Sample records for modeling microstructure development

  1. Recrystallization microstructure modelling from superimposed deformed microstructure on microstructure model

    Indian Academy of Sciences (India)

    Prantik Mukhopadhyay


    The recovered cold rolled microstructure obtained from orientation image microstructure of Al–4%Mg–0.5%Mn alloy (AA5182 alloy) was superimposed on the grid of cellular automata based microstructure model. The Taylor factors of deformed/cold rolled orientations were considered as the driving force for recrystallization. The local development of recrystallized microstructure and texture were simulated with orientation dependent grain boundary mobility and compared with the experimental results.

  2. Remanent life assessment of creep resistant modified 12% chromium steels: microstructural analysis and microstructural development models

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, L.; Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physics; Norell, M.; Nyborg, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Engineering Metals


    In this report, an overview of the current status of the development work, physical metallurgy and creep properties of 9-12% chromium steels is given. These steels find their application mainly in the power generating industry, at high temperatures. In Sweden, a co-operation between research groups specialized at microanalysis and modelling of 9-12% chromium steels has been initiated. This co-operation is outlined in this report, as well as the most important results achieved so far. The microstructure of four different alloys have been studied in detail with different analytical methods including atom-probe field-ion microscopy, electron microscopy and Auger electron spectroscopy. The role of different elements on precipitation processes and the composition of all relevant phases have been studied. Furthermore, segregation of impurity elements to creep cavities and creep fracture surfaces have been studied for two of the alloys. Models for the microstructural development of 9-12% chromium steels during heat treatment and creep testing are currently being produced. The work has been focused on modelling the nucleation and growth of MN and M{sub 23}C{sub 6} precipitates during tempering, and the first results from these studies are currently being compared to microscopy observation. In addition, equilibrium phase calculations have been made and been found to predict existing phases to a high degree. A complete description of the creep properties of these steels must also include a model of the relationship between microstructure and creep behaviour. However, the microstructural development models will form an important basis for complete models of this kind. 57 refs

  3. Microstructure modeling in weld metal

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Babu, S.S.


    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model`s comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds.

  4. Modeling of Microstructure Development during Hot Deformation and Subsequent Annealing of Precipitates Containing AA6016


    Jiao, F; Mohles, V.; Miroux, A.G.; Bollmann, C.


    Microstructure and microchemistry evolution during hot deformation and subsequent annealing of a commercial Al-Mg-Si alloy were experimentally investigated using electron backscatter diffraction (EBSD) and SEM. Meanwhile, a through-process model framework consisting of the deformation model GIA-3IVM+ and the recrystallization (RX) model CORe was utilized to simulate the microstructure evolution during the processing. Based on the experimental observations a new model for the RX driving force ...

  5. Model for calculation of microstructural development in rapidly directionally solidified immiscible alloys

    Institute of Scientific and Technical Information of China (English)



    A model has been developed for the calculation of the microstructural evolution in a rapidly directionally solidified immiscible alloy. Numerical solutions have been performed for Al-Pb immiscible alloys. The results demonstrate that at a higher solidification velocity a constitutional supercooling region appears in front of the solid/liquid interface and the liquid-liquid decomposition takes place in this region. A higher solidification velocity leads to a higher nucleation rate and, therefore, a higher number density of the minority phase droplets. As a result, the average radius of droplets in the melt at the solid/liquid interface decreases with the solidification velocity.

  6. Modeling of Microstructure Development during Hot Deformation and Subsequent Annealing of Precipitates Containing AA6016

    NARCIS (Netherlands)

    Jiao, F.; Mohles, V.; Miroux, A.G.; Bollmann, C.


    Microstructure and microchemistry evolution during hot deformation and subsequent annealing of a commercial Al-Mg-Si alloy were experimentally investigated using electron backscatter diffraction (EBSD) and SEM. Meanwhile, a through-process model framework consisting of the deformation model GIA-3IVM

  7. Modeling of Microstructure Development during Hot Deformation and Subsequent Annealing of Precipitates Containing AA6016

    NARCIS (Netherlands)

    Jiao, F.; Mohles, V.; Miroux, A.G.; Bollmann, C.


    Microstructure and microchemistry evolution during hot deformation and subsequent annealing of a commercial Al-Mg-Si alloy were experimentally investigated using electron backscatter diffraction (EBSD) and SEM. Meanwhile, a through-process model framework consisting of the deformation model GIA-3IVM


    DEFF Research Database (Denmark)

    Svensson, Ingvar; Seifeddine, Salem; Kotas, Petr


    inherently affects the component’s properties depending on design, metallurgy and casting method. The wall thickness influences the coarseness of the microstructure and the material will have properties depending on the local metallurgical and thermal histories. This is independent on the material, i.......e. whether the casting is based on cast iron- or aluminium-alloys. The distribution of local properties in a casting might vary substantially which makes it difficult to optimize the casting with good accuracy. Often, mechanical simulations of the load situation are based on the assumption that the cast...... product has constant material properties throughout the entire casting. Thus, if the microstructure is determined or predicted at a given point, it gives the possibility to calculate the local material behaviour more realistically. The paper shows modelling and simulation of microstructure formation...

  9. Solidification microstructure development

    Indian Academy of Sciences (India)

    G Phanikumar; K Chattopadhyay


    In the present article, evolution of microstructure during solidification, as a function of various parameters, is discussed. Macrosegregation is described as being due to insufficient diffusivity of solute in the solid. Pattern formation is discussed in the light of instabilities at the solidification growth front. An overview of the scaling relations for various microstructures is given. Metastable extensions to equilibrium phase diagrams and corrections to equilibrium quantities are described.

  10. Semi-quantitative model of the microstructure development in the high-alloyed iron based alloy during atomization

    Directory of Open Access Journals (Sweden)

    Peter Grgač


    Full Text Available The paper deals with the analysis of microstructure formation in the tool steel of ledeburite type Ch12MF4 with the chemical composition of 2.37% C, 12.06% Cr, 1.2% Mo and 4.0 % V [wt. (%] in the process of nitrogen gas atomization. Three main types of solidification microstructures were observed in rapidly solidified powder particles: dendritic, compound and cellular. Based on the morphological features of microstructures observed in rapidly solidified particles and mathematical modeling of the thermal history of solidifying spherical droplets, the semi-quantitative model of the microstructure development in the Ch12MF4 steel during atomization was suggested. According to this model, it is supposed that the transition from dendritic to partially dendritic (compound and nondendritic microstructures results from the thermally induced fragmentation of dendrites by the mechanism of their remelting, morphological changes of dendrite fragments and following spheroidization. The intensity of dendrite fragmentation in solidifying particles of different diameters is controlled mainly by the recalescence temperature and duration of quasi-isothermal period of solidification.

  11. Arctic Snow Microstructure Experiment for the development of snow emission modelling (United States)

    Maslanka, William; Leppänen, Leena; Kontu, Anna; Sandells, Mel; Lemmetyinen, Juha; Schneebeli, Martin; Proksch, Martin; Matzl, Margret; Hannula, Henna-Reetta; Gurney, Robert


    The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013-2014 and 2014-2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0, and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models, the Helsinki University of Technology (HUT) snow emission model and Microwave Emission Model of Layered Snowpacks (MEMLS), were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small, with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.

  12. Arctic Snow Microstructure Experiment for the development of snow emission modelling

    Directory of Open Access Journals (Sweden)

    W. Maslanka


    Full Text Available The Arctic Snow Microstructure Experiment (ASMEx took place in Sodankylä, Finland in the winters of 2013–2014 and 2014–2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0 and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small; with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.

  13. Microstructure Modeling of Third Generation Disk Alloys (United States)

    Jou, Herng-Jeng


    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  14. Arctic Snow Microstructure Experiment for the development of snow emission modelling


    Maslanka, William; Leppänen, Leena; Kontu, Anna; Sandells, Mel; Lemmetyinen, Juha; Schneebeli, Martin; Proksch, Martin; Matzl, Margret; Hannula, Henna-Reetta; Gurney, Robert


    The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013–2014 and 2014–2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of s...

  15. Understanding particulate coating microstructure development (United States)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  16. Development of the microstructure of the silicon nitride based ceramics

    Directory of Open Access Journals (Sweden)

    Bressiani J.C.


    Full Text Available Basic regularities of silicon nitride based materials microstructure formation and development in interrelation with processing conditions, type of sintering additives, and starting powders properties are discussed. Models of abnormal or exaggerated grain growth are critically reassessed. Results of several model experiments conducted in order to determine the most important factors directing the microstructure formation processes in RE-fluxed Si3N4 ceramics are reviewed. Existing data on the mechanisms governing the microstructure development of Si3N4-based ceramics are analyzed and several principles of microstructure tailoring are formulated.

  17. A New Microstructure Development Model for the Evaluation of Concrete Setting Time

    Directory of Open Access Journals (Sweden)

    Ho-Jin Cho


    Full Text Available Concrete is an exceptionally attractive construction material, with stable material supply, adequate fire resistance, and high durability. Its plasticity can be both an advantage and a disadvantage from an engineering point of view, providing versatile shapes via casting and hardening but also requiring a relatively long period of time to reach its design strength. The setting time, or hardening period, needed before the freshly poured concrete can carry a load, which begins once the hydration reaction has commenced, is a key parameter for durability since it directly affects cracking resistance in early-aged concrete. The new analysis technique for calculating setting time that was developed for this study utilizes both percolation theory and the strength development model. To verify the analytical results obtained using the new model, a critical volume ratio of hydrates was determined and a series of final setting times in concrete were experimentally investigated for different temperatures, mineral admixtures (FA: fly ash; GGBFS: ground granulated blast furnace slag, and a chemical admixture (superplasticizer. The results were found to be in good agreement with the model predictions, confirming its potential utility.

  18. Microstructure Development during Solidification of Aluminium Alloys

    NARCIS (Netherlands)

    Ruvalcaba Jimenez, D.G.


    This Thesis demonstrates studies on microstructure development during the solidification of aluminium alloys. New insights of structure development are presented here. Experimental techniques such as quenching and in-situ High-brilliance X-ray microscopy were utilized to study the microstructure evo

  19. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control (United States)

    Acharya, Ranadip; Das, Suman


    This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

  20. Development of a methodology for microstructural description

    Directory of Open Access Journals (Sweden)

    Vanderley de Vasconcelos


    Full Text Available A systematic methodology for microstructural description can help the task of obtaining the processing x microstructure x properties x performance relationships. There are, however, some difficulties in performing this task, which are related mainly to the following three factors: the complexity of the interactions between microstructural features; difficulties in evaluating geometric parameters of microstructural features; and difficulties in relating these geometric parameters to process variables. To solve some of these problems, it is proposed a methodology that embodies the following features: takes into account the different possible types of approaches for the microstructural description problem; includes concepts and tools of Total Quality Management; is supported on techniques of system analysis; and makes use of computer modeling and simulation and statistical design of experiments tools. The methodology was applied on evaluating some topological parameters during sintering process and its results were compared with available experimental data.

  1. Microstructured air-silica fibres: Recent developments in modelling, manufacturing and experiment

    CERN Document Server

    Pagnoux, Dominique; Roy, Philippe; Février, Sébastien; Labonté, Laurent; Hilaire, Stéphane


    The main modelling methods devoted to microstrutured air-silica optical fibres (MOFs) are presented and discussed. Then, the specific propagation properties of MOFs are studied in detail. Characteristics measured on fibres manufactured in our laboratory or reported in the literature are analysed. A large number of potential and demonstrated applications are presented and the obtained performances are discussed. A particular attention is given to hollow- core photonic bandgap fibres and their applications.

  2. Microstructural development of rapid solidification in Al-Si powder

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Feng [Iowa State Univ., Ames, IA (United States)


    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 μm to 150 μm diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  3. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini


    as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering result in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage......A numerical model able to simulate solid state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress...

  4. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini


    as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering results in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage......A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress...

  5. Property predictions using microstructural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K.G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States)]. E-mail:; Guo, Z. [Sente Software Ltd., Surrey Technology Centre, 40 Occam Road, Guildford GU2 7YG (United Kingdom); Sha, W. [Metals Research Group, School of Civil Engineering, Architecture and Planning, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Glicksman, M.E. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States); Rajan, K. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, CII 9219, 110 8th Street, Troy, NY 12180-3590 (United States)


    Precipitation hardening in an Fe-12Ni-6Mn maraging steel during overaging is quantified. First, applying our recent kinetic model of coarsening [Phys. Rev. E, 69 (2004) 061507], and incorporating the Ashby-Orowan relationship, we link quantifiable aspects of the microstructures of these steels to their mechanical properties, including especially the hardness. Specifically, hardness measurements allow calculation of the precipitate size as a function of time and temperature through the Ashby-Orowan relationship. Second, calculated precipitate sizes and thermodynamic data determined with Thermo-Calc[copyright] are used with our recent kinetic coarsening model to extract diffusion coefficients during overaging from hardness measurements. Finally, employing more accurate diffusion parameters, we determined the hardness of these alloys independently from theory, and found agreement with experimental hardness data. Diffusion coefficients determined during overaging of these steels are notably higher than those found during the aging - an observation suggesting that precipitate growth during aging and precipitate coarsening during overaging are not controlled by the same diffusion mechanism.

  6. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number......A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...

  7. A Combined Statistical-Microstructural Model for Simulation of Sintering

    Energy Technology Data Exchange (ETDEWEB)



    Sintering theory has been developed either as the application of complex diffusion mechanisms to a simple geometry or as the deformation and shrinkage of a continuum body. They present a model that can treat in detail both the evolution of microstructure and the sintering mechanisms, on the mesoscale, so that constitutive equations with detail microstructural information can be generated. The model is capable of simulating vacancy diffusion by grain boundary diffusion, annihilation of vacancies at grain boundaries resulting in densification, and coarsening of the microstructural features. In this paper, they review the stereological theory of sintering and its application to microstructural evolution and the diffusion mechanism, which lead to sintering. They then demonstrate how these stereological concepts and diffusion mechanisms were incorporated into a kinetic Monte Carlo model to simulate sintering. Finally, they discuss the limitations of this model.

  8. Fatigue modeling of materials with complex microstructures

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon


    A new approach and method of the analysis of microstructure-lifetime relationships of materials with complex structures is presented. The micromechanical multiscale computational analysis of damage evolution in materials with complex hierarchical microstructures is combined with the phenomenologi......A new approach and method of the analysis of microstructure-lifetime relationships of materials with complex structures is presented. The micromechanical multiscale computational analysis of damage evolution in materials with complex hierarchical microstructures is combined...... with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...

  9. Linking Experimental Characterization and Computational Modeling in Microstructural Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Melik Cumhar [Univ. of Pittsburgh, PA (United States)


    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. In order to accomplish this objective, we studied the grain growth in detail with experimental techniques and computational simulations. We obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure from the Electron Backscattered Diffraction (EBSD) measurements. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 ºC. Two different measures were introduced as methods of comparing experimental and computed microstructures. Modeling with anisotropic mobility explains a significant amount of mismatch between experiment and isotropic modeling. We have shown that isotropic modeling has very little predictive value. Microstructural evolution in columnar Aluminum foils can be correctly modeled with anisotropic parameters. We observed a strong similarity between grain growth experiments and anisotropic three-dimensional simulations.

  10. Linking Experimental Characterization and Computational Modeling in Microstructural Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Melik Cumhur [Univ. of Pittsburgh, PA (United States)


    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. In order to accomplish this objective, we studied the grain growth in detail with experimental techniques and computational simulations. We obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure from the Electron Backscattered Diffraction (EBSD) measurements. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 ºC. Two different measures were introduced as methods of comparing experimental and computed microstructures. Modeling with anisotropic mobility explains a significant amount of mismatch between experiment and isotropic modeling. We have shown that isotropic modeling has very little predictive value. Microstructural evolution in columnar Aluminum foils can be correctly modeled with anisotropic parameters. We observed a strong similarity between grain growth experiments and anisotropic three-dimensional simulations.

  11. Linking Experimental Characterization and Computational Modeling in Microstructural Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Melik Cumhur [Univ. of California, Berkeley, CA (United States)


    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. In order to accomplish this objective, we studied the grain growth in detail with experimental techniques and computational simulations. We obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure from the Electron Backscattered Diffraction (EBSD) measurements. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 ºC. Two different measures were introduced as methods of comparing experimental and computed microstructures. Modeling with anisotropic mobility explains a significant amount of mismatch between experiment and isotropic modeling. We have shown that isotropic modeling has very little predictive value. Microstructural evolution in columnar Aluminum foils can be correctly modeled with anisotropic parameters. We observed a strong similarity

  12. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring. (United States)

    Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex


    A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss-Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  13. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    Directory of Open Access Journals (Sweden)

    Matias Soto


    Full Text Available A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  14. Modeling of Developing Inhomogeneities in the Ferrite Microstructure and Resulting Mechanical Properties Induced by Deformation in the Two-Phase Region

    Energy Technology Data Exchange (ETDEWEB)

    Majta, J; Zurek, A.K.; Pietrzyk, M.


    The differences in microstructure development of hot deformed steels in the austenite and two-phase region have been effectively described using an integrated computer modeling process. In general, the complete model presented here takes into account kinetics of recrystallization, precipitation, phase transformation, recrystallized austenite grain size, ferrite grain size, and the resulting mechanical properties. The transformation submodel of niobium-microalloyed steels is based on the nucleation and grain growth theory and additivity rule. The thermomechanical part of the modeling process was effectively carried out using the finite element method. Results were obtained in different temperatures, strain rates, and range of deformation. The thermomechanical treatments are different for two grades of niobium-steels to make possible analysis of the resulting structure and properties for different histories of deformation and chemical composition.

  15. Modeling the deformation behavior of nanocrystalline alloy with hierarchical microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi; Zhou, Jianqiu, E-mail: [Nanjing Tech University, Department of Mechanical Engineering (China); Zhao, Yonghao, E-mail: [Nanjing University of Science and Technology, Nanostructural Materials Research Center, School of Materials Science and Engineering (China)


    A mechanism-based plasticity model based on dislocation theory is developed to describe the mechanical behavior of the hierarchical nanocrystalline alloys. The stress–strain relationship is derived by invoking the impeding effect of the intra-granular solute clusters and the inter-granular nanostructures on the dislocation movements along the sliding path. We found that the interaction between dislocations and the hierarchical microstructures contributes to the strain hardening property and greatly influence the ductility of nanocrystalline metals. The analysis indicates that the proposed model can successfully describe the enhanced strength of the nanocrystalline hierarchical alloy. Moreover, the strain hardening rate is sensitive to the volume fraction of the hierarchical microstructures. The present model provides a new perspective to design the microstructures for optimizing the mechanical properties in nanostructural metals.

  16. Three-dimensional Microstructure Simulation Model of Cement Based Materials,

    NARCIS (Netherlands)

    Ye, G.; Van Breugel, K.


    This paper describes a computer-based numerical model for the simulation of the development of microstructure during cement hydration. Special emphasis is on the algorithm for characterizing the pores. This includes the porosity and the pore size distribution and the topological properties of the po

  17. Microstructural Development in Al-Si Powder During Rapid Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Genau, Amber Lynn [Iowa State Univ., Ames, IA (United States)


    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  18. A novel three-phase model of brain tissue microstructure. (United States)

    Gevertz, Jana L; Torquato, Salvatore


    We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

  19. A novel three-phase model of brain tissue microstructure.

    Directory of Open Access Journals (Sweden)

    Jana L Gevertz

    Full Text Available We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.


    Directory of Open Access Journals (Sweden)

    Ricardo Nolasco de Carvalho


    Full Text Available The goal of this work is to present recent developments on mathematical modeling for microstructure evolution in different steel types, applied to a continuous rolling of seamless tubes. The development of these models depends on careful characterization of the thermomechanical cycle and/on correct selection and adjustment of equations which describes the several metallurgical phenomena involved on this process. The adjustments of these models are done using the results obtained in hot torsion simulations. For this, the thermomechanical cycles are simplified considering the equipment limitations in reproduce some strain, strain rates and cooling rates developed industrially. Samples for optical microscopy were obtained by interruption of simulations after selected steps of process. After adjustment of each model with results from simulation, the final microstructures are compared with those obtained in industrial scale. In general, good correlations are observed.

  1. Advances on Microstructure Modeling of Solidification Process of Shape Casting

    Institute of Scientific and Technical Information of China (English)

    柳百成; 许庆彦


    Simulation technology for shape casting at macro-scale has been successfully put into engineering application in a number of casting plants and as a result the quality of castings is assured, the research and development time is shortened, and the manufacturing cost is greatly saved as well. In this paper, modeling and simulation technologies of solidification process of shape casting at microstructure-scale, especially deterministic, cellular automaton, and phase field models are studied and reviewed.

  2. Experimental Study and Numerical Simulation of the Development of the Microstructure and Permeability of Cementitious Materials

    NARCIS (Netherlands)

    YE, Guang


    The aim of this thesis was to investigate and to simulate the development of the microstructure, porosity and permeability in hardening cement-based materials. Based on experimental information and the cement hydration model HYMOSTRUC, the microstructural details including porosity, connectivity of

  3. Microstructure Modeling of 3rd Generation Disk Alloys (United States)

    Jou, Herng-Jeng


    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  4. Phase transformations and microstructure development in low alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Vitek, J.M. [and others


    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  5. Rapid solidification in thermal spary deposition: Microstructure and modelling

    Indian Academy of Sciences (India)

    Guo-Xiang Wang; V Prasad; S Sampath


    Mechanical, thermal, and adhesive properties of thermal spray coatings are primarily determined by the phase and microstructure of single splats, which ultimately depend on rapid solidification of each splat and on the interactions between the splats and between the splat and the substrate. Significant efforts are being made to develop a better understanding of the physical mechanisms underlying these phenomena. This paper reviews a series of work in the area of mathematical modelling of phase and microstructure formation during the rapid solidification of single splats and coatings. The model development has been complimented by special experiments. Conditions under which plariar interface solidification occurs, columnar cellular or dendriric growth takes place, or banded structure forms, have been identified. A microstructure map can therefore be built using the model presented here. The process parameters that promote crystalline nucleation and grain structure formation can be isolated and the effect of interfacial heat transfer, splat substrate temperature difference, and substrate melting and resolidification can be examined using the model. The model predictions agree qualitatively well with the experimental data for alumina, yttria, partially-stabilized zirconia, and molybdenum.

  6. Modeling microstructural evolution of multiple texture components during recrystallization

    DEFF Research Database (Denmark)

    Vandermeer, R.A.; Juul Jensen, D.


    using stereological point and lineal measurements of microstructural properties in combination with EBSP analysis for orientation determinations. The potential of the models to describe the observed recrystallization behavior of heavily cold-rolled commercial aluminum was demonstrated. A successful MPM......Models were formulated in an effort to characterize recrystallization in materials with multiple texture components. The models are based on a microstructural path methodology (MPM). Experimentally the microstructural evolution of conmmercial aluminum during recrystallization was characterized...

  7. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.;


    A computational numerical-analytical model of nano-reinforced polymer composites is developed taking into account the interface and particle clustering effects. The model was employed to analyze the interrelationships between microstructures and mechanical properties of nanocomposites. An improved...

  8. Modeling the Microstructural Evolution during Hot Deformation of Microalloyed Steels


    Bäcke, Linda


      This thesis contains the development of a physically-based model describing the microstructural evolution during hot deformation of microalloyed steels. The work is mainly focused on the recrystallization kinetics. During hot rolling, the repeated deformation and recrystallization provides progressively refined recrystallized grains. Also, recrystallization enables the material to be deformed more easily and knowledge of the recrystallization kinetics is important in order to predict the re...

  9. A microstructure-guided constitutive modeling approach for random heterogeneous materials: Application to structural binders

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sumanta; Maroli, Amit; Singh, Sudhanshu S.; Stannard, Tyler; Xiao, Xianghui; Chawla, Nikhilesh; Neithalath, Narayanan


    This paper presents a microstructure-guided modeling approach to predict the effective elastic response of heterogeneous materials, and demonstrates its application toward two highly heterogeneous, uncon- ventional structural binders, i.e., iron carbonate and fly ash geopolymer. Microstructural information from synchrotron X-ray tomography (XRT) and intrinsic elastic properties of component solid phases from statistical nanoindentation are used as the primary inputs. The virtual periodic 3D microstructure reconstructed using XRT, along with periodic boundary conditions is used as a basis for strain- controlled numerical simulation scheme in the linear elastic range to predict the elastic modulus as well as the stresses in the microstructural phases. The elastic modulus of the composite material predicted from the microstructure-based constitutive modeling approach correlates very well with experimental measurements for both the materials considered. This technique efficiently links the microstructure to mechanical properties of interest and helps develop material design guidelines for novel heterogeneous composites

  10. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C.


    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  11. Strong solutions of semilinear matched microstructure models

    CERN Document Server

    Escher, Joachim


    The subject of this article is a matched microstructure model for Newtonian fluid flows in fractured porous media. This is a homogenized model which takes the form of two coupled parabolic differential equations with boundary conditions in a given (two-scale) domain in Euclidean space. The main objective is to establish the local well-posedness in the strong sense of the flow. Two main settings are investigated: semi-linear systems with linear boundary conditions and semi-linear systems with nonlinear boundary conditions. With the help of analytic semigoups we establish local well-posedness and investigate the long-time behaviour of the solutions in the first case: we establish global existence and show that solutions converge to zero at an exponential rate.

  12. A Stochastic Multiscale Model for Microstructure Model Reduction (United States)


    methods. In [4, 5] the principle of maximum entropy ( MaxEnt ) was used to describe the microstructure topology of binary and polycrystalline materials. A...such MaxEnt distribution and interrogated using appropriate physical model, e.g. a crystal plasticity finite element method (CPFEM) [6] for polycrystals

  13. Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization (United States)

    Xu, Hongyi; Zhu, Min; Marcicki, James; Yang, Xiao Guang


    A microstructure-based modeling method is developed to predict the mechanical behaviors of lithium-ion battery separators. Existing battery separator modeling methods cannot capture the structural features on the microscale. To overcome this issue, we propose an image-based microstructure Representative Volume Element (RVE) modeling method, which facilitates the understanding of the separators' complex macro mechanical behaviors from the perspective of microstructural features. A generic image processing workflow is developed to identify different phases in the microscopic image. The processed RVE image supplies microstructural information to the Finite Element Analysis (FEA). Both mechanical behavior and microstructure evolution are obtained from the simulation. The evolution of microstructure features is quantified using the stochastic microstructure characterization methods. The proposed method successfully captures the anisotropic behavior of the separator under tensile test, and provides insights into the microstructure deformation, such as the growth of voids. We apply the proposed method to a commercially available separator as the demonstration. The analysis results are validated using experimental testing results that are reported in literature.

  14. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

  15. Modeling of friction-induced deformation and microstructures.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Prasad, Somuri V.; Jungk, John Michael; Cordill, Megan J. (University of Minnesota); Bammann, Douglas J.; Battaile, Corbett Chandler; Moody, Neville Reid; Majumdar, Bhaskar Sinha (New Mexico Institure of Mining and Technology)


    Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the

  16. A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects (United States)

    Gao, X.-L.; Zhang, G. Y.


    A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.

  17. Microstructural Development during Directional Solidification of Peritectic Alloys (United States)

    Lograsso, Thomas A.


    A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences

  18. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Wang, Z.; Nakamura, T.; Sampath, S.; Goland, A.; Herman, H.; Allen, J.; Ilavsky, J.; Long, G.; Frahm, J.; Steinbrech, R.W


    Quantitative microstructure characterization to better understand processing-microstructure-property correlations is of considerable interest in plasma sprayed coating research. This paper quantifies, by means of small-angle neutron scattering (SANS) data, microstructure (porosity, opening dimensions, orientation and morphologies) in plasma sprayed partially-stabilized zirconia (PSZ) coatings, primarily used as thermal barrier coatings. We report on the investigation of the influence of feedstock characteristics on microstructure and establish its influence on the resultant thermal and mechanical properties. The microstructural parameters determined by SANS studies are then assembled into a preliminary model to develop a predictive capability for estimating the properties of these coatings. Thermal conductivity and elastic modulus were predicted using finite element analysis and ultimately compared to experimental values.

  19. A cellular automaton model for microstructural simulation of friction stir welded AZ91 magnesium alloy (United States)

    Akbari, Mostafa; Asadi, Parviz; Besharati Givi, MohammadKazem; Zolghadr, Parisa


    To predict the grain size and microstructure evolution during friction stir welding (FSW) of AZ91 magnesium alloy, a finite element model (FEM) is developed based on the combination of a cellular automaton model and the Kocks  -  Mecking and Laasraoui-Jonas models. First, according to the flow stress curves and using the Kocks  -  Mecking model, the hardening and recovery parameters and the strain rate sensitivity were calculated. Next, an FEM model was established in Deform-3D software to simulate the FSW of AZ91 magnesium alloy. The results of the FEM model are used in microstructure evolution models to predict the grain size and microstructure of the weld zone. There is a good agreement between the simulated and experimental microstructures, and the proposed model can simulate the dynamic recrystallization (DRX) process during FSW of AZ91 alloy. Moreover, microstructural properties of different points in the SZ as well as the effect of the w/v parameter on the grain size and microstructure are considered.

  20. Constitutive model of rock based on microstructures simulation

    Institute of Scientific and Technical Information of China (English)

    YE Zhou-yuan; HONG Liang; LIU Xi-ling; YIN Tu-bing


    The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads. It is resumed that rock contains many microstructures and a structure of Bingham. The microstructure consists of two embranchments that are the unit of a spring and a gliding slice in series and the unit of a spring and a cementation bar in series, the two units connect each other in parallel. These microstructures are arranged disorderly or in the order of a certain state. A certain distribution of microstructures represents one type of rock. Two kinds of rock's constitutive relationship were deduced by using the model. One is the model in which many parallel microstructures and a structure of Bingham connect in series. And it is used to homogeneous rock. The other is the model in which many microstructures and a structure of Bingham connect in series. And it is used to the rock with much crack or microcrack in a certain direction. The two kinds of constitutive relationship were verified by the studied cases. The constitutive model of rock built by using mechanics elements is verified to be reasonable. Moreover, different types of rocks may be described with mechanics elements with different distributions.

  1. Recent Developments in Micro-Structured Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Yanping Xu


    Full Text Available Recent developments in fiber-optic sensing have involved booming research in the design and manufacturing of novel micro-structured optical fiber devices. From the conventional tapered fiber architectures to the novel micro-machined devices by advanced laser systems, thousands of micro-structured fiber-optic sensors have been proposed and fabricated for applications in measuring temperature, strain, refractive index (RI, electric current, displacement, bending, acceleration, force, rotation, acoustic, and magnetic field. The renowned and unparalleled merits of sensors-based micro-machined optical fibers including small footprint, light weight, immunity to electromagnetic interferences, durability to harsh environment, capability of remote control, and flexibility of directly embedding into the structured system have placed them in highly demand for practical use in diverse industries. With the rapid advancement in micro-technology, micro-structured fiber sensors have benefitted from the trends of possessing high performance, versatilities and spatial miniaturization. Here, we comprehensively review the recent progress in the micro-structured fiber-optic sensors with a variety of architectures regarding their fabrications, waveguide properties and sensing applications.

  2. A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon


    A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure at meso...

  3. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... doxycycline was loaded into the hydrogel of the IPN materials, and the biological activity of released doxycycline was tested using a doxycycline regulated green fluorescent reporter gene expression assay in HeLa cells. Additionally, decellularized liver extracellular matrix (ECM) and natural silk protein...

  4. Modelling of Filling, Microstructure Formation, Local Mechanical Properties and Stress – Strain Development in High-Pressure Die Cast Aluminium Castings

    DEFF Research Database (Denmark)

    Kotas, Petr; Hattel, Jesper Henri; Thorborg, Jesper


    inherently affects the component’s properties depending on design, metallurgy and casting technique. The wall thickness influences the coarseness of the microstructure and the material will have properties depending on the local metallurgical and thermal histories. This is independent on the material, i.......e. whether the casting is based on cast iron- or aluminium-alloys. The distribution of local properties in a casting might vary substantially which makes it complex to optimize the casting with good accuracy. Often, mechanical simulations of the load situation are based on the assumption that the cast...... product has constant material properties throughout the entire casting. Thus, if the microstructure is determined or predicted at a given point, it gives the possibility to calculate the local material behavior more realistically. In the present work, a test case of a complex high-pressure die cast part...

  5. Microstructure Characterization and Modeling for Improved Electrode Design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Usseglio Viretta, Francois L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yao, Koffi (Pierre) [ANL; ; Dees, Dennis [ANL; Jansen, Andy [ANL; Mukherjee, Partha [TAMU; Mistry, Aashutosh [TAMU; Verma, Ankit [TAMU


    This presentation describes research work led by NREL with team members from Argonne National Laboratory and Texas A&M University in microstructure analysis, modeling and validation under DOE's Computer-Aided Engineering of Batteries (CAEBAT) program. The goal of the project is to close the gaps between CAEBAT models and materials research by creating predictive models that can be used for electrode design.

  6. Role of the advanced microstructures characterization in modeling of mechanical properties of AHSS steels

    Energy Technology Data Exchange (ETDEWEB)

    Radwański, Krzysztof, E-mail:; Wrożyna, Andrzej, E-mail:; Kuziak, Roman, E-mail:


    Detailed knowledge of the fraction, morphology and chemical composition of phase constituents and their effect on the mechanical properties play a crucial role in understanding of the mechanisms influencing the properties of Advanced High Strength Steels (AHSS). On the other hand, the most important microstructural features of these steels are characterized by different size, starting from the nano- and ending on the microscale. Therefore, a detailed characterization of the AHSS microstructure must involve many methods capable of tracing the microstructure at different scale levels. The paper presents selected capabilities of advanced analytical techniques, in combination with conventional light optical microscopy (LOM), for quantitative characterization of the microstructure developed in AHSS steels during thermomechanical processing or continuous annealing. The material used for the investigation comprised the samples of DP steel sheet produced at the industrial scale. Special emphasis was focused on the capabilities of the Field Emission Gun Scanning Electron Microscopy (FEG SEM) combined with EBSD of microstructural characterization. The significance of accurate microstructure characterization for the modeling of mechanical properties of AHSS steels was demonstrated for the case of numerical calculation of the stress–strain curve in the standard tensile test. The work results indicate that such an engineering approach is useful for prediction of material properties.

  7. Thermal transport properties of multiphase sintered metals microstructures. The copper-tungsten system: Experiments and modeling (United States)

    Gheribi, Aïmen E.; Autissier, Emmanuel; Gardarein, Jean-Laurent; Richou, Marianne


    The thermal diffusivity of Cu-W sintered alloys microstructures is measured at room temperature at different compositions, using rear face flash experiments. The samples are synthesized with the Spark Plasma Sintering technique. The resulting microstructures are slightly porous and consist of angular nanoscale grains of tungsten with medium sphericity in a copper matrix. The tungsten particles are at the nanoscale with an average grain size of 250 nm in contrast to the copper matrix for which the average grain size lies in the range 20 μm-30 μm; this is large enough to avoid the grains boundary effect upon the thermal transport. The overall porosity of the microstructures lies within the range: 6 %≤P ≤12 % . Along with the experimental work, a predictive model describing the effective thermal conductivity of multiphasic macrostructures is proposed in order to explain the obtained experimental results. The model was developed based only on physical considerations and contains no empirical parameters; it takes into account the type of microstructure and the microstructure parameters: porosity, grain shape, grain size, and grain size distribution. The agreement between the experiments and the model is found to be excellent.

  8. Microstructural Characterization of Cermet Cladding Developed Through Microwave Irradiation (United States)

    Gupta, Dheeraj; Sharma, Apurbba Kumar


    In the present work, cladding of hardfacing WC10Co2Ni powder on austenitic stainless steel has been developed through a novel processing technique. The clads were developed using microwave hybrid heating. The clad of average thickness ~2 mm has been developed through the exposure of microwave radiation at frequency 2.45 GHz and power 900 W for the duration of 360 s. The developed clads were characterized using field emission scanning electron microscope, X-ray elemental analysis, X-ray diffraction, and measurement of Vicker's microhardness. The microstructure study of the clad showed good metallurgical bonding with substrate and revealed that clads are free from any visible interface cracking. Clads were formed with partial dilution of a thin layer of the substrate. The cermet microstructure mainly consists of relatively soft metallic matrix phase and uniformly distributed hard carbide phase with skeleton-like structure. The developed clads exhibit an average microhardness of 1064 ± 99 Hv. The porosity of developed clad has been significantly less at approximately 0.89%.

  9. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    A mesoscale numerical model able to simulate solid state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element method for calculating stresses. The sintering behavior of a sample constrained by a rigid substrate ...

  10. Multi-scale modeling in microstructure evolution of materials

    Institute of Scientific and Technical Information of China (English)


    Intelligent design and control of the microstructure to tailor properties of materials is the dream that materials scientists have been worked hard for many years. Formation of research area of computational materials science paves the way to realize the dream. Simulation of microstructure evolution is a chief branch of the computational materials science and has caused great attention from materials researchers. Multi-scale modeling gets popular just within 5- 6 years recently due to huge research works to try to shorten the distance between simulation and application. People have to command one or more classical simulation methods in order to do the multi-scale modeling so chief simulation methods will be discussed first and then more reviews in detail are given to the phase field simulation. The main part of the paper is carried out to introduce two key approaches to do the multi-scale modeling job. It is suggested that extension of the multiscale modeling is necessary to study the technologies to link microstructure simulation, processing simulation and property simulation each other as well as to build bridges between different simulation methods and between analytical models and numerical models.

  11. A New Model for Microstructure of Liquid Metals

    Institute of Scientific and Technical Information of China (English)

    田学雷; 沈军; 孙剑飞; 李庆春


    A nanocrystalline model for microstructures of liquid metals is constructed. According to the nanocrystalline model, the intensity curves of x-ray diffraction (XRD) on liquid Cu, Al and Al65Cu20Fe15 alloy are derived by broadening the XRD peaks of these metals in some crystal structures. These broadening intensity curves are identical with the results measured by an x-ray diffractometer on these liquid metals. The present results indicate that the nanocrystal model may be helpful to understand the microstructures of liquid metals and that there is aclose correlation between the short-range orders (SROs) of these liquid metals and some crystal lattice structures.That is, the SRO structures of liquid Cu, Al and Al65Cu20Fe15 alloy are fcc, bcc and icosahedron, respectively.

  12. A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J.


    All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic “engineering” scales. In many cases, it is necessary to treat this behavior as a multiscale process thus integrating the physical understanding of material behavior at various physical (length and time) scales in order to more accurately predict the thermomechanical response of materials as their microstructure evolves. The intent of the dissertation is to provide a formal framework for multiscale hierarchical homogenization to be used in developing constitutive models.

  13. Modeling of casting microstructures and defects

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.B.; Summers, L.T.; Eckels, D.J.; Sahai, V.


    Casting is an ancient art that has been a trial-and-error process for more than 4000 years. To predict the size, shape, and quality of a cast product, casting manufacturers typically cast full-size prototypes. If one part of the process is done incorrectly, the entire process is repeated until an acceptable product is achieved. One way to reduce the time, cost, and waste associated with casting is to use computer modeling to predict not only the quality of a product on the macro- scale, such as distortion and part shape, but also on the micro-scale such as grain defects. Modeling of solidification is becoming increasingly feasible with the advent of parallel computers. There are essentially two approaches to solidification modeling.The first is that of macro-modeling where heat transfer codes model latent heat release during solidification as a constant and based solely on the local temperature. This approach is useful in predicting large scale distortion and final part shape. The second approach, micro-modeling, is more fundamental. The micro-models estimate the latent heat release during solidification using nucleation and grain growth kinetics. Micro-models give insight into cast grain morphology and show promise in the future to predict engineering properties such as tensile strength. The micro-model solidification kinetics can be evaluated using first principles or they can be evaluated using experiments. This work describes an implementation of a micro-model for uranium which uses experimental results to estimate nucleation and growth kinetics.

  14. Modeling of the growth of filamentous fungi in artificial microstructures (United States)

    Nicolau, Dan V., Jr.; Hanson, Kristi; Nicolau, Dan V.


    We present a stochastic and spatial Monte Carlo model for the growth of a fungal colony in microstructures. This model is based on an "L-system-like" representation of filaments as individual objects. Each of these can both grow in space (and be diverted by obstacles) and can send new branches. All parameters in the model such as filament dimensions, the growth speed, behavior at and around obstacles, branching angle and frequency and others are obtained from experimental studies of growth in artificial microstructures. We investigate four different possible "strategies" the colony might use to achieve the tasks of (a) filling the available space and (2) finding its way out of the structures. The simulation results indicate that a combination of directional memory and a stop-and-branch behavior at corners gives the best results and observe that in fact this is similar to the experimentally observed behavior of the fungi. The model is expected to be of use in studying the colonization of microstructures by fungi and in the design of devices either using fungal growth or aiming to inhibit it.

  15. Modeling the Permittivity of Two-Phase Media Containing Monodisperse Spheres: Effects of Microstructure and Multiple Scattering


    Doyle, Timothy E; Robinson, David A.; Scott B. Jones; Warnick, Keith H.; Carruth, Brent L.


    A numerical modeling approach was developed to predict the dielectric properties of heterogeneous particulate materials with arbitrary microstructures. To test the method, simulation and experimental data were acquired for the effective permittivities of various glass sphere suspensions. Both ordered lattices and random microstructures of up to 3600 spheres were modeled for volume fractions of 0.025–0.60. The electric fields in the suspensions were computed using an iterative multipole method...

  16. A microstructure- and surface energy-dependent third-order shear deformation beam model (United States)

    Gao, X.-L.; Zhang, G. Y.


