of the Pearson correlation coefficient in cherry tomato tests
Directory of Open Access Journals (Sweden)
Bruno Giacomini Sari
2017-09-01
Full Text Available ABSTRACT: The aim of this study was to determine the required sample size for estimation of the Pearson coefficient of correlation between cherry tomato variables. Two uniformity tests were set up in a protected environment in the spring/summer of 2014. The observed variables in each plant were mean fruit length, mean fruit width, mean fruit weight, number of bunches, number of fruits per bunch, number of fruits, and total weight of fruits, with calculation of the Pearson correlation matrix between them. Sixty eight sample sizes were planned for one greenhouse and 48 for another, with the initial sample size of 10 plants, and the others were obtained by adding five plants. For each planned sample size, 3000 estimates of the Pearson correlation coefficient were obtained through bootstrap re-samplings with replacement. The sample size for each correlation coefficient was determined when the 95% confidence interval amplitude value was less than or equal to 0.4. Obtaining estimates of the Pearson correlation coefficient with high precision is difficult for parameters with a weak linear relation. Accordingly, a larger sample size is necessary to estimate them. Linear relations involving variables dealing with size and number of fruits per plant have less precision. To estimate the coefficient of correlation between productivity variables of cherry tomato, with a confidence interval of 95% equal to 0.4, it is necessary to sample 275 plants in a 250m² greenhouse, and 200 plants in a 200m² greenhouse.
Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander
2016-09-01
In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous
Directory of Open Access Journals (Sweden)
Elias Chaibub Neto
Full Text Available In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.
On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.
Vegué, Marina; Perin, Rodrigo; Roxin, Alex
2017-08-30
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering. SIGNIFICANCE STATEMENT The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in
Novikov, I; Fund, N; Freedman, L S
2010-01-15
Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.
Sampling and chemical analysis by TXRF of size-fractionated ambient aerosols and emissions
International Nuclear Information System (INIS)
John, A.C.; Kuhlbusch, T.A.J.; Fissan, H.; Schmidt, K.-G-; Schmidt, F.; Pfeffer, H.-U.; Gladtke, D.
2000-01-01
Results of recent epidemiological studies led to new European air quality standards which require the monitoring of particles with aerodynamic diameters ≤ 10 μm (PM 10) and ≤ 2.5 μm (PM 2.5) instead of TSP (total suspended particulate matter). As these ambient air limit values will be exceeded most likely at several locations in Europe, so-called 'action plans' have to be set up to reduce particle concentrations, which requires information about sources and processes of PMx aerosols. For chemical characterization of the aerosols, different samplers were used and total reflection x-ray fluorescence analysis (TXRF) was applied beside other methods (elemental and organic carbon analysis, ion chromatography, atomic absorption spectrometry). For TXRF analysis, a specially designed sampling unit was built where the particle size classes 10-2.5 μm and 2.5-1.0 μm were directly impacted on TXRF sample carriers. An electrostatic precipitator (ESP) was used as a back-up filter to collect particles <1 μm directly on a TXRF sample carrier. The sampling unit was calibrated in the laboratory and then used for field measurements to determine the elemental composition of the mentioned particle size fractions. One of the field campaigns was carried out at a measurement site in Duesseldorf, Germany, in November 1999. As the composition of the ambient aerosols may have been influenced by a large construction site directly in the vicinity of the station during the field campaign, not only the aerosol particles, but also construction material was sampled and analyzed by TXRF. As air quality is affected by natural and anthropogenic sources, the emissions of particles ≤ 10 μm and ≤ 2.5 μm, respectively, have to be determined to estimate their contributions to the so called coarse and fine particle modes of ambient air. Therefore, an in-stack particle sampling system was developed according to the new ambient air quality standards. This PM 10/PM 2.5 cascade impactor was
The PowerAtlas: a power and sample size atlas for microarray experimental design and research
Directory of Open Access Journals (Sweden)
Wang Jelai
2006-02-01
Full Text Available Abstract Background Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. Results To address this challenge, we have developed a Microrarray PowerAtlas 1. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO. The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC. Conclusion This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes.
Arnup, Sarah J; McKenzie, Joanne E; Pilcher, David; Bellomo, Rinaldo; Forbes, Andrew B
2018-06-01
The cluster randomised crossover (CRXO) design provides an opportunity to conduct randomised controlled trials to evaluate low risk interventions in the intensive care setting. Our aim is to provide a tutorial on how to perform a sample size calculation for a CRXO trial, focusing on the meaning of the elements required for the calculations, with application to intensive care trials. We use all-cause in-hospital mortality from the Australian and New Zealand Intensive Care Society Adult Patient Database clinical registry to illustrate the sample size calculations. We show sample size calculations for a two-intervention, two 12-month period, cross-sectional CRXO trial. We provide the formulae, and examples of their use, to determine the number of intensive care units required to detect a risk ratio (RR) with a designated level of power between two interventions for trials in which the elements required for sample size calculations remain constant across all ICUs (unstratified design); and in which there are distinct groups (strata) of ICUs that differ importantly in the elements required for sample size calculations (stratified design). The CRXO design markedly reduces the sample size requirement compared with the parallel-group, cluster randomised design for the example cases. The stratified design further reduces the sample size requirement compared with the unstratified design. The CRXO design enables the evaluation of routinely used interventions that can bring about small, but important, improvements in patient care in the intensive care setting.
The Sample Size Influence in the Accuracy of the Image Classification of the Remote Sensing
Directory of Open Access Journals (Sweden)
Thomaz C. e C. da Costa
2004-12-01
Full Text Available Landuse/landcover maps produced by classification of remote sensing images incorporate uncertainty. This uncertainty is measured by accuracy indices using reference samples. The size of the reference sample is defined by approximation by a binomial function without the use of a pilot sample. This way the accuracy are not estimated, but fixed a priori. In case of divergency between the estimated and a priori accuracy the error of the sampling will deviate from the expected error. The size using pilot sample (theorically correct procedure justify when haven´t estimate of accuracy for work area, referent the product remote sensing utility.
Allen, John C; Thumboo, Julian; Lye, Weng Kit; Conaghan, Philip G; Chew, Li-Ching; Tan, York Kiat
2018-03-01
To determine whether novel methods of selecting joints through (i) ultrasonography (individualized-ultrasound [IUS] method), or (ii) ultrasonography and clinical examination (individualized-composite-ultrasound [ICUS] method) translate into smaller rheumatoid arthritis (RA) clinical trial sample sizes when compared to existing methods utilizing predetermined joint sites for ultrasonography. Cohen's effect size (ES) was estimated (ES^) and a 95% CI (ES^L, ES^U) calculated on a mean change in 3-month total inflammatory score for each method. Corresponding 95% CIs [nL(ES^U), nU(ES^L)] were obtained on a post hoc sample size reflecting the uncertainty in ES^. Sample size calculations were based on a one-sample t-test as the patient numbers needed to provide 80% power at α = 0.05 to reject a null hypothesis H 0 : ES = 0 versus alternative hypotheses H 1 : ES = ES^, ES = ES^L and ES = ES^U. We aimed to provide point and interval estimates on projected sample sizes for future studies reflecting the uncertainty in our study ES^S. Twenty-four treated RA patients were followed up for 3 months. Utilizing the 12-joint approach and existing methods, the post hoc sample size (95% CI) was 22 (10-245). Corresponding sample sizes using ICUS and IUS were 11 (7-40) and 11 (6-38), respectively. Utilizing a seven-joint approach, the corresponding sample sizes using ICUS and IUS methods were nine (6-24) and 11 (6-35), respectively. Our pilot study suggests that sample size for RA clinical trials with ultrasound endpoints may be reduced using the novel methods, providing justification for larger studies to confirm these observations. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
What is the optimum sample size for the study of peatland testate amoeba assemblages?
Mazei, Yuri A; Tsyganov, Andrey N; Esaulov, Anton S; Tychkov, Alexander Yu; Payne, Richard J
2017-10-01
Testate amoebae are widely used in ecological and palaeoecological studies of peatlands, particularly as indicators of surface wetness. To ensure data are robust and comparable it is important to consider methodological factors which may affect results. One significant question which has not been directly addressed in previous studies is how sample size (expressed here as number of Sphagnum stems) affects data quality. In three contrasting locations in a Russian peatland we extracted samples of differing size, analysed testate amoebae and calculated a number of widely-used indices: species richness, Simpson diversity, compositional dissimilarity from the largest sample and transfer function predictions of water table depth. We found that there was a trend for larger samples to contain more species across the range of commonly-used sample sizes in ecological studies. Smaller samples sometimes failed to produce counts of testate amoebae often considered minimally adequate. It seems likely that analyses based on samples of different sizes may not produce consistent data. Decisions about sample size need to reflect trade-offs between logistics, data quality, spatial resolution and the disturbance involved in sample extraction. For most common ecological applications we suggest that samples of more than eight Sphagnum stems are likely to be desirable. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sample Size and Saturation in PhD Studies Using Qualitative Interviews
Directory of Open Access Journals (Sweden)
Mark Mason
2010-08-01
Full Text Available A number of issues can affect sample size in qualitative research; however, the guiding principle should be the concept of saturation. This has been explored in detail by a number of authors but is still hotly debated, and some say little understood. A sample of PhD studies using qualitative approaches, and qualitative interviews as the method of data collection was taken from theses.com and contents analysed for their sample sizes. Five hundred and sixty studies were identified that fitted the inclusion criteria. Results showed that the mean sample size was 31; however, the distribution was non-random, with a statistically significant proportion of studies, presenting sample sizes that were multiples of ten. These results are discussed in relation to saturation. They suggest a pre-meditated approach that is not wholly congruent with the principles of qualitative research. URN: urn:nbn:de:0114-fqs100387
Lawson, Chris A
2014-07-01
Three experiments with 81 3-year-olds (M=3.62years) examined the conditions that enable young children to use the sample size principle (SSP) of induction-the inductive rule that facilitates generalizations from large rather than small samples of evidence. In Experiment 1, children exhibited the SSP when exemplars were presented sequentially but not when exemplars were presented simultaneously. Results from Experiment 3 suggest that the advantage of sequential presentation is not due to the additional time to process the available input from the two samples but instead may be linked to better memory for specific individuals in the large sample. In addition, findings from Experiments 1 and 2 suggest that adherence to the SSP is mediated by the disparity between presented samples. Overall, these results reveal that the SSP appears early in development and is guided by basic cognitive processes triggered during the acquisition of input. Copyright © 2013 Elsevier Inc. All rights reserved.
Analyzing ROC curves using the effective set-size model
Samuelson, Frank W.; Abbey, Craig K.; He, Xin
2018-03-01
The Effective Set-Size model has been used to describe uncertainty in various signal detection experiments. The model regards images as if they were an effective number (M*) of searchable locations, where the observer treats each location as a location-known-exactly detection task with signals having average detectability d'. The model assumes a rational observer behaves as if he searches an effective number of independent locations and follows signal detection theory at each location. Thus the location-known-exactly detectability (d') and the effective number of independent locations M* fully characterize search performance. In this model the image rating in a single-response task is assumed to be the maximum response that the observer would assign to these many locations. The model has been used by a number of other researchers, and is well corroborated. We examine this model as a way of differentiating imaging tasks that radiologists perform. Tasks involving more searching or location uncertainty may have higher estimated M* values. In this work we applied the Effective Set-Size model to a number of medical imaging data sets. The data sets include radiologists reading screening and diagnostic mammography with and without computer-aided diagnosis (CAD), and breast tomosynthesis. We developed an algorithm to fit the model parameters using two-sample maximum-likelihood ordinal regression, similar to the classic bi-normal model. The resulting model ROC curves are rational and fit the observed data well. We find that the distributions of M* and d' differ significantly among these data sets, and differ between pairs of imaging systems within studies. For example, on average tomosynthesis increased readers' d' values, while CAD reduced the M* parameters. We demonstrate that the model parameters M* and d' are correlated. We conclude that the Effective Set-Size model may be a useful way of differentiating location uncertainty from the diagnostic uncertainty in medical
Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.
Youssef, Noha H; Elshahed, Mostafa S
2008-09-01
Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.
Test of methods for retrospective activity size distribution determination from filter samples
International Nuclear Information System (INIS)
Meisenberg, Oliver; Tschiersch, Jochen
2015-01-01
Determining the activity size distribution of radioactive aerosol particles requires sophisticated and heavy equipment, which makes measurements at large number of sites difficult and expensive. Therefore three methods for a retrospective determination of size distributions from aerosol filter samples in the laboratory were tested for their applicability. Extraction into a carrier liquid with subsequent nebulisation showed size distributions with a slight but correctable bias towards larger diameters compared with the original size distribution. Yields in the order of magnitude of 1% could be achieved. Sonication-assisted extraction into a carrier liquid caused a coagulation mode to appear in the size distribution. Sonication-assisted extraction into the air did not show acceptable results due to small yields. The method of extraction into a carrier liquid without sonication was applied to aerosol samples from Chernobyl in order to calculate inhalation dose coefficients for 137 Cs based on the individual size distribution. The effective dose coefficient is about half of that calculated with a default reference size distribution. - Highlights: • Activity size distributions can be recovered after aerosol sampling on filters. • Extraction into a carrier liquid and subsequent nebulisation is appropriate. • This facilitates the determination of activity size distributions for individuals. • Size distributions from this method can be used for individual dose coefficients. • Dose coefficients were calculated for the workers at the new Chernobyl shelter
Overall, John E; Tonidandel, Scott; Starbuck, Robert R
2006-01-01
Recent contributions to the statistical literature have provided elegant model-based solutions to the problem of estimating sample sizes for testing the significance of differences in mean rates of change across repeated measures in controlled longitudinal studies with differentially correlated error and missing data due to dropouts. However, the mathematical complexity and model specificity of these solutions make them generally inaccessible to most applied researchers who actually design and undertake treatment evaluation research in psychiatry. In contrast, this article relies on a simple two-stage analysis in which dropout-weighted slope coefficients fitted to the available repeated measurements for each subject separately serve as the dependent variable for a familiar ANCOVA test of significance for differences in mean rates of change. This article is about how a sample of size that is estimated or calculated to provide desired power for testing that hypothesis without considering dropouts can be adjusted appropriately to take dropouts into account. Empirical results support the conclusion that, whatever reasonable level of power would be provided by a given sample size in the absence of dropouts, essentially the same power can be realized in the presence of dropouts simply by adding to the original dropout-free sample size the number of subjects who would be expected to drop from a sample of that original size under conditions of the proposed study.
Frictional behaviour of sandstone: A sample-size dependent triaxial investigation
Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus
2017-01-01
Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Size and complexity in model financial systems
Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M.
2012-01-01
The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in “confidence” in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases. PMID:23091020
Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.
2018-04-01
Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.
Broberg, Per
2013-07-19
One major concern with adaptive designs, such as the sample size adjustable designs, has been the fear of inflating the type I error rate. In (Stat Med 23:1023-1038, 2004) it is however proven that when observations follow a normal distribution and the interim result show promise, meaning that the conditional power exceeds 50%, type I error rate is protected. This bound and the distributional assumptions may seem to impose undesirable restrictions on the use of these designs. In (Stat Med 30:3267-3284, 2011) the possibility of going below 50% is explored and a region that permits an increased sample size without inflation is defined in terms of the conditional power at the interim. A criterion which is implicit in (Stat Med 30:3267-3284, 2011) is derived by elementary methods and expressed in terms of the test statistic at the interim to simplify practical use. Mathematical and computational details concerning this criterion are exhibited. Under very general conditions the type I error rate is preserved under sample size adjustable schemes that permit a raise. The main result states that for normally distributed observations raising the sample size when the result looks promising, where the definition of promising depends on the amount of knowledge gathered so far, guarantees the protection of the type I error rate. Also, in the many situations where the test statistic approximately follows a normal law, the deviation from the main result remains negligible. This article provides details regarding the Weibull and binomial distributions and indicates how one may approach these distributions within the current setting. There is thus reason to consider such designs more often, since they offer a means of adjusting an important design feature at little or no cost in terms of error rate.
Sample size choices for XRCT scanning of highly unsaturated soil mixtures
Directory of Open Access Journals (Sweden)
Smith Jonathan C.
2016-01-01
Full Text Available Highly unsaturated soil mixtures (clay, sand and gravel are used as building materials in many parts of the world, and there is increasing interest in understanding their mechanical and hydraulic behaviour. In the laboratory, x-ray computed tomography (XRCT is becoming more widely used to investigate the microstructures of soils, however a crucial issue for such investigations is the choice of sample size, especially concerning the scanning of soil mixtures where there will be a range of particle and void sizes. In this paper we present a discussion (centred around a new set of XRCT scans on sample sizing for scanning of samples comprising soil mixtures, where a balance has to be made between realistic representation of the soil components and the desire for high resolution scanning, We also comment on the appropriateness of differing sample sizes in comparison to sample sizes used for other geotechnical testing. Void size distributions for the samples are presented and from these some hypotheses are made as to the roles of inter- and intra-aggregate voids in the mechanical behaviour of highly unsaturated soils.
The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.
Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J
2018-07-01
This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Directory of Open Access Journals (Sweden)
Pitchaiah Mandava
Full Text Available OBJECTIVE: Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS, a range of scores ("Shift" is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. METHODS: We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. RESULTS: Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD. Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall p<0.001. Taking errors into account, SAINT I would have required 24% more subjects than were randomized. CONCLUSION: We show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We
Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won
2012-01-01
Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.
Sample Size for Tablet Compression and Capsule Filling Events During Process Validation.
Charoo, Naseem Ahmad; Durivage, Mark; Rahman, Ziyaur; Ayad, Mohamad Haitham
2017-12-01
During solid dosage form manufacturing, the uniformity of dosage units (UDU) is ensured by testing samples at 2 stages, that is, blend stage and tablet compression or capsule/powder filling stage. The aim of this work is to propose a sample size selection approach based on quality risk management principles for process performance qualification (PPQ) and continued process verification (CPV) stages by linking UDU to potential formulation and process risk factors. Bayes success run theorem appeared to be the most appropriate approach among various methods considered in this work for computing sample size for PPQ. The sample sizes for high-risk (reliability level of 99%), medium-risk (reliability level of 95%), and low-risk factors (reliability level of 90%) were estimated to be 299, 59, and 29, respectively. Risk-based assignment of reliability levels was supported by the fact that at low defect rate, the confidence to detect out-of-specification units would decrease which must be supplemented with an increase in sample size to enhance the confidence in estimation. Based on level of knowledge acquired during PPQ and the level of knowledge further required to comprehend process, sample size for CPV was calculated using Bayesian statistics to accomplish reduced sampling design for CPV. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions
Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.
2014-12-01
The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.
Simulation of finite size effects of the fiber bundle model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2018-01-01
In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.
Rambo, Robert P
2017-01-01
The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.
Optimum sample size to estimate mean parasite abundance in fish parasite surveys
Directory of Open Access Journals (Sweden)
Shvydka S.
2018-03-01
Full Text Available To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval (CI was based on the Bag of Little Bootstraps (BLB. The abundance of two species of monogenean parasites Ligophorus cephali and L. mediterraneus from Mugil cephalus across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i based on CIs width a reasonable precision level for the mean abundance in parasitological surveys of Ligophorus spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the CIs width, and ii the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates.
Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz
2014-07-01
Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
Generating Random Samples of a Given Size Using Social Security Numbers.
Erickson, Richard C.; Brauchle, Paul E.
1984-01-01
The purposes of this article are (1) to present a method by which social security numbers may be used to draw cluster samples of a predetermined size and (2) to describe procedures used to validate this method of drawing random samples. (JOW)
Page sample size in web accessibility testing: how many pages is enough?
Velleman, Eric Martin; van der Geest, Thea
2013-01-01
Various countries and organizations use a different sampling approach and sample size of web pages in accessibility conformance tests. We are conducting a systematic analysis to determine how many pages is enough for testing whether a website is compliant with standard accessibility guidelines. This
Norm Block Sample Sizes: A Review of 17 Individually Administered Intelligence Tests
Norfolk, Philip A.; Farmer, Ryan L.; Floyd, Randy G.; Woods, Isaac L.; Hawkins, Haley K.; Irby, Sarah M.
2015-01-01
The representativeness, recency, and size of norm samples strongly influence the accuracy of inferences drawn from their scores. Inadequate norm samples may lead to inflated or deflated scores for individuals and poorer prediction of developmental and academic outcomes. The purpose of this study was to apply Kranzler and Floyd's method for…
Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame
International Nuclear Information System (INIS)
Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.
2001-01-01
Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution
Precision of quantization of the hall conductivity in a finite-size sample: Power law
International Nuclear Information System (INIS)
Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.
2006-01-01
A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples
Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model
Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.
2016-01-01
The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…
Modelling the effect of size-asymmetric competition on size inequality
DEFF Research Database (Denmark)
Rasmussen, Camilla Ruø; Weiner, Jacob
2017-01-01
Abstract The concept of size asymmetry in resource competition among plants, in which larger individuals obtain a disproportionate share of contested resources, appears to be very straightforward, but the effects of size asymmetry on growth and size variation among individuals have proved...... to be controversial. It has often been assumed that competition among individual plants in a population has to be size-asymmetric to result in higher size inequality than in the absence of competition, but here we question this inference. Using very simple, individual-based models, we investigate how size symmetry...... of competition affects the development in size inequality between two competing plants and show that increased size inequality due to competition is not always strong evidence for size-asymmetric competition. Even absolute symmetric competition, in which all plants receive the same amount of resources...
Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.
2017-10-01
Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.
Directory of Open Access Journals (Sweden)
Stefanović Milena
2013-01-01
Full Text Available In studies of population variability, particular attention has to be paid to the selection of a representative sample. The aim of this study was to assess the size of the new representative sample on the basis of the variability of chemical content of the initial sample on the example of a whitebark pine population. Statistical analysis included the content of 19 characteristics (terpene hydrocarbons and their derivates of the initial sample of 10 elements (trees. It was determined that the new sample should contain 20 trees so that the mean value calculated from it represents a basic set with a probability higher than 95 %. Determination of the lower limit of the representative sample size that guarantees a satisfactory reliability of generalization proved to be very important in order to achieve cost efficiency of the research. [Projekat Ministarstva nauke Republike Srbije, br. OI-173011, br. TR-37002 i br. III-43007
Ports: Definition and study of types, sizes and business models
Directory of Open Access Journals (Sweden)
Ivan Roa
2013-09-01
Full Text Available Purpose: In the world today there are thousands of port facilities of different types and sizes, competing to capture some market share of freight by sea, mainly. This article aims to determine the type of port and the most common size, in order to find out which business model is applied in that segment and what is the legal status of the companies of such infrastructure.Design/methodology/approach: To achieve this goal, we develop a research on a representative sample of 800 ports worldwide, which manage 90% of the containerized port loading. Then you can find out the legal status of the companies that manage them.Findings: The results indicate a port type and a dominant size, which are mostly managed by companies subject to a concession model.Research limitations/implications: In this research, we study only those ports that handle freight (basically containerized, ignoring other activities such as fishing, military, tourism or recreational.Originality/value: This is an investigation to show that the vast majority of the studied segment port facilities are governed by a similar corporate model and subject to pressure from the markets, which increasingly demand efficiency and service. Consequently, we tend to concession terminals to private operators in a process that might be called privatization, but in the strictest sense of the term, is not entirely realistic because the ownership of the land never ceases to be public
Moustakas, Aristides; Evans, Matthew R
2015-02-28
Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose. We investigate the survival rates of ten tree species in a dataset designed to monitor growth rates. As some individuals were not included in the census at some time points we use capture-mark-recapture methods both to allow us to account for missing individuals, and to estimate relocation probabilities. Growth rates, size, and light availability were included as covariates in the model predicting survival rates. The study demonstrates that tree mortality is best described as constant between years and size-dependent at early life stages and size independent at later life stages for most species of UK hardwood. We have demonstrated that even with a twenty-year dataset it is possible to discern variability both between individuals and between species. Our work illustrates the potential utility of the method applied here for calculating plant population dynamics parameters in time replicated datasets with small sample sizes and missing individuals without any loss of sample size, and including explanatory covariates.
Energy Technology Data Exchange (ETDEWEB)
Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan); Zhang, Xu [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); Shang, Fulin [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)
2015-07-07
Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources and pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.
Influence of Sample Size on Automatic Positional Accuracy Assessment Methods for Urban Areas
Directory of Open Access Journals (Sweden)
Francisco J. Ariza-López
2018-05-01
Full Text Available In recent years, new approaches aimed to increase the automation level of positional accuracy assessment processes for spatial data have been developed. However, in such cases, an aspect as significant as sample size has not yet been addressed. In this paper, we study the influence of sample size when estimating the planimetric positional accuracy of urban databases by means of an automatic assessment using polygon-based methodology. Our study is based on a simulation process, which extracts pairs of homologous polygons from the assessed and reference data sources and applies two buffer-based methods. The parameter used for determining the different sizes (which range from 5 km up to 100 km has been the length of the polygons’ perimeter, and for each sample size 1000 simulations were run. After completing the simulation process, the comparisons between the estimated distribution functions for each sample and population distribution function were carried out by means of the Kolmogorov–Smirnov test. Results show a significant reduction in the variability of estimations when sample size increased from 5 km to 100 km.
A simple nomogram for sample size for estimating sensitivity and specificity of medical tests
Directory of Open Access Journals (Sweden)
Malhotra Rajeev
2010-01-01
Full Text Available Sensitivity and specificity measure inherent validity of a diagnostic test against a gold standard. Researchers develop new diagnostic methods to reduce the cost, risk, invasiveness, and time. Adequate sample size is a must to precisely estimate the validity of a diagnostic test. In practice, researchers generally decide about the sample size arbitrarily either at their convenience, or from the previous literature. We have devised a simple nomogram that yields statistically valid sample size for anticipated sensitivity or anticipated specificity. MS Excel version 2007 was used to derive the values required to plot the nomogram using varying absolute precision, known prevalence of disease, and 95% confidence level using the formula already available in the literature. The nomogram plot was obtained by suitably arranging the lines and distances to conform to this formula. This nomogram could be easily used to determine the sample size for estimating the sensitivity or specificity of a diagnostic test with required precision and 95% confidence level. Sample size at 90% and 99% confidence level, respectively, can also be obtained by just multiplying 0.70 and 1.75 with the number obtained for the 95% confidence level. A nomogram instantly provides the required number of subjects by just moving the ruler and can be repeatedly used without redoing the calculations. This can also be applied for reverse calculations. This nomogram is not applicable for testing of the hypothesis set-up and is applicable only when both diagnostic test and gold standard results have a dichotomous category.
Effects of sample size on robustness and prediction accuracy of a prognostic gene signature
Directory of Open Access Journals (Sweden)
Kim Seon-Young
2009-05-01
Full Text Available Abstract Background Few overlap between independently developed gene signatures and poor inter-study applicability of gene signatures are two of major concerns raised in the development of microarray-based prognostic gene signatures. One recent study suggested that thousands of samples are needed to generate a robust prognostic gene signature. Results A data set of 1,372 samples was generated by combining eight breast cancer gene expression data sets produced using the same microarray platform and, using the data set, effects of varying samples sizes on a few performances of a prognostic gene signature were investigated. The overlap between independently developed gene signatures was increased linearly with more samples, attaining an average overlap of 16.56% with 600 samples. The concordance between predicted outcomes by different gene signatures also was increased with more samples up to 94.61% with 300 samples. The accuracy of outcome prediction also increased with more samples. Finally, analysis using only Estrogen Receptor-positive (ER+ patients attained higher prediction accuracy than using both patients, suggesting that sub-type specific analysis can lead to the development of better prognostic gene signatures Conclusion Increasing sample sizes generated a gene signature with better stability, better concordance in outcome prediction, and better prediction accuracy. However, the degree of performance improvement by the increased sample size was different between the degree of overlap and the degree of concordance in outcome prediction, suggesting that the sample size required for a study should be determined according to the specific aims of the study.