    A new non-classical third-order shear deformation model is developed for Reddy-Levinson beams using a variational formulation based on Hamilton's principle. A modified couple stress theory and a surface elasticity theory are employed. The equations of motion and complete boundary conditions for the beam are obtained simultaneously. The new model contains a material length scale parameter to account for the microstructure effect and three surface elastic constants to describe the surface energy effect. Also, Poisson's effect is incorporated in the new beam model. The current non-classical model recovers the classical elasticity-based third-order shear deformation beam model as a special case when the microstructure, surface energy and Poisson's effects are all suppressed. In addition, the newly developed beam model includes the models considering the microstructure dependence or the surface energy effect alone as limiting cases and reduces to two existing models for Bernoulli-Euler and Timoshenko beams incorporating the microstructure and surface energy effects. To illustrate the new model, the static bending and free vibration problems of a simply supported beam loaded by a concentrated force are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that both the deflection and rotation of the simply supported beam predicted by the current model are smaller than those predicted by the classical model. Also, it is observed that the differences in the deflection and rotation predicted by the two beam models are very large when the beam thickness is sufficiently small, but they are diminishing with the increase in the beam thickness. For the free vibration problem, it is found that the natural frequency predicted by the new model is higher than that predicted by the classical beam model, and the difference is significant for very thin beams. These predicted trends of the size effect at the

  17. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach (United States)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev


    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  18. Microstructure development in Al-Cu-Ag-Mg quaternary alloy (United States)

    Zhou, Bin; Froyen, L.


    The solidification behaviour of multi-component and multi-phase systems has been largely investigated in binary and ternary alloys. In the present study, a quaternary model system is proposed based on the well known Al-Cu-Ag and Al-Cu-Mg ternary eutectic alloys. The quaternary eutectic composition and temperature were determined by EDS (Energy Dispersive Spectrometry) and DSC (Differential Scanning Calorimetry) analysis, respectively. The microstructure was then characterised by SEM (Scanning Electron Microscope). In the DSC experiments, two types of quaternary eutectics were determined according to their phase composition. For each type of eutectic, various microstructures were observed, which result in different eutectic compositions. Only one of the determined eutectic compositions was further studied by the controlled growth technique in a vertical Bridgeman type furnace. In the initial part of the directionally solidified sample, competing growth between two-phase dendrites and three-phase eutectics was obtained, which was later transformed to competing growth between three-phase and four-phase eutectics. Moreover, silver enrichment was measured at the solidification front, which is possibly caused by Ag sedimentation due to gravity and Ag rejection from dendritic and three-phase eutectic growth, and its accumulation at the solidification front.

  19. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez-Rivera, Efrain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holm, Elizabeth Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States); Patterson, Burton R. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Homer, Eric R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering


    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  20. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Lauriane Jugé

    Full Text Available Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both, an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM and rearrangement of the cortical gray matter microstructure (P < 0.001, for both, while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both. During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001, while a decrease in space was observed for the ventral internal capsule (P < 0.001. For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001. To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions

  1. Improved analytical model for the field of index-guiding microstructured optical fibers (United States)

    Sharma, Dinesh Kumar; Sharma, Anurag


    We present an improved version of our earlier developed analytical field model for the fundamental mode of index-guiding microstructured optical fibers (MOFs), to obtain better accuracy in the simulated results. Using this improved field model, we have studied the splice losses between an MOF and a traditional step-index single-mode fiber (SMF). Comparisons with available experimental and numerical simulation results have also been included.

  2. Microstructure and properties of sintered mullite developed from Indian bauxite

    Indian Academy of Sciences (India)

    H S Tripathi; A Ghosh; M K Halder; B Mukherjee; H S Maiti


    Dense mullite aggregates with 72% Al2O3 have been synthesized by reaction sintering of two varieties of Indian bauxite and silica sol. The bauxites used are of inferior grade with different levels of accessory impurities such as Fe2O3, TiO2, CaO. The phase and microstructure development of sintered samples were investigated by XRD and SEM. It was found that morphology of the sintered grain is very much dependent on the impurity level. Mullite formed from bauxite-1 with low impurity is mostly equiaxed, whereas mullite developed from bauxite 2 with higher impurity particularly CaO is needle shaped. Presence of CaO in bauxite was found to be more detrimental than TiO2 and Fe2O3.

  3. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Al-Samman, T., E-mail: [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Mu, S.; Gottstein, G. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany)


    Highlights: {yields} Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. {yields} New off-basal sheet texture during c-axis compression at low Z conditions. {yields} Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T{sub m}. {yields} Prismatic slip becomes equally important to deformation at 0.6T{sub m}. {yields} Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  4. A 3-D microstructural level model for analyzing the response of polymer bonded explosives (United States)

    Hardin, David; Zhou, Min


    A three-dimensional finite element model is developed to study the microstructural level response of polymer-bonded explosives (PBX) under impact loading. The study focuses on the effect of the morphology and packing of energetic grains on the overall thermomechanical response of the composites. A cohesive finite element method (CFEM) is utilized to account for failure in the form of debonding between the HMX grains and the polymer matrix. Frictional heating along crack faces is tracked through a contact algorithm. Microstructures with cubic and multifaceted three-dimensional polygonal granules with packing densities between 0.42 and 0.74 are generated and used. Both 2D and 3D calculations are carried to analyze the differences between the models. To ensure consistency, the 2D microstructures are sections of the 3D microstructures. In this presentation, we will discuss differences in results from the 2D and 3D calculations, with a particular focus on the progression of damage and heating under impact loading.

  5. P-T path development derived from shearband boudin microstructure (United States)

    Rodrigues, Benedito C.; Peternell, Mark; Moura, António; Schwindinger, Martin; Pamplona, Jorge


    This work focuses on the development of a regional P-T-path from the Malpica-Lamego Ductile Shear Zone, NW Portugal, based on the microstructures of shearband boudins evolved during progressive simple shear. The combination of microstructural analysis, fluid inclusion studies, crystallographic preffered orientation and fractal geometry analyses, allows to link several stages in the internal evolution of the boudin to regional P-T conditions. The boudinage process is initiated under differential stress after the original layer achieved sufficient viscosity contrast relative to the surrounding matrix. Two main transformations occur simultaneously: i) change in the external shape with continuous evolution from tabular rigid body to sigmoidal asymmetric morphology (shearband boudin) and ii) localized dynamic recrystallization in the sharp-tips of the structure (acute edge of shearband boudin), and along the boudin's margin and grain boundaries. Smaller recrystallized grains, particularly in the sharp-tip domains, accommodate most of the external strain, and larger relict grains are preserved in the centre. Dynamic recrystallization under constant strain rates and strain partitioning inside the boudins is indicated by fractal geometry based on grain boundary and grain area analysis. Progressive deformation leads to the generation of structural and textural heterogeneous domains inside the boudins, and is recorded by quartz c-axis orientation analysis and fluid inclusion studies. The last deformation episode shows the final formation of the blunt-tip domain and internal secondary shear planes. The regional P-T path begins with the crystallization of andalusite after an internal shearband boudin dilation event and ends with quartz dynamic recrystallization on boudin tips. The main deformation stage (310/315 Ma) led to reactivation of internal secondary shear zones with sillimanite crystallization.

  6. Microstructure Modeling of 3rd Generation Disk Alloy (United States)

    Jou, Herng-Jeng


    The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.

  7. Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin


    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.

  8. Sensitivities of statistical distribution model and diffusion kurtosis model in varying microstructural environments: a Monte Carlo study. (United States)

    Lee, Chu-Yu; Bennett, Kevin M; Debbins, Josef P


    The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion inside simulated tissue consisting of semi-permeable cells and a variable cell size. We simulated a DWI acquisition of the signal in a volume using a pulsed gradient spin echo (PGSE) pulse sequence, and fitted the models to the simulated DWI signals using b-values up to 2500 s/mm(2). For comparison, we calculated the apparent diffusion coefficient (ADC) of the monoexponential model (b-value=1000 s/mm(2)). In separate experiments, we varied the cell size (5-10-15 μm), cell volume fraction (0.50-0.65-0.80), and membrane permeability (0.001-0.01-0.1mm/s) to study how the fitted parameters tracked simulated microstructural changes. The ADC was sensitive to all the simulated microstructural changes except the decrease in membrane permeability. The ADC increased with larger cell size, smaller cell volume fraction, and larger membrane permeability. The σstat of the statistical distribution model increased exclusively with a decrease in cell volume fraction. The Kapp of the DKI model was exclusively increased with decreased cell size and decreased with increasing membrane permeability. These results suggest that the non-monoexponential models of water diffusion have different, specific microstructural sensitivity, and a combination of the models may give insights into the microstructural underpinning of tissue pathology.

  9. Modeling and Simulation of the Microstructure Evolution during a Cooling of Immiscible Alloys in the Miscibility Gap

    Institute of Scientific and Technical Information of China (English)


    The microstructure development during a cooling period of alloys being immiscible in the liquid state such as AlPb or Al-Bi has gained renewed scientific and technical interest during the last decades. Experiments have been performed to investigate the phase transformation kinetics in the liquid miscibility gap and numerical models have been developed to simulate and analyze the solidification process. The recently developed computational modeling techniques can, to some extent, be applied to describe the decomposition, the spatial phase separation and the microstructure evolution during a cooling period of an immiscible alloy through the miscibility gap. This article overviews the researches in this field.

  10. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner (United States)

    Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.


    It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

  11. Modeling of microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite

    Institute of Scientific and Technical Information of China (English)

    Ling Zhang; Wangyue Yang; Zuqing Sun


    The aim of the current study was to investigate the microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite in thin slab direct rolling (TSDR) processing. A model was developed to predict the change of the austenite grain size during the dynamic recrystallization, by using the law of mixtures. The equations initially developed for partial static recrystallization were used for partial dynamic recrystallization, by adjusting the value of the constant. The results show that the change of the austenite grain size can be reasonably described by using the equations developed according to the law of mixtures.

  12. MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers. (United States)

    Jasion, G T; Shrimpton, J S; Chen, Y; Bradley, T; Richardson, D J; Poletti, F


    We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans.

  13. Mathematical Model for Fabrication of Micro-Structure Fibres

    Institute of Scientific and Technical Information of China (English)

    ZHOU Gui-Yao; HOU Zhi-Yun; LI Shu-Guang; HOU Lan-Tian


    @@ Using the classic principles of mechanics, we discuss the shape transformation of the micro-structure fibre preform under high temperature of the fibre drawing process, which leads to the theoretical relations among the structural diameter of the micro-structure fibre, the drawing technical parameter, and the physical constant of the microstructure fibre material. The theoretic values are basically in agreement with the experimental results.

  14. Objective Characterization of Snow Microstructure for Microwave Emission Modeling (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian


    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  15. Modelling of microstructure and mechanical property changes in gas turbine alloys

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred [Technische Univ. Darmstadt (DE). Inst. fuer Werkstoffkunde (IFW); Nazmy, Mohamed [ALSTOM Power Baden (Switzerland); Fedelich, Bernard [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Tinga, Tiedo [Netherlands Defence Academy, Den Helder (Netherlands); Huls, Rob [National Aerospace Lab., Emmeloord (Netherlands)


    High efficiency in gas turbines requires increased gas temperatures. Gas temperatures above 1100 C can only be handled using air cooled structures to keep the metal temperatures below 1000 C. Nickel-base single crystal (SX) superalloys have higher elevated temperature strength than conventionally or directionally cast superalloys. SX superalloys are therefore very attactive for use in aero engines and gas turbines as blade material since they allow higher operating temperatures. Within the Work Packages 3 and 4 of the COST 538 Action ''Plant life extension'' deformation and lifetime of SX alloy CMSX-4 using different material simulation concepts were in the focus. Of special interest are the efforts to incorporate degradation effects into the models. At first, two multi-scale models were developed for the purpose of connecting the macroscopic material behaviour to the microstructural composition of the material. The matrix and precipitate phase constitutive behaviour was considered. Formulations are based on the physical mechanisms acting on the microscopic level. The developed damage model combines creep-fatigue damage accumulation. Furthermore, the capability of the model to predict the effect of microstructural degradation on mechanical response was demonstrated by the simulation of experiments on degraded material. Moreover, a constitutive model demonstrates the potentiality to predict rafting in superalloys with large volume fraction of the {gamma}' phase and its influence on the alloy strength. Hence it can be regarded as a candidate for use in structural analysis of blades in service conditions. Finally, the developed micro-structural based models have been successfully applied to an ex-service un-cooled blade i.e. a case study. (orig.)

  16. Modeling of Microstructure Evolution During the Thermomechanical Processing of Titanium Alloys (Preprint) (United States)


    Viswanathan, T. Neeraj, D.-H. Hou, and M.J. Mills, “Room Temperature Deformation and Mechanisms of Slip Transmission in Oriented Single-Colony Crystals of...49 Figure Captions Figure 1. Microstructures developed in Ti-6Al-4V during primary processing: (a) optical and (inset) SEM BSE micrographs of the...colony-alpha microstructure and (b) SEM BSE micrograph of the fine, equiaxed- alpha microstructure. In SEM micrographs taken via backscattered

  17. Modeling Financial Time Series Based on a Market Microstructure Model with Leverage Effect

    Directory of Open Access Journals (Sweden)

    Yanhui Xi


    Full Text Available The basic market microstructure model specifies that the price/return innovation and the volatility innovation are independent Gaussian white noise processes. However, the financial leverage effect has been found to be statistically significant in many financial time series. In this paper, a novel market microstructure model with leverage effects is proposed. The model specification assumed a negative correlation in the errors between the price/return innovation and the volatility innovation. With the new representations, a theoretical explanation of leverage effect is provided. Simulated data and daily stock market indices (Shanghai composite index, Shenzhen component index, and Standard and Poor’s 500 Composite index via Bayesian Markov Chain Monte Carlo (MCMC method are used to estimate the leverage market microstructure model. The results verify the effectiveness of the model and its estimation approach proposed in the paper and also indicate that the stock markets have strong leverage effects. Compared with the classical leverage stochastic volatility (SV model in terms of DIC (Deviance Information Criterion, the leverage market microstructure model fits the data better.

  18. Human eye cataract microstructure modeling and its effect on simulated retinal imaging (United States)

    Fan, Wen-Shuang; Chang, Chung-Hao; Horng, Chi-Ting; Yao, Hsin-Yu; Sun, Han-Ying; Huang, Shu-Fang; Wang, Hsiang-Chen


    We designed a crystalline microstructure during cataract lesions and calculated the aberration value of the eye by using ray trace modeling to identify the corresponding spherical aberration, coma aberration, and trefoil aberration value under different pathological-change degrees. The mutual relationship between microstructure and aberration was then discussed using these values. Calculation results showed that with increased layer number of microstructure, the influence of aberration value on spherical aberration was the greatest. In addition, the influence of a relatively compact microstructure on spherical aberration and coma aberration was small, but that on trefoil aberration was great.


    Directory of Open Access Journals (Sweden)

    Michel Coster


    Full Text Available This paper deals with the use of probabilistic models such as Voronoi tessellation and the Johnson-Mehl model to simulate microstructures of monophased materials. Sintered cerine was chosen to test the various models. The values of morphological parameters measured, both on such models and real microstructures are in very good agreement. An extension for porous materials is also presented. This work shows that the probabilistic models are very well suited for the simulation and description of ceramic and granular microstructures.

  20. A Markov random field approach for modeling spatio-temporal evolution of microstructures (United States)

    Acar, Pinar; Sundararaghavan, Veera


    The following problem is addressed: ‘Can one synthesize microstructure evolution over a large area given experimental movies measured over smaller regions?’ Our input is a movie of microstructure evolution over a small sample window. A Markov random field (MRF) algorithm is developed that uses this data to estimate the evolution of microstructure over a larger region. Unlike the standard microstructure reconstruction problem based on stationary images, the present algorithm is also able to reconstruct time-evolving phenomena such as grain growth. Such an algorithm would decrease the cost of full-scale microstructure measurements by coupling mathematical estimation with targeted small-scale spatiotemporal measurements. The grain size, shape and orientation distribution statistics of synthesized polycrystalline microstructures at different times are compared with the original movie to verify the method.

  1. Microstructure representation of snow in coupled snowpack and microwave emission models (United States)

    Sandells, Melody; Essery, Richard; Rutter, Nick; Wake, Leanne; Leppänen, Leena; Lemmetyinen, Juha


    This is the first study to encompass a wide range of coupled snow evolution and microwave emission models in a common modelling framework in order to generalise the link between snowpack microstructure predicted by the snow evolution models and microstructure required to reproduce observations of brightness temperature as simulated by snow emission models. Brightness temperatures at 18.7 and 36.5 GHz were simulated by 1323 ensemble members, formed from 63 Jules Investigation Model snowpack simulations, three microstructure evolution functions, and seven microwave emission model configurations. Two years of meteorological data from the Sodankylä Arctic Research Centre, Finland, were used to drive the model over the 2011-2012 and 2012-2013 winter periods. Comparisons between simulated snow grain diameters and field measurements with an IceCube instrument showed that the evolution functions from SNTHERM simulated snow grain diameters that were too large (mean error 0.12 to 0.16 mm), whereas MOSES and SNICAR microstructure evolution functions simulated grain diameters that were too small (mean error -0.16 to -0.24 mm for MOSES and -0.14 to -0.18 mm for SNICAR). No model (HUT, MEMLS, or DMRT-ML) provided a consistently good fit across all frequencies and polarisations. The smallest absolute values of mean bias in brightness temperature over a season for a particular frequency and polarisation ranged from 0.7 to 6.9 K. Optimal scaling factors for the snow microstructure were presented to compare compatibility between snowpack model microstructure and emission model microstructure. Scale factors ranged between 0.3 for the SNTHERM-empirical MEMLS model combination (2011-2012) and 3.3 for DMRT-ML in conjunction with MOSES microstructure (2012-2013). Differences in scale factors between microstructure models were generally greater than the differences between microwave emission models, suggesting that more accurate simulations in coupled snowpack-microwave model systems

  2. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus. (United States)

    Jugé, Lauriane; Pong, Alice C; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E; Cheng, Shaokoon


    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development.

  3. Composite model of microstructural evolution in austenitic stainless steel under fast neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.; Odette, G.R.


    A rate-theory-based model has been developed which includes the simultaneous evolution of the dislocation and cavity components of the microstructure of irradiated austenitic stainless steels. Previous work has generally focused on developing models for void swelling while neglecting the time dependence of the dislocation structure. These models have broadened our understanding of the physical processes that give rise to swelling, e.g., the role of helium and void formation from critically-sized bubbles. That work has also demonstrated some predictive capability by successful calibration to fit the results of fast reactor swelling data. However, considerable uncertainty about the values of key parameters in these models limits their usefulness as predictive tools. Hence the use of such models to extrapolate fission reactor swelling data to fusion reactor conditions is compromised.

  4. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    , to focus on their ability to capture realistic micro-structural evolution. This challenge is the main focus of the present thesis, which takes as starting point a non-work conjugate type back stress based higher order crystal plasticity theory. Within this framework, several possibilities for the back......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct...

  5. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.


    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)


    Directory of Open Access Journals (Sweden)

    Zinina O. V.


    Full Text Available In the research we have given a detailed description of certain structural components of the model system when adding fermented raw material into it. As the raw material we used collagen containing by-products of bovine animals of the 2nd category – lips and ears were used. The lactulose syrup and linseed flour were used as growth-promoting substances. The fermentation of the raw material was conducted by freeze-dried starter of the bacteria of Propionic Culture PS–4 and Probio–Tec ВВ–12, and also bacterial concentrate Bifilact-Pro. The fermentation parameters: the temperature 37°С, the time of the fermentation is 3 hours. The changes, taking place in the tissues under the biotechnological processing, were established with the method of the histological samples test. As the result of the conducted microstructure tests of prototypes it was determined that in the biomodification process under the influence of the propionic and bifidus bacteria marked changes occurred in the histological structure of modeling systems in the comparison with the control sample. At the same time it was ascertained that under the influence of the ferment processing a loosening of collagen fascicles happens to isolated fibrils and their fragmentation occurs. As the result, when composing protein compositions an emulsion (which is homogeneous by the structure comes out. In the future it is recommended to use the emulsion in the receipts of boiled sausages and minced half-finished goods

  7. Optofluidic magnetometer developed in a microstructured optical fiber. (United States)

    Candiani, A; Konstantaki, M; Margulis, W; Pissadakis, S


    A directional, in-fiber optofluidic magnetometer based on a microstructured optical fiber (MOF) Bragg-grating infiltrated with a ferrofluidic defect is presented. Upon application of a magnetic field, the ferrofluidic defect moves along the length of the MOF Bragg grating, modifying its reflection spectrum. The magnetometer is capable of measuring magnetic fields from 317 to 2500 G. The operational principle of such in-fiber magnetic field probe allows the elaboration of directional measurements of the magnetic field flux.

  8. Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint) (United States)


    microstructure and composition on the superplastic flow behavior of α/β titanium alloys. Particular attention is given to models describing the refinement...titanium alloys, challenges in the rolling of foil of and gamma-TiAl alloys, and the effect of microstructure and composition on the superlastic flow...materials to billets, slabs , sheet etc. via upsetting, drawing/cogging, and rolling to produce semi-finished products such as billets, plate, and

  9. Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Mark Gregory [University of North Carolina at Chapel Hill


    The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.

  10. Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D (United States)

    Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf


    Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.

  11. Microstructurally based thermomechanical fatigue lifetime model of solder joints for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Frear, D.R.; Rashid, M.M.; Burchett, S.N.


    We present a new methodology for predicting the fatigue life of solder joints for electronics applications. This approach involves integration of experimental and computational techniques. The first stage involves correlating the manufacturing and processing parameters with the starting microstructure of the solder joint. The second stage involves a series of experiments that characterize the evolution of the microstructure during thermal cycling. The third stage consists of a computer modeling and simulation effort that utilizes the starting microstructure and experimental data to produce a reliability prediction of the solder joint. This approach is an improvement over current methodologies because it incorporates the microstructure and properties of the solder directly into the model and allows these properties to evolve as the microstructure changes during fatigue.

  12. Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing (United States)

    Gong, Xibing; Chou, Kevin


    In this study, the microstructure evolution in the powder-bed electron beam additive manufacturing (EBAM) process is studied using phase-field modeling. In essence, EBAM involves a rapid solidification process and the properties of a build partly depend on the solidification behavior as well as the microstructure of the build material. Thus, the prediction of microstructure evolution in EBAM is of importance for its process optimization. Phase-field modeling was applied to study the microstructure evolution and solute concentration of the Ti-6Al-4V alloy in the EBAM process. The effect of undercooling was investigated through the simulations; the greater the undercooling, the faster the dendrite grows. The microstructure simulations show multiple columnar-grain growths, comparable with experimental results for the tested range.

  13. Application of cold drawn lamellar microstructure for developing ultra-high strength wires

    Institute of Scientific and Technical Information of China (English)


    Composite materials having lamellar structure are known to have a good combination of high strength and ductility. They are widely used in the fields of automobiles, civil engineering and construction, machines and many other industries. An application of lamellar microstructure for developing ultra-high strength steel wires was studied and discussed. Based on the experimental results,the relationships between the strength increase and microstructure development during the cold wire drawing were studied to reveal the strengthening mechanism. As cold drawing proceeds, the wire strength extremely increases, the microstructure changes from large single crystal lamellar structure to very fine polycrystalline lamellar one which has nano-sized grains, high dislocation density and amorphous regions. From the results obtained, it is concluded that heavy cold drawing technique is an effective method for lamellar composite to get high strength wires. Furthermore, formation process of the best microstructure for producing the ultra-high strength wires was also discussed.

  14. Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

    DEFF Research Database (Denmark)

    Winther, Grethe; You, Ze Sheng; Lu, Lei

    The highly anisotropic microstructures in nanotwinned copper produced by electrodeposition provide an excellent opportunity to evaluate models for microstructurally induced mechanical anisotropy. A crystal plasticity model originally developed for the integration of deformation induced dislocation...

  15. Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions (United States)

    Rolchigo, Matthew R.; Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian; Collins, Peter C.; LeSar, Richard


    Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper.

  16. Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures (United States)

    Gorbatikh, Larissa; Lomov, Stepan V.; Verpoest, Ignaas


    Motivated to reveal original mechanisms of failure resistance, we developed a material model that encompasses most reoccurring microstructural features of natural composites. The interesting result of the work is a notion that material failure is governed by the quality of interactions between hierarchical levels in the material microstructure. With intelligent use of the structure, these interactions can be tuned to create a powerful synergetic effect on the material failure behaviour. For example, while exploring different mechanisms of failure initiation in composites with bimodal size reinforcements (an indirect way to model two levels of hierarchy simultaneously) we found that failure initiation could be shifted from stress concentration sites of the higher level to the lower level. One could say that the material behaviour became insensitive to the presence of reinforcements on the higher level—a phenomenon that is counterintuitive to what is commonly known. The new mechanism of failure initiation could only be activated in composites with a highly controlled structural organization—in the studied case, reinforcements of the lower level needed to establish lamellar pathways between reinforcements of the higher level. These pathways lead to formation of an intriguing network-like microstructure. Intelligent communication between reinforcements in such a network created the necessary synergy to change the failure initiation mechanism in a discontinuous fashion. Another finding was that by establishing such a network, tensile stresses near dangerous stress concentration sites were locally transformed into compressive stresses. Resemblance of the revealed mechanism to phenomena on the nano-scale was also discussed. In the course of this work a new method was developed to investigate interactions between reinforcements and their collective input into effective and local properties of a composite. The reinforcement phase was modelled with the use of rigid

  17. Microstructural development and mechanical properties of high speed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, A.; Gordo, E.; Velasco, F.; Candela, N.; Torralba, J.M. [Dept. de Ciencia de Materiales e Ing. Metalurgica, Univ. Carlos III de Madrid (Spain)


    A study was made of the sintering of high speed steel (HSS), M3/2, with different percentage additions - (0%, 2.5%, 5% and 8% by vol.) - of niobium carbide. The mixture was ground in a high speed ball mill to ensure smooth distribution and a material free from agglomerates. All the mixtures were sintered at temperatures above that of solidus, higher temperatures being required as the proportion of the niobium carbide was increased. The variation of the density and hardness were measured, as well as the evolution of the microstructure and the composition of the carbides with the sintering temperature. (orig.)

  18. Modeling the evolution of microstructure during the processing of maraging steels (United States)

    Sha, W.; Guo, Z.; Wilson, E. A.


    The main theme of the research described in this article was to develop computer-based models to predict micro-structural evolution and precipitation-hardening kinetics during the processing of maraging steels. The prediction made by the computer-based models, when compared with experimental observations and characterization, proved to be within useful accuracy. The research outputs cover the topics of characterization of precipitates, quantification of precipitate fraction, calculation of thermodynamics and kinetics of phase transformations, and modeling of precipitation hardening. A heat-treatment procedure was also developed to improve the toughness of a commercial precipitation-hardening grade, and the design of the chemistry and processing route of low-cost maraging grades was attempted.

  19. Modeling Of Microstructure Evolution Of BCC Metals Subjected To Severe Plastic Deformation (United States)

    Svyetlichnyy, Dmytro; Majta, Janusz; Muszka, Krzysztof; Łach, Łukasz


    Prediction of microstructure evolution and properties of ultrafine-grained materials is one of the most significant, current problems in materials science. Several advanced methods of analysis can be applied for this issue: vertex models, phase field models, Monte Carlo Potts, finite element method (FEM) discrete element method (DEM) and finally cellular automata (CA). The main asset of the CA is ability for a close correlation of the microstructure with the mechanical properties in micro- and meso-scale simulation. Joining CA with the DEM undoubtedly improves accuracy of modeling of coupled phenomena during the innovative forming processes in both micro- and macro-scale. Deformation in micro-scale shows anisotropy, which connected with that the polycrystalline material contains grains with different crystallographic orientation, and grain deformation is depended from configuration of directions of main stresses and axis of grain. Then, CA and DEM must be joint solutions of crystal plasticity theory. In the present model, deformation in macro-scale is transferred to meso-sale, where a block contains several, score or hundreds grains, and then is applied in micro-scale to each grain. Creation of low-angle boundaries and their development into high-angle boundaries are simulated by the cellular automata on the base of calculations using finite element method and crystal plasticity theory. The idea proposed in this study and particular solutions are discussed for the case of ultrafine-grained low-carbon steel.

  20. Effect of grain morphology on gas bubble swelling in UMo fuels – A 3D microstructure dependent Booth model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.; Joshi, Vineet


    A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fission rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.

  1. Microstructural modelling of cerebral aneurysm evolution through effective stress mediated destructive remodelling. (United States)

    Nabaei, Malikeh; Fatouraee, Nasser


    Recently, researchers have shown an increased interest in the biomechanical modelling of cerebral aneurysm development. In the present study a fluid-solid-growth model for the formation of a fusiform aneurysm has been presented in an axi-symmetric geometry of the internal carotid artery. This model is the result of two parallel mechanisms: first, defining arterial wall as a living tissue with the ability of degradation, growth and remodelling and second, full coupling of the wall and the blood flow. Here for the first time the degradation of elastin has been defined as a function of vascular wall effective stress to take into account the shear dependent nature of degradation and the mural-cell-mediated destructive activities. The model has been stabilized in size and mechanical properties and is consistent with other computational or clinical studies. Furthermore, the evolving microstructural properties of the wall during the evolution process have been predicted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Microstructure-based modelling of multiphase materials and complex structures (United States)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian


    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  3. Coupled Simulations of Mechanical Deformation and Microstructural Evolution Using Polycrystal Plasticity and Monte Carlo Potts Models

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, C.C.; Buchheit, T.E.; Holm, E.A.; Neilsen, M.K.; Wellman, G.W.


    The microstructural evolution of heavily deformed polycrystalline Cu is simulated by coupling a constitutive model for polycrystal plasticity with the Monte Carlo Potts model for grain growth. The effects of deformation on boundary topology and grain growth kinetics are presented. Heavy deformation leads to dramatic strain-induced boundary migration and subsequent grain fragmentation. Grain growth is accelerated in heavily deformed microstructures. The implications of these results for the thermomechanical fatigue failure of eutectic solder joints are discussed.

  4. Developing improved relationships between microstructure and creep and shrinkage of cement-based materials. Final report for the period September 9, 1998 - July 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Hamlin M.


    The shrinkage of concrete that occurs on drying is a complex function of age of concrete, rate of drying, temperature, and composition of concrete. This project investigated the fundamental relationships between microstructure and shrinkage. In order to accomplish this goal a new quantitative image analysis technique was developed to analyze the distribution of strain throughout the microstructure during drying. The technique has been verified at NIST and the results have provided new insights. A major result of this effort has been the redefinition of microstructure of cement paste. Large deformations, both expansive and compressive, occur throughout the microstructure. These large deformations can be best explained by considering the calcium silicate phase to be a colloid. A new model for calcium silicate hydrate was developed.


    Institute of Scientific and Technical Information of China (English)

    Song Guquan; Sun Qingping; Hwang Kehchih


    The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy (SMA) are studied by a microstructure-based constitutive model developed in this paper. The model is established on the following basis: (1) the transformation conditions of the unconstrained single crystal SMA microdomaln (to be distinguished from the bulk single crystal), which serve as the local criterion for the derivation of overall transformation yield conditions of the polycrystal; (2) the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3) the quantitative incorporation of three microstructure factors ( i.e., nucleation, growth and orientation distribution of martensite) into the modeling. These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quantitatively modeled. It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response, the latter will lead to the localization and propagation of transformation bands in TiNi SMA.

  6. 3D geometrical characterization and modelling of solid oxide cells electrodes microstructure by image analysis (United States)

    Moussaoui, H.; Debayle, J.; Gavet, Y.; Delette, G.; Hubert, M.; Cloetens, P.; Laurencin, J.


    A strong correlation exists between the performance of Solid Oxide Cells (SOCs), working either in fuel cell or electrolysis mode, and their electrodes microstructure. However, the basic relationships between the three-dimensional characteristics of the microstructure and the electrode properties are not still precisely understood. Thus, several studies have been recently proposed in an attempt to improve the knowledge of such relations, which are essential before optimizing the microstructure, and hence, designing more efficient SOC electrodes. In that frame, an original model has been adapted to generate virtual 3D microstructures of typical SOCs electrodes. Both the oxygen electrode, which is made of porous LSCF, and the hydrogen electrodes, made of porous Ni-YSZ, have been studied. In this work, the synthetic microstructures are generated by the so-called 3D Gaussian `Random Field model'. The morphological representativeness of the virtual porous media have been validated on real 3D electrode microstructures of a commercial cell, obtained by X-ray nano-tomography at the European Synchrotron Radiation Facility (ESRF). This validation step includes the comparison of the morphological parameters like the phase covariance function and granulometry as well as the physical parameters like the `apparent tortuosity'. Finally, this validated tool will be used, in forthcoming studies, to identify the optimal microstructure of SOCs.

  7. Verifying the functional ability of microstructured surfaces by model-based testing (United States)

    Hartmann, Wito; Weckenmann, Albert


    Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.

  8. Modeling microstructure evolution in the delta process forging of superalloy IN718 turbine discs (United States)

    Zhang, Haiyan; Zhang, Shihong; Cheng, Ming; Zhao, Zhong


    The microstructure development in the Delta Process (DP) forging of Superalloy IN718 turbine discs were predicted using the combined approach of axisymmetric finite element simulation and modeling for the dynamic recrystallization and grain growth. In order to establish the deformation constitutive equation and dynamic recrystallization models for the DP process of Superalloy IN718, the isothermal compression tests were carried out in the temperature range 950 to 1010 °C and strain rates range 0.001 to0.1s-1. Moreover, the isothermal heat treatment tests after hot deformation were conducted in the temperature range 950 to 1040°C to generate the grain growth model. The experimental results indicated the existence of the δ phase could make the activation energy of deformation increase. Furthermore, the existence of the δ phase could stimulate the occurrence of dynamic recrystallization, and the grain growth was restrained due to the pinning effect of δ phase. The predicted grain size and its distribution in the DP forging of Superalloy IN718 turbine discs were compared with the actual microstructures deformed by the hot die forging. It was found that the forging with uniform fine grains could be obtained by the application of DP process to the forging of the turbine disk, in which the alloy was pre-precipitated δ phase after the baiting in the original process.

  9. Development of a large area microstructure photomultiplier assembly (LAMPA) (United States)

    Clifford, E. T. H.; Dick, M.; Facina, M.; Wakeford, D.; Andrews, H. R.; Ing, H.; Best, D.; Baginski, M. J.


    Large area (> m2) position-sensitive readout of scintillators is important for passive/active gamma and neutron imaging for counter-terrorism applications. The goal of the LAMPA project is to provide a novel, affordable, large-area photodetector (8" x 8") by replacing the conventional dynodes of photomultiplier tubes (PMTs) with electron multiplier microstructure boards (MSBs) that can be produced using industrial manufacturing techniques. The square, planar format of the LAMPA assemblies enables tiling of multiple units to support large area applications. The LAMPA performance objectives include comparable gain, noise, timing, and energy resolution relative to conventional PMTs, as well as spatial resolution in the few mm range. The current LAMPA prototype is a stack of 8" x 8" MSBs made commercially by chemical etching of a molybdenum substrate and coated with hydrogen-terminated boron-doped diamond for high secondary emission yield (SEY). The layers of MSBs are electrically isolated using ceramic standoffs. Field-shaping grids are located between adjacent boards to achieve good transmission of electrons from one board to the next. The spacing between layers and the design of the microstructure pattern and grids were guided by simulations performed using an electro-optics code. A position sensitive anode board at the back of the stack of MSBs provides 2-D readout. This presentation discusses the trade studies performed in the design of the MSBs, the measurements of SEY from various electro-emissive materials, the electro-optics simulations conducted, the design of the 2-D readout, and the mechanical aspects of the LAMPA design, in order to achieve a gain of > 104 in an 8-stage stack of MSBs, suitable for use with various scintillators when coupled to an appropriate photocathode.

  10. Developing Friction Stir Welding Process Model for ICME Application (United States)

    Yang, Yu-Ping


    A framework for developing a product involving manufacturing processes was developed with integrated computational materials engineering approach. The key component in the framework is a process modeling tool which includes a thermal model, a microstructure model, a thermo-mechanical, and a property model. Using friction stir welding (FSW) process as an example, development of the process modeling tool was introduced in detail. The thermal model and the microstructure model of FSW of steels were validated with the experiment data. The model can predict reasonable temperature and hardness distributions as observed in the experiment. The model was applied to predict residual stress and joint strength of a pipe girth weld.

  11. Characterization of phase transformation behaviour and microstructural development of electroless Ni-B coating

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Soupitak, E-mail: [Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012 (India); Verma, Nisha; Jayaram, Vikram [Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012 (India); Biswas, Sanjay Kumar [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Riddle, Yancy [UCT Coatings Inc, FL (United States)


    Highlights: {yields} Phase transformation behaviour of electroless Ni-B coating in conjunction with microstructural development was studied. {yields} As deposited coating exhibits a novel phase separated microstructure of various length scales. {yields} Crystallization behaviour of the coating is strongly composition dependent. {yields} Deposition process itself induces compositional heterogeneity in the coating. - Abstract: Phase transformation behaviour of amorphous electroless Ni-B coating with a targeted composition of Ni-6 wt% B is characterized in conjunction with microstructural development and hardness. Microscopic observations of the as-deposited coating display a novel microstructure which is already phase separated at multiple length scales. Spherical colonies of {approx}5 {mu}m consist of 2-3 {mu}m nodular regions which are surrounded by {approx}2-3 {mu}m region that contains fine bands ranging from 10 to 70 nm in width. The appearance of three crystalline phases in this binary system at different stages of heat treatment and the concomitant variation in hardness are shown to arise from nanoscale fluctuations in the as-deposited boron content from 4 to 8 wt%. High temperature annealing reveals continuous crystallization up to 430 deg. C, overlapping with the domain of B loss due to diffusion into the substrate. The implications of such a microstructure for optimal heat treatment procedures are discussed.

  12. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering (United States)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  13. Microstructural development of high temperature deformed AZ31 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shahbeigi Roodposhti, Peiman, E-mail:; Sarkar, Apu; Murty, Korukonda Linga


    Due to their significant role in automobile industries, high temperature deformation of Mg–Al–Zn alloys (AZ31) at constant stress (i.e. creep) were studied at a wide range of stresses and temperatures to characterize underlying deformation mechanism, dynamic recrystallization (DRX) and dislocation density evolution. Various microstructures (e.g. grain growth & DRX) are noted during steady-state creep mechanisms such as grain boundary sliding (GBS), dislocation glide creep (DGC) and dislocation climb creep (DCC). Although a combination of DRX and grain growth is characteristic of low stacking fault energy materials like Mg alloys at elevated temperatures, observation reveals grain growth at low strain-rates (GBS region) along with dynamic recovery (DRV) mechanism. X-Ray Diffraction (XRD) analysis revealed a decrease in dislocation density during GBS region while it increased under dislocation based creep mechanisms which could be related to the possible DRV and DRX respectively. Scanning Electron Microscopic (SEM) characterization of the fracture surface reveals more inter-granular fracture for large grains (i.e. GBS region with DRV process) and more dimple shape fracture for small grains (i.e. DGC & DCC region with DRX)

  14. Microstructure and texture development during recrystallization of rolled molybdenum sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huensche, I.; Oertel, C.G.; Tamm, R.; Skrotzki, W. [Dresden Univ. of Technology, Inst. of Structural Physics (Germany); Knabl, W. [Plansee AG, Technologiezentrum, Reutte/Tyrol (Austria)


    Recrystallization is an important tool to adjust the grain size and texture of polycrystalline materials in order to optimize their properties. In the present work recrystallization and the related changes of texture have been studied on rolled molybdenum sheets as a function of temperature and time. The microstructure was investigated by orientation contrast in a scanning electron microscope. The kinetics of recrystallization displayed in a JMAK plot yields avrami coefficients decreasing with temperature from 2.5 to 1.1. The activation energy amounts to 5 eV, which agrees well with the volume self-diffusion coefficient. The textures of the sheet surface and central layer were measured by X-ray diffraction. The rolling texture in the centre of the sheets is characterized by a strong {alpha}-fibre with the rotated cube component {l_brace}100{r_brace}<110> dominating. Besides that, there exists a weak {gamma}-fibre. In contrast, the surface layer is characterized by a weak cube component. During recrystallization changes in texture are insignificant. With long annealing times all texture components tend to degrade. Conclusions regarding the deep-drawability are drawn. (orig.)

  15. Microstructural development of protective Al2O3 scales (United States)

    Smialek, J. L.


    Microstructural characteristics of Al2O3 scales grown as protective coatings on NiCrAl alloys used in jet engines are described. The alloys were pure or doped with 0.3 percent Zr or Y and oxidized in 1 atm air at 1100 C for 0.1, 1 or 20.0 hr. The scales were then examined under a microscope. Transient epitaxial scales, formed during the 0.1 hr treatment and containing Ni, Cr and Al, consisted of a mosaic of subgrains and precipitates of different phases. The Y and Zr dopants had no effect on the nucleation site locations. The appearance of intergranular porosity at 0.1 hr was exacerbated after the 1 hr treatment. A bimodal void distribution appeared after 20 hr, when no porosity was evident. The detection of local areas of preferred orientation is taken as a spur to further studies of scale growth to gain control of the grain size or even to produce single crystal scales.

  16. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry (United States)

    Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh


    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.

  17. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels (United States)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain


    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  18. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures (United States)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered

  19. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint) (United States)


    history ( carburization and shot peening) and resulting residual stresses are considered in the case of subsurface crack formation at primary inclusions...experimental responses for known microstructures. Effects of process history ( carburization and shot peening) and resulting residual stresses are considered...nonmetallic inclusions. 3. HCF Crack Formation in Carburized and Shot Peened Martensitic Gear Steel High strength low carbon martensitic gear steel is a

  20. Dynamics of multiphase systems with complex microstructure. I. Development of the governing equations through nonequilibrium thermodynamics

    NARCIS (Netherlands)

    Sagis, L.M.C.; Öttinger, H.C.


    In this paper we present a general model for the dynamic behavior of multiphase systems in which the bulk phases and interfaces have a complex microstructure (for example, immiscible polymer blends with added compatibilizers, or polymer stabilized emulsions with thickening agents dispersed in the co

  1. Microstructure Development during Roughing and Intermediate Cooling of Thick HTP Linepipe Steels (United States)

    Banks, Kevin; Maubane, Rorisang

    The microstructural development during roughing and early finishing of thick, high Nb-Ti steels containing high and low Mn contents has been investigated for conventional cold charging (CCR) and quasi compact strip production (CSP) conditions. Multi-pass rolling simulations were performed, followed by interrupted accelerated cooling, to study the "as-coiled" ferrite/pearlite microstructure. Local heterogeneous regions, LHR, were often found after CSP simulations, but not after CCR where the microstructure was generally uniform. Coarse, local heterogeneous regions can be prevented in HTP steels though complete recrystallization of the as-cast austenite during and after roughing by i) applying sufficient strain at roughing temperatures above the TiNb(C,N) precipitation region, ii) slow intermediate cooling and iii) using high Mn contents to suppress precipitation. For thick HTP skelp, the initiation of dynamic recrystallization is of little use in avoiding LHR due to limited strain available for completing the necklacing process.

  2. Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Modeling of Microstructure



    Three-dimensional numerical analysis of solid oxide fuel cell (SOFC) anode polarization is conducted with a microstructure obtained by a focused ion beam and scanning electron microscope (FIB-SEM). Electronic, ionic and gaseous transports with electrochemical reaction are considered in the porous anode. A sub-grid scale (SGS) model is newly developed and effectively used to consider the structural information whose characteristic scale is smaller than calculation grid size. The proposed SGS m...


    Institute of Scientific and Technical Information of China (English)


    Numerical investigations of the 'banding' microstructure formation during solidifica-tion of Ti-6Al-4V alloy in the centrifugal casting are conducted using a multi-scale model, which combines the finite difference method (FDM) at the macroscale with a cellular automaton (CA) model at the microscale. The macro model is used to simu-late the fluid flow and heat transfer throughout the casting. The micro model is used to predict the nucleation and growth of microstructures. With the proposed model,numerical simulations are performed to study the influences of the nucleation density,mould rotation speed, and casting size upon the 'banding' microstructure formation. It is noted that changing the nucleation density has a minor effect on the microstructure formation. The rotation speed promotes the formation of 'banding' microstructure,which is more noticeable for larger size castings. The major mechanism responsi-ble for this 'banding' phenomenon is the spatial variation in cooling rates created by centrifugal force.

  4. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  5. Transport processes in directional solidification and their effects on microstructure development

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Prantik [Iowa State Univ., Ames, IA (United States)


    The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructure and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection → transient mono-periodic → transient bi-periodic → transient quasi-periodic → transient intermittent oscillation-relaxation → stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic

  6. Microstructural development of melt-grown mullite fibrils (United States)

    Baer, Amanda

    on the fibril morphology and scale, such that modifiers with smaller cationic diameter tended to produce larger fibrils and more stable microstructures. However, high concentrations of modifier also appeared to reduce the effectiveness of these additions, suggesting that the modifiers eventually destabilize the growth interface as impurities. Results from both experiments implied the critical role of faceting constraints on determining the final morphology. Examination of several fiber growth tips indicated that the preferred tip shape was a flat facet on the (001) plane. Inadequate solute redistribution at the tip, however, lead to the formation of reentrant hopper-shaped tips which subsequently produced hollow fibers.

  7. Modeling of the corrosion behavior and its interrelation with the deformation behavior and microstructure in a newly developed 7.5Mn-5Cr-1.5Cu alloy white iron (United States)

    Patwardhan, A. K.; Jain, N. C.


    Corrosion rate, (CR), compressive strength (CS), and percent strain were determined for different microstructures generated by heat-treating a newly designed 7.5Mn-5Cr-1.5Cu alloy white iron intended to be used for making castings to resist aqueous corrosion under marine conditions. The microstructures were characterized on the basis of size, shape, and distribution of the second phase, which in the present study comprised dispersed (DCs) and massive carbides (MCs). A new term, “distribution factor” (DF), has been evolved to characterize DCs. This factor proved useful in establishing a relationship between microstructure and CR, which can be represented by the expression CR = [C1 + C2(VMC) + C3(VMC)2] * (DF)4

  8. Towards a phase field model of the microstructural evolution of duplex steel with experimental verification

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Voorhees, P.W.; Lauridsen, Erik Mejdal


    A phase field model to study the microstructural evolution of a polycrystalline dual-phase material with conserved phase fraction has been implemented, and 2D simulations have been performed. For 2D simulations, the model predicts the cubic growth well-known for diffusion-controlled systems. Some...... interphase boundaries are found to show a persistent non-constant curvature, which seems to be a feature of multi-phase materials. Finally, it is briefly outlined how this model is to be applied to investigate microstructural evolution in duplex steel. © (2012) Trans Tech Publications, Switzerland....

  9. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys (United States)

    Hasegawa, Akira; Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei


    Data on the microstructural development of tungsten (W) and tungsten rhenium (Re) alloys were obtained after neutron irradiation at 400-800 °C in the Japan Materials Testing Reactor (JMTR), the experimental fast test reactor Joyo, and the High Flux Isotope Reactor (HFIR) for irradiation damage levels in the range of 0.09-1.54 displacement per atom (dpa). Microstructural observations showed that a small amount of Re (3-5%) in W-Re alloys is effective in suppressing void formation. In W-Re alloys with Re concentrations greater than 10%, acicular precipitates are the primary structural defects. In the HFIR-irradiated specimen, in which a large amount of Re was expected to be produced by the nuclear transmutation of W to Re because of the reactor's high thermal neutron flux, voids were not observed even in pure W. The synergistic effects of displacement damage and solid transmutation elements on microstructural development are discussed, and the microstructural development of tungsten materials utilized in fusion reactors is predicted.

  10. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain. (United States)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove; Kroenke, Christopher D; Nyengaard, Jens R; Hansen, Brian; Jespersen, Sune Nørhøj


    Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d-MRI) analyses, such as neurite density and diffusion kurtosis imaging (DKI), are able to capture microstructural changes and are considered to be robust tools in preclinical and clinical imaging. The present study utilized d-MRI analyzed with a neurite density model and the DKI framework to investigate microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate putamen in stressed groups. Histological neurite density corroborated the d-MRI findings in the amygdala and reductions in nuclear and astrocyte density further buttressed the d-MRI results. The present study demonstrated that the d-MRI based neurite density and MKT can reveal specific microstructural changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy.

  11. Microstructure evolution model based on deformation mechanism of titanium alloy in hot forming

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-li; LI Miao-quan


    The microstructure evolution in hot forming will affect the mechanical properties of the formed product.However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 1 133 - 1 223 K, strain rate of 0.01 -50 s-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones.

  12. Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidian, M., E-mail: [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Rabczuk, T., E-mail: [Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); School of Civil, Environmental and Architectural Engineering, Korea University, Seoul (Korea, Republic of)


    We establish the correlation between the diffuse interface and sharp interface descriptions for stressed grain boundary migration by presenting analytical solutions for stressed migration of a circular grain boundary in a bicrystalline phase field domain. The validity and accuracy of the phase field model is investigated by comparing the phase field simulation results against analytical solutions. The phase field model can reproduce precise boundary kinetics and stress evolution provided that a thermodynamically consistent theory and proper expressions for model parameters in terms of physical material properties are employed. Quantitative phase field simulations are then employed to investigate the effect of microstructural length scale on microstructure and texture evolution by stressed grain growth in an elastically deformed polycrystalline aggregate. The simulation results reveal a transitional behaviour from normal to abnormal grain growth by increasing the microstructural length scale.

  13. Modeling transmission parameters of polymer microstructured fibers for applications in FTTH networks (United States)

    Gdula, P.; Welikow, K.; Szczepański, P.; Buczyński, R.; Piramidowicz, R.


    This paper is focused on selected aspects of designing and modeling of transmission parameters of plastic optical fibers (POFs), considered in the context of their potential applications in optical access networks and, specifically, in Fiber-To- The-Home (FTTH) systems. The survey of state-of-the-art solutions is presented and possibility of improving transmission properties of POFs by microstructurization is discussed on the basis of the first results of numerical modeling. In particular, the microstructured POF was designed supporting propagation of limited number of modes while keeping relatively large mode area and, simultaneously, significantly lowered bending losses.

  14. Textural and microstructural development of the Barro Alto Complex: implications for seismic anisotropy (United States)

    Silveira, Camila; Lagoeiro, Leonardo; Barbosa, Paola; Cavalcante, Geane Carolina; Ferreira, Filippe; Suita, Marcos; Conte, Thailli


    Crustal rheology is associated with the behavior of its constituents in response to stress and strain, while the seismic anisotropy is a property that can correlate these parameters. Seismic properties are strongly related to the microstructures and crystallographic preferred orientation (CPO) of the rocks. In this work, we study CPO-derived seismic anisotropy of metamorphosed gabbro-norites from the Barro Alto (Brazil central) layered complex. The EBSD technique was employed to analyze the crystallographic orientation of the main mineral assembly, diopside and feldspar. The Barro Alto complex belongs to the Tocantins Structural Province, developed between the Amazon and São Francisco cratons, during the Neoproterozoic Brasiliano orogenic cycle. This complex was formed by a mafic-ultramafic layered intrusion mylonitized and metamorphosed under granulite facies conditions. The mylonitic foliation shows compositional segregation into felsic and mafic bands. The samples are composed of porphyroclasts of plagioclase and diopside in a fine matrix of plagioclase, clinopyroxene, orthopyroxene and, less commonly, amphibole and biotite. The plagioclase porphyroclasts exhibit undulose extinction and core-mantle structure. In fine matrix samples the poles to a(100), b(010) and c(001) are randomly distributed in both phases. However, for increasing matrix grain size plagioclase grains shows maxima of a(100) poles sub-parallel to the foliation and b(010) normal to the foliation. The low value of the J index (2.4 for plagioclase and 1.8 for diopside) indicates poorly developed fabric. Misorientation profiles showing high frequency of small angle boundaries are typical of recrystallization by subgrain rotation mechanisms. The microstructural and CPO analyses suggest deformation controlled by diffusive processes. The CPO models were compared to models described in the literature, based on the anorthite + diopside assembly, since these are the major phases, and thus control the

  15. A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries (United States)

    Wang, Miao; Xiao, Xinran; Huang, Xiaosong


    Silicon (Si) is one of the most promising next generation anode materials for lithium-ion batteries (LIBs), but the use of Si in LIBs has been rather limited. The main challenge is its large volume change (up to 300%) during battery cycling. This can lead to the fracture of Si, failure at the interfaces between electrode components, and large dimensional change on the cell level. To optimize the Si electrode/battery design, a model that considers the interactions of different cell components is needed. This paper presents the development of a multiphysics microstructure-resolved model (MRM) for LIB cells with a-Si anode. The model considered the electrochemical reactions, Li transports in electrolyte and electrodes, dimensional changes and stresses, property evolution with the structure, and the coupling relationships. Important model parameters, such as the diffusivity, reaction rate constant, and apparent transfer coefficient, were determined by correlating the simulation results to experiments. The model was validated with experimental results in the literature. The use of this model was demonstrated in a parameter study of Si nanowall|Li cells. The specific and volumetric capacities of the cell as a function of the size, length/size ratio, spacing of the nanostructure, and Li+ concentration in electrolyte were investigated.

  16. Internal state variable models for micro-structure in high temperature deformation of titanium alloys

    Institute of Scientific and Technical Information of China (English)

    LUO Jiao; LI MiaoQuan; LI XiaoLi


    There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc-ture of titanium alloys is very sensitive to the process parameters of plastic de-formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa-tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de-formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.

  17. Microstructure, length, and connection of limbic tracts in normal human brain development

    Directory of Open Access Journals (Sweden)

    Qiaowen eYu


    Full Text Available The cingulum and fornix play an important role in memory, attention, spatial orientation and feeling functions. Both microstructure and length of these limbic tracts can be affected by mental disorders such as Alzheimer’s disease, depression, autism, anxiety, and schizophrenia. To date, there has been little systematic characterization of their microstructure, length and functional connectivity in normally developing brains. In this study, diffusion tensor imaging (DTI and resting state functional MRI (rs-fMRI data from 65 normally developing right-handed subjects from birth to young adulthood was acquired. After cingulate gyrus part of the cingulum (cgc, hippocampal part of the cingulum (cgh and fornix (fx were traced with DTI tractography, absolute and normalized tract lengths and DTI-derived metrics including fractional anisotropy, mean, axial and radial diffusivity were measured for traced limbic tracts. Free water elimination (FWE algorithm was adopted to improve accuracy of the measurements of DTI-derived metrics. The role of these limbic tracts in the functional network at birth and adulthood was explored. We found a logarithmic age-dependent trajectory for FWE-corrected DTI metric changes with fast increase of microstructural integrity from birth to 2-year-old followed by a slow increase to 25-year-old. Normalized tract length of cgc increases with age, while no significant relationship with age was found for normalized tract lengths of cgh and fx. Stronger microstructural integrity on the left side compared to that of right side was found. With integrated DTI and rs-fMRI, the key connectional role of cgc and cgh in the default mode network (DMN was confirmed as early as birth. Systematic characterization of length and DTI metrics after FWE correction of limbic tracts offers insight into their morphological and microstructural developmental trajectories. These trajectories may serve as a normal reference for pediatric patients with

  18. Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Alvaredo, P. [Department of Materials Science and Engineering, IQMAAB, University Carlos III Madrid, Avda. de la Universidad, 30, 28911 Leganes (Spain); Gordo, E., E-mail: [Department of Materials Science and Engineering, IQMAAB, University Carlos III Madrid, Avda. de la Universidad, 30, 28911 Leganes (Spain); Van der Biest, O.; Vanmeensel, K. [Katholieke Universiteit Leuven, Kasteelpark Arenberg, 44 3001 Heverlee (Belgium)


    Highlights: Black-Right-Pointing-Pointer Processing of Fe-based cermets by pressureless sintering and spark plasma sintering. Black-Right-Pointing-Pointer Influence of carbon content on the sintering mechanism and hardness. Black-Right-Pointing-Pointer The cermet phase diagram was calculated and permits to explain the microstructure. Black-Right-Pointing-Pointer SPS provides ferritic matrix and different carbide distribution than CPS samples. Black-Right-Pointing-Pointer Pressureless sintered samples contain retained austenite at room temperature. - Abstract: Iron-based cermets are an interesting class of metal-ceramic composites in which properties and the factors influencing them are to be explored. In this work the metal matrix contains Cr, W, Mo and V as alloying elements, and the hard phase is constituted by 50 vol% of titanium carbonitride (TiCN) particles. The work studies the influence of the C content and the processing method on the sinterability, microstructure and hardness of the developed cermet materials. For that purpose, cermet samples with different C content in the matrix (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%) were prepared by conventional pressureless sintering (CPS) and, in order to achieve finer microstructures and to reduce the sintering time, by spark plasma sintering (SPS). The density and hardness (HV30) of the processed materials was evaluated, while their phase composition and microstructure was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The equilibrium phase diagram of the composite material was calculated by ThermoCalc software in order to elucidate the influence of the carbon content on the obtained phases and developed microstructures.

  19. Microstructure, length, and connection of limbic tracts in normal human brain development. (United States)

    Yu, Qiaowen; Peng, Yun; Mishra, Virendra; Ouyang, Austin; Li, Hang; Zhang, Hong; Chen, Min; Liu, Shuwei; Huang, Hao


    The cingulum and fornix play an important role in memory, attention, spatial orientation, and feeling functions. Both microstructure and length of these limbic tracts can be affected by mental disorders such as Alzheimer's disease, depression, autism, anxiety, and schizophrenia. To date, there has been little systematic characterization of their microstructure, length, and functional connectivity in normally developing brains. In this study, diffusion tensor imaging (DTI) and resting state functional MRI (rs-fMRI) data from 65 normally developing right-handed subjects from birth to young adulthood was acquired. After cingulate gyrus part of the cingulum (cgc), hippocampal part of the cingulum (cgh) and fornix (fx) were traced with DTI tractography, absolute and normalized tract lengths and DTI-derived metrics including fractional anisotropy, mean, axial, and radial diffusivity were measured for traced limbic tracts. Free water elimination (FWE) algorithm was adopted to improve accuracy of the measurements of DTI-derived metrics. The role of these limbic tracts in the functional network at birth and adulthood was explored. We found a logarithmic age-dependent trajectory for FWE-corrected DTI metric changes with fast increase of microstructural integrity from birth to 2 years old followed by a slow increase to 25 years old. Normalized tract length of cgc increases with age, while no significant relationship with age was found for normalized tract lengths of cgh and fx. Stronger microstructural integrity on the left side compared to that of the right side was found. With integrated DTI and rs-fMRI, the key connectional role of cgc and cgh in the default mode network was confirmed as early as birth. Systematic characterization of length and DTI metrics after FWE correction of limbic tracts offers insight into their morphological and microstructural developmental trajectories. These trajectories may serve as a normal reference for pediatric patients with mental

  20. Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels (United States)

    Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.


    Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.

  1. Modeling microstructural evolution and the mechanical response of superplastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Cadwell, K.L.; Preuss, C.S.


    A model has been developed that accounts for grain growth during, superplastic flow and its subsequent influence on stress-strain-strain rate behavior. These studies are experimentally based and have involved two different types of superplastic materials -- a quasi-single phase metal (Coronze 638) and a microduplex metal (ultrahigh-carbon steel - UHCS). In both materials the kinetics of strain-enhanced grain growth have been studied as a function of strain, strain rate and temperature. An equation for the rate of grain growth has been developed that incorporates the influence of temperature. The evolution of the grain size distribution during superplastic deformation has also been investigated. Our model integrates grain growth laws derived from these studies with two mechanism based, rate dependent constitutive laws to predict the stress-strainstrain rate behavior of materials during superplastic deformation. The influence of crain size distribution and its evolution with strain and strain rate on the stress-strain-strain rate behavior has been represented through the use of distributed parameters. The model can capture the stress-strain-strain rate behavior over a wide range of strains and strain rates with a single set of parameters. Many subtle features of the mechanical response of these materials can be adequately predicted.

  2. Salmonella Typhimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures. (United States)

    Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F


    The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase ( predictions compared with the maximum specific growth rate (μmax) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, aw and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics.

  3. Modeling the Microstructure Evolution During Additive Manufacturing of Ti6Al4V: A Comparison Between Electron Beam Melting and Selective Laser Melting (United States)

    Vastola, G.; Zhang, G.; Pei, Q. X.; Zhang, Y.-W.


    Beam-based additive manufacturing (AM) is an innovative technique in which parts are built layerwise, starting from the material in powder form. As a developing manufacturing technique, achievement of excellent mechanical properties in the final part is of paramount importance for the mainstream adoption of this technique in industrial manufacturing lines. At the same time, AM offers an unprecedented opportunity to precisely control the manufacturing conditions locally within the part during build, enabling local influence on the formation of the texture and microstructure. In order to achieve the control of microstructure by tailoring the AM machine parameters, a full understanding and modeling of the heat transfer and microstructure evolution processes is needed. Here, we show the implementation of the non-equilibrium equations for phase formation and dissolution in an AM modeling framework. The model is developed for the Ti6Al4V alloy and allows us to show microstructure evolution as given by the AM process. The developed capability is applied to the cases of electron beam melting and selective laser melting AM techniques to explain the significantly different microstructures observed in the two processes.

  4. Modeling of Ultrasonic Testing of Woven Fabric Laminates: a Microstructure Approach (United States)

    Hegemann, J.; Peiffer, A.; Van Den Broucke, B.; Baier, H.


    New complex materials constitute new challenges for the well established nondestructive ultrasonic testing (UT) methods. In aeronautic industry Carbon Fiber Reinforced Plastics (CFRP) with a high level of inner inhomogeneity are used. New construction methods of these materials lead to manufacturing problems that cannot be monitored satisfactorily yet. Therefore a consolidated knowledge of the materials and of the interactions during testing is necessary. Modeling is a promising tool to improve the understanding of physical backgrounds and thus, to reduce testing costs. In this work UT of three-dimensional models of woven fabrics on microstructure level is simulated for the first time. Therefore, model generation and simulation performance are performed separately. The inner geometry of laminates made of woven fabrics is modeled using the software module WiseTex, a textile pre-processor developed by the Catholic University of Leuven, Belgium. In these models the wave propagation is numerically calculated using the Elastodynamic Finite Integration Technique (EFIT) implemented with C++. The calculations are performed for fully orthotropic and heterogeneous media. The resolution of the investigated inner structure is in the range of micrometers depending on the frequency range. The possibility of introducing defects in the structure is shown. The influence of the interfaces between carbon fiber rovings, matrix and defects on the wave propagation is investigated. Finally comparisons of the results with experimental data are presented.

  5. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail:; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)


    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  6. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merton Flemings; srinath Viswanathan


    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  7. Development of recrystallization texture and microstructure in cold rolled copper

    Energy Technology Data Exchange (ETDEWEB)

    Necker, C.T. [Los Alamos National Lab., NM (United States); Doherty, R.D. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering; Rollett, A.D. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering


    Oxygen free electronic copper, 99.995% purity, of two initial grain sizes, 50 {mu}m and 100 {mu}m, has been cold rolled to six strains of 1.0, 1.5, 2.0, 2.65, 3.5 and 4.5 (von Mises equivalents). The rolled materials were partially and fully recrystallized to study the development of recrystallization textures as a function of grain size, strain and fraction recrystallized. The initial textures were relatively random and the deformation textures show the classic {beta} fiber development. As strain is increased both materials produce increasingly intense cube recrystallization textures, (100)<001>, as measured both by x-ray diffraction and the electron backscatter pattern (EBSP) techniques. The strong cube recrystallization textures are a product of a higher than random frequency of cube nucleation sites. An additional factor is that cube regions grow larger than non-cube regions. The explanation of the cube frequency advantage is based on the development of large stored energy differences between cube orientations and neighboring orientations due to recovery of cube sites. Of several possible explanations of the cube orientation size advantage, the most plausible one is solute entrapment. At the higher strains the boundaries of cube grains encounter the deformation texture S components, (123)<634>, changing the boundary character to one of 40{degrees}<111>. These boundaries are more resistant to solute accumulation than random high angle boundaries, allowing the boundaries to migrate with less of a solute drag effect than a random high angle boundary.

  8. The Modeling of Coupled Electromagnetic-Thermo-Mechanical Laser Interactions and Microstructural Behavior of Energetic Aggregates (United States)


    ABSTRACT BROWN, JUDITH ALICE. The Modeling of Coupled Electromagnetic- Thermo -Mechanical Laser Interactions and Microstructural Behavior of...Energetic Aggregates. (Under the direction of Dr. Mohammed Zikry). The coupled electromagnetic- thermo -mechanical response of RDX (cyclotrimethylene...frequency electromagnetic (EM) wave propagation, laser heat absorption, thermal conduction, and inelastic dynamic thermo - mechanical deformation in

  9. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films (United States)

    Vlachos, Dion G.


    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  10. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. (United States)

    Ghanbari, J; Naghdabadi, R


    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone consists of mineral platelet with nanometer size embedded in a protein matrix, it is similar to the microstructure of soft matrix nanocomposites reinforced with hard nanostructures. Considering a representative volume element (RVE) of the microstructure of bone as the microscale problem in our hierarchical multiscale modeling scheme, the global behavior of bone is obtained under various macroscopic loading conditions. This scheme may be suitable for modeling arbitrary bone geometries subjected to a variety of loading conditions. Using the presented method, mechanical properties of cortical bone including elastic moduli and Poisson's ratios in two major directions and shear modulus is obtained for different mineral volume fractions.

  11. The contact density to characterize the mechanics of cohesive granular materials: application to snow microstructure modeling. (United States)

    Gaume, Johan; Löwe, Henning


    Microstructural properties are essential to characterize the mechanics of loose and cohesive granular materials such as snow. In particular, mechanical properties and physical processes of porous media are often related to the volume fraction ν. Low-density microstructures typically allow for considerable structural diversity at a given volume fraction, leading to uncertainties in modeling approaches using ν-based parametrizations only. We have conducted discrete element simulations of cohesive granular materials with initial configurations which are drawn from Baxter's sticky hard sphere (SHS) model. This method allows to control independently the initial volume fraction ν and the average coordination number Z. We show that variations in elasticity and strength of the samples can be fully explained by the initial contact density C = νZ over a wide range of volume fractions and coordination numbers. Hence, accounting for the contact density C allows to resolve the discrepancies in particle based modeling between samples with similar volume fractions but different microstructures. As an application, we applied our method to the microstructure of real snow samples which have been imaged by micro-computed tomography and reconstructed using the SHS model. Our new approach opens a promising route to evaluate snow physical and mechanical properties from field measurements, for instance using the Snow Micro Penetrometer (SMP), by linking the penetration resistance to the contact density.

  12. Evaluation of the inelastic heat fraction in the context of microstructure supported dynamic plasticity modelling


    Longère, Patrice; Dragon, A. André


    Evaluation of the inelastic heat fraction in the context of microstructure supported dynamic plasticity modelling correspondence: Corresponding author. (Longere, Patrice) (Longere, Patrice) (Dragon, A. Andre) Laboratoire de Genie Mecanique et Materiaux ? Universite de Bretagne Sud ? Rue de Saint-Maude - BP 92116--> , 56321 LORIENT Cedex--> - FRANCE (Longere, Patrice)...


    Directory of Open Access Journals (Sweden)

    Hellen Altendorf


    Full Text Available In the area of tessellation models, there is an intense activity to fully understand the classical models of Voronoi, Laguerre and Johnson-Mehl. Still, these models are all simulations of isotropic growth and are therefore limited to very simple and partly convex cell shapes. The here considered microstructure of martensitic steel has a much more complex and highly non convex cell shape, requiring new tessellation models. This paper presents a new approach for anisotropic tessellation models that resolve to the well-studied cases of Laguerre and Johnson-Mehl for spherical germs. Much better reconstructions can be achieved with these models and thus more realistic microstructure simulations can be produced for materials widely used in industry like martensitic and bainitic steels.

  14. A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations (United States)

    Bansal, Manik; Singh, I. V.; Mishra, B. K.; Sharma, Kamal; Khan, I. A.


    A stochastic XFEM model based on microstructural observations has been developed to evaluate the tensile strength of NBG-18 nuclear graphite. The nuclear graphite consists of pitch matrix, filler particles, pores and micro-cracks. The numerical simulations are performed at two length scales due to large difference in average size of filler particles and pores. Both deterministic and stochastic approaches have been implemented. The study intends to illustrate the variation in tensile strength due to heterogeneities modeled stochastically. The properties of pitch matrix and filler particles are assumed to be known at the constituent level. The material models for both pitch and fillers are assumed to be linear elastic. The stochastic size and spatial distribution of the pores and filler particles has been modeled during the micro and macro analysis respectively. The strength of equivalent porous pitch matrix evaluated at micro level has been distributed stochastically in the elemental domain along with filler particles for macro analysis. The effect of micro-cracks has been incorporated indirectly by considering fracture plane in each filler particle. Tensile strength of nuclear graphite is obtained by performing the simulations at macro-level. Statistical parameters evaluated using numerical tensile strength data agree well with experimentally obtained statistical parameters available in the literature.

  15. Interrogation of numerical simulation for modeling of flow induced microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Aerospace Engineering and Mechanics


    This paper summarizes recent efforts using direct numerical simulations to determine microstructural properties of fluidized suspensions of a few particles. The authors have been studying the motions of a few particles in a viscous fluid by direct numerical simulation at moderate values of the Reynolds number in the 100`s. From these simulations, they find the mechanisms which give rise to lateral migration of particles and turn the broad side of long bodies perpendicular to the stream. They find that a viscous ``stagnation`` point is a point on the body where the shear stress vanishes and the pressure is nearly a maximum. They show how the migration is controlled by stagnation and separation points and go further than before in the discussion of Segre-Silberberg effects of cross-streamline migration in two dimensions. They have analyzed the lift off and steady flight of solid capsules in Poiseuille flows. They do a three-dimensional simulation of steady flow at slow speeds and show that the extensional stresses in a viscoelastic flow change the sign of the normal stress which would exist at points of stagnation in a Newtonian fluid, causing the long side of the body to line up with the stream.

  16. Microstructure and texture development during high-strain torsion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeden, B.


    In this study polycrystalline NiAl has been subjected to torsion deformation. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T=700 K-1300 K. The shear stress-shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. Grain refinement takes place for all samples and the average grain size decreases with temperature. For temperatures T>1000 K, discontinuous dynamic recrystallization occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {l_brace}100{r_brace}<100> (cube,C) and {l_brace}110{r_brace}<100> (Goss,G). Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. (orig.)

  17. Development of a comprehensive weld process model

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B.; Zacharia, T.; Paul, A.


    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC`s expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three-dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above.

  18. Dislocations via incompatibilities in phase-field models of microstructure evolution (United States)

    Gröger, R.; Marchand, B.; Lookman, T.


    We develop a phase-field model that describes the elastic distortion of a ferroelastic material with cubic anisotropy due to an arbitrary dislocation network and a uniform external load. The dislocation network is characterized using the Nye tensor and enters the formulation via a set of incompatibility constraints for the internal strain field. The long-range elastic response of the material is obtained by minimization of the free energy that accounts for higher-order terms of the order parameters and symmetry-adapted strain gradients. The influence of dislocations on the microstructure is studied using a static equilibrium analysis of a material without dislocations and with a random array of parallel edge dislocations. A minimal continuum dislocation dynamics is then used to investigate the simultaneous evolution of the network of geometrically necessary dislocations and the internal strain field. The model developed here is directly applicable to single-phase cubic crystals with an arbitrary degree of anisotropy as well as to ferroelastic materials undergoing temperature-driven cubic-to-tetragonal phase transitions.

  19. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.


    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  20. The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents. (United States)

    Muetzel, Ryan L; Collins, Paul F; Mueller, Bryon A; M Schissel, Ann; Lim, Kelvin O; Luciana, Monica


    Cross-sectional and longitudinal volumetric studies suggest that the corpus callosum (CC) continues to mature structurally from infancy to adulthood. Diffusion tensor imaging (DTI) provides in vivo information about the directional organization of white matter microstructure and shows potential for elucidating even more subtle brain changes during adolescent development. We used DTI to examine CC microstructure in healthy right-handed adolescents (n=92, ages 9-24 years) and correlated the imaging data with motor task performance. The primary DTI variable was fractional anisotropy (FA), which reflects the degree of white matter's directional organization. Participants completed an alternating finger tapping test to assess interhemispheric transfer and motor speed. Task performance was significantly correlated with age. Analyses of variance indicated that 9- to 11-year-olds generally performed worse than each of the older groups. Males outperformed females. Significant positive correlations between age and FA were observed in the splenium of the CC, which interconnects posterior cortical regions. Analyses of variance indicated that individuals older than 18 years had significantly higher FA than 9- to 11-year-olds. FA levels in the genu and splenium correlated significantly with task performance. Regression analyses indicated that bimanual coordination was significantly predicted by age, gender, and splenium FA. Decreases in alternating finger tapping time and increases in FA likely reflect increased myelination in the CC and more efficient neuronal signal transmission. These findings expand upon existing neuroimaging reports of CC development by showing associations between bimanual coordination and white matter microstructural organization in an adolescent sample.

  1. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding (United States)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.


    A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.

  2. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process (United States)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.


    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  3. Microstructure Modeling in Integrated Computational Materials Engineering (ICME) Settings: Can HDF5 Provide the Basis for an Emerging Standard for Describing Microstructures? (United States)

    Schmitz, G. J.


    The importance of microstructure simulation in integrated computational materials engineering settings in relation to the added value provided for macroscopic process simulation, as well as the contribution this kind of simulation can make in predicting material properties, are discussed. The roles of microstructure simulation in integrating scales ranging from component/process scales down to atomistic scales, and also in integrating experimental and virtual worlds, are highlighted. The hierarchical data format (HDF5) as a basis for enhancing the interoperability of the heterogeneous range of simulation tools and experimental datasets in the area of computational materials engineering is discussed. Several ongoing developments indicate that HDF5 might evolve into a de facto standard for digital microstructure representation of all length scales.

  4. Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures (United States)

    Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik


    Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.

  5. Development of microstructure in submicron particles reinforced magnesium matrix composite processed by room temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, K.B., E-mail: [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Deng, K.K., E-mail: [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, F.J. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, X.J.; Wu, K. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)


    Magnesium matrix composite reinforced with submicron SiC particles was subjected to room temperature deformation. A stepped tensile method was adopted to observe the development of microstructure at different tensile strain state. The microstructure evolution determined by transmission electron microscopy showed that the existence of submicron SiC particles could promote dislocation multiplication as well as impede dislocation motion. Dislocation density around SiC particles increased with the increase of tensile strain. Compared with the matrix alloy, the composite could withstand greater external loads, which can be related to the pinning effect caused by the submicron SiC particles on the movement of grain and twin boundaries. The study of the interface between the submicron SiC particles and matrix in the composite suggested that single submicron SiC particle bonded well with the matrix alloy after tensile process. Initiation of micro-cracks usually generated in the submicron particle dense zone during tensile process, which could lead to the fracture of composite. - Highlights: • Interaction among SiCp, dislocations, grain boundaries and twinning is analyzed. • Microstructures of SiCp/AZ91 during tensile is characterized. • 0.2 μm SiCp has significant pinning effect on dislocation movement. • Interfacial bonding between 0.2 μm SiCp-Mg is analyzed.

  6. Microstructure modeling and virtual test of asphalt mixture based on three-dimensional discrete element method

    Institute of Scientific and Technical Information of China (English)

    马涛; 张德育; 张垚; 赵永利; 黄晓明


    The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions (PFC3D) based on three-dimensional discrete element method. A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate. And then, modeling algorithm and method for graded aggregates were built. Based on the combination of modeling of coarse aggregates, asphalt mastic and air voids, three-dimensional virtual sample of asphalt mixture was modeled by using PFC3D. Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC3D. By comparison of the testing results between virtual tests and actual laboratory tests, the validity of the microstructure modeling and virtual test built in this study was verified. Additionally, compared with laboratory test, the virtual test is easier to conduct and has less variability. It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.


    Institute of Scientific and Technical Information of China (English)

    J. Wang; J. Chen; Z. Zhao; X.Y. Ruan


    The microstructural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation, the parameters of which were determined by single hit compression tests. Double hit compression tests were performed to model the equation describing the static recrystallized fraction, and the obtained predicted values were in good agreement with the measured values. Austenitic grain growth was modeled as: Dinc5=D05 +1.6×1032t·exp(-716870/RT) using isothermal tests. Furthermore, an equation describing the dynamic recrystallized grain size was given as Ddyn=3771·Z-0.2.The models of microstructural evolution could be applied to the numerical simulation of hot forging.

  8. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  9. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove


    Abstract Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced...... anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d...... changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy....

  10. Modeling and Algorithmic Approaches to Constitutively-Complex, Microstructured Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Gregory H. [Univ. of California, Davis, CA (United States); Forest, Gregory [Univ. of California, Davis, CA (United States)


    We present a new multiscale model for complex fluids based on three scales: microscopic, kinetic, and continuum. We choose the microscopic level as Kramers' bead-rod model for polymers, which we describe as a system of stochastic differential equations with an implicit constraint formulation. The associated Fokker-Planck equation is then derived, and adiabatic elimination removes the fast momentum coordinates. Approached in this way, the kinetic level reduces to a dispersive drift equation. The continuum level is modeled with a finite volume Godunov-projection algorithm. We demonstrate computation of viscoelastic stress divergence using this multiscale approach.

  11. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure. (United States)

    Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S


    Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Multiscale Turbulence Models Based on Convected Fluid Microstructure

    CERN Document Server

    Holm, Darryl D


    The Euler-Poincar\\'e approach to complex fluids is used to derive multiscale equations for computationally modelling Euler flows as a basis for modelling turbulence. The model is based on a \\emph{kinematic sweeping ansatz} (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest 2-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modelling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  13. Characterization and modeling of microstructural evolution of near-eutectic tin-silver-copper solder joints (United States)

    Zbrzezny, Adam R.

    Near-eutectic Sn-Ag-Cu (SAC) solders are currently considered as major lead-free replacement candidates for Sn-Pb eutectic alloys in microelectronics applications. In this thesis, the microstructural thermal stability including recrystallization, grain growth behavior, Pb and Au contamination effects and interaction of the SAC solder with Cu and Ni substrates were investigated. The true eutectic composition of the Sn-Ag-Cu alloy was verified to be Sn3.5Ag0.9Cu wt.%, and the eutectic melting temperature was determined to be 217.4 +/- 0.8°C. The system was classified as belonging to faceting (Cu6Sn5)-faceting (Ag3Sn)-nonfaceting (Sn matrix) ternary eutectic. The most significant consequence of Pb contamination was the formation of a quaternary eutectic phase (Sn-Ag-Cu-Pb) with a melting point at 176°C. Similarly, the presence of gold in the SAC alloy led to a development of a new quaternary phase (Sn-Ag-Cu-Au) melting at 204°C. Prolonged aging of SAC-4 wt.% Au on nickel resulted in the deposition of a new, previously unreported, intermetallic (IMC) layer, ((Au1-xCUx)6Sn 5, 15 wt.% of Au) on top of the existing (Cu1-yNi y)6Sn5 layer. The interfacial products that formed during soldering to copper were Cu6Sn5 and Cu3Sn. Soldering to nickel resulted in the formation of one layer, (Cu1-yNiy) 6Sn5, which was different from the expected Ni3Sn 4 layer. A small copper content in the SAC solder (0.7 wt.%) was sufficient to promote this thermodynamic shift. Intermetallic growth on Cu during solid state aging was established to be bulk diffusion controlled. The IMC layers in the SAC system grew at a slower rate than in the Sn-Pb system. It was found that the reliability of SAC solder joints on copper was considerably better than on nickel due to copper enrichment during reflow and subsequent Cu6Sn5 intermetallic precipitation. Enhanced copper and silver diffusion followed by tin recrystallization and grain growth, cavity nucleation and subsequent micro-crack linkage formed

  14. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.


    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  15. Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, M.F., E-mail: [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Giroux, P.-F. [Commissariat a l' Energie Atomique, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette Cedex (France); Alvarez-Armas, I. [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Sauzay, M. [Commissariat a l' Energie Atomique, DEN/DANS/DMN/SRMA, 91191 Gif-sur-Yvette Cedex (France); Armas, A. [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 Bis, 2000 Rosario (Argentina); Kruml, T. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, 616 62 (Czech Republic)


    Highlights: Black-Right-Pointing-Pointer Low cycle fatigue test are carried out on EUROFER 97 at room temperature. Black-Right-Pointing-Pointer EUROFER 97 shows a pronounced cyclic softening accompanied by microstructural changes. Black-Right-Pointing-Pointer Cycling induces a decrement in dislocation density and subgrain growth. Black-Right-Pointing-Pointer A simple mean-field model based on crystalline plasticity is proposed. Black-Right-Pointing-Pointer The mean subgrain size evolution is predicted by modelling. - Abstract: The 9% Cr quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of fusion reactors. Isothermal, plastic strain-controlled, low-cycle fatigue tests are performed. Tested at room temperature, this steel suffers a cyclic softening effect linked to microstructural changes observed by transmission electron microscopy, such as the decrease of dislocation density inside subgrains or the growth of subgrain size. From the assumed mechanisms of softening a simple mean-field model based on crystalline plasticity is proposed to predict these microstructure evolutions during cycling and monotonic deformation.

  16. Atomic scale modeling of defect production and microstructure evolution in irradiated metals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y. [Lawrence Livermore National Lab., CA (United States)] [and others


    Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.

  17. Predicting Grid Size-dependent Fracture Strains of DP980 with a Microstructure-based Post-necking Model

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang; Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin


    Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different representative volume element (RVE) sizes are used to predict the size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson-Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus, a general framework is developed to quantify the size-dependent fracture strains for multiphase materials. In addition to the RVE sizes, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Application of the derived fracture strain versus RVE size relationship is demonstrated with large clearance trimming simulations with different element sizes.

  18. Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity (United States)


    Goodwin and K. Bhattacharya. Graded ferroelectric capacitors with robust temperature characteristics. Journal of Applied Physics 100: Art. hydrogen-implanted single-crystal BaTiO3 Journal of Applied Physics 97: Art. No. 074311, 2005. 25. R. T. Brewer, D. A. Boyd, M. Y. El-Naggar...amorphous Si3N4 Journal of Applied Physics 97: Art. No. 03410, 2005. 26. W. Zhang and K. Bhattacharya. A computational model of ferroelectric domains

  19. U-10Mo/Zr Interface Modeling using a Microstructure-Based FEM Approach

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The U-10Mo in low enrichments (LEU) has been identified as the most promising alternative to the current highly enriched uranium (HEU) used in the United States’ fleet of high performance research reactors (USHPRRs). The nominal configuration of the new LEU U-10Mo plate fuel comprises a U-10Mo fuel foil enriched to slightly less than 20% U-235 (0.08” to 0.02” thick), a thin Zr interlayer/diffusion barrier (25 m thick) and a relatively thick outer can of 6061 aluminum. Currently the Zr interlayer is clad by hot roll bonding. Previous studies and observations revealed a thinning of the zirconium (Zr) layer during this fuel fabrication process, which is not desirable from the fuel performance perspective. Coarse UMo grains, dendritic structures, Mo concentration segregation, carbides, and porosity are present in the as-cast material and can lead to a nonuniform UMo/Zr interface. The purpose of the current work is to investigate the effects of these microstructural parameters on the Zr coating variation. A microstructure-based finite-element method model was used in this work, and a study on the effect of homogenization on the interface between U-10Mo and Zr was conducted. The model uses actual backscattered electron–scanning electron microscopy microstructures, Mo concentrations, and mechanical properties to predict the behavior of a representative volume element under compressive loading during the rolling process. The model successfully predicted the experimentally observed thinning of the Zr layer in the as-cast material. The model also uses results from a homogenization model as an input, and a study on the effect of different levels of homogenization on the interface indicated that homogenization helps decrease this thinning. This model can be considered a predictive tool representing a first step for model integration and an input into a larger fuel fabrication performance model.