Sampling, Probability Models and Statistical Reasoning Statistical
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...
GENERALISED MODEL BASED CONFIDENCE INTERVALS IN TWO STAGE CLUSTER SAMPLING
Directory of Open Access Journals (Sweden)
Christopher Ouma Onyango
2010-09-01
Full Text Available Chambers and Dorfman (2002 constructed bootstrap confidence intervals in model based estimation for finite population totals assuming that auxiliary values are available throughout a target population and that the auxiliary values are independent. They also assumed that the cluster sizes are known throughout the target population. We now extend to two stage sampling in which the cluster sizes are known only for the sampled clusters, and we therefore predict the unobserved part of the population total. Jan and Elinor (2008 have done similar work, but unlike them, we use a general model, in which the auxiliary values are not necessarily independent. We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates are better than those constructed under the model assisted local polynomial regression model.
Gridsampler – A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies
Directory of Open Access Journals (Sweden)
Mark Heckmann
2017-01-01
Full Text Available The repertory grid is a psychological data collection technique that is used to elicit qualitative data in the form of attributes as well as quantitative ratings. A common approach for evaluating multiple repertory grid data is sorting the elicited bipolar attributes (so called constructs into mutually exclusive categories by means of content analysis. An important question when planning this type of study is determining the sample size needed to a discover all attribute categories relevant to the field and b yield a predefined minimal number of attributes per category. For most applied researchers who collect multiple repertory grid data, programming a numeric simulation to answer these questions is not feasible. The gridsampler software facilitates determining the required sample size by providing a GUI for conducting the necessary numerical simulations. Researchers can supply a set of parameters suitable for the specific research situation, determine the required sample size, and easily explore the effects of changes in the parameter set.
Building predictive models of soil particle-size distribution
Directory of Open Access Journals (Sweden)
Alessandro Samuel-Rosa
2013-04-01
Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.
van Hassel, Daniël; van der Velden, Lud; de Bakker, Dinny; van der Hoek, Lucas; Batenburg, Ronald
2017-12-04
Our research is based on a technique for time sampling, an innovative method for measuring the working hours of Dutch general practitioners (GPs), which was deployed in an earlier study. In this study, 1051 GPs were questioned about their activities in real time by sending them one SMS text message every 3 h during 1 week. The required sample size for this study is important for health workforce planners to know if they want to apply this method to target groups who are hard to reach or if fewer resources are available. In this time-sampling method, however, standard power analyses is not sufficient for calculating the required sample size as this accounts only for sample fluctuation and not for the fluctuation of measurements taken from every participant. We investigated the impact of the number of participants and frequency of measurements per participant upon the confidence intervals (CIs) for the hours worked per week. Statistical analyses of the time-use data we obtained from GPs were performed. Ninety-five percent CIs were calculated, using equations and simulation techniques, for various different numbers of GPs included in the dataset and for various frequencies of measurements per participant. Our results showed that the one-tailed CI, including sample and measurement fluctuation, decreased from 21 until 3 h between one and 50 GPs. As a result of the formulas to calculate CIs, the increase of the precision continued and was lower with the same additional number of GPs. Likewise, the analyses showed how the number of participants required decreased if more measurements per participant were taken. For example, one measurement per 3-h time slot during the week requires 300 GPs to achieve a CI of 1 h, while one measurement per hour requires 100 GPs to obtain the same result. The sample size needed for time-use research based on a time-sampling technique depends on the design and aim of the study. In this paper, we showed how the precision of the
Overestimation of test performance by ROC analysis: Effect of small sample size
International Nuclear Information System (INIS)
Seeley, G.W.; Borgstrom, M.C.; Patton, D.D.; Myers, K.J.; Barrett, H.H.
1984-01-01
New imaging systems are often observer-rated by ROC techniques. For practical reasons the number of different images, or sample size (SS), is kept small. Any systematic bias due to small SS would bias system evaluation. The authors set about to determine whether the area under the ROC curve (AUC) would be systematically biased by small SS. Monte Carlo techniques were used to simulate observer performance in distinguishing signal (SN) from noise (N) on a 6-point scale; P(SN) = P(N) = .5. Four sample sizes (15, 25, 50 and 100 each of SN and N), three ROC slopes (0.8, 1.0 and 1.25), and three intercepts (0.8, 1.0 and 1.25) were considered. In each of the 36 combinations of SS, slope and intercept, 2000 runs were simulated. Results showed a systematic bias: the observed AUC exceeded the expected AUC in every one of the 36 combinations for all sample sizes, with the smallest sample sizes having the largest bias. This suggests that evaluations of imaging systems using ROC curves based on small sample size systematically overestimate system performance. The effect is consistent but subtle (maximum 10% of AUC standard deviation), and is probably masked by the s.d. in most practical settings. Although there is a statistically significant effect (F = 33.34, P<0.0001) due to sample size, none was found for either the ROC curve slope or intercept. Overestimation of test performance by small SS seems to be an inherent characteristic of the ROC technique that has not previously been described
Bi, Ran; Liu, Peng
2016-03-31
RNA-Sequencing (RNA-seq) experiments have been popularly applied to transcriptome studies in recent years. Such experiments are still relatively costly. As a result, RNA-seq experiments often employ a small number of replicates. Power analysis and sample size calculation are challenging in the context of differential expression analysis with RNA-seq data. One challenge is that there are no closed-form formulae to calculate power for the popularly applied tests for differential expression analysis. In addition, false discovery rate (FDR), instead of family-wise type I error rate, is controlled for the multiple testing error in RNA-seq data analysis. So far, there are very few proposals on sample size calculation for RNA-seq experiments. In this paper, we propose a procedure for sample size calculation while controlling FDR for RNA-seq experimental design. Our procedure is based on the weighted linear model analysis facilitated by the voom method which has been shown to have competitive performance in terms of power and FDR control for RNA-seq differential expression analysis. We derive a method that approximates the average power across the differentially expressed genes, and then calculate the sample size to achieve a desired average power while controlling FDR. Simulation results demonstrate that the actual power of several popularly applied tests for differential expression is achieved and is close to the desired power for RNA-seq data with sample size calculated based on our method. Our proposed method provides an efficient algorithm to calculate sample size while controlling FDR for RNA-seq experimental design. We also provide an R package ssizeRNA that implements our proposed method and can be downloaded from the Comprehensive R Archive Network ( http://cran.r-project.org ).
Predictors of Citation Rate in Psychology: Inconclusive Influence of Effect and Sample Size.
Hanel, Paul H P; Haase, Jennifer
2017-01-01
In the present article, we investigate predictors of how often a scientific article is cited. Specifically, we focus on the influence of two often neglected predictors of citation rate: effect size and sample size, using samples from two psychological topical areas. Both can be considered as indicators of the importance of an article and post hoc (or observed) statistical power, and should, especially in applied fields, predict citation rates. In Study 1, effect size did not have an influence on citation rates across a topical area, both with and without controlling for numerous variables that have been previously linked to citation rates. In contrast, sample size predicted citation rates, but only while controlling for other variables. In Study 2, sample and partly effect sizes predicted citation rates, indicating that the relations vary even between scientific topical areas. Statistically significant results had more citations in Study 2 but not in Study 1. The results indicate that the importance (or power) of scientific findings may not be as strongly related to citation rate as is generally assumed.
International Nuclear Information System (INIS)
Jaech, J.L.; Lemaire, R.J.
1986-11-01
Generalized procedures have been developed to determine sample sizes in connection with the planning of inspection activities. These procedures are based on different measurement methods. They are applied mainly to Bulk Handling Facilities and Physical Inventory Verifications. The present report attempts (i) to assign to appropriate statistical testers (viz. testers for gross, partial and small defects) the measurement methods to be used, and (ii) to associate the measurement uncertainties with the sample sizes required for verification. Working papers are also provided to assist in the application of the procedures. This volume contains the detailed explanations concerning the above mentioned procedures
Sample size for post-marketing safety studies based on historical controls.
Wu, Yu-te; Makuch, Robert W
2010-08-01
As part of a drug's entire life cycle, post-marketing studies are an important part in the identification of rare, serious adverse events. Recently, the US Food and Drug Administration (FDA) has begun to implement new post-marketing safety mandates as a consequence of increased emphasis on safety. The purpose of this research is to provide exact sample size formula for the proposed hybrid design, based on a two-group cohort study with incorporation of historical external data. Exact sample size formula based on the Poisson distribution is developed, because the detection of rare events is our outcome of interest. Performance of exact method is compared to its approximate large-sample theory counterpart. The proposed hybrid design requires a smaller sample size compared to the standard, two-group prospective study design. In addition, the exact method reduces the number of subjects required in the treatment group by up to 30% compared to the approximate method for the study scenarios examined. The proposed hybrid design satisfies the advantages and rationale of the two-group design with smaller sample sizes generally required. 2010 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Bode, P.; Koster-Ammerlaan, M.J.J.
2018-01-01
Pragmatic rather than physical correction factors for neutron and gamma-ray shielding were studied for samples of intermediate size, i.e. up to the 10-100 gram range. It was found that for most biological and geological materials, the neutron self-shielding is less than 5 % and the gamma-ray self-attenuation can easily be estimated. A trueness control material of 1 kg size was made based on use of left-overs of materials, used in laboratory intercomparisons. A design study for a large sample pool-side facility, handling plate-type volumes, had to be stopped because of a reduction in human resources, available for this CRP. The large sample NAA facilities were made available to guest scientists from Greece and Brazil. The laboratory for neutron activation analysis participated in the world’s first laboratory intercomparison utilizing large samples. (author)
On incomplete sampling under birth-death models and connections to the sampling-based coalescent.
Stadler, Tanja
2009-11-07
The constant rate birth-death process is used as a stochastic model for many biological systems, for example phylogenies or disease transmission. As the biological data are usually not fully available, it is crucial to understand the effect of incomplete sampling. In this paper, we analyze the constant rate birth-death process with incomplete sampling. We derive the density of the bifurcation events for trees on n leaves which evolved under this birth-death-sampling process. This density is used for calculating prior distributions in Bayesian inference programs and for efficiently simulating trees. We show that the birth-death-sampling process can be interpreted as a birth-death process with reduced rates and complete sampling. This shows that joint inference of birth rate, death rate and sampling probability is not possible. The birth-death-sampling process is compared to the sampling-based population genetics model, the coalescent. It is shown that despite many similarities between these two models, the distribution of bifurcation times remains different even in the case of very large population sizes. We illustrate these findings on an Hepatitis C virus dataset from Egypt. We show that the transmission times estimates are significantly different-the widely used Gamma statistic even changes its sign from negative to positive when switching from the coalescent to the birth-death process.
Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun
2014-12-19
In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different
Uncertainty budget in internal monostandard NAA for small and large size samples analysis
International Nuclear Information System (INIS)
Dasari, K.B.; Acharya, R.
2014-01-01
Total uncertainty budget evaluation on determined concentration value is important under quality assurance programme. Concentration calculation in NAA or carried out by relative NAA and k0 based internal monostandard NAA (IM-NAA) method. IM-NAA method has been used for small and large sample analysis of clay potteries. An attempt was made to identify the uncertainty components in IM-NAA and uncertainty budget for La in both small and large size samples has been evaluated and compared. (author)
Sample Size Bounding and Context Ranking as Approaches to the Human Error Quantification Problem
Energy Technology Data Exchange (ETDEWEB)
Reer, B
2004-03-01
The paper describes a technique denoted as Sub-Sample-Size Bounding (SSSB), which is useable for the statistical derivation of context-specific probabilities from data available in existing reports on operating experience. Applications to human reliability analysis (HRA) are emphasised in the presentation of this technique. Exemplified by a sample of 180 abnormal event sequences, the manner in which SSSB can provide viable input for the quantification of errors of commission (EOCs) are outlined. (author)
Sample Size Bounding and Context Ranking as Approaches to the Human Error Quantification Problem
International Nuclear Information System (INIS)
Reer, B.
2004-01-01
The paper describes a technique denoted as Sub-Sample-Size Bounding (SSSB), which is useable for the statistical derivation of context-specific probabilities from data available in existing reports on operating experience. Applications to human reliability analysis (HRA) are emphasised in the presentation of this technique. Exemplified by a sample of 180 abnormal event sequences, the manner in which SSSB can provide viable input for the quantification of errors of commission (EOCs) are outlined. (author)
Ellison, Laura E.; Lukacs, Paul M.
2014-01-01
Concern for migratory tree-roosting bats in North America has grown because of possible population declines from wind energy development. This concern has driven interest in estimating population-level changes. Mark-recapture methodology is one possible analytical framework for assessing bat population changes, but sample size requirements to produce reliable estimates have not been estimated. To illustrate the sample sizes necessary for a mark-recapture-based monitoring program we conducted power analyses using a statistical model that allows reencounters of live and dead marked individuals. We ran 1,000 simulations for each of five broad sample size categories in a Burnham joint model, and then compared the proportion of simulations in which 95% confidence intervals overlapped between and among years for a 4-year study. Additionally, we conducted sensitivity analyses of sample size to various capture probabilities and recovery probabilities. More than 50,000 individuals per year would need to be captured and released to accurately determine 10% and 15% declines in annual survival. To detect more dramatic declines of 33% or 50% survival over four years, then sample sizes of 25,000 or 10,000 per year, respectively, would be sufficient. Sensitivity analyses reveal that increasing recovery of dead marked individuals may be more valuable than increasing capture probability of marked individuals. Because of the extraordinary effort that would be required, we advise caution should such a mark-recapture effort be initiated because of the difficulty in attaining reliable estimates. We make recommendations for what techniques show the most promise for mark-recapture studies of bats because some techniques violate the assumptions of mark-recapture methodology when used to mark bats.
A general model for the scaling of offspring size and adult size.
Falster, Daniel S; Moles, Angela T; Westoby, Mark
2008-09-01
Understanding evolutionary coordination among different life-history traits is a key challenge for ecology and evolution. Here we develop a general quantitative model predicting how offspring size should scale with adult size by combining a simple model for life-history evolution with a frequency-dependent survivorship model. The key innovation is that larger offspring are afforded three different advantages during ontogeny: higher survivorship per time, a shortened juvenile phase, and advantage during size-competitive growth. In this model, it turns out that size-asymmetric advantage during competition is the factor driving evolution toward larger offspring sizes. For simplified and limiting cases, the model is shown to produce the same predictions as the previously existing theory on which it is founded. The explicit treatment of different survival advantages has biologically important new effects, mainly through an interaction between total maternal investment in reproduction and the duration of competitive growth. This goes on to explain alternative allometries between log offspring size and log adult size, as observed in mammals (slope = 0.95) and plants (slope = 0.54). Further, it suggests how these differences relate quantitatively to specific biological processes during recruitment. In these ways, the model generalizes across previous theory and provides explanations for some differences between major taxa.
Re-estimating sample size in cluster randomized trials with active recruitment within clusters
van Schie, Sander; Moerbeek, Mirjam
2014-01-01
Often only a limited number of clusters can be obtained in cluster randomised trials, although many potential participants can be recruited within each cluster. Thus, active recruitment is feasible within the clusters. To obtain an efficient sample size in a cluster randomised trial, the cluster
Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies
McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.
2010-01-01
This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.
Size-Resolved Penetration Through High-Efficiency Filter Media Typically Used for Aerosol Sampling
Czech Academy of Sciences Publication Activity Database
Zíková, Naděžda; Ondráček, Jakub; Ždímal, Vladimír
2015-01-01
Roč. 49, č. 4 (2015), s. 239-249 ISSN 0278-6826 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : filters * size-resolved penetration * atmospheric aerosol sampling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.953, year: 2015
Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill
2017-01-01
Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...
Sample size determination for disease prevalence studies with partially validated data.
Qiu, Shi-Fang; Poon, Wai-Yin; Tang, Man-Lai
2016-02-01
Disease prevalence is an important topic in medical research, and its study is based on data that are obtained by classifying subjects according to whether a disease has been contracted. Classification can be conducted with high-cost gold standard tests or low-cost screening tests, but the latter are subject to the misclassification of subjects. As a compromise between the two, many research studies use partially validated datasets in which all data points are classified by fallible tests, and some of the data points are validated in the sense that they are also classified by the completely accurate gold-standard test. In this article, we investigate the determination of sample sizes for disease prevalence studies with partially validated data. We use two approaches. The first is to find sample sizes that can achieve a pre-specified power of a statistical test at a chosen significance level, and the second is to find sample sizes that can control the width of a confidence interval with a pre-specified confidence level. Empirical studies have been conducted to demonstrate the performance of various testing procedures with the proposed sample sizes. The applicability of the proposed methods are illustrated by a real-data example. © The Author(s) 2012.
B-graph sampling to estimate the size of a hidden population
Spreen, M.; Bogaerts, S.
2015-01-01
Link-tracing designs are often used to estimate the size of hidden populations by utilizing the relational links between their members. A major problem in studies of hidden populations is the lack of a convenient sampling frame. The most frequently applied design in studies of hidden populations is
Required sample size for monitoring stand dynamics in strict forest reserves: a case study
Diego Van Den Meersschaut; Bart De Cuyper; Kris Vandekerkhove; Noel Lust
2000-01-01
Stand dynamics in European strict forest reserves are commonly monitored using inventory densities of 5 to 15 percent of the total surface. The assumption that these densities guarantee a representative image of certain parameters is critically analyzed in a case study for the parameters basal area and stem number. The required sample sizes for different accuracy and...
A simple sample size formula for analysis of covariance in cluster randomized trials.
Teerenstra, S.; Eldridge, S.; Graff, M.J.; Hoop, E. de; Borm, G.F.
2012-01-01
For cluster randomized trials with a continuous outcome, the sample size is often calculated as if an analysis of the outcomes at the end of the treatment period (follow-up scores) would be performed. However, often a baseline measurement of the outcome is available or feasible to obtain. An
Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient
Krishnamoorthy, K.; Xia, Yanping
2008-01-01
The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…
Estimating sample size for a small-quadrat method of botanical ...
African Journals Online (AJOL)
Reports the results of a study conducted to determine an appropriate sample size for a small-quadrat method of botanical survey for application in the Mixed Bushveld of South Africa. Species density and grass density were measured using a small-quadrat method in eight plant communities in the Nylsvley Nature Reserve.
[Sample size calculation in clinical post-marketing evaluation of traditional Chinese medicine].
Fu, Yingkun; Xie, Yanming
2011-10-01
In recent years, as the Chinese government and people pay more attention on the post-marketing research of Chinese Medicine, part of traditional Chinese medicine breed has or is about to begin after the listing of post-marketing evaluation study. In the post-marketing evaluation design, sample size calculation plays a decisive role. It not only ensures the accuracy and reliability of post-marketing evaluation. but also assures that the intended trials will have a desired power for correctly detecting a clinically meaningful difference of different medicine under study if such a difference truly exists. Up to now, there is no systemic method of sample size calculation in view of the traditional Chinese medicine. In this paper, according to the basic method of sample size calculation and the characteristic of the traditional Chinese medicine clinical evaluation, the sample size calculation methods of the Chinese medicine efficacy and safety are discussed respectively. We hope the paper would be beneficial to medical researchers, and pharmaceutical scientists who are engaged in the areas of Chinese medicine research.
Impact of multicollinearity on small sample hydrologic regression models
Kroll, Charles N.; Song, Peter
2013-06-01
Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.
International Nuclear Information System (INIS)
Sampson, T.E.
1991-01-01
Recent advances in segmented gamma scanning have emphasized software corrections for gamma-ray self-adsorption in particulates or lumps of special nuclear material in the sample. another feature of this software is an attenuation correction factor formalism that explicitly accounts for differences in sample container size and composition between the calibration standards and the individual items being measured. Software without this container-size correction produces biases when the unknowns are not packaged in the same containers as the calibration standards. This new software allows the use of different size and composition containers for standards and unknowns, as enormous savings considering the expense of multiple calibration standard sets otherwise needed. This paper presents calculations of the bias resulting from not using this new formalism. These calculations may be used to estimate bias corrections for segmented gamma scanners that do not incorporate these advanced concepts
Collection of size fractionated particulate matter sample for neutron activation analysis in Japan
International Nuclear Information System (INIS)
Otoshi, Tsunehiko; Nakamatsu, Hiroaki; Oura, Yasuji; Ebihara, Mitsuru
2004-01-01
According to the decision of the 2001 Workshop on Utilization of Research Reactor (Neutron Activation Analysis (NAA) Section), size fractionated particulate matter collection for NAA was started from 2002 at two sites in Japan. The two monitoring sites, ''Tokyo'' and ''Sakata'', were classified into ''urban'' and ''rural''. In each site, two size fractions, namely PM 2-10 '' and PM 2 '' particles (aerodynamic particle size between 2 to 10 micrometer and less than 2 micrometer, respectively) were collected every month on polycarbonate membrane filters. Average concentrations of PM 10 (sum of PM 2-10 and PM 2 samples) during the common sampling period of August to November 2002 in each site were 0.031mg/m 3 in Tokyo, and 0.022mg/m 3 in Sakata. (author)
A size-structured model of bacterial growth and reproduction.
Ellermeyer, S F; Pilyugin, S S
2012-01-01
We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.
Habermehl, Christina; Benner, Axel; Kopp-Schneider, Annette
2018-03-01
In recent years, numerous approaches for biomarker-based clinical trials have been developed. One of these developments are multiple-biomarker trials, which aim to investigate multiple biomarkers simultaneously in independent subtrials. For low-prevalence biomarkers, small sample sizes within the subtrials have to be expected, as well as many biomarker-negative patients at the screening stage. The small sample sizes may make it unfeasible to analyze the subtrials individually. This imposes the need to develop new approaches for the analysis of such trials. With an expected large group of biomarker-negative patients, it seems reasonable to explore options to benefit from including them in such trials. We consider advantages and disadvantages of the inclusion of biomarker-negative patients in a multiple-biomarker trial with a survival endpoint. We discuss design options that include biomarker-negative patients in the study and address the issue of small sample size bias in such trials. We carry out a simulation study for a design where biomarker-negative patients are kept in the study and are treated with standard of care. We compare three different analysis approaches based on the Cox model to examine if the inclusion of biomarker-negative patients can provide a benefit with respect to bias and variance of the treatment effect estimates. We apply the Firth correction to reduce the small sample size bias. The results of the simulation study suggest that for small sample situations, the Firth correction should be applied to adjust for the small sample size bias. Additional to the Firth penalty, the inclusion of biomarker-negative patients in the analysis can lead to further but small improvements in bias and standard deviation of the estimates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sample-size effects in fast-neutron gamma-ray production measurements: solid-cylinder samples
International Nuclear Information System (INIS)
Smith, D.L.
1975-09-01
The effects of geometry, absorption and multiple scattering in (n,Xγ) reaction measurements with solid-cylinder samples are investigated. Both analytical and Monte-Carlo methods are employed in the analysis. Geometric effects are shown to be relatively insignificant except in definition of the scattering angles. However, absorption and multiple-scattering effects are quite important; accurate microscopic differential cross sections can be extracted from experimental data only after a careful determination of corrections for these processes. The results of measurements performed using several natural iron samples (covering a wide range of sizes) confirm validity of the correction procedures described herein. It is concluded that these procedures are reliable whenever sufficiently accurate neutron and photon cross section and angular distribution information is available for the analysis. (13 figures, 5 tables) (auth)
In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.
Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele
2017-04-19
During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.
The impact of sample size and marker selection on the study of haplotype structures
Directory of Open Access Journals (Sweden)
Sun Xiao
2004-03-01
Full Text Available Abstract Several studies of haplotype structures in the human genome in various populations have found that the human chromosomes are structured such that each chromosome can be divided into many blocks, within which there is limited haplotype diversity. In addition, only a few genetic markers in a putative block are needed to capture most of the diversity within a block. There has been no systematic empirical study of the effects of sample size and marker set on the identified block structures and representative marker sets, however. The purpose of this study was to conduct a detailed empirical study to examine such impacts. Towards this goal, we have analysed three representative autosomal regions from a large genome-wide study of haplotypes with samples consisting of African-Americans and samples consisting of Japanese and Chinese individuals. For both populations, we have found that the sample size and marker set have significant impact on the number of blocks and the total number of representative markers identified. The marker set in particular has very strong impacts, and our results indicate that the marker density in the original datasets may not be adequate to allow a meaningful characterisation of haplotype structures. In general, we conclude that we need a relatively large sample size and a very dense marker panel in the study of haplotype structures in human populations.
Size selective isocyanate aerosols personal air sampling using porous plastic foams
International Nuclear Information System (INIS)
Cong Khanh Huynh; Trinh Vu Duc
2009-01-01
As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.
Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws
Clark, Chris D.; Hughes, Anna L. C.; Greenwood, Sarah L.; Spagnolo, Matteo; Ng, Felix S. L.
2009-04-01
Ice sheets flowing across a sedimentary bed usually produce a landscape of blister-like landforms streamlined in the direction of the ice flow and with each bump of the order of 10 2 to 10 3 m in length and 10 1 m in relief. Such landforms, known as drumlins, have mystified investigators for over a hundred years. A satisfactory explanation for their formation, and thus an appreciation of their glaciological significance, has remained elusive. A recent advance has been in numerical modelling of the land-forming process. In anticipation of future modelling endeavours, this paper is motivated by the requirement for robust data on drumlin size and shape for model testing. From a systematic programme of drumlin mapping from digital elevation models and satellite images of Britain and Ireland, we used a geographic information system to compile a range of statistics on length L, width W, and elongation ratio E (where E = L/ W) for a large sample. Mean L, is found to be 629 m ( n = 58,983), mean W is 209 m and mean E is 2.9 ( n = 37,043). Most drumlins are between 250 and 1000 metres in length; between 120 and 300 metres in width; and between 1.7 and 4.1 times as long as they are wide. Analysis of such data and plots of drumlin width against length reveals some new insights. All frequency distributions are unimodal from which we infer that the geomorphological label of 'drumlin' is fair in that this is a true single population of landforms, rather than an amalgam of different landform types. Drumlin size shows a clear minimum bound of around 100 m (horizontal). Maybe drumlins are generated at many scales and this is the minimum, or this value may be an indication of the fundamental scale of bump generation ('proto-drumlins') prior to them growing and elongating. A relationship between drumlin width and length is found (with r2 = 0.48) and that is approximately W = 7 L 1/2 when measured in metres. A surprising and sharply-defined line bounds the data cloud plotted in E- W
PIXE–PIGE analysis of size-segregated aerosol samples from remote areas
Energy Technology Data Exchange (ETDEWEB)
Calzolai, G., E-mail: calzolai@fi.infn.it [Department of Physics and Astronomy, University of Florence and National Institute of Nuclear Physics (INFN), Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M.; Lucarelli, F.; Nava, S.; Taccetti, F. [Department of Physics and Astronomy, University of Florence and National Institute of Nuclear Physics (INFN), Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Becagli, S.; Frosini, D.; Traversi, R.; Udisti, R. [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
2014-01-01
The chemical characterization of size-segregated samples is helpful to study the aerosol effects on both human health and environment. The sampling with multi-stage cascade impactors (e.g., Small Deposit area Impactor, SDI) produces inhomogeneous samples, with a multi-spot geometry and a non-negligible particle stratification. At LABEC (Laboratory of nuclear techniques for the Environment and the Cultural Heritage), an external beam line is fully dedicated to PIXE–PIGE analysis of aerosol samples. PIGE is routinely used as a sidekick of PIXE to correct the underestimation of PIXE in quantifying the concentration of the lightest detectable elements, like Na or Al, due to X-ray absorption inside the individual aerosol particles. In this work PIGE has been used to study proper attenuation correction factors for SDI samples: relevant attenuation effects have been observed also for stages collecting smaller particles, and consequent implications on the retrieved aerosol modal structure have been evidenced.
Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S
2015-02-01
With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.
Li, Huili; Ostermann, Anne; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D; Mortimer, Peter E
2018-07-01
The species-area relationship is an important factor in the study of species diversity, conservation biology, and landscape ecology. A deeper understanding of this relationship is necessary, in order to provide recommendations on how to improve the quality of data collection on macrofungal diversity in different land use systems in future studies, a systematic assessment of methodological parameters, in particular optimal plot sizes. The species-area relationship of macrofungi in tropical and temperate climatic zones and four different land use systems were investigated by determining the macrofungal species richness in plot sizes ranging from 100 m 2 to 10 000 m 2 over two sampling seasons. We found that the effect of plot size on recorded species richness significantly differed between land use systems with the exception of monoculture systems. For both climate zones, land use system needs to be considered when determining optimal plot size. Using an optimal plot size was more important than temporal replication (over two sampling seasons) in accurately recording species richness. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
A random energy model for size dependence : recurrence vs. transience
Külske, Christof
1998-01-01
We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as
A Unimodal Model for Double Observer Distance Sampling Surveys.
Directory of Open Access Journals (Sweden)
Earl F Becker
Full Text Available Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.
Sampling, Probability Models and Statistical Reasoning -RE ...
Indian Academy of Sciences (India)
random sampling allows data to be modelled with the help of probability ... g based on different trials to get an estimate of the experimental error. ... research interests lie in the .... if e is indeed the true value of the proportion of defectives in the.
Galbraith, Niall D; Manktelow, Ken I; Morris, Neil G
2010-11-01
Previous studies demonstrate that people high in delusional ideation exhibit a data-gathering bias on inductive reasoning tasks. The current study set out to investigate the factors that may underpin such a bias by examining healthy individuals, classified as either high or low scorers on the Peters et al. Delusions Inventory (PDI). More specifically, whether high PDI scorers have a relatively poor appreciation of sample size and heterogeneity when making statistical judgments. In Expt 1, high PDI scorers made higher probability estimates when generalizing from a sample of 1 with regard to the heterogeneous human property of obesity. In Expt 2, this effect was replicated and was also observed in relation to the heterogeneous property of aggression. The findings suggest that delusion-prone individuals are less appreciative of the importance of sample size when making statistical judgments about heterogeneous properties; this may underpin the data gathering bias observed in previous studies. There was some support for the hypothesis that threatening material would exacerbate high PDI scorers' indifference to sample size.
Table-sized matrix model in fractional learning
Soebagyo, J.; Wahyudin; Mulyaning, E. C.
2018-05-01
This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.
The theoretical foundations for size spectrum models of fish communities
DEFF Research Database (Denmark)
Andersen, Ken Haste; Jacobsen, Nis Sand; Farnsworth, K.D.
2016-01-01
Size spectrum models have emerged from 40 years of basic research on how body size determines individual physiology and structures marine communities. They are based on commonly accepted assumptions and have a low parameter set, which make them easy to deploy for strategic ecosystem oriented impact...... assessment of fisheries. We describe the fundamental concepts in size-based models about food encounter and the bioenergetics budget of individuals. Within the general framework three model types have emerged that differs in their degree of complexity: the food-web, the trait-based and the community model...
Crystallite size variation of TiO_2 samples depending time heat treatment
International Nuclear Information System (INIS)
Galante, A.G.M.; Paula, F.R. de; Montanhera, M.A.; Pereira, E.A.; Spada, E.R.
2016-01-01
Titanium dioxide (TiO_2) is an oxide semiconductor that may be found in mixed phase or in distinct phases: brookite, anatase and rutile. In this work was carried out the study of the residence time influence at a given temperature in the TiO_2 powder physical properties. After the powder synthesis, the samples were divided and heat treated at 650 °C with a ramp up to 3 °C/min and a residence time ranging from 0 to 20 hours and subsequently characterized by x-ray diffraction. Analyzing the obtained diffraction patterns, it was observed that, from 5-hour residence time, began the two-distinct phase coexistence: anatase and rutile. It also calculated the average crystallite size of each sample. The results showed an increase in average crystallite size with increasing residence time of the heat treatment. (author)
The study of the sample size on the transverse magnetoresistance of bismuth nanowires
International Nuclear Information System (INIS)
Zare, M.; Layeghnejad, R.; Sadeghi, E.
2012-01-01
The effects of sample size on the galvanomagnetice properties of semimetal nanowires are theoretically investigated. Transverse magnetoresistance (TMR) ratios have been calculated within a Boltzmann Transport Equation (BTE) approach by specular reflection approximation. Temperature and radius dependence of the transverse magnetoresistance of cylindrical Bismuth nanowires are given. The obtained values are in good agreement with the experimental results, reported by Heremans et al. - Highlights: ► In this study effects of sample size on the galvanomagnetic properties of Bi. ► Nanowires were explained by Parrott theorem by solving the Boltzmann Transport Equation. ► Transverse magnetoresistance (TMR) ratios have been measured by specular reflection approximation. ► Temperature and radius dependence of the transverse magnetoresistance of cylindrical Bismuth nanowires are given. ► The obtained values are in good agreement with the experimental results, reported by Heremans et al.
Kikuchi, Takashi; Gittins, John
2009-08-15
It is necessary for the calculation of sample size to achieve the best balance between the cost of a clinical trial and the possible benefits from a new treatment. Gittins and Pezeshk developed an innovative (behavioral Bayes) approach, which assumes that the number of users is an increasing function of the difference in performance between the new treatment and the standard treatment. The better a new treatment, the more the number of patients who want to switch to it. The optimal sample size is calculated in this framework. This BeBay approach takes account of three decision-makers, a pharmaceutical company, the health authority and medical advisers. Kikuchi, Pezeshk and Gittins generalized this approach by introducing a logistic benefit function, and by extending to the more usual unpaired case, and with unknown variance. The expected net benefit in this model is based on the efficacy of the new drug but does not take account of the incidence of adverse reactions. The present paper extends the model to include the costs of treating adverse reactions and focuses on societal cost-effectiveness as the criterion for determining sample size. The main application is likely to be to phase III clinical trials, for which the primary outcome is to compare the costs and benefits of a new drug with a standard drug in relation to national health-care. Copyright 2009 John Wiley & Sons, Ltd.
Evaluating the performance of species richness estimators: sensitivity to sample grain size
DEFF Research Database (Denmark)
Hortal, Joaquín; Borges, Paulo A. V.; Gaspar, Clara
2006-01-01
and several recent estimators [proposed by Rosenzweig et al. (Conservation Biology, 2003, 17, 864-874), and Ugland et al. (Journal of Animal Ecology, 2003, 72, 888-897)] performed poorly. 3. Estimations developed using the smaller grain sizes (pair of traps, traps, records and individuals) presented similar....... Data obtained with standardized sampling of 78 transects in natural forest remnants of five islands were aggregated in seven different grains (i.e. ways of defining a single sample): islands, natural areas, transects, pairs of traps, traps, database records and individuals to assess the effect of using...
A contemporary decennial global Landsat sample of changing agricultural field sizes
White, Emma; Roy, David
2014-05-01
Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by
Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence
International Nuclear Information System (INIS)
Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A.
2013-01-01
Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)
Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence
Energy Technology Data Exchange (ETDEWEB)
Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)
2013-07-01
Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)
Gridsampler – A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies
Heckmann, Mark; Burk, Lukas
2017-01-01
The repertory grid is a psychological data collection technique that is used to elicit qualitative data in the form of attributes as well as quantitative ratings. A common approach for evaluating multiple repertory grid data is sorting the elicited bipolar attributes (so called constructs) into mutually exclusive categories by means of content analysis. An important question when planning this type of study is determining the sample size needed to a) discover all attribute categories relevant...
Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.
Blutke, Andreas; Wanke, Rüdiger
2018-03-06
In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical
Type-II generalized family-wise error rate formulas with application to sample size determination.
Delorme, Phillipe; de Micheaux, Pierre Lafaye; Liquet, Benoit; Riou, Jérémie
2016-07-20
Multiple endpoints are increasingly used in clinical trials. The significance of some of these clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. The usual approach in multiple hypothesis testing is to control the family-wise error rate, which is defined as the probability that at least one type-I error is made. More recently, the q-generalized family-wise error rate has been introduced to control the probability of making at least q false rejections. For procedures controlling this global type-I error rate, we define a type-II r-generalized family-wise error rate, which is directly related to the r-power defined as the probability of rejecting at least r false null hypotheses. We obtain very general power formulas that can be used to compute the sample size for single-step and step-wise procedures. These are implemented in our R package rPowerSampleSize available on the CRAN, making them directly available to end users. Complexities of the formulas are presented to gain insight into computation time issues. Comparison with Monte Carlo strategy is also presented. We compute sample sizes for two clinical trials involving multiple endpoints: one designed to investigate the effectiveness of a drug against acute heart failure and the other for the immunogenicity of a vaccine strategy against pneumococcus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sample size methods for estimating HIV incidence from cross-sectional surveys.
Konikoff, Jacob; Brookmeyer, Ron
2015-12-01
Understanding HIV incidence, the rate at which new infections occur in populations, is critical for tracking and surveillance of the epidemic. In this article, we derive methods for determining sample sizes for cross-sectional surveys to estimate incidence with sufficient precision. We further show how to specify sample sizes for two successive cross-sectional surveys to detect changes in incidence with adequate power. In these surveys biomarkers such as CD4 cell count, viral load, and recently developed serological assays are used to determine which individuals are in an early disease stage of infection. The total number of individuals in this stage, divided by the number of people who are uninfected, is used to approximate the incidence rate. Our methods account for uncertainty in the durations of time spent in the biomarker defined early disease stage. We find that failure to account for this uncertainty when designing surveys can lead to imprecise estimates of incidence and underpowered studies. We evaluated our sample size methods in simulations and found that they performed well in a variety of underlying epidemics. Code for implementing our methods in R is available with this article at the Biometrics website on Wiley Online Library. © 2015, The International Biometric Society.
Assumptions behind size-based ecosystem models are realistic
DEFF Research Database (Denmark)
Andersen, Ken Haste; Blanchard, Julia L.; Fulton, Elizabeth A.
2016-01-01
A recent publication about balanced harvesting (Froese et al., ICES Journal of Marine Science; doi:10.1093/icesjms/fsv122) contains several erroneous statements about size-spectrum models. We refute the statements by showing that the assumptions pertaining to size-spectrum models discussed by Fro...... that there is indeed a constructive role for a wide suite of ecosystem models to evaluate fishing strategies in an ecosystem context...
Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses
Lanfear, Robert; Hua, Xia; Warren, Dan L.
2016-01-01
Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To this end, the effective sample size (ESS) estimates how many truly independent samples of a given parameter the output of the MCMC represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential samples from the chain can be non-independent due to autocorrelation. Typically, phylogeneticists use a rule of thumb that the ESS of all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of phylogenetic tree topologies in Bayesian MCMC analyses. PMID:27435794
Media Exposure: How Models Simplify Sampling
DEFF Research Database (Denmark)
Mortensen, Peter Stendahl
1998-01-01
In media planning, the distribution of exposures to more ad spots in more media (print, TV, radio) is crucial to the evaluation of the campaign. If such information should be sampled, it would only be possible in expensive panel-studies (eg TV-meter panels). Alternatively, the distribution...... of exposures may be modelled statistically, using the Beta distribution combined with the Binomial Distribution. Examples are given....
Robust inference in sample selection models
Zhelonkin, Mikhail; Genton, Marc G.; Ronchetti, Elvezio
2015-01-01
The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman's two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.
Robust inference in sample selection models
Zhelonkin, Mikhail
2015-11-20
The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman\\'s two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
A novel approach for small sample size family-based association studies: sequential tests.
Ilk, Ozlem; Rajabli, Farid; Dungul, Dilay Ciglidag; Ozdag, Hilal; Ilk, Hakki Gokhan
2011-08-01
In this paper, we propose a sequential probability ratio test (SPRT) to overcome the problem of limited samples in studies related to complex genetic diseases. The results of this novel approach are compared with the ones obtained from the traditional transmission disequilibrium test (TDT) on simulated data. Although TDT classifies single-nucleotide polymorphisms (SNPs) to only two groups (SNPs associated with the disease and the others), SPRT has the flexibility of assigning SNPs to a third group, that is, those for which we do not have enough evidence and should keep sampling. It is shown that SPRT results in smaller ratios of false positives and negatives, as well as better accuracy and sensitivity values for classifying SNPs when compared with TDT. By using SPRT, data with small sample size become usable for an accurate association analysis.
Modeling motoneuron firing properties: dependency on size and calcium dynamics
van der Heyden, M. J.; Hilgevoord, A. A.; Bour, L. J.; Ongerboer de Visser, B. W.
1994-01-01
The origin of functional differences between motoneurons of varying size was investigated by employing a one-compartmental motoneuron model containing a slow K+ conductance dependent on the intracellular calcium concentration. The size of the cell was included as an explicit parameter. Simulations
Li, Zipeng; Lai, Kelvin Yi-Tse; Chakrabarty, Krishnendu; Ho, Tsung-Yi; Lee, Chen-Yi
2017-12-01
Sample preparation in digital microfluidics refers to the generation of droplets with target concentrations for on-chip biochemical applications. In recent years, digital microfluidic biochips (DMFBs) have been adopted as a platform for sample preparation. However, there remain two major problems associated with sample preparation on a conventional DMFB. First, only a (1:1) mixing/splitting model can be used, leading to an increase in the number of fluidic operations required for sample preparation. Second, only a limited number of sensors can be integrated on a conventional DMFB; as a result, the latency for error detection during sample preparation is significant. To overcome these drawbacks, we adopt a next generation DMFB platform, referred to as micro-electrode-dot-array (MEDA), for sample preparation. We propose the first sample-preparation method that exploits the MEDA-specific advantages of fine-grained control of droplet sizes and real-time droplet sensing. Experimental demonstration using a fabricated MEDA biochip and simulation results highlight the effectiveness of the proposed sample-preparation method.
An open-population hierarchical distance sampling model
Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,
2015-01-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
An open-population hierarchical distance sampling model.
Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott
2015-02-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
Multiscale sampling model for motion integration.
Sherbakov, Lena; Yazdanbakhsh, Arash
2013-09-30
Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.
Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A
2017-06-30
Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Methodology for sample preparation and size measurement of commercial ZnO nanoparticles
Directory of Open Access Journals (Sweden)
Pei-Jia Lu
2018-04-01
Full Text Available This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors. Keywords: Zinc oxide, Nanoparticles, Methodology
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Statistical characterization of a large geochemical database and effect of sample size
Zhang, C.; Manheim, F.T.; Hinde, J.; Grossman, J.N.
2005-01-01
smaller numbers of data points showed that few elements passed standard statistical tests for normality or log-normality until sample size decreased to a few hundred data points. Large sample size enhances the power of statistical tests, and leads to rejection of most statistical hypotheses for real data sets. For large sample sizes (e.g., n > 1000), graphical methods such as histogram, stem-and-leaf, and probability plots are recommended for rough judgement of probability distribution if needed. ?? 2005 Elsevier Ltd. All rights reserved.
SIMPLIFIED MATHEMATICAL MODEL OF SMALL SIZED UNMANNED AIRCRAFT VEHICLE LAYOUT
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available Strong reduction of new aircraft design period using new technology based on artificial intelligence is the key problem mentioned in forecasts of leading aerospace industry research centers. This article covers the approach to devel- opment of quick aerodynamic design methods based on artificial intelligence neural system. The problem is being solved for the classical scheme of small sized unmanned aircraft vehicle (UAV. The principal parts of the method are the mathe- matical model of layout, layout generator of this type of aircraft is built on aircraft neural networks, automatic selection module for cleaning variety of layouts generated in automatic mode, robust direct computational fluid dynamics method, aerodynamic characteristics approximators on artificial neural networks.Methods based on artificial neural networks have intermediate position between computational fluid dynamics methods or experiments and simplified engineering approaches. The use of ANN for estimating aerodynamic characteris-tics put limitations on input data. For this task the layout must be presented as a vector with dimension not exceeding sev-eral hundred. Vector components must include all main parameters conventionally used for layouts description and com- pletely replicate the most important aerodynamics and structural properties.The first stage of the work is presented in the paper. Simplified mathematical model of small sized UAV was developed. To estimate the range of geometrical parameters of layouts the review of existing vehicle was done. The result of the work is the algorithm and computer software for generating the layouts based on ANN technolo-gy. 10000 samples were generated and the dataset containig geometrical and aerodynamic characteristics of layoutwas created.
Optimum workforce-size model using dynamic programming approach
African Journals Online (AJOL)
This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the sense ...
Froud, Robert; Rajendran, Dévan; Patel, Shilpa; Bright, Philip; Bjørkli, Tom; Eldridge, Sandra; Buchbinder, Rachelle; Underwood, Martin
2017-06-01
A systematic review of nonspecific low back pain trials published between 1980 and 2012. To explore what proportion of trials have been powered to detect different bands of effect size; whether there is evidence that sample size in low back pain trials has been increasing; what proportion of trial reports include a sample size calculation; and whether likelihood of reporting sample size calculations has increased. Clinical trials should have a sample size sufficient to detect a minimally important difference for a given power and type I error rate. An underpowered trial is one within which probability of type II error is too high. Meta-analyses do not mitigate underpowered trials. Reviewers independently abstracted data on sample size at point of analysis, whether a sample size calculation was reported, and year of publication. Descriptive analyses were used to explore ability to detect effect sizes, and regression analyses to explore the relationship between sample size, or reporting sample size calculations, and time. We included 383 trials. One-third were powered to detect a standardized mean difference of less than 0.5, and 5% were powered to detect less than 0.3. The average sample size was 153 people, which increased only slightly (∼4 people/yr) from 1980 to 2000, and declined slightly (∼4.5 people/yr) from 2005 to 2011 (P pain trials and the reporting of sample size calculations may need to be increased. It may be justifiable to power a trial to detect only large effects in the case of novel interventions. 3.
Directory of Open Access Journals (Sweden)
Sebastian Wilhelm
2015-12-01
Full Text Available The production of silica is performed by mixing an inorganic, silicate-based precursor and an acid. Monomeric silicic acid forms and polymerizes to amorphous silica particles. Both further polymerization and agglomeration of the particles lead to a gel network. Since polymerization continues after gelation, the gel network consolidates. This rather slow process is known as “natural syneresis” and strongly influences the product properties (e.g., agglomerate size, porosity or internal surface. “Enforced syneresis” is the superposition of natural syneresis with a mechanical, external force. Enforced syneresis may be used either for analytical or preparative purposes. Hereby, two open key aspects are of particular interest. On the one hand, the question arises whether natural and enforced syneresis are analogous processes with respect to their dependence on the process parameters: pH, temperature and sample size. On the other hand, a method is desirable that allows for correlating natural and enforced syneresis behavior. We can show that the pH-, temperature- and sample size-dependency of natural and enforced syneresis are indeed analogous. It is possible to predict natural syneresis using a correlative model. We found that our model predicts maximum volume shrinkages between 19% and 30% in comparison to measured values of 20% for natural syneresis.
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
Sample size effect on the determination of the irreversibility line of high-Tc superconductors
International Nuclear Information System (INIS)
Li, Q.; Suenaga, M.; Li, Q.; Freltoft, T.
1994-01-01
The irreversibility lines of a high-J c superconducting Bi 2 Sr 2 Ca 2 Cu 3 O x /Ag tape were systematically measured upon a sequence of subdivisions of the sample. The irreversibility field H r (T) (parallel to the c axis) was found to change approximately as L 0.13 , where L is the effective dimension of the superconducting tape. Furthermore, it was found that the irreversibility line for a grain-aligned Bi 2 Sr 2 Ca 2 Cu 3 O x specimen can be approximately reproduced by the extrapolation of this relation down to a grain size of a few tens of micrometers. The observed size effect could significantly obscure the real physical meaning of the irreversibility lines. In addition, this finding surprisingly indicated that the Bi 2 Sr 2 Ca 2 Cu 2 O x /Ag tape and grain-aligned specimen may have similar flux line pinning strength
Influence of secular trends and sample size on reference equations for lung function tests.
Quanjer, P H; Stocks, J; Cole, T J; Hall, G L; Stanojevic, S
2011-03-01
The aim of our study was to determine the contribution of secular trends and sample size to lung function reference equations, and establish the number of local subjects required to validate published reference values. 30 spirometry datasets collected between 1978 and 2009 provided data on healthy, white subjects: 19,291 males and 23,741 females aged 2.5-95 yrs. The best fit for forced expiratory volume in 1 s (FEV(1)), forced vital capacity (FVC) and FEV(1)/FVC as functions of age, height and sex were derived from the entire dataset using GAMLSS. Mean z-scores were calculated for individual datasets to determine inter-centre differences. This was repeated by subdividing one large dataset (3,683 males and 4,759 females) into 36 smaller subsets (comprising 18-227 individuals) to preclude differences due to population/technique. No secular trends were observed and differences between datasets comprising >1,000 subjects were small (maximum difference in FEV(1) and FVC from overall mean: 0.30- -0.22 z-scores). Subdividing one large dataset into smaller subsets reproduced the above sample size-related differences and revealed that at least 150 males and 150 females would be necessary to validate reference values to avoid spurious differences due to sampling error. Use of local controls to validate reference equations will rarely be practical due to the numbers required. Reference equations derived from large or collated datasets are recommended.
Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data.
Li, Johnson Ching-Hong
2016-12-01
In psychological science, the "new statistics" refer to the new statistical practices that focus on effect size (ES) evaluation instead of conventional null-hypothesis significance testing (Cumming, Psychological Science, 25, 7-29, 2014). In a two-independent-samples scenario, Cohen's (1988) standardized mean difference (d) is the most popular ES, but its accuracy relies on two assumptions: normality and homogeneity of variances. Five other ESs-the unscaled robust d (d r * ; Hogarty & Kromrey, 2001), scaled robust d (d r ; Algina, Keselman, & Penfield, Psychological Methods, 10, 317-328, 2005), point-biserial correlation (r pb ; McGrath & Meyer, Psychological Methods, 11, 386-401, 2006), common-language ES (CL; Cliff, Psychological Bulletin, 114, 494-509, 1993), and nonparametric estimator for CL (A w ; Ruscio, Psychological Methods, 13, 19-30, 2008)-may be robust to violations of these assumptions, but no study has systematically evaluated their performance. Thus, in this simulation study the performance of these six ESs was examined across five factors: data distribution, sample, base rate, variance ratio, and sample size. The results showed that A w and d r were generally robust to these violations, and A w slightly outperformed d r . Implications for the use of A w and d r in real-world research are discussed.
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
DEFF Research Database (Denmark)
Picchini, Umberto; Forman, Julie Lyng
2016-01-01
a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm......In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...
Waif goodbye! Average-size female models promote positive body image and appeal to consumers.
Diedrichs, Phillippa C; Lee, Christina
2011-10-01
Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers.
A simple shear limited, single size, time dependent flocculation model
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Flaw-size measurement in a weld samples by ultrasonic frequency analysis
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Whaley, H.L. Jr.; McClung, R.W.
1975-01-01
An ultrasonic frequency-analysis technique was developed and applies to characterize flaws in an 8-in. (203-mm) thick heavy-section steel weld specimen. The technique applies a multitransducer system. The spectrum of the received broad-band signal is frequency analyzed at two different receivers for each of the flaws. From the two spectra, the size and orientation of the flaw are determined by the use of an analytic model proposed earlier. (auth)
Analysis of femtogram-sized plutonium samples by thermal ionization mass spectrometry
International Nuclear Information System (INIS)
Smith, D.H.; Duckworth, D.C.; Bostick, D.T.; Coleman, R.M.; McPherson, R.L.; McKown, H.S.
1994-01-01
The goal of this investigation was to extend the ability to perform isotopic analysis of plutonium to samples as small as possible. Plutonium ionizes thermally with quite good efficiency (first ionization potential 5.7 eV). Sub-nanogram sized samples can be analyzed on a near-routine basis given the necessary instrumentation. Efforts in this laboratory have been directed at rhenium-carbon systems; solutions of carbon in rhenium provide surfaces with work functions higher than pure rhenium (5.8 vs. ∼ 5.4 eV). Using a single resin bead as a sample loading medium both concentrates the sample nearly to a point and, due to its interaction with rhenium, produces the desired composite surface. Earlier work in this area showed that a layer of rhenium powder slurried in solution containing carbon substantially enhanced precision of isotopic measurements for uranium. Isotopic fractionation was virtually eliminated, and ionization efficiencies 2-5 times better than previously measured were attained for both Pu and U (1.7 and 0.5%, respectively). The other side of this coin should be the ability to analyze smaller samples, which is the subject of this report
DEFF Research Database (Denmark)
Shetty, Nisha; Min, Tai-Gi; Gislum, René
2011-01-01
The effects of the number of seeds in a training sample set on the ability to predict the viability of cabbage or radish seeds are presented and discussed. The supervised classification method extended canonical variates analysis (ECVA) was used to develop a classification model. Calibration sub......-sets of different sizes were chosen randomly with several iterations and using the spectral-based sample selection algorithms DUPLEX and CADEX. An independent test set was used to validate the developed classification models. The results showed that 200 seeds were optimal in a calibration set for both cabbage...... using all 600 seeds in the calibration set. Thus, the number of seeds in the calibration set can be reduced by up to 67% without significant loss of classification accuracy, which will effectively enhance the cost-effectiveness of NIR spectral analysis. Wavelength regions important...
Terry, Leann; Kelley, Ken
2012-11-01
Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software. ©2011 The British Psychological Society.
Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample.
Li, Guohong; Luican, Adina; Andrei, Eva Y
2011-07-01
We demonstrate a simple capacitance-based method to quickly and efficiently locate micron-sized conductive samples, such as graphene flakes, on insulating substrates in a scanning tunneling microscope (STM). By using edge recognition, the method is designed to locate and to identify small features when the STM tip is far above the surface, allowing for crash-free search and navigation. The method can be implemented in any STM environment, even at low temperatures and in strong magnetic field, with minimal or no hardware modifications.
Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples
International Nuclear Information System (INIS)
Lisboa-Filho, P N; Deimling, C V; Ortiz, W A
2010-01-01
In this contribution superconducting specimens of YBa 2 Cu 3 O 7-δ were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.
Clustering for high-dimension, low-sample size data using distance vectors
Terada, Yoshikazu
2013-01-01
In high-dimension, low-sample size (HDLSS) data, it is not always true that closeness of two objects reflects a hidden cluster structure. We point out the important fact that it is not the closeness, but the "values" of distance that contain information of the cluster structure in high-dimensional space. Based on this fact, we propose an efficient and simple clustering approach, called distance vector clustering, for HDLSS data. Under the assumptions given in the work of Hall et al. (2005), w...
Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples
Energy Technology Data Exchange (ETDEWEB)
Lisboa-Filho, P N [UNESP - Universidade Estadual Paulista, Grupo de Materiais Avancados, Departamento de Fisica, Bauru (Brazil); Deimling, C V; Ortiz, W A, E-mail: plisboa@fc.unesp.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos (Brazil)
2010-01-15
In this contribution superconducting specimens of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.
Multi-Criteria Model for Determining Order Size
Directory of Open Access Journals (Sweden)
Katarzyna Jakowska-Suwalska
2013-01-01
Full Text Available A multi-criteria model for determining the order size for materials used in production has been presented. It was assumed that the consumption rate of each material is a random variable with a known probability distribution. Using such a model, in which the purchase cost of materials ordered is limited, three criteria were considered: order size, probability of a lack of materials in the production process, and deviations in the order size from the consumption rate in past periods. Based on an example, it has been shown how to use the model to determine the order sizes for polyurethane adhesive and wood in a hard-coal mine. (original abstract
Soybean yield modeling using bootstrap methods for small samples
Energy Technology Data Exchange (ETDEWEB)
Dalposso, G.A.; Uribe-Opazo, M.A.; Johann, J.A.
2016-11-01
One of the problems that occur when working with regression models is regarding the sample size; once the statistical methods used in inferential analyzes are asymptotic if the sample is small the analysis may be compromised because the estimates will be biased. An alternative is to use the bootstrap methodology, which in its non-parametric version does not need to guess or know the probability distribution that generated the original sample. In this work we used a set of soybean yield data and physical and chemical soil properties formed with fewer samples to determine a multiple linear regression model. Bootstrap methods were used for variable selection, identification of influential points and for determination of confidence intervals of the model parameters. The results showed that the bootstrap methods enabled us to select the physical and chemical soil properties, which were significant in the construction of the soybean yield regression model, construct the confidence intervals of the parameters and identify the points that had great influence on the estimated parameters. (Author)
Estimated ventricle size using Evans index: reference values from a population-based sample.
Jaraj, D; Rabiei, K; Marlow, T; Jensen, C; Skoog, I; Wikkelsø, C
2017-03-01
Evans index is an estimate of ventricular size used in the diagnosis of idiopathic normal-pressure hydrocephalus (iNPH). Values >0.3 are considered pathological and are required by guidelines for the diagnosis of iNPH. However, there are no previous epidemiological studies on Evans index, and normal values in adults are thus not precisely known. We examined a representative sample to obtain reference values and descriptive data on Evans index. A population-based sample (n = 1235) of men and women aged ≥70 years was examined. The sample comprised people living in private households and residential care, systematically selected from the Swedish population register. Neuropsychiatric examinations, including head computed tomography, were performed between 1986 and 2000. Evans index ranged from 0.11 to 0.46. The mean value in the total sample was 0.28 (SD, 0.04) and 20.6% (n = 255) had values >0.3. Among men aged ≥80 years, the mean value of Evans index was 0.3 (SD, 0.03). Individuals with dementia had a mean value of Evans index of 0.31 (SD, 0.05) and those with radiological signs of iNPH had a mean value of 0.36 (SD, 0.04). A substantial number of subjects had ventricular enlargement according to current criteria. Clinicians and researchers need to be aware of the range of values among older individuals. © 2017 EAN.
Multiple sensitive estimation and optimal sample size allocation in the item sum technique.
Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz
2018-01-01
For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden
Energy Technology Data Exchange (ETDEWEB)
Wagner, Annemarie [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden)], E-mail: wagnera@chalmers.se; Boman, Johan [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden); Gatari, Michael J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)
2008-12-15
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 {mu}m aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.
Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden
International Nuclear Information System (INIS)
Wagner, Annemarie; Boman, Johan; Gatari, Michael J.
2008-01-01
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 μm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers
Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size
International Nuclear Information System (INIS)
Tsang, Y.W.; Witherspoon, P.A.
1983-01-01
A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations
Candel, Math J J M; Van Breukelen, Gerard J P
2010-06-30
Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.
Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations
Markowich, Peter A.; Teichmann, Josef; Wolfram, Marie Therese
2016-01-01
In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present
Patel, Nitin R; Ankolekar, Suresh
2007-11-30
Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.
Shieh, Gwowen; Jan, Show-Li
2013-01-01
The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…
On population size estimators in the Poisson mixture model.
Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua
2013-09-01
Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.
The King model for electrons in a finite-size ultracold plasma
Energy Technology Data Exchange (ETDEWEB)
Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2008-10-24
A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.
[The effect of disinfectant soaking on dental gypsum model size].
Zhu, Cao-yun; Xu, Yun-wen; Xu, Kan
2012-12-01
To study the influence of disinfectant soaking on the dimensional stability of three kinds of dental gypsum model. Three commonly used gypsums ( type III,IV,Vtype) in clinic were used to make 24 specimens for 50 mm×15 mm×10 mm in size. One hour after release, the specimens were placed for 24 h. A digital caliper was used to measure the size of the gypsum model. Distilled water immersion was as used control, glutaraldehyde disinfectant and Metrix CaviCide disinfectant soaking were used for the experimental group. After soaking for 0.5h, the gypsum models were removed and placed for 0.5 h, 1 h, 2 h, 24 h. The size of the models was measured again using the same method. The data was analyzed with SPSS10.0 software package. The initial gypsum model length was (50.07±0.017) mm, (50.048±0.015) mm and (50.027±0.015) mm. After soaking for different times, the size of the model changed little, and the dimensions changed less than 0.01%. The results show that disinfectant soaking has no significant effect on dental model dimensions.
Assessment of bone biopsy needles for sample size, specimen quality and ease of use
International Nuclear Information System (INIS)
Roberts, C.C.; Liu, P.T.; Morrison, W.B.; Leslie, K.O.; Carrino, J.A.; Lozevski, J.L.
2005-01-01
To assess whether there are significant differences in ease of use and quality of samples among several bone biopsy needles currently available. Eight commonly used, commercially available bone biopsy needles of different gauges were evaluated. Each needle was used to obtain five consecutive samples from a lamb lumbar pedicle. Subjective assessment of ease of needle use, ease of sample removal from the needle and sample quality, before and after fixation, was graded on a 5-point scale. The number of attempts necessary to reach a 1 cm depth was recorded. Each biopsy specimen was measured in the gross state and after fixation. The RADI Bonopty 15 g and Kendall Monoject J-type 11 g needles were rated the easiest to use, while the Parallax Core-Assure 11 g and the Bard Ostycut 16 g were rated the most difficult. Parallax Core-Assure and Kendall Monoject needles had the highest quality specimen in the gross state; Cook Elson/Ackerman 14 g and Bard Ostycut 16 g needles yielded the lowest. The MD Tech without Trap-Lok 11 g needle had the highest quality core after fixation, while the Bard Ostycut 16 g had the lowest. There was a significant difference in pre-fixation sample length between needles (P<0.0001), despite acquiring all cores to a standard 1 cm depth. Core length and width decrease in size by an average of 28% and 42% after fixation. Bone biopsy needles vary significantly in performance. Detailed knowledge of the strengths and weaknesses of different needles is important to make an appropriate selection for each individual's practice. (orig.)
Effects of sample size on estimation of rainfall extremes at high temperatures
Boessenkool, Berry; Bürger, Gerd; Heistermann, Maik
2017-09-01
High precipitation quantiles tend to rise with temperature, following the so-called Clausius-Clapeyron (CC) scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD) fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.
Effects of sample size on estimation of rainfall extremes at high temperatures
Directory of Open Access Journals (Sweden)
B. Boessenkool
2017-09-01
Full Text Available High precipitation quantiles tend to rise with temperature, following the so-called Clausius–Clapeyron (CC scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.
The redshift distribution of cosmological samples: a forward modeling approach
Energy Technology Data Exchange (ETDEWEB)
Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina, E-mail: joerg.herbel@phys.ethz.ch, E-mail: tomasz.kacprzak@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch, E-mail: claudio.bruderer@phys.ethz.ch, E-mail: andrina.nicola@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2017-08-01
Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.
The redshift distribution of cosmological samples: a forward modeling approach
Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina
2017-08-01
Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.
The redshift distribution of cosmological samples: a forward modeling approach
International Nuclear Information System (INIS)
Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina
2017-01-01
Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.
Cloud Computing Adoption Business Model Factors: Does Enterprise Size Matter?
Bogataj Habjan, Kristina; Pucihar, Andreja
2017-01-01
This paper presents the results of research investigating the impact of business model factors on cloud computing adoption. The introduced research model consists of 40 cloud computing business model factors, grouped into eight factor groups. Their impact and importance for cloud computing adoption were investigated among enterpirses in Slovenia. Furthermore, differences in opinion according to enterprise size were investigated. Research results show no statistically significant impacts of in...
What about N? A methodological study of sample-size reporting in focus group studies.
Carlsen, Benedicte; Glenton, Claire
2011-03-11
Focus group studies are increasingly published in health related journals, but we know little about how researchers use this method, particularly how they determine the number of focus groups to conduct. The methodological literature commonly advises researchers to follow principles of data saturation, although practical advise on how to do this is lacking. Our objectives were firstly, to describe the current status of sample size in focus group studies reported in health journals. Secondly, to assess whether and how researchers explain the number of focus groups they carry out. We searched PubMed for studies that had used focus groups and that had been published in open access journals during 2008, and extracted data on the number of focus groups and on any explanation authors gave for this number. We also did a qualitative assessment of the papers with regard to how number of groups was explained and discussed. We identified 220 papers published in 117 journals. In these papers insufficient reporting of sample sizes was common. The number of focus groups conducted varied greatly (mean 8.4, median 5, range 1 to 96). Thirty seven (17%) studies attempted to explain the number of groups. Six studies referred to rules of thumb in the literature, three stated that they were unable to organize more groups for practical reasons, while 28 studies stated that they had reached a point of saturation. Among those stating that they had reached a point of saturation, several appeared not to have followed principles from grounded theory where data collection and analysis is an iterative process until saturation is reached. Studies with high numbers of focus groups did not offer explanations for number of groups. Too much data as a study weakness was not an issue discussed in any of the reviewed papers. Based on these findings we suggest that journals adopt more stringent requirements for focus group method reporting. The often poor and inconsistent reporting seen in these
What about N? A methodological study of sample-size reporting in focus group studies
Directory of Open Access Journals (Sweden)
Glenton Claire
2011-03-01
Full Text Available Abstract Background Focus group studies are increasingly published in health related journals, but we know little about how researchers use this method, particularly how they determine the number of focus groups to conduct. The methodological literature commonly advises researchers to follow principles of data saturation, although practical advise on how to do this is lacking. Our objectives were firstly, to describe the current status of sample size in focus group studies reported in health journals. Secondly, to assess whether and how researchers explain the number of focus groups they carry out. Methods We searched PubMed for studies that had used focus groups and that had been published in open access journals during 2008, and extracted data on the number of focus groups and on any explanation authors gave for this number. We also did a qualitative assessment of the papers with regard to how number of groups was explained and discussed. Results We identified 220 papers published in 117 journals. In these papers insufficient reporting of sample sizes was common. The number of focus groups conducted varied greatly (mean 8.4, median 5, range 1 to 96. Thirty seven (17% studies attempted to explain the number of groups. Six studies referred to rules of thumb in the literature, three stated that they were unable to organize more groups for practical reasons, while 28 studies stated that they had reached a point of saturation. Among those stating that they had reached a point of saturation, several appeared not to have followed principles from grounded theory where data collection and analysis is an iterative process until saturation is reached. Studies with high numbers of focus groups did not offer explanations for number of groups. Too much data as a study weakness was not an issue discussed in any of the reviewed papers. Conclusions Based on these findings we suggest that journals adopt more stringent requirements for focus group method
Zhong, Wei; Koopmeiners, Joseph S; Carlin, Bradley P
2013-11-01
Frequentist sample size determination for binary outcome data in a two-arm clinical trial requires initial guesses of the event probabilities for the two treatments. Misspecification of these event rates may lead to a poor estimate of the necessary sample size. In contrast, the Bayesian approach that considers the treatment effect to be random variable having some distribution may offer a better, more flexible approach. The Bayesian sample size proposed by (Whitehead et al., 2008) for exploratory studies on efficacy justifies the acceptable minimum sample size by a "conclusiveness" condition. In this work, we introduce a new two-stage Bayesian design with sample size reestimation at the interim stage. Our design inherits the properties of good interpretation and easy implementation from Whitehead et al. (2008), generalizes their method to a two-sample setting, and uses a fully Bayesian predictive approach to reduce an overly large initial sample size when necessary. Moreover, our design can be extended to allow patient level covariates via logistic regression, now adjusting sample size within each subgroup based on interim analyses. We illustrate the benefits of our approach with a design in non-Hodgkin lymphoma with a simple binary covariate (patient gender), offering an initial step toward within-trial personalized medicine. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Paul H; Tse, Andy C Y
2017-05-01
There are limited data on the quality of reporting of information essential for replication of the calculation as well as the accuracy of the sample size calculation. We examine the current quality of reporting of the sample size calculation in randomized controlled trials (RCTs) published in PubMed and to examine the variation in reporting across study design, study characteristics, and journal impact factor. We also reviewed the targeted sample size reported in trial registries. We reviewed and analyzed all RCTs published in December 2014 with journals indexed in PubMed. The 2014 Impact Factors for the journals were used as proxies for their quality. Of the 451 analyzed papers, 58.1% reported an a priori sample size calculation. Nearly all papers provided the level of significance (97.7%) and desired power (96.6%), and most of the papers reported the minimum clinically important effect size (73.3%). The median (inter-quartile range) of the percentage difference of the reported and calculated sample size calculation was 0.0% (IQR -4.6%;3.0%). The accuracy of the reported sample size was better for studies published in journals that endorsed the CONSORT statement and journals with an impact factor. A total of 98 papers had provided targeted sample size on trial registries and about two-third of these papers (n=62) reported sample size calculation, but only 25 (40.3%) had no discrepancy with the reported number in the trial registries. The reporting of the sample size calculation in RCTs published in PubMed-indexed journals and trial registries were poor. The CONSORT statement should be more widely endorsed. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Right-sizing statistical models for longitudinal data.
Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M
2015-12-01
Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).
Sample size clay kaolin of primary in pegmatites regions Junco Serido - PB and Equador - RN
International Nuclear Information System (INIS)
Meyer, M.F.; Sousa, J.B.M.; Sales, L.R.; Silva, P.A.S.; Lima, A.D.D.
2016-01-01
Kaolin is a clay formed mainly of kaolinite resulting from feldspar weathering or hydrothermal. This study aims to investigate the way of occurrence, kaolin particle size of the pegmatites of the Borborema Province Pegmatitic in the regions of Junco do Serido-PB and Ecuador-RN. These variables were analyzed considering granulometric intervals obtained from wet sieving of samples of pegmatite mines in the region. Kaolin was received using sieves of 200, 325, 400 and 500 mesh and the sieve fractions retained by generating statistical parameters histograms. kaolin particles are extremely fine and pass in its entirety through 500 mesh sieve. The characterization of minerals in fine fractions by diffraction of X-rays showed that the relative amount of sericite in fractions retained in sieves 400 and 500 mesh impairing the whiteness and mineralogical texture kaolin production. (author)
The Macdonald and Savage titrimetric procedure scaled down to 4 mg sized plutonium samples. P. 1
International Nuclear Information System (INIS)
Kuvik, V.; Lecouteux, C.; Doubek, N.; Ronesch, K.; Jammet, G.; Bagliano, G.; Deron, S.
1992-01-01
The original Macdonald and Savage amperometric method scaled down to milligram-sized plutonium samples was further modified. The electro-chemical process of each redox step and the end-point of the final titration were monitored potentiometrically. The method is designed to determine 4 mg of plutonium dissolved in nitric acid solution. It is suitable for the direct determination of plutonium in non-irradiated fuel with a uranium-to-plutonium ratio of up to 30. The precision and accuracy are ca. 0.05-0.1% (relative standard deviation). Although the procedure is very selective, the following species interfere: vanadyl(IV) and vanadate (almost quantitatively), neptunium (one electron exchange per mole), nitrites, fluorosilicates (milligram amounts yield a slight bias) and iodates. (author). 15 refs.; 8 figs.; 7 tabs
Dental arch dimensions, form and tooth size ratio among a Saudi sample
Directory of Open Access Journals (Sweden)
Haidi Omar
2018-01-01
Full Text Available Objectives: To determine the dental arch dimensions and arch forms in a sample of Saudi orthodontic patients, to investigate the prevalence of Bolton anterior and overall tooth size discrepancies, and to compare the effect of gender on the measured parameters. Methods: This study is a biometric analysis of dental casts of 149 young adults recruited from different orthodontic centers in Jeddah, Saudi Arabia. The dental arch dimensions were measured. The measured parameters were arch length, arch width, Bolton’s ratio, and arch form. The data were analyzed using IBM SPSS software version 22.0 (IBM Corporation, New York, USA; this cross-sectional study was conducted between April 2015 and May 2016. Results: Dental arch measurements, including inter-canine and inter-molar distance, were found to be significantly greater in males than females (p less than 0.05. The most prevalent dental arch forms were narrow tapered (50.3% and narrow ovoid (34.2%, respectively. The prevalence of tooth size discrepancy in all cases was 43.6% for anterior ratio and 24.8% for overall ratio. The mean Bolton’s anterior ratio in all malocclusion classes was 79.81%, whereas the mean Bolton’s overall ratio was 92.21%. There was no significant difference between males and females regarding Bolton’s ratio. Conclusion: The most prevalent arch form was narrow tapered, followed by narrow ovoid. Males generally had larger dental arch measurements than females, and the prevalence of tooth size discrepancy was more in Bolton’s anterior teeth ratio than in overall ratio.
Mori, T.; Moteki, N.; Ohata, S.; Koike, M.; Azuma, K. G.; Miyazaki, Y.; Kondo, Y.
2015-12-01
Black carbon (BC) is the strongest contributor to sunlight absorption among atmospheric aerosols. Quantitative understanding of wet deposition of BC, which strongly affects the spatial distribution of BC, is important to improve our understandings on climate change. We have devised a technique for measuring the masses of individual BC particles in rainwater and snow samples, as a combination of a nebulizer and a single-particle soot photometer (SP2) (Ohata et al. 2011, 2013; Schwarz et al. 2012; Mori et al. 2014). We show two important improvements in this technique: 1)We have extended the upper limit of detectable BC particle diameter from 0.9 μm to about 4.0 μm by modifying the photodetector for measuring the laser-induced incandescence signal. 2)We introduced a pneumatic nebulizer Marin-5 (Cetac Technologies Inc., Omaha, NE, USA) and experimentally confirmed its high extraction efficiency (~50%) independent of particle diameter up to 2.0 μm. Using our improved system, we simultaneously measured the size distribution of BC particles in air and rainwater in Tokyo. We observed that the size distribution of BC in rainwater was larger than that in air, indicating that large BC particles were effectively removed by precipitation. We also observed BC particles with diameters larger than 1.0 μm, indicating that further studies of wet deposition of BC will require the use of the modified SP2.
Hua, Xue; Hibar, Derrek P; Ching, Christopher R K; Boyle, Christina P; Rajagopalan, Priya; Gutman, Boris A; Leow, Alex D; Toga, Arthur W; Jack, Clifford R; Harvey, Danielle; Weiner, Michael W; Thompson, Paul M
2013-02-01
Various neuroimaging measures are being evaluated for tracking Alzheimer's disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI. Copyright © 2012 Elsevier Inc. All rights reserved.
Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.
2017-10-01
The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we
Modeling size effects on fatigue life of a zirconium-based bulk metallic glass under bending
International Nuclear Information System (INIS)
Yuan Tao; Wang Gongyao; Feng Qingming; Liaw, Peter K.; Yokoyama, Yoshihiko; Inoue, Akihisa
2013-01-01
A size effect on the fatigue-life cycles of a Zr 50 Cu 30 Al 10 Ni 10 (at.%) bulk metallic glass has been observed in the four-point-bending fatigue experiment. Under the same bending-stress condition, large-sized samples tend to exhibit longer fatigue lives than small-sized samples. This size effect on the fatigue life cannot be satisfactorily explained by the flaw-based Weibull theories. Based on the experimental results, this study explores possible approaches to modeling the size effects on the bending-fatigue life of bulk metallic glasses, and proposes two fatigue-life models based on the Weibull distribution. The first model assumes, empirically, log-linear effects of the sample thickness on the Weibull parameters. The second model incorporates the mechanistic knowledge of the fatigue behavior of metallic glasses, and assumes that the shear-band density, instead of the flaw density, has significant influence on the bending fatigue-life cycles. Promising predictive results provide evidence of the potential validity of the models and their assumptions.
Directory of Open Access Journals (Sweden)
Daniel Vasiliu
Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.
Directory of Open Access Journals (Sweden)
Shaukat S. Shahid
2016-06-01
Full Text Available In this study, we used bootstrap simulation of a real data set to investigate the impact of sample size (N = 20, 30, 40 and 50 on the eigenvalues and eigenvectors resulting from principal component analysis (PCA. For each sample size, 100 bootstrap samples were drawn from environmental data matrix pertaining to water quality variables (p = 22 of a small data set comprising of 55 samples (stations from where water samples were collected. Because in ecology and environmental sciences the data sets are invariably small owing to high cost of collection and analysis of samples, we restricted our study to relatively small sample sizes. We focused attention on comparison of first 6 eigenvectors and first 10 eigenvalues. Data sets were compared using agglomerative cluster analysis using Ward’s method that does not require any stringent distributional assumptions.
Linear Model for Optimal Distributed Generation Size Predication
Directory of Open Access Journals (Sweden)
Ahmed Al Ameri
2017-01-01
Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.
Weighted piecewise LDA for solving the small sample size problem in face verification.
Kyperountas, Marios; Tefas, Anastasios; Pitas, Ioannis
2007-03-01
A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance.
Evolutionary model of the growth and size of firms
Kaldasch, Joachim
2012-07-01
The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.
Influence of horizontal resolution and ensemble size on model performance
CSIR Research Space (South Africa)
Dalton, A
2014-10-01
Full Text Available Conference of South African Society for Atmospheric Sciences (SASAS), Potchefstroom, 1-2 October 2014 Influence of horizontal resolution and ensemble size on model performance Amaris Dalton*¹, Willem A. Landman ¹ʾ² ¹Departmen of Geography, Geo...
Finite-Size Effects for Some Bootstrap Percolation Models
Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.
The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling
Fan, Chunpeng; Zhang, Donghui
2012-01-01
Although the Kruskal-Wallis test has been widely used to analyze ordered categorical data, power and sample size methods for this test have been investigated to a much lesser extent when the underlying multinomial distributions are unknown. This article generalizes the power and sample size procedures proposed by Fan et al. ( 2011 ) for continuous data to ordered categorical data, when estimates from a pilot study are used in the place of knowledge of the true underlying distribution. Simulations show that the proposed power and sample size formulas perform well. A myelin oligodendrocyte glycoprotein (MOG) induced experimental autoimmunce encephalomyelitis (EAE) mouse study is used to demonstrate the application of the methods.
Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations
Markowich, Peter A.
2016-10-04
In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.
Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples
Directory of Open Access Journals (Sweden)
Inés Lozano-Ramos
2015-05-01
Full Text Available Renal biopsy is the gold-standard procedure to diagnose most of renal pathologies. However, this invasive method is of limited repeatability and often describes an irreversible renal damage. Urine is an easily accessible fluid and urinary extracellular vesicles (EVs may be ideal to describe new biomarkers associated with renal pathologies. Several methods to enrich EVs have been described. Most of them contain a mixture of proteins, lipoproteins and cell debris that may be masking relevant biomarkers. Here, we evaluated size-exclusion chromatography (SEC as a suitable method to isolate urinary EVs. Following a conventional centrifugation to eliminate cell debris and apoptotic bodies, urine samples were concentrated using ultrafiltration and loaded on a SEC column. Collected fractions were analysed by protein content and flow cytometry to determine the presence of tetraspanin markers (CD63 and CD9. The highest tetraspanin content was routinely detected in fractions well before the bulk of proteins eluted. These tetraspanin-peak fractions were analysed by cryo-electron microscopy (cryo-EM and nanoparticle tracking analysis revealing the presence of EVs.When analysed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, tetraspanin-peak fractions from urine concentrated samples contained multiple bands but the main urine proteins (such as Tamm–Horsfall protein were absent. Furthermore, a preliminary proteomic study of these fractions revealed the presence of EV-related proteins, suggesting their enrichment in concentrated samples. In addition, RNA profiling also showed the presence of vesicular small RNA species.To summarize, our results demonstrated that concentrated urine followed by SEC is a suitable option to isolate EVs with low presence of soluble contaminants. This methodology could permit more accurate analyses of EV-related biomarkers when further characterized by -omics technologies compared with other approaches.
Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples
Directory of Open Access Journals (Sweden)
Hyunok Oh
2003-05-01
Full Text Available In multimedia and graphics applications, data samples of nonprimitive type require significant amount of buffer memory. This paper addresses the problem of minimizing the buffer memory requirement for such applications in embedded software synthesis from graphical dataflow programs based on the synchronous dataflow (SDF model with the given execution order of nodes. We propose a memory minimization technique that separates global memory buffers from local pointer buffers: the global buffers store live data samples and the local buffers store the pointers to the global buffer entries. The proposed algorithm reduces 67% memory for a JPEG encoder, 40% for an H.263 encoder compared with unshared versions, and 22% compared with the previous sharing algorithm for the H.263 encoder. Through extensive buffer sharing optimization, we believe that automatic software synthesis from dataflow program graphs achieves the comparable code quality with the manually optimized code in terms of memory requirement.
Startsev, V. O.; Il'ichev, A. V.
2018-05-01
The effect of mechanical impact energy on the sorption and diffusion of moisture in polymer composite samples on variation of their sizes was investigated. Square samples, with sides of 40, 60, 80, and 100 mm, made of a KMKU-2m-120.E0,1 carbon-fiber and KMKS-2m.120.T10 glass-fiber plastics with different resistances to calibrated impacts, were compared. Impact loading diagrams of the samples in relation to their sizes and impact energy were analyzed. It is shown that the moisture saturation and moisture diffusion coefficient of the impact-damaged materials can be modeled by Fick's second law with account of impact energy and sample sizes.
Mevik, Kjersti; Griffin, Frances A; Hansen, Tonje E; Deilkås, Ellen T; Vonen, Barthold
2016-04-25
To investigate the impact of increasing sample of records reviewed bi-weekly with the Global Trigger Tool method to identify adverse events in hospitalised patients. Retrospective observational study. A Norwegian 524-bed general hospital trust. 1920 medical records selected from 1 January to 31 December 2010. Rate, type and severity of adverse events identified in two different samples sizes of records selected as 10 and 70 records, bi-weekly. In the large sample, 1.45 (95% CI 1.07 to 1.97) times more adverse events per 1000 patient days (39.3 adverse events/1000 patient days) were identified than in the small sample (27.2 adverse events/1000 patient days). Hospital-acquired infections were the most common category of adverse events in both the samples, and the distributions of the other categories of adverse events did not differ significantly between the samples. The distribution of severity level of adverse events did not differ between the samples. The findings suggest that while the distribution of categories and severity are not dependent on the sample size, the rate of adverse events is. Further studies are needed to conclude if the optimal sample size may need to be adjusted based on the hospital size in order to detect a more accurate rate of adverse events. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The critical domain size of stochastic population models.
Reimer, Jody R; Bonsall, Michael B; Maini, Philip K
2017-02-01
Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.
Sevelius, Jae M.
2017-01-01
Background. Transgender individuals have a gender identity that differs from the sex they were assigned at birth. The population size of transgender individuals in the United States is not well-known, in part because official records, including the US Census, do not include data on gender identity. Population surveys today more often collect transgender-inclusive gender-identity data, and secular trends in culture and the media have created a somewhat more favorable environment for transgender people. Objectives. To estimate the current population size of transgender individuals in the United States and evaluate any trend over time. Search methods. In June and July 2016, we searched PubMed, Cumulative Index to Nursing and Allied Health Literature, and Web of Science for national surveys, as well as “gray” literature, through an Internet search. We limited the search to 2006 through 2016. Selection criteria. We selected population-based surveys that used probability sampling and included self-reported transgender-identity data. Data collection and analysis. We used random-effects meta-analysis to pool eligible surveys and used meta-regression to address our hypothesis that the transgender population size estimate would increase over time. We used subsample and leave-one-out analysis to assess for bias. Main results. Our meta-regression model, based on 12 surveys covering 2007 to 2015, explained 62.5% of model heterogeneity, with a significant effect for each unit increase in survey year (F = 17.122; df = 1,10; b = 0.026%; P = .002). Extrapolating these results to 2016 suggested a current US population size of 390 adults per 100 000, or almost 1 million adults nationally. This estimate may be more indicative for younger adults, who represented more than 50% of the respondents in our analysis. Authors’ conclusions. Future national surveys are likely to observe higher numbers of transgender people. The large variety in questions used to ask
Olneck, Michael R.; Bills, David B.
1979-01-01
Birth order effects in brothers were found to derive from difference in family size. Effects for family size were found even with socioeconomic background controlled. Nor were family size effects explained by parental ability. The importance of unmeasured preferences or economic resources that vary across families was suggested. (Author/RD)
Optimum strata boundaries and sample sizes in health surveys using auxiliary variables.
Reddy, Karuna Garan; Khan, Mohammad G M; Khan, Sabiha
2018-01-01
Using convenient stratification criteria such as geographical regions or other natural conditions like age, gender, etc., is not beneficial in order to maximize the precision of the estimates of variables of interest. Thus, one has to look for an efficient stratification design to divide the whole population into homogeneous strata that achieves higher precision in the estimation. In this paper, a procedure for determining Optimum Stratum Boundaries (OSB) and Optimum Sample Sizes (OSS) for each stratum of a variable of interest in health surveys is developed. The determination of OSB and OSS based on the study variable is not feasible in practice since the study variable is not available prior to the survey. Since many variables in health surveys are generally skewed, the proposed technique considers the readily-available auxiliary variables to determine the OSB and OSS. This stratification problem is formulated into a Mathematical Programming Problem (MPP) that seeks minimization of the variance of the estimated population parameter under Neyman allocation. It is then solved for the OSB by using a dynamic programming (DP) technique. A numerical example with a real data set of a population, aiming to estimate the Haemoglobin content in women in a national Iron Deficiency Anaemia survey, is presented to illustrate the procedure developed in this paper. Upon comparisons with other methods available in literature, results reveal that the proposed approach yields a substantial gain in efficiency over the other methods. A simulation study also reveals similar results.
Directory of Open Access Journals (Sweden)
Elsa Tavernier
Full Text Available We aimed to examine the extent to which inaccurate assumptions for nuisance parameters used to calculate sample size can affect the power of a randomized controlled trial (RCT. In a simulation study, we separately considered an RCT with continuous, dichotomous or time-to-event outcomes, with associated nuisance parameters of standard deviation, success rate in the control group and survival rate in the control group at some time point, respectively. For each type of outcome, we calculated a required sample size N for a hypothesized treatment effect, an assumed nuisance parameter and a nominal power of 80%. We then assumed a nuisance parameter associated with a relative error at the design stage. For each type of outcome, we randomly drew 10,000 relative errors of the associated nuisance parameter (from empirical distributions derived from a previously published review. Then, retro-fitting the sample size formula, we derived, for the pre-calculated sample size N, the real power of the RCT, taking into account the relative error for the nuisance parameter. In total, 23%, 0% and 18% of RCTs with continuous, binary and time-to-event outcomes, respectively, were underpowered (i.e., the real power was 90%. Even with proper calculation of sample size, a substantial number of trials are underpowered or overpowered because of imprecise knowledge of nuisance parameters. Such findings raise questions about how sample size for RCTs should be determined.
Sayers, Adrian; Crowther, Michael J; Judge, Andrew; Whitehouse, Michael R; Blom, Ashley W
2017-08-28
The use of benchmarks to assess the performance of implants such as those used in arthroplasty surgery is a widespread practice. It provides surgeons, patients and regulatory authorities with the reassurance that implants used are safe and effective. However, it is not currently clear how or how many implants should be statistically compared with a benchmark to assess whether or not that implant is superior, equivalent, non-inferior or inferior to the performance benchmark of interest.We aim to describe the methods and sample size required to conduct a one-sample non-inferiority study of a medical device for the purposes of benchmarking. Simulation study. Simulation study of a national register of medical devices. We simulated data, with and without a non-informative competing risk, to represent an arthroplasty population and describe three methods of analysis (z-test, 1-Kaplan-Meier and competing risks) commonly used in surgical research. We evaluate the performance of each method using power, bias, root-mean-square error, coverage and CI width. 1-Kaplan-Meier provides an unbiased estimate of implant net failure, which can be used to assess if a surgical device is non-inferior to an external benchmark. Small non-inferiority margins require significantly more individuals to be at risk compared with current benchmarking standards. A non-inferiority testing paradigm provides a useful framework for determining if an implant meets the required performance defined by an external benchmark. Current contemporary benchmarking standards have limited power to detect non-inferiority, and substantially larger samples sizes, in excess of 3200 procedures, are required to achieve a power greater than 60%. It is clear when benchmarking implant performance, net failure estimated using 1-KM is preferential to crude failure estimated by competing risk models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No
Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun
2014-01-01
Background In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. Methods In this paper, we propose to improve the existing literature in ...
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
DEFF Research Database (Denmark)
Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin
2017-01-01
Molecular size plays an important role in dissolved organic matter (DOM) biogeochemistry, but its relationship with the fluorescent fraction of DOM (FDOM) remains poorly resolved. Here high-performance size exclusion chromatography (HPSEC) was coupled to fluorescence emission-excitation (EEM...... but not their spectral properties. Thus, in contrast to absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of DOM. The one-sample approach enables robust and independent cross-site comparisons without large-scale sampling efforts and introduces new analytical...... opportunities for elucidating the origins and biogeochemical properties of FDOM...
Towards modeling intergranular stress corrosion cracks on grain size scales
International Nuclear Information System (INIS)
Simonovski, Igor; Cizelj, Leon
2012-01-01
Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.
Micron-sized and submicron-sized aerosol deposition in a new ex vivo preclinical model.
Perinel, Sophie; Leclerc, Lara; Prévôt, Nathalie; Deville, Agathe; Cottier, Michèle; Durand, Marc; Vergnon, Jean-Michel; Pourchez, Jérémie
2016-07-07
The knowledge of where particles deposit in the respiratory tract is crucial for understanding the health effects associated with inhaled drug particles. An ex vivo study was conducted to assess regional deposition patterns (thoracic vs. extrathoracic) of radioactive polydisperse aerosols with different size ranges [0.15 μm-0.5 μm], [0.25 μm-1 μm] and [1 μm-9 μm]. SPECT/CT analyses were performed complementary in order to assess more precisely the regional deposition of aerosols within the pulmonary tract. Experiments were set using an original respiratory tract model composed of a human plastinated head connected to an ex vivo porcine pulmonary tract. The model was ventilated by passive expansion, simulating pleural depressions. Aerosol was administered during nasal breathing. Planar scintigraphies allowed to calculate the deposited aerosol fractions for particles in the three size ranges from sub-micron to micron The deposited fractions obtained, for thoracic vs. extra-thoracic regions respectively, were 89 ± 4 % vs. 11 ± 4 % for [0.15 μm-0.5 μm], 78 ± 5 % vs. 22 ± 5 % for [0.25 μm-1 μm] and 35 ± 11 % vs.65 ± 11 % for [1 μm-9 μm]. Results obtained with this new ex vivo respiratory tract model are in good agreement with the in vivo data obtained in studies with baboons and humans.
Tang, Yongqiang
2015-01-01
A sample size formula is derived for negative binomial regression for the analysis of recurrent events, in which subjects can have unequal follow-up time. We obtain sharp lower and upper bounds on the required size, which is easy to compute. The upper bound is generally only slightly larger than the required size, and hence can be used to approximate the sample size. The lower and upper size bounds can be decomposed into two terms. The first term relies on the mean number of events in each group, and the second term depends on two factors that measure, respectively, the extent of between-subject variability in event rates, and follow-up time. Simulation studies are conducted to assess the performance of the proposed method. An application of our formulae to a multiple sclerosis trial is provided.
Directory of Open Access Journals (Sweden)
Christopher Ryan Penton
2016-06-01
Full Text Available We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5 and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.
Species distribution model transferability and model grain size - finer may not always be better.
Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin
2018-05-08
Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.
Suarez Diez, M.; Saccenti, E.
2015-01-01
We investigated the effect of sample size and dimensionality on the performance of four algorithms (ARACNE, CLR, CORR, and PCLRC) when they are used for the inference of metabolite association networks. We report that as many as 100-400 samples may be necessary to obtain stable network estimations,
Shi, Guo-Liang; Tian, Ying-Ze; Ma, Tong; Song, Dan-Lin; Zhou, Lai-Dong; Han, Bo; Feng, Yin-Chang; Russell, Armistead G
2017-06-01
Long-term and synchronous monitoring of PM 10 and PM 2.5 was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way). Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-3way) to PM 10 , and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM 2.5 . Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PM 10 , and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM 2.5 . The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM 10 (12.7%) and PM 2.5 (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PM 10 (9.8%) and secondary nitrate & secondary organic carbon from ENE for PM 2.5 (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and to develop effective pollution control strategies. Copyright © 2016. Published by Elsevier B.V.
Critical analysis of consecutive unilateral cleft lip repairs: determining ideal sample size.
Power, Stephanie M; Matic, Damir B
2013-03-01
Objective : Cleft surgeons often show 10 consecutive lip repairs to reduce presentation bias, however the validity remains unknown. The purpose of this study is to determine the number of consecutive cases that represent average outcomes. Secondary objectives are to determine if outcomes correlate with cleft severity and to calculate interrater reliability. Design : Consecutive preoperative and 2-year postoperative photographs of the unilateral cleft lip-nose complex were randomized and evaluated by cleft surgeons. Parametric analysis was performed according to chronologic, consecutive order. The mean standard deviation over all raters enabled calculation of expected 95% confidence intervals around a mean tested for various sample sizes. Setting : Meeting of the American Cleft Palate-Craniofacial Association in 2009. Patients, Participants : Ten senior cleft surgeons evaluated 39 consecutive lip repairs. Main Outcome Measures : Preoperative severity and postoperative outcomes were evaluated using descriptive and quantitative scales. Results : Intraclass correlation coefficients for cleft severity and postoperative evaluations were 0.65 and 0.21, respectively. Outcomes did not correlate with cleft severity (P = .28). Calculations for 10 consecutive cases demonstrated wide 95% confidence intervals, spanning two points on both postoperative grading scales. Ninety-five percent confidence intervals narrowed within one qualitative grade (±0.30) and one point (±0.50) on the 10-point scale for 27 consecutive cases. Conclusions : Larger numbers of consecutive cases (n > 27) are increasingly representative of average results, but less practical in presentation format. Ten consecutive cases lack statistical support. Cleft surgeons showed low interrater reliability for postoperative assessments, which may reflect personal bias when evaluating another surgeon's results.
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading
Testing the quantity–quality model of fertility: Estimation using unrestricted family size models
Mogstad, Magne; Wiswall, Matthew
2016-01-01
We examine the relationship between child quantity and quality. Motivated by the theoretical ambiguity regarding the sign of the marginal effects of additional siblings on children's outcomes, our empirical model allows for an unrestricted relationship between family size and child outcomes. We find that the conclusion in Black, Devereux, and Salvanes (2005) of no family size effect does not hold after relaxing their linear specification in family size. We find nonzero effects of family size ...
Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples
Jaeger, F.; Bowe, S.; As, van H.; Schaumann, G.E.
2009-01-01
1H NMR relaxometry is used in earth science as a non-destructive and time-saving method to determine pore size distributions (PSD) in porous media with pore sizes ranging from nm to mm. This is a broader range than generally reported for results from X-ray computed tomography (X-ray CT) scanning,
Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic
2016-05-30
Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
A model of litter size distribution in cattle.
Bennett, G L; Echternkamp, S E; Gregory, K E
1998-07-01
Genetic increases in twinning of cattle could result in increased frequency of triplet or higher-order births. There are no estimates of the incidence of triplets in populations with genetic levels of twinning over 40% because these populations either have not existed or have not been documented. A model of the distribution of litter size in cattle is proposed. Empirical estimates of ovulation rate distribution in sheep were combined with biological hypotheses about the fate of embryos in cattle. Two phases of embryo loss were hypothesized. The first phase is considered to be preimplantation. Losses in this phase occur independently (i.e., the loss of one embryo does not affect the loss of the remaining embryos). The second phase occurs after implantation. The loss of one embryo in this stage results in the loss of all embryos. Fewer than 5% triplet births are predicted when 50% of births are twins and triplets. Above 60% multiple births, increased triplets accounted for most of the increase in litter size. Predictions were compared with data from 5,142 calvings by 14 groups of heifers and cows with average litter sizes ranging from 1.14 to 1.36 calves. The predicted number of triplets was not significantly different (chi2 = 16.85, df = 14) from the observed number. The model also predicted differences in conception rates. A cow ovulating two ova was predicted to have the highest conception rate in a single breeding cycle. As mean ovulation rate increased, predicted conception to one breeding cycle increased. Conception to two or three breeding cycles decreased as mean ovulation increased because late-pregnancy failures increased. An alternative model of the fate of ova in cattle based on embryo and uterine competency predicts very similar proportions of singles, twins, and triplets but different conception rates. The proposed model of litter size distribution in cattle accurately predicts the proportion of triplets found in cattle with genetically high twinning
Automated sample plan selection for OPC modeling
Casati, Nathalie; Gabrani, Maria; Viswanathan, Ramya; Bayraktar, Zikri; Jaiswal, Om; DeMaris, David; Abdo, Amr Y.; Oberschmidt, James; Krause, Andreas
2014-03-01
It is desired to reduce the time required to produce metrology data for calibration of Optical Proximity Correction (OPC) models and also maintain or improve the quality of the data collected with regard to how well that data represents the types of patterns that occur in real circuit designs. Previous work based on clustering in geometry and/or image parameter space has shown some benefit over strictly manual or intuitive selection, but leads to arbitrary pattern exclusion or selection which may not be the best representation of the product. Forming the pattern selection as an optimization problem, which co-optimizes a number of objective functions reflecting modelers' insight and expertise, has shown to produce models with equivalent quality to the traditional plan of record (POR) set but in a less time.
Reliable critical sized defect rodent model for cleft palate research.
Mostafa, Nesrine Z; Doschak, Michael R; Major, Paul W; Talwar, Reena
2014-12-01
Suitable animal models are necessary to test the efficacy of new bone grafting therapies in cleft palate surgery. Rodent models of cleft palate are available but have limitations. This study compared and modified mid-palate cleft (MPC) and alveolar cleft (AC) models to determine the most reliable and reproducible model for bone grafting studies. Published MPC model (9 × 5 × 3 mm(3)) lacked sufficient information for tested rats. Our initial studies utilizing AC model (7 × 4 × 3 mm(3)) in 8 and 16 weeks old Sprague Dawley (SD) rats revealed injury to adjacent structures. After comparing anteroposterior and transverse maxillary dimensions in 16 weeks old SD and Wistar rats, virtual planning was performed to modify MPC and AC defects dimensions, taking the adjacent structures into consideration. Modified MPC (7 × 2.5 × 1 mm(3)) and AC (5 × 2.5 × 1 mm(3)) defects were employed in 16 weeks old Wistar rats and healing was monitored by micro-computed tomography and histology. Maxillary dimensions in SD and Wistar rats were not significantly different. Preoperative virtual planning enhanced postoperative surgical outcomes. Bone healing occurred at defect margin leaving central bone void confirming the critical size nature of the modified MPC and AC defects. Presented modifications for MPC and AC models created clinically relevant and reproducible defects. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies
DEFF Research Database (Denmark)
Thompson, Wesley K.; Wang, Yunpeng; Schork, Andrew J.
2015-01-01
-wide association study (GWAS) test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via...... analytically and in simulations. We apply this approach to meta-analysis test statistics from two large GWAS, one for Crohn’s disease (CD) and the other for schizophrenia (SZ). A scale mixture of two normals distribution provides an excellent fit to the SZ nonparametric replication effect size estimates. While...... minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local...
International Nuclear Information System (INIS)
Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.
2010-01-01
Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.
Neeson, Thomas M; Van Rijn, Itai; Mandelik, Yael
2013-07-01
Ecologists and paleontologists often rely on higher taxon surrogates instead of complete inventories of biological diversity. Despite their intrinsic appeal, the performance of these surrogates has been markedly inconsistent across empirical studies, to the extent that there is no consensus on appropriate taxonomic resolution (i.e., whether genus- or family-level categories are more appropriate) or their overall usefulness. A framework linking the reliability of higher taxon surrogates to biogeographic setting would allow for the interpretation of previously published work and provide some needed guidance regarding the actual application of these surrogates in biodiversity assessments, conservation planning, and the interpretation of the fossil record. We developed a mathematical model to show how taxonomic diversity, community structure, and sampling effort together affect three measures of higher taxon performance: the correlation between species and higher taxon richness, the relative shapes and asymptotes of species and higher taxon accumulation curves, and the efficiency of higher taxa in a complementarity-based reserve-selection algorithm. In our model, higher taxon surrogates performed well in communities in which a few common species were most abundant, and less well in communities with many equally abundant species. Furthermore, higher taxon surrogates performed well when there was a small mean and variance in the number of species per higher taxa. We also show that empirically measured species-higher-taxon correlations can be partly spurious (i.e., a mathematical artifact), except when the species accumulation curve has reached an asymptote. This particular result is of considerable practical interest given the widespread use of rapid survey methods in biodiversity assessment and the application of higher taxon methods to taxa in which species accumulation curves rarely reach an asymptote, e.g., insects.
Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S
2013-04-15
Adaptive clinical trial design has been proposed as a promising new approach that may improve the drug discovery process. Proponents of adaptive sample size re-estimation promote its ability to avoid 'up-front' commitment of resources, better address the complicated decisions faced by data monitoring committees, and minimize accrual to studies having delayed ascertainment of outcomes. We investigate aspects of adaptation rules, such as timing of the adaptation analysis and magnitude of sample size adjustment, that lead to greater or lesser statistical efficiency. Owing in part to the recent Food and Drug Administration guidance that promotes the use of pre-specified sampling plans, we evaluate alternative approaches in the context of well-defined, pre-specified adaptation. We quantify the relative costs and benefits of fixed sample, group sequential, and pre-specified adaptive designs with respect to standard operating characteristics such as type I error, maximal sample size, power, and expected sample size under a range of alternatives. Our results build on others' prior research by demonstrating in realistic settings that simple and easily implemented pre-specified adaptive designs provide only very small efficiency gains over group sequential designs with the same number of analyses. In addition, we describe optimal rules for modifying the sample size, providing efficient adaptation boundaries on a variety of scales for the interim test statistic for adaptation analyses occurring at several different stages of the trial. We thus provide insight into what are good and bad choices of adaptive sampling plans when the added flexibility of adaptive designs is desired. Copyright © 2012 John Wiley & Sons, Ltd.
Bovens, M; Csesztregi, T; Franc, A; Nagy, J; Dujourdy, L
2014-01-01
The basic goal in sampling for the quantitative analysis of illicit drugs is to maintain the average concentration of the drug in the material from its original seized state (the primary sample) all the way through to the analytical sample, where the effect of particle size is most critical. The size of the largest particles of different authentic illicit drug materials, in their original state and after homogenisation, using manual or mechanical procedures, was measured using a microscope with a camera attachment. The comminution methods employed included pestle and mortar (manual) and various ball and knife mills (mechanical). The drugs investigated were amphetamine, heroin, cocaine and herbal cannabis. It was shown that comminution of illicit drug materials using these techniques reduces the nominal particle size from approximately 600 μm down to between 200 and 300 μm. It was demonstrated that the choice of 1 g increments for the primary samples of powdered drugs and cannabis resin, which were used in the heterogeneity part of our study (Part I) was correct for the routine quantitative analysis of illicit seized drugs. For herbal cannabis we found that the appropriate increment size was larger. Based on the results of this study we can generally state that: An analytical sample weight of between 20 and 35 mg of an illicit powdered drug, with an assumed purity of 5% or higher, would be considered appropriate and would generate an RSDsampling in the same region as the RSDanalysis for a typical quantitative method of analysis for the most common, powdered, illicit drugs. For herbal cannabis, with an assumed purity of 1% THC (tetrahydrocannabinol) or higher, an analytical sample weight of approximately 200 mg would be appropriate. In Part III we will pull together our homogeneity studies and particle size investigations and use them to devise sampling plans and sample preparations suitable for the quantitative instrumental analysis of the most common illicit
DEFF Research Database (Denmark)
Gerke, Oke; Poulsen, Mads Hvid; Bouchelouche, Kirsten
2009-01-01
PURPOSE: For certain cancer indications, the current patient evaluation strategy is a perfect but locally restricted gold standard procedure. If positron emission tomography/computed tomography (PET/CT) can be shown to be reliable within the gold standard region and if it can be argued that PET...... of metastasized prostate cancer. RESULTS: An added value in accuracy of PET/CT in adjacent areas can outweigh a downsized target level of accuracy in the gold standard region, justifying smaller sample sizes. CONCLUSIONS: If PET/CT provides an accuracy benefit in adjacent regions, then sample sizes can be reduced....../CT also performs well in adjacent areas, then sample sizes in accuracy studies can be reduced. PROCEDURES: Traditional standard power calculations for demonstrating sensitivities of both 80% and 90% are shown. The argument is then described in general terms and demonstrated by an ongoing study...
Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav
2018-04-01
Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.
DEFF Research Database (Denmark)
Chan, A.W.; Hrobjartsson, A.; Jorgensen, K.J.
2008-01-01
OBJECTIVE: To evaluate how often sample size calculations and methods of statistical analysis are pre-specified or changed in randomised trials. DESIGN: Retrospective cohort study. Data source Protocols and journal publications of published randomised parallel group trials initially approved...... in 1994-5 by the scientific-ethics committees for Copenhagen and Frederiksberg, Denmark (n=70). MAIN OUTCOME MEASURE: Proportion of protocols and publications that did not provide key information about sample size calculations and statistical methods; proportion of trials with discrepancies between...... of handling missing data was described in 16 protocols and 49 publications. 39/49 protocols and 42/43 publications reported the statistical test used to analyse primary outcome measures. Unacknowledged discrepancies between protocols and publications were found for sample size calculations (18/34 trials...
Ramírez, Cristian; Young, Ashley; James, Bryony; Aguilera, José M
2010-10-01
Quantitative analysis of food structure is commonly obtained by image analysis of a small portion of the material that may not be the representative of the whole sample. In order to quantify structural parameters (air cells) of 2 types of bread (bread and bagel) the concept of representative volume element (RVE) was employed. The RVE for bread, bagel, and gelatin-gel (used as control) was obtained from the relationship between sample size and the coefficient of variation, calculated from the apparent Young's modulus measured on 25 replicates. The RVE was obtained when the coefficient of variation for different sample sizes converged to a constant value. In the 2 types of bread tested, the tendency of the coefficient of variation was to decrease as the sample size increased, while in the homogeneous gelatin-gel, it remained always constant around 2.3% to 2.4%. The RVE resulted to be cubes with sides of 45 mm for bread, 20 mm for bagels, and 10 mm for gelatin-gel (smallest sample tested). The quantitative image analysis as well as visual observation demonstrated that bread presented the largest dispersion of air-cell sizes. Moreover, both the ratio of maximum air-cell area/image area and maximum air-cell height/image height were greater for bread (values of 0.05 and 0.30, respectively) than for bagels (0.03 and 0.20, respectively). Therefore, the size and the size variation of air cells present in the structure determined the size of the RVE. It was concluded that RVE is highly dependent on the heterogeneity of the structure of the types of baked products.
Various verifying tests using full size partial models of PCCV
International Nuclear Information System (INIS)
Nagata, Kaoru; Fukihara, Masaaki; Takemoto, Yasushi.
1987-01-01
The prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. was adopted for the first time in Japan, and the necessity of experimental verification was pointed out about a number of items in the design and construction. In this report, the various tests carried out with full size models are described. The tendon system adopted for this PCCV is BBRV type, in which PC wires are bundled in parallel to make cables, and involves many matters inexperienced in Japan, such as the stretching capacity is as large as 1000 t class, the longest cable is 160 m, and it is the unbonded system of injecting rust inhibitor. It was demanded to confirm by testing the propriety of the small coefficient of friction at the time of stretching tendons. For the tests, the materials, equipment and their size were prepared all as those for actual works. The test works became the rehearsal of the actual prestressing works. Besides, by utilizing these full size test beds, the workability test on concrete at the time of their construction, the confirmation test on tendon strength and the safety of concrete at fixing part at the time of friction test, thereafter, greasing test, the simulation test of in-service inspection, and the thermal loading test on liners were carried out. The results of these tests are briefly reported. (Kako, I.)
Willie, Jacob; Petre, Charles-Albert; Tagg, Nikki; Lens, Luc
2012-11-01
Data from forest herbaceous plants in a site of known species richness in Cameroon were used to test the performance of rarefaction and eight species richness estimators (ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap and MM). Bias, accuracy, precision and sensitivity to patchiness and sample grain size were the evaluation criteria. An evaluation of the effects of sampling effort and patchiness on diversity estimation is also provided. Stems were identified and counted in linear series of 1-m2 contiguous square plots distributed in six habitat types. Initially, 500 plots were sampled in each habitat type. The sampling process was monitored using rarefaction and a set of richness estimator curves. Curves from the first dataset suggested adequate sampling in riparian forest only. Additional plots ranging from 523 to 2143 were subsequently added in the undersampled habitats until most of the curves stabilized. Jack1 and ICE, the non-parametric richness estimators, performed better, being more accurate and less sensitive to patchiness and sample grain size, and significantly reducing biases that could not be detected by rarefaction and other estimators. This study confirms the usefulness of non-parametric incidence-based estimators, and recommends Jack1 or ICE alongside rarefaction while describing taxon richness and comparing results across areas sampled using similar or different grain sizes. As patchiness varied across habitat types, accurate estimations of diversity did not require the same number of plots. The number of samples needed to fully capture diversity is not necessarily the same across habitats, and can only be known when taxon sampling curves have indicated adequate sampling. Differences in observed species richness between habitats were generally due to differences in patchiness, except between two habitats where they resulted from differences in abundance. We suggest that communities should first be sampled thoroughly using appropriate taxon sampling
Directory of Open Access Journals (Sweden)
Peng-Cheng Yao
Full Text Available Environmental conditions in coastal salt marsh habitats have led to the development of specialist genetic adaptations. We evaluated six DNA barcode loci of the 53 species of Poaceae and 15 species of Chenopodiaceae from China's coastal salt marsh area and inland area. Our results indicate that the optimum DNA barcode was ITS for coastal salt-tolerant Poaceae and matK for the Chenopodiaceae. Sampling strategies for ten common species of Poaceae and Chenopodiaceae were analyzed according to optimum barcode. We found that by increasing the number of samples collected from the coastal salt marsh area on the basis of inland samples, the number of haplotypes of Arundinella hirta, Digitaria ciliaris, Eleusine indica, Imperata cylindrica, Setaria viridis, and Chenopodium glaucum increased, with a principal coordinate plot clearly showing increased distribution points. The results of a Mann-Whitney test showed that for Digitaria ciliaris, Eleusine indica, Imperata cylindrica, and Setaria viridis, the distribution of intraspecific genetic distances was significantly different when samples from the coastal salt marsh area were included (P < 0.01. These results suggest that increasing the sample size in specialist habitats can improve measurements of intraspecific genetic diversity, and will have a positive effect on the application of the DNA barcodes in widely distributed species. The results of random sampling showed that when sample size reached 11 for Chloris virgata, Chenopodium glaucum, and Dysphania ambrosioides, 13 for Setaria viridis, and 15 for Eleusine indica, Imperata cylindrica and Chenopodium album, average intraspecific distance tended to reach stability. These results indicate that the sample size for DNA barcode of globally distributed species should be increased to 11-15.