  20. A multiscale microstructure model of cement paste sulfate attack by crystallization pressure (United States)

    Feng, Pan; Bullard, Jeffrey W.; Garboczi, Edward J.; Miao, Changwen


    A recent microstructural model of near-surface external sulfate attack on cement paste is modified to incorporate diffusive ionic transport between the surface and interior of a macroscopic specimen that has been hydrated for 100 d prior to exposure to sulfates. The model estimates the driving force for local expansive growth of the {{Al}}2{{{O}}}3-{{Fe}}2{{{O}}}3-tri (AFt) phase in terms of crystallization pressure, and the strain and stress fields are tracked within the microstructure with micrometer-scale resolution using a linear elastic finite element model. Damage induced by expansion modifies both the local effective transport properties and linear elastic properties of the local microstructure at different depths, and thereby potentially alters the rates of sulfate ingress and expansion. Therefore, the progress of phase transformations and expansion from the surface to the interior of the porous material is dictated by the rate of ingress of concentration fronts of both sulfate ions and pH, which do not necessarily coincide. The model is used to relate microscopic changes in the structure of cement paste, induced by ingress of sodium sulfate solutions of different concentrations, to the macroscopic expansion, and the results are compared with previous models and published experimental data. The model demonstrates what has previously been assumed in sulfate-attack models, namely that volumetric expansion of macroscopic paste samples in the early stages of sulfate attack is a linear function of the mass of AFt phase precipitated. In addition, the model captures the main features of the evolution of local elastic and transport properties within a macroscopic paste sample, showing an apparently parabolic dependence on depth of the local Young’s modulus and local formation factor.

  1. Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation

    CERN Document Server

    Ortwein, Rafał

    The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...

  2. Themo-mechanical and microstructural modeling of friction stir welding of 6111-T4 aluminum alloys (United States)

    Kim, Ji Hoon; Barlat, Frédéric; Kim, Chongmin; Chung, Kwansoo


    Plastic deformation and thermal history as well as microstructure evolution of friction stir welded 6111-T4 aluminum alloys were numerically simulated. Material and heat flow during friction stir welding were calculated considering the momentum balance equation and energy balance equation under the steady state condition. Based on the calculated temperature history, the coupled nucleation, growth, and coarsening of precipitates were simulated using microstructural modeling, as proposed by Myhr et al. [7,8]. Finally, the distribution of precipitates was used to calculate the mechanical properties of the weld zone, particularly the yield stress, based on the dislocation theory. The results compared well with the measurements, suggesting that the method can be applicable to predict yield stress.

  3. Modelling and Microstructural Characterization of Sintered Metallic Porous Materials

    Directory of Open Access Journals (Sweden)

    Wojciech Depczynski


    Full Text Available This paper presents selected characteristics of the metallic porous materials produced by the sintering of metal powders. The authors focus on materials produced from the iron powder (Fe of ASC 100.29 and Distaloy SE. ASC 100.29 is formed by atomization and has a characteristic morphology. It consists of spherical particles of different sizes forming agglomerates. Distaloy SE is also based on the sponge-iron. The porous material is prepared using the patented method of sintering the mixture of iron powder ASC 100.29, Fe(III oxide, Distaloy SE and Fe(III oxide in the reducing atmosphere of dissociated ammonia. As a result, the materials with open pores of micrometer sizes are obtained. The pores are formed between iron particles bonded by diffusion bridges. The modelling of porous materials containing diffusion bridges that allows for three-dimensional (3D imaging is presented.

  4. Creep and damage in argillaceous rocks: microstructural change and phenomenological modeling; Fluage et endommagement des roches argileuses: evolution de la microstructure et modelisation phenomenologique

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, G


    The underground radioactive waste disposal far exceeds the period of exploitation of common civil engineering works. These specific projects require to predict the irreversible deformations over a large time scale (several centuries) in order to assess the extension and to forecast the evolution of the EDZ (Excavation Damage Zone) around the cavity. In this study, the viscosity of three sedimentary argillaceous rocks has been studied under different conditions of uniaxial compression: static or cyclic creep tests, monotonic and quasistatic tests, performed across various strata orientations. Argillaceous rocks are studied as a possible host layer for radioactive waste disposals. Indeed, they present some of the physical characteristics and mechanical properties, which are essential for being a natural barrier: low permeability, high creep potential and important holding capacity of radioactive elements. The purpose of the experimental study was to shed some light over the mechanisms governing the development of delayed deformations and damage of argillaceous rocks. It relates three rocks: an argillite from East of France, a Tournemire argillite and a marl from Jurassic Mountains. On atomic scale, viscoplastic deformations are due to irreversible displacements of crystalline defects, called dislocations. The experimental study was also supplemented with observations on thin sections extracted from the argillite and marl samples using a SEM. The aim was to identify the mechanisms responsible for the time-dependent behaviour on a microstructural scale. Analytical simulations of the mechanical behaviour of the three rocks gave parameters used in different viscoplastic models. The best modeling was obtained with the viscoplastic model which takes account of the development of volumetric strains and of the damage anisotropy. (author)

  5. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)


    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  6. Current transport and microstructural development in BSCCO tapes and joints fabricated by groove rolling (United States)

    Iyer, A. N.; Lu, W.; Mironova, M.; Vipulanandan, C.; Balachandran, U.; Salama, K.


    The powder-in-tube technique, which includes wire drawing and rolling, has been widely used to fabricate superconducting tapes for possible electric power applications. In the present study the starting billet was reduced in size by groove rolling instead of by wire drawing. To optimize the deformation and thermomechanical treatment processes, BSCCO wires of various dimensions were fabricated. The wires were flat rolled to a final thickness of 250 µm. Short-length tapes were subjected to a series of thermal and deformation steps. Phase development and microstructural development during the process were monitored by XRD, SEM and TEM. Current transport properties of the tapes were determined in the temperature range of 20-77 K in self-field. Thermomechanical treatment resulted in tapes with average critical current densities of 18 000 A cm-2 at 77 K. High-resolution electron microscopy revealed better texturing and grain structure at the superconductor-silver interface. Superconducting lap- and butt-joints have been formed by a chemical etching technique. Detailed microstructural and current transport properties of the joints have also been measured.

  7. Microstructural and Residual Stress Development due to Inertia Friction Welding in Ti-6246 (United States)

    Attallah, Moataz M.; Preuss, Michael; Boonchareon, Chatri; Steuwer, Axel; Daniels, John E.; Hughes, Darren J.; Dungey, Christopher; Baxter, Gavin J.


    A thorough investigation has been performed to assess the microstructural properties, mechanical properties (hardness and elastic modulus), and residual stress development in Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) inertia friction welds in the as-welded and postweld heat-treated conditions. It was evident that the thermomechanical deformation in the weld region occurred above the β transus, forming dynamically recrystallized β grains and precipitating acicular α within the β grains, which resulted in a localized hardness increase. In the heat-affected zone, a ghost microstructure of the base metal formed because of the absence of sufficient time for diffusion, resulting in Mo segregation in the prior primary α plates. Energy-dispersive synchrotron X-ray diffraction and neutron diffraction were used to assess the residual stress development in the three principal directions. The variation in the unstrained lattice parameters across the weld regions was established by imposing a stress balance on the axial stress component in the radial direction. It was found that the maximum stresses occurred in the hoop direction, with significantly lower stresses present in the radial and axial directions. The maximum tensile hoop stresses were located at ~4 mm from the weld centerline and not at the dynamically recrystallized β-rich weld zone. This was associated with the α → β phase transformation and the subsequent acicular α precipitation within the region surrounding the weld centerline.

  8. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.


    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  9. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur


    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under

  10. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes (United States)

    Lei, Yinkai; Cheng, Tian-Le; Wen, You-Hai


    Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration of the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. The effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.

  11. Microstructure evolution and texture development in thermomechanically processed Mg-Li-Al based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Department of Materials Science and Engineering, IIT Kanpur (India); Govind [Vikram Sarabhai Space Center, Trivandrum (India); Shekhar, Rajiv; Balasubramaniam, R. [Department of Materials Science and Engineering, IIT Kanpur (India); Balani, Kantesh, E-mail: [Department of Materials Science and Engineering, IIT Kanpur (India)


    Highlights: Black-Right-Pointing-Pointer Thermomechanical processing of novel LAT 971 and LATZ 9531 Mg-Al-Li based alloys. Black-Right-Pointing-Pointer Microstructural deviation from the equilibrium phase diagram. Black-Right-Pointing-Pointer Disparity in texture of these alloys after hot-rolling (recrystallization and grain growth). Black-Right-Pointing-Pointer Role of alloying and phase distribution in affecting the texture/interplaner spacing. - Abstract: In the present study, the influence of alloying and thermomechanical processing on the microstructure and texture evolution on the two Mg-Li-Al based alloys, namely Mg-9 wt% Li-7 wt% Al-1 wt% Sn (LAT971) and Mg-9 wt% Li-5 wt% Al-3 wt% Sn-1 wt% Zn (LATZ9531) has been elicited. Novel Mg-Li-Al based alloys were cast (induction melting under protective atmosphere) followed by hot rolling at {approx}573 K with a cumulative reduction of five. A contrary dual phase dendritic microstructure rich in {alpha}-Mg, instead of {beta}-Li phase predicted by equilibrium phase diagram of Mg-Li binary alloy was observed. Preferential presence of Mg-Li-Sn primary precipitates (size 4-10 {mu}m) within {alpha}-Mg phase and Mg-Li-Al secondary precipitates (<3 {mu}m) interspersed in {beta}-Li indicated their degree of dissolution during hot-rolling and homogenization in the dual phase matrix. Presence of Al, Sn and Zn alloying elements in the Mg-Li based alloy has resulted an unusual dual-phase microstructure, change in the lattice parameter, and intriguing texture evolution after hot-rolling of cast LAT 971 and LATZ9531 alloy. Strong texture was absent in the as-cast samples whereas texture development after hot-rolling revealed an increased activity of the non-basal (101{sup Macron }0) slip planes. The quantification of the grain average misorientation (less than 2 Degree-Sign ) using electron backscattered diffraction confirmed the presence of strain free grains in majority of the grains (fraction >0.75) after hot-rolling of Mg

  12. A validated 3D microstructure-based constitutive model of coronary artery adventitia. (United States)

    Chen, Huan; Guo, Xiaomei; Luo, Tong; Kassab, Ghassan S


    A structure-based model that accurately predicts micro- or macromechanical behavior of blood vessels is necessary to understand vascular physiology. Based on recently measured microstructural data, we propose a three-dimensional microstructural model of coronary adventitia that incorporates the elastin and collagen distributions throughout the wall. The role of ground substance was found to be negligible under physiological axial stretch λz = 1.3, based on enzyme degradation of glycosaminoglycans in swine coronary adventitia (n = 5). The thick collagen bundles of outer adventitia (n = 4) were found to be undulated and unengaged at physiological loads, whereas the inner adventitia consisted of multiple sublayers of entangled fibers that bear the majority of load at higher pressures. The microstructural model was validated against biaxial (inflation and extension) experiments of coronary adventitia (n = 5). The model accurately predicted the nonlinear responses of the adventitia, even at high axial force (axial stretch ratio λz = 1.5). The model also enabled a reliable estimation of material parameters of individual fibers that were physically reasonable. A sensitivity analysis was performed to assess the effect of using mean values of the distributions for fiber orientation and waviness as opposed to the full distributions. The simplified mean analysis affects the fiber stress-strain relation, resulting in incorrect estimation of mechanical parameters, which underscores the need for measurements of fiber distribution for a rigorous analysis of fiber mechanics. The validated structure-based model of coronary adventitia provides a deeper understanding of vascular mechanics in health and can be extended to disease conditions.

  13. Features of the microstructure development under conditions, reproducing the process of friction stir welding. Molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Nikonov, Anton Yu., E-mail:, E-mail:; Dmitriev, Andrey I., E-mail:, E-mail: [National Research Tomsk State University, Tomsk, 634050, Russia and Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kolubaev, Evgeniy A., E-mail:, E-mail:; Rubtsov, Valeriy E., E-mail:, E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)


    Friction stir welding is a recently developed technology which is used in various branches of modern engineering. The basis of this technology is the friction of the rotating cylindrical or specially shaped tool between two metal plates brought together either to meet their ends of one above another with the overlap. When applying the FSW process in various economical sectors, the important task is to study the mechanisms and identify the physical laws and factors leading to formation of structural inhomogeneities and discontinuities in the weld seam. This paper analyzes the basic mechanisms behind the structural state generation in the material subjected to severe plastic deformation and heating. To investigate the atomic mechanisms of structural changes in FSW, the modeling at atomic scale has been carried out. Results of work can be a basis for new knowledge about the microstructure evolution in FSW.

  14. Dissipative structures in an optomechanical cavity model with a microstructured oscillating end mirror

    CERN Document Server

    Ruiz-Rivas, J; Roldán, Eugenio; de Valcárcel, Germán J


    We theoretically consider the possibility of generating nonlinear transverse patterns in an optomechanical system in which the mechanical element is a microstructured oscillating end-mirrror consisting in an array of weakly-coupled micromirrors. While in the limit of large number of micro-mirrors we naturally recover the continuous model that we recently studied in [Ruiz-Rivas et al., Phys. Rev. A 93, 033850 (2015)], we pay special numerical attention to the opposite limit, showing that the structures predicted with the continuous model can be observed for a number of micro-mirrors as low as ten or less. This opens new venues for experimental approaches to the subject.

  15. New evidence for microstructural evolution model of acid-activated montmorillonite

    Institute of Scientific and Technical Information of China (English)


    Ca-montmorillonite samples from Choushan treated at various acid concentrations were studied using chemical analysis, XRD, 29Si and 27Al MAS NMR, to investigate the microstructure of the activated montmorillonites.With the increase of acid concentration and dissolution of cations of montmorillonite, the intensity of d(001) decreased obviously and significant changes of the microstructure of Si and Al occurred. There were two new types of structural units of Si atoms formed: (SiO)3SiOH units and Q4(0AI)units. For Al atoms, in the course of activation, the removal of one of a pair of octahedral aluminium atoms from montmorillonite removed two hydroxyl groups and left the other aluminum of the pair in the four-fold coordination. The 27Al signal at δ 54.0 corresponding to Al? arose from the fourcoordinated Al in the octahedral sheet. This study first confirmed, by 2gsi and 27AI MAS NMR spectra, that the model of microstructural evolution for activated montmorillonite postulated by Thomas et al. (1950) is correct.``

  16. Microstructural Development of Ti-B Alloyed Layer for Hard Tissue Applications

    Institute of Scientific and Technical Information of China (English)

    A.Miklaszewski; M.U.Jurczyk; M.Jurczyk


    Microstructural development was analyzed due to the effect of different sizes of precursor powders during surface plasma alloying modification on titanium surface.Ti-B nano and micropowders with 10 wt% B were deposited onto microcrystalline titanium substrate by plasma alloying.As a result,modified surface layer composed of Ti matrix and TiB borides was obtained.The type of the powder precursor influenced recasting process,possible occurrence of porosity and finally the obtained properties and microstructure of the surface layer.Different morphologies and sizes of TiB phase from micro,submicro to even nano increased the hardness and wear resistance of the obtained surface layers.Discussed results referred to a strong TiB precipitation dispersion provided by a fine elements homogenization during mechanical alloying process.Additionally,results of in vitro test with normal human osteoblast cells revealed proper cellular adhesion to modified surfaces.Scanning electron microscopy observation revealed the influence of gas pore size on culturing osteoblast colony.The proposed surface alloying was an effective method of producing TiB phase dispersed in α-Ti matrix with high hardness,good corrosion resistance and good cytocompatibility.Results confirmed that different types of the precursor powders influenced the properties of the surface layer.TiB phase dispersed in α-Ti matrix layer can offer new structural and biofunctional properties for innovative products in hard tissue applications.

  17. Microstructural Development and Deformation Mechanisms during Cold Rolling of a Medium Stacking Fault Energy TWIP Steel

    Institute of Scientific and Technical Information of China (English)

    K.A. Ofei; L. Zhao; J. Sietsma


    The magnetic response,microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4Al-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-ray diffraction and magnetic techniques.The changes in the sub-grain size (Ds),probability of stacking fault formation (Psf) and microstrain in the material as cold rolling progressed were determined by using a modified version of the Williamson and Hall equation.A strong development of the crystallographic texture with increasing deformation was observed.Deformation-induced formation of a small fraction α'-martensite was observed,indicating that the steel also exhibits y → α'-martensite transformation during cold rolling,which is discussed via the changes of the stacking-fault probability and the texture development during cold rolling.

  18. X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, D. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia); PCM Computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia); Ospina, R. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia); Gómez, A.G. [Pontificia Universidad Javeriana Seccional Cali, Facultad de Ingeniería, Departamento de Ciencias de la Ingeniería y la Producción (Colombia); Restrepo-Parra, E., E-mail: [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia); PCM Computacional Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 Vía al Magdalena, Manizales (Colombia)


    A detailed microstructural characterization of nanocrystalline TiZrN thin films grown at different substrate temperatures (T{sub S}) was carried out by X-ray diffraction (XRD). Total diffraction pattern modeling based on more meaningful microstructural parameters, such as crystallite size distribution and dislocation density, was performed to describe the microstructure of the thin films more precisely. This diffraction modeling has been implemented and used mostly to characterize powders, but the technique can be very useful to study hard thin films by taking certain considerations into account. Nanocrystalline films were grown by using the cathodic pulsed vacuum arc technique on stainless steel 316L substrates, varying the temperature from room temperature to 200 °C. Further surface morphology analysis was performed to study the dependence of grain size on substrate temperature using atomic force microscopy (AFM). The crystallite and surface grain sizes obtained and the high density of dislocations observed indicate that the films underwent nanostructured growth. Variations in these microstructural parameters as a function of T{sub S} during deposition revealed a competition between adatom mobility and desorption processes, resulting in a specific microstructure. These films also showed slight anisotropy in their microstructure, and this was incorporated into the diffraction pattern modeling. The resulting model allowed for the films' microstructure during synthesis to be better understood according to the experimental results obtained. - Highlights: • Mobility and desorption competition generates a critical temperature. • A microstructure anisotropy related to the local strain was observed in thin films. • Adatom mobility and desorption influence grain size and microstrain.

  19. Artificial Neural Network Modeling of Microstructure During C-Mn and HSLA Plate Rolling

    Institute of Scientific and Technical Information of China (English)

    TAN Wen; LIU Zhen-yu; WU Di; WANG Guo-dong


    An artificial neural network (ANN) model for predicting transformed mierostrueture in conventional roll-ing process and thermomechanieal controlled process (TMCP) is proposed. The model uses austenite grain size and retained strain, which can be calculated by using microstrueture evolution models, together with a measured cooling rate and chemical compositions as inputs and the ferrite grain size and ferrite fraction as outputs. The predicted re-sults show that the model can predict the transformed microstructure which is in good agreement with the measured one, and it is better than the empirical equations. Also, the effect of the alloying elements on transformed products has been analyzed by using the model. The tendency is the same as that in the reported articles. The model can be used further for the optimization of processing parameters, mierostructure and properties in TMCP.

  20. Deciphering P-T-t Paths from Reaction Microstructures in Metamorphic Rocks: a New Approach by Means of Three-Dimensional Finite Element Modelling (United States)

    Sassi, R.; Marcuzzi, F.; Mazzoli, C.


    One of the main goals of metamorphic petrology is to obtain information on the variations of metamorphic P-T conditions during orogenesis (P-T-t paths). For this purpose petrologists are aware of the potentiality of studying reaction microstructures, although results are not always satisfactory as in most cases qualitative approaches, failing on the real meaning of specific microstructral relationships, are often adopted. Thus, the present research aimed to study the petrogenetic meaning of reaction microstructure in metamorphic rocks through the formulation of a new true three-dimensional finite-element model. For this purpose, different petrologically well studied metamorphic microstructural situations have been selected, in order to identify information, variables and constraints fundamental for the development of the model. A generalised finite-elements model (FEM) has been developed, applicable to any microstructural situation, independently on grain-size and distribution of minerals in the matrix, and able to also consider growth anisotropies, intracrystalline diffusion, pressure solution, and possibly anisotropy of the strain field. This model is based on a combination of the usual diffusion linear equations used in current irreversible thermodynamic models, providing constraints on absolute values of diffusion coefficients of chemical components, chemical potential gradients and time of reactions during metamorphism, starting from information on textural anisotropies observed in metamorphic rocks. In the model, parameterization is given by diffusion, convection and reaction coefficients of each chemical species within each finite element, which dimension is equal to the spatial resolution of the experimentally measured input data (i.e. SEM elemental maps). Thus, parameterization is able to describe locally heterogeneous reaction phenomena although based on a basically linear partial derivative differential model. Such a discretization of the continuum model

  1. Research and Development of X70 with an Acicular Ferrite Microstructure for West-East Pipeline Project

    Institute of Scientific and Technical Information of China (English)

    ZhengLei; GaoShan


    It is introduced in this paper that a high strength and high toughness X70 pipeline steel with an ultra-low acicular ferrite microstructure has been researched and developed at Baosteel according to the requirements of the West-East Gas Pipeline(WEGTP) project. The developed steel has higher strength, higher toughness, lower ductile-brittle transition temperature and higher dynamic tear-resistance than the conventional X70 with ferrite and pearlite microstructure. The excellent properties of the steel are benefited from ultralow carbon acicular ferrite consisting of interaction of very fine precipitated particles and high-density dislocation. And the steel has been applied on the WEGTP in China.

  2. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, En-Yu [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Chawla, Nikhilesh [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jing, Tao [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Torquato, Salvatore [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States); Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (United States); Jiao, Yang, E-mail: [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)


    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  3. Multipass forging of Inconel 718 in the delta-Supersolvus domain: assessing and modeling microstructure evolution

    Directory of Open Access Journals (Sweden)

    Zouari Meriem


    Full Text Available This work is focused on the evolution of the microstructure of Inconel 718 during multi-pass forging processes. During the forming process, the material is subjected to several physical phenomena such as work-hardening, recovery, recrystallization and grain growth. In this work, transformation kinetics are modeled in the δ-Supersolvus domain (T>Tsolvus where the alloy is single-phase, all the alloying elements being dissolved into the FCC matrix. Torsion tests were used to simulate the forging process and recrystallization kinetics was modeled using a discontinuous dynamic recrystallization (DDRX two-site mean field model. The microstructure evolution under hot forging conditions is predicted in both dynamic and post-dynamic regimes based on the initial distribution of grain size and the evolution of dislocation density distribution during each step of the process. The model predicts recrystallization kinetics, recrystallized grain size distribution and stress–strain curve for different thermo-mechanical conditions and makes the connection between dynamic and post-dynamic regimes.

  4. Microstructure-Based Modeling of Residual Stresses in WC-12Co-Sprayed Coatings (United States)

    Klusemann, B.; Denzer, R.; Svendsen, B.


    In this study, the residual stresses in a thermal-sprayed tungsten carbide-cobalt coating are numerically investigated after a plasma-spraying process and after a subsequent roller-burnishing process. The results from the simulations are compared to the first experimental results obtained by a classical hole-drilling method. First, effective material parameters are identified by a detailed microstructure FE model based on scanning electron microscope (SEM) images of the coating. Then, two types of simulations are performed with regard to thermally induced residual stresses as well as the rolling process. In the first model, the microstructural details like pores, interface, and surface roughness are modeled in detail based on light microscope (LM) images. In the second model, the coating and substrate are assumed to be ideal homogeneous, and the interface and surface to be as planar. Furthermore, two types of boundary conditions are investigated: (1), the periodic boundary conditions for the left and right faces, and, (2) when these faces are free. It is shown that, for large sample sizes, the results nearly coincide. The simulation results show increasing compressive residual stresses in thickness direction after the rolling process, which is in qualitative agreement with the experiment. A layer of tensile stresses is obtained at the surface in the simulation which could not be captured by the hole-drilling method. Furthermore, an investigation with homogeneous material behavior is performed in 3D.

  5. Microstructural Investigations and Modelling of Interdiffusion between MCrAlY Coating and IN738 Superalloy

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John


    Interdiffusion at the interface between a Co-36.5Ni-17.5Cr-8Al-0.5Y, MCrAlY coating and the underlying IN738 superalloy was studied in a large matrix of specimens isothermally heat treated for up to 12,000 hours at temperatures 875°C, 925°C or 950°C. Microstructural investigations and calculated...... phase fraction diagrams show that a precipitate free zone forms between the coating and superalloy and grows with time. Measured composition profiles across the interface were compared with modelled results obtained using the finite difference software DICTRA. The simulated results were able...

  6. Development of banded microstructure in 34CrNiMo6 steel

    Directory of Open Access Journals (Sweden)

    A. Nagode


    Full Text Available In this paper the development of a banded microstructure in hot-rolled 34CrNiMo6 steel which consisted of bainitic and martensitic bands is explained. The chemical compositions of the bands were measured with energy dispersive x-ray spectroscopy (EDS, which showed that the martensitic bands contained more alloying elements (Mn, Cr, Mo, Si than bainitic bands. By using Oberhoffer reagent, the segregations of phosphorus were also revealed. These phosphorus segregations coincided with the positive segregations of the alloying elements. The continuous cooling transformation (CCT diagrams of steel were calculated. They confirmed the formation of martensite in positive segregations and the formation of bainite in negative segregations.

  7. Linking properties to microstructure through multiresolution mechanics (United States)

    McVeigh, Cahal James

    The macroscale mechanical and physical properties of materials are inherently linked to the underlying microstructure. Traditional continuum mechanics theories have focused on approximating the heterogeneous microstructure as a continuum, which is conducive to a partial differential equation mathematical description. Although this makes large scale simulation of material much more efficient than modeling the detailed microstructure, the relationship between microstructure and macroscale properties becomes unclear. In order to perform computational materials design, material models must clearly relate the key underlying microstructural parameters (cause) to macroscale properties (effect). In this thesis, microstructure evolution and instability events are related to macroscale mechanical properties through a new multiresolution continuum analysis approach. The multiresolution nature of this theory allows prediction of the evolving magnitude and scale of deformation as a direct function of the changing microstructure. This is achieved via a two-pronged approach: (a) Constitutive models which track evolving microstructure are developed and calibrated to direct numerical simulations (DNS) of the microstructure. (b) The conventional homogenized continuum equations of motion are extended via a virtual power approach to include extra coupled microscale stresses and stress couples which are active at each characteristic length scale within the microstructure. The multiresolution approach is applied to model the fracture toughness of a cemented carbide, failure of a steel alloy under quasi-static loading conditions and the initiation and velocity of adiabatic shear bands under high speed dynamic loading. In each case the multiresolution analysis predicts the important scale effects which control the macroscale material response. The strain fields predicted in the multiresolution continuum analyses compare well to those observed in direct numerical simulations of the

  8. New developments in the manufacture of large freeform surfaces with micro-structures (United States)

    Roblee, Jeff; Walter, Mark; Jacobs, Ben


    A new capability for simultaneously generating micro-structures and large freeform surfaces has been developed. Multiple axes of CNC coordinated motion have been integrated into an ultra precision machine platform, enabling a wide variety of optical mold masters to be created. Facilitated by a specially developed control system, freeform optical surfaces as large as 600 x 600 x 100 mm are possible. Some machine alignments are critical to the production of accurate parts and these will be discussed. A bridge construction reduces Abbe offsets, and oil hydrostatic linear slide ways provide sub-micron straightness. The linear axes are capable of accurate positioning by means of linear motors in combination with the non contact oil hydrostatic slide ways. Optical surface finishes are achieved with the stability of a large granite base supported by a high performance vibration isolation system. The machine includes a unique, self-compensating, patented oil bearing rotary axis. Critical machine errors are measured and corrected with integrated CNC machine compensation. The machine has accuracy and repeatability for the creation of precise, intersecting groove structures with multiple angles over large areas. Optical surfaces can be generated either by a ruling/shaping operation with a non-rotating tool, or by a flycutting tool rotating on a high speed air bearing spindle. The spindle can double as a positioning axis to generate variable angle grooves in ruling mode. A Fast Tool Servo can be utilized to create fine micro-structures. Work piece quality can be evaluated in-situ with metrology sensors.

  9. Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, GERALD M.


    Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in

  10. Interaction between particle precipitation and creep behavior in the NI-base Alloy 617B: Microstructural observations and constitutive material model

    Energy Technology Data Exchange (ETDEWEB)

    Haan, J., E-mail:; Bezold, A., E-mail:; Broeckmann, C., E-mail:


    The creep behavior of the Ni-base Alloy 617B was analyzed at 725 °C with the focus on microstructural changes during temperature and stress exposure. High resolution electron microscopy of crept specimens reveals the precipitation behavior of secondary phases such as Cr-rich M{sub 23}C{sub 6}-carbides and the γ'-phase. Physical models are used to describe the Ostwald coarsening of the γ' particles and the evolution of the yield strength of the alloy. Together with the results from hot tensile tests and hardness measurements, a constitutive model for Alloy 617B has been developed. This model takes account of precipitation strengthening which is consistent with the microstructural observations, internal back stress due to dislocation hardening and material damage, all by evolutionary equations.

  11. Computer Simulation of Spatial Arrangement and Connectivity of Particles in Three-Dimensional Microstructure: Application to Model Electrical Conductivity of Polymer Matrix Composite (United States)

    Louis, P.; Gokhale, A. M.


    Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.

  12. Geometrical model for martensitic phase transitions: Understanding criticality and weak universality during microstructure growth (United States)

    Torrents, Genís; Illa, Xavier; Vives, Eduard; Planes, Antoni


    A simple model for the growth of elongated domains (needle-like) during a martensitic phase transition is presented. The model is purely geometric and the only interactions are due to the sequentiality of the kinetic problem and to the excluded volume, since domains cannot retransform back to the original phase. Despite this very simple interaction, numerical simulations show that the final observed microstructure can be described as being a consequence of dipolar-like interactions. The model is analytically solved in 2D for the case in which two symmetry related domains can grow in the horizontal and vertical directions. It is remarkable that the solution is analytic both for a finite system of size L ×L and in the thermodynamic limit L →∞ , where the elongated domains become lines. Results prove the existence of criticality, i.e., that the domain sizes observed in the final microstructure show a power-law distribution characterized by a critical exponent. The exponent, nevertheless, depends on the relative probabilities of the different equivalent variants. The results provide a plausible explanation of the weak universality of the critical exponents measured during martensitic transformations in metallic alloys. Experimental exponents show a monotonous dependence with the number of equivalent variants that grow during the transition.

  13. Develop a Model Component (United States)

    Ensey, Tyler S.


    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  14. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin


    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  15. Mathematical Modeling for Microstructural Evolution in Multi-pass Hot Compression of Q345E Alloy Steel (United States)

    Qian, Dongsheng; Peng, Yaya


    The deformation process and inter-pass time of hot working are always accompanied by complicated microstructural evolution. As a kind of low alloy steels with good malleability, Q345E steel is widely used. The specimens of Q345E steel were heated to 1123, 1223, 1323, 1423, and 1523 K and held for 0, 120, 240, 360, and 480 s, respectively, on Gleeble-3500 thermo-mechanical simulator to develop the austenite grain growth equation of Q345E steel. In addition, the `single-pass hot compression tests,' `double-pass hot compression tests,' and `single-pass hot compression and thermal insulation tests' at temperature from 1123 to 1423 K with the strain rate from 0.01 to 10 s-1 were carried out on Gleeble-3500 thermo-mechanical simulator to investigate the behavior of dynamic recrystallization (DRX), meta-dynamic recrystallization (MDRX), and static recrystallization (SRX), and to establish the mathematical equations of DRX, MDRX, and SRX, which can predict the volume fraction of recrystallization and grain size after recrystallization. The result of error analysis and a 2D finite element simulation model during hot upsetting verifies that the experimental data agree well with the predicted values calculated by these mathematical equations, which indicates that the established mathematical equations can be applied to accurately predict the microstructural evolution of Q345E steel during hot deformation.

  16. Modeling of Microstructure Evolution During the Thermomechanical Processing of Titanium Alloys (Preprint)

    National Research Council Canada - National Science Library

    Semiatin, S. L; Furrer, D. U


    ... (or combination of properties) can be obtained through microstructural modification. Microstructure evolution and control in titanium alloys is heavily dependent on the allotropic transformation from a hexagonal-close-packed crystal structure...

  17. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  18. Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior. (United States)

    Wu, Ching-Zong; Chen, Shih-Chung; Shih, Yung-Hsun; Hung, Jing-Ming; Lin, Chia-Cheng; Lin, Li-Hsiang; Ou, Keng-Liang


    This research investigated the high-temperature microstructure, mechanical properties, and damping behavior of Fe-9 Al-30 Mn-1C-5 Co (wt.%) alloy by means of electron microscopy, experimental model analysis, and hardness and tensile testing. Subsequent microstructural transformation occurred when the alloy under consideration was subjected to heat treatment in the temperature range of 1000-1150 °C: γ → (γ+κ). The κ-phase carbides had an ordered L'1(2)-type structure with lattice parameter a = 0.385 nm. The maximum yield strength (σ(y)), hardness, elongation, and damping coefficient of this alloy are 645 MPa, Hv 292, ~54%, and 178.5 × 10(-4), respectively. These features could be useful in further understanding the relationship between the biocompatibility and the wear and corrosion resistance of the alloy, so as to allow the development of a promising biomedical material. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids (United States)

    Bymaster, Adam

    Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any

  20. A microstructure-based model for shape distortion during liquid phase sintering (United States)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under

  1. Modeling of a crawling C. elegans in a micro-structured environment (United States)

    Patel, Amar; Padmanabhan, Venkat; Solomon, Deepak; Khan, Zeina; van Bussel, Frank; Vanapalli, Siva; Rumbaugh, Kendra; Blawzdziewicz, Jerzy


    A simple curvature-based model is used to study crawling C. elegans in a micro-structured environment of periodic pillars. In our model system, the shape of the worm is described by a simple sinusoidal expression in curvature representation. The gait of the worm is determined by a set of parameters including the amplitude, frequency, and phase of the curvature. The moving worm is subject to the friction with the underlying substrate, and the forces due to interaction of the worm body with pillars. If the friction is isotropic the worm has to interact with the pillars to move forward. We find that only a narrow range of worm gaits leads to efficient propulsion in this case. To investigate how the worm adjusts its gait to the environment microstructure, we implement a simple control system that chooses the right set of parameters based on the past interactions of the worm with its surroundings. Results of our simulations of the worm motion are compared with our experimental observations of C. elegans crawling in an agar environment containing an array of fabricated pillars.

  2. Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials

    Directory of Open Access Journals (Sweden)

    Augusto Cannone Falchetto


    Full Text Available The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP, and, more recently, Recycled Asphalt Shingles (RAS on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP and modeling of rheological data obtained with the Bending Beam Rheometer (BBR. Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder.

  3. a Bilayer Model for Incorporating the Simultaneous Effects of Surface Energy and Microstructure Size Dependency on the Dynamic Response and Stability of Electromechanical Nanocantilevers (United States)

    Keivani, Maryam; Koochi, Ali; Kanani, Abolfazl; Abadyan, Mohamadreza


    Nanoscale beams might not be considered uniform isotropic since the energy of the surface layer and microstructure of the bulk material highly affect the mechanical characteristics of the beams. Herein, the simultaneous effects of energy of the surface and microstructure of the bulk on the dynamic response and stability of beam-type electromechanical nanocantilevers are investigated. A bilayer model has been developed which incorporates the strain energy of the surface atoms as well as the microstructure-dependent strain energy of the bulk. The Gurtin-Murdoch surface elasticity in conjunction with the modified couple stress theory (MCST) is applied to derive the governing equation. Since the classical assumption for zero normal surface stresses is not consistent with the surface equilibrium assumption in Gurtin-Murdoch elasticity, the presence of normal surface stresses is incorporated. The von Karman nonlinear strain is employed to derive the governing equation. The presence of gas rarefaction at various Knudsen numbers is considered as well as the edge effect on the distribution of Coulomb and dispersion forces. The mode shapes of the nanobeam are determined as a function of the surface and microstructure parameter and the nonlinear governing equation is solved using Galerkin method. The dynamic response, phase plane and stability threshold of the nanocantilever are discussed.

  4. Development of a Comprehensive Weld Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B.; Zacharia, T.


    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC's expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three- dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above. The following technical tasks have been accomplished as part of the CRADA. 1. The LMES welding code has been ported to the Intel Paragon parallel computer at

  5. Development of numerical framework to study microstructural effects on shock initiation in heterogeneous energetic materials (United States)

    Schmidt, Martin; Rai, Nirmal; Udaykumar, H. S.


    Heterogeneous energetic materials like plastic bonded explosives (PBX) have very detailed and non-uniform microstructure. The heterogeneity is mainly because of presence of HMX crystals embedded in a polymer binder matrix. Also, manufacturing defects often creates pores and cracks in the material. Shock interaction with these heterogeneities leads to local heated regions known as hot spots. It is widely accepted that these hot spots are predominantly the cause of triggering reaction and eventually ignition in these energetic materials. There are various physical phenomenon through which hot spot can be created such as pore collapse, inter-granular friction in HMX crystals, shock heating of HMX crystals and binder etc. Hence, microstructural heterogeneity can play a vital role for shock initiation in PBX. In the current work, a general framework has been established for performing mesoscale simulations on heterogeneous energetic material. In order to get an accurate representation of the microstructure, image processing algorithms have been employed on XCMT images of PBX microstructure. The image processing framework has been built up with massively parallel Eulerian code, SCIMITAR3D. Shock simulation on PBX microstructures has been performed and the effect of microstructure geometry has been studied for different shock strengths case. The simulation results have been shown to resolve hot spots created due to various heterogeneities present in the microstructure.

  6. Attention-deficit/hyperactivity disorder without comorbidity is associated with distinct atypical patterns of cerebral microstructural development. (United States)

    Adisetiyo, Vitria; Tabesh, Ali; Di Martino, Adriana; Falangola, Maria F; Castellanos, Francisco X; Jensen, Jens H; Helpern, Joseph A


    Differential core symptoms and treatment responses are associated with the pure versus comorbid forms of attention-deficit/hyperactivity disorder (ADHD). However, comorbidity has largely been unaccounted for in neuroimaging studies of ADHD. We used diffusional kurtosis imaging to investigate gray matter (GM) and white matter (WM) microstructure of children and adolescents with ADHD (n = 22) compared to typically developing controls (TDC, n = 27) and examined whether differing developmental patterns are related to comorbidity. The ADHD group (ADHD-mixed) consisted of subgroups with and without comorbidity (ADHD-comorbid, n = 11; ADHD-pure, n = 11, respectively). Age-related changes and group differences in cerebral microstructure of the ADHD-mixed group and each ADHD subgroup were compared to TDC. Whole-brain voxel-based analyses with mean kurtosis (MK) and mean diffusivity (MD) metrics were conducted to probe GM and WM. Tract-based spatial statistics analyses of WM were performed with MK, MD, fractional anisotropy, and directional (axial, radial) kurtosis and diffusivity metrics. ADHD-pure patients lacked significant age-related changes in GM and WM microstructure that were observed globally in TDC and had significantly greater WM microstructural complexity than TDC in bilateral frontal and parietal lobes, insula, corpus callosum, and right external and internal capsules. Including ADHD patients with diverse comorbidities in analyses masked these findings. A distinct atypical age-related trajectory and aberrant regional differences in brain microstructure were detected in ADHD without comorbidity. Our results suggest that different phenotypic manifestations of ADHD, defined by the presence or absence of comorbidity, differ in cerebral microstructural markers.

  7. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard


    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  8. Morphological modelling of three-phase microstructures of anode layers using SEM images. (United States)

    Abdallah, Bassam; Willot, François; Jeulin, Dominique


    A general method is proposed to model 3D microstructures representative of three-phases anode layers used in fuel cells. The models are based on SEM images of cells with varying morphologies. The materials are first characterized using three morphological measurements: (cross-)covariances, granulometry and linear erosion. They are measured on segmented SEM images, for each of the three phases. Second, a generic model for three-phases materials is proposed. The model is based on two independent underlying random sets which are otherwise arbitrary. The validity of this model is verified using the cross-covariance functions of the various phases. In a third step, several types of Boolean random sets and plurigaussian models are considered for the unknown underlying random sets. Overall, good agreement is found between the SEM images and three-phases models based on plurigaussian random sets, for all morphological measurements considered in the present work: covariances, granulometry and linear erosion. The spatial distribution and shapes of the phases produced by the plurigaussian model are visually very close to the real material. Furthermore, the proposed models require no numerical optimization and are straightforward to generate using the covariance functions measured on the SEM images.

  9. Modeling of microstructural evolution and flow stress of aluminium alloy during thermomechanical process

    Institute of Scientific and Technical Information of China (English)

    SHEN Jian(沈健); G.Gottstein


    The evolution of microstructural variables, including the densities of mobile dislocation, immobile dislocation at the cell interiors, immobile dislocation in the cell walls, as well as total dislocation density, of an Al-Mg-Si aluminium alloy during thermomechanical processing were simulated based on a three-internal-variables-model (3IVM) involving dislocation climb and interaction. Optimization was carried out to fit the calculated stress-strain curves to the experimental data of the Al-Mg-Si alloy with minimum mean deviation. Precipitations were taken into consideration of modeling. The stress-strain curves predicted by the kinetic equations of state in the 3IVM have a good agreement with the experimental data.

  10. The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing of these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded

  11. Microstructural and Texture Development in Two Austenitic Steels with High-Manganese Content

    DEFF Research Database (Denmark)

    Bhattacharya, Basudev; Ray, Ranjit Kumar; Leffers, Torben


    Two austenitic steels, Fe-21.3Mn-3.44Si-3.74Al-0.5C and Fe-29.8Mn-2.96Si-2.73Al-0.52C, were subjected to cold rolling with 30 to 80 pct reduction with an increment of 10 pct and subsequently the development of their microstructures and textures were studied. The overall texture after 80 pct cold...... reduction was Brass type. A weak Copper component {112}〈111〉 was present at the early stage of deformation, which disappeared completely after 60 pct cold reduction. Extensive shear banding took place in both the steels, right from rather low cold rolling levels, which became more prominent at higher...... amounts of cold rolling. Formation of twin bands, along with cellular dislocation network, was observed in Steel A after 30 pct cold rolling. In case of Steel B, denser twin bands and dislocation cellular network were observed in early stage of deformation. After 80 pct cold reduction, the development...