Page, G P; Amos, C I; Boerwinkle, E
1998-04-01
We present a test statistic, the quantitative LOD (QLOD) score, for the testing of both linkage and exclusion of quantitative-trait loci in randomly selected human sibships. As with the traditional LOD score, the boundary values of 3, for linkage, and -2, for exclusion, can be used for the QLOD score. We investigated the sample sizes required for inferring exclusion and linkage, for various combinations of linked genetic variance, total heritability, recombination distance, and sibship size, using fixed-size sampling. The sample sizes required for both linkage and exclusion were not qualitatively different and depended on the percentage of variance being linked or excluded and on the total genetic variance. Information regarding linkage and exclusion in sibships larger than size 2 increased as approximately all possible pairs n(n-1)/2 up to sibships of size 6. Increasing the recombination (theta) distance between the marker and the trait loci reduced empirically the power for both linkage and exclusion, as a function of approximately (1-2theta)4.
Feng, Dai; Cortese, Giuliana; Baumgartner, Richard
2017-12-01
The receiver operating characteristic (ROC) curve is frequently used as a measure of accuracy of continuous markers in diagnostic tests. The area under the ROC curve (AUC) is arguably the most widely used summary index for the ROC curve. Although the small sample size scenario is common in medical tests, a comprehensive study of small sample size properties of various methods for the construction of the confidence/credible interval (CI) for the AUC has been by and large missing in the literature. In this paper, we describe and compare 29 non-parametric and parametric methods for the construction of the CI for the AUC when the number of available observations is small. The methods considered include not only those that have been widely adopted, but also those that have been less frequently mentioned or, to our knowledge, never applied to the AUC context. To compare different methods, we carried out a simulation study with data generated from binormal models with equal and unequal variances and from exponential models with various parameters and with equal and unequal small sample sizes. We found that the larger the true AUC value and the smaller the sample size, the larger the discrepancy among the results of different approaches. When the model is correctly specified, the parametric approaches tend to outperform the non-parametric ones. Moreover, in the non-parametric domain, we found that a method based on the Mann-Whitney statistic is in general superior to the others. We further elucidate potential issues and provide possible solutions to along with general guidance on the CI construction for the AUC when the sample size is small. Finally, we illustrate the utility of different methods through real life examples.
Volatile and non-volatile elements in grain-size separated samples of Apollo 17 lunar soils
International Nuclear Information System (INIS)
Giovanoli, R.; Gunten, H.R. von; Kraehenbuehl, U.; Meyer, G.; Wegmueller, F.; Gruetter, A.; Wyttenbach, A.
1977-01-01
Three samples of Apollo 17 lunar soils (75081, 72501 and 72461) were separated into 9 grain-size fractions between 540 and 1 μm mean diameter. In order to detect mineral fractionations caused during the separation procedures major elements were determined by instrumental neutron activation analyses performed on small aliquots of the separated samples. Twenty elements were measured in each size fraction using instrumental and radiochemical neutron activation techniques. The concentration of the main elements in sample 75081 does not change with the grain-size. Exceptions are Fe and Ti which decrease slightly and Al which increases slightly with the decrease in the grain-size. These changes in the composition in main elements suggest a decrease in Ilmenite and an increase in Anorthite with decreasing grain-size. However, it can be concluded that the mineral composition of the fractions changes less than a factor of 2. Samples 72501 and 72461 are not yet analyzed for the main elements. (Auth.)
DEFF Research Database (Denmark)
Kostoulas, P.; Nielsen, Søren Saxmose; Browne, W. J.
2013-01-01
and power when applied to these groups. We propose the use of the variance partition coefficient (VPC), which measures the clustering of infection/disease for individuals with a common risk profile. Sample size estimates are obtained separately for those groups that exhibit markedly different heterogeneity......, thus, optimizing resource allocation. A VPC-based predictive simulation method for sample size estimation to substantiate freedom from disease is presented. To illustrate the benefits of the proposed approach we give two examples with the analysis of data from a risk factor study on Mycobacterium avium...
Fiedler, Klaus; Kareev, Yaakov; Avrahami, Judith; Beier, Susanne; Kutzner, Florian; Hütter, Mandy
2016-01-01
Detecting changes, in performance, sales, markets, risks, social relations, or public opinions, constitutes an important adaptive function. In a sequential paradigm devised to investigate detection of change, every trial provides a sample of binary outcomes (e.g., correct vs. incorrect student responses). Participants have to decide whether the proportion of a focal feature (e.g., correct responses) in the population from which the sample is drawn has decreased, remained constant, or increased. Strong and persistent anomalies in change detection arise when changes in proportional quantities vary orthogonally to changes in absolute sample size. Proportional increases are readily detected and nonchanges are erroneously perceived as increases when absolute sample size increases. Conversely, decreasing sample size facilitates the correct detection of proportional decreases and the erroneous perception of nonchanges as decreases. These anomalies are however confined to experienced samples of elementary raw events from which proportions have to be inferred inductively. They disappear when sample proportions are described as percentages in a normalized probability format. To explain these challenging findings, it is essential to understand the inductive-learning constraints imposed on decisions from experience.
Cosmic structure sizes in generic dark energy models
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Sourav [Indian Institute of Technology Ropar, Department of Physics, Rupnagar, Punjab (India); Tomaras, Theodore N. [ITCP and Department of Physics, University of Crete, Heraklion (Greece)
2017-08-15
The maximum allowable size of a spherical cosmic structure as a function of its mass is determined by the maximum turn around radius R{sub TA,max}, the distance from its center where the attraction on a radial test particle due to the spherical mass is balanced with the repulsion due to the ambient dark energy. In this work, we extend the existing results in several directions. (a) We first show that, for w ≠ -1, the expression for R{sub TA,max} found earlier, using the cosmological perturbation theory, can be derived using a static geometry as well. (b) In the generic dark energy model with arbitrary time dependent state parameter w(t), taking into account the effect of inhomogeneities upon the dark energy as well, it is shown that the data constrain w(t = today) > -2.3. (c) We address the quintessence and the generalized Chaplygin gas models, both of which are shown to predict structure sizes consistent with observations. (orig.)
Directory of Open Access Journals (Sweden)
Simon Boitard
2016-03-01
Full Text Available Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey, PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.
Zeder, M; Van den Wyngaert, S; Köster, O; Felder, K M; Pernthaler, J
2010-01-01
Quantification and sizing of filamentous cyanobacteria in environmental samples or cultures are time-consuming and are often performed by using manual or semiautomated microscopic analysis. Automation of conventional image analysis is difficult because filaments may exhibit great variations in length and patchy autofluorescence. Moreover, individual filaments frequently cross each other in microscopic preparations, as deduced by modeling. This paper describes a novel approach based on object-...
The MIDAS Touch: Mixed Data Sampling Regression Models
Ghysels, Eric; Santa-Clara, Pedro; Valkanov, Rossen
2004-01-01
We introduce Mixed Data Sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Technically speaking MIDAS models specify conditional expectations as a distributed lag of regressors recorded at some higher sampling frequencies. We examine the asymptotic properties of MIDAS regression estimation and compare it with traditional distributed lag models. MIDAS regressions have wide applicability in macroeconomics and ï¿½nance.
Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling
International Nuclear Information System (INIS)
Liang, Z.Y.; De Hosson, J.T.M.; Huang, M.X.
2017-01-01
In addition to slip by dislocation glide, deformation twinning in small-sized metallic crystals also exhibits size effect, namely the twinning stress increases with decreasing sample size. In order to understand the underpinning mechanisms responsible for such effect, systematic experiments were carried out on the small-sized single-crystalline pillars of a twinning-induced plasticity steel with a face-centred cubic structure. The flow stress increases considerably with decreasing pillar diameter from 3 to 0.5 μm, demonstrating a substantial size effect with a power exponent of 0.43. Detailed microstructural characterization reveals that the plastic deformation of the present pillars is dominant by twinning, primarily via twin growth, indicating that the size effect should be related to deformation twinning instead of slip by dislocation glide. Subsequent modelling works indicate that twinning can be accomplished by the dissociation of the ion-radiation-induced vacancy Frank loops in the damaged subsurface layer of the pillars, and the size effect is attributed to the ion-radiation-induced compressive stress in the subsurface layer, which decreases with pillar diameter.
Size effects in ductile cellular solids. Part I : modeling
Onck, P.R.; Andrews, E.W.; Gibson, L.J.
2001-01-01
In the mechanical testing of metallic foams, an important issue is the effect of the specimen size, relative to the cell size, on the measured properties. Here we analyze size effects for the modulus and strength of regular, hexagonal honeycombs under uniaxial and shear loadings. Size effects for
(I Can’t Get No) Saturation: A simulation and guidelines for sample sizes in qualitative research
2017-01-01
I explore the sample size in qualitative research that is required to reach theoretical saturation. I conceptualize a population as consisting of sub-populations that contain different types of information sources that hold a number of codes. Theoretical saturation is reached after all the codes in the population have been observed once in the sample. I delineate three different scenarios to sample information sources: “random chance,” which is based on probability sampling, “minimal information,” which yields at least one new code per sampling step, and “maximum information,” which yields the largest number of new codes per sampling step. Next, I use simulations to assess the minimum sample size for each scenario for systematically varying hypothetical populations. I show that theoretical saturation is more dependent on the mean probability of observing codes than on the number of codes in a population. Moreover, the minimal and maximal information scenarios are significantly more efficient than random chance, but yield fewer repetitions per code to validate the findings. I formulate guidelines for purposive sampling and recommend that researchers follow a minimum information scenario. PMID:28746358
(I Can't Get No) Saturation: A simulation and guidelines for sample sizes in qualitative research.
van Rijnsoever, Frank J
2017-01-01
I explore the sample size in qualitative research that is required to reach theoretical saturation. I conceptualize a population as consisting of sub-populations that contain different types of information sources that hold a number of codes. Theoretical saturation is reached after all the codes in the population have been observed once in the sample. I delineate three different scenarios to sample information sources: "random chance," which is based on probability sampling, "minimal information," which yields at least one new code per sampling step, and "maximum information," which yields the largest number of new codes per sampling step. Next, I use simulations to assess the minimum sample size for each scenario for systematically varying hypothetical populations. I show that theoretical saturation is more dependent on the mean probability of observing codes than on the number of codes in a population. Moreover, the minimal and maximal information scenarios are significantly more efficient than random chance, but yield fewer repetitions per code to validate the findings. I formulate guidelines for purposive sampling and recommend that researchers follow a minimum information scenario.
van Rijnsoever, F.J.
2015-01-01
This paper explores the sample size in qualitative research that is required to reach theoretical saturation. I conceptualize a population as consisting of sub-populations that contain different types of information sources that hold a number of codes. Theoretical saturation is reached after all the
(I Can’t Get No) Saturation: A simulation and guidelines for sample sizes in qualitative research
van Rijnsoever, Frank J.
2017-01-01
I explore the sample size in qualitative research that is required to reach theoretical saturation. I conceptualize a population as consisting of sub-populations that contain different types of information sources that hold a number of codes. Theoretical saturation is reached after all the codes in
Heymann, D.; Lakatos, S.; Walton, J. R.
1973-01-01
Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.
Tang, Yongqiang
2017-05-25
We derive the sample size formulae for comparing two negative binomial rates based on both the relative and absolute rate difference metrics in noninferiority and equivalence trials with unequal follow-up times, and establish an approximate relationship between the sample sizes required for the treatment comparison based on the two treatment effect metrics. The proposed method allows the dispersion parameter to vary by treatment groups. The accuracy of these methods is assessed by simulations. It is demonstrated that ignoring the between-subject variation in the follow-up time by setting the follow-up time for all individuals to be the mean follow-up time may greatly underestimate the required size, resulting in underpowered studies. Methods are provided for back-calculating the dispersion parameter based on the published summary results.
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter; Sali, Andrej
2017-12-05
Modeling of macromolecular structures involves structural sampling guided by a scoring function, resulting in an ensemble of good-scoring models. By necessity, the sampling is often stochastic, and must be exhaustive at a precision sufficient for accurate modeling and assessment of model uncertainty. Therefore, the very first step in analyzing the ensemble is an estimation of the highest precision at which the sampling is exhaustive. Here, we present an objective and automated method for this task. As a proxy for sampling exhaustiveness, we evaluate whether two independently and stochastically generated sets of models are sufficiently similar. The protocol includes testing 1) convergence of the model score, 2) whether model scores for the two samples were drawn from the same parent distribution, 3) whether each structural cluster includes models from each sample proportionally to its size, and 4) whether there is sufficient structural similarity between the two model samples in each cluster. The evaluation also provides the sampling precision, defined as the smallest clustering threshold that satisfies the third, most stringent test. We validate the protocol with the aid of enumerated good-scoring models for five illustrative cases of binary protein complexes. Passing the proposed four tests is necessary, but not sufficient for thorough sampling. The protocol is general in nature and can be applied to the stochastic sampling of any set of models, not just structural models. In addition, the tests can be used to stop stochastic sampling as soon as exhaustiveness at desired precision is reached, thereby improving sampling efficiency; they may also help in selecting a model representation that is sufficiently detailed to be informative, yet also sufficiently coarse for sampling to be exhaustive. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION
Energy Technology Data Exchange (ETDEWEB)
Martino, C.; Herman, D.; Pike, J.; Peters, T.
2014-06-05
Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.
Basic distribution free identification tests for small size samples of environmental data
International Nuclear Information System (INIS)
Federico, A.G.; Musmeci, F.
1998-01-01
Testing two or more data sets for the hypothesis that they are sampled form the same population is often required in environmental data analysis. Typically the available samples have a small number of data and often then assumption of normal distributions is not realistic. On the other hand the diffusion of the days powerful Personal Computers opens new possible opportunities based on a massive use of the CPU resources. The paper reviews the problem introducing the feasibility of two non parametric approaches based on intrinsic equi probability properties of the data samples. The first one is based on a full re sampling while the second is based on a bootstrap approach. A easy to use program is presented. A case study is given based on the Chernobyl children contamination data [it
Queuing theory models used for port equipment sizing
Dragu, V.; Dinu, O.; Ruscă, A.; Burciu, Ş.; Roman, E. A.
2017-08-01
The significant growth of volumes and distances on road transportation led to the necessity of finding solutions to increase water transportation market share together with the handling and transfer technologies within its terminals. It is widely known that the biggest times are consumed within the transport terminals (loading/unloading/transfer) and so the necessity of constantly developing handling techniques and technologies in concordance with the goods flows size so that the total waiting time of ships within ports is reduced. Port development should be achieved by harmonizing the contradictory interests of port administration and users. Port administrators aim profit increase opposite to users that want savings by increasing consumers’ surplus. The difficulty consists in the fact that the transport demand - supply equilibrium must be realised at costs and goods quantities transiting the port in order to satisfy the interests of both parties involved. This paper presents a port equipment sizing model by using queueing theory so that the sum of costs for ships waiting operations and equipment usage would be minimum. Ship operation within the port is assimilated to a mass service waiting system in which parameters are later used to determine the main costs for ships and port equipment.
Particle size - An important factor in environmental consequence modeling
International Nuclear Information System (INIS)
Yuan, Y.C.; MacFarlane, D.
1991-01-01
Most available environmental transport and dosimetry codes for radiological consequence analysis are designed primarily for estimating dose and health consequences to specific off-site individuals as well as the population as a whole from nuclear facilities operating under either normal or accident conditions. Models developed for these types of analyses are generally based on assumptions that the receptors are at great distances (several kilometers), and the releases are prolonged and filtered. This allows the use of simplified approaches such as averaged meteorological conditions and the use of a single (small) particle size for atmospheric transport and dosimetry analysis. Source depletion from particle settling, settle-out, and deposition is often ignored. This paper estimates the effects of large particles on the resulting dose consequences from an atmospheric release. The computer program AI-RISK has been developed to perform multiparticle-sized atmospheric transport, dose, and pathway analyses for estimating potential human health consequences from the accidental release of radioactive materials. The program was originally developed to facilitate comprehensive analyses of health consequences, ground contamination, and cleanup associated with possible energetic chemical reactions in high-level radioactive waste (HLW) tanks at a US Department of Energy site
Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA
Kelly, Brendan J.; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D.; Collman, Ronald G.; Bushman, Frederic D.; Li, Hongzhe
2015-01-01
Motivation: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence–absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-...
Chen, Xiao; Lu, Bin; Yan, Chao-Gan
2018-01-01
Concerns regarding reproducibility of resting-state functional magnetic resonance imaging (R-fMRI) findings have been raised. Little is known about how to operationally define R-fMRI reproducibility and to what extent it is affected by multiple comparison correction strategies and sample size. We comprehensively assessed two aspects of reproducibility, test-retest reliability and replicability, on widely used R-fMRI metrics in both between-subject contrasts of sex differences and within-subject comparisons of eyes-open and eyes-closed (EOEC) conditions. We noted permutation test with Threshold-Free Cluster Enhancement (TFCE), a strict multiple comparison correction strategy, reached the best balance between family-wise error rate (under 5%) and test-retest reliability/replicability (e.g., 0.68 for test-retest reliability and 0.25 for replicability of amplitude of low-frequency fluctuations (ALFF) for between-subject sex differences, 0.49 for replicability of ALFF for within-subject EOEC differences). Although R-fMRI indices attained moderate reliabilities, they replicated poorly in distinct datasets (replicability < 0.3 for between-subject sex differences, < 0.5 for within-subject EOEC differences). By randomly drawing different sample sizes from a single site, we found reliability, sensitivity and positive predictive value (PPV) rose as sample size increased. Small sample sizes (e.g., < 80 [40 per group]) not only minimized power (sensitivity < 2%), but also decreased the likelihood that significant results reflect "true" effects (PPV < 0.26) in sex differences. Our findings have implications for how to select multiple comparison correction strategies and highlight the importance of sufficiently large sample sizes in R-fMRI studies to enhance reproducibility. Hum Brain Mapp 39:300-318, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Influence sample sizing of citrus hystrix essential oil from hydrodistillation extraction
Yahya, A.; Amadi, I.; Hashib, S. A.; Mustapha, F. A.
2018-03-01
Essential oil extracted from kaffir lime leaves through hydrodistillation. The objective of this study is to quantify the oil production rate by identify the significant influence of particle size on kaffir lime leaves. Kaffir lime leaves were ground and separated by using siever into 90, 150, 300 μm and other kaffir lime leaves. The mean essential oil yield of 0.87, 0.52, 0.41 and 0.3% was obtained. 90 μm of ground gives the highest yield compared to other sizes. Thus, it can be concluded that in quantifying oil production rate, the relevance of different size of particle is clearly affects the amount of oil yield. In analysing the composition of kaffir lime essential oil using GC-MS, there were 38 compounds found in the essential oil. Some of the major compounds of the kaffir lime leave oils were detected while some are not, may due to oil experience thermal degradation which consequently losing some significant compounds in controlled temperature.
Simulation Models to Size and Retrofit District Heating Systems
Directory of Open Access Journals (Sweden)
Kevin Sartor
2017-12-01
Full Text Available District heating networks are considered as convenient systems to supply heat to consumers while reducing CO 2 emissions and increasing renewable energies use. However, to make them as profitable as possible, they have to be developed, operated and sized carefully. In order to cope with these objectives, simulation tools are required to analyze several configuration schemes and control methods. Indeed, the most common problems are heat losses, the electric pump consumption and the peak heat demand while ensuring the comfort of the users. In this contribution, a dynamic simulation model of all the components of the network is described. It is dedicated to assess some energetic, environmental and economic indicators. Finally, the methodology is used on an existing application test case namely the district heating network of the University of Liège to study the pump control and minimize the district heating network heat losses.
Glottal aerodynamics in compliant, life-sized vocal fold models
McPhail, Michael; Dowell, Grant; Krane, Michael
2013-11-01
This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.
International Nuclear Information System (INIS)
John L. Bowen; Rowena Gonzalez; David S. Shafer
2001-01-01
As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site
Directory of Open Access Journals (Sweden)
Aidan G. O’Keeffe
2017-12-01
Full Text Available Abstract Background In healthcare research, outcomes with skewed probability distributions are common. Sample size calculations for such outcomes are typically based on estimates on a transformed scale (e.g. log which may sometimes be difficult to obtain. In contrast, estimates of median and variance on the untransformed scale are generally easier to pre-specify. The aim of this paper is to describe how to calculate a sample size for a two group comparison of interest based on median and untransformed variance estimates for log-normal outcome data. Methods A log-normal distribution for outcome data is assumed and a sample size calculation approach for a two-sample t-test that compares log-transformed outcome data is demonstrated where the change of interest is specified as difference in median values on the untransformed scale. A simulation study is used to compare the method with a non-parametric alternative (Mann-Whitney U test in a variety of scenarios and the method is applied to a real example in neurosurgery. Results The method attained a nominal power value in simulation studies and was favourable in comparison to a Mann-Whitney U test and a two-sample t-test of untransformed outcomes. In addition, the method can be adjusted and used in some situations where the outcome distribution is not strictly log-normal. Conclusions We recommend the use of this sample size calculation approach for outcome data that are expected to be positively skewed and where a two group comparison on a log-transformed scale is planned. An advantage of this method over usual calculations based on estimates on the log-transformed scale is that it allows clinical efficacy to be specified as a difference in medians and requires a variance estimate on the untransformed scale. Such estimates are often easier to obtain and more interpretable than those for log-transformed outcomes.
International Nuclear Information System (INIS)
Dobos, E.; Borbely-Kiss, I.; Kertesz, Zs.; Szabo, Gy.; Salma, I.
2004-01-01
Complete text of publication follows. Atmospheric aerosol samples were collected in a sampling campaign from 24 July to 1 Au- gust, 2003 in Hungary. The sampling were performed in two places simultaneously: in Budapest (urban site) and K-puszta (remote area). Two PIXE International 7-stage cascade impactors were used for aerosol sampling with 24 hours duration. These impactors separate the aerosol into 7 size ranges. The elemental concentrations of the samples were obtained by proton-induced X-ray Emission (PIXE) analysis. Size distributions of S, Si, Ca, W, Zn, Pb and Fe elements were investigated in K-puszta and in Budapest. Average rates (shown in Table 1) of the elemental concentrations was calculated for each stage (in %) from the obtained distributions. The elements can be grouped into two parts on the basis of these data. The majority of the particle containing Fe, Si, Ca, (Ti) are in the 2-8 μm size range (first group). These soil origin elements were found usually in higher concentration in Budapest than in K-puszta (Fig.1.). The second group consisted of S, Pb and (W). The majority of these elements was found in the 0.25-1 μm size range and was much higher in Budapest than in K-puszta. W was measured only in samples collected in Budapest. Zn has uniform distribution in Budapest and does not belong to the above mentioned groups. This work was supported by the National Research and Development Program (NRDP 3/005/2001). (author)
An Improved Nested Sampling Algorithm for Model Selection and Assessment
Zeng, X.; Ye, M.; Wu, J.; WANG, D.
2017-12-01
Multimodel strategy is a general approach for treating model structure uncertainty in recent researches. The unknown groundwater system is represented by several plausible conceptual models. Each alternative conceptual model is attached with a weight which represents the possibility of this model. In Bayesian framework, the posterior model weight is computed as the product of model prior weight and marginal likelihood (or termed as model evidence). As a result, estimating marginal likelihoods is crucial for reliable model selection and assessment in multimodel analysis. Nested sampling estimator (NSE) is a new proposed algorithm for marginal likelihood estimation. The implementation of NSE comprises searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm and its variants are often used for local sampling in NSE. However, M-H is not an efficient sampling algorithm for high-dimensional or complex likelihood function. For improving the performance of NSE, it could be feasible to integrate more efficient and elaborated sampling algorithm - DREAMzs into the local sampling. In addition, in order to overcome the computation burden problem of large quantity of repeating model executions in marginal likelihood estimation, an adaptive sparse grid stochastic collocation method is used to build the surrogates for original groundwater model.
Sample size and saturation in PhD studies using qualitative interviews
Mason, Mark
2010-01-01
Sample-Größen sind in qualitativen Forschungsarbeiten von verschiedenen Einflüssen abhängig. Das Leitprinzip sollte jedoch immer die Sättigung, bezogen auf das jeweilige Forschungsthema sein. Diese Frage, mit der sich viele Autor/innen beschäftigt haben, wird weiter heiß diskutiert und – so einige – kaum hinreichend verstanden. Für eine eigene Untersuchung habe ich ein Sample von PhD-Studien, in denen qualitative Interviews als Erhebungsmethode genutzt wurde, aus theses.com gezogen und ...
Determination of samples with TSP size at PLTU Pacitan, Jawa Timur have been done
International Nuclear Information System (INIS)
Rusmanto, Tri; Mulyono; Irianto, Bambang
2013-01-01
Sampling is done using equipment High Volume Air Sampler (HVAS) and analysis using gamma spectrometer. Sampling at 3 locations, each location of the sampling carried out 24 hours, air samples on filter conditioned at room temperature, weighed to a contained weight, counting for 24 hours with gamma spectrometer. The result of qualitative and quantitative analysis of filter TSP was contained of locations I Ra-226 = 0,000888 Bq/m 3 , Pb-212 = 0,000356 Bq/m 3 , Pb-214 = 0,000859 Bq/m 3 , Bi-214 = 0,000712 Bq/m 3 , Ac-228 = 0,004447 Bq/m 3 , K-40 = 0,035454 Bq/m 3 ) , Locations II Ra-226 = 0,00113 Bq/m 3 , Pb-212 = 0,00079 Bq/m 3 , Pb-214 = 0,001351 Bq/m 3 , Bi-214 = 0,000433 Bq/m 3 , Ac-228 = 0,007138 Bq/m 3 , K-40 = 0,018532 Bq/m 3 , Locations III Ra-226 = 0,001424 Bq/m 3 , Pb-212 = 0,000208 Bq/m 3 , Pb-214 = 000052 Bq/m 3 , Bi-214 = 0,001408 Bq/m 3 , Ac-228 = 0,008362 Bq/m 3 , K-40 = 0,020536 Bq/m 3 . Radionuclides activity was all still below quality of air enabled by BAPETEN. Become the activities of ambient air of PLTU area still be peaceful enough as settlement area. (author)
Directory of Open Access Journals (Sweden)
Manan Gupta
Full Text Available Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates
In vitro rumen feed degradability assessed with DaisyII and batch culture: effect of sample size
Directory of Open Access Journals (Sweden)
Stefano Schiavon
2010-01-01
Full Text Available In vitro degradability with DaisyII (D equipment is commonly performed with 0.5g of feed sample into each filter bag. Literature reported that a reduction of the ratio of sample size to bag surface could facilitate the release of soluble or fine particulate. A reduction of sample size to 0.25 g could improve the correlation between the measurements provided by D and the conventional batch culture (BC. This hypothesis was screened by analysing the results of 2 trials. In trial 1, 7 feeds were incubated for 48h with rumen fluid (3 runs x 4 replications both with D (0.5g/bag and BC; the regressions between the mean values provided for the various feeds in each run by the 2 methods either for NDF (NDFd and in vitro true DM (IVTDMD degradability, had R2 of 0.75 and 0.92 and RSD of 10.9 and 4.8%, respectively. In trial 2, 4 feeds were incubated (2 runs x 8 replications with D (0.25 g/bag and BC; the corresponding regressions for NDFd and IVTDMD showed R2 of 0.94 and 0.98 and RSD of 3.0 and 1.3%, respectively. A sample size of 0.25 g improved the precision of the measurements obtained with D.
Lachin, John M; McGee, Paula L; Greenbaum, Carla J; Palmer, Jerry; Pescovitz, Mark D; Gottlieb, Peter; Skyler, Jay
2011-01-01
Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet), repeated 2-hour Mixed Meal Tolerance Tests (MMTT) were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC) of the C-peptide values. The natural log(x), log(x+1) and square-root (√x) transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years) and adults (18+ years). The sample size needed to detect a given relative (percentage) difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1) and √x transformed values in terms of the original units of measurement (pmol/ml). Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab) versus masked placebo. These results provide the information needed to accurately
Directory of Open Access Journals (Sweden)
John M Lachin
Full Text Available Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet, repeated 2-hour Mixed Meal Tolerance Tests (MMTT were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC of the C-peptide values. The natural log(x, log(x+1 and square-root (√x transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years and adults (18+ years. The sample size needed to detect a given relative (percentage difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1 and √x transformed values in terms of the original units of measurement (pmol/ml. Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab versus masked placebo. These results provide the information needed to
DEFF Research Database (Denmark)
Kiil, Søren; Johnsson, Jan Erik; Dam-Johansen, Kim
1999-01-01
Danish limestone types with very different particle size distributions (PSDs). All limestones were of a high purity. Model predictions were found to be qualitatively in good agreement with experimental data without any use of adjustable parameters. Deviations between measurements and simulations were...... attributed primarily to the PSD measurements of the limestone particles, which were used as model inputs. The PSDs, measured using a laser diffrac-tion-based Malvern analyser, were probably not representative of the limestone samples because agglomeration phenomena took place when the particles were...
Ultrasonic detection and sizing of cracks in cast stainless steel samples
International Nuclear Information System (INIS)
Allidi, F.; Edelmann, X.; Phister, O.; Hoegberg, K.; Pers-Anderson, E.B.
1986-01-01
The test consisted of 15 samples of cast stainless steel, each with a weld. Some of the specimens were provided with artificially made thermal fatique cracks. The inspection was performed with the P-scan method. The investigations showed an improvement of recognizability relative to earlier investigations. One probe, the dual type, longitudinal wave 45 degrees, low frequence 0.5-1 MHz gives the best results. (G.B.)
Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples
Energy Technology Data Exchange (ETDEWEB)
Yang, Bin; Smith, A.M.; Long, S.
2015-10-15
We present construction details and test results for two second-generation laser-heated microfurnaces (LHF-II) used to prepare graphite samples for Accelerator Mass Spectrometry (AMS) at ANSTO. Based on systematic studies aimed at optimising the performance of our prototype laser-heated microfurnace (LHF-I) (Smith et al., 2007 [1]; Smith et al., 2010 [2,3]; Yang et al., 2014 [4]), we have designed the LHF-II to have the following features: (i) it has a small reactor volume of 0.25 mL allowing us to completely graphitise carbon dioxide samples containing as little as 2 μg of C, (ii) it can operate over a large pressure range (0–3 bar) and so has the capacity to graphitise CO{sub 2} samples containing up to 100 μg of C; (iii) it is compact, with three valves integrated into the microfurnace body, (iv) it is compatible with our new miniaturised conventional graphitisation furnaces (MCF), also designed for small samples, and shares a common vacuum system. Early tests have shown that the extraneous carbon added during graphitisation in each LHF-II is of the order of 0.05 μg, assuming 100 pMC activity, similar to that of the prototype unit. We use a ‘budget’ fibre packaged array for the diode laser with custom built focusing optics. The use of a new infrared (IR) thermometer with a short focal length has allowed us to decrease the height of the light-proof safety enclosure. These innovations have produced a cheaper and more compact device. As with the LHF-I, feedback control of the catalyst temperature and logging of the reaction parameters is managed by a LabVIEW interface.
Basic distribution free identification tests for small size samples of environmental data
Energy Technology Data Exchange (ETDEWEB)
Federico, A.G.; Musmeci, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente
1998-01-01
Testing two or more data sets for the hypothesis that they are sampled form the same population is often required in environmental data analysis. Typically the available samples have a small number of data and often then assumption of normal distributions is not realistic. On the other hand the diffusion of the days powerful Personal Computers opens new possible opportunities based on a massive use of the CPU resources. The paper reviews the problem introducing the feasibility of two non parametric approaches based on intrinsic equi probability properties of the data samples. The first one is based on a full re sampling while the second is based on a bootstrap approach. A easy to use program is presented. A case study is given based on the Chernobyl children contamination data. [Italiano] Nell`analisi di dati ambientali ricorre spesso il caso di dover sottoporre a test l`ipotesi di provenienza di due, o piu`, insiemi di dati dalla stessa popolazione. Tipicamente i dati disponibili sono pochi e spesso l`ipotesi di provenienza da distribuzioni normali non e` sostenibile. D`altra aprte la diffusione odierna di Personal Computer fornisce nuove possibili soluzioni basate sull`uso intensivo delle risorse della CPU. Il rapporto analizza il problema e presenta la possibilita` di utilizzo di due test non parametrici basati sulle proprieta` intrinseche di equiprobabilita` dei campioni. Il primo e` basato su una tecnica di ricampionamento esaustivo mentre il secondo su un approccio di tipo bootstrap. E` presentato un programma di semplice utilizzo e un caso di studio basato su dati di contaminazione di bambini a Chernobyl.
Brus, D.J.; Gruijter, de J.J.
1997-01-01
Classical sampling theory has been repeatedly identified with classical statistics which assumes that data are identically and independently distributed. This explains the switch of many soil scientists from design-based sampling strategies, based on classical sampling theory, to the model-based
Soo, Jhy-Charm; Lee, Eun Gyung; Lee, Larry A; Kashon, Michael L; Harper, Martin
2014-10-01
Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60-73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90 cm), and different flow rates (2 and 2.5 l min(-1) for the medium- and 4.4, 10, and 11.2 l min(-1) for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP=8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP=18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN=0.014+0.375×PPNIOSH (adjusted R2=0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods
An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies.
Directory of Open Access Journals (Sweden)
Wesley K Thompson
2015-12-01
Full Text Available Characterizing the distribution of effects from genome-wide genotyping data is crucial for understanding important aspects of the genetic architecture of complex traits, such as number or proportion of non-null loci, average proportion of phenotypic variance explained per non-null effect, power for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome-wide association study (GWAS test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local false discovery rate, and power for discovery of a specified proportion of phenotypic variance explained from additive effects of loci surpassing a given significance threshold. We also examine the crucial issue of the impact of linkage disequilibrium (LD on effect sizes and parameter estimates, both analytically and in simulations. We apply this approach to meta-analysis test statistics from two large GWAS, one for Crohn's disease (CD and the other for schizophrenia (SZ. A scale mixture of two normals distribution provides an excellent fit to the SZ nonparametric replication effect size estimates. While capturing the general behavior of the data, this mixture model underestimates the tails of the CD effect size distribution. We discuss the
An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies.
Thompson, Wesley K; Wang, Yunpeng; Schork, Andrew J; Witoelar, Aree; Zuber, Verena; Xu, Shujing; Werge, Thomas; Holland, Dominic; Andreassen, Ole A; Dale, Anders M
2015-12-01
Characterizing the distribution of effects from genome-wide genotyping data is crucial for understanding important aspects of the genetic architecture of complex traits, such as number or proportion of non-null loci, average proportion of phenotypic variance explained per non-null effect, power for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome-wide association study (GWAS) test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local false discovery rate, and power for discovery of a specified proportion of phenotypic variance explained from additive effects of loci surpassing a given significance threshold. We also examine the crucial issue of the impact of linkage disequilibrium (LD) on effect sizes and parameter estimates, both analytically and in simulations. We apply this approach to meta-analysis test statistics from two large GWAS, one for Crohn's disease (CD) and the other for schizophrenia (SZ). A scale mixture of two normals distribution provides an excellent fit to the SZ nonparametric replication effect size estimates. While capturing the general behavior of the data, this mixture model underestimates the tails of the CD effect size distribution. We discuss the implications of
International Nuclear Information System (INIS)
Berger, J.; Doubek, N.; Jammet, G.; Aigner, H.; Bagliano, G.; Donohue, D.; Kuhn, E.
1994-02-01
Specialized procedures have been implemented for the sampling of Pu-containing materials such as Pu nitrate, oxide or mixed oxide in States which have not yet approved type B(U) shipment containers for the air-shipment of gram-sized quantities of Pu. In such cases, it it necessary to prepare samples for shipment which contain only milligram quantities of Pu dried from solution in penicillin vials. Potential problems due to flaking-off during shipment could affect the recovery of Pu at the analytical laboratory. Therefore, a series of tests was performed with synthetic Pu nitrated, and mixed U, Pu nitrated samples to test the effectiveness of the evaporation and recovery procedures. Results of these tests as well as experience with actual inspection samples are presented, showing conclusively that the existing procedures are satisfactory. (author). 11 refs, 6 figs, 8 tabs
IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.
Energy Technology Data Exchange (ETDEWEB)
WIELOPOLSKI, L.
2005-04-01
I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to
Sex determination by tooth size in a sample of Greek population.
Mitsea, A G; Moraitis, K; Leon, G; Nicopoulou-Karayianni, K; Spiliopoulou, C
2014-08-01
Sex assessment from tooth measurements can be of major importance for forensic and bioarchaeological investigations, especially when only teeth or jaws are available. The purpose of this study is to assess the reliability and applicability of establishing sex identity in a sample of Greek population using the discriminant function proposed by Rösing et al. (1995). The study comprised of 172 dental casts derived from two private orthodontic clinics in Athens. The individuals were randomly selected and all had clear medical history. The mesiodistal crown diameters of all the teeth were measured apart from those of the 3rd molars. The values quoted for the sample to which the discriminant function was first applied were similar to those obtained for the Greek sample. The results of the preliminary statistical analysis did not support the use of the specific discriminant function for a reliable determination of sex by means of the mesiodistal diameter of the teeth. However, there was considerable variation between different populations and this might explain the reason for lack of discriminating power of the specific function in the Greek population. In order to investigate whether a better discriminant function could be obtained using the Greek data, separate discriminant function analysis was performed on the same teeth and a different equation emerged without, however, any real improvement in the classification process, with an overall correct classification of 72%. The results showed that there were a considerably higher percentage of females correctly classified than males. The results lead to the conclusion that the use of the mesiodistal diameter of teeth is not as a reliable method as one would have expected for determining sex of human remains from a forensic context. Therefore, this method could be used only in combination with other identification approaches. Copyright © 2014. Published by Elsevier GmbH.
Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann
2014-09-01
In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heo, Moonseong; Litwin, Alain H; Blackstock, Oni; Kim, Namhee; Arnsten, Julia H
2017-02-01
We derived sample size formulae for detecting main effects in group-based randomized clinical trials with different levels of data hierarchy between experimental and control arms. Such designs are necessary when experimental interventions need to be administered to groups of subjects whereas control conditions need to be administered to individual subjects. This type of trial, often referred to as a partially nested or partially clustered design, has been implemented for management of chronic diseases such as diabetes and is beginning to emerge more commonly in wider clinical settings. Depending on the research setting, the level of hierarchy of data structure for the experimental arm can be three or two, whereas that for the control arm is two or one. Such different levels of data hierarchy assume correlation structures of outcomes that are different between arms, regardless of whether research settings require two or three level data structure for the experimental arm. Therefore, the different correlations should be taken into account for statistical modeling and for sample size determinations. To this end, we considered mixed-effects linear models with different correlation structures between experimental and control arms to theoretically derive and empirically validate the sample size formulae with simulation studies.
On Angular Sampling Methods for 3-D Spatial Channel Models
DEFF Research Database (Denmark)
Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum
2015-01-01
This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...... and the other two methods should be considered....
Energy Technology Data Exchange (ETDEWEB)
Faye, C.B.; Amodeo, T.; Fréjafon, E. [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Delepine-Gilon, N. [Institut des Sciences Analytiques, 5 rue de la Doua, 69100 Villeurbanne (France); Dutouquet, C., E-mail: christophe.dutouquet@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France)
2014-01-01
Pollution of water is a matter of concern all over the earth. Particles are known to play an important role in the transportation of pollutants in this medium. In addition, the emergence of new materials such as NOAA (Nano-Objects, their Aggregates and their Agglomerates) emphasizes the need to develop adapted instruments for their detection. Surveillance of pollutants in particulate form in waste waters in industries involved in nanoparticle manufacturing and processing is a telling example of possible applications of such instrumental development. The LIBS (laser-induced breakdown spectroscopy) technique coupled with the liquid jet as sampling mode for suspensions was deemed as a potential candidate for on-line and real time monitoring. With the final aim in view to obtain the best detection limits, the interaction of nanosecond laser pulses with the liquid jet was examined. The evolution of the volume sampled by laser pulses was estimated as a function of the laser energy applying conditional analysis when analyzing a suspension of micrometric-sized particles of borosilicate glass. An estimation of the sampled depth was made. Along with the estimation of the sampled volume, the evolution of the SNR (signal to noise ratio) as a function of the laser energy was investigated as well. Eventually, the laser energy and the corresponding fluence optimizing both the sampling volume and the SNR were determined. The obtained results highlight intrinsic limitations of the liquid jet sampling mode when using 532 nm nanosecond laser pulses with suspensions. - Highlights: • Micrometric-sized particles in suspensions are analyzed using LIBS and a liquid jet. • The evolution of the sampling volume is estimated as a function of laser energy. • The sampling volume happens to saturate beyond a certain laser fluence. • Its value was found much lower than the beam diameter times the jet thickness. • Particles proved not to be entirely vaporized.
Fraley, R. Chris; Vazire, Simine
2014-01-01
The authors evaluate the quality of research reported in major journals in social-personality psychology by ranking those journals with respect to their N-pact Factors (NF)—the statistical power of the empirical studies they publish to detect typical effect sizes. Power is a particularly important attribute for evaluating research quality because, relative to studies that have low power, studies that have high power are more likely to (a) to provide accurate estimates of effects, (b) to produce literatures with low false positive rates, and (c) to lead to replicable findings. The authors show that the average sample size in social-personality research is 104 and that the power to detect the typical effect size in the field is approximately 50%. Moreover, they show that there is considerable variation among journals in sample sizes and power of the studies they publish, with some journals consistently publishing higher power studies than others. The authors hope that these rankings will be of use to authors who are choosing where to submit their best work, provide hiring and promotion committees with a superior way of quantifying journal quality, and encourage competition among journals to improve their NF rankings. PMID:25296159
Energy Technology Data Exchange (ETDEWEB)
Wang, H.; Zhang, G.; Hui, G.; Li, Y.; Hu, Y.; Zhao, Z.
2016-07-01
Aim of study: Neighborhood-based stand spatial structure parameters can quantify and characterize forest spatial structure effectively. How these neighborhood-based structure parameters are influenced by the selection of different numbers of nearest-neighbor trees is unclear, and there is some disagreement in the literature regarding the appropriate number of nearest-neighbor trees to sample around reference trees. Understanding how to efficiently characterize forest structure is critical for forest management. Area of study: Multi-species uneven-aged forests of Northern China. Material and methods: We simulated stands with different spatial structural characteristics and systematically compared their structure parameters when two to eight neighboring trees were selected. Main results: Results showed that values of uniform angle index calculated in the same stand were different with different sizes of structure unit. When tree species and sizes were completely randomly interspersed, different numbers of neighbors had little influence on mingling and dominance indices. Changes of mingling or dominance indices caused by different numbers of neighbors occurred when the tree species or size classes were not randomly interspersed and their changing characteristics can be detected according to the spatial arrangement patterns of tree species and sizes. Research highlights: The number of neighboring trees selected for analyzing stand spatial structure parameters should be fixed. We proposed that the four-tree structure unit is the best compromise between sampling accuracy and costs for practical forest management. (Author)
Directory of Open Access Journals (Sweden)
Finch Stephen J
2005-04-01
Full Text Available Abstract Background Phenotype error causes reduction in power to detect genetic association. We present a quantification of phenotype error, also known as diagnostic error, on power and sample size calculations for case-control genetic association studies between a marker locus and a disease phenotype. We consider the classic Pearson chi-square test for independence as our test of genetic association. To determine asymptotic power analytically, we compute the distribution's non-centrality parameter, which is a function of the case and control sample sizes, genotype frequencies, disease prevalence, and phenotype misclassification probabilities. We derive the non-centrality parameter in the presence of phenotype errors and equivalent formulas for misclassification cost (the percentage increase in minimum sample size needed to maintain constant asymptotic power at a fixed significance level for each percentage increase in a given misclassification parameter. We use a linear Taylor Series approximation for the cost of phenotype misclassification to determine lower bounds for the relative costs of misclassifying a true affected (respectively, unaffected as a control (respectively, case. Power is verified by computer simulation. Results Our major findings are that: (i the median absolute difference between analytic power with our method and simulation power was 0.001 and the absolute difference was no larger than 0.011; (ii as the disease prevalence approaches 0, the cost of misclassifying a unaffected as a case becomes infinitely large while the cost of misclassifying an affected as a control approaches 0. Conclusion Our work enables researchers to specifically quantify power loss and minimum sample size requirements in the presence of phenotype errors, thereby allowing for more realistic study design. For most diseases of current interest, verifying that cases are correctly classified is of paramount importance.
Yao, Peng-Cheng; Gao, Hai-Yan; Wei, Ya-Nan; Zhang, Jian-Hang; Chen, Xiao-Yong; Li, Hong-Qing
2017-01-01
Environmental conditions in coastal salt marsh habitats have led to the development of specialist genetic adaptations. We evaluated six DNA barcode loci of the 53 species of Poaceae and 15 species of Chenopodiaceae from China's coastal salt marsh area and inland area. Our results indicate that the optimum DNA barcode was ITS for coastal salt-tolerant Poaceae and matK for the Chenopodiaceae. Sampling strategies for ten common species of Poaceae and Chenopodiaceae were analyzed according to optimum barcode. We found that by increasing the number of samples collected from the coastal salt marsh area on the basis of inland samples, the number of haplotypes of Arundinella hirta, Digitaria ciliaris, Eleusine indica, Imperata cylindrica, Setaria viridis, and Chenopodium glaucum increased, with a principal coordinate plot clearly showing increased distribution points. The results of a Mann-Whitney test showed that for Digitaria ciliaris, Eleusine indica, Imperata cylindrica, and Setaria viridis, the distribution of intraspecific genetic distances was significantly different when samples from the coastal salt marsh area were included (P Imperata cylindrica and Chenopodium album, average intraspecific distance tended to reach stability. These results indicate that the sample size for DNA barcode of globally distributed species should be increased to 11-15.
RNA Profiling for Biomarker Discovery: Practical Considerations for Limiting Sample Sizes
Directory of Open Access Journals (Sweden)
Danny J. Kelly
2005-01-01
Full Text Available We have compared microarray data generated on Affymetrix™ chips from standard (8 micrograms or low (100 nanograms amounts of total RNA. We evaluated the gene signals and gene fold-change estimates obtained from the two methods and validated a subset of the results by real time, polymerase chain reaction assays. The correlation of low RNA derived gene signals to gene signals obtained from standard RNA was poor for less to moderately abundant genes. Genes with high abundance showed better correlation in signals between the two methods. The signal correlation between the low RNA and standard RNA methods was improved by including a reference sample in the microarray analysis. In contrast, the fold-change estimates for genes were better correlated between the two methods regardless of the magnitude of gene signals. A reference sample based method is suggested for studies that would end up comparing gene signal data from a combination of low and standard RNA templates; no such referencing appears to be necessary when comparing fold-changes of gene expression between standard and low template reactions.
Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data
Dong, Kai
2015-09-16
DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.
Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data
Dong, Kai; Pang, Herbert; Tong, Tiejun; Genton, Marc G.
2015-01-01
DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.
Mass Balance Model, A study of contamination effects in AMS 14C sample analysis
Prokopiou, Markella
2010-01-01
In this training thesis a background correction analysis, also known as mass balance model, was implemented to study the contamination effects in AMS 14C sample processing. A variety of backgrounds and standards with sizes ranging from 50 μg C to 1500 μg
Constrained statistical inference : sample-size tables for ANOVA and regression
Vanbrabant, Leonard; Van De Schoot, Rens; Rosseel, Yves
2015-01-01
Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient β1 is larger than β2 and β3. The corresponding hypothesis is H: β1 > {β2, β3} and
Energy Technology Data Exchange (ETDEWEB)
Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory
2009-01-01
Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.
Sizing and modelling of photovoltaic water pumping system
Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.
2018-05-01
With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.
Portfolio size as funktion of the premium: modeling and optimization
DEFF Research Database (Denmark)
Asmussen, Søren; Christensen, Bent Jesper; Taksar, Michael I
An insurance company has a large number N of potential customers characterized by i.i.d. r.v.'s A1,…,AN giving the arrival rates of claims. Customers are risk averse, and a customer accepts an offered premium p according to his A-value. The modeling further involves a discount rate d>r of customers......, where r is the risk-free interest rate. Based on calculations of the customers' present values of the alternative strategies of insuring and not insuring, the portfolio size n(p) is derived, and also the rate of claims from the insured customers is given. Further, the value of p which is optimal...... for minimizing the ruin probability is derived in a diffusion approximation to the Cramér-Lundberg risk process with an added liability rate L of the company. The solution involves the Lambert W function. Similar discussion is given for extensions involving customers having only partial information...
Donkers, Hanneke; Graff, Maud; Vernooij-Dassen, Myrra; Nijhuis-van der Sanden, Maria; Teerenstra, Steven
2017-01-01
In randomized controlled trials, two endpoints may be necessary to capture the multidimensional concept of the intervention and the objectives of the study adequately. We show how to calculate sample size when defining success of a trial by combinations of superiority and/or non-inferiority aims for the endpoints. The randomized controlled trial design of the Social Fitness study uses two primary endpoints, which can be combined into five different scenarios for defining success of the trial. We show how to calculate power and sample size for each scenario and compare these for different settings of power of each endpoint and correlation between them. Compared to a single primary endpoint, using two primary endpoints often gives more power when success is defined as: improvement in one of the two endpoints and no deterioration in the other. This also gives better power than when success is defined as: improvement in one prespecified endpoint and no deterioration in the remaining endpoint. When two primary endpoints are equally important, but a positive effect in both simultaneously is not per se required, the objective of having one superior and the other (at least) non-inferior could make sense and reduce sample size. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
V. Indira
2015-03-01
Full Text Available Hydraulic brake in automobile engineering is considered to be one of the important components. Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers, vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the classifier are two important activities in the process of feature classification. This study proposes a systematic statistical method called power analysis to find the minimum number of samples required to train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical features have been used and the more contributing features have been selected by using C4.5 decision tree algorithm. The results of power analysis have also been verified using a decision tree algorithm namely, C4.5.
Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory
Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo
2013-01-01
Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Fung, Tak; Keenan, Kevin
2014-01-01
The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%), a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
Directory of Open Access Journals (Sweden)
Tak Fung
Full Text Available The estimation of population allele frequencies using sample data forms a central component of studies in population genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic variation among populations. However, existing studies frequently do not account for sampling uncertainty in these estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high probability (> or = 95%, a sample size of > 30 is often required. This analysis is augmented by an application of the method to empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L., occupying meadows in Finland. For each population, the method is used to derive > or = 98.3% confidence intervals for the population frequencies of three alleles. These intervals are then used to construct two joint > or = 95% confidence regions, one for the set of three frequencies for each population. These regions are then used to derive a > or = 95%% confidence interval for Jost's D, a measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the method with respect to informing sampling design and accounting for sampling uncertainty in studies of population genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
The design of high-temperature thermal conductivity measurements apparatus for thin sample size
Directory of Open Access Journals (Sweden)
Hadi Syamsul
2017-01-01
Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.
Optimal sample size of signs for classification of radiational and oily soils
International Nuclear Information System (INIS)
Babayev, M.P.; Iskenderov, S.M.; Aghayev, R.A.
2012-01-01
Full text : This article tells about classification of radiational and oily soils that should be in essence a compact intelligence system which contains maximum information on classes of soil objects in the accepted feature space. The stored experience shows that the volume of the most informative soil signs can make up maximum 7-8 indexes. More correct approach to our opinion for a sample of the most informative (most important) indexes is the method of testing and mistakes, that is the experimental method, allowing to make use a wide experience and intuition of the researcher, or group of the researchers, engaged for many years in the field of soil science. At this operational stage of the formal device of soils classification, to say more concrete, the assessment section of selfdescriptiveness of soil signs of this formal device, in our opinion, is purely mathematized and in some cases even not reflect the true picture. In this case it will be calculated 21 pair of correlative elements between the selected soil signs as a measure of the linear communication. The volume of the correlative row will be equal to 6, as the increase in volume of the correlative row can sharply increase the volume calculation. Pertinently to note that, it is the first time an attempt is made to create correlative matrixes of the most important signs of radiation and oily soils
Ruthrauff, Daniel R.; Tibbitts, T. Lee; Gill, Robert E.; Dementyev, Maksim N.; Handel, Colleen M.
2012-01-01
The Rock Sandpiper (Calidris ptilocnemis) is endemic to the Bering Sea region and unique among shorebirds in the North Pacific for wintering at high latitudes. The nominate subspecies, the Pribilof Rock Sandpiper (C. p. ptilocnemis), breeds on four isolated islands in the Bering Sea and appears to spend the winter primarily in Cook Inlet, Alaska. We used a stratified systematic sampling design and line-transect method to survey the entire breeding range of this population during springs 2001-2003. Densities were up to four times higher on the uninhabited and more northerly St. Matthew and Hall islands than on St. Paul and St. George islands, which both have small human settlements and introduced reindeer herds. Differences in density, however, appeared to be more related to differences in vegetation than to anthropogenic factors, raising some concern for prospective effects of climate change. We estimated the total population at 19 832 birds (95% CI 17 853–21 930), ranking it among the smallest of North American shorebird populations. To determine the vulnerability of C. p. ptilocnemis to anthropogenic and stochastic environmental threats, future studies should focus on determining the amount of gene flow among island subpopulations, the full extent of the subspecies' winter range, and the current trajectory of this small population.