  12. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. (United States)

    Pohl, Kilian M; Sullivan, Edith V; Rohlfing, Torsten; Chu, Weiwei; Kwon, Dongjin; Nichols, B Nolan; Zhang, Yong; Brown, Sandra A; Tapert, Susan F; Cummins, Kevin; Thompson, Wesley K; Brumback, Ty; Colrain, Ian M; Baker, Fiona C; Prouty, Devin; De Bellis, Michael D; Voyvodic, James T; Clark, Duncan B; Schirda, Claudiu; Nagel, Bonnie J; Pfefferbaum, Adolf


    Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development

  13. Microstructural evaluation by confocal and electron microscopy in thrombi developed in central venous catheters. (United States)

    Lucas, Thabata Coaglio; Silva, Eliata Ester da; Souza, Danilo Olzon Dionysio; Santos, Amanda Rodrigues Dos; Lara, Maristela Oliveira


    Evaluating thrombi microstructure developed in central venous catheters using confocal and electron microscopy. An experimental, descriptive study carrying out a microstructural evaluation of venous thrombi developed in central venous catheters using Scanning Electron Microscopy and Confocal Laser Scanning Microscopy. A total of 78 venous catheters were collected over a period of three months. Different fibrin structures were distinguished: fibrin plates, fibrin network, and fibrin fibers. It was observed that the thrombus had thick fibrin plates adhered to the catheter wall openings in both a catheter with three days of permanence as well as in a catheter with 20 days of insertion in the patient. However, a greater amount of erythrocytes and fibrin fibers were found in the central region of the thrombus. This study contributes to improving health care and can have a positive impact on clinical practice, as easy adherence of platelets and fibrins to the catheter wall demonstrated in this study makes it possible to adopt thrombus prevention strategies such as therapy discontinuation for an extended period, blood reflux by a catheter, slow infusion rate and hypercoagulo pathyclinical conditions. Avaliar a microestrutura por microscopia confocal e eletrônica em trombos desenvolvidos em cateteres venosos centrais. Pesquisa experimental, descritiva, em que foi feita uma avaliação microestrutural de trombos venosos desenvolvidos em cateteres venosos centrais por Microscopia Eletrônica de Varredura e Microscopia Confocal de Varredura a Laser. Foram coletados 78 cateteres venosos centrais num período de três meses. Distinguiram-se diferentes estruturas de fibrina: a placa de fibrina, a rede de fibrina e as fibras de fibrina. Observou-se que tanto em um cateter com três dias de permanência quanto em um cateter com 20 dias inserido no paciente o trombo apresentou placas de fibrina espessas aderidas às paredes dos orifícios dos cateteres. Na região central do

  14. Influence of deformation conditions on the development of heterogeneous recrystallization microstructures in experimentally deformed Carrara marble

    NARCIS (Netherlands)

    Valcke, S.L.A.; de Bresser, J.H.P.; Pennock, G.M.; Drury, M.R.


    Recrystallized grains are potentially useful as indicators of palaeostress in naturally deformed rocks, providing that well-calibrated relationships (palaeopiezometers) exist between the recrystallized grain size and stress. Rocks can exhibit microstructures that are heterogeneous, that is, containi

  15. Smoking and the developing brain: altered white matter microstructure in attention-deficit/hyperactivity disorder and healthy controls. (United States)

    van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Heslenfeld, Dirk J; Faraone, Stephen V; Hartman, Catharina A; Luman, Marjolein; Greven, Corina U; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan; Oosterlaan, Jaap


    Brain white matter (WM) tracts, playing a vital role in the communication between brain regions, undergo important maturational changes during adolescence and young adulthood, a critical period for the development of nicotine dependence. Attention-deficit/hyperactivity disorder (ADHD) is associated with increased smoking and widespread WM abnormalities, suggesting that the developing ADHD brain might be especially vulnerable to effects of smoking. This study aims to investigate the effect of smoking on (WM) microstructure in adolescents and young adults with and without ADHD. Diffusion tensor imaging was performed in an extensively phenotyped sample of nonsmokers (n = 95, 50.5% ADHD), irregular smokers (n = 41, 58.5% ADHD), and regular smokers (n = 50, 82.5% ADHD), aged 14-24 years. A whole-brain voxelwise approach investigated associations of smoking, ADHD and their interaction, with WM microstructure as measured by fractional anisotropy (FA) and mean diffusivity (MD). Widespread alterations in FA and MD were found for regular smokers compared to irregular and nonsmokers, mainly located in the corpus callosum and WM tracts surrounding the basal ganglia. Several regions overlapped with regions of altered FA for ADHD versus controls, albeit in different directions. Irregular and nonsmokers did not differ, and ADHD and smoking did not interact. Results implicate that smoking and ADHD have independent effects on WM microstructure, and possibly do not share underlying mechanisms. Two mechanisms may play a role in the current results. First, smoking may cause alterations in WM microstructure in the maturing brain. Second, pre-existing WM microstructure differences possibly reflect a risk factor for development of a smoking addiction.

  16. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to


    Directory of Open Access Journals (Sweden)

    Georgiana Cristina NUKINA


    Full Text Available Through Risk analysis developed model deciding whether control measures suitable for implementation. However, the analysis determines whether the benefits of a data control options cost more than the implementation.

  18. A Microstructure Evolution Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part II) (United States)

    Acharya, Ranadip; Bansal, Rohan; Gambone, Justin J.; Das, Suman


    Part I [Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0117-9] presented a comprehensive thermal, fluid flow, and solidification model that can predict the temperature distribution and flow characteristics for the processing of CMSX-4 alloy powder through scanning laser epitaxy (SLE). SLE is an additive manufacturing technology aimed at the creation of equiaxed, directionally solidified and single-crystal (SX) deposits of nickel-based superalloys using a fast-scanning laser beam. Part II here further explores the Marangoni convection-based model to predict the solidification microstructure as a function of the conditions at the trailing edge of the melt pool formed during the SLE process. Empirical values for several microstructural characteristics such as the primary dendrite arm spacing (PDAS), the columnar-to-equiaxed transition (CET) criterion and the oriented-to-misoriented transition (OMT) criterion are obtained. Optical microscopy provides visual information on the various microstructural characteristics of the deposited material such as melt depth, CET location, OMT location, PDAS, etc. A quantitative and consistent investigation of this complex set of characteristics is both challenging and unprecedented. A customized image-analysis technique based on active contouring is developed to automatically extract these data from experimental micrographs. Quantitative metallography verifies that even for the raster scan pattern in SLE and the corresponding line heat source assumption, the PDAS follows the growth relation w ~ G -0.5 V -0.25 ( w = PDAS, G = temperature gradient and V = solidification velocity) developed for marginal stability under constrained growth. Models for the CET and OMT are experimentally validated, thereby providing powerful predictive capabilities for controlling the microstructure of SX alloys processed through SLE.

  19. Modelling river dune development

    NARCIS (Netherlands)

    Paarlberg, Andries; Weerts, H.J.T.; Dohmen-Janssen, Catarine M.; Ritsema, I.L; Hulscher, Suzanne J.M.H.; van Os, A.G.; Termes, A.P.P.


    Since river dunes influence flow resistance, predictions of dune dimensions are required to make accurate water level predictions. A model approach to simulate developing river dunes is presented. The model is set-up to be appropriate, i.e. as simple as possible, but with sufficient accuracy for

  20. Development of hypoimmunogenic muffins: batter rheology, quality characteristics, microstructure and immunochemical validation. (United States)

    Ashwini; Umashankar, K; Rajiv, Jyotsna; Prabhasankar, P


    A high demand exists for gluten free and hypoimmunogenic products from gluten sensitive population. The present study focuses on the development of hypoimmunogenic muffins using a combination of the blend (CB) consisting of modified (protease treated) Whole Wheat Flour (WWF) and Pearl Millet Flour (PMF). The batter density of CB was 0.97, and it varied between 0.91-0.93 and 0.97-0.99 g/cc with the use of emulsifiers and hydrocolloids respectively. The volume of the muffin made using CB was 70 mL, and it increased to 120 mL with the combination of additives (CAD) comprising of Carboxy Methyl Cellulose (CMC) and Polysorbate-60 (PS-60). The muffins made of CB + CAD had the lowest hardness (19.8 N) and gumminess (6.6 N) values and highest springiness value (13.3 mm) indicating that the texture was soft. Sensory characteristics of the muffin made with CB + CAD were good and had an overall quality score of 90.5 out of 100. Rheometer studies showed that the incorporation of additives improved the visco-elastic properties of muffin batters. Microstructure studies showed a change in gluten matrix of muffins followed by treatments. Immunochemical validation of muffins made using CB + CAD showed that the immunogenicity reduced by 70.8 % which may be suitable for patients with gluten sensitivity.

  1. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties. (United States)

    Stock, Stuart R


    Sea urchins possess a set of five teeth which are self-sharpening and which continuously replace material lost through abrasion. The continuous replacement dictates that each tooth consists of the range of developmental states from discrete plates in the plumula, the least mineralized and least mature portion, to plates and needle-prisms separated by cellular syncytia at the beginning of the tooth shaft to a highly dense structure at the incisal end. The microstructures and their development are reviewed prior to a discussion of current understanding of the biomineralization processes operating during tooth formation. For example, the mature portions of each tooth consist of single crystal calcite but the early stages of mineral formation (e.g. solid amorphous calcium carbonate, ions in solution) continue to be investigated. The second stage mineral that cements the disparate plates and prisms together has a much higher Mg content than the first stage prisms and needles and allows the tooth to be self-sharpening. Mechanically, the urchin tooth's calcite performs better than inorganic calcite, and aspects of tooth functionality that are reviewed include the materials properties themselves and the role of the orientations of the plates and prisms relative to the axes of the applied loads. Although the properties and microarchitecture of sea urchin teeth or other mineralized tissues are often described as optimized, this view is inaccurate because these superb solutions to the problem of constructing functional structures are intermediaries not endpoints of evolution.

  2. Liquid precursor infiltration processing of powder compacts. 1: Kinetic studies and microstructure development

    Energy Technology Data Exchange (ETDEWEB)

    Tu, W.C.; Lange, F.F. [Univ. of California, Santa Barbara, CA (United States)


    The kinetics of infiltrating a solution precursor into Si{sub 3}N{sub 4} powder compacts were studied using either water or an aqueous solution of Zr-nitrate and Y-nitrate that formed a crystalline Zr(Y)O{sub 2} (3 mol% Y{sub 2}O{sub 3}) solid solution during pyrolysis. When the powder compact contained air, the infiltration involved two steps: (1) relatively rapid intrusion of liquid via flow due to capillary pressure and (2) diffusion of entrapped gas to the surface as its pressure became equal to the capillary pressure. The kinetics of both processes are described with different parabolic rate laws--Darcy`s law and Fick`s law, respectively. When the intruded precursor is converted to an inorganic during heat treatment, the void space is partially filled with pyrolyzed precursor without shrinkage of the Si{sub 3}N{sub 4} powder. The movement of precursor molecules was prevented by gelling prior to drying, viz., by soaking the infiltrated bodies in an aqueous NH{sub 4}OH solution. Microstructures developed during cyclic precursor infiltration and pyrolysis were characterized to show that cracklike voids are produced within the pyrolyzed precursor due to its large volume change during pyrolysis and densification; the size distribution of the cracklike voids is proportional to the size distribution of the voids within the initial powder compact.

  3. Microstructural development of human brain assessed in utero by diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bui, T.; Daire, J.L.; Chalard, F.; Sebag, G. [Hopital Robert Debre, Paris (France). Dept. of Paediatric Imaging; Zaccaria, I.; Alberti, C. [Hopital Robert Debre, Paris (France). Clinical Epidemiology; Elmaleh, M.; Garel, C. [Hopital Robert Debre, Paris (France). Dept. of Paediatric Imaging; Univ. of Paris-7 (France). Faculty of Medicine; Luton, D. [Hopital Robert Debre, Paris (France); Blanc, N. [Hopital Robert Debre, Paris (France). Neurology Service


    Diffusion-weighted MR imaging (DWI) has been shown to be a great tool to assess white matter development in normal infants. Comparison of cerebral diffusion properties between preterm infants and fetuses of corresponding ages should assist in determining the impact of premature ex utero life on brain maturation. To assess in utero maturation-dependent microstructural changes of fetal cerebral white matter using diffusion tensor MR imaging. An echoplanar sequence with diffusion gradient (b=700 s/mm{sup 2}) applied in six non-colinear directions was performed between 31 and 37{sup +3} weeks of gestation in 24 fetuses without cerebral abnormality on T1- and T2-weighted images. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in the white matter. Mean ADC values were 1.8 {mu}m{sup 2}/ms in the centrum semiovale, 1.2 {mu}m{sup 2}/ms in the splenium of the corpus callosum and 1.1 {mu}m{sup 2}/ms in the pyramidal tract. The paired Wilcoxon rank test showed significant differences in ADC between these three white matter regions. Mean FA values were 1.1%, 3.8% and 4.7%, respectively, in the centrum semiovale, corpus callosum and pyramidal tract.

  4. Glycemic index and microstructure analysis of a newly developed fiber enriched cookie. (United States)

    Schuchardt, Jan Philipp; Wonik, Jasmin; Bindrich, Ute; Heinemann, Michaela; Kohrs, Heike; Schneider, Inga; Möller, Katharina; Hahn, Andreas


    A diet with a high glycemic index (GI) is associated with an elevated risk for obesity or type 2 diabetes. We investigated the GI of a newly-developed fiber enriched cookie and characterized the microstructure of ingredients used. In a study with 26 non-diabetic healthy volunteers it was shown that the fiber enriched cookie has a GI of 58.9 in relation to white bread as reference. Using a conversion factor of 1.4, the GI of the fiber enriched cookie in relation to a glucose-solution is 42.0 and can be classified as a low-GI food. Postprandial insulin concentration was significantly lower after consumption of fiber enriched cookies compared to white bread. Glucose release after in vitro digestion was significantly lower from fiber enriched cookies compared to other cookies tested. In addition to its high percentage of fiber, the cookies' low GI can be attributed to the limited gelatinization potential of the starch granules found in the ingredients used. Using confocal laser scanning microscopy it is shown that starch granule surface area of whole grain barley flour, spelt flour and oat flakes bears cluster-shaped protein-NSPS complexes that preferentially absorb water in conditions of water shortage and thereby prevent starch gelatinization.

  5. AFM assessment of the surface nano/microstructure on chemically damaged historical and model glasses

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, Noemi [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kowal, Andrzej [Institute of Catalysis and Surface Chemistry, PAN, ul. Niezapominajek 8, 30239 Cracow (Poland); Rincon, Jesus-Maria [Instituto Eduardo Torroja de Ciencias de la Construccion, CSIC, C. Serrano Galvache s/n, 28033 Madrid (Spain); Villegas, Maria-Angeles, E-mail: [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C. Albasanz, 26-28, 28037 Madrid (Spain)


    Surface chemical damage on selected historical glasses from 13th to 19th centuries was evaluated by means of atomic force microscopy (AFM). Nano- and microstructure, roughness and topography of ancient glass samples have been compared with those of model glasses prepared by conventional melting at the laboratory with similar compositions to those most frequently found in historical glass pieces. The results obtained allow discussing the chemical degradation mechanisms in terms of the acid and/or basic chemical attack carried out by the combination of gaseous pollutants and environmental humidity. Even though deep corrosion features escape to the observation order of magnitude of the AF microscope used, the AFM technique proves to be quite useful for the study and evaluation of the most common surface pathologies of historical glasses with different compositions once submitted to natural weathering.

  6. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model (United States)

    Hemmer, H.; Grong, Ø.


    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  7. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.


    . The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  8. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang


    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  9. Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiaoping He


    Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.

  10. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651 (United States)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.


    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  11. Effect of treatment temperature on the microstructure of asphalt binders: insights on the development of dispersed domains. (United States)

    Menapace, I; Masad, E; Bhasin, A


    This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure.

  12. Implementation and Testing of Numerical Models for Evolution of Microchemistry and Microstructure During Back-Annealing of Aluminium Alloys


    Iversen, Jørgen Tandberg


    Precipal and Alsoft are two separate models for simulating the effects of back-annealing on microchemistry and microstructure, respectively, in AA3xxx-type aluminium alloys (i.e Mn containing alloys). The precipitation model simulates the precipitation and growth of dispersoids, growth of constituents, and the resulting change in the solid solution concentration. Alsoft is a physical softening model which combines the effects of recovery and recrystallization.Precipal was originally implemen...

  13. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, A., E-mail: [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany); Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany)


    A microstructure-based approach by means of representative volume elements (RVEs) is employed to evaluate the flow curve of DP steels using virtual tensile tests. Microstructures with different martensite fractions and morphologies are studied in two- and three-dimensional approaches. Micro sections of DP microstructures with various amounts of martensite have been converted to 2D RVEs, while 3D RVEs were constructed statistically with randomly distributed phases. A dislocation-based model is used to describe the flow curve of each ferrite and martensite phase separately as a function of carbon partitioning and microstructural features. Numerical tensile tests of RVE were carried out using the ABAQUS/Standard code to predict the flow behaviour of DP steels. It is observed that 2D plane strain modelling gives an underpredicted flow curve for DP steels, while the 3D modelling gives a quantitatively reasonable description of flow curve in comparison to the experimental data. In this work, a von Mises stress correlation factor {sigma}{sub 3D}/{sigma}{sub 2D} has been identified to compare the predicted flow curves of these two dimensionalities showing a third order polynomial relation with respect to martensite fraction and a second order polynomial relation with respect to equivalent plastic strain, respectively. The quantification of this polynomial correlation factor is performed based on laboratory-annealed DP600 chemistry with varying martensite content and it is validated for industrially produced DP qualities with various chemistry, strength level and martensite fraction.

  14. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures. (United States)

    Im, Maesoon; Im, Hwon; Lee, Joo-Hyung; Yoon, Jun-Bo; Choi, Yang-Kyu


    A polydimethylsiloxane (PDMS) elastomer surface with perfectly ordered microstructures having an inverse-trapezoidal cross-sectional profile (simply PDMS trapezoids) showed superhydrophobic and transparent characteristics under visible light as reported in our previous work. The addition of a fluoropolymer (Teflon) coating enhances both features and provides oleophobicity. This paper focuses on the analytical modeling of the fabricated PDMS trapezoids structure and thermodynamic analysis based on the Gibbs free energy analysis. Additionally, the wetting characteristics of the fabricated PDMS trapezoids surface before and after the application of the Teflon coating are analytically explained. The Gibbs free energy analysis reveals that, due to the Teflon coating, the Cassie-Baxter state becomes energetically more favorable than the Wenzel state and the contact angle difference between the Cassie-Baxter state and the Wenzel state decreases. These two findings support the robustness of the superhydrophobicity of the fabricated Teflon-coated PDMS trapezoids. This is then verified via the impinging test of a water droplet at a high speed. The dependencies of the design parameters in the PDMS trapezoids on the hydrophobicity are also comprehensively studied through a thermodynamic analysis. Geometrical dependency on the hydrophobicity shows that overhang microstructures do not have a significant influence on the hydrophobicity. In contrast, the intrinsic contact angle of the structural material is most important in determining the apparent contact angle. On the other hand, the experimental results showed that the side angles of the overhangs are critical not for the hydrophobic but for the oleophobic property with liquids of a low surface tension. Understanding of design parameters in the PDMS trapezoids surface gives more information for implementation of superhydrophobic surfaces.

  15. Polycarbonate as an Elasto-Plastic Material Model for Simulation of the Microstructure Hot Imprint Process

    Directory of Open Access Journals (Sweden)

    Rokas Šakalys


    Full Text Available The thermal imprint process of polymer micro-patterning is widely applied in areas such as manufacturing of optical parts, solar energy, bio-mechanical devices and chemical chips. Polycarbonate (PC, as an amorphous polymer, is often used in thermoforming processes because of its good replication characteristics. In order to obtain replicas of the best quality, the imprint parameters (e.g., pressure, temperature, time, etc. must be determined. Therefore finite element model of the hot imprint process of lamellar periodical microstructure into PC has been created using COMSOL Multiphysics. The mathematical model of the hot imprint process includes three steps: heating, imprinting and demolding. The material properties of amorphous PC strongly depend on the imprint temperature and loading pressure. Polycarbonate was modelled as an elasto-plastic material, since it was analyzed below the glass transition temperature. The hot imprint model was solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between the mold and polycarbonate. It was used for the evaluation of temperature and stress distributions in the polycarbonate during the hot imprint process. The quality of the replica, by means of lands filling ratio, was determined as well.

  16. Polycarbonate as an elasto-plastic material model for simulation of the microstructure hot imprint process. (United States)

    Narijauskaitė, Birutė; Palevičius, Arvydas; Gaidys, Rimvydas; Janušas, Giedrius; Sakalys, Rokas


    The thermal imprint process of polymer micro-patterning is widely applied in areas such as manufacturing of optical parts, solar energy, bio-mechanical devices and chemical chips. Polycarbonate (PC), as an amorphous polymer, is often used in thermoforming processes because of its good replication characteristics. In order to obtain replicas of the best quality, the imprint parameters (e.g., pressure, temperature, time, etc.) must be determined. Therefore finite element model of the hot imprint process of lamellar periodical microstructure into PC has been created using COMSOL Multiphysics. The mathematical model of the hot imprint process includes three steps: heating, imprinting and demolding. The material properties of amorphous PC strongly depend on the imprint temperature and loading pressure. Polycarbonate was modelled as an elasto-plastic material, since it was analyzed below the glass transition temperature. The hot imprint model was solved using the heat transfer and the solid stress-strain application modes with thermal contact problem between the mold and polycarbonate. It was used for the evaluation of temperature and stress distributions in the polycarbonate during the hot imprint process. The quality of the replica, by means of lands filling ratio, was determined as well.

  17. Microstructure and mechanical properties of WC-Ni-Al based cemented carbides developed for engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Edmilson O.; Santos, Julio N. [Universidade Federal de Itajuba, Minas Gerais (Brazil). Inst. de Engenharia Mecanica; Klein, Aloisio N. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Dept. de Engenharia de Materiais


    In this paper the influence of the Ni binder metal and Al as an additional alloying element on the microstructure and mechanical properties of WC-based cemented carbides processed by conventional powder metallurgy was studied. Microstructural examinations of the cemented carbides with 3 and 5 wt.% of Al in the binder metal indicated the presence of a very low and evenly distributed porosity as well as the presence of islands of metal binder in the microstructure. With the cemented carbide with 7 wt.% of Al in the metal binder, the presence of brittle needle-like regions was observed. The WC particles inside these regions were rounded and had a larger mean free path. Vickers hardness and flexural strength tests indicated that the cemented carbide WC-Ni - Al with addition of 5 wt.% of Al in the binder metal presented bulk hardness similar to the conventional WC-Co cemented carbides as well as superior flexure strength and fracture toughness. (orig.)

  18. Effect of microstructure on the impact toughness of high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, I.


    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  19. Application of a Microstructure-Based ISV Plasticity Damage Model to Study Penetration Mechanics of Metals and Validation through Penetration Study of Aluminum

    Directory of Open Access Journals (Sweden)

    Yangqing Dou


    Full Text Available A developed microstructure-based internal state variable (ISV plasticity damage model is for the first time used for simulating penetration mechanics of aluminum to find out its penetration properties. The ISV damage model tries to explain the interplay between physics at different length scales that governs the failure and damage mechanisms of materials by linking the macroscopic failure and damage behavior of the materials with their micromechanical performance, such as void nucleation, growth, and coalescence. Within the continuum modeling framework, microstructural features of materials are represented using a set of ISVs, and rate equations are employed to depict damage history and evolution of the materials. For experimental calibration of this damage model, compression, tension, and torsion straining conditions are considered to distinguish damage evolutions under different stress states. To demonstrate the reliability of the presented ISV model, that model is applied for studying penetration mechanics of aluminum and the numerical results are validated by comparing with simulation results yielded from the Johnson-Cook model as well as analytical results calculated from an existing theoretical model.

  20. High strength microstructural forms developed in titanium alloys by rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. [Institute of Metal Physics, Kiev (Ukraine)


    It is shown that rapid heat treatment of alpha+beta and beta titanium alloys, which includes rapid heating of alloys with initial equiaxed microstructure into single-phase beta field is able to produce microstructural forms in which high strength can be well balanced with other mechanical properties. Main advantage of rapid heating approach comes from the possibility to extend the level of ''useful'' strength. Desirably high strength is provided by intragranular morphology and microchemistry while beta-grain refinement permits a reliability of such high strength conditions. (orig.)

  1. Extreme Premature Birth is Not Associated with Impaired Development of Brain Microstructure (United States)

    Bonifacio, Sonia L.; Glass, Hannah C.; Chau, Vann; Berman, Jeffrey I.; Xu, Duan; Brant, Rollin; Barkovich, A. James; Poskitt, Kenneth J.; Miller, Steven P.; Ferriero, Donna M.


    Objective To assess if birth at less than 26 weeks gestation is an important predictor of brain microstructure maturation as determined by using diffusion tensor imaging. Study design We performed serial MRI and diffusion tensor imaging in 176 infants born at premature birth on brain maturation. Results In white matter, fractional anisotropy increased by 0.008 per week (95% CI 0.007-0.009, p=premature infants is independent of extremely premature birth. Brain injury and co-morbid conditions may be the important determinants of microstructure maturation. PMID:20598316

  2. Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error (United States)

    Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.; Littlewood, David J.; Baines, Andrew J.


    Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.

  3. Continuous media with microstructure

    CERN Document Server


    This book discusses the extension of classical continuum models. To the first class addressed belong various thermodynamic models of multicomponent systems, and to the second class belong primarily microstructures created by phase transformations.

  4. Microstructural development in PWA-1480 electron beam welds: An atom probe field ion microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Miller, M.K. [Oak Ridge National Lab., TN (United States); Babu, S.S. [The Pennsylvania State Univ., State College, PA (United States)


    The microstructure development in PWA-1480 superalloy electron beam weld (Ni-11.0 at. % Al-11.5% Cr-1.9% Ti-5.1% Co-4.0% Ta-1.3% W) was characterized. Optical microscopy revealed a branched dendritic structure in the weld metal. Transmission electron microscopy of these welds, in the as-welded condition, showed fine cuboidal (0.05--0.5 {mu}m) L1{sub 2}-ordered {gamma}{prime} precipitates within the y grains. The average volume percentage of {gamma}{prime} precipitates was found to be {approx}5%. Atom probe analyses revealed that the composition of {gamma} matrix was Ni-4.6 at. % Al-25.5% Cr-0.4% Ti-9.4% Co-0.8% Ta-2.9% W and that of {gamma}{prime} precipitates was Ni-17.3 at. % Al-2.6% Cr-2.4% Ti-3.0% Co-7.4% Ta-1.3% W. These compositions were compared with the previous APFIM analyses of commercial PWA-1480 single crystals that had received conventional heat treatments. Small differences were found in the chromium and aluminum levels and these may be due to the nonequilibrium nature of phase transformations that occur during weld cooling. No solute segregation was detected at the {gamma}-{gamma}{prime}interface. The APFIM results were also compared with the thermodynamic calculations of alloying element partitioning between {gamma} and {gamma}{prime} using the ThermoCalc{trademark} software.

  5. Development of microstructure during sintering and aluminium exposure of titanium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Gunnar


    In the production of aluminium, much less energy need be consumed if an inert, wetted cathode is present in the electrolysis cell. Titanium diboride, TiB{sub 2}, is easily wetted and does not readily dissolve in liquid aluminium, but it degrades, probably because aluminium penetrates into it during electrolysis. This degradation is linked to impurities present in the TiB{sub 2} after sintering. This thesis studies the sintering process and how aluminium penetrates into the material. High-purity, high-density TiB{sub 2} compacts were made by hot pressing at 50 MPa in an argon atmosphere at 1790-1960 {sup o}C. Samples were made with different impurity additions. These samples were exposed to liquid aluminium at 980 {sup o}C for 24 hours. All samples were penetrated, but the amount and appearance depended on the sintering aid used. Unlike the other samples, pure TiB{sub 2} was easily penetrated by metallic aluminium because of the open porosity and microcracks of this material. Grain boundary penetration was common among the samples. Differences in penetration behaviour between grain boundaries are probably due to differences in grain boundary energy. But no relation to segregants or boundary misorientation was found. The orientation of grain boundary planes and de-wetting of thin films upon cooling may explain the observed microstructure development. The samples sintered with Ti addition suffered extensive penetration despite their high densities. The grain boundaries of these samples became faceted and contained thicker films of metallic aluminium, presumably because of increased solubility due to iron segregations. All secondary phases present in the grain junctions after sintering, except from the B{sub 4}C phase, reacted with the penetrated aluminium. This did not cause swelling and cracking, as has been suggested by other authors. 101 refs., 48 figs., 7 tabs.

  6. Linking natural microstructures with numerical modeling of pinch-and-swell structures (United States)

    Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus


    For a variety of geological problems, the change from homogeneous to localized deformation and the establishment of steady-state conditions are equally important. Here, we show that pinch-and-swell structures are ideal candidates for the study of the switch in deformation style and mechanism during ductile creep. We present an interdisciplinary approach to the onset of pinch-and-swell structures and to the flow conditions during pre- to post-localization stages in ductile rocks. For this reason, naturally boudinaged calcite veins, embedded in a calc-mylonite, and their microfabrics were investigated quantitatively. Remnants of slightly deformed calcite hosts build up the swells, showing twinning and minor dislocation glide as crystal plastic deformation mechanisms which are accompanied by subgrain rotation recrystallization (SGR). Towards the pinches, we find a gradient of severe grain size reduction through progressive SGR, developing a characteristic dislocation creep crystallographic preferred orientation (CPO). Along this gradient, the finest recrystallized calcite grains appear randomly oriented, expressed by a "smearing-out" of the CPO and missing systematics of misorientation angles in the most extended areas. We interpret this microstructure as a switch from dislocation dominated creep to grain boundary sliding processes. Further, we show that the onset of boudinage is independent on both the original orientation and grain size of calcite hosts. We implemented these microstructural observations into a layered elasto-visco-plastic finite element framework, tracing variations in grain size (Peters et al., 2015). We base the microstructural evolution on thermo-mechanical-chemical principles and end-member flow laws (Herwegh et al., 2014). The simulated pinch-and-swell structures indicate that low strain rates in the swells favor dislocation creep, whereas accelerated rates provoke continuous grain size reduction allowing strain accommodation by diffusion creep

  7. Topological Optimization of Artificial Microstructure Strategies (United States)


    Topographic Optimization Through Artificial Microstructure Strategies During this project as part of DARPA MCMA we aimed to develop and demonstrate...Topographic Optimization Through Artificial Microstructure Strategies Report Title During this project as part of DARPA MCMA we aimed to develop and...Artificial Microstructure Strategies (Yale and Johns Hopkins) During DARPA MCMA we aimed to develop and demonstrate a 3D microstructural

  8. Process Development and Microstructural Characterization on Friction Plug Welded 2195 and 2219 Alloys (United States)

    Li, Z. X.; Cantrell, M. A.; Brown, R. J.; McCool, A. (Technical Monitor)


    This document is a viewgraph presentation about Friction Plug Welding (FPW). It reviews the process of FPW, showing pictures which review the process. It also reviews the microstructural characterization using Transmission Electron Microscopy. There are several charts which are included for further information.

  9. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties (United States)

    Kirka, M. M.; Unocic, K. A.; Raghavan, N.; Medina, F.; Dehoff, R. R.; Babu, S. S.


    During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is a microstructure gradient and associated tensile property gradient common to all EBM Inconel 718 builds, the extent of which is dependent on build geometry and the specifics of a build's processing history. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) is comprised of a cored dendritic structure that includes carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of δ needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with δ networks having precipitated within the grain interiors. Mechanically, at both 20°C and 650°C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.

  10. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel (United States)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.


    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  11. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint (United States)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.


    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  12. Modeling and Simulation of the Microstructure Evolution of the Gas-atomized Alloy Droplets during Spray Forming

    Institute of Scientific and Technical Information of China (English)

    Jiuzhou ZHAO; Dongming LIU; Hengqiang YE


    In order to understand the solidification process of an atomized droplet and predict the fraction solidification ofdroplets with flight distance during spray forming, a numerical model based on the population dynamics approach isdeveloped to describe the microstructure evolution under the common action of the nucleation and growth of grains.The model is coupled with droplets heat transfer controlling equations and solved for Al-4.5 wt pct Cu alloy. It isdemonstrated that the numerical results describe the solidification process well.

  13. Product Development Process Modeling

    Institute of Scientific and Technical Information of China (English)


    The use of Concurrent Engineering and other modern methods of product development and maintenance require that a large number of time-overlapped "processes" be performed by many people. However, successfully describing and optimizing these processes are becoming even more difficult to achieve. The perspective of industrial process theory (the definition of process) and the perspective of process implementation (process transition, accumulation, and inter-operations between processes) are used to survey the method used to build one base model (multi-view) process model.

  14. Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Nava, E.I., E-mail:; Rae, C.M.F.


    A new approach for modelling dislocation creep during primary and secondary creep in FCC metals is proposed. The Orowan equation and dislocation behaviour at the grain scale are revisited to include the effects of different microstructures such as the grain size and solute atoms. Dislocation activity is proposed to follow a jog-diffusion law. It is shown that the activation energy for cross-slip E{sub cs} controls dislocation mobility and the strain increments during secondary creep. This is confirmed by successfully comparing E{sub cs} with the experimentally determined activation energy during secondary creep in 5 FCC metals. It is shown that the inverse relationship between the grain size and dislocation creep is attributed to the higher number of strain increments at the grain level dominating their magnitude as the grain size decreases. An alternative approach describing solid solution strengthening effects in nickel alloys is presented, where the dislocation mobility is reduced by dislocation pinning around solute atoms. An analysis on the solid solution strengthening effects of typical elements employed in Ni-base superalloys is also discussed. The model results are validated against measurements of Cu, Ni, Ti and 4 Ni-base alloys for wide deformation conditions and different grain sizes.

  15. Microstructural model for cyclic hardening in F-actin networks crosslinked by α-actinin (United States)

    López-Menéndez, Horacio; Rodríguez, José Félix


    The rheology of F-actin networks has attracted a great attention during the last years. In order to gain a complete understanding of the rheological properties of these novel materials, it is necessary the study in a large deformations regime to alter their internal structure. In this sense, Schmoller et al. (2010) showed that the reconstituted networks of F-actin crosslinked with α-actinin unexpectedly harden when they are subjected to a cyclical shear. This observation contradicts the expected Mullins effect observed in most soft materials, such as rubber and living tissues, where a pronounced softening is observed when they are cyclically deformed. We think that the key to understand this stunning effect is the gelation process. To define it, the most relevant constituents are the chemical crosslinks - α-actinin -, the physical crosslinks - introduced by the entanglement of the semiflexible network - and the interaction between them. As a consequence of this interaction, a pre-stressed network emerges and introduces a feedback effect, where the pre-stress also regulates the adhesion energy of the α-actinin, setting the structure in a metastable reference configuration. Therefore, the external loads and the evolvement of the trapped stress drive the microstructural changes during the cyclic loading protocol. In this work, we propose a micromechanical model into the framework of nonlinear continuum mechanics. The mechanics of the F-actin filaments is modelled using the wormlike chain model for semiflexible filaments and the gelation process is modelled as mesoscale dynamics for the α-actinin and physical crosslink. The model has been validated with reported experimental results.

  16. Integrated Computational Model Development (United States)


    68.5%, 9.6% and 21.9%, respectively. The alloy density and Vickers microhardness were ρ = 8.23 ± 0.01 g/cm3 and Hv = 5288 ± 1 MPa. [3...and 3-D. Techniques to mechanically test materials at smaller scales were developed to better inform the deformation models. Also methods were...situ microscale tension testing technique was adapted to enable microscale fatigue testing on tensile dog-bone specimens. Microscale tensile fatigue

  17. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. (United States)

    Pullmannová, Petra; Staňková, Klára; Pospíšilová, Markéta; Skolová, Barbora; Zbytovská, Jarmila; Vávrová, Kateřina


    The conversion of sphingomyelin (SM) to a ceramide (Cer) by acid sphingomyelinase (aSMase) is an important event in skin barrier development. A deficiency in aSMase in diseases such as Niemann-Pick disease and atopic dermatitis coincides with impaired skin barrier recovery after disruption. We studied how an increased SM/Cer ratio influences the barrier function and microstructure of model stratum corneum (SC) lipid membranes. In the membranes composed of isolated human SC Cer (hCer)/cholesterol/free fatty acids/cholesteryl sulfate, partial or full replacement of hCer by SM increased water loss. Partial replacement of 25% and 50% of hCer by SM also increased the membrane permeability to theophylline and alternating electric current, while a higher SM content either did not alter or even decreased the membrane permeability. In contrast, in a simple membrane model with only one type of Cer (nonhydroxyacyl sphingosine, CerNS), an increased SM/Cer ratio provided a similar or better barrier against the permeation of various markers. X-ray powder diffraction revealed that the replacement of hCer by SM interferes with the formation of the long periodicity lamellar phase with a repeat distance of d=12.7nm. Our results suggest that SM-to-Cer processing in the human epidermis is essential for preventing excessive water loss, while the permeability barrier to exogenous compounds is less sensitive to the presence of sphingomyelin. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Optical gratings and grisms: developments on straylight and polarization sensitivity improved microstructures (United States)

    Diehl, Torsten; Triebel, Peter; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander


    Spectral imaging systems lead to enhanced sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature. The performance of diffraction gratings provides an initial way to improve instrumental resolution. Thus, subsequent manufacturing techniques of high quality gratings are essential to significantly improve the spectral performance. The ZEISS unique technology of manufacturing real-blazed profiles comprising transparent substrates is well suited for the production of transmission gratings. In order to reduce high order aberrations, aspherical and free-form surfaces can be alternatively processed to allow more degrees of freedom in the optical design of spectroscopic instruments with less optical elements and therefore size and weight advantages. Prism substrates were used to manufacture monolithic GRISM elements for UV to IR spectral range. Many years of expertise in the research and development of optical coatings enable high transmission anti-reflection coatings from the DUV to the NIR. ZEISS has developed specially adapted coating processes (Ion beam sputtering, ion-assisted deposition and so on) for maintaining the micro-structure of blazed gratings in particular. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. This technology steps can be applied to manufacture high quality reflection gratings from the EUV to the IR applications with an outstanding level of low stray light and ghost diffraction order by employing a combination of holography and reactive ion beam etching together with the in-house coating capabilities. We report on results of transmission, reflection gratings on plane and curved substrates and GRISM elements with enhanced efficiency of the grating itself combined with low scattered light in the angular distribution. Focusing

  19. Developing a Model Component (United States)

    Fields, Christina M.


    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  20. VLSI electronics microstructure science

    CERN Document Server


    VLSI Electronics: Microstructure Science, Volume 3 evaluates trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the impact of VLSI on computer architectures; VLSI design and design aid requirements; and design, fabrication, and performance of CCD imagers. The approaches, potential, and progress of ultra-high-speed GaAs VLSI; computer modeling of MOSFETs; and numerical physics of micron-length and submicron-length semiconductor devices are also elaborated. This text likewise covers the optical linewi

  1. A combinatorial approach to the development of composition-microstructure-property relationships in titanium alloys using directed laser deposition (United States)

    Collins, Peter C.


    The Laser Engineered Net Shaping (LENS(TM)) system, a type of directed laser manufacturing, has been used to create compositionally graded materials. Using elemental blends, it is possible to quickly vary composition, thus allowing fundamental aspects of phase transformations and microstructural development for particular alloy systems to be explored. In this work, it is shown that the use of elemental blends has been refined, such that bulk homogeneous specimens can be produced. When tested, the mechanical properties are equivalent to conventionally prepared specimens. Additionally, when elemental blends are used in LENS(TM) process, it is possible to deposit compositionally graded materials. In addition to the increase in design flexibility that such compositionally graded, net shape, unitized structures offer, they also afford the capability to rapidly explore composition-microstructure-property relationships in a variety of alloy systems. This research effort focuses on the titanium alloy system. Several composition gradients based on different classes of alloys (designated alpha, alpha + beta, and beta alloys) have been produced with the LENS(TM). Once deposited, such composition gradients have been exploited in two ways. Firstly, binary gradients (based on the Ti-xV and Ti-xMo systems) have been heat treated, allowing the relationships between thermal histories and microstructural features (i.e. phase composition and volume fraction) to be explored. Neural networks have been used to aid in the interpretation of strengthening mechanisms in these binary titanium alloy systems. Secondly, digitized steps in composition have been achieved in the Ti-xAl-yV system. Thus, alloy compositions in the neighborhood of Ti-6Al-4V, the most widely used titanium alloy, have been explored. The results of this have allowed for the investigation of composition-microstructure-property relationships in Ti-6-4 based systems.

  2. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4(FLiBe) salt (United States)

    Zheng, Guiqiu; He, Lingfeng; Carpenter, David; Sridharan, Kumar


    The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15-180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo2C, Cr7C3 and Al4C3 particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNix) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.

  3. Experimental and modelling issues in unsaturated soils mechanics : Role of microstructure


    Pereira, Jean-Michel; Bruchon, Jean-François; VANDAMME, Mathieu; Lenoir, Nicolas; Delage, Pierre; Bornert, Michel


    this paper brings some insights into the role played by the microstructure of soils on their hydromechanical behaviour. First, a discussion on the definition of an effective stress for unsaturated soils is presented. Based on an energetic approach, the role of microstructure in the definition of Bishop's parameter is investigated. Based on experimental data, it is then shown that the usual assumption identifying this parameter to the degree of saturation is not verified for fine soils. Second...

  4. Development of lithium-ion batteries from micro-structured to nanostructured materials: its issues and challenges. (United States)

    Kumar, Harish; Rajan, Sundar; Shukla, Ashok K


    Lithium-ion batteries are the systems of choice, offering high energy density, flexibility, lightness in weight, design and longer lifespan than comparable battery technologies. A brief historical review is given of the development of Li-ion rechargeable batteries, highlighting the ongoing research strategies, and highlighting the challenges regarding synthesis, characterization, electrochemical performance and safety of these systems. This work is primarily focused on development of Li-ion batteries from micro-structured to nanostructured materials and some of the critical issues namely, electrode preparation, synthesis, and electrochemical characterization. The purpose of this review is to act as a reference for future work in this area.

  5. The extended distributed microstructure model for gradient-driven transport: A two-scale model for bypassing effective parameters (United States)

    Carr, E. J.; Perré, P.; Turner, I. W.


    Numerous problems involving gradient-driven transport processes-e.g., Fourier's and Darcy's law-in heterogeneous materials concern a physical domain that is much larger than the scale at which the coefficients vary spatially. To overcome the prohibitive computational cost associated with such problems, the well-established Distributed Microstructure Model (DMM) provides a two-scale description of the transport process that produces a computationally cheap approximation to the fine-scale solution. This is achieved via the introduction of sparsely distributed micro-cells that together resolve small patches of the fine-scale structure: a macroscopic equation with an effective coefficient describes the global transport and a microscopic equation governs the local transport within each micro-cell. In this paper, we propose a new formulation, the Extended Distributed Microstructure Model (EDMM), where the macroscopic flux is instead defined as the average of the microscopic fluxes within the micro-cells. This avoids the need for any effective parameters and more accurately accounts for a non-equilibrium field in the micro-cells. Another important contribution of the work is the presentation of a new and improved numerical scheme for performing the two-scale computations using control volume, Krylov subspace and parallel computing techniques. Numerical tests are carried out on two challenging test problems: heat conduction in a composite medium and unsaturated water flow in heterogeneous soils. The results indicate that while DMM is more efficient, EDMM is more accurate and is able to capture additional fine-scale features in the solution.

  6. The role of microstructure in the modelling of plastic flow in P/M superalloys at forging temperatures and strain rate (United States)

    Immarigeon, J. P.


    The application of computer aided plasticity analysis to model the deformation of alloys during forging with a view to optimizing the microstructure in forged components is presented. Finite element modelling techniques and a methodology for predicting local changes in grain size as a function of local deformation history predict the final grain sizes in the rim and the bore regions of a disc via process modelling and determines the processing conditions under which an optimum microstructure is produced. The effects of thermomechanical history on the evolution of microstructure in P/M superalloys under isothermal forging conditions and formulation of physically realistic constitutive relations for plastic flow which quantify the effects of the microstructural evolution, thereby allowing the prediction of final microstructure in forgings were studied. Using constant true strain rate uniaxial compression tests, microstructure flow property data were generated at isothermal foring temperatures and strain rates for a number of compacts. Deformation modelling for microstructural control is discussed. It is shown that the rate of change of grain size is an important parameter which governs changes in flow strength and is considered in the formulation of constitutive relations for compacts both in a coarse grained and in a fine grained superplastic condition. A deformation model for grain size and rate sensitive P/M superalloys and a methodology that can be applied to predict grain size distributions in forgings are presented.

  7. Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation (United States)

    Saito, J.; Suda, T.; Yamashita, S.; Ohnuki, S.; Takahashi, H.; Akasaka, N.; Nishida, M.; Ukai, S.


    ODS ferritic steels (13Cr-0.5Ti-0.2Y 2O 3) were prepared by the mechanical alloying method followed by the hot extrusion and several heat treatments including recrystallization. ODS steels with different heat treatment and a ferritic/martensitic (F/M) steel for the reference were irradiated to 12 dpa at 670-770 K in HVEM. After recrystallization, the dislocation density decreased with increasing grain size, however, the oxide particles did not show any obvious change in the size and the number density. During the electron-irradiation the microstructure was relatively stable, i.e. oxide particles showed good stability and the dislocation density remained almost constant. A limited void formation was observed in the specimens, and the suppressive effect due to dislocations with high number density was confirmed. From these results, the behavior of microstructure and the limited void formation in ODS steels have been discussed.

  8. Shrinkage and microstructural development during drying of organically modified silica xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Raman, N.K. [New Mexico Univ., Albuquerque, NM (United States); Wallace, S. [Nanopore Corp., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)


    We have studied the different driving forces behind syneresis in MTES/TEOS gels by aging them in different H{sub 2}O/EtOH pore fluids. We show using shrinkage, density, contact angle, and N{sub 2} sorption measurements, the influence of gel/solvent interactions on the microstructural evolution during drying. Competing effects of syneresis (that occurs during aging) and drying shrinkage resulted in the overall linear shrinkage of the organically modified gels to be constant at {approximately}50%. Increasing the hydrophobicity of the gels caused the driving force for syneresis to change from primarily condensation reactions to a combination of condensation and solid/liquid interfacial energy. In addition the condensation driven shrinkage was observed to be irreversible, whereas the interfacial free energy driven shrinkage was observed to be partially reversible. Nitrogen sorption experiments show that xerogels with the same overall extent of shrinkage can have vastly different microstructures due to the effects of microphase separation.


    Institute of Scientific and Technical Information of China (English)

    张武; 唐锦春


    This paper establishes a piezoelectric constitutive computational approach based on generalized eigenvalue and multivariable finite element solutions with potential applications to accurate and effective analysis of layered piezoelectric microstructures of arbitrary geometries and different anisotropic materials, to ease the limitation of current computer capacity in analyzing large-scale high-frequency disturbed surface acoustic waves (DSAW) by mounted electrodes in piezoelectric devices such as microchip SAW resonators. A new incompatible generalized hybrid/mixed element GQM5 is also proposed for improving predictions of the piezoelectric surface mount thermal stresses that are shear-dominated. The (generalized) plane strain constitutive model is numerically verified for piezoelectric finite element computation. With the help of computational piezoelectricity (electro-mechanics) for general layered structures with metal electrodes and anisotropic piezoelectric substrates, some new interesting, reliable and fundamental constitutive finite element results are obtained for high-frequency piezoelectric and mechanical SAW propagations and can be used for further applications. The ST-cut FEA results agree quite well with available exact and lab solutions for free surface case.

  10. Improving mechanical properties and microstructure development of fiber reinforced ceramic nuclear fuel.




    At the present work the UO2 fuel production process was extensively studied and analyzed. The objectives of such investigation were to understand and analyze the influence of different additives and the variation of the production process steps on the microstructure and consequently in the mechanical strength of the nuclear fuel pellet. Moreover, an improvement of the qualitative characteristics of the ceramic fuel pellets was also aimed. For this purpose UO2 pellets without ad...

  11. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products


    performance/catalyst degradation. The key accomplishments of this project are: • The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system • The development of a composition-based, 1D-statistical Unit Cell Performance model • A modified and improved multi-pathway ORR model • An extension of the existing micro-structural catalyst model to transient operation • The coupling of a Pt Dissolution model to the modified ORR pathway model • The Development A Semi-empirical carbon corrosion model • The integration and release of an open-source forward predictive MEA performance and degradation model • Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions • Catalyst layer durability windows and design curves • A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): • Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) • Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release • Stage 2 - Beta

  12. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yi-Wen Cheng; Patrick Purtscher


    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills.

  13. GH4169合金热变形微观组织演变模型%Microstructure model of GH4169 alloy during hot forming

    Institute of Scientific and Technical Information of China (English)

    李志强; 张宁; 王宝雨; 侯红亮; 胡正寰


    基于等效位错密度建立G H4169高温合金的本构方程及微观组织演变模型,通过遗传算法结合热模拟压缩实验结果对模型参数进行求解;对有限元模拟软件DEFORM-3D进行二次开发,模拟工件的镦粗成形,得到了工件平均晶粒尺寸和再结晶百分数的分布情况,并与实验结果进行了对比分析。结果表明,二次开发的软件对微观组织演变的模拟结果与实验结果的平均误差在10%左右,验证了G H4169合金本构方程和微观组织演变模型的准确性,以及对软件二次开发的可行性。%The dislocation density-based constitutive equation and microstructural evolution model of GH 4169 alloy were estab-lished .Through the genetic algorithm and the isothermal compression test data ,the parameters of model were calculated .Based on the secondary development of DEFORM-3D ,the upsetting was simulated and the distribution of average grain size and recrystal-lized volume fraction were obtained and compared with the experimental results .The results show that the average error between the microstructural simulation and the experimental research was within 10% ,which verified that the dislocation density-based constitutive equation and microstructural evolution model of GH 4169 alloy are accurate and the secondary development is feasible .

  14. IMPACT fragmentation model developments (United States)

    Sorge, Marlon E.; Mains, Deanna L.


    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  15. Analytical model for viscous damping and the spring force for perforated planar microstructures acting at both audible and ultrasonic frequencies (United States)

    Homentcovschi, Dorel; Miles, Ronald N.


    The paper presents a model for the squeezed film damping, the resistance of the holes, and the corresponding spring forces for a periodic perforated microstructure including the effects of compressibility, inertia, and rarefied gas. The viscous damping and spring forces are obtained by using the continuity equation. The analytical formula for the squeezed film damping is applied to analyze the response of an ultrasonic transducer. The inclusion of these effects in a model significantly improves the agreement with measured results. Finally, it is shown that the frequency dependence of the total damping and total spring force for a cell are very similar to those corresponding to a rectangular open microstructure without holes. A separate analysis reveals the importance of each particular correction. The most important is the compressibility correction; the inertia has to be considered only for determining the spring force and the damping force for sufficiently high frequencies. PMID:18646964

  16. Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle.

    Directory of Open Access Journals (Sweden)

    Valentina Carapella

    Full Text Available Tissue microstructure, in particular the alignment of myocytes (fibre direction and their lateral organisation into sheets, is fundamental to cardiac function. We studied the effect of microstructure on contraction in a computational model of rat left ventricular electromechanics. Different fibre models, globally rule-based or locally optimised to DT-MRI data, were compared, in order to understand whether a subject-specific fibre model would enhance the predictive power of our model with respect to the global ones. We also studied the impact of sheets on ventricular deformation by comparing: (a a transversely isotropic versus an orthotropic material law and (b a linear model with a bimodal model of sheet transmural variation. We estimated ejection fraction, wall thickening and base-to-apex shortening and compared them with measures from cine-MRI. We also evaluated Lagrangian strains as local metrics of cardiac deformation. Our results show that the subject-specific fibre model provides little improvement in the metric predictions with respect to global fibre models while material orthotropy allows closer agreement with measures than transverse isotropy. Nonetheless, the impact of sheets in our model is smaller than that of fibres. We conclude that further investigation of the modelling of sheet dynamics is necessary to fully understand the impact of tissue structure on cardiac deformation.

  17. Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718

    Directory of Open Access Journals (Sweden)

    Pan Zhipeng


    Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.

  18. Synthesis of Microstructures and the Relationship between Microstructure and Properties. (United States)


    Cincinnati by Prof. Stephen D. Antolovich . iY II-7.Y -4J TABLE OF CONTENTS PAGE I INTRODUCTION 1 II MICROSTRUCTURE MECHANICAL PROPERTY CORRELATIONS IN...for other steels. The LCF results were used to make a theoretical prediction of FCP behavior using a model developed by S. Antolovich and some of published in the Proceedings of the Fourth International Titanium Conference, Kyoto, Japan, 1980. 79. S.D. Antolovich , "Fatigue Crack Propagation

  19. The Effect of ZnO Addition on Microstructure, Phase and Color Developments of Copper Reduction Glaze

    Directory of Open Access Journals (Sweden)

    N. NayebPashaee


    Full Text Available In this research, the effects of Zn on microstructure and color developments of the copper reduction glaze were investigated. Structural and colorimetric characteristics of the glaze surface are examined by X-ray diffraction, scanning electron microscope (SEM equipped with electron dispersive spectroscopy (EDS and Telespectrophotometery. Results indicate in samples consisted of more than 7 % of zinc amount, crystalline structures containing Willemite and synthesized copper. XRD indicate that, 14 wt% of zinc oxide is enough to form Willemite. In all samples, duration of process was sufficient to form the metallic particles. SEM images confirm presence of copper nanosphere-laths of Willemite and surrounding glaze.

  20. Deformation behaviour and microstructure development of magnesium AZ 31 alloy during hot and semi-hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Kawalla, R.; Stolnikov, A. [Institut fuer Metallformung, TU Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4, 09596 Freiberg (Germany)


    Deformation properties and microstructure development between 20 and 450 C were investigated for Magnesium AZ31 alloy. It was found that this alloy softens preferably by dynamic recrystallisation. This process starts at suitable deformation conditions above 150 C. However, the temperature region above 250 C is more interesting for the production process the semi-finished products. The recrystallised grain size depends heavily on the deformation temperature. A grain size with a mean diameter smaller than 10 {mu}m can be created below 300 C. For further processing of Magnesium sheets, temperatures above 100 C are suitable, but temperatures above 300 C are responsible for superplasticity. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  1. A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure. (United States)

    Taquet, Maxime; Scherrer, Benoit; Commowick, Olivier; Peters, Jurriaan M; Sahin, Mustafa; Macq, Benoit; Warfield, Simon K


    Diffusion tensor imaging (DTI) is unable to represent the diffusion signal arising from multiple crossing fascicles and freely diffusing water molecules. Generative models of the diffusion signal, such as multi-fascicle models, overcome this limitation by providing a parametric representation for the signal contribution of each population of water molecules. These models are of great interest in population studies to characterize and compare the brain microstructural properties. Central to population studies is the construction of an atlas and the registration of all subjects to it. However, the appropriate definition of registration and atlasing methods for multi-fascicle models have proven challenging. This paper proposes a mathematical framework to register and analyze multi-fascicle models. Specifically, we define novel operators to achieve interpolation, smoothing and averaging of multi-fascicle models. We also define a novel similarity metric to spatially align multi-fascicle models. Our framework enables simultaneous comparisons of different microstructural properties that are confounded in conventional DTI. The framework is validated on multi-fascicle models from 24 healthy subjects and 38 patients with tuberous sclerosis complex, 10 of whom have autism. We demonstrate the use of the multi-fascicle models registration and analysis framework in a population study of autism spectrum disorder.

  2. Microstructure for ferroelastic transitions from strain pseudo-spin clock models in two and three dimensions: a mean field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lookman, Turab [Los Alamos National Laboratory; Vasseur, Romain [ECOLE NORMALE SUPERIEURE


    We obtain the microstructure of ferroelastic transitions in two and three dimensions from the solution of their corresponding discrete pseudo-spin models. In two dimensions we consider two transitions each from the high symmetry square and triangle symmetries: square-to-rectangle (SR), square-to-oblique (SO), triangle-to-centered rectangle (TR) and triangle-to-oblique (TO). In three dimensions we study the corresponding spin model for the cubic to tetragonal transition. The Landau free energies for these transitions result in N+ I states clock models (Z{sub N}) with long range interactions and we derive mean-field self-consistency equations for the clock model Hamiltonians. The microstructures from the mean-field solutions of the models are very similar to those obtained from the original continuum models or Monte Carlo simulations on the spin models (in the SR case), illustrating that these discrete models capture the salient physics. The models, in the presence of disorder, provide the basis for the study of the strain glass phase observed in martensitic alloys.

  3. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability. (United States)

    Lo, T S; Karma, A; Plapp, M


    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/v(p)), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/v(p) is large enough for both phases to be morphologically stable, the formation of the microstructure becomes controlled by a subtle interplay between the nucleation and growth of the two solid phases. The structures that have been observed in this regime (in small samples where convection effects are suppressed) include alternate layers (bands) of the parent and peritectic phases perpendicular to the growth direction, which are formed by alternate nucleation and lateral spreading of one phase onto the other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1 (1995)], as well as partially filled bands (islands), where the peritectic phase does not fully cover the parent phase which grows continuously. We develop a phase-field model of peritectic solidification that incorporates nucleation processes in order to explore the formation of these structures. Simulations of this model shed light on the morphology transition from islands to bands, the dynamics of spreading of the peritectic phase on the parent phase following nucleation, which turns out to be characterized by a remarkably constant acceleration, and the types of growth morphology that one might expect to observe in large samples under purely diffusive growth conditions.

  4. From Modeling to Fabrication of Double Side Microstructured Silicon Windows for Infrared Gas Sensing in Harsh Environments

    DEFF Research Database (Denmark)

    Bergmann, René; Ivinskaya, Aliaksandra; Kafka, Jan Robert


    Commercial infrared windows used for gas sensing in the mid-IR range usually possess an anti-reflective coating. Those coatings can normally not withstand harsh environments, particularly not high temperatures. With a simple “3-step” fabrication process, high temperature resistant silicon windows...... was achieved. The modeling of the anti-reflective microstructures, their fabrication process and final transmittance analysis of the windows is discussed....... (∅1") were manufactured. The windows show high temperature resistant sub-wavelength anti-reflective surface microstructures on both side faces. Thus, a peak transmittance of 100% for a defined main wavelength (5 μm) and more than 90 % average transmittance for the wavelength range of 5-7 μm...

  5. Modelling the effect of coating on the stresses and microstructure evolution in chill casting of wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Thorborg, J.; Hattel, Jesper Henri


    . Simulations of the casting process are performed with four different heat transfer coefficients (HTCs) between the casting and the chill, and the resulting transient stress fields are reported in the chill. The microstructural evolution in the casting in terms of the nodule count is also modelled...... the HTC from 2000 to 500 W m−2 K−1. These results indicate that the lifetime of the chill will not be significantly improved by adding a thicker layer of coating. The microstructure evolution is not very much affected by the HTC value with a maximum reduction in nodule count of 6.5%. Therefore......The purpose of the present work is to quantify the effect of the inside coating on chills for casting of large wind turbine main shafts with respect to the evolution of internal stresses. These are known to affect the lifetime of the chills, and this is a major cost for the foundries today...

  6. Texture and microstructure development in a cold-rolled duplex stainless steel annealed at 800 C

    Energy Technology Data Exchange (ETDEWEB)

    Shek, C.H. (Dept. of Mechanical Engineering, Univ. of Hong Kong (Hong Kong)); Shen, G.J. (Analysis and Test Centre, Southeast Univ., Nanjing (China)); Lai, J.K.L. (Dept. of Applied Science, City Polytechnic of Hong Kong (Hong Kong)); Duggan, B.J. (Dept. of Mechanical Engineering, Univ. of Hong Kong (Hong Kong))


    A cast of austenitic-ferritic duplex stainless steel was rolled 85% and then annealed at 800 C to study the microstructural and texture changes in the material caused by these mechanical and thermal treatments. The austenite in the duplex alloy behaves as typical low SFE materials when rolled as well as annealed but larger spreads in orientation were observed, compared with rolled and annealed brass. The cold-rolled ferrite mainly consists of long microbands and has texture similar to cold-rolled carbon steel. Upon annealing, the ferrite undergoes recovery only and the rolling texture is thus retained. (orig.)

  7. Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa)

    Energy Technology Data Exchange (ETDEWEB)

    Kaoumi, D., E-mail: [University of South Carolina, 300 Main St., Columbia, SC 29208 (United States); Adamson, J. [University of South Carolina, 300 Main St., Columbia, SC 29208 (United States); Kirk, M., E-mail: [Argonne National Laboratory, Bldg 212, IL 60439 (United States)


    Ferritic/martensitic steels are candidate materials for structural and cladding components designed for Generation IV reactors because of their superior resistance to radiation damage at the high operating temperatures envisioned in these reactors. To enable the development and optimization of such advanced alloys for in-reactor use, a fundamental understanding of radiation damage accumulation in materials is required. In this work, two model F/M steels (12Cr model alloy and 9Cr model alloy) were irradiated with 1 MeV Kr ions at 50 K, 180 K, 298 K, 473 K and 573 K in situ in a TEM. The microstructure evolution under irradiation was followed and characterized at successive doses in terms of irradiation-induced defect formation and evolution, defect density, size distribution and interaction with the as-fabricated microstructure (e.g. dislocation networks, lath boundaries) using weak-beam dark-field imaging. The effect of the irradiation temperature on the defect kinetics is assessed at doses up to 2 dpa.

  8. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A


    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  9. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties; Durabilite des materiaux cimentaires: modelisation de l'influence des equilibres physico-chimiques sur la microstructure et les proprietes mecaniques residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E


    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  10. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten (United States)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira


    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90-∼800 °C and fast neutron fluences were 0.02-9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  11. Plant development models

    NARCIS (Netherlands)

    Chuine, I.; Garcia de Cortazar-Atauri, I.; Kramer, K.; Hänninen, H.


    In this chapter we provide a brief overview of plant phenology modeling, focusing on mechanistic phenological models. After a brief history of plant phenology modeling, we present the different models which have been described in the literature so far and highlight the main differences between them,

  12. On modeling micro-structural evolution using a higher order strain gradient continuum theory

    DEFF Research Database (Denmark)

    El-Naaman, S. A.; Nielsen, K. L.; Niordson, C. F.


    the experimentally observed micro-structural behavior, within a framework based on continuous field quantities, poses obvious challenges, since the evolution of dislocation structures is inherently a discrete and discontinuous process. This challenge, in particular, motivates the present study, and the aim...

  13. Modelling of the isothermal replication of surface microstructures in polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard


    to the incoming molten plastic flow. Just before the flow-front of the melt reached the end of the inserts the polymer was frozen. The replicated PC and PS micro-structures were examined using a confocal laser scanning microscope. Uniaxial elongational viscosity and linear viscoelasticity were used...

  14. Microstructural path model and strain dependence of recrystallisation in commercial aluminium

    DEFF Research Database (Denmark)

    Vandermeer, Roy Allen; Wu, Guilin; Juul Jensen, Dorte


    The isothermal recrystallisation of commercial purity aluminium alloy AA1200 cold deformed to either a true strain of 2 (86.5% reduction in thickness) or 4 (98.2% reduction in thickness) was studied phenomenologically in each material by means of quantitative microscopy. The microstructural path ...

  15. A Strategy for Modeling Microstructure in Macroscopic Simulations of Welded Material

    NARCIS (Netherlands)

    Thiessen, R.G.; Richardson, I.M.


    With the increased precision in laser-welded structures, smaller and thinner parts can be joined. This magnifies the effect that microstructural changes due to the welding process have on the mechanical properties of the material. Although conventional welding processes are generally applied to work

  16. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite (United States)

    Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.


    The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This study uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random size obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.

  17. Phase-field modelling of microstructure formation during the solidification of continuously cast low carbon and HSLA steels (United States)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.


    Cracking in continuous casting of steels has been one of the main problems for decades. Many of the cracks that occur during solidification are hot tears. To better understand the factors leading to this defect, microstructure formation is simulated for a low carbon (LCAK) and two high strength low alloyed (HSLA) steel grades during the initial stage of the process where the first solidified shell is formed inside the mould and where breakouts typically occur. 2D simulation is performed using the multiphase-field software MICRESS [1], which is coupled to the thermodynamic database TCFE6 [2] and the mobility database MOB2 [2], taking into account all elements which may have a relevant effect on the mechanical properties and structure formation during or subsequent to solidification. The use of a moving-frame boundary condition allows travelling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. A heterogeneous nucleation model is included to permit the description of morphological transitions between the initial solidification and the subsequent columnar growth region. Furthermore, a macroscopic one-dimensional temperature solver is integrated to account for the transient and nonlinear temperature field during the initial stage of continuous casting. The external heat flux boundary conditions for this process were derived from thermal process data of the industrial slab caster. The simulation results for the three steel grades have been validated by thickness measurements of breakout shells and microstructure observation of the corresponding grades. Furthermore, the primary dendrite spacing has been measured across the whole thickness of the shell and compared with the simulated microstructures. Significant microstructure differences between the steel grades are discussed and correlated with their hot-cracking behavior.

  18. The Determining Role of Finish Cooling Temperature on the Microstructural Evolution and Precipitation Behavior in an Nb-V-Ti Microalloyed Steel in the Context of Newly Developed Ultrafast Cooling (United States)

    Li, Xiaolin; Wang, Zhaodong; Deng, Xiangtao; Wang, Guodong; Misra, R. D. K.


    We have studied here the impact of finish cooling temperature on the microstructural evolution and precipitation behavior in Nb-V-Ti microalloyed steel through thermo-mechanical simulation in the context of newly developed ultrafast cooling system. The microstructural evolution was studied in terms of morphology and crystallography of precipitates using high-resolution transmission electron microscopy. At finish cooling temperature of 933 K and 893 K (660 °C and 620 °C), the microstructure primarily consisted of polygonal ferrite, together with a small amount of wedge-shaped acicular ferrite and lamellar pearlite, while, at 853 K and 813 K (580 °C and 540 °C), the microstructure consisted of lath bainite with fine interlath cementite and granular bainite with martensite/austenite (M/A) constituent. In all the finish cooling temperatures studied, the near-spherical precipitates of size range ~2 to 15 nm were randomly dispersed in ferrite and bainite matrix. The carbide precipitates were identified as (Nb,V)C with NaCl-type crystal structure. With a decrease in the finish cooling temperature, the size of the precipitates was decreased, while the number density first increased with a peak at 893 K (620 °C) and then decreased. Using Ashby-Orowan model, the contribution of the precipitation strengthening to yield strength was ~149 MPa at the finish cooling temperature of 893 K (620 °C).

  19. Preliminary Phase Field Computational Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Ke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Bradley R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in

  20. Strength Development and Microstructure of Hardened Cement Paste Blended with Red Mud

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; ZHANG Yanna; XU Zhongzi


    Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃. Results show that heating was ef-fective, among which thermal activation of red mud at 600 ℃ was most effective. Chemical analysis suggested that cement added with 600 ℃ thermally activated red mud yielded more calcium ion dur-ing the early stage of hydration and less at later stage in liquid phase of cement water suspension sys-tem, more combined water and less calcium hydroxide in its hardened cement paste. MIP measure-ment and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud.

  1. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System (United States)

    Xu, Hongyi

    dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  2. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  3. High-Resolution Characterization of UMo Alloy Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  4. The Sustainable Development Model



    Sustainable development concept approaches quality of life in complexity, as economic, social and environmental issues, promoting the idea of balance between economic development, social equity, efficient utilization and environment conservation.     An essential condition for achieving sustainable development is the right mix of macroeconomic policies coherent, consistent with resources to ensure sustainability of materials and energy used for growth.

  5. Determination of microstructural parameters in damage models for ductile metals; Bestimmung von mikrostrukturellen Parametern in Schaedigungsmodellen fuer duktile Metalle

    Energy Technology Data Exchange (ETDEWEB)

    Steglich, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung


    For the determination of material parameters in micromechanical damage models the mechanical behaviour of representative volume elements of a two-phase material has been investigated and the phase morphology quantified by microstructural analysis. The material parameters have been successfully correlated to microstructural quantities and a prediction of the damage behaviour of structures is performed. Special emphasis is given to the model of Gurson, Tvergaard and Needleman, which has been used to predict the macroscopic behaviour of smooth tensile test specimens and the fracture resistance curves of bending specimens for two different materials, a nodular cast iron and a particle reinforced aluminium compound. (orig.) [German] Zur Bestimmung der Materialparameter in mikromechanischen Schaedigungsmodellen werden repraesentative Strukturelemente eines Werkstoffes untersucht und die Morphologie eines zweiphasigen Gefueges durch quantitative Gefuegeanalyse beschrieben. Mit dieser Strategie gelingen eine Identifikation der im Modell enthaltenen Parameter sowie die Vorhersage des Versagensverhaltens von Strukturen. Als mikromechanisches Materialmodell wird hauptsaechlich das Modell von Gurson, Tvergaard und Needleman verwendet. Seine Anwendbarkeit zur Vorhersage des globalen Verhaltens von glatten Zugproben und zur Simulation von Risswiderstandskurven wird bei zwei verschiedenen Werkstoffen gezeigt, einen Gusseisen und einem Aluminium-Verbundwerkstoff. (orig.)

  6. Application of mesoscale modeling optimization to development of advanced materials

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaoyan


    The rapid development of computer modeling in recent years offers opportunities for materials preparation in a more economic and efficient way. In the present paper, a practicable route for research and development of advanced materials by applying the visual and quantitative modeling technique on the mesoscale is introduced. A 3D simulation model is developed to describe the microstructure evolution during the whole process of deformation, recrystallization and grain growth in a material containing particles. In the light of simulation optimization, the long-term stabilized fine grain structures ideal for high-temperature applications are designed and produced. In addition, the feasibility, reliability and prospects of material development based on mesoscale modeling are discussed.

  7. Microstructural rearrangements and their rheological implications in a model Thixotropic Elasto-Visco-Plastic (TEVP) fluid

    CERN Document Server

    Jamali, Safa; Armstrong, Robert C


    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative Particle Dynamics (DPD) is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and non-isotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress vs. shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in non-isotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  8. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid (United States)

    Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.


    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  9. Modeling of Solidification Microstructures Based on Fully Coupling of Macro-transport Phenomena with Cellular Automata

    Institute of Scientific and Technical Information of China (English)


    This paper has attempted to simulate the microstructure formation based on fully coupling of temperature field, concentration field and velocity field with micro-kinetics. The authors presented a new way, wlich is the combination of FDM and cellular automata (CAFD) to visualize the microstructure formation of the thin complex superalloy turbine blades cast by the vacuum investment process. The distribution, orientation and mechanism of the heterogeneous nucleation, the growth kinetics of dendrites and the columnar to equiaxed transition (CET) are considered. Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been investigated quantitatively. The simulated grain size and morphology agree well with the experimental results.

  10. Materials Design of Microstructure in Grain Boundary and Second Phase Particles

    Institute of Scientific and Technical Information of China (English)


    A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects:grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.

  11. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products


    performance/catalyst degradation. The key accomplishments of this project are: • The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system • The development of a composition-based, 1D-statistical Unit Cell Performance model • A modified and improved multi-pathway ORR model • An extension of the existing micro-structural catalyst model to transient operation • The coupling of a Pt Dissolution model to the modified ORR pathway model • The Development A Semi-empirical carbon corrosion model • The integration and release of an open-source forward predictive MEA performance and degradation model • Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions • Catalyst layer durability windows and design curves • A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): • Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) • Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release • Stage 2 - Beta

  12. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, David K [CSM/ASPPRC; Thomas, Larrin S [CSM/ASPPRC; Taylor, Mark D [CSM/ASPPRC; De Moor, Emmanuel [CSM/ASPPRC; Speer, John G [CSM/ASPPRC


    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  13. Streambed microstructure predicts evolution of development and life history mode in the plethodontid salamander Eurycea tynerensis. (United States)

    Bonett, Ronald M; Chippindale, Paul T


    Habitat variation strongly influences the evolution of developmentally flexible traits, and may drive speciation and diversification. The plethodontid salamander Eurycea tynerensis is endemic to the geologically diverse Ozark Plateau of south-central North America, and comprises both strictly aquatic paedomorphic populations (achieving reproductive maturity while remaining in the larval form) and more terrestrial metamorphic populations. The switch between developmental modes has occurred many times, but populations typically exhibit a single life history mode. This unique system offers an opportunity to study the specific ecological circumstances under which alternate developmental and life history modes evolve. We use phylogenetic independent contrasts to test for relationships between a key microhabitat feature (streambed sediment) and this major life history polymorphism. We find streambed microstructure (sediment particle size, type and degree of sorting) to be highly correlated with life-history mode. Eurycea tynerensis is paedomorphic in streams containing large chert gravel, but metamorphoses in nearby streams containing poorly sorted, clastic material such as sandstone or siltstone. Deposits of large chert gravel create loosely associated streambeds, which provide access to subsurface water during dry summer months. Conversely, streambeds composed of more densely packed sandstone and siltstone sediments leave no subterranean refuge when surface water dries, presumably necessitating metamorphosis and use of terrestrial habitats. This represents a clear example of the relationship between microhabitat structure and evolution of a major developmental and life history trait, and has broad implications for the role of localized ecological conditions on larger-scale evolutionary processes.

  14. Accounting for the Inhomogeneity of Deformation in Identification of Microstructure Evolution Model / Niejednorodność Odkształcenia W I Dentyfikacji Modelu Rozwoju Mikrostruktury

    Directory of Open Access Journals (Sweden)

    Szeliga D.


    Full Text Available The paper deals with the problem of identification of microstructure evolution model on the basis of two-step compression test. Classical interpretation of this test assumes uniform fields of strains, stresses and temperatures in the deformation zone and calculates the coefficients in the model on the basis of force measurements in the second step. In the present paper the inverse approach was applied. Finite element (FE simulations of the compression test were performed and local values of microstructural parameters were determined accounting for the inhomogeneity of deformation. Objective function was formulated as the Euclid norm for the error between measured and calculated forces for various interpass times. Coefficients in the microstructure evolution model were determined by searching for the minimum of the objective function. Optimized model was validated in simulations of plane strain compression tests.

  15. Microstructural Modeling of Pitting Corrosion in Steels Using an Arbitrary Lagrangian-Eulerian Method (United States)

    Yu, Qifeng; Pan, Tongyan


    Two microscale numerical models are developed in this work using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels. The distributions of corrosion potential and current in the electrolyte-coating-steel system are computed to evaluate the anti-corrosion ability of PANi. The arbitrary Lagrangian-Eulerian approach was used to accomplish the continuous remesh process as was needed to simulate the dynamic growing forefront of the modeled pitting domain. Experimental validation of the numerical models was conducted using the technique of scanning kelvin probe force microscopy (SKPFM). The SKPFM-scanned surface topography and Volta potential difference exhibit comparable results to and thereby prove the numerical results. The potential distribution in the electrolyte phase of the validated models shows that the corrosion pit grows faster in the epoxy-only-coated steel than that in the PANi-primer-coated steel over the simulation time; also, the corrosion pit grows faster in the ferrite phase than in the cementite phase. The simulation results indicate that the epoxy-only coating lost its anti-corrosion capability as the coating was penetrated by electrolyte, while the PANi-based coating can still protect the steel from corrosion after the electrolyte penetration. The models developed in this work can be used to study the mechanisms of pitting corrosion as well as develop more effective corrosion prevention strategies for general metallic materials.

  16. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang


    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  17. Microstructural Modeling of Pitting Corrosion in Steels Using an Arbitrary Lagrangian-Eulerian Method (United States)

    Yu, Qifeng; Pan, Tongyan


    Abstracts Two microscale numerical models are developed in this work using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels. The distributions of corrosion potential and current in the electrolyte-coating-steel system are computed to evaluate the anti-corrosion ability of PANi. The arbitrary Lagrangian-Eulerian approach was used to accomplish the continuous remesh process as was needed to simulate the dynamic growing forefront of the modeled pitting domain. Experimental validation of the numerical models was conducted using the technique of scanning kelvin probe force microscopy (SKPFM). The SKPFM-scanned surface topography and Volta potential difference exhibit comparable results to and thereby prove the numerical results. The potential distribution in the electrolyte phase of the validated models shows that the corrosion pit grows faster in the epoxy-only-coated steel than that in the PANi-primer-coated steel over the simulation time; also, the corrosion pit grows faster in the ferrite phase than in the cementite phase. The simulation results indicate that the epoxy-only coating lost its anti-corrosion capability as the coating was penetrated by electrolyte, while the PANi-based coating can still protect the steel from corrosion after the electrolyte penetration. The models developed in this work can be used to study the mechanisms of pitting corrosion as well as develop more effective corrosion prevention strategies for general metallic materials.

  18. Microstructure and property development in spray formed and extruded Al-Mg-Li-Zr alloys for aerospace and autosport applications

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Grant, P.S. [Department of Materials, Oxford University (United Kingdom); Nilsen, K.E.; Liotti, E. [BOAL UK Ltd. Loughborough (United Kingdom); Hogg, S.C.


    Low density Al-4Mg-1.3Li-0.4Zr and Al-6Mg-1.6Li-0.4Zr alloys were spray formed and the billets extruded under a range of conditions. The alloy compositions were selected to provide an attractive balance of tensile strength and elongation, without relying on complex post-processing and heat treatments - and are therefore suitable for complex cross section extrusions and free from quench distortion. The as-spray formed microstructures showed fine homogeneous, equiaxed grains with an average size of 10-15 {mu}m. Firstly, a laboratory scale extrusion was carried out to extrude 30 mm diameter billets into 7.5 mm diameter cross-section and to investigate the effects of temperature and ram speeds on microstructural development. The microstructure after extrusion at 400 C was partially dynamically recrystallised with a {proportional_to}0.5 area fraction of {proportional_to}1 {mu}m grains and the remainder were unrecrystallised elongated grains. Electron backscatter diffraction showed a mixed <111> + <100> double fibre texture. After peak age hardening at 150 C for 96 h, the Al-6Mg-1.6Li-0.4Zr alloy showed a 0.2% proof strength of 495 MPa, a tensile strength of 553 MPa and elongation to failure of 8.5%; Al-4Mg-1.3Li-0.4Zr showed a 0.2% proof strength of 392 MPa, a tensile strength of 476 MPa and an elongation of 10%. Subsequently, large-scale complex cross-section were extruded at {proportional_to}400 C. Due to the complexity of the cross-sections and the non-axisymetric deformation, the fibre texture was distorted to FCC rolled Copper and Brass orientations. After a dual-step age hardening treatment of 130 C for 8h followed by 160 C for 8h, the proof strength, ultimate strength and elongations were 340 MPa, 470 MPa and 16% respectively. The combination of relatively simple process steps, high strength and ductility/formability, and low distortion in complex sections demonstrated the strong potential for these low density alloys in aerospace and autosport applications

  19. Effect of composition, cooling rate, and solidification velocity on the microstructural development of molybdenum-bearing stainless steels (United States)

    Perricone, Matthew J.

    A series of Mo-bearing stainless steel compositions ranging from 0 to 10 wt% Mo were analyzed over a range of laser welding conditions to evaluate the effect of composition, cooling rate, and solidification velocity on microstructural development. Of particular engineering interest are alloys expected to solidify as primary delta-ferrite and transform in the solid state to gamma-austenite. Such compositions are essentially immune to solidification cracking and can potentially eliminate microsegregation (due to primary ferrite solidification) while still having high toughness and no magnetic signature at room temperature (transformation to austenite). A total of 64 Fe-Ni-Cr-Mo compositions were chosen based on multi-component phase stability diagrams calculated using the CALPHAD method. Alloys were created using the arc button melting process and laser welds were prepared on each alloy at constant power and travel speeds ranging from 4.2 mm/s to 42 mm/s. The cooling rates of these processes were estimated to range from 10 °C/s for are buttons to 105 °C/s for the fastest laser welds. Microstructural analysis was completed to determine primary solidification mode and the nature of solid state transformation behavior. Good agreement was observed between experimental observations and predictions from thermodynamic calculations. No shift in solidification mode was observed from primary delta-ferrite to primary gamma-austenite in the range of welding conditions studied. Metastable microstructural features were observed in many laser weld fusion zones, as well as a massive transformation from delta-ferrite to gamma-austenite in many of the alloys exhibiting primary delta-ferrite solidification. Evidence of epitaxial massive growth without nucleation was also found in primary delta-ferrite alloys with intercellular gamma-austenite already present from a solidification reaction. The resulting single phase gamma-austenite in both cases exhibited a homogenous distribution of

  20. Econometric models for biohydrogen development. (United States)

    Lee, Duu-Hwa; Lee, Duu-Jong; Veziroglu, Ayfer


    Biohydrogen is considered as an attractive clean energy source due to its high energy content and environmental-friendly conversion. Analyzing various economic scenarios can help decision makers to optimize development strategies for the biohydrogen sector. This study surveys econometric models of biohydrogen development, including input-out models, life-cycle assessment approach, computable general equilibrium models, linear programming models and impact pathway approach. Fundamentals of each model were briefly reviewed to highlight their advantages and disadvantages. The input-output model and the simplified economic input-output life-cycle assessment model proved most suitable for economic analysis of biohydrogen energy development. A sample analysis using input-output model for forecasting biohydrogen development in the United States is given.

  1. Educational Game Development Models

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Korkusuz


    Full Text Available Recent research on the subject shows that students spend more time on computer games than other activities such as reading book or watching TV. It is possible that this time-consuming activity can become much more effective by educator-game sector cooperation. Which type of game students prefer mostly; how the educational content can be articulated the games without diminishing the playability and enjoyableness of it; and the impact of the competition in the games on process and students are just several titles examined in the studies. This scope presents the types of computer game, qualities of educational games, and educational games designs which are recommended for developing educational games. It also presents a set of knowledge about the importance of educational games in mathematics and physic education, and some studies on this field. In the scope, some strategies, about educational game development process, are recommended educators and software developers in the sector who intend to develop educational games based on the literature.

  2. Inhomogeneous microstructural growth by irradiation

    DEFF Research Database (Denmark)

    Krishan, K.; Singh, Bachu Narain; Leffers, Torben


    In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used to d...

  3. On the formation of crystalline microstructures of monolayers seen in terms of qualitative diffusion-type models at mesoscale (United States)

    Gadomski, A.


    It is well known (see, e.g., K. A. Beklemishev and D. B. Berg, Pis’ma Zh. Tekh. Fiz. 33 (19), 40 (2007) [Tech. Phys. Lett. 33, 825 (2007)]) that many diffusion-type growth models allow qualitative features of growing microstructures to be obtained without employing any special information on the molecules constituting the microstructural domains. It has also been noted that the time needed to obtain a polycrystalline structure must be carefully estimated by engaging statistical-mechanical ensemble-averaging methods. The latter seems to be, in general, a difficult task because the problem is left as non-ergodic. The former, in turn, is supposed to be remedied while realizing that the qualitative estimates can become quantitative when offered at the mesoscopic level and when appropriately supported by a suitable construction of the diffusion function. In addition to comprising the Gibbs (non-negative) entropy production framework as a firm basis deeply rooted in the first law of thermodynamics for open thermodynamic systems, this construction can be seen as good as the frequently used Avrami-Kolmogorov phenomenology. This type of proposal cannot be easily postponed in the modeling of phospholipid monolayers or other two-dimensional amphiphilic, soft-matter-type systems.

  4. An object kinetic Monte Carlo model for the microstructure evolution of neutron-irradiated reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Luca; Olsson, Paer [KTH Royal Institute of Technology, Stockholm (Sweden); Chiapetto, Monica [SCK - CEN, Nuclear Materials Science Institute, Mol (Belgium); Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Becquart, Charlotte S. [Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Malerba, Lorenzo [SCK - CEN, Nuclear Materials Science Institute, Mol (Belgium)


    This work presents a full object kinetic Monte Carlo framework for the simulation of the microstructure evolution of reactor pressure vessel (RPV) steels. The model pursues a ''gray-alloy'' approach, where the effect of solute atoms is seen exclusively as a reduction of the mobility of defect clusters. The same set of parameters yields a satisfactory evolution for two different types of alloys, in very different irradiation conditions: an Fe-C-MnNi model alloy (high flux) and a high-Mn, high-Ni RPV steel (low flux). A satisfactory match with the experimental characterizations is obtained only if assuming a substantial immobilization of vacancy clusters due to solute atoms, which is here verified by means of independent atomistic kinetic Monte Carlo simulations. The microstructure evolution of the two alloys is strongly affected by the dose rate; a predominance of single defects and small defect clusters is observed at low dose rates, whereas larger defect clusters appear at high dose rates. In both cases, the predicted density of interstitial loops matches the experimental solute-cluster density, suggesting that the MnNi-rich nanofeatures might form as a consequence of solute enrichment on immobilized small interstitial loops, which are invisible to the electron microscope. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Multi-scale modeling of elasto-plastic response of SnAgCu lead-free solder alloys at different ageing conditions: Effect of microstructure evolution, particle size effects and interfacial failure

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Milad; Cugnoni, Joel, E-mail:; Botsis, John


    In microelectronics applications, SnAgCu lead-free solder joints play the important role of ensuring both the mechanical and electrical integrity of the components. In such applications, the SnAgCu joints are subjected to elevated homologous temperatures for an extended period of time causing significant microstructural changes and leading to reliability issues. In this study, the link between the change in microstructures and deformation behavior of SnAgCu solder during ageing is explained by developing a hybrid multi-scale microstructure-based modeling approach. Herein, the SnAgCu solder alloy is seen as a three phase metal matrix composite in which Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5} hard intermetallics play the role of reinforcements and Sn the role of a ductile matrix. The hardening of the Sn matrix due to fine intermetallics in the eutectic mixture is modeled by incorporating the mean field effects of geometrically necessary dislocations. Subsequently, a two level homogenization procedure based on micromechanical finite element (FE) models is used to capture the interactions between the different phases. For this purpose, tomographic images of microstructures obtained by Focused Ion Beam (FIB) and synchrotron X-Ray in different ageing conditions are directly used to generate statistically representative volume elements (RVE) using 3D FE models. The constitutive behavior of the solder is determined by sequentially performing two scales of numerical homogenization at the eutectic level and then at the dendrite level. For simplification, the anisotropy of Sn as well as the potential recovery processes have been neglected in the modeling. The observed decrease in the yield strength of solder due to ageing is well captured by the adopted modeling strategy and allows explaining the different ageing mechanisms. Finally, the effects of potential debonding at the intermetallic particle-matrix interface as well as particle fracture on the overall strength of solder are

  6. Microstructure-based approach for predicting crack initiation and early growth in metals.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Emery, John M.; Brewer, Luke N.; Reedy, Earl David, Jr.; Puskar, Joseph David; Bartel, Timothy James; Dingreville, Remi P. M.; Foulk, James W., III; Battaile, Corbett Chandler; Boyce, Brad Lee


    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.

  7. Models for Sustainable Regional Development

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard


    The chapter presents a model for integrated cross-cultural knowledge building and entrepreneurship. In addtion, narrative and numeric simulations methods are suggested to promote a further development and implementation of the model in China.......The chapter presents a model for integrated cross-cultural knowledge building and entrepreneurship. In addtion, narrative and numeric simulations methods are suggested to promote a further development and implementation of the model in China....

  8. Models for Sustainable Regional Development

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard


    The chapter presents a model for integrated cross-cultural knowledge building and entrepreneurship. In addtion, narrative and numeric simulations methods are suggested to promote a further development and implementation of the model in China.......The chapter presents a model for integrated cross-cultural knowledge building and entrepreneurship. In addtion, narrative and numeric simulations methods are suggested to promote a further development and implementation of the model in China....

  9. Microstructure and textural and viscoelastic properties of model processed cheese with different dry matter and fat in dry matter content. (United States)

    Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Řiháčková, Lada; Buňka, František


    The aim of this work was to examine the effect of a different dry matter (DM) contents (35 and 45% wt/wt) and fat in DM contents (40 and 50% wt/wt) on the textural and viscoelastic properties and microstructure of model processed cheeses made from real ingredients regularly used in the dairy industry. A constant DM content and constant fat in DM content were kept throughout the whole study. Apart from the basic chemical parameters, textural and viscoelastic properties of the model samples were measured and scanning electron microscopy was carried out. With increasing DM content, the rigidity of the products increased and the size of the fat globules in the model samples of the processed cheeses decreased. With increasing fat in DM content, the rigidity of the processed cheeses decreased and the size of the fat globules increased.


    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.


    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP

  11. Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling

    Directory of Open Access Journals (Sweden)

    X. W. Yang


    Full Text Available Friction stir spot welding (FSSW is a very useful variant of the conventional friction stir welding (FSW, which shows great potential to be a replacement of single-point joining processes like resistance spot welding and riveting. There have been many reports and some industrial applications about FSSW. Based on the open literatures, the process features and variants, macro- and microstructural characteristics, and mechanical properties of the resultant joints and numerical simulations of the FSSW process were summarized. In addition, some applications of FSSW in aerospace, aviation, and automobile industries were also reviewed. Finally, the current problems and issues that existed in FSSW were indicated.

  12. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization. (United States)

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan


    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties.

  13. Development of microstructure and mechanical properties during annealing of a cold-swaged Co-Cr-Mo alloy rod. (United States)

    Mori, Manami; Sato, Nanae; Yamanaka, Kenta; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko


    In this study, we investigated the evolution of the microstructure and mechanical properties during annealing of a cold-swaged Ni-free Co-Cr-Mo alloy for biomedical applications. A Co-28Cr-6Mo-0.14N-0.05C (mass%) alloy rod was processed by cold swaging, with a reduction in area of 27.7%, and then annealed at 1173-1423K for various periods up to 6h. The duplex microstructure of the cold-swaged rod consisted of a face-centered cubic γ-matrix and hexagonal closed-packed ε-martensite developed during cold swaging. This structure transformed nearly completely to the γ-phase after annealing and many annealing twin boundaries were observed as a result of the heat treatment. A small amount of the ε-phase was identified in specimens annealed at 1173K. Growth of the γ-grains occurred with increasing annealing time at temperatures ≥1273K. Interestingly, the grain sizes remained almost unchanged at 1173K and a very fine grain size of approximately 8μm was obtained. The precipitation that occurred during annealing was attributed to the limited grain coarsening during heat treatment. Consequently, the specimens treated at this temperature showed the highest tensile strength and lowest ductility among the specimens prepared. An elongation-to-failure value larger than 30% is sufficient for the proposed applications. The other specimens treated at higher temperatures possessed similar tensile properties and did not show any significant variations with different annealing times. Optimization of the present rod manufacturing process, including cold swaging and interval annealing heat treatment, is discussed.

  14. Microstructural Development during Welding of Silicon- and Aluminum-Based Transformation-Induced Plasticity Steels—Inclusion and Elemental Partitioning Analysis

    NARCIS (Netherlands)

    Amirthalingam, M.; Hermans, M.; Richardson, I.


    Microstructural development in gas tungsten arc (GTA) welded silicon- and aluminum-based transformation-induced plasticity (TRIP) steels was studied by optical and electron microscopy. The fusion zone (FZ) of both welds contained complex inclusions. Energy-dispersive spectroscopic (EDS) analysis on


    Directory of Open Access Journals (Sweden)

    Willy Schuwarten Júnior


    Full Text Available A thermomechanical and a microstructure caracterization and a mathematical model of the evolution of the recrystallized volume fraction of ferrite in hot rolling in a Steckel mill have been carried out here. The proposed model is able to reasonably predict the observed in hot rolling, that is, there is 100% recrystallization of ferrite after roughing and partial recrystallization only after finishing

  16. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D


    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  17. Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases (United States)

    Knezevic, Marko; Kalidindi, Surya R.


    This article reviews the advances made in the development and implementation of a novel approach to speeding up crystal plasticity simulations of metal processing by one to three orders of magnitude when compared with the conventional approaches, depending on the specific details of implementation. This is mainly accomplished through the use of spectral crystal plasticity (SCP) databases grounded in the compact representation of the functions central to crystal plasticity computations. A key benefit of the databases is that they allow for a noniterative retrieval of constitutive solutions for any arbitrary plastic stretching tensor (i.e., deformation mode) imposed on a crystal of arbitrary orientation. The article emphasizes the latest developments in terms of embedding SCP databases within implicit finite elements. To illustrate the potential of these novel implementations, the results from several process modeling applications including equichannel angular extrusion and rolling are presented and compared with experimental measurements and predictions from other models.

  18. Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure (United States)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy


    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical

  19. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A.; Castro, V. de [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Leguey, T., E-mail: [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain)


    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y{sub 2}O{sub 3} powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y{sub 2}O{sub 3} (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  20. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. (United States)

    Chen, Guobao; Yang, Li; Lv, Yonggang


    To promote bone healing, bone repair biomaterials are increasingly designed to incorporate growth factors. However, the impact of matrix mechanics of cell-free scaffold independent of microstructure on the osteogenic differentiation of endogenous osteoprogenitor cells orchestrating bone repair and regeneration remains not to be fully understood. In our recent study, three-dimensional (3D) scaffolds with different stiffness but same microstructure have been successfully fabricated by coating decellularized bone with collagen/hydroxyapatite (HA) mixture with different collagen rations. It has been demonstrated that the scaffold with optimal stiffness can induce the osteogenic differentiation of MSCs in vitro and in the subcutaneous tissue. The present in vivo study further investigated the repair efficiency of these scaffolds in a rabbit radius with a critical-sized segmental defect model and its potential mechanism. Micro-computed tomography (μ-CT), X-ray and histological analysis were carried out to evaluate the repair capacity of these scaffolds. The results demonstrated that the cell-free scaffold with optimal stiffness incorporation of endogenous osteoprogenitor cells significantly promoted the repair and reconstruction quality of mass bone defect. One of the crucial mechanisms was that hypoxia and stromal cell-derived factor-1α (SDF-1α) mediated mesenchymal stem cells (MSCs) migration by which matrix mechanics exerted influence on bone fracture healing. These findings suggested that only modulating the matrix stiffness of cell-free scaffold can be one of the most attractive strategies for promoting the progression of bone healing.

  1. Assessment of the feasibility of developing a Hanford Site weld modeling program

    Energy Technology Data Exchange (ETDEWEB)

    Atteridge, D.G.; Anderson, W.E.; Klein, R.F.


    Welding on the Hanford Site is an everyday occurrence, and most of the weldments made on site are relatively straightforward. Groove geometries, fillers, and wleding techniques and parameters are normally decided by experience or handbook advice. However, there are other weldments that might employ new materials, as well as one-of-a-kind welding situations. Implementation of a verified analytical weld assessment method would allow optimization of weld metal and heat-affected zone microstructure, and of variables that affect structural deformation and residual stresses. Realistic prediction of weldment thermal and strain history will require the use of a finite element model. Microstructure and resultant properties can be predicted using complex computer-based microstructure evolution models, literature-based empirical equations, or experimentally established behaviors. This report examines the feasibility of developing analytical methods for establishing weld parameter envelopes in new, complex welded configurations.

  2. Microstructural Development in a TRIP-780 Steel Joined by Friction Stir Welding (FSW: Quantitative Evaluations and Comparisons with EBSD Predictions

    Directory of Open Access Journals (Sweden)

    Gladys Perez Medina

    Full Text Available Abstract The present work describes the effect of FSW on the result microstructure in the stir zone (SZ, thermo-mechanically affected zone (TMAZ, heat affected zone (HAZ and base metal (BM of a TRIP-780 steel. X-ray diffraction (XRD, optical microscopy (OM and EBSD were used for determinations retained austenite (RA in the SZ, It was found that the amount of RA developed in SZ was relatively large, (approximately 11% to 15%. In addition, recrystallization and the formation of a grain texture were resolved using EBSD. During FSW, the SZ experienced severe plastic deformation which lead to an increase in the temperature and consequently grain recrystallization. Moreover, it was found that the recrystallized grain structure and relatively high martensite levels developed in the SZ lead to a significant drop in the mechanical properties of the steel. In addition, microhardness profiles of the welded regions indicated that the hardness in both the SZ and TMAZ were relatively elevated confirming the development of martensite in these regions. In particular, to evaluate the mechanical strength of the weld, lap shear tensile test was conducted; exhibited the fracture zone in the SZ with shear fracture with uniformly distributed elongation shear dimples.

  3. Synthesis, Deposition, and Microstructure Development of Thin Films Formed by Sulfidation and Selenization of Copper Zinc Tin Sulfide Nanocrystals (United States)

    Chernomordik, Boris David

    stoichiometric kesterite CZTS. The ~2 nm nanocrystals synthesized at 150 °C exhibit quantum confinement, with a band gap of 1.67 eV. Larger nanocrystals have the expected bulk CZTS band gap of 1.5 eV. Several micron thick films deposited by drop casting colloidal dispersions of ~40 nm CZTS nanocrystals were crack-free, while those cast using 5 nm nanocrystals had micron-scale cracks. We showed the applicability of these nanocrystal coatings for thin film solar cells by demonstrating a CZTS thin film solar cell using coatings annealed in a sulfur atmosphere. We conducted a systematic study of the factors controlling crystal growth and microstructure development during sulfidation annealing of films cast from colloidal dispersions of CZTS nanocrystals. The film microstructure is controlled by concurrent normal and abnormal grain growth. At 600 °C to 800 °C and low sulfur pressures (50 Torr), abnormal CZTS grains up to 10 microm in size grow on the surface of the CZTS nanocrystal film via transport of material from the nanocrystals to the abnormal grains. Meanwhile, the nanocrystals coarsen, sinter, and undergo normal grain growth. The driving force for abnormal grain growth is the reduction in total energy associated with the high surface area nanocrystals. The eventual coarsening of the CZTS nanocrystals reduces the driving force for abnormal crystal growth. Increasing the sulfur pressure by an order of magnitude to 500 Torr accelerates both normal and abnormal crystal growth though sufficient acceleration of the former eventually reduces the latter by reducing the driving force for abnormal grain growth. For example, at high temperatures (700-800 oC) and sulfur pressures (500 Torr) normal grains quickly grow to ~500 nm which significantly reduces abnormal grain growth. The use of soda lime glass as the substrate, instead of quartz, accelerates normal grain growth. Normal grains grow to ~500 nm at lower temperatures and sulfur pressures (i.e., 600 °C and 50 Torr) than those

  4. Modelling of Microstructural Evolution and Prediction of Mechanical Properties of Plain Carbon Strip Steel in Hot Rolling Process

    Institute of Scientific and Technical Information of China (English)

    Xiaochun SHA; Chunli MO; Dianzhong LI; Yiyi LI


    Based on hot rolling production line of strip steel, the of-line in-house software, termed as ROLLAN (Rolling Analysis),is developed. The code is mainly used to predict the evolution of temperature, rolling force, fraction and grain size of recrystallization, fraction and grain size of phase transformation and final mechanical properties. Almost all the processing parameters affecting microstructure and mechanical properties in the schedule from reheating to the coiling process are considered in detail. Self-learning coefficient is adopted to adjust the deviation between predicted and measured temperatures, such as roughing exit temperature (RT2), finishing exit temperature (FT7) and coiling temperature (CT). Due to the application of low-speed-threading, increasing-speed-rolling and decreasing-speeddelivery process during finishing rolling and different cooling condition, after coiling the thermal-mechanical history of different position, along strip longitudinal direction is different resulting in inhomogeneous mechanical properties.So the segments are divided along longitudinal direction to identify the variation of microstructure and mechanical properties. An example of plain carbon strip steel Q235 with various thickness is used to compare the calculated mechanical properties with measured ones. For the specific grade of Q235, the maximum deviation of tensile strength is less than 10.3 MPa, the yield strength is less than 13.2 MPa, and elongation is less than 1.99%. Further work will focus on the on-line application and consider the effect of macrosegregation and sulfur content of cast slab.

  5. Numerical modeling of damping capacity of Zn-Al alloys with fully lamellar microstructures

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-cheng; ZHANG Zhong-ming; YANG Gen-cang


    The damping behaviors of Zn-Al alloys with fully lamellar microstructures were simulated with the cell method. The influences of the grain boundary condition, the strain amplitude, the number of the lamellae in the grain (N) and the content ratio of Zn and Al in Zn-Al alloys on the damping capacity were investigated. The results indicate that the grain boundary condition has great influence on the damping capacity of Zn-Al alloys, and also affects the relationship between the damping capacity and the number of lamellae (N). The variation of damping capacity with the strain amplitude is increasing exponentially with the strain amplitude and the damping capacity increases with the increasing of content of Zn.

  6. Effect of curing time on microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS)

    Indian Academy of Sciences (India)

    M M Tashima; L Soriano; M V Borrachero; J Monzó; J Payá


    The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4–168 h) using 10 molal NaOH solution as alkaline activator. Compressive strength values around 77MPa after three days of curing at 65 °C were obtained. 1.68MPa/h compressive strength gain rate was observed in the first 12 h, decreasing to 0.95MPa/h for the period of 12–72 h. The progress of geopolymeric reaction was monitored by means of TGA and, electrical conductivity and pH measurements in an aqueous suspension. Significant decrease in pH and electrical conductivity were observed in the 4–72 h period, demonstrating the geopolymerization process. Furthermore, SEM images showed an important amount of (N, C)ASH gel and low porosity of the developed matrix.

  7. Developing a model: an illustration. (United States)

    Havenga, Yolanda; Poggenpoel, Marie; Myburgh, Chris


    Model development may seem a daunting task for the novice. The purpose of this article is to illustrate the steps of model development applied to a real-life phenomenon using an inductive theory-generating research approach. The value of the illustration is that nurse researchers can follow the application of the process as a point of departure for their own work. A logical stepwise discussion is followed for empirical theory development. The logical thought process from identifying the phenomenon to describing the model as a visual metaphor of the phenomenon is illustrated.

  8. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser


    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...... rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed...

  9. Snowpack Microstructure Characterization and Partial Coherent and Fully Coherent Forward Scattering Models in Microwave Remote Sensing (United States)

    Tan, S.; Tsang, L.; Xu, X.; Ding, K. H.


    In this paper we describe partial coherent model and fully coherent snowpack scattering model based on numerical simulation of Maxwell's equation. In medium characterization, we derive the correlation functions from the pair distribution functions of sticky spheres and multiple-size spheres used in QCA. We show that both the Percus-Yevick pair functions and the bicontinuous model have tails in the correlation functions that are distinctly different from the traditional exponential correlation functions. The methodologies of using ground measurements of grain size distributions and correlation functions to obtain model parameters are addressed. The DMRT theory has been extended to model the backscattering enhancement. We developed the methodology of cyclical corrections beyond first order to all orders of multiple scattering. This enables the physical modeling of combined active and passive microwave remote sensing of snow over the same scene. The bicontinuous /DMRT is applied to compare with data acquired in the NoSREx campaign, and the model results are validated against coincidental active and passive measurements using the same set of physical parameters of snow in all frequency and polarization channels. The DMRT is a partially coherent approach that one accounts for the coherent wave interaction only within few wavelengths as represented by phase matrix. However, the phase information of field is lost in propagating the specific intensity via RT and this hinders the use of DMRT in coherent synthetic aperture radar (SAR) analysis, including InSAR, PolInSAR and Tomo-SAR. One can alternatively calculate the scattering matrix of the terrestrial snowpack above ground by solving the volume integral equations directly with half space Green's function. The scattering matrix of the snowpack is computed for each realization giving rise to the speckle statistics. The resulting bistatic scattering automatically includes the backscattering enhancement effects. Tomograms of

  10. Advanced Mirror & Modelling Technology Development (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl


    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  11. Emissivity of microstructured silicon. (United States)

    Maloney, Patrick G; Smith, Peter; King, Vernon; Billman, Curtis; Winkler, Mark; Mazur, Eric


    Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25 microm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively.

  12. Static Softening in a Ni-30Fe Austenitic Model Alloy After Hot Deformation: Microstructure and Texture Evolution (United States)

    Beladi, Hossein; Cizek, Pavel; Taylor, Adam S.; Rohrer, Gregory S.; Hodgson, Peter D.


    In the current study, the microstructure and texture characteristics of a model Ni-30Fe austenitic alloy were investigated during hot deformation and subsequent isothermal holding. The deformation led to the formation of self-screening arrays of microbands within a majority of grains. The microbands characteristics underwent rather modest changes during the post-deformation annealing, which suggests that limited dislocation annihilation occurs within the corresponding dislocation walls. The fraction of statically recrystallized (SRX) grains progressively increased with the holding time and closely matched the softening fraction measured from the offset flow stress approach. The corresponding texture was weak and preserved its character with the holding time. There was no pronounced temperature effect on the grain boundary character distribution after the completion of SRX. The Σ3 and Σ9 coincidence site lattice boundaries were characterized as (111) pure twist and (1-14) symmetric tilt types, respectively. Nonetheless, the recrystallization temperature slightly affected the grain boundary network.

  13. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.


    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  14. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure (United States)

    Romero de la Osa, M.; Estevez, R.; Olagnon, C.; Chevalier, J.; Tallaron, C.


    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623-31) to mimic the reaction-rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284-8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597-623) of the reaction-rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157-67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression.

  15. Microstructural development from interdiffusion and reaction between Usbnd Mo and AA6061 alloys annealed at 600° and 550 °C (United States)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.


    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.

  16. Space Flight Cable Model Development (United States)

    Spak, Kaitlin


    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  17. Microstructure and mechanical properties of newly developed aluminum–lithium alloy 2A97 welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Banglong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Guoliang, E-mail: [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Meng, Xiangmeng; Ji, Yang; Zou, Yong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Lei, Zhen [Harbin Welding Institute, Harbin 150028 (China)


    The newly developed aluminum–lithium alloy 2A97 was for the first time joined by laser beam welding in order to meet the ever-increased long-term requirements of aerospace, aviation and armament industries. The weld appearance, microstructure, solute segregation, precipitate behavior, and their relationships with mechanical properties of welded joints were investigated. Sound joints with no crack and a few small porosities are obtained under appropriate heat inputs. As a result of heterogeneous nucleation involving the effect of Zr and Li, a non-dendritic equiaxed zone forms between partially melted zone and fusion zone. The crystal morphologies in fusion zone vary from columnar dendrite to equiaxed dendrite, with the increase of constitutional supercooling. Solute segregation leads to the variations of Cu content in grain interior and boundary, as well as the weak ability of re-precipitation of fusion zone. Most precipitates in the base metal dissolve during welding, and fusion zone contains a decreased quantity of δ′, β′, θ′, and T{sub 1}. The ultimate tensile strength of laser welded joints is 83.4% of that of the base metal, and can meet the application requirements from related industries, but the ductility still needs to be improved. Welding defects and loss of solid solution/precipitation hardened structure lead to the degradation of mechanical properties. Tensile fracture occurs in weld with the brittle intergranular dominated mode and premature failure occurs and extends in the equiaxed zone.

  18. Effects of soda-lime-silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics. (United States)

    Marinoni, Nicoletta; D'Alessio, Daniela; Diella, Valeria; Pavese, Alessandro; Francescon, Ferdinando


    The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. WC-Co硬质合金微观结构的参数化模型%Parametric Modeling of Microstructure of WC-Co Cemented Carbides

    Institute of Scientific and Technical Information of China (English)

    王东; 赵军; 李安海; 王泽明


    为实现WC-Co硬质合金的性能预报和微观结构的优化,提出了一种基于“随机法”构建材料二维微观结构模型的方法,该模型包含WC-Co硬质合金微观结构中WC晶粒的平均粒径、形心位置、取向角、长径和短径尺寸以及Co相体积分数等基本参数.采用C++,Matlab和Python语言汇合编程,得到可以直接导人有限元分析软件的模型.结果表明:构建的模型反映了真实的微观结构特征,实现了微观结构的参数化建模.模型的设计参数与实际参数比较吻合,证明了建模方法的可行性和模型的可靠性.%In order to realize the property prediction and microstructure optimization of WC-Co cemented carbides, a model based on "random method", which referred to the construction of two-dimensional microstructure model, was established. Some basic parameters of the microstructure of WC-Co, including average grain diameter, major axis and minor axis, centroid, orientation angle and the Co volume fraction, were considered in the model. C+ + , Matlab, Python are mixed for programming. The model can be obtained in the mixed program, which can be directly applied in the finite element software. The results show that the actual microstructure characteristics of material can be reconstructed, and the parametric model of microstructure is realized. The design parameters agree well with the actual ones, the feasibility of the method and the reliability of the model are proved.

  20. Microstructure development of a drying tile mortar containing methylhydroxy-ethylcellulose (MHEC)

    NARCIS (Netherlands)

    Faiyas, A.P.A.; Erich, S.J.F.; Nijland, T.G.; Hunnink, H.P.; Adan, O.C.G.


    Cement based mortars are widely used as adhesive for tiles in building and construction. They have a limited timespan during which a tile can be placed effectively in order to develop sufficient bond strength. This timespan, usually called ’open time’, is controlled, amongst others, by adding water

  1. Fracture simulation for zirconia toughened alumina microstructure

    CERN Document Server

    Kim, Kyungmok; Forest, Bernard


    Purpose - The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures. Design/methodology/approach - A two-dimensional finite element model is developed with an actual $Al{_2}O{_3}$ - 10 vol% $ZrO{_2}$ microstructure. A bilinear, time-independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro-void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models. Findings - Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro-void brings about...

  2. Quantitative image analysis of microstructure development during pressure sintering of CoO

    Energy Technology Data Exchange (ETDEWEB)

    Miro, A; Notis, M R


    An automatic system for quantitative image analysis was developed to study the transition from intermediate to final stage pore structure in pressure-sintered CoO. One of the significant results from this study indicates that the projected length is a good parameter to observe the transition from open cylindrical to closed porosity. Quantitative image analysis indicates that the Zener relationship (r/G approx. P) is obeyed through the entire sintering process.

  3. Diffusion MRI microstructure models with in vivo human brain Connectom data: results from a multi-group comparison

    CERN Document Server

    Ferizi, Uran; Schneider, Torben; Alipoor, Mohammad; Eufracio, Odin; Fick, Rutger H J; Deriche, Rachid; Nilsson, Markus; Loya-Olivas, Ana K; Rivera, Mariano; Poot, Dirk H J; Ramirez-Manzanares, Alonso; Marroquin, Jose L; Rokem, Ariel; Pötter, Christian; Dougherty, Robert F; Sakaie, Ken; Wheeler-Kingshott, Claudia; Warfield, Simon K; Witzel, Thomas; Wald, Lawrence L; Raya, José G; Alexander, Daniel C


    A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI) and infer properties about the white matter microstructure. However, a head-to-head comparison of DW-MRI models is critically missing in the field. To address this deficiency, we organized the "White Matter Modeling Challenge" during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed at identifying the DW-MRI models that best predict unseen DW data. in vivo DW-MRI data was acquired on the Connectom scanner at the A.A.Martinos Center (Massachusetts General Hospital) using gradients strength of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of t...

  4. Effects of Micro-structure and Micro-parameters on Brazilian Tensile Strength Using Flat-Joint Model (United States)

    Xu, Xueliang; Wu, Shunchuan; Gao, Yongtao; Xu, Miaofei


    It has been widely accepted that tensile strength plays a dominant role in the failure mechanism of rock or rock-like material. Tensile strength is determined mainly via two methods: the direct tension test and Brazilian test. Due to the strictness of preparing the specimen and difficulty of conducting the direct tension test, Brazilian test has been widely applied to determine the tensile strength of geo-materials. However, there is no exact standard for Brazilian test specimen. Moreover, Brazilian tensile strength (BTS) is affected by many factors, such as loading rate, loading platen width, model size. So far, most parametric studies of geo-materials have involved compression tests, but few studies have systematically focused on Brazilian test. The continuum methods have difficulty reproducing the failure process of Brazilian test, and 2D discrete element methods can not reflect the real mechanical behavior of a 3D cylindrical disk specimen. Moreover, the standard bonded-particle model has intrinsic problems in simulating geo-materials. This paper, using a 3D flat-joint model (FJM3D), investigates the effects of micro-structure and micro-parameters on BTS. The micro-structure consists of model size, model resolution, and degree of heterogeneity. The micro-parameters include the average coordination number, crack density, and bond strength. The effects on BTS are summarized, and this summary will be useful for guiding future Brazilian tests. Finally, FJM3D is used to calibrate Brisbane tuff by Brazilian test and the uniaxial compression test. The simulation results are in good agreement with those measured from experiments, and the failure process of Brazilian test is analyzed in detail at the microscale. Because of the heterogeneity of rock, cracks initiate near the loading platen instead of the center of the specimen. Even so, BTS can be an useful tensile index for geo-materials in a triaxial stress state, which is similar to the physical situations, and

  5. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel (United States)

    Lambert-Perlade, A.; Sturel, T.; Gourgues, A. F.; Besson, J.; Pineau, A.


    The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed together with fracture surface observations and cross-sectional analyses. The influence of martensite-austenite (M-A) constituents and of “crystallographic” bainite packets on cleavage fracture micromechanisms is, thus, evidenced as a function of temperature. Three weakest-link probabilistic models (the “Master-curve” (MC) approach, the Beremin model, and a “double-barrier” (DB) model) are applied to account for the ductile-to-brittle transition (DBT) fracture toughness curve. Some analogy, but also differences, are found between the MC approach and the Beremin model. The DB model, having nonfitted, physically based scatter parameters, is applied to the martensite-containing HAZ microstructures and gives promising results.

  6. Diffusion tensor quantification and cognitive correlates of the macrostructure and microstructure of the corpus callosum in typically developing and dyslexic children. (United States)

    Hasan, Khader M; Molfese, David L; Walimuni, Indika S; Stuebing, Karla K; Papanicolaou, Andrew C; Narayana, Ponnada A; Fletcher, Jack M


    Noninvasive quantitative MRI methods, such as diffusion tensor imaging (DTI), can offer insights into the structure-function relationships in human developmental brain disorders. In this article, we quantified the macrostructural and microstructural attributes of the corpus callosum (CC) in children with dyslexia and in typically developing readers of comparable age and gender. Diffusion anisotropy, and mean, radial and axial diffusivities of cross-sectional CC subregions were computed using a validated DTI methodology. The normalized posterior CC area was enlarged in children with dyslexia relative to that in typically developing children. Moreover, the callosal microstructural attributes, such as the mean diffusivity of the posterior middle sector of the CC, correlated significantly with measures of word reading and reading comprehension. Reading group differences in fractional anisotropy, mean diffusivity and radial diffusivity were observed in the posterior CC (CC5). This study demonstrates the utility of regional DTI measurements of the CC in understanding the neurobiology of reading disorders.

  7. Microstructural development: organizational differences of the fiber architecture between children and adults in dorsal and ventral visual streams. (United States)

    Loenneker, Thomas; Klaver, Peter; Bucher, Kerstin; Lichtensteiger, Janine; Imfeld, Adrian; Martin, Ernst


    Visual perceptual skills are basically mature by the age of 7 years. White matter, however, continues to develop until late adolescence. Here, we examined children (aged 5-7 years) and adults (aged 20-30 years) using diffusion tensor imaging (DTI) fiber tracking to investigate the microstructural maturation of the visual system. We characterized the brain volumes, DTI indices, and architecture of visual fiber tracts passing through white matter structures adjacent to occipital and parietal cortex (dorsal stream), and to occipital and temporal cortex (ventral stream). Dorsal, but not ventral visual stream pathways were found to increase in volume during maturation. DTI indices revealed expected maturational differences, manifested as decreased mean and radial diffusivities and increased fractional anisotropy in both streams. Additionally, fractional anisotropy was increased and radial diffusivity was decreased in the adult dorsal stream, which can be explained by specific dorsal stream myelination or increasing fiber compaction. Adult dorsal stream architecture showed additional intra- and interhemispheric connections: Dorsal fibers penetrated into contralateral hemispheres via commissural structures and projection fibers extended to the superior temporal gyrus and ventral association pathways. Moreover, intra-hemispheric connectivity was particularly strong in adult dorsal stream of the right hemisphere. Ventral stream architecture also differed between adults and children. Adults revealed additional connections to posterior lateral areas (occipital-temporal gyrus), whereas children showed connections to posterior medial areas (posterior parahippocampal and lingual gyrus). Hence, in addition to dorsal stream myelination or fiber compaction, progressing maturation of intra- and interhemispheric connectivity may contribute to the development of the visual system. Copyright © 2010 Wiley-Liss, Inc.

  8. Microstructural Evolution and interfacial motion in systems with diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Perry H. Leo


    This research program was designed to model and simulate phase transformations in systems containing diffusion barriers. The modeling work included mass flow, phase formation, and microstructural evolution in interdiffusing systems. Simulation work was done by developing Cahn-Hilliard and phase field equations governing both the temporal and spatial evolution of the composition and deformation fields and other important phase variables.

  9. Microstructure Evolution and Texture Development in a Cu-8.5%AT. AL Material Subjected to Hydrostatic Extrusion

    Directory of Open Access Journals (Sweden)

    Jakubowska D.


    Full Text Available The aim of the present paper was to investigate microstructure and texture evolution of two single crystals and polycrystal of Cu-8.5%at.Al material. All of mentioned samples were deformed by HE to achieve true strain ε = 1.17. For microstructure analyzes observations by transmission electron microscope (STEM were done. Crystalline size for samples after SPD were determine using XRD method. The global texture measurements were done using Bruker D8 Discover diffractometer equipped in Cr radiation. Microstructure investigations revealed nanocrystalline structure in single crystals with initial orientations and and polycrystalline Cu-8.5%at.Al material after SPD. The global texture measurements have shown the stability of initial orientation of Cu-8.5%at.Al single crystal after HE, whereas the same SPD process strongly brakes up the orientation Cu-8.5%at. Al single crystal.

  10. A molecular dynamic model for analyzing concentrations of electrolytes: Fractional molar dependences of microstructure properties (United States)

    Khalansky, D.; Popova, E.; Gladyshev, P.; Dushanov, E.; Kholmurodov, Kh.


    Aqueous electrolyte solutions play an important role in many electrophysical and chemical processes in aerospace technology and industrial applications. As noncovalent interactions, the interactions between ions are crucially important for biomolecular structures as well (protein structure folding, molecular level processes followed by ionic pair correlations, the formation of flexible hydrate shells, and so on). Specifically, ions (cations and anions with the same valence charges) can form stable pairs if their sizes match. The formation of ionic pairs can substantially affect the thermodynamic stabilities of proteins in the alkali salts physiologically present in the human body. Research aims and problems impose severe demands on readjustments of the ionic force fields and potential parameters developed to describe aqueous solutions and electrolytic systems. Ionic solutions and their interaction with biomolecules have been observed for over 100 years [1], but the behavior of such solutions remains poorly studied today. New data obtained in this work deals with parameterization strategies and adjustments for the ionic force fields of the alkali cations and halide anions that should be helpful in biomolecular research. Using molecular dynamics (MD) models, four electrolytic systems (HCl-H2O, LiCl-H2O, NaCl-H2O, and KCl-H2O) are investigated as binary mixtures of water and cations and anions, respectively. The intermolecular interaction parameters are varied for two of the four model electrolytes (HCl-H2O and NaCl-H2O) to simulate the possibility of different ionic shells forming during interaction with water. It is found that varying the potential parameters strongly affects the dynamic and structural characteristics of electrolyte systems. MD simulations are performed in the temperature range of 300 to 600 K with a step of 50 K. MD simulations for all electrolyte models (HCl-H2O, LiCl-H2O, NaCl-H2O, KCl-H2O) are also conducted for different molar fractions of

  11. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers (United States)

    Lorenz, H.; Klüppel, M.


    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  12. OSPREY Model Development Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge


    During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University, and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.

  13. Microstructure evolution and development of annealed Ni/Au contacts to GaN nanowires. (United States)

    Herrero, Andrew M; Blanchard, Paul T; Sanders, Aric; Brubaker, Matt D; Sanford, Norman A; Roshko, Alexana; Bertness, Kris A


    The development of Ni/Au contacts to Mg-doped GaN nanowires (NWs) is examined. Unlike Ni/Au contacts to planar GaN, current-voltage (I-V) measurements of Mg-doped nanowire devices frequently exhibit a strong degradation after annealing in N(2)/O(2). This degradation originates from the poor wetting behavior of Ni and Au on SiO(2) and the excessive void formation that occurs at the metal/NW and metal/oxide interfaces. The void formation can cause cracking and delamination of the metal film as well as reduce the contact area at the metal/NW interface, which increases the resistance. The morphology and composition of the annealed Ni/Au contacts on SiO(2) and the p-GaN films were investigated by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) measurements. Adhesion experiments were performed in order to determine the degree of adhesion of the Ni/Au films to the SiO(2) as well as observe and analyze the morphology of the film's underside by SEM. Device degradation from annealing was prevented through the use of a specific adhesion layer of Ti/Al/Ni deposited prior to the nanowire dispersal and Ni/Au deposition. I-V measurements of NW devices fabricated using this adhesion layer showed a decrease in resistance after annealing, whereas all others showed an increase in resistance. Transmission electron microscopy (TEM) on a cross-section of a NW with Ni/Au contacts and a Ti/Al/Ni adhesion layer showed a lack of void formation at the contact/NW interface. Results of the XRD and TEM analysis of the NW contact structure using a Ti/Al/Ni adhesion layer suggests Al alloying of the Ni/Au contact increases the adhesion and stability of the metal film as well as prevents excessive void formation at the contact/NW interface.

  14. VARTM Model Development and Verification (United States)

    Cano, Roberto J. (Technical Monitor); Dowling, Norman E.


    In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.

  15. Numerical simulation of AM1 microstructure

    Directory of Open Access Journals (Sweden)

    Rougier Luc


    Full Text Available A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate radius during isothermal heat treatments at 1100 ∘C and 1210 ∘C. The chained microsegregation and precipitation simulations indicate that the global sequences of precipitation events remains are qualitatively the same at the different locations in the microstructure, but the growth and dissolution kinetics are strongly influenced by the local compositions. Local supersaturations have a larger effect on the average radius of the precipitates than certain stages of the precipitation heat treatment.

  16. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy (United States)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned


    Institute of Scientific and Technical Information of China (English)


    The present study aims at developing a new method-Random M icrostructure Finite Element Method (RMFEM)for the effective properties of composite materials . In this method, a random microstructure model is used to simulate the microstructure of the real composite materials. The physical fields in such a randm microstructure model under specified boundary and initial conditions are analyzed by finite element method. The effective properties of composite materials can be obtained from the analysis results. As verification, some effective properties of composite materials, such as elastic module,thermal expansion coefficient, thermal conductivity and elastoplastic properties, are investigated by random microstructure finite element method. The numerical results are given together with the experimental data. It i- revealed that the random microstructure finite element method is a very valid method for the determination of the effective properties of composite materials.

  18. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys (United States)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  19. Microstructure and crystallographic preferred orientation of polycrystalline microgarnet aggregates developed during progressive creep, recovery, and grain boundary sliding (United States)

    Massey, M.A.; Prior, D.J.; Moecher, D.P.


    Optical microscopy, electron probe microanalysis, and electron backscatter diffraction methods have been used to examine a broad range of garnet microstructures within a high strain zone that marks the western margin of a major transpression zone in the southern New England Appalachians. Garnet accommodated variable states of finite strain, expressed as low strain porphyroclasts (Type 1), high strain polycrystalline aggregates (Type 2), and transitional morphologies (Type 3) that range between these end members. Type 1 behaved as rigid porphyroclasts and is characterized by four concentric Ca growth zones. Type 2 help define foliation and lineation, are characterized by three Ca zones, and possess a consistent bulk crystallographic preferred orientation of (100) symmetrical to the tectonic fabric. Type 3 show variable degrees of porphyroclast associated with aggregate, where porphyroclasts display complex compositional zoning that corresponds to lattice distortion, low-angle boundaries, and subgrains, and aggregate CPO mimics porphyroclast orientation. All aggregates accommodated a significant proportion of greenschist facies deformation through grain boundary sliding, grain rotation and impingement, and pressure solution, which lead to a cohesive behavior and overall strain hardening of the aggregates. The characteristic CPO could not have been developed in this manner, and was the result of an older phase of partitioned amphibolite facies dislocation creep, recovery including chemical segregation, and recrystallization of porphyroclasts. This study demonstrates the significance of strain accommodation within garnet and its affect on composition under a range of PT conditions, and emphasizes the importance of utilizing EBSD methods with studies that rely upon a sound understanding of garnet. ?? 2010 Elsevier Ltd.

  20. Experiments for foam model development and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.


    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  1. Motorola Secure Software Development Model

    Directory of Open Access Journals (Sweden)

    Francis Mahendran


    Full Text Available In today's world, the key to meeting the demand for improved security is to implement repeatable processes that reliably deliver measurably improved security. While many organizations have announced efforts to institutionalize a secure software development process, there is little or no industry acceptance for a common process improvement framework for secure software development. Motorola has taken the initiative to develop such a framework, and plans to share this with the Software Engineering Institute for possible inclusion into its Capability Maturity Model Integration (CMMI®. This paper will go into the details of how Motorola is addressing this issue. The model that is being developed is designed as an extension of the existing CMMI structure. The assumption is that the audience will have a basic understanding of the SEI CMM® / CMMI® process framework. The paper will not describe implementation details of a security process model or improvement framework, but will address WHAT security practices are required for a company with many organizations operating at different maturity levels. It is left to the implementing organization to answer the HOW, WHEN, WHO and WHERE aspects. The paper will discuss how the model is being implemented in the Motorola Software Group.

  2. Superhydrophobicity from microstructured surface

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lijun; WU Xuedong; LOU Zeng; WU Dan


    Superhydrophobicity is referred to the wettability of a solid surface which has a water apparent contact angle greater than 150°. It has attracted great interest in both fundamental researches and practical applications. This paper discusses two models: Wenzel model and Cassie model, to describe the superhydrophobic states of surface. The effectsof surface morphology and microstructure on superhydrophobicity are discussed, and the internal relationship between Wenzel and Cassie states is presented. These two su perhydrophobic states can coexist and they present different properties on contact angle hysteresis. It is reported that the irreversible transition can be realized from Cassie state to Wenzel state under some certain conditions. This paper also gives a review of recent progresses in the strategies of fabricating superhydrophobic surfaces by designing microstructured or microtextured surfaces. Finally, the fundamental research and applications of superhydrophobic surfaces are prospected.

  3. Microstructural white matter changes in normal aging: a diffusion tensor imaging study with higher-order polynomial regression models. (United States)

    Hsu, Jung-Lung; Van Hecke, Wim; Bai, Chyi-Huey; Lee, Cheng-Hui; Tsai, Yuh-Feng; Chiu, Hou-Chang; Jaw, Fu-Shan; Hsu, Chien-Yeh; Leu, Jyu-Gang; Chen, Wei-Hung; Leemans, Alexander


    Diffusion tensor imaging (DTI) has already proven to be a valuable tool when investigating both global and regional microstructural white matter (WM) brain changes in the human aging process. Although subject to many criticisms, voxel-based analysis is currently one of the most common and preferred approaches in such DTI aging studies. In this context, voxel-based DTI analyses have assumed a 'linear' correlation when finding the significant brain regions that relate age with a particular diffusion measure of interest. Recent literature, however, has clearly demonstrated 'non-linear' relationships between age and diffusion metrics by using region-of-interest and tractography-based approaches. In this work, we incorporated polynomial regression models in the voxel-based DTI analysis framework to assess age-related changes in WM diffusion properties (fractional anisotropy and axial, transverse, and mean diffusivity) in a large cohort of 346 subjects (25 to 81 years old). Our novel approach clearly demonstrates that voxel-based DTI analyses can greatly benefit from incorporating higher-order regression models when investigating potential relationships between aging and diffusion properties.

  4. Estimation of Heat Transfer Coefficients for Biomass Particles by Direct Numerical Simulation Using Microstructured Particle Models in the Laminar Regime

    Energy Technology Data Exchange (ETDEWEB)

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; Ciesielski, Peter N.


    Direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positioned in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.

  5. Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion (United States)

    Jahedi, Mohammad; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Zheng, Shijian; Xiong, Ting; Knezevic, Marko


    With electron backscatter diffraction and transmission electron microscopy, we study the rate of grain refinement and the uniformity in the evolution of microstructure in commercial purity Cu samples during high-pressure double torsion (HPDT). We aim to identify the processing conditions that would produce a microstructure that is both refined and uniform across the sample in grain size, texture, and intra-granular misorientation with minimal energy input. Two processing variables, pressure and number of turns, are probed. To provide a reference for HPDT, the investigation is also carried out using the standard high-pressure torsion (HPT) technique. For both processes, grain sizes decrease with the number of turns and applied pressure. Under pressure of 600 MPa and 4 torsional turns, HPDT provided a more homogeneous grain structure than HPT. Likewise, we also demonstrate that for the same processing condition, HPDT again produces the more homogeneous grain structure. It is found that a more homogeneous grain structure is achieved after doubling number of turns than doubling the pressure amount to 1.2 GPa. However, the rate of grain refinement substantially increases with doubling the pressure. Considering these results, the HPDT process, compared to HPT, takes better advantage of the role that high pressure plays in shear strain-induced grain refinement and homogenizing the microstructure. Last, analysis of the applied work finds that the least amount of work required for achieving fine and homogeneous microstructure occurs when the applied pressure is maximized and number of turns is minimized.

  6. Effect of Q and P parameters on microstructure development and mechanical behaviour of Q and P steels

    Energy Technology Data Exchange (ETDEWEB)

    Diego-Calderon, I. de; Knijf, D. de; Molina-aldareguia, J. M.; Sabirov, I.; Fojer, C.; Petrov, R.


    Steel with a nominal composition of 0.25C-1.5Si-3Mn-0.023Al (mass %) was subjected to Quenching and Partitioning (Q and P) with varying parameters (quenching temperature, partitioning temperature and partitioning time) resulting in formation of multi-phase microstructure, which was thoroughly studied using X-ray (XRD) and Electron Backscatter Diffraction (EBSD). Mechanical properties of the Q and P steel were measured by tensile tests. Plastic deformation of Q and P steel at micro-scale was investigated by in situ tensile testing and digital image correlation analysis. The effect of Q and P parameters on the microstructure (phase composition, size and volume fraction of micro constituents, texture and carbon content in retained austenite) is discussed. After analyzing the mechanical properties, plastic deformation at the micro-scale and the microstructure, it is shown that the strain partitioning between phases strongly depends on the microstructure of the Q and P steel, which, in turn, can be tuned via manipulation with Q and P parameters. (Author)

  7. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje


    The micro-scale solidification of commercial Mg alloys of the AZ and AM series is in the focus of the present thesis. Two approaches of investigating solidification are implemented, complementary regarding temperature gradient and solidification rate, and also with respect to the generated microstructure. The first approach considers solidification under a negligible spatial temperature gradient. Here the solidification curves, i.e. fraction solid versus temperature, were determined by developing an improved heat-transfer modeling applicable on both differential thermal analysis (DTA) and differential scanning calorimetry (DSC) signals. The correlation between solidification enthalpy and fraction solid during solidification was tested in detail. A better evaluation of the measured DTA and DSC signals is attained through an independent measurement of the time constant as function of temperature for the applied equipment. A further improvement is achieved through a more impartial interpretation of the measured curves. Both improvements enable a better desmearing of measured signals and reduce the error induced by the operator. The novel tantalum encapsulation enabled appropriate handling of challenging Mg-alloys. The viability and limitations of thermal analysis in general to determine start and end of solidification of AZ magnesium alloys was also studied. The second approach is based on directional solidification in a high temperature gradient and at constant solidification rate, achieved by the Bridgman technique. The resulting dendritic microstructure and inherent microsegregation are studied in this work. The solute profiles, i.e. solute content versus solid phase fraction during solidification, are determined by an advanced treatment of the EPMA data. Problems that are demonstrated in this work are Al-loss and melt pollution due to reaction with typical sample container material made of unprotected steel. The development of an optimized boron nitride (BN

  8. Modelling hormonal response and development. (United States)

    Voß, Ute; Bishopp, Anthony; Farcot, Etienne; Bennett, Malcolm J


    As our knowledge of the complexity of hormone homeostasis, transport, perception, and response increases, and their outputs become less intuitive, modelling is set to become more important. Initial modelling efforts have focused on hormone transport and response pathways. However, we now need to move beyond the network scales and use multicellular and multiscale modelling approaches to predict emergent properties at different scales. Here we review some examples where such approaches have been successful, for example, auxin-cytokinin crosstalk regulating root vascular development or a study of lateral root emergence where an iterative cycle of modelling and experiments lead to the identification of an overlooked role for PIN3. Finally, we discuss some of the remaining biological and technical challenges. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Hansen, Brian; Østergaard, Leif


    PURPOSE: To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. MATERIALS AND METHODS: We fit our diffusion...... model to the diffusion-weighted MR signal obtained from cortical gray matter in healthy subjects. Our model includes variable volume fractions, intracellular restriction effects, and exchange between compartments in addition to individual diffusion coefficients and transverse relaxation rates for each...

  10. Elastic anisotropy of Tambo gneiss from Promontogno, Switzerland: a comparison of crystal orientation and microstructure-based modeling and experimental measurements (United States)

    Vasin, R. N.; Kern, H.; Lokajíček, T.; Svitek, T.; Lehmann, E.; Mannes, D. C.; Chaouche, M.; Wenk, H.-R.


    SUMMARYFelsic and mafic gneisses constitute large proportions of the upper and lower continental crust. Gneisses often demonstrate high anisotropy of elastic properties associated with preferred orientations of sheet silicates. Here we study the elastic anisotropy of a sample of Tambo gneiss from Promontogno in the Central Alps. We apply optical microscopy, time-of-flight neutron diffraction, neutron and X-ray tomography to quantify mineral composition and microstructures and use them to construct self-consistent models of elastic properties. They are compared to results of ultrasonic measurements on a cube sample in a multi anvil apparatus and on a spherical sample in an apparatus that can measure velocities in multiple directions. Both methods provide similar results. It is shown that models of microstructure-derived elastic properties provide a good match with ultrasonic experiment results at pressures above 100 MPa. At a pressure of 0.1 MPa the correspondence between the model and the experiment is worse. This may be caused by an oversimplification of the model with respect to microfractures or uncertainties in the experimental determination of S-wave velocities and elastic tensor inversion. The study provides a basis to determine anisotropic elastic properties of rocks either by ultrasonic experiments or quantitative models based on microstructures. This information can then be used for interpretation of seismic data of the crust.

  11. Modelling of the isothermal replication of surface microstructures in polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard


    The forming of micro surface structures on polymer materials is well established in polymer-processing operations. Numerical flow calculations were performed using the Lagrangian Integral Method where the fluid was described by a MSF constitutive model. The numerical modelling of the flow was per...

  12. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C


    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  13. Control of Microstructural Development in Reaction—Bonded Silicon Nitride(RBSN) by Seeding With β—Si3N4 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    K.Amoako-Appiagyei; ByungSeiJun; 等


    The addition of β-Si3N4 seed grains to a ceramic powder is an effective means of controlling the microstructural evolution,In this work addition of β-Si3N4 seed grains gave rise to a bi-modal microstructure made up of large rod-lkike grains that grew from the added seed during the liquid phase sintering process and the usua elongated grains which are developed from the α→β transformation process in silicon nitride,The morphology of te grains that were grown epitaxially from the seed was influenced by the size and shape of the seed crystals;the relatively large and elongated seed grains gave rise to large rod-like grains whilst those with equiaxed-like shape gave rise to large grains similar in shape to the seed from which they were grown.The evolution of the large rod-like grains and the resultant bi-modal microstructure led to a considerable improvement in the mechanical properties.

  14. Space market model development project (United States)

    Bishop, Peter C.


    The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

  15. Numerical modelling of microstructure forming process for Al-Al3Fe eutectic alloy

    Institute of Scientific and Technical Information of China (English)

    李荣德; 周振平


    A self-adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al-Al3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.

  16. Topology optimization based methods and the realization programs for designing microstructures of patched metamaterials with prescribed electromagnetic properties (United States)

    Shi, Pengfei; Gao, Renjing; Liu, Shutian


    This paper aims to establish a design tool to design the metamaterial microstructures with specific electromagnetic properties easily and conveniently, including the design methods of metamaterial microstructures and the corresponding program codes. For the patch type microstructure and several typical metamaterials (such as the single-negative metamaterials with specific negative permeability, left-handed metamaterials with specific material constants at the prescribed frequency; single negative metamaterials and left-handed metamaterials in prescribed frequency bands), the topology optimization models, solving schedules and corresponding implementation program codes for microstructure design are presented in detail. Several typical metamaterial microstructures with different design requirements are designed concretely. The results illustrated the correctness and validity of the design methods and the corresponding program codes. The designing method proposed and the program codes developed in this paper provide an effective tool for the design of metamaterial microstructure with specific function for the designers.

  17. Supo Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report describes the continuation of the Computational Fluid Dynamics (CFD) model of the Supo cooling system described in the report, Supo Thermal Model Development1, by Cynthia Buechler. The goal for this report is to estimate the natural convection heat transfer coefficient (HTC) of the system using the CFD results and to compare those results to remaining past operational data. Also, the correlation for determining radiolytic gas bubble size is reevaluated using the larger simulation sample size. The background, solution vessel geometry, mesh, material properties, and boundary conditions are developed in the same manner as the previous report. Although, the material properties and boundary conditions are determined using the appropriate experiment results for each individual power level.

  18. Simulation and visualization of recrystallization microstructure after solution treatment

    Institute of Scientific and Technical Information of China (English)

    LI Ping; XUE Ke-min


    Simulation models for heterogeneous and simultaneous nucleation and random growth of nuclei were developed in terms of the mechanism of recrystallization and Monte Carlo stochastic simulation method.Combining deterministic simulation with stochastic simulation,the simulation and visualization of the recrystallization microstructure of Ti-15-3 alloy after hot compression deformation and solution treatment were realized.Comparison of the simulated results with the experimental ones suggests that the size and distribution of the simulated recrystallized grains agree well with the actual ones.This proves that the obtained statistic equivalent microstructure models are effective.This study is helpful for determining reasonable hot forming process and improving the forming quality.

  19. Finite Element Simulation of Mechanical Behavior of TRIP800 Steel Under Different Loading Conditions Using an Advanced Microstructure-Based Model (United States)

    Hosseinabadi, F.; Rezaee-Bazzaz, A.; Mazinani, M.


    The mechanical behavior of a low alloy multiphase TRIP steel has been predicted by an advanced microstructure-based finite element method. A representative volume element chosen based on the actual microstructure has been utilized for simulating the mechanical behavior of the studied steel. The parameters describing the martensitic transformation kinetics have been estimated using both crystallographic and thermodynamic theories of martensitic transformation. The mechanical behavior of each of the constituent phases required for the prediction of mechanical behavior of the studied material has been extracted from those reported in the literature. Comparison of the predicted mechanical behavior of the investigated TRIP800 steel with those reported in the literature shows that there is good agreement between simulated and experimental results. Therefore, it can be said that, the utilized microstructure-based model can be used for the prediction of both mechanical and transformation behaviors of the TRIP800 steels. It is worth noting that all of the parameters used in the model, except the sensitivity of the martensitic transformation to the stress state, can be estimated theoretically; thus, the number of parameters obtained by correlating the simulated and experimental results reduces to one. This is the unique characteristic of the utilized model, which makes the application of the model for simulation of the mechanical behavior of TRIP steels simpler than that of the similar ones.


    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, M.; Katoh, Y.


    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  1. Cellular automaton modeling of ductile iron microstructure in the thin wall

    Directory of Open Access Journals (Sweden)

    A.A. Burbelko


    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the solidification of the ductile iron with different carbon equivalent in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Solidification of the DI with different carbon equivalents was analyzed. Obtained results were compared with the solidification path calculated by CALPHAD method.

  2. Modelling meristem development in plants


    Heisler, Marcus G.; Jönsson, Henrik


    Meristems continually supply new cells for post-embryonic plant development and coordinate the initiation of new organs, such as leaves and flowers. Meristem function is regulated by a large and interconnected dynamic system that includes transcription networks, intercellular protein signalling, polarized transport of hormones and a constantly changing cellular topology. Mathematical modelling, in which the dynamics of a system are simulated using explicitly defined interactions, can serve as...

  3. Numerical modelling of softwood time-dependent behaviour based on microstructure

    DEFF Research Database (Denmark)

    Engelund, Emil Tang


    by the basic physical mechanism behind the time-dependent behaviour. The mechanism causing time-dependency is thought to be sliding of the microfibrils past each other as a result breaking and re-bonding of hydrogen bonds. This can be incorporated in a numerical model by only allowing time-dependency in shear...... be predicted with the described method of modelling. This is seen by simulating experimental results for both single fibres and tissues in creep and relaxation experiments....

  4. Developing a Malaysia flood model (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina


    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  5. Microstructural design of fiber composites (United States)

    Chou, Tsu-Wei

    The optimum performance design of composite microstructures is discussed. The forces driving progress in fiber composites are examined, and recent developments in the mechanics of laminated composites are surveyed, emphasizing thick laminates, hygrothermal effects, and thermal transient effects. The strength of continuous-fiber composites is discussed, presenting analyses of local load redistribution due to fiber breakages and treatments of statistical tensile strength theories. Modes of failure of laminated composites are examined. Elastic, physical, and viscoelastic properties as well as the strength and fracture behavior of short-fiber composites are studied, and it is shown how the performance of composites can be controlled by selecting material systems and their geometric distributions. 2D textile structural composites based on woven, knitted, and braided preforms are considered, and techniques for analyzing and modeling the thermomechanical behavior of 2D textile composites are presented. Recent developments in the processing of 3D textile preforms are introduced and the processing-microstructure relationship is demonstrated. Finite elastic deformation of flexible composites is addressed.

  6. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel. (United States)

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y


    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  7. Development of a strain visualization system for microstructures using single fluorescent molecule tracking on a three-dimensional orientation microscope (United States)

    Yoshida, Shintaro; Yoshiki, Keisuke; Namazu, Takahiro; Araki, Nozomu; Hashimoto, Mamoru; Kurihara, Makoto; Hashimoto, Nobuyuki; Inoue, Shozo


    We propose a technique that employs single fluorescent molecules for visualizing the distribution of strain induced in microstructures. We sprayed single-molecule tracers on microstructures by ultrasonic atomization and traced the position and orientation of the tracers by a single-molecule detection technique with a three-dimensional (3D) orientation microscope, which consists of a conventional fluorescent microscope and a polarization-mode converter. By using 3D spline interpolation, we visualized the surface geometry of a microelectromechanical (MEMS) device. We tracked the 3D position and orientation of tracers attached to a supporting beam of the MEMS mirror. The surface declination angles calculated from the orientation of the tracers were in agreement with the tilt angle obtained from the 3D position of the tracers.

  8. Dewetting on microstructured substrates (United States)

    Kim, Taehong; Kim, Wonjung


    A thin liquid film has an equilibrium thickness in such a way as to minimize the free energy. When a liquid film thickness is out of its equilibrium, the film seeks its equilibrium state, resulting in dynamics of liquid film, which are referred to as wetting and dewetting, depending on the flow direction. We here present a combined experimental and theoretical investigation of dewetting on a substrate with parallel microstructures. Our experiments show that residue may remain on the substrate after dewetting, and residue morphologies can be classified into three modes. Based on our experimental observations, we elucidate how the modes depend on the pattern morphology and contact angle, and develop a model for the contact line motion. Our results provide a basis for controlling the thickness film, which is important for many practical applications such as oil recovery, detergency, lithography, and cleaning. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  9. On modeling micro-structural evolution using a higher order strain gradient continuum theory

    DEFF Research Database (Denmark)

    El-Naaman, S. A.; Nielsen, K. L.; Niordson, C. F.


    Published experimental measurements on deformed metal crystals show distinct pattern formation, in which dislocations are arranged in wall and cell structures. The distribution of dislocations is highly non-uniform, which produces discontinuities in the lattice rotations. Modeling the experimenta......Published experimental measurements on deformed metal crystals show distinct pattern formation, in which dislocations are arranged in wall and cell structures. The distribution of dislocations is highly non-uniform, which produces discontinuities in the lattice rotations. Modeling...... a proper treatment of the back stress enables dislocation wall and cell structure type response in the adopted framework....

  10. Characterization of the hierarchical microstructure of a Ni-Al-Ti model alloy; Charakterisierung der hierarchischen Mikrostruktur einer Ni-Al-Ti Modell-Legierung

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Florian


    Phase separation of γ{sup '} precipitates determines the microstructure and mechanical properties of nickel-based superalloys. Upon ageing, γ spheres form inside ordered (L1{sub 2}) γ{sup '} precipitates, undergo a morphological change to plates and finally split the γ{sup '} precipitates. To clarify the identity of the insufficiently characterized γ particles and to elucidate their influence on the evolution of the microstructure and the mechanical properties, differently heat treated samples of a Ni-Al-Ti modell alloy were investigated from the micrometer to the atomic scale. The single crystalline cast material was broadly characterized by means of light and scanning electron microscopy, the laue method (back-reflection), differential scanning calorimetry as well as electron probe microanalysis. Dendritic segregations were found, whereas the dendrite cores show an enrichment in nickel and aluminum and in turn the interdendritic regions show an enrichment in titanium. An adequate combination of temperature and time was determined on the basis of quantitative analyses after different homogenization treatments. The evolution of the hierarchical microstructure was investigated on the nanometer scale by means of transmission electron microscopy and on the atomic scale with atom probe tomography. The combined analyses reveal that Ni-rich clusters form within the γ{sup '} precipitates during the early stages of phase separation. These Ni-rich clusters coalesce and thereby form γ spheres which undergo a morphological change to plates accompanied by a chemical evolution. In the beginning the γ spheres are located well within the metastable γ + γ{sup '} two-phase region and later, after the morphological change, achieve the equilibrium composition of the γ phase. Furthermore the involved energies were considered in order to elucidate the driving forces for the phase separation of γ{sup '} precipitates. A correlation between the

  11. Development of ultrafine-grained microstructure in Al-Cu-Mg alloy through equal-channel angular pressing (United States)

    Sai Anuhya, Danam; Gupta, Ashutosh; Nayan, Niraj; Narayana Murty, S. V. S.; Manna, R.; Sastry, G. V. S.


    Al-Cu-Mg alloys are extensively used for riveting applications in aerospace industries due to their relatively high shear strength coupled with high plasticity. The significant advantage of using V65 aluminum alloy ((Al-4Cu-0.2Mg) for rivet application also stems from its significantly slower natural aging kinetics, which gives operational flexibility to carryout riveting operation even after 4 days of solution heat treatment, in contrast to its equivalent alloy AA2024.Rivets are usually made by cold heading of wire rods. In order to form a defect free rivet head, grain size control in wire rods is essential at each and every stage of processing right from casting onwards upto the final wire drawing stage. Wire drawing is carried out at room temperature to reduce diameter as well as impart good surface finish. In the present study, different microstructures in V65 alloy bars were produced by rolling at different temperatures (room temperature to 523K) and subsequently deformed by equal channel angular pressing (ECAP) at 423K upto an equivalent strain of 7. ECAP was carried out to study the effect of initial microstructure on grain refinement and degree of deformation on the evolution of ultrafine grain structure. The refinement of V65 alloy by ECAP is significantly influenced by Initial microstructure but amount of deformation strongly affects the evolution processes as revealed by optical microscopy and transmission electron microscopy.

  12. Phase-field modeling of microstructural pattern formation in alloys and geological veins


    Ankit, Kumar


    With the advent of high performance computing, the application areas of the phase-field method, traditionally used to numerically model the phase transformation in metals and alloys, have now spanned into geoscience. A systematic investigation of the two distinct scientific problems in consideration suggest a strong influence of interfacial energy on the natural and induced pattern formation in diffusion-controlled regime.

  13. Microstructure-Based Computational Modeling of Mechanical Behavior of Polymer Micro/Nano Composites (United States)


    stabilizing the asymptotic rate of quadratic convergence in the Newton-Raphson technique for global finite element approach. If a constitutive model...t the instant asuring it. recovery tes mage in the extended to chematic dia Fig. 5.1. Sc xpress the c (5.9) at refer irrec ( )t  irrec ( )at g

  14. New Formulation of the Modeling of Radiation-Induced Microstructure Evolution in Alkali Halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den


    Recent experimental results on heavily irradiated natural and synthetic NaCl crystals give a strong evidence for the formation of large vacancy voids, which cannot be explained by the Jain-Lidiard model used up to date for description of metal colloids and dislocation loops formed during earlier sta

  15. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    KAUST Repository

    Han, Fei


    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned. These characteristics include networks/agglomerations of carbon nanotubes and thick polymer interphase regions between the nanotubes and the surrounding matrix. An algorithm is presented to construct three-dimensional geometric models with large amounts of randomly dispersed and aggregated nanotubes. The effects of the distribution of the nanotubes and the thickness of the interphase regions on the concentration of the interphase regions are demonstrated with numerical results. © 2013 Elsevier B.V. All rights reserved.

  16. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon


    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  17. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański


    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  18. Micropolar interface model of thin-layered interconnection components with heterogeneous internal microstructures

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yan; FAN; Jing-yu


    Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficacious to obtain an accurate prediction for the interface behavior under mechanical and/or thermal loading. Rather than resort to a fully spatial discretization in the vicinity of this interface zone, an interface model was proposed within the framework of micropolar theory by introducing discontinuous approximation. A fracture description was used to represent the microscopic failure progress inside the interface. The micropolar interface model was then numerically implemented with the finite element method. As an application, the interface behavior of a packaging system with anisotropic conductive adhesive(ACA)joint was analyzed, demonstrating its applicability and great efficiency.

  19. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding (United States)


    B. Clausen, and K. An, In Situ Neutron Diffraction Measurements of Temperature and Stresses During Friction Stir Welding of 6061 -T6 Aluminium Alloy...Analytical Modelling of Friction Stir Welding, INALCO98: Seventh International Conference on Joints in Aluminium , M.J. Russell and R. Shercliff R, Ed...Fujii, M. Maeda, and K. Nogi, Tensile Fracture Location Characterisation of Friction Stir Welded Joints of Different Aluminium Alloys, J. Mater. Sci

  20. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof


    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  1. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof


    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  2. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding (United States)


    bainite and/or martensite 1212—Volume 22(5) May 2013 Journal of Materials Engineering and Performance The procedure described above is used to construct...phases/ microconstituents, primarily bainite , martensite and retained austenite. As it is generally difficult to make a clear distinction between...Widmanstatten ferrite and bainite , austenite to bainite phase transformation is not modeled explicitly, and it is simply lumped with the austenite to

  3. Flow regime transitions in dense non-Brownian suspensions: Rheology, microstructural characterization, and constitutive modeling (United States)

    Ness, Christopher; Sun, Jin


    Shear flow of dense non-Brownian suspensions is simulated using the discrete element method taking particle contact and hydrodynamic lubrication into account. The resulting flow regimes are mapped in the parametric space of the solid volume fraction, shear rate, fluid viscosity, and particle stiffness. Below a critical volume fraction ϕc, the rheology is governed by the Stokes number, which distinguishes between viscous and inertial flow regimes. Above ϕc, a quasistatic regime exists for low and moderate shear rates. At very high shear rates, the ϕ dependence is lost, and soft-particle rheology is explored. The transitions between rheological regimes are associated with the evolving contribution of lubrication to the suspension stress. Transitions in microscopic phenomena, such as interparticle force distribution, fabric, and correlation length are found to correspond to those in the macroscopic flow. Motivated by the bulk rheology, a constitutive model is proposed combining a viscous pressure term with a dry granular model presented by Chialvo et al. [Phys. Rev. E 85, 021305 (2012), 10.1103/PhysRevE.85.021305]. The model is shown to successfully capture the flow regime transitions.

  4. Development Model for Research Infrastructures (United States)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn


    . The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2

  5. Recent development of hydrodynamic modeling (United States)

    Hirano, Tetsufumi


    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  6. Interface Propagation and Microstructure Evolution in Phase Field Models of Stress-Induced Martensitic Phase Transformations (United States)


    between phase transformation and thermoelasticity equations has important computational con- sequences: finite element thermoelasticity codes can be...combination of four herring bone types of micro- structure is developed (Fig. 10). At some stage, the equivalence of both variants is violated-units...preceding analysis . At these high driving forces the interface motion is governed by the phonon (and at lower temperatures, by the electron) drag

  7. Modelling the effective diffusion coefficient of anions in Callovo-Oxfordian argillite knowing the microstructure of the rock; Modelisation predictive de la migration des anions par description de la microstructure de la roche: application a l'argilite du Callovo-Oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, N.


    After having presented the issue of radioactive waste storage, the concept of geological storage and its application in the Meuse/Haute-Marne underground laboratory, and described the Callovo-Oxfordian geological formation and the argillite transport properties, this research thesis aims at developing a prediction of these properties at a macroscopic scale for water and anions. A first part presents the different experimental means implemented to acquire the diffusion coefficients for the studied materials (Callovo-Oxfordian argillite and purified Puy illite), and the spatial organisation of minerals by LIBS probe-based mapping to highlight a relationship between rock microstructure and its transport macroscopic properties. The next part presents the models which have been developed at the nanometer and micrometre scale to predict the diffusion coefficients. Experimental results are then compared with computed values

  8. New constraints on the rheology of granitic rock during faulting at the brittle-ductile transition: field observations, microstructural analysis and mechanical modeling (United States)

    Nevitt, J. M.; Pollard, D. D.; Warren, J. M.


    Mechanical models of fault slip and related deformation are built upon the equations of motion, which require constitutive equations to define the relationship between stress and resulting strain or strain rate. Although the brittle-ductile transition plays a significant role in earthquake nucleation and propagation, constitutive equations governing rock behavior in this crustal interval remain largely unknown. Identifying appropriate constitutive equations will improve our understanding of earthquake mechanics, in addition to our knowledge of the strength of the lithosphere. Outcrops in the Bear Creek drainage (central Sierra Nevada, CA) provide excellent opportunities to investigate structures that develop under brittle-ductile conditions. There, late Cretaceous biotite-hornblende granodiorite contains an abundance of discontinuous left-lateral strike-slip faults, some of which were seismically active based on the presence of pseudotachylyte. The occurrence of both brittle (e.g., cataclastic rock, opening mode fractures) and ductile (e.g., foliation, ductile shear zones) features suggests that deformation likely occurred near the brittle-ductile transition. Microstructural observations indicate that the temperature during deformation was ~450°C, consistent with the brittle-ductile transition in continental crust. The Seven Gables outcrop contains a 4 cm wide aplite dike that is displaced 42 cm through a contractional step. Within the step, the aplite undergoes stretching (180% stretch) and rotation (45° CCW about an axis plunging 21°), while the granodiorite develops a locally strong mylonitic foliation. The aplite dike provides a valuable strain marker from which we deduce the kinematic evolution of faulting at this contractional step under brittle-ductile conditions. The geometry and kinematic model of the Seven Gables outcrop constrain the geometry and boundary conditions of a forward finite element model. The faults are modeled as planar features and obey

  9. Computer vision in microstructural analysis (United States)

    Srinivasan, Malur N.; Massarweh, W.; Hough, C. L.


    The following is a laboratory experiment designed to be performed by advanced-high school and beginning-college students. It is hoped that this experiment will create an interest in and further understanding of materials science. The objective of this experiment is to demonstrate that the microstructure of engineered materials is affected by the processing conditions in manufacture, and that it is possible to characterize the microstructure using image analysis with a computer. The principle of computer vision will first be introduced followed by the description of the system developed at Texas A&M University. This in turn will be followed by the description of the experiment to obtain differences in microstructure and the characterization of the microstructure using computer vision.

  10. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry (United States)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  11. Phase-field Modeling of the Influence of Elastic Field on the Nucleation and Microstructure Evolution in Precipitation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-xiang; WANG Jin-cheng; YANG Yu-juan; YANG Gen-cang; ZHOU Yao-he


    A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and the other calculated from the classical nucleation theory. In the latter case, the simulated results show that the anisotropic elastic strain field yields significant effects on the behavior of nucleation. With a large lattice misfit between the matrixes and the precipitates, the nucleation process does not appear fully random but displays some spatial correlation and has a preference for the elastic soft direction. However, with a small lattice misfit, this bias does not look quite clean On the contrary, in the case of fixed nucleation probability, the elastic field has no influence on the nucleation process. The lattice mismatch also exerts influences on the microstructure morphology: with lattice mismatch becoming larger, the microstructure proves to align along the elastic soft direction.

  12. Effect of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS)


    Mitsuuchi Tashima, Mauro; Soriano Martinez, Lourdes; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan


    The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4¿168 h) using 10 molal NaOH solution as alkaline activator. Compressive strength values around 77 MPa after three days of curing at 65 °C were obtained. 1·68 MPa/h compressive strength gain rat...

  13. Desalination shocks in microstructures

    CERN Document Server

    Mani, Ali


    Salt transport in bulk electrolytes is limited by diffusion and convection, but in microstructures with charged surfaces (e.g. microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counter-ions are selectively removed by a membrane or electrode, a "desalination shock" can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of co-ions and colloidal impurities. We elucidate the basic physics of desalination shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that des...

  14. A model study of the role of workfunction variations in cold field emission from microstructures with inclusion of field enhancements (United States)

    Qiu, H.; Joshi, R. P.; Neuber, A.; Dickens, J.


    An analytical study of field emission from microstructures is presented that includes position-dependent electric field enhancements, quantum corrections due to electron confinement and fluctuations of the workfunction. Our calculations, applied to a ridge microstructure, predict strong field enhancements. Though quantization lowers current densities as compared to the traditional Fowler-Nordheim process, strong field emission currents can nonetheless be expected for large emitter aspect ratios. Workfunction variations arising from changes in electric field penetration at the surface, or due to interface defects or localized screening, are shown to be important in enhancing the emission currents.

  15. Microstructural Characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr Model Alloy s

    Energy Technology Data Exchange (ETDEWEB)

    De Castro, V.; Jenkins, M.L. [Oxford Univ., Dept. of Materials (United Kingdom); Leguey, T.; Mufioz, A.; Pareja, R.; Monge, M.A. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)


    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels with Cr contents ranging between 9-12 wt% are promising candidates for use as structural materials in future fusion reactors. They are likely to be superior to austenitic steels because of their better thermal properties and higher swelling resistance. A major concern of these materials is their maximum service temperature, as this determines the overall efficiency of the reactor. It has been demonstrated that one way to increase this temperature is to homogeneously disperse hard nano-sized oxide particles, such as Y{sub 2}O{sub 3}, into the steel matrix. Oxide dispersion strengthened (ODS) steels produced by mechanical milling and hot isostatic pressing (HIP ) are considered as potential structural materials for fusion reactors. In Europe, efforts have been focused on the ODS-RAFM-9CrW steel EUROFER. These ODS steels show good tensile and creep properties, acceptable ductility, but poor impact properties. Microstructural characterization of real steels, especially of the structures of oxide/steel matrix interfaces which play an important role in the performance of the material, is a difficult task. In the present work we have fabricated and characterised a simpler model ODS system based on a Fe-Cr binary alloy, in the belief that this will help us better to understand complex ODS-RAFM steels. Two Fe-12wt% Cr batches, one containing 0.3 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3} free have been produced by milling plus compaction by HIP. These materials are being characterized by X-ray diffraction, electron microscopy and atom probe field ion microscopy. Results will be compared with those obtained for ODS-EUROFER produced under the same conditions. (authors)

  16. Performance of mesoscale modeling methods for predicting microstructure, mobility and rheology of charged suspensions.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Flint; Grillet, Anne Mary; Grest, Gary Stephen; Lechman, Jeremy B.; Plimpton, Steven James; in' t Veld, Pieter J. (BASF Corporation Ludwigshafen, Germany); Schunk, Peter Randall; Heine, D. R. (Corning, Inc. Corning, NY); Stoltz, C. (Procter and Gamble Co. West Chester, OH); Weiss, Horst (BASF Corporation Ludwigshafen, Germany); Jendrejack, R. (3M Corporation St. Paul, MN); Petersen, Matthew K.


    In this presentation we examine the accuracy and performance of a suite of discrete-element-modeling approaches to predicting equilibrium and dynamic rheological properties of polystyrene suspensions. What distinguishes each approach presented is the methodology of handling the solvent hydrodynamics. Specifically, we compare stochastic rotation dynamics (SRD), fast lubrication dynamics (FLD) and dissipative particle dynamics (DPD). Method-to-method comparisons are made as well as comparisons with experimental data. Quantities examined are equilibrium structure properties (e.g. pair-distribution function), equilibrium dynamic properties (e.g. short- and long-time diffusivities), and dynamic response (e.g. steady shear viscosity). In all approaches we deploy the DLVO potential for colloid-colloid interactions. Comparisons are made over a range of volume fractions and salt concentrations. Our results reveal the utility of such methods for long-time diffusivity prediction can be dubious in certain ranges of volume fraction, and other discoveries regarding the best formulation to use in predicting rheological response.

  17. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. (United States)

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F


    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment.

  18. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling (United States)

    Watanabe, Y.; Morishita, K.; Nakasuji, T.; Ando, M.; Tanigawa, H.


    Reaction rate theory analysis has been conducted to investigate helium effects on the formation kinetics of interstitial type dislocation loops (I-loops) and helium bubbles in reduced-activation-ferritic/martensitic steel during irradiation, by focusing on the nucleation and growth processes of the defect clusters. The rate theory model employs the size and chemical composition dependence of thermal dissociation of point defects from defect clusters. In the calculations, the temperature and the production rate of Frenkel pairs are fixed to be T = 723 K and PV = 10-6 dpa/s, respectively. And then, only the production rate of helium atoms was changed into the following three cases: PHe = 0, 10-7 and 10-5 appm He/s. The calculation results show that helium effect on I-loop formation quite differs from that on bubble formation. As to I-loops, the loop formation hardly depends on the existence of helium, where the number density of I-loops is almost the same for the three cases of PHe. This is because helium atoms trapped in vacancies are easily emitted into the matrix due to the recombination between the vacancies and SIAs, which induces no pronounced increase or decrease of vacancies and SIAs in the matrix, leading to no remarkable impact on the I-loop nucleation. On the other hand, the bubble formation depends much on the existence of helium, in which the number density of bubbles for PHe = 10-7 and 10-5 appm He/s is much higher than that for PHe = 0. This is because helium atoms trapped in a bubble increase the vacancy binding energy, and suppress the vacancy dissociation from the bubble, resulting in a promotion of the bubble nucleation. And then, the helium effect on the promotion of bubble nucleation is very strong, even the number of helium atoms in a bubble is not so large.

  19. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.


    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  20. The Microstructural Response of Granular Soil Under Uniaxial Strain (United States)


    contacts or granular motions will provide insight into more accurate modeling of the material response. The microstructural theory can be directly...use of a flow rule, the ramifications of using an associated or nonassociated flow rule for modeling the response of granular materials will also be...plasticity-based models has been developed over the past 30 yr. Common variations include perfect (ideal) plasticity, hypoelasticity , and viscoplasticity

  1. Developing the Framed Standard Model

    CERN Document Server

    Baker, Michael J; Chan, H M; Tsou, S T


    The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and 3 fermion generations as part of the framed gauge theory structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global $su(3)$ symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is "universal", rank-one and rotates (changes its orientation in generation space) with changing scale $\\mu$, (iii) the metric in generation space is scale-dependent too, and in general non-flat, (iv) the theta-angle term in the QCD action of topological origin gets transformed into the CP-violating phase of the CKM matrix for quarks, thus offering at the same time a solution to the strong CP problem.

  2. Comparison of Extensive Thermal Cycling Effects on Microstructure Development in Micro-alloyed Sn-Ag-Cu Solder Joints

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel; Riegner, David; Steinmetz, Andrew; Hillman, David


    Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55 C/+125 C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.

  3. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure (United States)

    Saksala, Timo


    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  4. Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis

    CERN Document Server

    Kim, Kyungmok; Géringer, Jean; 10.1177/0954411911422843


    This paper describes a two-dimensional (2D) finite element simulation for fracture and fatigue behaviours of pure alumina microstructures such as those found at hip prostheses. Finite element models are developed using actual Al2O3 microstructures and a bilinear cohesive zone law. Simulation conditions are similar to those found at a slip zone in a dry contact between a femoral head and an acetabular cup of hip prosthesis. Contact stresses are imposed to generate cracks in the models. Magnitudes of imposed stresses are higher than those found at the microscopic scale. Effects of microstructures and contact stresses are investigated in terms of crack formation. In addition, fatigue behaviour of the microstructure is determined by performing simulations under cyclic loading conditions. It is shown that crack density observed in a microstructure increases with increasing magnitude of applied contact stress. Moreover, crack density increases linearly with respect to the number of fatigue cycles within a given con...

  5. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model (United States)

    Schmidtchen, M.; Rimnac, A.; Warczok, P.; Kozeschnik, E.; Bernhard, C.; Bragin, S.; Kawalla, R.; Linzer, B.


    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness.

  6. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders


    on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases......The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... are presented and analyzed in light of business modeling of PN....

  7. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. (United States)

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Guzman, Ximena Stecher; Stevenson, David K; Barnea-Goraly, Naama


    At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW≤1500g, GA≤32weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40weeks (34.7-38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace 0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal-spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was

  8. Numerical simulation of microstructure formation of AZ91 using mCA method

    Institute of Scientific and Technical Information of China (English)

    HE Bo-lin; LI Qiu-ping; QI Qing-yan; YAO Xiang-dong


    A stochastic model for simulating the microstructure formation of Mg alloy AZ91 during solidification was developed based on the finite element method(FEM) for macroscopic model of heat transfer calculation and a modified Cellular Automaton (mCA) for microscopic modeling of nucleation, growth of crystal. In this model, the effect of solute redistribution, interface curvature and preferred orientation was considered. A numerical simulation was developed with C++ program language. The computation was carried out to understand the effect of varying processing parameters, such as nucleation parameters and heat transfer coefficient, on the microstructure formation of AZ91. The result of simulation was displayed on screen.

  9. High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials (United States)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.


    A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.

  10. Fractographic observations of the microstructural characteristics of flax fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Asian, Mustafa; Lilholt, Hans


    Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned...

  11. Three-dimensional visualization of the microstructure development of Sr-modified Al-15Si casting alloy using FIB-EsB tomography

    Energy Technology Data Exchange (ETDEWEB)

    Timpel, M., E-mail: [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Banhart, J. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)


    Unmodified and Sr-modified (after 5 and 120 min of melt holding) Al-15Si alloys were investigated by transmission electron microscopy and focused ion beam tomography using energy-selective backscattered electrons for imaging. The three-dimensional visualization of the microstructure provided not only the true morphology of the Al-Si eutectic and Fe-rich intermetallics, but also allowed us to estimate their volume fractions. The evolution of Fe-rich {alpha}-phase morphology in the unmodified alloy proceeded during eutectic growth according to a model proposed. In the unmodified alloy, only Fe-rich {alpha}-phase was found, whereas in the Sr-modified alloy after 5 min of melt holding, two morphologies of Fe-rich phases were observed, namely a Fe-rich {alpha}-phase and a Fe-rich {delta}-phase. Both phases segregated mainly at modified eutectic grain boundaries. After 120 min of melt holding, the eutectic microstructure is similar to the unmodified structure again and only the Fe-rich {alpha}-phase could be observed.

  12. Effect of Q&P parameters on microstructure development and mechanical behaviour of Q&P steels

    Directory of Open Access Journals (Sweden)

    De Diego-Calderón, Irene


    Full Text Available Steel with a nominal composition of 0.25C–1.5Si–3Mn–0.023Al (mass % was subjected to Quenching and Partitioning (Q&P with varying parameters (quenching temperature, partitioning temperature and partitioning time resulting in formation of multi-phase microstructure, which was thoroughly studied using X-ray (XRD and Elect