Official Reports: Inventions, useful models, industrial samples, product certificates
International Nuclear Information System (INIS)
1994-01-01
This serial collection presents brief information on patents, useful models, industrial samples, product certificates and trade marks registered in Uzbekistan. They comprise different branches of human activities including peaceful uses of atomic energy. (A.A.D.)
Official Reports: Inventions, useful models, industrial samples, product certificates
International Nuclear Information System (INIS)
1996-01-01
This serial collection presents brief information on patents, useful models, industrial samples, product certificates and trade marks registered in Uzbekistan. They comprise different branches of human activities including peaceful uses of atomic energy. (A.A.D.)
Official Reports: Inventions, useful models, industrial samples, product certificates
International Nuclear Information System (INIS)
1995-01-01
This serial collection presents brief information on patents, useful models, industrial samples, product certificates and trade marks registered in Uzbekistan. They comprise different branches of human activities including peaceful uses of atomic energy. (A.A.D.)
International Nuclear Information System (INIS)
Akram, M.; Aftab, F.
2016-01-01
In the present study, fruits (drupes) were collected from Changa Manga Forest Plus Trees (CMF-PT), Changa Manga Forest Teak Stand (CMF-TS) and Punjab University Botanical Gardens (PUBG) and categorized into very large (= 17 mm dia.), large (12-16 mm dia.), medium (9-11 mm dia.) or small (6-8 mm dia.) fruit size grades. Fresh water as well as mechanical scarification and stratification were tested for breaking seed dormancy. Viability status of seeds was estimated by cutting test, X-rays and In vitro seed germination. Out of 2595 fruits from CMF-PT, 500 fruits were of very large grade. This fruit category also had highest individual fruit weight (0.58 g) with more number of 4-seeded fruits (5.29 percent) and fair germination potential (35.32 percent). Generally, most of the fruits were 1-seeded irrespective of size grades and sampling sites. Fresh water scarification had strong effect on germination (44.30 percent) as compared to mechanical scarification and cold stratification after 40 days of sowing. Similarly, sampling sites and fruit size grades also had significant influence on germination. Highest germination (82.33 percent) was obtained on MS (Murashige and Skoog) agar-solidified medium as compared to Woody Plant Medium (WPM) (69.22 percent). Seedlings from all the media were transferred to ex vitro conditions in the greenhouse and achieved highest survival (28.6 percent) from seedlings previously raised on MS agar-solidified medium after 40 days. There was an association between the studied parameters of teak seeds and the sampling sites and fruit size. (author)
A GMM-Based Test for Normal Disturbances of the Heckman Sample Selection Model
Directory of Open Access Journals (Sweden)
Michael Pfaffermayr
2014-10-01
Full Text Available The Heckman sample selection model relies on the assumption of normal and homoskedastic disturbances. However, before considering more general, alternative semiparametric models that do not need the normality assumption, it seems useful to test this assumption. Following Meijer and Wansbeek (2007, the present contribution derives a GMM-based pseudo-score LM test on whether the third and fourth moments of the disturbances of the outcome equation of the Heckman model conform to those implied by the truncated normal distribution. The test is easy to calculate and in Monte Carlo simulations it shows good performance for sample sizes of 1000 or larger.
Directory of Open Access Journals (Sweden)
B. Kone
2009-05-01
Full Text Available Soil texture is an important property for evaluating its inherent fertility especially by using pedo-transfers functions requiring particle size data. However, there is no existing quantitative method for in situ estimation of soil particle size, delaying judgement of soil chemical properties in the field. For this purpose, laboratory particle size analyses of 1028 samples from 281 Ferralsol profiles, located between latitudes 7º N and 10º N in Côte d’Ivoire and their respective colour notation by Munsell chart were used to generate prediction models. Multiple Linear Regression Analysis by Group was processed to identify clay, sand and silt contents in the soil based on color hue (2.5YR, 5YR, 7.5YR, and 10YR and Chroma (1, 2, 3, 4, 5, 6, 7, 8. The evaluation was conducted for each horizon coded as H1 (0-20 cm, H2 (20-60 cm, H3 (60-80 cm and H4 (80-150 cm and used as grouping variables. Highly significant (P< 0.001 models were identified for clay and sand. These models were used to estimate successfully clay and sand contents for other Ferralsol samples by comparing calculated and measured mean using the null hypothesis of difference and Tukey’s tests. They were accurate for at all depths, except 80 - 150 cm, for sand in 10YR soils. The method was deemed appropriate for in situ estimation of soil particle size contents in Ferralsol environment for improving reconnaissance agricultural soil surveys.
International Nuclear Information System (INIS)
Keyser, R.M.; Twomey, T.R.; Sangsingkeow, P.
1998-01-01
For 25 yr, coaxial germanium detector performance has been specified using the methods and values specified in Ref. 1. These specifications are the full-width at half-maximum (FWHM), FW.1M, FW.02M, peak-to-Compton ratio, and relative efficiency. All of these measurements are made with a 60 Co source 25 cm from the cryostat endcap and centered on the axis of the detector. These measurements are easy to reproduce, both because they are simple to set up and use a common source. These standard tests have been useful in guiding the user to an appropriate detector choice for the intended measurement. Most users of germanium gamma-ray detectors do not make measurements in this simple geometry. Germanium detector manufacturers have worked over the years to make detectors with better resolution, better peak-to-Compton ratios, and higher efficiency--but all based on measurements using the IEEE standard. Advances in germanium crystal growth techniques have made it relatively easy to provide detector elements of different shapes and sizes. Many of these different shapes and sizes can give better results for a specific application than other shapes and sizes. But, the detector specifications must be changed to correspond to the actual application. Both the expected values and the actual parameters to be specified should be changed. In many cases, detection efficiency, peak shape, and minimum detectable limit for a particular detector/sample combination are valuable specifications of detector performance. For other situations, other parameters are important, such as peak shape as a function of count rate. In this work, different sample geometries were considered. The results show the variation in efficiency with energy for all of these sample and detector geometries. The point source at 25 cm from the endcap measurement allows the results to be compared with the currently given IEEE criteria. The best sample/detector configuration for a specific measurement requires more and
Energy Technology Data Exchange (ETDEWEB)
Cahill, T.A.; Wilkinson, K. [Univ. of California, Davis, CA (United States); Schnell, R. [National Center for Atmospheric Research, Boulder, CO (United States)
1992-09-20
Analyses are reported for eight aerosol samples taken from the National Center for Atmospheric Research Electra typically 200 to 250 km downwind of Kuwait between May 19 and June 1, 1991. Aerosols were separated into fine (D{sub p} < 2.5 {mu}m) and coarse (2.5 < D{sub p} 10 {mu}m) particles for optical, gravimetric, X ray and nuclear analyses, yielding information on the morphology, mass, and composition of aerosols downwind of Kuwait. The mass of coarse aerosols ranged between 60 and 1971 {mu}g/m{sup 3} and, while dominated by soil derived aerosols, contained considerable content of sulfates and salt (NaCl) and soot in the form of fluffy agglomerates. The mass of fine aerosols varied between 70 and 785 {mu}g/m{sup 3}, of which about 70% was accounted for via compositional analyses performed in vacuum. While most components varied greatly from flight to flight, organic matter and fine soils each accounted for about 1/4 of the fine mass, while salt and sulfates contributed about 10% and 7%, respectively. The Cl/S ratios were remarkably constant, 2.4 {+-} 1.2 for coarse particles and 2.0 {+-} 0.2 for fine particles, with one flight deleted in each case. Vanadium, when observed, ranged from 9 to 27 ng/m{sup 3}, while nickel ranged from 5 to 25 ng/m{sup 3}. In fact, fine sulfates, vanadium, and nickel occurred in levels typical of Los Angeles, California, during summer 1986. The V/Ni ratio, 1.7 {+-} 0.4, was very similar to the ratios measured in fine particles from combusted Kuwaiti oil, 1.4 {+-} 0.9. Bromine, copper, zinc, and arsenic/lead were also observed at levels between 2 and 190 ng/m{sup 3}. The presence of massive amounts of fine, typically alkaline soils in the Kuwaiti smoke plumes significantly modified their behavior and probably mitigated their impacts, locally and globally. 16 refs., 1 fig., 3 tabs.
Major- and trace elements in grain size fractions of the Apollo-17 core of the drilled sample 74001
International Nuclear Information System (INIS)
Kraehenbuehl, U.; Gunten, H.R. von; Jost, D.; Meyer, G.; Wegmueller, F.
1980-01-01
Two layers of a drill sample were examined, one from a depth of 38 cm and the other from 58 cm depth. Neutron activation analysis was used for one group of elements, and radiochemical analysis for another. Over a range of grain size from 36 to 450 μm, the trace elements U, Co, and La were found to uniformly distributed, as was iron. The top layer consistently showed a 5-8% higher content. The volatile trace elements Ge and Cd were found to be enriched in the smaller grain sizes. This contradicts previous assumptions of an enrichment of the more volatile elements in top layers owing to more rapid cooling of volcanic eruptions. (R.S.)
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
Directory of Open Access Journals (Sweden)
Michael B.C. Khoo
2013-11-01
Full Text Available The double sampling (DS X bar chart, one of the most widely-used charting methods, is superior for detecting small and moderate shifts in the process mean. In a right skewed run length distribution, the median run length (MRL provides a more credible representation of the central tendency than the average run length (ARL, as the mean is greater than the median. In this paper, therefore, MRL is used as the performance criterion instead of the traditional ARL. Generally, the performance of the DS X bar chart is investigated under the assumption of known process parameters. In practice, these parameters are usually estimated from an in-control reference Phase-I dataset. Since the performance of the DS X bar chart is significantly affected by estimation errors, we study the effects of parameter estimation on the MRL-based DS X bar chart when the in-control average sample size is minimised. This study reveals that more than 80 samples are required for the MRL-based DS X bar chart with estimated parameters to perform more favourably than the corresponding chart with known parameters.
Latent spatial models and sampling design for landscape genetics
Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.
Particle size distribution models of small angle neutron scattering pattern on ferro fluids
International Nuclear Information System (INIS)
Sistin Asri Ani; Darminto; Edy Giri Rachman Putra
2009-01-01
The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)
International Nuclear Information System (INIS)
Mulet, R.; Diaz, O.; Altshuler, E.
1997-01-01
The percolative character of the current paths and the self-field effects were considered to estimate optimal sample dimensions for the transport current of a granular superconductor by means of a Monte Carlo algorithm and critical-state model calculations. We showed that, under certain conditions, self-field effects are negligible and the J c dependence on sample dimensions is determined by the percolative character of the current. Optimal dimensions are demonstrated to be a function of the fraction of superconducting phase in the sample. (author)
Directory of Open Access Journals (Sweden)
Sunil Kumar C
2014-01-01
Full Text Available With number of students growing each year there is a strong need to automate systems capable of evaluating descriptive answers. Unfortunately, there aren’t many systems capable of performing this task. In this paper, we use a machine learning tool called LightSIDE to accomplish auto evaluation and scoring of descriptive answers. Our experiments are designed to cater to our primary goal of identifying the optimum training sample size so as to get optimum auto scoring. Besides the technical overview and the experiments design, the paper also covers challenges, benefits of the system. We also discussed interdisciplinary areas for future research on this topic.
International Nuclear Information System (INIS)
Blanpain, O.
2009-10-01
The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)
Stability patterns for a size-structured population model and its stage-structured counterpart
DEFF Research Database (Denmark)
Zhang, Lai; Pedersen, Michael; Lin, Zhigui
2015-01-01
In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivale...... to the population level....
A HARDCORE model for constraining an exoplanet's core size
Suissa, Gabrielle; Chen, Jingjing; Kipping, David
2018-05-01
The interior structure of an exoplanet is hidden from direct view yet likely plays a crucial role in influencing the habitability of the Earth analogues. Inferences of the interior structure are impeded by a fundamental degeneracy that exists between any model comprising more than two layers and observations constraining just two bulk parameters: mass and radius. In this work, we show that although the inverse problem is indeed degenerate, there exists two boundary conditions that enables one to infer the minimum and maximum core radius fraction, CRFmin and CRFmax. These hold true even for planets with light volatile envelopes, but require the planet to be fully differentiated and that layers denser than iron are forbidden. With both bounds in hand, a marginal CRF can also be inferred by sampling in-between. After validating on the Earth, we apply our method to Kepler-36b and measure CRFmin = (0.50 ± 0.07), CRFmax = (0.78 ± 0.02), and CRFmarg = (0.64 ± 0.11), broadly consistent with the Earth's true CRF value of 0.55. We apply our method to a suite of hypothetical measurements of synthetic planets to serve as a sensitivity analysis. We find that CRFmin and CRFmax have recovered uncertainties proportional to the relative error on the planetary density, but CRFmarg saturates to between 0.03 and 0.16 once (Δρ/ρ) drops below 1-2 per cent. This implies that mass and radius alone cannot provide any better constraints on internal composition once bulk density constraints hit around a per cent, providing a clear target for observers.
Winston Paul Smith; Daniel J. Twedt; David A. Wiedenfeld; Paul B. Hamel; Robert P. Ford; Robert J. Cooper
1993-01-01
To compare efficacy of point count sampling in bottomland hardwood forests, duration of point count, number of point counts, number of visits to each point during a breeding season, and minimum sample size are examined.
Energy Technology Data Exchange (ETDEWEB)
Stretz, L.A.; Bautista, R.G.
1976-01-01
The high-temperature heat content of liquid praseodymium was measured experimentally by the levitation calorimetry technique. The samples, ranging in size from 0.5 to 1.5 g, were simultaneously levitated and heated by a radiofrequency generator in an argon-helium mixture prior to being dropped into a conventional copper block drop calorimeter. Corrections were made for the convection and radiation losses during the fall of the sample from the levitation chamber into the calorimeter. The praseodymium data, from 1460 to 2289K, were fitted by the following equation where the indicated errors represent the average deviation of the experimental value from the value predicted by the equation: H/sub T/ - H/sub 298/./sub 15/ = (41.57 +- 0.29) (T - 1208) + (41733 +- 197) J/mol. (auth)
DEFF Research Database (Denmark)
Gardi, Jonathan Eyal; Nyengaard, Jens Randel; Gundersen, Hans Jørgen Gottlieb
2008-01-01
examined, which in turn leads to any of the known stereological estimates, including size distributions and spatial distributions. The unbiasedness is not a function of the assumed relation between the weight and the structure, which is in practice always a biased relation from a stereological (integral......, the desired number of fields are sampled automatically with probability proportional to the weight and presented to the expert observer. Using any known stereological probe and estimator, the correct count in these fields leads to a simple, unbiased estimate of the total amount of structure in the sections...... geometric) point of view. The efficiency of the proportionator depends, however, directly on this relation to be positive. The sampling and estimation procedure is simulated in sections with characteristics and various kinds of noises in possibly realistic ranges. In all cases examined, the proportionator...
Characteristic length scale of input data in distributed models: implications for modeling grid size
Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.
2000-01-01
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.
Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.
2000-01-01
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.
A Markov decision model for optimising economic production lot size ...
African Journals Online (AJOL)
Adopting such a Markov decision process approach, the states of a Markov chain represent possible states of demand. The decision of whether or not to produce additional inventory units is made using dynamic programming. This approach demonstrates the existence of an optimal state-dependent EPL size, and produces ...
Inoue, Akiomi; Kawakami, Norito; Tsuchiya, Masao; Sakurai, Keiko; Hashimoto, Hideki
2010-01-01
The purpose of this study was to investigate the cross-sectional association of employment contract, company size, and occupation with psychological distress using a nationally representative sample of the Japanese population. From June through July 2007, a total of 9,461 male and 7,717 female employees living in the community were randomly selected and surveyed using a self-administered questionnaire and interview including questions about occupational class variables, psychological distress (K6 scale), treatment for mental disorders, and other covariates. Among males, part-time workers had a significantly higher prevalence of psychological distress than permanent workers. Among females, temporary/contract workers had a significantly higher prevalence of psychological distress than permanent workers. Among males, those who worked at companies with 300-999 employees had a significantly higher prevalence of psychological distress than those who worked at the smallest companies (with 1-29 employees). Company size was not significantly associated with psychological distress among females. Additionally, occupation was not significantly associated with psychological distress among males or females. Similar patterns were observed when the analyses were conducted for those who had psychological distress and/or received treatment for mental disorders. Working as part-time workers, for males, and as temporary/contract workers, for females, may be associated with poor mental health in Japan. No clear gradient in mental health along company size or occupation was observed in Japan.
Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul
2018-04-15
Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Graphical models for inference under outcome-dependent sampling
DEFF Research Database (Denmark)
Didelez, V; Kreiner, S; Keiding, N
2010-01-01
a node for the sampling indicator, assumptions about sampling processes can be made explicit. We demonstrate how to read off such graphs whether consistent estimation of the association between exposure and outcome is possible. Moreover, we give sufficient graphical conditions for testing and estimating......We consider situations where data have been collected such that the sampling depends on the outcome of interest and possibly further covariates, as for instance in case-control studies. Graphical models represent assumptions about the conditional independencies among the variables. By including...
Sorption of water vapour by the Na+-exchanged clay-sized fractions of some tropical soil samples
International Nuclear Information System (INIS)
Yormah, T.B.R.; Hayes, M.H.B.
1993-09-01
Water vapour sorption isotherms at 299K for the Na + -exchanged clay-sized (≤ 2μm e.s.d.) fraction of two sets of samples taken at three different depths from a tropical soil profile have been studied. One set of samples was treated (with H 2 O 2 ) for the removal of much of the organic matter (OM); the other set (of the same samples) was not so treated. The isotherms obtained were all of type II and analyses by the BET method yielded values for the Specific Surface Areas (SSA) and for the average energy of adsorption of the first layer of adsorbate (E a ). OM content and SSA for the untreated samples were found to decrease with depth. Whereas removal of organic matter made negligible difference to the SSA of the top/surface soil, the same treatment produced a significant increase in the SSA of the samples taken from the middle and from the lower depths in the profile; the resulting increase was more pronounced for the subsoil. It has been deduced from these results that OM in the surface soil was less involved with the inorganic soil colloids than that in the subsoil. The increase in surface area which resulted from the removal of OM from the subsoil was most probably due to disaggregation. Values of E a obtained show that for all the samples the adsorption of water vapour became more energetic after the oxidative removal of organic matter; the resulting ΔE a also increased with depth. This suggests that in the dry state, the ''cleaned'' surface of the inorganic soil colloids was more energetic than the ''organic-matter-coater surface''. These data provide strong support for the deduction that OM in the subsoil was in a more ''combined'' state than that in the surface soil. (author). 21 refs, 4 figs, 2 tabs
McPhail, S M; O'Hara, M; Gane, E; Tonks, P; Bullock-Saxton, J; Kuys, S S
2016-06-01
The Nintendo Wii Fit integrates virtual gaming with body movement, and may be suitable as an adjunct to conventional physiotherapy following lower limb fractures. This study examined the feasibility and safety of using the Wii Fit as an adjunct to outpatient physiotherapy following lower limb fractures, and reports sample size considerations for an appropriately powered randomised trial. Ambulatory patients receiving physiotherapy following a lower limb fracture participated in this study (n=18). All participants received usual care (individual physiotherapy). The first nine participants also used the Wii Fit under the supervision of their treating clinician as an adjunct to usual care. Adverse events, fracture malunion or exacerbation of symptoms were recorded. Pain, balance and patient-reported function were assessed at baseline and discharge from physiotherapy. No adverse events were attributed to either the usual care physiotherapy or Wii Fit intervention for any patient. Overall, 15 (83%) participants completed both assessments and interventions as scheduled. For 80% power in a clinical trial, the number of complete datasets required in each group to detect a small, medium or large effect of the Wii Fit at a post-intervention assessment was calculated at 175, 63 and 25, respectively. The Nintendo Wii Fit was safe and feasible as an adjunct to ambulatory physiotherapy in this sample. When considering a likely small effect size and the 17% dropout rate observed in this study, 211 participants would be required in each clinical trial group. A larger effect size or multiple repeated measures design would require fewer participants. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Poppe, Bjoern; Djouguela, Armand; Blechschmidt, Arne; Willborn, Kay; Ruehmann, Antje; Harder, Dietrich
2007-01-01
The spatial resolution of 2D detector arrays equipped with ionization chambers or diodes, used for the dose verification of IMRT treatment plans, is limited by the size of the single detector and the centre-to-centre distance between the detectors. Optimization criteria with regard to these parameters have been developed by combining concepts of dosimetry and pattern analysis. The 2D-ARRAY Type 10024 (PTW-Freiburg, Germany), single-chamber cross section 5 x 5 mm 2 , centre-to-centre distance between chambers in each row and column 10 mm, served as an example. Additional frames of given dose distributions can be taken by shifting the whole array parallel or perpendicular to the MLC leaves by, e.g., 5 mm. The size of the single detector is characterized by its lateral response function, a trapezoid with 5 mm top width and 9 mm base width. Therefore, values measured with the 2D array are regarded as sample values from the convolution product of the accelerator generated dose distribution and this lateral response function. Consequently, the dose verification, e.g., by means of the gamma index, is performed by comparing the measured values of the 2D array with the values of the convolution product of the treatment planning system (TPS) calculated dose distribution and the single-detector lateral response function. Sufficiently small misalignments of the measured dose distributions in comparison with the calculated ones can be detected since the lateral response function is symmetric with respect to the centre of the chamber, and the change of dose gradients due to the convolution is sufficiently small. The sampling step width of the 2D array should provide a set of sample values representative of the sampled distribution, which is achieved if the highest spatial frequency contained in this function does not exceed the 'Nyquist frequency', one half of the sampling frequency. Since the convolution products of IMRT-typical dose distributions and the single
International Nuclear Information System (INIS)
Chang, Ying-jie; Shih, Yang-hsin; Su, Chiu-Hun; Ho, Han-Chen
2017-01-01
Highlights: • Three emerging techniques to detect NPs in the aquatic environment were evaluated. • The pretreatment of centrifugation to decrease the interference was established. • Asymmetric flow field flow fractionation has a low recovery of NPs. • Hydrodynamic chromatography is recommended to be a low-cost screening tool. • Single particle ICPMS is recommended to accurately measure trace NPs in water. - Abstract: Due to the widespread application of engineered nanoparticles, their potential risk to ecosystems and human health is of growing concern. Silver nanoparticles (Ag NPs) are one of the most extensively produced NPs. Thus, this study aims to develop a method to detect Ag NPs in different aquatic systems. In complex media, three emerging techniques are compared, including hydrodynamic chromatography (HDC), asymmetric flow field flow fractionation (AF4) and single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The pre-treatment procedure of centrifugation is evaluated. HDC can estimate the Ag NP sizes, which were consistent with the results obtained from DLS. AF4 can also determine the size of Ag NPs but with lower recoveries, which could result from the interactions between Ag NPs and the working membrane. For the SP-ICP-MS, both the particle size and concentrations can be determined with high Ag NP recoveries. The particle size resulting from SP-ICP-MS also corresponded to the transmission electron microscopy observation (p > 0.05). Therefore, HDC and SP-ICP-MS are recommended for environmental analysis of the samples after our established pre-treatment process. The findings of this study propose a preliminary technique to more accurately determine the Ag NPs in aquatic environments and to use this knowledge to evaluate the environmental impact of manufactured NPs.
Energy Technology Data Exchange (ETDEWEB)
Chang, Ying-jie [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Su, Chiu-Hun [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Ho, Han-Chen [Department of Anatomy, Tzu-Chi University, Hualien 970, Taiwan (China)
2017-01-15
Highlights: • Three emerging techniques to detect NPs in the aquatic environment were evaluated. • The pretreatment of centrifugation to decrease the interference was established. • Asymmetric flow field flow fractionation has a low recovery of NPs. • Hydrodynamic chromatography is recommended to be a low-cost screening tool. • Single particle ICPMS is recommended to accurately measure trace NPs in water. - Abstract: Due to the widespread application of engineered nanoparticles, their potential risk to ecosystems and human health is of growing concern. Silver nanoparticles (Ag NPs) are one of the most extensively produced NPs. Thus, this study aims to develop a method to detect Ag NPs in different aquatic systems. In complex media, three emerging techniques are compared, including hydrodynamic chromatography (HDC), asymmetric flow field flow fractionation (AF4) and single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The pre-treatment procedure of centrifugation is evaluated. HDC can estimate the Ag NP sizes, which were consistent with the results obtained from DLS. AF4 can also determine the size of Ag NPs but with lower recoveries, which could result from the interactions between Ag NPs and the working membrane. For the SP-ICP-MS, both the particle size and concentrations can be determined with high Ag NP recoveries. The particle size resulting from SP-ICP-MS also corresponded to the transmission electron microscopy observation (p > 0.05). Therefore, HDC and SP-ICP-MS are recommended for environmental analysis of the samples after our established pre-treatment process. The findings of this study propose a preliminary technique to more accurately determine the Ag NPs in aquatic environments and to use this knowledge to evaluate the environmental impact of manufactured NPs.
Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav
2016-01-01
Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.
Directory of Open Access Journals (Sweden)
Fotini Kokou
2016-05-01
Full Text Available One of the main concerns in gene expression studies is the calculation of statistical significance which in most cases remains low due to limited sample size. Increasing biological replicates translates into more effective gains in power which, especially in nutritional experiments, is of great importance as individual variation of growth performance parameters and feed conversion is high. The present study investigates in the gilthead sea bream Sparus aurata, one of the most important Mediterranean aquaculture species. For 24 gilthead sea bream individuals (biological replicates the effects of gradual substitution of fish meal by plant ingredients (0% (control, 25%, 50% and 75% in the diets were studied by looking at expression levels of four immune-and stress-related genes in intestine, head kidney and liver. The present results showed that only the lowest substitution percentage is tolerated and that liver is the most sensitive tissue to detect gene expression variations in relation to fish meal substituted diets. Additionally the usage of three independent biological replicates were evaluated by calculating the averages of all possible triplets in order to assess the suitability of selected genes for stress indication as well as the impact of the experimental set up, thus in the present work the impact of FM substitution. Gene expression was altered depending of the selected biological triplicate. Only for two genes in liver (hsp70 and tgf significant differential expression was assured independently of the triplicates used. These results underlined the importance of choosing the adequate sample number especially when significant, but minor differences in gene expression levels are observed. Keywords: Sample size, Gene expression, Fish meal replacement, Immune response, Gilthead sea bream
Thermal modeling of core sampling in flammable gas waste tanks. Part 1: Push-mode sampling
International Nuclear Information System (INIS)
Unal, C.; Stroh, K.; Pasamehmetoglu, K.O.
1997-01-01
The radioactive waste stored in underground storage tanks at Hanford site is routinely being sampled for waste characterization purposes. The push- and rotary-mode core sampling is one of the sampling methods employed. The waste includes mixtures of sodium nitrate and sodium nitrite with organic compounds that can produce violent exothermic reactions if heated above 160 C during core sampling. A self-propagating waste reaction would produce very high temperatures that eventually result in failure of the tank and radioactive material releases to environment. A two-dimensional thermal model based on a lumped finite volume analysis method is developed. The enthalpy of each node is calculated from the first law of thermodynamics. A flash temperature and effective contact area concept were introduced to account the interface temperature rise. No maximum temperature rise exceeding the critical value of 60 C was found in the cases studied for normal operating conditions. Several accident conditions are also examined. In these cases it was found that the maximum drill bit temperature remained below the critical reaction temperature as long as a 30 scfm purge flow is provided the push-mode drill bit during sampling in rotary mode. The failure to provide purge flow resulted in exceeding the limiting temperatures in a relatively short time
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-12-08
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental